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PREFACE 

 

This book is intended to be a complete and clear introduction to the field 

of crystallography for undergraduate and graduate students and lecturers in 

physics, chemistry, biology, materials and earth sciences, or engineering. It 

includes an extensive discussion of the 14 Bravais lattices and the reciprocal 

to them, basic concepts of point group symmetry, the crystal structure of 

elements and binary compounds, and much more. Besides that, the reader 

can find up-to-date values for the lattice constants of most elements and 

about 650 binary compounds (half of them containing rare earth metals). 

The entire notation in this book is consistent with the International Tables 

for Crystallography. 

We have made all possible effort to attract the reader with high quality 

illustrations showing all basic concepts in this area. Our purpose was to 

show rather than describe “using many words” the structure of materials and 

its basic properties. We believe that even readers who are completely not 

familiar with the topic, but still want to learn how the atoms are arranged in 

crystal structures, will find this book useful. 

The text is organized into six chapters. Chapter I introduces basic 

concepts and definitions in the field of crystallography starting with one- 

and two-dimensional structures. Chapter II provides a detailed description of 

the 14 Bravais lattices. Chapter III describes the most important crystal 

structures of the elements with special emphasis on the close-packed 

structures and the interstices present in them. Chapter IV presents the 

structures of the most important binary compounds and reports the lattice 

constants of about 650 of them. Chapter V is devoted to the reciprocal 

lattice. Chapter VI, which is the final one, shows the relation between a 

direct lattice and its reciprocal. 

All chapters are accompanied by exercises designed in such a way to 

encourage students to explore the crystal structures he/she is learning about. 

Our goal always is to help the reader to develop spatial intuition by solving 

the exercises graphically. Since computers are an essential part of today’s 

education, we invite the reader to make use of crystallographic databases. In 

most of the database web pages, it is possible to visualize crystal structures 

in 3D either directly from the web browser or by downloading input files 

with the coordinates of the structures. Some of the freely available (or with 

open access options) databases are: 
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• ICSD for WWW-interface with free demo access  

(http://icsd.ill.fr) 

• American Mineralogist Crystal Structure Database (AMCSD) 

(http://rruff.geo.arizona.edu/AMS/amcsd.php) 

• Crystal Lattice Structures 

(http://cst-www.nrl.navy.mil/lattice/index.html) 

• Crystallography Open Database (COD) 

(http://cod.ibt.lt). 

 

We also encourage more advanced readers to create their own input files 

with crystal structure coordinates or download them from the web. The 

structures can be then viewed with, e.g., the freely available software called 

Jmol (http://www.jmol.org). This program allows for the structure to be 

manipulated, i.e., rotated, scaled, and translated, and allows for the 

measurement of internal coordinates, e.g., bond lengths and angles. 

We hope the reader will enjoy this book and will use it as a gateway for 

understanding more advanced texts on this topic. 

 

N. Gonzalez Szwacki 

Houston, USA 

T. Szwacka 

Mérida, Venezuela 

July 2009 
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I. CRYSTAL STRUCTURE 

 

 

1. Introduction 

 

Many of the materials surrounding us (metals, semiconductors, or 

insulators) have a crystalline structure. That is to say, they represent a set of 

atoms distributed in space in a particular way. Strictly speaking, this is the 

case when the atoms occupy their equilibrium positions. Obviously, in the 

real case they are vibrating. Below we will see examples of crystal 

structures, beginning with one-dimensional cases. 

 

 

2. One-Dimensional Crystal Structures 

 

A one-dimensional crystal structure is formed by a set of atoms or 

groups of them distributed periodically in one direction. In Fig. 1 there are 

three examples of one-dimensional crystal structures. In all three cases, the 

whole crystal structure may be obtained by placing atoms (or groups of 

them), at a distance aa =
�

 one from the other, along a straight line. When 

we translate an infinite structure by vector a
�

 we obtain the same structure. 

The same will occur if we translate the structure by a vector equal to the 

multiple of vector a
�

, that is, an
�

, where n ∈Z . The vector a
�

 is called a 

primitive translation vector. A clear difference can be seen between the 

crystal structure from Fig. 1a and the other two structures in this figure. In 

the structure from Fig. 1a all the atoms have equivalent positions in space, 

while in the case of structures from Figs. 1b and 1c this does not occur. It 

can be easily observed that in the structure from Fig. 1b the nearest neighbor 

(NN) atoms of the atom labeled as 1 (open circles) are of another type (filed 

circles) and the NNs of the atom labeled as 2 are atoms of type 1. In the                 

case of the structure from Fig. 1c, the atom labeled as 1 has its NN on the 

right side, while the atom labeled as 2, on the left side. 

The fact that after translating an infinite crystal structure by the 

primitive translation vector a
�

 or its multiple, an
�

, we obtain the same 

structure characterize all crystal structures. This is the starting point to 

introduce a certain mathematical abstraction called lattice – a periodic 

arrangement of points in space, whose positions are given by vectors an
�

 

which can have as an initial point any point of the one-dimensional space. 
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The atomic arrangement in the crystal structure looks the same from 

point (node) of the lattice, what can be seen in Fig. 2, where we show two 

different arrangements of lattice points respect to atoms of the crystal 

structures from Fig. 1. Therefore, all lattice points have equivalent positions 

in the crystal structure

is shown, e.g., in Fig. 1b the equivalency between the neighborhood of the 

atoms does not exist when the crystal structure is made up of more than one 

type of atoms. Fig. 1c shows that the distribution

another possible source of inequivalency between the atoms. The lattice is a 

mathematical object that

symmetry of the crystal structure. The relation between the structure and its 

lattice will be discussed in details below.

Let us now determine the number of atoms in a volume defined by 

vector a
�

. When the initial and final points of vector 

center of atoms (see Fig. 2a), one half of each atom belongs to the volume in 

consideration, so the volume possesses one atom. Besides that, segment 

may have other atoms, what is shown in Figs. 2b and 2c. The volume 

defined by vector 

independently on the position of the initial point of the vector.

The primitive translation vector 

lattice defines a unit cell 

point. This cell is called a 

From now on, the volume of the primitive unit cell will be denoted by 

The entire space lattice with all lat

infinite number of times the primitive cell. The position of each cell

Figure 1 Three different one

identical atoms, (b) periodic repetition of a building block composed of two different atoms, 

and (c) periodic repetition of a
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The atomic arrangement in the crystal structure looks the same from 

point (node) of the lattice, what can be seen in Fig. 2, where we show two 

different arrangements of lattice points respect to atoms of the crystal 

structures from Fig. 1. Therefore, all lattice points have equivalent positions 

in the crystal structure, what we cannot say in general about the atoms. As it 

is shown, e.g., in Fig. 1b the equivalency between the neighborhood of the 

atoms does not exist when the crystal structure is made up of more than one 

type of atoms. Fig. 1c shows that the distribution of atoms in space can be 

another possible source of inequivalency between the atoms. The lattice is a 

mathematical object that possesses the information about the translation 

symmetry of the crystal structure. The relation between the structure and its 

ttice will be discussed in details below. 

Let us now determine the number of atoms in a volume defined by 

When the initial and final points of vector a
�

 coincide wit

center of atoms (see Fig. 2a), one half of each atom belongs to the volume in 

consideration, so the volume possesses one atom. Besides that, segment 

may have other atoms, what is shown in Figs. 2b and 2c. The volume 

defined by vector a
�

 always contains the same number of atoms, 

independently on the position of the initial point of the vector. 

The primitive translation vector a
�

 called also the basis vector 

unit cell of this lattice, which contains exactly one lattice 

point. This cell is called a primitive cell and its “volume” is equal to 

From now on, the volume of the primitive unit cell will be denoted by 

The entire space lattice with all lattice points can be obtained duplicating an 

infinite number of times the primitive cell. The position of each cell

Three different one-dimensional crystal structures: (a) periodic repetition of 

periodic repetition of a building block composed of two different atoms, 

periodic repetition of a building block composed of two identical atoms. 

The atomic arrangement in the crystal structure looks the same from any 

point (node) of the lattice, what can be seen in Fig. 2, where we show two 

different arrangements of lattice points respect to atoms of the crystal 

structures from Fig. 1. Therefore, all lattice points have equivalent positions 

, what we cannot say in general about the atoms. As it 

is shown, e.g., in Fig. 1b the equivalency between the neighborhood of the 

atoms does not exist when the crystal structure is made up of more than one 

of atoms in space can be 

another possible source of inequivalency between the atoms. The lattice is a 

possesses the information about the translation 

symmetry of the crystal structure. The relation between the structure and its 

Let us now determine the number of atoms in a volume defined by 

coincide with the 

center of atoms (see Fig. 2a), one half of each atom belongs to the volume in 

consideration, so the volume possesses one atom. Besides that, segment a 

may have other atoms, what is shown in Figs. 2b and 2c. The volume 

always contains the same number of atoms, 

basis vector of the 

lattice, which contains exactly one lattice 

and its “volume” is equal to aa =
�

. 

From now on, the volume of the primitive unit cell will be denoted by Ω0. 

tice points can be obtained duplicating an 

infinite number of times the primitive cell. The position of each cell replica 

 

periodic repetition of 

periodic repetition of a building block composed of two different atoms, 



 

is given by a vector 

each lattice point a group of ato

primitive cell. This group is 

structure from Fig. 2a the basis consists of one atom, while in the case of 

Figs. 2b and 2c of two atoms.

It is obvious that there is more than one way to propose a lattice for a 

certain crystal structure. For example, the lattice shown in Fig. 3 could be 

another option for the structure from Fig. 1a. The basis vector of this lattice 

is two times longer t

see in Fig. 3 that the atomic basis of the structure has now two atoms

instead of one we had in the previous case. In general we use the lattice in 

Figure 2 Two different arrangements of lattice points with respect to atoms of the crystal 

structure, for structures from Fig. 1. In both cases, the atomic arrangement in the crystal 

structure looks the same from any point of the lattice. The lattice basis vector 

primitive cell. 

Figure 3 A lattice for the crystal structure from Fig. 1a. In this case, the basis is composed of 

two atoms. Two different arrangements of lattice points with respect to atoms of the structure 

are shown. 

Crystal Structure 

 

is given by a vector an
�

. The crystal structure is obtained when we attach to 

each lattice point a group of atoms, which are within the volume of the 

primitive cell. This group is called the basis. In the case of the crystal 

structure from Fig. 2a the basis consists of one atom, while in the case of 

two atoms. 

It is obvious that there is more than one way to propose a lattice for a 

certain crystal structure. For example, the lattice shown in Fig. 3 could be 

another option for the structure from Fig. 1a. The basis vector of this lattice 

is two times longer than that defining the lattice proposed in Fig. 2a. We can 

see in Fig. 3 that the atomic basis of the structure has now two atoms

instead of one we had in the previous case. In general we use the lattice in 

Two different arrangements of lattice points with respect to atoms of the crystal 

structure, for structures from Fig. 1. In both cases, the atomic arrangement in the crystal 

structure looks the same from any point of the lattice. The lattice basis vector a
�

 defines its 

attice for the crystal structure from Fig. 1a. In this case, the basis is composed of 

two atoms. Two different arrangements of lattice points with respect to atoms of the structure 
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. The crystal structure is obtained when we attach to 

ms, which are within the volume of the 

. In the case of the crystal 

structure from Fig. 2a the basis consists of one atom, while in the case of 

It is obvious that there is more than one way to propose a lattice for a 

certain crystal structure. For example, the lattice shown in Fig. 3 could be 

another option for the structure from Fig. 1a. The basis vector of this lattice 

han that defining the lattice proposed in Fig. 2a. We can 

see in Fig. 3 that the atomic basis of the structure has now two atoms              

instead of one we had in the previous case. In general we use the lattice in 

 

Two different arrangements of lattice points with respect to atoms of the crystal 

structure, for structures from Fig. 1. In both cases, the atomic arrangement in the crystal 

defines its 

 

attice for the crystal structure from Fig. 1a. In this case, the basis is composed of 

two atoms. Two different arrangements of lattice points with respect to atoms of the structure 
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which the atomic basis of the crystal structure is the smallest one, but 

sometimes it is convenient to use a different lattice, as we will see farther 

on. 

 

 

3. Two-Dimensional Crystal Structure
 

We will now look at the two

example shown in the Fig. 4. In this figure vectors 

translation vectors. If the infinite crystal structure is translate

R
�

, that is a linear combination of vectors 

 

then the same structure as the original one is obtained. The vectors 

can be used to define a lattice. The lattice points may overlap with the 

centers of atoms like in the Fig. 4. By translating the replicas of the cell 

defined by vectors 

reproduce the entire space lattice.

The cell I in Fig. 4 is not the only one that can reproduce all the space 

lattice. There is an infinite number of such cells. For example, the cell

defined by vectors a

The volumes of cells 

 0 1 2 1 0 1 2 1Ω sin   and  a a a h a a a h= = = =

Figure 4 A two-dimensional crystal structure. The lattice points overlap with atom centers. 

and II are examples of two unit cells that
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which the atomic basis of the crystal structure is the smallest one, but 

sometimes it is convenient to use a different lattice, as we will see farther 

Dimensional Crystal Structures 

We will now look at the two-dimensional case, beginning with the 

example shown in the Fig. 4. In this figure vectors 
1a
�

 and 
2a
�

 are primitive 

translation vectors. If the infinite crystal structure is translated to a vector 

, that is a linear combination of vectors 
1a
�

, 
2a
�

, given by the formula

1 21 1 22R a a  ,  where , n n n n= + ∈

� � �
Z , 

then the same structure as the original one is obtained. The vectors 

can be used to define a lattice. The lattice points may overlap with the 

centers of atoms like in the Fig. 4. By translating the replicas of the cell 

defined by vectors 
1a
�

, 
2a
�

 
in Fig. 4, through all the vectors R

�

, 

reproduce the entire space lattice. 

in Fig. 4 is not the only one that can reproduce all the space 

lattice. There is an infinite number of such cells. For example, the cell

1a′
�

 and 
2a′
�

 in Fig. 4, can also reproduce the entire lattice. 

The volumes of cells I and II are 

( ) ( )0 1 2 1 0 1 2 12 2 11sin   and  Ω sina ,a a ,aa a a h a a a h′ ′ ′ ′ ′= = = =
� �

∢
�

∢
�

dimensional crystal structure. The lattice points overlap with atom centers. 

are examples of two unit cells that can reproduce the lattice. 

which the atomic basis of the crystal structure is the smallest one, but 

sometimes it is convenient to use a different lattice, as we will see farther    

dimensional case, beginning with the 

are primitive 

d to a vector  

, given by the formula 

(I.1) 

then the same structure as the original one is obtained. The vectors 
1a
�

, 
2a
�

 

can be used to define a lattice. The lattice points may overlap with the 

centers of atoms like in the Fig. 4. By translating the replicas of the cell I, 

, we can 

in Fig. 4 is not the only one that can reproduce all the space 

lattice. There is an infinite number of such cells. For example, the cell II, 

re lattice. 

a a a h a a a h , (I.2) 

 

dimensional crystal structure. The lattice points overlap with atom centers. I 



 

respectively, where 

the two volumes are identical.

We will demonstrate now that the cells 

primitive, since they only contain one lattice point. Those cells and also the 

cell 1 in Fig. 5 have 4 atoms 

the lattice. Both, the atoms and the lattice points

neighboring cells. This

point) is shared by cells 

point) and the sum of the fractions is 1, giving one atom (lattice point) per 

cell. The points from the 

contribute exactly with one lattice point to the cell. All primitive cells have 

the same volume. This volume corresponds to one point of a lattice. The 

most commonly used primitive cell is the one which is defined by the 

shortest or one of the shortest primitive translation vectors of the lattice 

(e.g. 
1a
�

, 
2a
�

 from Fig. 4). These vectors are called 

the choice of basis vectors is not unique,

be chosen in several different ways.

example of a conventional primitive cell

conventional basis vectors.

 

Figure 5 The highlighted atom (lattice point) belongs to four cells which are marked from 

to 4, therefore only a fraction of this atom (lattice point) belongs to the highlighted cell 

 

For the two-dimensional lattice 

can choose a non primitive unit cell. An example of such a cell is shown in 

Fig. 6. The cell in this figure possesses two lattice points inside, so the total 

number of points belonging to it is three.

Let us now place an additional atom in the mid

of type I from Fig. 4. The resulting structure is shown in Fig. 7. The 

additional atoms are of the same type as the atoms of the original structure. 

Crystal Structure 

 

respectively, where 
1 1a a′ =  and ( ) ( )2 22 11 2sin sia n a,a ,aa a h′ ′ ′= =

� ��
∢

�
∢

the two volumes are identical. 

We will demonstrate now that the cells I and II from Fig. 4 

primitive, since they only contain one lattice point. Those cells and also the 

cell 1 in Fig. 5 have 4 atoms at the vertices whose centers represent points of 

the lattice. Both, the atoms and the lattice points, are shared with 

. This is shown in Fig. 5, where a highlighted atom (lattice 

point) is shared by cells 1 to 4. Each cell has a fraction of an atom (lattice 

point) and the sum of the fractions is 1, giving one atom (lattice point) per 

cell. The points from the vertices of any cell that is a parallelogram 

contribute exactly with one lattice point to the cell. All primitive cells have 

the same volume. This volume corresponds to one point of a lattice. The 

most commonly used primitive cell is the one which is defined by the 

or one of the shortest primitive translation vectors of the lattice 

from Fig. 4). These vectors are called basis vectors. Note that 

choice of basis vectors is not unique, since even the shortest vectors can 

be chosen in several different ways. The parallelogram I in Fig. 4 is an 

conventional primitive cell and vectors 
1a
�

, 
2a
�

 

conventional basis vectors. 

The highlighted atom (lattice point) belongs to four cells which are marked from 

, therefore only a fraction of this atom (lattice point) belongs to the highlighted cell 

dimensional lattice that we are discussing in this sec

can choose a non primitive unit cell. An example of such a cell is shown in 

Fig. 6. The cell in this figure possesses two lattice points inside, so the total 

number of points belonging to it is three. 

Let us now place an additional atom in the middle of each parallelogram 

of type I from Fig. 4. The resulting structure is shown in Fig. 7. The 

additional atoms are of the same type as the atoms of the original structure. 

5 

a a h= = . So,  

from Fig. 4 are 

primitive, since they only contain one lattice point. Those cells and also the 

whose centers represent points of 

are shared with 

where a highlighted atom (lattice 

. Each cell has a fraction of an atom (lattice 

point) and the sum of the fractions is 1, giving one atom (lattice point) per 

l that is a parallelogram 

contribute exactly with one lattice point to the cell. All primitive cells have 

the same volume. This volume corresponds to one point of a lattice. The 

most commonly used primitive cell is the one which is defined by the 

or one of the shortest primitive translation vectors of the lattice          

. Note that 

since even the shortest vectors can 

in Fig. 4 is an 

 are the 

The highlighted atom (lattice point) belongs to four cells which are marked from 1 

, therefore only a fraction of this atom (lattice point) belongs to the highlighted cell 1. 

ection, we 

can choose a non primitive unit cell. An example of such a cell is shown in 

Fig. 6. The cell in this figure possesses two lattice points inside, so the total 

dle of each parallelogram 

of type I from Fig. 4. The resulting structure is shown in Fig. 7. The 

additional atoms are of the same type as the atoms of the original structure. 
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In Fig. 7 we can observe that the resulting crystal structure is of the same 

type as the original one, since in both cases the lattices can be chosen in such 

a way that the atomic basis of each structure possesses only one atom. The 

vectors 
1a
�

 and 
2a
�

 

lattice. Of course we could keep vectors 

primitive translation vectors of the lattice for the structure from Fig. 

then the atomic basis would contain two atoms instead of one.

If we place atoms in the middle of the parallelograms of Fig. 4 that are 

of a different type than the atoms of the host structure then the resulting 

crystal structure will look as shown i

atomic basis contains two atoms (one of each type) and the cell of type 

from Fig. 4 represents the conventional primitive cell of the lattice.

Finally, we will consider the case in which we place an additional 

atom of the same type

 

Figure 6 A unit cell that can reproduce the whole lattice. This cell is

contains 3 lattice points. The lattice points overlap with the centers of atoms.

Figure 7 A two-dimensional crystal structure obtained from the structure from Fig. 4 by 

placing additional atoms in the centers of each unit cell of typ

define a unit cell of the resulting structure which contains one atom.
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In Fig. 7 we can observe that the resulting crystal structure is of the same 

as the original one, since in both cases the lattices can be chosen in such 

a way that the atomic basis of each structure possesses only one atom. The 
�

 in Fig. 7 are the primitive translation vectors of such a 

lattice. Of course we could keep vectors 
1a
�

 and 
2a
�

 defined in Fig. 4 as the 

primitive translation vectors of the lattice for the structure from Fig. 

then the atomic basis would contain two atoms instead of one. 

If we place atoms in the middle of the parallelograms of Fig. 4 that are 

of a different type than the atoms of the host structure then the resulting 

crystal structure will look as shown in Fig. 8. In this case, the smallest 

atomic basis contains two atoms (one of each type) and the cell of type 

from Fig. 4 represents the conventional primitive cell of the lattice. 

Finally, we will consider the case in which we place an additional 

atom of the same type as the host atoms in the cell of type I from Fig. 4, 

nit cell that can reproduce the whole lattice. This cell is not primitive since 

contains 3 lattice points. The lattice points overlap with the centers of atoms. 

dimensional crystal structure obtained from the structure from Fig. 4 by 

placing additional atoms in the centers of each unit cell of type I. The vectors a
�

define a unit cell of the resulting structure which contains one atom. 

In Fig. 7 we can observe that the resulting crystal structure is of the same 

as the original one, since in both cases the lattices can be chosen in such 

a way that the atomic basis of each structure possesses only one atom. The 

in Fig. 7 are the primitive translation vectors of such a 

defined in Fig. 4 as the 

primitive translation vectors of the lattice for the structure from Fig. 7, but 

If we place atoms in the middle of the parallelograms of Fig. 4 that are 

of a different type than the atoms of the host structure then the resulting 

n Fig. 8. In this case, the smallest 

atomic basis contains two atoms (one of each type) and the cell of type I 

Finally, we will consider the case in which we place an additional              

in the cell of type I from Fig. 4, 

 

not primitive since 

 

dimensional crystal structure obtained from the structure from Fig. 4 by 

1a
�

 and 2a
�

 



 

however, this time not in the middle of 

with less symmetry as it is shown in Fig. 9. In this case, the smallest atomic 

basis also contains two atoms but this time they are of the same type. We 

can observe in Fig. 9 that this crystal structure can be considere

superposition of two identical crystal substructures which are structures 

from Fig. 4. 

Next, we will consider two more examples of two

structures, namely, the honeycomb and the two

structures. Figure 10 shows the honeycomb structure with a conventional 

primitive cell that contains two atoms

the honeycomb structure

initial point of the basis vectors 

lattice points with respect to the atoms is different

Figure 8 A two-dimensional crystal structure made up of two types of atoms. The unit cell, 

defined by vectors 1a
�

, a
�

Figure 9 A two-dimensional crystal structure. The primitive cell of the lattice, defined by 

vectors 1a
�

 and 2a
�

, has 2 atoms

Crystal Structure 

 

however, this time not in the middle of the parallelogram, but in a position 

with less symmetry as it is shown in Fig. 9. In this case, the smallest atomic 

basis also contains two atoms but this time they are of the same type. We 

can observe in Fig. 9 that this crystal structure can be considere

superposition of two identical crystal substructures which are structures 

Next, we will consider two more examples of two-dimensional crysta

mely, the honeycomb and the two-dimensional hexagonal 

10 shows the honeycomb structure with a conventional 

rimitive cell that contains two atoms. This is the smallest atomic basis for 

the honeycomb structure. In Fig. 10, we considered two choices for the 

initial point of the basis vectors 
1a
�

 and 
2a
�

. In each case, the location of

lattice points with respect to the atoms is different. In one case, the lattice 

dimensional crystal structure made up of two types of atoms. The unit cell, 

2a
�

, has 2 atoms. 

dimensional crystal structure. The primitive cell of the lattice, defined by 

, has 2 atoms. 

7 

the parallelogram, but in a position 

with less symmetry as it is shown in Fig. 9. In this case, the smallest atomic 

basis also contains two atoms but this time they are of the same type. We 

can observe in Fig. 9 that this crystal structure can be considered a 

superposition of two identical crystal substructures which are structures 

dimensional crystal 

hexagonal 

10 shows the honeycomb structure with a conventional 

atomic basis for 

, we considered two choices for the 

In each case, the location of the 

the lattice 

 

dimensional crystal structure made up of two types of atoms. The unit cell, 

 

dimensional crystal structure. The primitive cell of the lattice, defined by 
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points overlap with the 

with the centers of the hexagons. Later we will show 

initial point of the basis vectors 

structure. 

In Fig. 11 we show a lattice for the 

This lattice is a two

defined in Fig. 10 are the basis vectors of this lattice and they define a 

conventional primitive cell which has the shape of a rhomb. 

 

Figure 10 The honeycomb structure. In the figure are shown two positions of the unit cell 

with respect to the atoms of

 

 

The points of the infinite lattice shown in Fig. 11 are sixfold rotation 

points and the geometric centers of the equilateral triangles (building blocks 

of the hexagons) are threefold rotation points. If

the structure that is 

honeycombs then the sixfold rotation points of the lattice overlap with

sixfold rotation points of the honeycomb structure. However, if we place 

the lattice points in the centers of atoms, then the sixfold rotation points 

of the lattice overlap with the threefold 

structure and half of 

the sixfold rotation point

Basic Elements of Crystallography 

points overlap with the centers of atoms and in the other case, they overlap 

with the centers of the hexagons. Later we will show that the choice of the 

initial point of the basis vectors is relevant in the description of a

In Fig. 11 we show a lattice for the honeycomb structure from Fig. 10. 

two-dimensional hexagonal lattice. The vectors 
1a
�

defined in Fig. 10 are the basis vectors of this lattice and they define a 

conventional primitive cell which has the shape of a rhomb.  

honeycomb structure. In the figure are shown two positions of the unit cell 

respect to the atoms of the structure. 

The points of the infinite lattice shown in Fig. 11 are sixfold rotation 

points and the geometric centers of the equilateral triangles (building blocks 

of the hexagons) are threefold rotation points. If the lattice points for 

that is shown in Fig. 10 overlap with the centers of the 

n the sixfold rotation points of the lattice overlap with

sixfold rotation points of the honeycomb structure. However, if we place 

ice points in the centers of atoms, then the sixfold rotation points 

of the lattice overlap with the threefold rotation points of the honeycomb 

of the threefold rotation points of the lattice overlap with 

points of the honeycomb structure. 

they overlap 

the choice of the 

a crystal 

honeycomb structure from Fig. 10. 

1a
�

 and 
2a
�

 

defined in Fig. 10 are the basis vectors of this lattice and they define a 

honeycomb structure. In the figure are shown two positions of the unit cell 

The points of the infinite lattice shown in Fig. 11 are sixfold rotation 

points and the geometric centers of the equilateral triangles (building blocks 

the lattice points for                    

he centers of the 

n the sixfold rotation points of the lattice overlap with the 

sixfold rotation points of the honeycomb structure. However, if we place          

ice points in the centers of atoms, then the sixfold rotation points               

points of the honeycomb 

points of the lattice overlap with 



 

If we now place an additional atom (of the same type) in the center of 

each hexagon from Fig. 10, then the honeycomb structure transforms into a 

hexagonal (also known as triangular) structure.

new structure has one atom, since the primitive translation vectors can be 

chosen in the way shown in Fig. 12.

The examples of two

lattice has not only translation symmetry but also point symmetry. A poi

transformation is a geometric transformation that leaves at least one point 

invariant (rotations, reflections, etc.). The rotation points overlap with

lattice nodes and also other high symmetry points of the lattice. The lattices 

proposed for structures shown in Figs. 4, 7, 8, and 9 have twofold rotation 

points. If the basis of the two

atom, then the structure has the 

rotations as its lattice. The 

structure overlap when the lattice points overlap with the centers of atoms. 

This can occur also in the case when the basis has more than one atom, but 

only in the case when the basis atoms are placed in points of

(see Fig. 8). In general the point symmetry of a crystal structure is 

lower than the symmetry of its lattice (see e.g. Fig

honeycomb structure with two

Figure 11 A hexagonal 

been defined in Fig. 10. The points of the infinite lattice are sixfold rotation points and the 

geometric centers of the equilateral triangles overlap with the threefold rotation points of the 

lattice. In the figure, we also show the graphical symbols for the 

points. 

Crystal Structure 

 

If we now place an additional atom (of the same type) in the center of 

each hexagon from Fig. 10, then the honeycomb structure transforms into a 

hexagonal (also known as triangular) structure. The smallest basis of th

new structure has one atom, since the primitive translation vectors can be 

chosen in the way shown in Fig. 12. 

The examples of two-dimensional lattices considered here show that the 

lattice has not only translation symmetry but also point symmetry. A poi

transformation is a geometric transformation that leaves at least one point 

invariant (rotations, reflections, etc.). The rotation points overlap with

lattice nodes and also other high symmetry points of the lattice. The lattices 

sed for structures shown in Figs. 4, 7, 8, and 9 have twofold rotation 

points. If the basis of the two-dimensional crystal structure has only one 

atom, then the structure has the n-fold rotation points of the same order of 

rotations as its lattice. The n-fold rotation points of the lattice and the 

structure overlap when the lattice points overlap with the centers of atoms. 

This can occur also in the case when the basis has more than one atom, but 

only in the case when the basis atoms are placed in points of high symmetry 

(see Fig. 8). In general the point symmetry of a crystal structure is 

lower than the symmetry of its lattice (see e.g. Fig. 9). The fact that t

honeycomb structure with two-atom basis has sixfold rotation points (like 

 lattice for the honeycomb structure. The basis vectors 1a
�

 and 

defined in Fig. 10. The points of the infinite lattice are sixfold rotation points and the 

geometric centers of the equilateral triangles overlap with the threefold rotation points of the 

In the figure, we also show the graphical symbols for the threefold and sixfold rotation 

9 

If we now place an additional atom (of the same type) in the center of 

each hexagon from Fig. 10, then the honeycomb structure transforms into a 

The smallest basis of the 

new structure has one atom, since the primitive translation vectors can be 

dimensional lattices considered here show that the 

lattice has not only translation symmetry but also point symmetry. A point 

transformation is a geometric transformation that leaves at least one point 

invariant (rotations, reflections, etc.). The rotation points overlap with                   

lattice nodes and also other high symmetry points of the lattice. The lattices 

sed for structures shown in Figs. 4, 7, 8, and 9 have twofold rotation 

dimensional crystal structure has only one 

fold rotation points of the same order of 

of the lattice and the 

structure overlap when the lattice points overlap with the centers of atoms. 

This can occur also in the case when the basis has more than one atom, but 

high symmetry 

(see Fig. 8). In general the point symmetry of a crystal structure is                      

9). The fact that the 

atom basis has sixfold rotation points (like its 

 

and 2a
�

have 

defined in Fig. 10. The points of the infinite lattice are sixfold rotation points and the 

geometric centers of the equilateral triangles overlap with the threefold rotation points of the 

threefold and sixfold rotation 
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lattice) results from the very particular location of the basis atoms in the 

space lattice. 

Let us now show that the presence of translation symmetry implies that 

there are only one-, two

dimensional crystal structure or lattice. We will explain this using Fig. 13. In 

this figure, we make rotations of the basis vector 

1a−
�

, by the same angle 

 

 

Figure 13 A construction made using basis vector 

that that there are only 

dimensional crystal structure or lattice.

 

Figure 12 A two-dimensional hexagonal (also known as triangul

unit cell is defined by vectors 
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lattice) results from the very particular location of the basis atoms in the 

Let us now show that the presence of translation symmetry implies that 

, two-, three-, four-, and sixfold rotation points in a two

dimensional crystal structure or lattice. We will explain this using Fig. 13. In 

this figure, we make rotations of the basis vector 
1a
�

 and the opposite to it, 

, by the same angle 2 nπ  ( n∈ℤ ) but in opposite directions and the 

A construction made using basis vector 1a
�

 and the opposite to it, 1a−
�

that that there are only one-, two-, three-, four-, and sixfold rotation points in a two

dimensional crystal structure or lattice. 

dimensional hexagonal (also known as triangular) structure. The primitive 

unit cell is defined by vectors 1a
�

 and 2a
�

. 

lattice) results from the very particular location of the basis atoms in the 

Let us now show that the presence of translation symmetry implies that 

oints in a two-

dimensional crystal structure or lattice. We will explain this using Fig. 13. In 

and the opposite to it, 

) but in opposite directions and the  

1a
�

, to show 

, and sixfold rotation points in a two-

 

ar) structure. The primitive 



 

difference of the rotated vectors is shown in the figure. The translation 

symmetry requires that the difference, 

what imposes certain condition on the integer number 

 





From the above we obtain

 

and the possible values of integer 

 m n

respectively. Therefore, from (I.5) we obtained that the only rotations that 

can be performed are those by the angles

 

Figure 14 Graphical symbols for

of the following plane figures: 

hexagon. 
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difference of the rotated vectors is shown in the figure. The translation 

symmetry requires that the difference, ( )1 1a a′ ′′−
� �

, be a multiple of vector 

what imposes certain condition on the integer number n. We have 

( )

1 1 1

1 1

a a a
 , where 

2 cos 2

m
m

a n maπ

′ ′′− =
∈

=

� � �

ℤ . 

From the above we obtain 

( )
1

cos 2
2

n mπ =  

and the possible values of integer m and ( )cos 2 nπ  are 

( )
1

0, 1, 2  and  cos 2 0, , 1
2

m nπ= ± ± = ± ± , 

Therefore, from (I.5) we obtained that the only rotations that 

rformed are those by the angles 

2 2 2 2 2
, , , ,

1 2 3 4 6

π π π π π
. 

 

ymbols for the rotation points that overlap with the geometric centers 

of the following plane figures: (a) parallelogram, (b) rectangle, (c) square, and (d)

11 

difference of the rotated vectors is shown in the figure. The translation 

, be a multiple of vector 
1a
�

, 

(I.3) 

(I.4) 

(I.5) 

Therefore, from (I.5) we obtained that the only rotations that 

(I.6) 

rotation points that overlap with the geometric centers 

(d) regular 
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From the above we can finally conclude that in the lattice, there are only 

allowed one-, two-, three-, four-, and sixfold rotation points. 

 

Figure 15 Conventional cells that have the same point symmetry as the corresponding 

infinite lattices and the conventional primitive cells if different, for the five lattices existing            

in two dimensions: (a) oblique, (b) rectangular, (c) centered rectangular, (d) square, and               

(e) hexagonal. 
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We will now identify the possible two-dimensional lattices taking into 

account the limitations for the rotation points described above. We can see, 

on the example of the considered here lattices, that it is possible to identify 

finite volumes of the space lattice which have the same point symmetry as 

the infinite lattice. Let us consider the smallest such volumes. In the case of 

the lattices for crystal structures from Figs. 4, 7, 8, and 9 the volumes are the 

primitive cells defined by vectors 
1a
�

 and 
2a
�

, while in the case of the 

hexagonal lattice the smallest such volume is the hexagon (see Fig. 11). 

Each of these volumes represents a conventional cell of the lattice, which 

has the same point symmetry as the infinite lattice. 

Let us first consider the rotations about the points that overlap the 

geometric centers of some plane figures. In Figs. 14a and 14b we show the 

graphical symbol for the twofold rotation points that are in the centers of a 

parallelogram and a rectangle, respectively. We can also see in Figs. 14c  

and 14d that the geometric centers of a square and of a regular hexagon 

represent fourfold and sixfold rotation points, respectively, that are labeled 

with the corresponding graphical symbols in those figures. 

There are five different two-dimensional types of lattices, which are 

classified in four crystal systems: oblique, rectangular, square, and 

hexagonal. Due to the limitations for the rotation points described above             

the parallelogram, rectangle, square, and hexagon represent the only 

conventional cells that have the same point symmetry as the corresponding 

infinite lattices. Each of the geometric figures shown in Fig. 14 represents 

one (or two) of the crystal systems. Furthermore, Fig. 15 shows the 

conventional cells that have the point symmetry of the infinite lattice and the 

conventional primitive cells if different, for the five lattice types that exist in 

two dimensions: oblique, rectangular, centered rectangular, square, and 

hexagonal (see Figs. 15a-15e). 

 

 

4. Problems 

 

Exercise 1 Figure 16 shows a hexagonal lattice. 

a.) What lattice will be obtained if we place an additional point in the 

geometric center of each equilateral triangle in Fig. 16? Draw an 

example of primitive translation vectors for the new lattice. 
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b.) What crystal structure will be obtained if we attach to each lattice 

point a basis that has two identical atoms in the positions given by 

vectors 1r 0=
�

c.) If, instead of using identical atoms, we use in b.) a basis consisting 

of one boron and one nitrogen atom, then the resulting structure will 

be an isolated

What is the order of the

dimensional boron nitride structure

the highest order rotation points.

Exercise 2 In Fig. 17

symmetry of an

two types of atoms. Dra

structure. How many atoms of each type

above for the conventional cell shown in Fig. 17b.

Figure 17 Conventional cells 

infinite structures composed of two types of atoms.

Basic Elements of Crystallography 

What crystal structure will be obtained if we attach to each lattice 

point a basis that has two identical atoms in the positions given by 

r 0=

��
 and ( )2 1 2r 2 a a 3= +

� � �
? Draw this structure. 

If, instead of using identical atoms, we use in b.) a basis consisting 

of one boron and one nitrogen atom, then the resulting structure will 

an isolated atomic sheet of the α phase of boron nitride 

the order of the highest order rotation point in the two

dimensional boron nitride structure? Draw this structure and show 

order rotation points. 

In Fig. 17a, we show a conventional cell that has the point 

an infinite two-dimensional crystal structure composed of 

two types of atoms. Draw the smallest unit cell that can reproduce this 

structure. How many atoms of each type are in this cell? Repeat all the 

above for the conventional cell shown in Fig. 17b. 

Figure 16 A hexagonal lattice. 

 

Conventional cells that have the same point symmetry as the two-dimensional 

composed of two types of atoms. 

What crystal structure will be obtained if we attach to each lattice 

point a basis that has two identical atoms in the positions given by 

If, instead of using identical atoms, we use in b.) a basis consisting 

of one boron and one nitrogen atom, then the resulting structure will 

 (α-BN). 

the two-

? Draw this structure and show 

has the point 

posed of 

reproduce this 

Repeat all the 

 

dimensional 
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Exercise 3 Figure 18 shows a unit cell for a two-dimensional lattice.  

a.) What type of lattice is this?  

b.) Draw a conventional primitive cell for this lattice.  

c.) Draw the conventional unit cell which has the point symmetry of  

the infinite lattice. 

Exercise 4 Show graphically that the honeycomb structure shown in 

Fig. 10 is nothing more than the superposition of two hexagonal 

substructures shifted one with respect to the other by a vector 

( )1 2a a 3+
� �

. 

Exercise 5 Using the hexagonal lattice from Fig. 16 draw the vector 

( )1 1a a′ ′′−
� �

 defined in Fig. 13 for all rotations (by angles 2 nπ ) allowed 

in a hexagonal lattice. Find the value of the integer m which satisfies      

Eq. (I.4) in each case. 

 

 

 

 

 

 

 

 

Figure 18 Unit cell for a two-dimensional lattice. 

 



 



 

II. THREE-DIMENSIONAL CRYSTA

LATTICE

 

 

1. Introduction 

 

In the case of a three

shape of a parallelepiped defined by three non collinear and not all in the 

same plane primitive translation vectors 

example of a unit cell is shown in Fig. 19.

The translation symmetry of an infinite two

lattice imposes certain restrictions on its point symmetry elements, 

was shown in the previous c

The allowed orders of symmetry axes in a three

same as the orders of sy

and 6. As a consequence, in two and three dimensions only certain lattice 

types are possible. In order to find them in three dimensions, we will 

proceed in a similar way as it was done for the two

we will consider certain finite three

axes are of the orders that are allowed in an infinite lattice.

 

 

2. Examples of Symmetry Axes of Three

 

 An object which has one or more 

or 6 may have the shape of such a solid figure as 

Figure 19 
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DIMENSIONAL CRYSTAL 

LATTICE 

In the case of a three-dimensional lattice, a primitive unit cell has the 

shape of a parallelepiped defined by three non collinear and not all in the 

same plane primitive translation vectors 
1a
�

, 
2a
�

, 
3a
�

. The most general 

example of a unit cell is shown in Fig. 19. 

The translation symmetry of an infinite two- or three-dimensional 

lattice imposes certain restrictions on its point symmetry elements, 

was shown in the previous chapter for the case of a two-dimensional lattice. 

The allowed orders of symmetry axes in a three-dimensional lattice are the 

of symmetry points in two dimensions, it means 1, 2, 3, 4, 

and 6. As a consequence, in two and three dimensions only certain lattice 

types are possible. In order to find them in three dimensions, we will 

proceed in a similar way as it was done for the two-dimensional case. First, 

we will consider certain finite three-dimensional figures whose symmetry 

axes are of the orders that are allowed in an infinite lattice. 

Examples of Symmetry Axes of Three-Dimensional Figures 

ich has one or more symmetry axes of orders 1, 2, 3, 4, 

or 6 may have the shape of such a solid figure as parallelepiped, regular 

 

Figure 19 A unit cell of a three-dimensional lattice. 

dimensional lattice, a primitive unit cell has the 

shape of a parallelepiped defined by three non collinear and not all in the 

. The most general 

dimensional          

lattice imposes certain restrictions on its point symmetry elements, what   

dimensional lattice. 

dimensional lattice are the 

it means 1, 2, 3, 4, 

and 6. As a consequence, in two and three dimensions only certain lattice 

types are possible. In order to find them in three dimensions, we will 

dimensional case. First, 

dimensional figures whose symmetry 

1, 2, 3, 4,           

parallelepiped, regular 
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tetrahedron or octahedron, or hexagonal prism.

an infinite lattice is such that the highest order of the 

only one, a parallelepiped of the lowest possible symmetry (see Fig. 19) 

represents a solid figure that has the same point symmetry as the lattice. In 

Fig. 20 we show other parallelepipeds whose shapes allow for the presence 

of two- and (or) fourf

rotation axes that cross the geometric centers of the parallelepiped faces. In 

each case, they are the rotation axes of the highest order. We will show later 

that in the case of a cube (Fig. 20c) two

The parallelepipeds shown in Fig. 20 represent conventional unit cells 

that have the same point symmetry as an 

lattices. The symmetry center of a parallelepiped overlaps with its geometric 

center. This is a common property of all point symmetry elements.

Obviously, the orders of rotation axes and the number of axes of the same 

order depend on the shape of the parallelepiped.

Figure 20 Some rotation axes of 

and (c) cube. 
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tetrahedron or octahedron, or hexagonal prism. When the point symmetry of 

an infinite lattice is such that the highest order of the n-fold symmetry

only one, a parallelepiped of the lowest possible symmetry (see Fig. 19) 

represents a solid figure that has the same point symmetry as the lattice. In 

Fig. 20 we show other parallelepipeds whose shapes allow for the presence 

and (or) fourfold symmetry axes. We can see in this figure the

cross the geometric centers of the parallelepiped faces. In 

they are the rotation axes of the highest order. We will show later 

that in the case of a cube (Fig. 20c) two- and threefold axes are also present.

The parallelepipeds shown in Fig. 20 represent conventional unit cells 

that have the same point symmetry as an important number of infinite 

The symmetry center of a parallelepiped overlaps with its geometric 

center. This is a common property of all point symmetry elements.

Obviously, the orders of rotation axes and the number of axes of the same 

end on the shape of the parallelepiped. For example, a cube

rotation axes of three solid figures: (a) rectangular prism, (b) square prism, 

When the point symmetry of 

fold symmetry axis is 

only one, a parallelepiped of the lowest possible symmetry (see Fig. 19) 

represents a solid figure that has the same point symmetry as the lattice. In 

Fig. 20 we show other parallelepipeds whose shapes allow for the presence 

figure the 

cross the geometric centers of the parallelepiped faces. In 

they are the rotation axes of the highest order. We will show later 

reefold axes are also present. 

The parallelepipeds shown in Fig. 20 represent conventional unit cells 

important number of infinite 

The symmetry center of a parallelepiped overlaps with its geometric 

center. This is a common property of all point symmetry elements. 

Obviously, the orders of rotation axes and the number of axes of the same 

For example, a cube  

 

square prism, 



 

(shown in Fig. 20c) has three fourfold axes. Each of them is defined by the 

geometric centers of two square faces, parallel one to each other.

has a total of 13 rotation axes. 

shown in Fig. 20c it still has two

will be considered in more details later.

As we can see in Fig. 21 a regular tetrahedron and a regular octahedron 

can be inscribed in a cube. A tetrahedron has three mutually perpendicular 

twofold rotation axes instead of the fourfold axes of the cube (see Fig. 21a).

Each of them is defined by the centers of its two edges. A tetrahedron does 

not represent a unit cell of any lattice, but it is relevant in the description of 

Figure 22 Symmetry points of a superposition of plane figures: 

and (b) two squares. 

Figure 21 A regular tetrahedron 

Three-Dimensional Crystal Lattice 

(shown in Fig. 20c) has three fourfold axes. Each of them is defined by the 

geometric centers of two square faces, parallel one to each other. The cube 

has a total of 13 rotation axes. Namely, besides the three fourfold axes 

shown in Fig. 20c it still has two- and threefold axes. The case of the cube 

will be considered in more details later. 

As we can see in Fig. 21 a regular tetrahedron and a regular octahedron 

can be inscribed in a cube. A tetrahedron has three mutually perpendicular 

rotation axes instead of the fourfold axes of the cube (see Fig. 21a).

Each of them is defined by the centers of its two edges. A tetrahedron does 

not represent a unit cell of any lattice, but it is relevant in the description of 

 

Symmetry points of a superposition of plane figures: (a) two equilateral triangles 

 

A regular tetrahedron (a) and a regular octahedron (b) inscribed in a cube.

19 

(shown in Fig. 20c) has three fourfold axes. Each of them is defined by the 

The cube 

sides the three fourfold axes 

The case of the cube 

As we can see in Fig. 21 a regular tetrahedron and a regular octahedron 

can be inscribed in a cube. A tetrahedron has three mutually perpendicular 

rotation axes instead of the fourfold axes of the cube (see Fig. 21a). 

Each of them is defined by the centers of its two edges. A tetrahedron does 

not represent a unit cell of any lattice, but it is relevant in the description of 

two equilateral triangles 

inscribed in a cube. 
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important crystal structur

A regular octahedron, contrary to the tetrahedron, has the same three 

mutually perpendicular fourfold rotation axes that the cube has (see

Fig. 21b) with the difference that in the cas

axis is defined by two vertices and in the case of the cube by the geometric 

centers of two faces (the number of octahedron vertices agrees with the 

number of cube faces and 

The solid figure which has

regular hexagonal prism that represents the unit cell of the same

symmetry as that of an infinite hexagonal

will be considered in more details later.

Before continuing

at the symmetry points of a superposition of plane figures. The superposition 

of two equilateral triangles with a common geometric center has a threefold 

rotation point. This is shown in Fig. 22a. A si

squares has a fourfold rotation point (see Fig. 22b). Both examples will be 

helpful in farther consideration of the rotation axes in some three

dimensional lattices.

 

 

3. Symmetry Axes of a Cube

 

Let us now continue with the 

in a cube. First we will look at the twofold rotation axes. Each of them is 

defined by the centers of two edges as it is shown in Fig. 23. So, the cube 

has a total of 6 twofold axes.

Figure 23 
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important crystal structures (especially in the description of their symmetry).

A regular octahedron, contrary to the tetrahedron, has the same three 

mutually perpendicular fourfold rotation axes that the cube has (see

21b) with the difference that in the case of an octahedron a fourfold 

axis is defined by two vertices and in the case of the cube by the geometric 

centers of two faces (the number of octahedron vertices agrees with the 

number of cube faces and vice versa). 

The solid figure which has a sixfold rotation axis takes on the shape of a 

regular hexagonal prism that represents the unit cell of the same

symmetry as that of an infinite hexagonal lattice in three dimensions.

will be considered in more details later. 

Before continuing with the three-dimensional case, we will look shortly 

at the symmetry points of a superposition of plane figures. The superposition 

of two equilateral triangles with a common geometric center has a threefold 

rotation point. This is shown in Fig. 22a. A similar superposition of two 

squares has a fourfold rotation point (see Fig. 22b). Both examples will be 

helpful in farther consideration of the rotation axes in some three

dimensional lattices. 

Symmetry Axes of a Cube 

Let us now continue with the consideration of the possible rotation axes 

in a cube. First we will look at the twofold rotation axes. Each of them is 

defined by the centers of two edges as it is shown in Fig. 23. So, the cube 

has a total of 6 twofold axes. 

Figure 23 Six twofold rotation axes of a cube. 

es (especially in the description of their symmetry). 

A regular octahedron, contrary to the tetrahedron, has the same three 

mutually perpendicular fourfold rotation axes that the cube has (see                   

e of an octahedron a fourfold              

axis is defined by two vertices and in the case of the cube by the geometric 

centers of two faces (the number of octahedron vertices agrees with the 

a sixfold rotation axis takes on the shape of a 

regular hexagonal prism that represents the unit cell of the same point 

lattice in three dimensions. This 

dimensional case, we will look shortly 

at the symmetry points of a superposition of plane figures. The superposition 

of two equilateral triangles with a common geometric center has a threefold 

milar superposition of two 

squares has a fourfold rotation point (see Fig. 22b). Both examples will be 

helpful in farther consideration of the rotation axes in some three-

consideration of the possible rotation axes 

in a cube. First we will look at the twofold rotation axes. Each of them is 

defined by the centers of two edges as it is shown in Fig. 23. So, the cube 

 



 

It is easy to show that the body diagonals of the cube represent its 

threefold axes. We can see in Fig. 24 that the 

connects two opposite cube vertices. 

groups, with 3 vertices each

triangles. Each of the triangles is lying in a plane orthogonal to the diagonal 

and its geometric center overlaps with the point where the diagonal 

intersects the plane of the triangle. It is obvious that after rotating the 

by an angle 2 3π (or its multiples), the new positions of

(those out of the axis) overlap with some “old” positions of the vertices

Therefore, this transformation leaves the cube invariant. Besides the axis 

shown in Fig. 24, there are 3 more threefold axes in the cube, that is, as 

Figure 24 Each diagonal of a cube represents one of its threefold rotation axis.
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It is easy to show that the body diagonals of the cube represent its 

threefold axes. We can see in Fig. 24 that the displayed body diagonal 

connects two opposite cube vertices. The remaining 6 vertices form two 

with 3 vertices each, that represent the vertices of two equilateral 

Each of the triangles is lying in a plane orthogonal to the diagonal 

and its geometric center overlaps with the point where the diagonal 

the plane of the triangle. It is obvious that after rotating the 

(or its multiples), the new positions of the cube vertices 

(those out of the axis) overlap with some “old” positions of the vertices

this transformation leaves the cube invariant. Besides the axis 

n in Fig. 24, there are 3 more threefold axes in the cube, that is, as 

Each diagonal of a cube represents one of its threefold rotation axis.

Figure 25 The 13 rotation axes of a cube. 
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It is easy to show that the body diagonals of the cube represent its 

body diagonal 

The remaining 6 vertices form two 

the vertices of two equilateral 

Each of the triangles is lying in a plane orthogonal to the diagonal 

and its geometric center overlaps with the point where the diagonal 

the plane of the triangle. It is obvious that after rotating the cube 

cube vertices 

(those out of the axis) overlap with some “old” positions of the vertices. 

this transformation leaves the cube invariant. Besides the axis 

n in Fig. 24, there are 3 more threefold axes in the cube, that is, as 

 

Each diagonal of a cube represents one of its threefold rotation axis. 
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many as the number of body diagonals. In conclusion, a cube has a total of 

13 rotation axes. All of them are shown in Fig. 25.

 

4. Symmetry Axes of a Set of Points

 

Now, we will concentrate our attention on a

8 points (or atoms) located 

this set of points are the same as the symmetry axes of the cube. If we add 

one additional point in the middle of the cube, then the symmetry of the 

resulting system will remain the same

point of all the axes

Figure 26 The system of 14 points placed 

faces of a cube have the same threefold rotation axes as the cube.

 

Figure 27 
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many as the number of body diagonals. In conclusion, a cube has a total of 

13 rotation axes. All of them are shown in Fig. 25. 

Symmetry Axes of a Set of Points 

Now, we will concentrate our attention on a system consisting of

8 points (or atoms) located at the vertices of a cube. The symmetry axes of 

are the same as the symmetry axes of the cube. If we add 

one additional point in the middle of the cube, then the symmetry of the 

resulting system will remain the same, since this point will be a common 

point of all the axes and also other symmetry elements. Also, if we add 

The system of 14 points placed at the vertices and in the geometric centers of the 

faces of a cube have the same threefold rotation axes as the cube. 

Figure 27 Axial view of one of the triangles from Fig. 26. 

many as the number of body diagonals. In conclusion, a cube has a total of 

system consisting of a set of 

of a cube. The symmetry axes of 

are the same as the symmetry axes of the cube. If we add 

one additional point in the middle of the cube, then the symmetry of the 

since this point will be a common 

. Also, if we add 

 

and in the geometric centers of the 

 



 

points in the middle of the faces of the cube, then the symmetry of this new 

14-point system (shown in Fig.

system consisting of only 8 points.

Figs. 24 and 26, that the threefold axes are present in this 14

The six new points will form two groups of three points each, which are 

located in the middle of the triangle edges, as appears in Fig. 26. 

view of one of the triangles from Fig

Let us now consider the fourfold rotation axes in the case of the 

14-point system in 

total of six points in the middle of the faces of the cube, two are on the axis 

and the remaining four represent vertices of a square lying in a plane 

orthogonal to the axis. If we project the 14 poin

the axis, then we will obtain a superposition of two squares shown on the 

Figure 28 Fourfold rotation axis of a system consisting of 14 points located 

and centers of the faces of a cube.

Figure 29 Three systems consisting of:

the vertices and the geometric center of a cube, and 

centers of a cube. Each set of points has the same 13 rotation axes as a cube.
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points in the middle of the faces of the cube, then the symmetry of this new 

point system (shown in Fig. 26) will still remain the same as in the 

system consisting of only 8 points. For example, it is easy to see, comparing 

that the threefold axes are present in this 14-point system.

The six new points will form two groups of three points each, which are 

located in the middle of the triangle edges, as appears in Fig. 26. The axial 

view of one of the triangles from Fig. 26 is shown in Fig. 27. 

Let us now consider the fourfold rotation axes in the case of the 

 consideration. We can observe in Fig. 28 that, of the

total of six points in the middle of the faces of the cube, two are on the axis 

and the remaining four represent vertices of a square lying in a plane 

orthogonal to the axis. If we project the 14 points on a plane orthogonal to 

the axis, then we will obtain a superposition of two squares shown on the 

 

Fourfold rotation axis of a system consisting of 14 points located at the vertices

and centers of the faces of a cube. 

Three systems consisting of: (a) 8 points at the vertices of a cube, (b) 9 points 

and the geometric center of a cube, and (c) 14 points at the vertices

centers of a cube. Each set of points has the same 13 rotation axes as a cube. 
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points in the middle of the faces of the cube, then the symmetry of this new 

26) will still remain the same as in the 

comparing 

point system. 

The six new points will form two groups of three points each, which are 

The axial 

Let us now consider the fourfold rotation axes in the case of the  

consideration. We can observe in Fig. 28 that, of the  

total of six points in the middle of the faces of the cube, two are on the axis 

and the remaining four represent vertices of a square lying in a plane 

ts on a plane orthogonal to 

the axis, then we will obtain a superposition of two squares shown on the 

at the vertices 

 

9 points at 

at the vertices and face 
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right of Fig. 28. Thus we can say that the 14-point system has the same  

three fourfold rotation axes as the cube. Besides that, the system of points 

has six twofold axes. Finally, we can conclude that in the three cases 

described above, and shown in Fig. 29, we have the same 13 symmetry axes 

as were identified before in the cube. 

 

 

5. Crystal Systems 

 

In this section, we will learn about the crystal systems in three 

dimensions. To a given crystal system belong all the lattices that have the 

same point symmetry. However, the distribution of lattice points in space 

may be different in each of the lattices. In three dimensions, there are only 7 

lattice point symmetries, called holohedries, and each of them defines one 

crystal system. Every lattice belonging to a given crystal system has in 

general its own conventional unit cell that possesses the same point 

symmetry as an infinite lattice but, since the symmetry of each cell is the 

same, we can propose one of them as a conventional cell for the crystal 

system. In Fig. 30 we show conventional cells for the 7 crystal systems 

existing in three dimensions, pointing out in each case the highest order 

symmetry axis. If there is more than one such axis it is also shown in the 

figure. 

The conventional cells shown in Fig. 30 are defined by the basis vectors 

1a
�

, 
2a
�

, 
3a
�

 parallel to the main symmetry axes, if there are any in the lattices 

belonging to the crystal system. In the triclinic system, there are no 

symmetry axes at all or, more precisely, there are only onefold axes. Thus, 

no basis vector is fixed by symmetry (see Fig. 30a) and 
1a
�

, 
2a
�

, 
3a
�

 are just 

three non collinear and not all in the same plane primitive translation vectors 

of a triclinic lattice. There are no special restrictions on the triclinic 

conventional cell parameters (lattice constants 
1a , 

2a , 
3a  and anges 

( )1 2a ,a
� �

∢ , ( )1 3a ,a
� �

∢ , ( )2 3a ,a
� �

∢ ) since the onefold axes are present in a 

parallelepiped of any shape. The parallelepiped shown in Fig. 30a is the 

conventional cell for the triclinic system. 

In the case of the monoclinic system only one symmetry axis is of the 

order higher than one. This is shown in Fig. 30b, where in the conventional 

cell for the monoclinic system is highlighted one twofold axis with the basis 

vector 
3a
�

 parallel to it. The restriction ( ) ( )1 3 2 3a ,a a ,a 90= = °
� � � �

∢ ∢  

guarantees the presence of this unique symmetry axis. 
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In the lattices belonging to the orthorhombic, tetragonal, and cubic 

systems three mutually perpendicular symmetry axes coexist and the basis  

 

 

Figure 30 Conventional cells, of the most general shape, for the 7 crystal systems in three 

dimensions: (a) triclinic, (b) monoclinic, (c) orthorhombic, (d) tetragonal, (e) cubic,                     

(f) trigonal, and (g) hexagonal. 
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vectors 
1a
�

, 
2a
�

, 
3a
�

 are parallel to them. Figs. 30c and 30e show the 

conventional cells and the three twofold and fourfold rotation axes for                 

the orthorhombic and cubic systems, respectively, while Fig. 30d shows                

the conventional cell and a fourfold rotation axis present in lattices of the 

tetragonal system. The remaining symmetry axes (not shown in Fig. 30d) are 

twofold. The restrictions for the conventional cell parameters are 

summarized in Table 1. These constrains guarantee the presence of three 

mutually perpendicular symmetry axes of the orders specified in 

Figs. 30c-30e. 

The lattices with only one threefold or sixfold symmetry axis belong              

to the trigonal or hexagonal systems, respectively. A solid figure that 

possesses a sixfold symmetry axis has the shape of a hexagonal prism shown 

in Fig. 30g. In Fig. 30g is also shown a parallelepiped whose volume 

represents 1 3  of the volume of the hexagonal prism. This parallelepiped      

is a conventional cell for the hexagonal system. Its basis vector 
3a
�

 is    

parallel to the sixfold symmetry axis and the basis vectors 
1a
�

 and 
2a
�

 are 

lying in a plane orthogonal to this symmetry axis. The restrictions pointed 

out in Table 1 guarantee the presence of a sixfold symmetry axis in the 

lattices belonging to the hexagonal system. In Fig. 31 we show that the 

conventional cell for the trigonal system and the hexagonal prism are 

related. This will be explained in more details later. The restrictions on                

the rhombohedral cell parameters given in Table 1 guarantee the presence  

Table 1 Restrictions on conventional cell parameters for each crystal system. The following 

abbreviations are used: ( )1 2 12a ,a α=
� �

∢ , ( )1 3 13a ,a α=
� �

∢ , ( )2 3 23a ,a α=
� �

∢ . 

Crystal system 
Restrictions on conventional cell parameters 

1a , 2a , 3a , and 12α , 13α , 23α  

Triclinic None 

Monoclinic 13 23 90α α= = °  

Orthorhombic 12 13 23 90α α α= = = °  

Tetragonal 
1 2

12 13 23 90

a a

α α α

=

= = = °

 

Cubic 
1 2 3

12 13 23 90

a a a

α α α

= =

= = = °

 

Trigonal 
1 2 3

12 13 23

a a a

α α α

= =

= =

 

Hexagonal 
1 2

12 13 23120 , 90

a a

α α α

=

= ° = = °

 



 

of a threefold symmetry axis. Of course in the case when

 ∢ ∢ ∢

we are in the presence of a cube and this threefold symmetry axis coincides 

with one of the four threefold axes of the 

To summarize, we can say that the order and the number of the highest

order symmetry axes characterize a crystal system. All the highest order 

symmetry axes for each of the 7 crystal systems are shown in Fig. 30.

 

 

6. Conventional Cell for the Trigonal 

 

The conventional cell for the trigonal system takes on the shape of a 

rhombohedron. This rhombohedron can be constructed in a hexagonal 

prism, what is shown in Fig. 31. We can see in that figure that two vertices 

of the rhombohedron are located in 

and the other 6 form two groups with 3 vertices each. The plane defined by 

the three vertices of one group is parallel to the prism bases, what means that 

these vertices are at the same distance from 

three vertices which are closer to the top base and this base is the same as 

the distance between the vertices from the other group and the bottom base, 

and represents 1 3  of the prism height 

The positions of the vertices belonging to each of the two groups can be 

determined easily as their projections on the plane of the nearer prism base 

Figure 31 
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of a threefold symmetry axis. Of course in the case when 

( ) ( ) ( )1 2 1 3 2 3a ,a a ,a a ,a 90= = = °
� � � � � �

∢ ∢ ∢  

we are in the presence of a cube and this threefold symmetry axis coincides 

with one of the four threefold axes of the cube. 

To summarize, we can say that the order and the number of the highest

order symmetry axes characterize a crystal system. All the highest order 

xes for each of the 7 crystal systems are shown in Fig. 30.

Conventional Cell for the Trigonal System 

The conventional cell for the trigonal system takes on the shape of a 

rhombohedron. This rhombohedron can be constructed in a hexagonal 

prism, what is shown in Fig. 31. We can see in that figure that two vertices 

of the rhombohedron are located in the centers of the hexagonal prism bases 

and the other 6 form two groups with 3 vertices each. The plane defined by 

the three vertices of one group is parallel to the prism bases, what means that 

these vertices are at the same distance from a base. The distance between the 

three vertices which are closer to the top base and this base is the same as 

the distance between the vertices from the other group and the bottom base, 

of the prism height c (see Fig. 31).  

The positions of the vertices belonging to each of the two groups can be 

determined easily as their projections on the plane of the nearer prism base 

 

Figure 31 Rhombohedron constructed inside a hexagonal prism. 
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we are in the presence of a cube and this threefold symmetry axis coincides 

To summarize, we can say that the order and the number of the highest 

order symmetry axes characterize a crystal system. All the highest order 

xes for each of the 7 crystal systems are shown in Fig. 30. 

The conventional cell for the trigonal system takes on the shape of a 

rhombohedron. This rhombohedron can be constructed in a hexagonal 

prism, what is shown in Fig. 31. We can see in that figure that two vertices 

centers of the hexagonal prism bases 

and the other 6 form two groups with 3 vertices each. The plane defined by 

the three vertices of one group is parallel to the prism bases, what means that 

tance between the 

three vertices which are closer to the top base and this base is the same as 

the distance between the vertices from the other group and the bottom base, 

The positions of the vertices belonging to each of the two groups can be 

determined easily as their projections on the plane of the nearer prism base 
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(bottom or top) coincide with the geometric centers of three equilateral 

triangles, what is shown in Fig. 31. We can also see in 

triangles are not next to each other and the three triangles of the bottom base 

do not coincide with tho

 

 

7. The 14 Bravais Lattices

 

7.1. Introduction 

In this section, we will describe all the three

more strictly speaking lattice types. If we place lattice points 

of each parallelepiped that represents the conventional cell 

seven crystal systems, 

placed at the vertices

explained in Fig. 32 on th

vertex of a cube belongs to 8 cubes (4 of which are shown in Fig. 32), so 

of it belongs to each cube. Since there are 8 points 

cube, they contribute with 1 

A French scientist, Bravais (second half of the XIX century), 

demonstrated that if we place an 

or additional points 

conventional cells of the seven crystal systems (in such a way that the 

set  of points has the same symmetry

obtain 7 new lattices or strictly speaking lattice types. Therefore, we have a 

total of 14 lattice types

them belong to the monoclinic, orthorhombic, tetragonal, 

systems. Each of the remaining crystal systems (triclinic, trigonal, and 

hexagonal) has only one lattice type. 

lattices, the parallelepiped

Figure 32 A 1 8  of the point placed in each
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(bottom or top) coincide with the geometric centers of three equilateral 

triangles, what is shown in Fig. 31. We can also see in this figure that these 

triangles are not next to each other and the three triangles of the bottom base 

do not coincide with those of the top base. 

Bravais Lattices 

 

In this section, we will describe all the three-dimensional lattices or 

more strictly speaking lattice types. If we place lattice points at the vertices

of each parallelepiped that represents the conventional cell of one of the 

seven crystal systems, then we obtain 7 different lattices. All the points 

at the vertices of a cell contribute with 1 point to this cell. This is 

explained in Fig. 32 on the example of a cubic cell. A point placed in a 

vertex of a cube belongs to 8 cubes (4 of which are shown in Fig. 32), so 

of it belongs to each cube. Since there are 8 points at the vertices

ibute with 1 point to it and the cell is primitive. 

A French scientist, Bravais (second half of the XIX century), 

demonstrated that if we place an additional point in the geometric center

additional points on the faces of the parallelepipeds representing 

conventional cells of the seven crystal systems (in such a way that the 

points has the same symmetry as the parallelepiped), then 

lattices or strictly speaking lattice types. Therefore, we have a 

total of 14 lattice types in three dimensions. It will be shown later that 11 of 

them belong to the monoclinic, orthorhombic, tetragonal, or cubic

ach of the remaining crystal systems (triclinic, trigonal, and 

hexagonal) has only one lattice type. In the case of each of the 

parallelepiped, which represents the unit cell that has the same 

 

of the point placed in each vertex of a cubic cell belongs to this cell

(bottom or top) coincide with the geometric centers of three equilateral 

figure that these 

triangles are not next to each other and the three triangles of the bottom base 

dimensional lattices or 

at the vertices 

of one of the 

we obtain 7 different lattices. All the points 

of a cell contribute with 1 point to this cell. This is 

e example of a cubic cell. A point placed in a 

vertex of a cube belongs to 8 cubes (4 of which are shown in Fig. 32), so 1 8  

at the vertices of the 

A French scientist, Bravais (second half of the XIX century), 

additional point in the geometric center                   

of the parallelepipeds representing 

conventional cells of the seven crystal systems (in such a way that the                    

 we will 

lattices or strictly speaking lattice types. Therefore, we have a 

. It will be shown later that 11 of 

cubic crystal 

ach of the remaining crystal systems (triclinic, trigonal, and 

In the case of each of the 7 new 

the same 

belongs to this cell. 
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symmetry as the infinite lattice, has more than one lattice point. Therefore, 

this unit cell represents a non primitive cell of the lattice while a primitive 

cell of such a lattice does not have its point symmetry. 

Next, we will build the 7 new lattices mention above which are called 

the centered Bravais lattices. 

 

7.2. The Triclinic System 

In the case of the triclinic system, there is only one lattice type. The 

arguments are very simple. Since in the case of the triclinic system there are 

no restrictions on its conventional cell parameters, a primitive cell of any 

triclinic lattice represents a conventional cell of the triclinic system. By 

placing additional points out of the vertices of the conventional cell, we 

transform a primitive cell of one triclinic lattice onto a non primitive cell of 

another triclinic lattice, but of course both lattices are of the same type since 

a primitive cell of this new lattice represents another conventional cell for 

the triclinic system. 

 

7.3. The Monoclinic System 

In Fig. 33a, we have placed lattice points at the vertices of the 

conventional cell for the monoclinic system shown in Fig. 30b. This cell  

can be centered in several different ways as shown in Figs. 33b-33d and                

in Fig. 34. In all cases, the set of lattice points has the same point symmetry 

as the conventional cell of the monoclinic system. Note that in Figs. 33 and 

34 we have changed the notation for the cell parameters, and now we are 

using a, b, c instead of 
1a , 

2a , 
3a . The cells from Figs. 33 and 34 have their 

unique symmetry axes parallel to the c edges. Consequently, we speak of the 

setting with unique axis c (for short c-axis setting). In the case of the C-face 

centered cell, shown in Fig. 33b, the centering lattice points are in the cell 

bases (orthogonal to the c-edge). Figs. 33c and 33d show the same cell, but 

this time body and all-face centered, respectively. There are still two more 

options for placing the additional lattice points within the conventional cell 

of the monoclinic system. This is shown in Figs. 34a and 34b for the A-face 

centered and B-face centered cells, respectively. The symbols for the 

centering types of the cells shown in Figs. 33 and 34 are listed in Table 2. 

Let us now investigate to which monoclinic lattice types belong the 

centered cells shown in Fig. 33. In Fig. 35, we demonstrate that in the lattice 

shown in Fig. 33b we can find a primitive cell of the same type as the cell 

from Fig. 33a, so this is, in fact, a primitive monoclinic lattice. It can be also 
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demonstrated (see Fig. 36) that in the lattice from Fig. 33d, there is a body 

centered cell of the same type

centered monoclinic lattice. From all the above, we can conclude that

Figure 33 (a) Conventional primitive cell for the simpl

we have also drawn the cell from (a) centered in three different ways: 

(c) body centered, and (d)

 

 

 

Figure 34 The cell from Fig. 33a centered in two different ways: 

(b) B-face centered. The 
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demonstrated (see Fig. 36) that in the lattice from Fig. 33d, there is a body 

centered cell of the same type as the cell from Fig. 33c, so this is a body 

centered monoclinic lattice. From all the above, we can conclude that

 

Conventional primitive cell for the simple monoclinic lattice. In the figure, 

we have also drawn the cell from (a) centered in three different ways: (b) C-face centered, 

(d) all-face centered. The c-axis setting is assumed. 

 

The cell from Fig. 33a centered in two different ways: (a) A-face centered and              

face centered. The c-axis setting is assumed. 

demonstrated (see Fig. 36) that in the lattice from Fig. 33d, there is a body 

as the cell from Fig. 33c, so this is a body 

centered monoclinic lattice. From all the above, we can conclude that                 

e monoclinic lattice. In the figure,                

face centered,              

face centered and              



 

in Fig. 33 we have four cells belonging to only two types of monoclinic 

lattices, for which the arrangements of the lattice 

Figs. 33a and 33c. 

Next, we will check the cases shown in Fig. 34. In 

plotted in this figure

demonstrated in Fig. 37

Figure 35 A primitive unit

the monoclinic lattice from Fig. 33

Figure 36 A body centered 

inside the monoclinic lattice from Fig. 33d. The 

Table 2 Symbols for the centering types of the cells shown in Figs. 33 and 34.

Symbol 

P 

A 

B 

C 

I 

F 
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we have four cells belonging to only two types of monoclinic 

lattices, for which the arrangements of the lattice points are shown in 

Next, we will check the cases shown in Fig. 34. In each lattice type 

this figure, we can find a body centered monoclinic cell. This is 

in Fig. 37 for the lattice from Fig. 34b. Thus, in the 

 

unit cell of the same type as the cell shown in Fig. 33a, located in

the monoclinic lattice from Fig. 33b. The c-axis setting is assumed. 

 

A body centered unit cell of the same type as the cell shown in Fig. 33c, 

the monoclinic lattice from Fig. 33d. The c-axis setting is assumed. 

Symbols for the centering types of the cells shown in Figs. 33 and 34.

Centering type of a cell 
Number of lattice points 

per cell 

Primitive 1 

A-face centered 2 

B-face centered 2 

C-face centered 2 

Body centered 2 

All-face centered 4 
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we have four cells belonging to only two types of monoclinic 

points are shown in              

lattice type 

cell. This is 

Thus, in the 

located inside 

e as the cell shown in Fig. 33c, placed 

Symbols for the centering types of the cells shown in Figs. 33 and 34. 

lattice points 
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monoclinic lattice shown in this figure

monoclinic cells (body centered and 

number of lattice points

or a body centered. Similarly, the monoclinic lattice from Fig. 34a may be 

considered as an A

assume the c-axis setting, the

body centered monoclinic lattices are

there are only two types of monoclinic lattices, the primitive one and one of 

the following three lattices: 

centered. The B-face centered lattice is selected to represent the 

type of the monoclinic lattice (if the 

of the two monoclinic lattice types are then 

literature we can find more often the case when the 

assumed, and then the 

the mC lattice is selected to identify the center

lattice. 

In the case of the

smallest cell that has the point symmetry of the infinite lattice contains 2 

lattice points, while the primitive cells of these lattices do not have their 

point symmetry. 

 

7.4. The Orthorhombic System

In the same way

we can place the lattice points within the conventional cell for the 

orthorhombic system. The resulting set of points will have the same 

Figure 37 A body centered

inside the monoclinic lattice from Fig. 34b. The 
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monoclinic lattice shown in this figure, there are two different conventional 

(body centered and B-face centered) that contain the same 

number of lattice points, so we may consider this lattice as a B-face centered 

or a body centered. Similarly, the monoclinic lattice from Fig. 34a may be 

A-face centered or a body centered. Therefore

xis setting, then the A-face centered, B-face centered, and the 

body centered monoclinic lattices are mutually equivalent. In conclusion

there are only two types of monoclinic lattices, the primitive one and one of 

the following three lattices: A-face centered, B-face centered, or body 

face centered lattice is selected to represent the centering 

monoclinic lattice (if the c-axis setting is assumed). The symbols 

of the two monoclinic lattice types are then mP and mB. However, in 

literature we can find more often the case when the b-axis setting is 

and then the mA, mC, and mI lattices are equivalent. In this case, 

is selected to identify the centering type of the monoclinic 

the mB (c-axis setting) or mC (b-axis setting) lattices the 

smallest cell that has the point symmetry of the infinite lattice contains 2 

points, while the primitive cells of these lattices do not have their 

The Orthorhombic System 

In the same way, as it was done in Sec. II.7.3 for the monoclinic system,

we can place the lattice points within the conventional cell for the 

orthorhombic system. The resulting set of points will have the same 

 

A body centered unit cell of the same type as the cell shown in Fig. 33c

the monoclinic lattice from Fig. 34b. The c-axis setting is assumed. 

there are two different conventional 

contain the same 

face centered 

or a body centered. Similarly, the monoclinic lattice from Fig. 34a may be 

Therefore, if we 

face centered, and the 

In conclusion, 

there are only two types of monoclinic lattices, the primitive one and one of 

face centered, or body 

centering 

axis setting is assumed). The symbols 

However, in the 

axis setting is 

In this case, 

ing type of the monoclinic 

axis setting) lattices the 

smallest cell that has the point symmetry of the infinite lattice contains 2 

points, while the primitive cells of these lattices do not have their 

7.3 for the monoclinic system, 

we can place the lattice points within the conventional cell for the 

orthorhombic system. The resulting set of points will have the same point 

of the same type as the cell shown in Fig. 33c, located 



 

symmetry as the cell. Since the three edges in the conventional cell for this 

system are mutually orthogonal, onl

considered. The rest of the cases, with 

lead to any new lattice types. 

neither the case from Fig. 38b 

described in Figs. 38a

body centered unit 

lattices shown in Figs. 38b and 38d, respectively

conclude that in the case of the 

lattices: primitive (

face centered (oF).  

 

 

 

Figure 38 (a) Conventional primitive

figure, we have also drawn the cell from

centered, (c) body centered, and 

adjacent cells from (b) and (d). The base of a primitive (or body centered) cell

shown in (b) (or (d)) is highlighted in (e).

Three-Dimensional Crystal Lattice 

symmetry as the cell. Since the three edges in the conventional cell for this 

system are mutually orthogonal, only the cases described in Fig. 38 will be 

considered. The rest of the cases, with A- and B-face centered cells, do not 

lead to any new lattice types. Contrary to the monoclinic system, this time

neither the case from Fig. 38b nor the case from Fig. 38d match the case

. 38a and 38c, respectively, since neither a primitive 

 cells with edges mutually orthogonal are present in the 

lattices shown in Figs. 38b and 38d, respectively. Therefore, we can 

conclude that in the case of the orthorhombic system, there are four types of 

lattices: primitive (oP), C-face centered (oC), body centered (oI), and all

 

Conventional primitive unit cell of the simple orthorhombic lattice

figure, we have also drawn the cell from (a) centered in three different ways: (b)

body centered, and (d) all-face centered. Figure (e) shows two bases for two 

adjacent cells from (b) and (d). The base of a primitive (or body centered) cell of 

shown in (b) (or (d)) is highlighted in (e). 

33 

symmetry as the cell. Since the three edges in the conventional cell for this 

y the cases described in Fig. 38 will be 

face centered cells, do not 

his time, 

he cases 

a primitive nor a 

are present in the 

Therefore, we can 

there are four types of 

), and all-

 

orthorhombic lattice. In the 

(b) C-face 

shows two bases for two 

 the lattice 
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7.5. The Tetragonal System 

The conventional unit cell of the tetragonal system, instead of having                

a rectangle at the base (as it was the case of the orthorhombic system), has a 

square. For this system, we have to analyze the same types of centering of              

its conventional cell, as those shown in Figs. 38b-38d for the orthorhombic 

system. Thus, the C-face centered, body centered, and all-face centered 

tetragonal cells will be considered. Here, as before, the c edge is orthogonal 

to the cell base. The presence of a fourfold axis parallel to the c edge 

excludes the possibility of having A- and B-face centered cells in tetragonal 

lattices. It is easy to demonstrate that now the lattice represented by the C-

face centered tetragonal unit cell is effectively a primitive lattice and the 

lattice represented by the all-face centered tetragonal unit cell is just a body 

centered lattice. This is shown in Fig. 39, where we have displayed two 

bases of a C-face centered or all-face centered tetragonal unit cells. One of 

those bases is labeled as I, whereas the square marked as II is the base of a 

primitive or body centered tetragonal cell. 

To conclude, we can say that in the case of the tetragonal system, there 

are two types of lattices: tP and tI.  

 

7.6. The Cubic System 

We now move to the case of a cubic system. The search for the possible 

lattices belonging to this system will be held using again Fig. 38. This time, 

the only relevant cases are those described in Figs. 38a, 38c, and 38d, since, 

due to the point symmetry, those are the only cases that can be a priori 

expected in the lattices of the cubic system (remember that in the present 

consideration all the cells shown Fig. 38 are cubes). In the cubic lattice with 

 

Figure 39 Two bases (labeled as I) of two adjacent C-face centered and all-face centered 

tetragonal unit cells. The base labeled as II corresponds in one case to a primitive tetragonal 

unit cell and in the other case to the body centered tetragonal cell. 



 

the same arrangement of la

the presence of a cubic

Lastly, we can conclude that in the case of the 

3 types of lattices: 

simple cubic (sc) and the body and 

commonly abbreviate

cubic), respectively.

 

7.7. The Trigonal and Hexagonal Systems

There is only one type of lattices, namely, 

hexagonal systems, respectively. Later we will explain the origin of t

symbol hR used for the trigonal lattice. 

Finally, we may say that there are al

three dimensions, called the Bravais lattices. The 14 Bravais lattices are 

shown in Fig. 41. 

 

7.8. Symbols for Bravais 

In Table 3 are summarized the symbols for the 14 Bravais lattices. We 

can observe in this table, that the lattices are classified in 6 crystal families, 

that are symbolized by lower case letters 

of Table 3). The second 

crystal systems. We can see in the table that in three dimensions the 

classifications according to crystal families and crystal systems are the same 

except for the hexagonal family, which collects two cr

and hexagonal. The two parts of the Bravais lattice symbol are: first, the 

symbol of the crystal family and second, a capital letter (

designating the Bravais lattice centering. As a reminder, the symbol 

given to the primitive lattices. The symbol 

lattice (mS and oS 

Figure 40 Two bases (labeled as I) of two adjacent all

base labeled as II corresponds to a
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the same arrangement of lattice points as shown in Fig. 38d, it is excluded 

cubic body centered unit cell, what is explained in Fig. 40.

Lastly, we can conclude that in the case of the cubic system, there are 

cP, cI, and cF. The primitive cubic lattice is also called 

) and the body and all-face centered cubic lattices are 

commonly abbreviated as bcc (body centered cubic) and fcc (face centered 

respectively. 

The Trigonal and Hexagonal Systems 

There is only one type of lattices, namely, hR and hP in the trigonal and 

hexagonal systems, respectively. Later we will explain the origin of t

for the trigonal lattice.  

Finally, we may say that there are all together 14 types of lattices in 

three dimensions, called the Bravais lattices. The 14 Bravais lattices are 

Symbols for Bravais Lattices 

In Table 3 are summarized the symbols for the 14 Bravais lattices. We 

can observe in this table, that the lattices are classified in 6 crystal families, 

that are symbolized by lower case letters a, m, o, t, h, and c (see column two 

of Table 3). The second classification is according to the discussed by us 7 

crystal systems. We can see in the table that in three dimensions the 

classifications according to crystal families and crystal systems are the same 

except for the hexagonal family, which collects two crystal systems: trigonal 

and hexagonal. The two parts of the Bravais lattice symbol are: first, the 

symbol of the crystal family and second, a capital letter (P, S, 

designating the Bravais lattice centering. As a reminder, the symbol 

the primitive lattices. The symbol S denotes a one-face centered 

 are the standard, setting independent, symbols for the 

bases (labeled as I) of two adjacent all-face centered cubic unit 

base labeled as II corresponds to a noncubic body centered unit cell. 
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is excluded 

is explained in Fig. 40. 

there are              

. The primitive cubic lattice is also called 

face centered cubic lattices are 

(face centered 

in the trigonal and 

hexagonal systems, respectively. Later we will explain the origin of the 

together 14 types of lattices in 

three dimensions, called the Bravais lattices. The 14 Bravais lattices are 

In Table 3 are summarized the symbols for the 14 Bravais lattices. We 

can observe in this table, that the lattices are classified in 6 crystal families, 

(see column two 

classification is according to the discussed by us 7 

crystal systems. We can see in the table that in three dimensions the 

classifications according to crystal families and crystal systems are the same 

ystal systems: trigonal 

and hexagonal. The two parts of the Bravais lattice symbol are: first, the 

, I, F, R) 

designating the Bravais lattice centering. As a reminder, the symbol P is 

face centered 

symbols for the  

 

 cells. The 
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one-face centered monoclinic and orthorhombic Bravais lattices, 

respectively). For the last case also the symbols A, B, or C are used, 

describing lattices centered at the corresponding A, B, or C faces. The 

symbols F and I are designated for all-face centered and body centered 

Bravais lattices, respectively. Finally, the symbol R is used for a trigonal 

lattice. 

 

7.9. Conclusions 

To conclude we can say that the carried out identification of the 14 

Bravais lattices was nothing more than the classification of all the three-

dimensional lattices in 14 groups. The lattices belonging to a given group 

have the same point symmetry. Besides that, they have the same number     

and location of the lattice points within the smallest unit cell, which has the 

point symmetry of the lattice. We could see that half of the Bravais lattices 

appear as centered ones. This means, the smallest unit cells, that have the 

same point symmetry as the infinite lattices, contain more than one lattice 

point. However, it is important to point out that for each of the 14 Bravais 

lattices it is possible to choose a unit cell that contains only one lattice point, 

it means, a primitive unit cell. The basis vectors, 
1a
�

, 
2a
�

, 
3a
�

, that define 

such a cell are primitive translation vectors of the Bravais lattice. Finally, a 

Bravais lattice represents a set of points whose positions are given by 

vectors R
�

 defined as 

Table 3 Symbols for the 14 Bravais lattices. 

Crystal Family Symbol Crystal System Bravais Lattice Symbol 

Triclinic 

(anorthic) 
a Triclinic aP 

Monoclinic m Monoclinic 
mP 

mS (mA, mB, mC) 

Orthorhombic o Orthorhombic 

oP 

oS (oA, oB, oC) 

oI 

oF 

Tetragonal t Tetragonal 
tP 

tI 

Hexagonal h 
Trigonal (rhombohedral) hR 

Hexagonal hP 

Cubic c Cubic 

cP 

cI 

cF 
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Figure 41 The 14 Bravais lattices. The conventional cells of the crystal systems are that from 

Fig. 30. 
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where 
1 2 3, ,n n n ∈ℤ .

8. Coordination Number

 

Since all the lattice points in a Bravais lattice have equivalent positions 

in space, they have id

same number of NN

called the coordination number

In the literature, we find more often an alternative definition in which the 

coordination number is the number

molecule). Our definition, however, is more general, since we may think of 

substituting the lattice points with different objects like single atoms, or 

groups of atoms, or even molecules, and the definition still rem

since all these objects will have identical surroundings.

On occasions the information about the next neares

and even the third nearest neighbors

important. Figure 42 shows the 

the sc lattice. In this figure, the 

a large cube (built of 8 smaller cubes) are placed 

octahedron. Since the octahedron has 6 vertices

for the sc lattice is 6. The 

large cube, so there are 12 

TNNs of the lattice point in consideration are 

Figure 42 The NNs, NNNs, and TNNs of a lattice point in a 

point placed in the center of the large cube are 

12 NNNs are in the middle of the large cube edges and the 8 TNNs are in its vertices.
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1 1 2 2 3 3R a a an n n= + +

� � � �
, 

. 

Coordination Number 

Since all the lattice points in a Bravais lattice have equivalent positions 

in space, they have identical surroundings. Therefore, each point has the 

NNs (points that are the closest to it) and this number, 

coordination number, is a characteristic of a given Bravais lattice. 

In the literature, we find more often an alternative definition in which the 

coordination number is the number of the NNs of an atom in a crystal (or 

molecule). Our definition, however, is more general, since we may think of 

substituting the lattice points with different objects like single atoms, or 

groups of atoms, or even molecules, and the definition still remains valid, 

objects will have identical surroundings. 

On occasions the information about the next nearest neighbors (NNNs) 

and even the third nearest neighbors (TNNs) of a lattice point 

42 shows the NNs, NNNs, and TNNs of a lattice point in 

lattice. In this figure, the NNs of a lattice point placed in the center of 

of 8 smaller cubes) are placed at the vertices of a regular 

octahedron. Since the octahedron has 6 vertices, the coordination number 

lattice is 6. The NNNs are in the middle of the 12 edges of the 

large cube, so there are 12 NNNs of a lattice point in the sc lattice. The 

tice point in consideration are at the vertices of the large 

The NNs, NNNs, and TNNs of a lattice point in a sc lattice. The 6 NNs of a lattice 

point placed in the center of the large cube are at the vertices of the regular octahedron. The 

12 NNNs are in the middle of the large cube edges and the 8 TNNs are in its vertices.

(II.1) 

Since all the lattice points in a Bravais lattice have equivalent positions 

each point has the 

s (points that are the closest to it) and this number, 

, is a characteristic of a given Bravais lattice. 

In the literature, we find more often an alternative definition in which the 

s of an atom in a crystal (or 

molecule). Our definition, however, is more general, since we may think of 

substituting the lattice points with different objects like single atoms, or 

ains valid, 

t neighbors (NNNs) 

of a lattice point is also 

s of a lattice point in 

s of a lattice point placed in the center of 

of a regular 

the coordination number     

s are in the middle of the 12 edges of the 

lattice. The 

of the large 

 

lattice. The 6 NNs of a lattice 

of the regular octahedron. The 

12 NNNs are in the middle of the large cube edges and the 8 TNNs are in its vertices. 



 

cube, so the number of them is 8.

to the lattice parameter 

is 3a . 

 

 

9. Body Centered Cubic Lattice

 

Figure 43 shows three examples of a set of three primitive translation 

vectors that define the primitive unit cell of the 

cases at least one of the vectors involves two 

namely, those from cube vertices and t

course, is essential in the case of a primitive cell, since with this cell it is 

possible to reproduce the entire lattice. The primitive cell defined by vectors 

1a
�

, 
2a
�

, 
3a
�

 in Fig. 43c is shown in Fig. 44. 

rhombohedron which represents the most symmetric primitive unit cell of 

the bcc lattice. We can

rhombohedron is lying

diagonals represent a threefold axis

Figure 43 Three sets of three primitive translation vectors of the 

Three-Dimensional Crystal Lattice 

cube, so the number of them is 8. The NN distance in the sc lattice is equal 

to the lattice parameter a, the NNN distance is 2a , and the TNN distance 

Body Centered Cubic Lattice 

43 shows three examples of a set of three primitive translation 

vectors that define the primitive unit cell of the bcc lattice. In these three 

cases at least one of the vectors involves two “types” of lattice points, 

namely, those from cube vertices and those from cube centers. This, of 

course, is essential in the case of a primitive cell, since with this cell it is 

possible to reproduce the entire lattice. The primitive cell defined by vectors 

in Fig. 43c is shown in Fig. 44. In this figure, it is drawn a 

rhombohedron which represents the most symmetric primitive unit cell of 

lattice. We can also see in this figure that one diagonal of the 

rhombohedron is lying along one of the diagonals of the cube. Those 

diagonals represent a threefold axis of each cell. This is the unique threefold 

Three sets of three primitive translation vectors of the bcc lattice.
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lattice is equal 

, and the TNN distance 

43 shows three examples of a set of three primitive translation 

lattice. In these three 

of lattice points, 

hose from cube centers. This, of 

course, is essential in the case of a primitive cell, since with this cell it is 

possible to reproduce the entire lattice. The primitive cell defined by vectors 

it is drawn a 

rhombohedron which represents the most symmetric primitive unit cell of 

figure that one diagonal of the 

along one of the diagonals of the cube. Those 

. This is the unique threefold 

 

lattice. 
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axis of the rhombohedron, while the cube has still three more such axes. 

angles between the basis vectors 

the same: 

 (a ,a a ,a a ,a 109 28
� � � � � �

∢ ∢ ∢

Next, we will calculate the volume 

compare it with the volume of the cube. The volume of 

 

( )0 1 2 3

2 2 3 3 3

Ω a a a

ˆ ˆ ˆ ˆ ˆ ˆ0x y z x y
1 1 1 1 1 1 1 1

2 2 2 2
a a a a a a a a

= × ⋅ = − ⋅ − +

   
= + ⋅ − + = + =    

+

� � �

 

and the volumes ratio is

 

Figure 44 
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axis of the rhombohedron, while the cube has still three more such axes. 

angles between the basis vectors 
1a
�

, 
2a
�

, 
3a
�

 shown in Figs. 43c and 44 

) ( ) ( )1 2 1 3 2 3a ,a a ,a a ,a 109 28′= = = °
� � � � � �

∢ ∢ ∢ . 

Next, we will calculate the volume 
0Ω  

of the primitive unit cell and 

compare it with the volume of the cube. The volume of this cell is given by

1 1 1
0 1 2 3 2 2 2

1 1 1
2 2 2

2 2 3 3 3

1 1 1
a a a

2 2

ˆ ˆ ˆx y z

ˆ ˆ ˆx y z

ˆ ˆ ˆ ˆ ˆ ˆ0x y z x y

2

1 1 1 1 1 1 1 1

2 2 2 2
z

2 4 4 2

a a a a a a

a a a

a a a a a a a a

 
= × ⋅ = − ⋅ − +  

−

   
= + ⋅ − + = + =     

+


+

� � �

 

the volumes ratio is 

3

cube

30

V
2

1Ω

2

a

a

= = . 

Figure 44 A primitive rhombohedral unit cell of the bcc lattice. 

axis of the rhombohedron, while the cube has still three more such axes. The 

43c and 44 are 

of the primitive unit cell and 

given by 

2 2 3 3 31 1 1 1 1 1 1 1

2 4 4 2
a a a a a a a a= + ⋅ − + = + =

, 

(II.2) 

(II.3) 

 



 

A primitive unit cell of the 

cell has two points. The ratio, given by Eq. (II.3), between the cell volumes 

is equal to the ratio between the numbers of points belonging to them. 

Therefore, the same volume 

Let us now demonstrate that the two points that are within the 

unit cell have equivalent positions in the 

explained in Fig. 45. In 

lattice. This lattice has a coordination number 8.

We will now consider the lattice points within the cubic cell of the 

lattice. It is convenient 

Figure 45 Demonstration of the equivalence of the two lattice points within the cubic unit cell 

of the bcc lattice. 

Figure 46 The lattice points from the vertices of the cubic unit cell of the 

the NNs of the lattice point that is in the center of the cell.

Three-Dimensional Crystal Lattice 

A primitive unit cell of the bcc lattice has one lattice point while the cubic 

cell has two points. The ratio, given by Eq. (II.3), between the cell volumes 

is equal to the ratio between the numbers of points belonging to them. 

Therefore, the same volume 
0Ω  corresponds to each lattice point. 

us now demonstrate that the two points that are within the bcc

cell have equivalent positions in the bcc lattice. This is shown and 

explained in Fig. 45. In Fig. 46 we show the NNs of a point of the 

This lattice has a coordination number 8. 

We will now consider the lattice points within the cubic cell of the 

lattice. It is convenient sometimes to associate the point, being a sum of 

Demonstration of the equivalence of the two lattice points within the cubic unit cell 

 

The lattice points from the vertices of the cubic unit cell of the bcc lattice represent 

the NNs of the lattice point that is in the center of the cell. 
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lattice has one lattice point while the cubic 

cell has two points. The ratio, given by Eq. (II.3), between the cell volumes 

is equal to the ratio between the numbers of points belonging to them. 

bcc cubic 

lattice. This is shown and 

s of a point of the bcc 

We will now consider the lattice points within the cubic cell of the bcc 

being a sum of 

 

Demonstration of the equivalence of the two lattice points within the cubic unit cell 

lattice represent 
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eight fractions (see Fig.

Figure 47b shows such

the initial point of the basis vectors

position of the second lattice point within the cubic cell

to the a
�

, b
�

, c
�

 axes

in units of a. The vector 

shortest translation vectors of the 

3a
�

 from Fig. 43a. In Figs. 43b and 43c there are shown other examples of 

the shortest translation vectors in the 

has to appear in each set of basis vectors that define a 

this lattice (see Fig. 

the cubic cell and the point 

lattice point from vert

 

 

10. Face Centered Cubic Lattice

 

First, let us consider

the fcc lattice. The two

the basis vector a
�

 in

point each. We will represent th

placed  in the A-face that contains the origin of the basis vectors 

(see Fig. 48b), that is

of this point is (0,1 2,1 2

Figure 47 (a) A cubic cell of the 

contributes with 1 8  to the unit cell so

2 points within the cubic cell

vertex of the cube that coincides with the origin of the cell. The coordinates are expressed in 

units of a. 
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(see Fig. 47a), with only one of the vertices of the cube. 

47b shows such a point in the cube vertex that coincides with 

the initial point of the basis vectors a
�

, b
�

, c
�

. Its position is (0,0,0

position of the second lattice point within the cubic cell, given with respect 

axes, is ( )1 2,1 2,1 2 , where the coordinates are expressed 

The vector t 1 2a 1 2b 1 2c= + +

�
�

� �

 represents one of the 

shortest translation vectors of the bcc lattice and it coincides with the

from Fig. 43a. In Figs. 43b and 43c there are shown other examples of 

the shortest translation vectors in the bcc lattice. At least one of such vectors 

has to appear in each set of basis vectors that define a primitive unit

Fig. 43), since both, the lattice point located in the center of 

the cubic cell and the point from its vertices, are then represented by

from vertices of the primitive unit cell. 

Face Centered Cubic Lattice 

First, let us consider the lattice points within the cubic unit

lattice. The two lattice points placed in the A-faces (orthogonal to 
�

in Fig. 48a) contribute to the cubic cell with half of the 

We will represent these two fractions with one lattice 

face that contains the origin of the basis vectors a
�

that is, at the shortest distance from the origin. The position

)0,1 2,1 2 , where the coordinates are expressed in units 

 

A cubic cell of the bcc lattice. Each of the lattice points located at the vertices 

to the unit cell so the cell contains 2 lattice points. (b) Positions of t

2 points within the cubic cell. The point, which is a sum of eight fractions, is placed in the 

vertex of the cube that coincides with the origin of the cell. The coordinates are expressed in 

f the vertices of the cube. 

point in the cube vertex that coincides with                 

)0,0,0 . The 

given with respect 

, where the coordinates are expressed 

represents one of the 

the vector 

from Fig. 43a. In Figs. 43b and 43c there are shown other examples of 

lattice. At least one of such vectors 

unit cell of 

the lattice point located in the center of 

represented by the 

unit cell of                 

faces (orthogonal to            

half of the 

lattice point 

a
�

, b
�

, c
�

 

, at the shortest distance from the origin. The position 

expressed in units              

lattice points located at the vertices 

Positions of the                 

placed in the 

vertex of the cube that coincides with the origin of the cell. The coordinates are expressed in 



 

of a, which is the length of the basis vectors

place the points in the

the four lattice points belonging to the cubic cell of the 

(0,0,0) , (0,1 2,1 2)

Figure 49 shows the most symmetric primitive unit cell 

It is defined by the 

the shortest translation vectors of the 

vectors
 1a
�

, 
2a
�

, 
3a
�

 

cubic unit cell and t

entire lattice. The primitive unit cell shown in Fig. 49 takes on the shape of a 

rhombohedron that 

rhombohedron coin

lattice points that define this axis are 

the rest of the rhombohedron vertices coincide with the centers of the

faces. 

Figure 48 (a) All-face centered cubic unit cell of the 

lattice points within the cubic cell. The coordinates are expressed in units of 

length of the cube edge. 

Figure 49 

Three-Dimensional Crystal Lattice 

which is the length of the basis vectors. In the similar way,

the B- and C-faces (see Fig. 48b). Finally, the positions of 

the four lattice points belonging to the cubic cell of the fcc lattice are: 

(0,1 2,1 2) , (1 2,0,1 2) , and (1 2,1 2,0) . 

49 shows the most symmetric primitive unit cell of the fcc

basis vectors 
1a
�

, 
2a
�

, 
3a
�

. Each of them represents one of 

the shortest translation vectors of the fcc lattice. In the definition of 

 are involved all the four lattice points belonging to 

and this guarantees that the primitive cell can reproduce

entire lattice. The primitive unit cell shown in Fig. 49 takes on the shape of a 

 is inscribed in the cubic cell. The threefold axis of the 

rhombohedron coincides with one of the threefold axis of the cube. The 

define this axis are at the vertices of the two cells, while 

the rest of the rhombohedron vertices coincide with the centers of the

 

face centered cubic unit cell of the fcc lattice. (b) Positions of the four 

lattice points within the cubic cell. The coordinates are expressed in units of a, which is the

 

 

Figure 49 A primitive rhombohedral unit cell of the fcc lattice. 
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, we can 

he positions of 

lattice are: 

fcc lattice. 

. Each of them represents one of 

lattice. In the definition of the 

four lattice points belonging to the 

primitive cell can reproduce the 

entire lattice. The primitive unit cell shown in Fig. 49 takes on the shape of a 

is inscribed in the cubic cell. The threefold axis of the 

cides with one of the threefold axis of the cube. The 

of the two cells, while 

the rest of the rhombohedron vertices coincide with the centers of the cube 

Positions of the four 

which is the 
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For the cell form Fig. 49 it is easy to show that 

 
1 2 1 3 2 3(a , a ) (a , a ) (a , a ) 60= = = °
� � � � � �

∢ ∢ ∢ . (II.4) 

Indeed, since 1 2 3
( 2 2)a a a a= = =

 
we have that 

 
2

1 2 1 2 1 2 1 2

2
a a cos (a ,a ) cos (a ,a )

4
a a a⋅ = =

� � � � � �
∢ ∢  (II.5) 

and using the vector coordinates we have also that 

 
2

1 2 1 2 1 2 1 2

1
a a

4
x x y y z z

a a a a a a a⋅ = + + =
� �

, (II.6) 

then comparing the two expressions for the scalar product 
1 2a a⋅
� �

, we obtain 

 
2 2

1 2 1 2 
2 1 1

c  os (a ,a )    cos (a ,a )
4 4 2

a a= ⇒ =
� � � �

∢ ∢ . (II.7) 

Repeating the same procedure as done in Eqs. (II.5-7), for all the vector 

pairs, we finally get Eq. (II.4). So the basis vectors 
1a
�

, 
2a
�

, 
3a
�

 of a primitive 

rhombohedral unit cell of the fcc lattice are at angles of 60°  to each other. 

Let us now calculate the volume, 
0Ω , of the primitive unit cell of the fcc 

lattice and compare it with the volume of the cubic cell. We have that 
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The primitive unit cell has one lattice point while the cubic cell contains four 

lattice points, so the ratio between the volumes of these cells  

 

3

cube

30

V
4 

1Ω

4

a

a

= =  (II.9) 

is equal to the ratio between the numbers of lattice points in them. 



 

Next, we will demonstrate that 

unit cell of the fcc 

shown in Fig. 50. In the explanation we are using two sets of cubes. 

second set of cubes

obtained by translating the first one

its bases by half of the diagonal

points in the two sets of cubes is 

similar translation, 

of one of the two sets of

the middle of the faces of the two types of cubes

occupy the positions of the points at

demonstrate the equivalence between the

vertices and faces of the cube.

Figure 50 Demonstration of the equivalence of all lattice points in the

lattice. 

Figure 51

Three-Dimensional Crystal Lattice 

we will demonstrate that different lattice points within the

 lattice have equivalent positions in this lattice. 

In the explanation we are using two sets of cubes. 

second set of cubes (represented by a gray colored cube in Fig. 50

obtained by translating the first one in the direction of a diagonal from 

half of the diagonal length. The correspondence of the lattice 

points in the two sets of cubes is explained in Fig. 50. Upon making a 

 but now in a plane which coincides with the side

sets of cubes, the result will be that the points that are in 

the middle of the faces of the two types of cubes (from the two sets)

y the positions of the points at the vertices. In this manner,

demonstrate the equivalence between the positions of lattice point

vertices and faces of the cube. 

Demonstration of the equivalence of all lattice points in the cubic cell of the

Figure 51 Nearest neighbors of a point in the fcc lattice. 
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lattice points within the cubic 

e. This is 

In the explanation we are using two sets of cubes. The 

in Fig. 50) is 

in the direction of a diagonal from                

The correspondence of the lattice 

Upon making a 

side faces      

ult will be that the points that are in 

(from the two sets) will 

, we can 

lattice points at the 

 

cubic cell of the fcc 
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Since all the lattice points in the 

positions, the neighborhood of each lattice point is the same and therefore, 

each point has the same number of 

of a lattice point from the face of a cube. 

explained in this figure the coordination number of the 

11. Rhombohedral Unit Cell in a Cubic Lattice

 

We have already learned in Secs. II.9 and II.10 that a rhombohedron 

represents a primitive unit cell of both the 

which is a primitive cell of the 

rhombohedron. However

conventional unit cell 

the basis vectors
 a
�

angles of 60° , or 90

cell of a lattice belonging to the cubic system, it means, possesses a higher

point symmetry than the symmetry of a trigonal lattice. 

presence of a rhombohedral unit cell with its threefold symmetry axis in a 

cubic lattice is not surprising, 

axes. As next we will show a centered rhombohedral unit cell in the 

lattice. 

 

11.1. Rhombohedral Unit Cell 

Besides of the 

centered rhombohedral unit cells in 

Figure 52 
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Since all the lattice points in the fcc cubic lattice have equivalent 

positions, the neighborhood of each lattice point is the same and therefore, 

each point has the same number of NNs. We will consider the neighborhood 

from the face of a cube. This is shown in Fig. 51

explained in this figure the coordination number of the fcc lattice is 12.

Rhombohedral Unit Cell in a Cubic Lattice 

We have already learned in Secs. II.9 and II.10 that a rhombohedron 

represents a primitive unit cell of both the bcc and the fcc lattices. A cube, 

which is a primitive cell of the sc lattice, is also a particular case of a 

rhombohedron. However, a rhombohedron represents, at first, the 

conventional unit cell of the trigonal system, and now we know that when 

1a
�

, 
2a
�

, 
3a
�

 of a primitive rhombohedral unit cell are at 

90° , or 109 28′°  to each other, then this cell is a primitive 

cell of a lattice belonging to the cubic system, it means, possesses a higher

symmetry than the symmetry of a trigonal lattice. Moreover, the 

presence of a rhombohedral unit cell with its threefold symmetry axis in a 

cubic lattice is not surprising, since this lattice possesses threefold symmetry 

As next we will show a centered rhombohedral unit cell in the 

ohedral Unit Cell of the sc Lattice 

 primitive rhombohedral unit cells there are, of course

centered rhombohedral unit cells in lattices belonging to the cubic system. 

 

Figure 52 A body centered rhombohedral unit cell of the sc lattice. 

cubic lattice have equivalent 

positions, the neighborhood of each lattice point is the same and therefore, 

s. We will consider the neighborhood 

shown in Fig. 51. As 

lattice is 12. 

We have already learned in Secs. II.9 and II.10 that a rhombohedron 

ices. A cube, 

case of a 

, a rhombohedron represents, at first, the 

the trigonal system, and now we know that when 

cell are at 

is a primitive 

cell of a lattice belonging to the cubic system, it means, possesses a higher 

Moreover, the 

presence of a rhombohedral unit cell with its threefold symmetry axis in a 

since this lattice possesses threefold symmetry 

As next we will show a centered rhombohedral unit cell in the sc 

of course, 

belonging to the cubic system. 
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Figure 52 shows such a unit cell of the sc lattice. This cell contains two 

lattice points. 

Table 4 resumes information about the two types of unit cells shown in 

Fig. 52, that is, the cubic one defined by basis vectors a
�

, b
�

, c
�

 and the 

rhombohedral cell defined by vectors 
1a
�

, 
2a
�

, 
3a
�

. The volume of the body 

centered rhombohedral cell is two times the volume of the primitive cubic 

cell (see the numbers of lattice points within each cell). 

The positions of the two lattice points within the rhombohedral unit cell 

from Fig. 52 are shown in Fig. 53. One of them is placed in the origin of the 

cell and the position of the other is given by the vector ( ) 1 2 31 2 (a a a )+ +
� � �

, 

where 
1a
�

, 
2a
�

, 
3a
�

 are the axes of the rhombohedral unit cell defined in                      

Fig. 52. The coordinates of the centering point are expressed in units of ar                

( 1 2 3a a ara = = =
� � �

). 

 

Table 4 The characteristics of the two unit cells, shown in Fig. 52, of the sc lattice. 

SIMPLE CUBIC LATTICE 

Unit cell type Cell parameters 
Number of lattice  

points per cell 

Cubic P ac 1 

Rhombohedral I 2r ca a= , 60rα = °  2 

 

Figure 53 Positions of the two lattice points in the centered rhombohedral unit cell (defined 

in Fig. 52) of the sc lattice, given with respect to the 1a
�

, 2a
�

, 3a
�

 axes. The coordinates are 

expressed in units of ar ( 1 2 3a a a
ra = = =
� � �

). 
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11.2. Simple Cubic Crystal Structure 

Let us now consider a sc monoatomic crystal structure. The sc lattice is 

an obvious option to describe this structure: 

 lattice  +  1-atom basis  =   crystal structuresc sc . 

However, this is not the only Bravais lattice that we can propose to describe 

the sc crystal structure. The presence of a rhombohedral I unit cell, defined 

by the axes at angles of 60°  to each other, in a monoatomic sc crystal 

structure suggests that the sc structure may be considered as a fcc lattice 

with an atomic basis composed of two atoms. This was already suggested in 

Fig. 52 by the distribution of lattice points within the large cubic cell. This 

cell may be considered as a cubic unit cell of the fcc lattice with 4 additional 

lattice points in it. It means, the number of lattice points belonging to the 

cubic F unit cell of the sc lattice is two times the number of lattice points in 

a cubic F unit cell of the fcc lattice. The same is true for the atoms in the 

monoatomic sc structure. 

Let us now consider the sc crystal structure as the fcc lattice with 

two-atom basis: 

 lattice 2-atom basis  cry s tal structure+    =  fcc sc . 

The centers of these atoms may overlap the two lattice points of the unit cell 

from Fig. 53 but, of course, the primitive rhombohedral unit cell of the fcc 

lattice contains only one lattice point, like it is shown in Fig. 54a. When the 

basis contains two atoms, the lattice points are frequently placed (with 

respect to the atoms of the crystal structure) in such a way that a lattice point 

is equidistant to the two basis atoms, what is shown in Fig. 54b. Then the 

origin of the unit cell changes from O to O′  and the cell contains 1 atom 

attached to its lattice point and another one that is attached to the lattice 

point belonging to a different unit cell. 

We have shown here that the sc structure may be seen as a fcc lattice 

with 2-atom basis. However, it is of course more natural to choose the sc 

lattice when describing the monoatomic sc structure. In both cases, the 

lattices have the same point symmetry as the structure, but the lattice 

constant in fcc is two times the lattice constant in sc. As a consequence, in 

the sc lattice the volume of the F-centered cubic unit cell is 8 times larger 

than that of the cubic P cell. It should be noted that what we have learned in 



 

this section looks quite obvious and simple, but 

to analyze experimental and also theoretical results

 

11.3. Interpretation of 

We will use now 

show that the structures for arsenic, antimony, and bismuth are close to

sc structures. In order to do this

rhombohedron may be obtained by stretching a cube along one of its 

diagonals and this type of distortion applied to any cubic lattice changes it to 

a trigonal Bravais lattice. 

shown in Fig. 52, along their diagonals parallel to the vector 

then the cube, defined by

with angles between

the rhombohedron defined by

rhombohedron with

two cells (rhombohedral 

trigonal lattice that was obtained 

Figure 54 The fcc lattice used to describe the monoatomic 

primitive rhombohedral unit cell of the 

basis atoms with respect to a lattice point are shown, where: 

with the center of one of the basis a

basis atoms. 
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looks quite obvious and simple, but is very useful when it comes 

experimental and also theoretical results. 

Interpretation of Data for As, Sb, Bi, and Hg 

use now the considerations made in the previous section

show that the structures for arsenic, antimony, and bismuth are close to

structures. In order to do this, we have to realize, first,

rhombohedron may be obtained by stretching a cube along one of its 

diagonals and this type of distortion applied to any cubic lattice changes it to 

a trigonal Bravais lattice. If such distortion would be present in the cells 

along their diagonals parallel to the vector 1 2 3(a a a )+ +
� � �

defined by vectors a
�

, b
�

, c
�

, would become a rhomboh

angles between the new a
�

, b
�

, c
�

 vectors slightly smaller than 90

the rhombohedron defined by vectors 1a
�

, 2a
�

, 3a
�

 would be a different 

rhombohedron with angles between its axes slightly smaller than 60

two cells (rhombohedral P and rhombohedral I) represent unit cells of 

trigonal lattice that was obtained distorting the sc lattice. 

lattice used to describe the monoatomic sc structure. The figure shows a 

primitive rhombohedral unit cell of the fcc lattice with two-atom basis. Two locations of the 

basis atoms with respect to a lattice point are shown, where: (a) the lattice point coincides 

with the center of one of the basis atoms and (b) the lattice point is equidistant from the two 
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when it comes 

made in the previous section to 

show that the structures for arsenic, antimony, and bismuth are close to the 

, that a 

rhombohedron may be obtained by stretching a cube along one of its 

diagonals and this type of distortion applied to any cubic lattice changes it to 

the cells 

1 2 3(a a a )+ +
� � �

, 

a rhombohedron 

90° , and 

a different 

60° . The 

) represent unit cells of a 

 

structure. The figure shows a 

atom basis. Two locations of the 

the lattice point coincides 

the lattice point is equidistant from the two 
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The values for As, Sb, and Bi listed in Table 5 can be interpreted as 

follows. The three elements crystallize in trigonal crystal structures that are 

close to the sc structures. For each case Table 5 reports experimental data for 

a primitive rhombohedral unit cell of a trigonal lattice with an atomic basis 

composed of 2 atoms. The atoms are equidistant from a lattice point, like it 

was shown in Fig. 54b. The angles between the axes 
1a
�

, 
2a
�

, 
3a
�

 are close to 

60°  and the positions of the basis atoms, 
1 2 3a a a( )x + +
� � �

, with respect to a 

lattice point (see Fig. 54b) are close to ( )( )1 2 31 4 a a a± + +
� � �

, which is the 

case of the sc crystal structure. Therefore, the crystal structures of the three 

elements are close to the sc structures. 

Table 5 is reporting also the data for the crystal structure of mercury. 

This element crystallizes in the trigonal structure. The rhombohedral P unit 

cell contains 1 atom. If we consider this cell as a stretched cubic one then it 

is clear that the Hg crystal structure is far from the sc structure since the 

angle 70 45rα ′= °  is very different from 90°  of a cubic P unit cell. 

 

 

12. Trigonal Lattice 

 

We know already that the conventional cell for the trigonal system                

(a rhombohedron) can be constructed inside a hexagonal prism (see Fig. 31). 

In such a construction, the sixfold symmetry axis of the hexagonal prism 

Table 5 Experimental lattice parameters for arsenic, antimony, bismuth, and mercury. All 

this elements crystallize in trigonal crystal structures. The axes 1a
�

, 2a
�

, and 3a
�

 define a 

rhombohedral P unit cell that in the case of As, Sb, and Bi contains two atoms. The atoms 

are placed with respect to a lattice point like it is shown in Fig. 54b. In the case of Hg the 

basis is composed of one atom. 

Element 
Lattice parameters 

ra (Å), rα  

Number of atoms  

in a rhombohedral  

P unit cell 

Coordinates of the basis 

atoms given in terms of 

vector 1 2 3( )+ +a a a
� � �

 

As 

4.13

54 10

r

r

a

α

=

′= °

 2 0.226x = ±  

Sb 

4.51

57 6

r

r

a

α

=

′= °

 2 0.233x = ±  

Bi 

4.75

57 14

r

r

a

α

=

′= °

 2 0.237x = ±  

Hg (5 K) 

2.99

70 45

r

r

a

α

=

′= °

 1 0x =  



 

becomes a threefold symmetry axis of 

that a trigonal lattice is just a centered hexagonal 

additional lattice points in a trigonal lattice

lattice, reduces the sixfold hexagonal prism axis to 

shown in Fig. 55. We can see in 

that are inside the hexagonal prism define two equilateral triangles i

orthogonal to the sixfold hexagonal prism symmetry axis. The axis is 

crossing these planes 

distribution of the trigonal lattice points

prism, reduces the sixfold 

a trigonal lattice. The basis vectors 

rhombohedrally centered hexagonal unit cell for a trigonal lattice

is called a triple hexagonal unit cell

hexagonal cell for a trigonal lattice 

and the symbol of a trigonal lattice is just 

In Fig. 56a, we show the projections of the 

triple hexagonal cell 

shows the projections 

inside the hexagonal prism from Fig. 55.

origin of the triple hexagonal unit cell

The coordinate of each point

Figure 55 Primitive rhombohedral and a 

lattice may be considered as

hexagonal cell, reduce the sixfold symmetry ax

symmetry axis. 
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threefold symmetry axis of the rhombohedron. We will see now 

trigonal lattice is just a centered hexagonal one. The presence of 

lattice points in a trigonal lattice, with respect to the hexagonal 

reduces the sixfold hexagonal prism axis to a threefold one, what is 

shown in Fig. 55. We can see in this figure that the trigonal lattice points 

he hexagonal prism define two equilateral triangles i

orthogonal to the sixfold hexagonal prism symmetry axis. The axis is 

crossing these planes at the geometric centers of the triangles. Just such 

distribution of the trigonal lattice points, which are inside the hexagonal 

reduces the sixfold axis of a hexagonal lattice to the threefold axis of 

a trigonal lattice. The basis vectors ah

�

, b
h

�

, ch

�

 in Fig. 55 define a 

rhombohedrally centered hexagonal unit cell for a trigonal lattice. This cell 

triple hexagonal unit cell and contains three lattice points. A triple 

hexagonal cell for a trigonal lattice is also called a triple hexagonal

and the symbol of a trigonal lattice is just hR. 

we show the projections of the centering points of the 

triple hexagonal cell R from Fig. 55 on the cell base. Whereas, Fig. 56b 

the projections on the prism base of 6 trigonal lattice points 

the hexagonal prism from Fig. 55. In this figure O represents the 

origin of the triple hexagonal unit cell, defined by basis vectors ah

�

, 

The coordinate of each point in the ch

�

 axis is shown next to the lattice point 

mitive rhombohedral and a R centered hexagonal unit cells. A primitive trigonal 

considered as a R centered hexagonal lattice. The centering points, 

reduce the sixfold symmetry axis of the hexagonal prism to a
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rhombohedron. We will see now 

. The presence of 

with respect to the hexagonal 

threefold one, what is 

that the trigonal lattice points 

he hexagonal prism define two equilateral triangles in planes 

orthogonal to the sixfold hexagonal prism symmetry axis. The axis is 

the geometric centers of the triangles. Just such 

are inside the hexagonal 

axis of a hexagonal lattice to the threefold axis of 

define a 

. This cell 

contains three lattice points. A triple 

called a triple hexagonal cell R 

points of the               

Fig. 56b 

 that are 

represents the 

, b
h

�

, ch

�

. 

lattice point 

 

A primitive trigonal 

 within the 

is of the hexagonal prism to a threefold 
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projection and is expressed 

base of the hexagonal prism in consideration translated 

vector (a b )
h h

+

��
. For

changes from O to 

lattice to a translation vector 

we obtain the same trigonal lattice.

Figure 56 (a) Projections of the centering points 

on the base of the cell. The coordinates of these points 

axes ah

�
, bh

�
, ch

�
. (b) P

base. The coordinates of these points are given in terms of the 

base translated by a translation vector 

Figure 57 The reverse 

rhombohedral cell. 
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expressed in units of c. In Fig. 56b, there is also shown the 

base of the hexagonal prism in consideration translated by a translation

For this case, the origin of the triple hexagonal unit cell 

O′ . We can see in Fig. 56b that by translating a trigonal 

lattice to a translation vector (a b )
h h

+

��

 
of the R centered hexagonal lattice

we obtain the same trigonal lattice. 

rojections of the centering points of the triple hexagonal cell R from Fig. 55 

. The coordinates of these points are given in terms of the hexagona

Projections of the 6 points that are inside the hexagonal prism on its 

base. The coordinates of these points are given in terms of the ch

�
 axis. The hexagonal prism 

translation vector ( )a bh h+

��
 is also shown. 

reverse setting of a triple hexagonal cell in relation to the primitive 

there is also shown the 

a translation 

origin of the triple hexagonal unit cell 

translating a trigonal 

hexagonal lattice, 

 

from Fig. 55 

ven in terms of the hexagonal 

the hexagonal prism on its 

The hexagonal prism 

 

setting of a triple hexagonal cell in relation to the primitive 



 

The setting of the triple hexagonal unit cell in relation to the primitive 

rhombohedral unit cell is not unique. 

of the triple hexago

cell and in Fig. 56a, as we know, 

the plane orthogonal to

ch

�
 for the hexagonal cell 

reverse setting of a triple hexagonal unit cell in relation to the primitive 

rhombohedral cell. The positions of the 

depend on the setting 

Figure 58 shows two triple hexagonal cells 

in obverse setting in relation to the primitive rhombohedral cell, while the 

cell from Fig. 58b is in

Both figures show the positions of the three lattice points within the 

hexagonal unit cell 

points expressed in terms of the axes 

(of course, the vectors

We have learned here that it is possible to describe a trigonal lattice in 

terms of the hexagonal axes. M

a R centered hexagonal lattice. Moreover, it is more convenient to see this 

lattice as a R centered hexagonal one since the hexagonal axes are easier to 

visualize. The relations between the basis vectors that define a rhombohedral 

cell and the ones that define a triple hexagonal cell 

Figure 58 Positions of the three points within the triple hexagonal 

setting and (b) in reverse setting in relation to the primitive rhombohedral unit cell. The 

coordinates are expressed in units of 

Three-Dimensional Crystal Lattice 

The setting of the triple hexagonal unit cell in relation to the primitive 

rhombohedral unit cell is not unique. In Fig. 55 is shown the obverse setting 

triple hexagonal unit cell with respect to the primitive rhombohedral 

, as we know, is displayed the projection of this cell on

the plane orthogonal to the ch

�
 axis. If we propose the basis vectors 

hexagonal cell in the way done in Fig. 57, then we obtain the 

of a triple hexagonal unit cell in relation to the primitive 

rhombohedral cell. The positions of the centering points in a hexagonal cell 

depend on the setting in consideration. 

58 shows two triple hexagonal cells R. The cell from Fig. 58a 

in relation to the primitive rhombohedral cell, while the 

is in reverse setting with respect to the rhombohedral cell. 

oth figures show the positions of the three lattice points within the 

hexagonal unit cell R. We can observe that the coordinates of the centering

in terms of the axes ah

�
 and b

h

�
 are in each case different

, the vectors ah

�
 and b

h

�
 are also different). 

We have learned here that it is possible to describe a trigonal lattice in 

terms of the hexagonal axes. More strictly speaking, a trigonal lattice is just 

centered hexagonal lattice. Moreover, it is more convenient to see this 

centered hexagonal one since the hexagonal axes are easier to 

visualize. The relations between the basis vectors that define a rhombohedral 

cell and the ones that define a triple hexagonal cell R are 

Positions of the three points within the triple hexagonal R unit cell (a) in obverse 

in reverse setting in relation to the primitive rhombohedral unit cell. The 

coordinates are expressed in units of a and c. 
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The setting of the triple hexagonal unit cell in relation to the primitive 

obverse setting 

to the primitive rhombohedral 

the projection of this cell onto 

we propose the basis vectors ah

�
, b

h

�
, 

then we obtain the 

of a triple hexagonal unit cell in relation to the primitive 

points in a hexagonal cell 

. The cell from Fig. 58a is 

in relation to the primitive rhombohedral cell, while the 

to the rhombohedral cell. 

oth figures show the positions of the three lattice points within the 

centering 

different 

We have learned here that it is possible to describe a trigonal lattice in 

ore strictly speaking, a trigonal lattice is just 

centered hexagonal lattice. Moreover, it is more convenient to see this 

centered hexagonal one since the hexagonal axes are easier to 

visualize. The relations between the basis vectors that define a rhombohedral 

 

in obverse 

in reverse setting in relation to the primitive rhombohedral unit cell. The 
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Figure 59 Three types of

cells shown in the figure is defined by basis vectors 

combinations. Inside the hexagonal prism there is a rhombohedral 

vectors a r

�

, b r

�

, and cr

�

vectors ac

�

, bc

�

, and cc

�

. All three unit cells have the same origin O.
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Three types of unit cells of the bcc lattice. Each of the three triple hexagonal 

cells shown in the figure is defined by basis vectors ah

�

, bh

�

, and ch

�

or their linear 

combinations. Inside the hexagonal prism there is a rhombohedral P unit cell defined by basis 

cr

�

. Besides that, there is a cubic I cell of the bcc lattice defined by 

c

�

. All three unit cells have the same origin O. 

 

e. Each of the three triple hexagonal R 

or their linear 

unit cell defined by basis 

lattice defined by 
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a a b ,   b b c ,   c a  b c
h r r h r r h r r r

= = − = +− +

� � � �� � � � � �
, 

in the case of the obverse setting and 

a c b ,   b a c ,   c a  b c
h r r h r r h r r r

= − = − = + +

� � �� � � � � � �
, 

in the case of the reverse setting.  

 

 

13. Triple Hexagonal Cell R in a Cubic Lattice 

 

The centered cubic lattices (bcc and fcc) possess primitive rhombohedral 

cells so it is natural to introduce for them the triple hexagonal cells. 

Therefore, the bcc and fcc lattices may be described in terms of cubic, 

rhombohedral, and hexagonal axes by using cubic (body centered or all-face 

centered), primitive rhombohedral, and triple hexagonal R unit cells, 

respectively. In Fig. 59 we show the three types of cells of the bcc lattice by 

Table 6 Basic information about three types of unit cells of the bcc lattice. 

BODY CENTERED CUBIC LATTICE 

Unit cell type Cell parameters 
Number of lattice points  

per cell 

Cubic I ac 2 

Rhombohedral P 
( )3 2

109 28

r c

r

a a

α

=

′= °

 1 

Triple hexagonal R 
( )

2

3 2

h c

h c

a a

c a

=

=

 3 

 

Table 7 Basic information about three types of unit cells of the fcc lattice. 

FACE CENTERED CUBIC LATTICE 

Unit cell type Cell parameters 
Number of lattice points 

per cell 

Cubic F ac 4 

Rhombohedral P 
( )2 2

60

r c

r

a a

α

=

= °

 1 

Triple hexagonal R 
( )2 2

3

h c

h c

a a

c a

=

=

 3 
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putting them all together and with a common origin. Some information 

about those cells is listed in Table 6 and in Table 7 is listed the same 

information, but for the three types of unit cells of the fcc lattice. 

14. Wigner-Seitz Cell 

 

All primitive unit cells, for the case of centered Bravais lattices that we 

have considered until now, do not have the point symmetry of the lattice. 

However, each Bravais lattice has a primitive unit cell that has the point 

symmetry of the lattice. This cell is called the Wigner-Seitz cell. 

 

14.1. Construction of the Wigner-Seitz Cell 

The Wigner-Seitz cell like every primitive unit cell contains only one 

lattice point, but this point has a very particular location in the cell. It is 

placed in the geometric center of the cell and the region of space that is 

closer to that point than to any other lattice point defines the Wigner-Seitz 

cell. In order to obtain the Wigner-Seitz cell we have to identify, first, the 

NNs of a lattice point. The NNNs may also be involved in the construction 

of that cell and even the TNNs. This cell can be obtained in the following 

manner: 

a.) First, any point of the lattice is chosen (the one that is going to be in the 

middle of the Wigner-Seitz cell).  

b.) Second, we connect this lattice point with all the NNs by means of 

segments and draw median planes of the segments. In this manner a 

three-dimensional body, limited by these planes, is obtained.  

c.) Last, we repeat the same work as in point b.), but with the NNNs. If the 

new planes reduce the volume of the region defined by the first planes, 

this new volume will be the Wigner-Seitz cell, if, of course, more distant 

neighbors (TNNs, fourth NNs, and so on) do not manage to limit this 

volume even more. 

 

14.2. The Wigner-Seitz Cell of the bcc Lattice 

Figure 60 shows the Wigner-Seitz cell of the bcc lattice. This cell has 

the shape of a tetradecahedron (a polyhedron with 14 faces). Eight of its 

faces are defined by 8 NNs and the rest of them by 6 NNNs. This 

tetradecahedron may be seen as a truncated regular octahedron. That is,              

the faces of the octahedron, which are defined by 8 NNs, are truncated by  

  



 

the 6 faces defined by the 

faces at a distance of 

8 hexagonal faces at a distance of 

identify,  looking at the number, shape, and orientation of the faces of the 

Figure 60

Figure 61 (a) A cross section of two cubic 

the construction of the Wigner

belonging to the cell. 

Three-Dimensional Crystal Lattice 

defined by the NNNs. This truncated octahedron has 6 

a distance of 2a  from the middle of the Wigner-Seitz cell and 

8 hexagonal faces at a distance of ( )3 4 a  from the center. It is easy to 

looking at the number, shape, and orientation of the faces of the 

Figure 60 The Wigner-Seitz cell of the bcc lattice. 

 

 

A cross section of two cubic F cells of the fcc lattice. (b) Demonstration that in 

the construction of the Wigner-Seitz cell participate only the NNs of the lattice point 

57 

This truncated octahedron has 6 square 

Seitz cell and                

It is easy to 

looking at the number, shape, and orientation of the faces of the 

 

Demonstration that in 

Seitz cell participate only the NNs of the lattice point 
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truncated octahedron, the 4 threefold axes and 3 fourfold axes that has the 

cubic unit cell of the 

 

14.3. The Wigner

Figure 61a shows 

lattice, in which there are

2 NNNs. The smallest square in Fig. 61b represents a cross section of the 

Wigner-Seitz cell. W

the Wigner-Seitz cell participate only the nearest neighboring lattice points. 

Since the number of the 

the shape of a dodecahedron. This is a 

shown in Fig. 62a. Fig

dodecahedron. 

 

15. Problems 

 

Exercise 1  

a.) Draw all the rotation axes of the regular tetrahedron shown in 

Fig. 63a. In order to do 

define each axis. If it is necessary find these points graphically.

b.) Do the same for the regular octahedron sh

Figure 62 (a) The Wigner

in (a). 
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octahedron, the 4 threefold axes and 3 fourfold axes that has the 

cell of the bcc lattice (see Fig. 60). 

Wigner-Seitz Cell of the fcc Lattice 

61a shows a cross section of two cubic F unit cells of the 

there are 7 lattice points: the central one, 4 of its NNs, and 

The smallest square in Fig. 61b represents a cross section of the 

We demonstrate in this figure that in the construction of 

Seitz cell participate only the nearest neighboring lattice points. 

the number of the NNs in the fcc lattice is 12, its Wigner-Seitz cell has 

the shape of a dodecahedron. This is a rhombic dodecahedron, and 

shown in Fig. 62a. Figure 62b displays one of the 12 identical faces

Draw all the rotation axes of the regular tetrahedron shown in 

Fig. 63a. In order to do that locate the positions of two points that 

define each axis. If it is necessary find these points graphically.

Do the same for the regular octahedron shown in Fig. 63b. 

The Wigner-Seitz cell of the fcc lattice. (b) A face of the dodecahedron shown 

octahedron, the 4 threefold axes and 3 fourfold axes that has the 

unit cells of the fcc 

7 lattice points: the central one, 4 of its NNs, and  

The smallest square in Fig. 61b represents a cross section of the 

that in the construction of 

Seitz cell participate only the nearest neighboring lattice points. 

Seitz cell has 

and it is 

one of the 12 identical faces of this 

Draw all the rotation axes of the regular tetrahedron shown in               

ocate the positions of two points that 

define each axis. If it is necessary find these points graphically. 

 

A face of the dodecahedron shown 



 

Exercise 2 Figure

a cube of edge 

edge length (3 2

other. We can see in this

faces of the smaller cube with a tetradecahedron as a result. This 

tetradecahedron has 8 faces in shape of a regular hexagon (can you 

explain, why?) and 6 faces in shape of a square.

Figure 63 

Figure 64 A tetradecahedron inscribed in a cube of edge length 

be seen as a regular octahedron truncated by 6 faces of the smaller cube. The regular 

octahedron is inscribed in a cube of edge length 

the cube of edge length a

Three-Dimensional Crystal Lattice 

ure 64 shows a truncated regular octahedron inscribed in 

 length a, while the octahedron is inscribed in a cube of 

)3 2 a . The faces of the two cubes are parallel 

. We can see in this figure how the octahedron is truncated 

faces of the smaller cube with a tetradecahedron as a result. This 

tetradecahedron has 8 faces in shape of a regular hexagon (can you 

explain, why?) and 6 faces in shape of a square. 

Figure 63 (a) A regular tetrahedron and (b) a regular octahedron.

 

A tetradecahedron inscribed in a cube of edge length a. This tetradecahedron may 

be seen as a regular octahedron truncated by 6 faces of the smaller cube. The regular 

octahedron is inscribed in a cube of edge length ( )3 2 a  and has the same geometric center as 

a. 
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64 shows a truncated regular octahedron inscribed in 

, while the octahedron is inscribed in a cube of 

. The faces of the two cubes are parallel to each 

is truncated by the 

faces of the smaller cube with a tetradecahedron as a result. This 

tetradecahedron has 8 faces in shape of a regular hexagon (can you 

 

a regular octahedron. 

. This tetradecahedron may 

be seen as a regular octahedron truncated by 6 faces of the smaller cube. The regular 

and has the same geometric center as 
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a.) Draw all the rotation axes of the tetrad

octahedron).

b.) Explain why the 

rotation axes.

Exercise 3 Show that the set of points from Fig. 65 has threefold and 

fourfold rotation axes. Foll

of the set of 14 points.

Hint: In Fig. 65 it is shown a regular hexagon defined by 6 of 27 lattice 

points, which is the set of points in consideration.

Exercise 4 Let us consider a threefold rotation axis of the set of 27 

points from Fig. 65; 24 of them define 5 plane figures in planes 

orthogonal to the threefold axis. Find the edges of the plane figures and 

draw the superposition of their projections along 

graphical symbol of the rotation point for this superposition.

Exercise 5 Figure

hexagonal prism 

rhombohedron are 

bases and the other 6 form two groups 

of the vertices belonging to each group are described in Sec

that for  6 2c a =

Figure 65 
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Draw all the rotation axes of the tetradecahedron (or truncated 

octahedron). 

Explain why the tetradecahedron from Fig. 64 does not have sixfold 

rotation axes. 

Show that the set of points from Fig. 65 has threefold and 

fourfold rotation axes. Follow the considerations of Sec. II.4 for the case 

set of 14 points. 

In Fig. 65 it is shown a regular hexagon defined by 6 of 27 lattice 

points, which is the set of points in consideration. 

Let us consider a threefold rotation axis of the set of 27 

points from Fig. 65; 24 of them define 5 plane figures in planes 

orthogonal to the threefold axis. Find the edges of the plane figures and 

draw the superposition of their projections along this axis. Draw also the 

graphical symbol of the rotation point for this superposition. 

Figure 66 shows a rhombohedron constructed in

hexagonal prism of side a and height c. Two vertices of the 

rhombohedron are located in the geometric centers of the hexagonal 

bases and the other 6 form two groups of 3 vertices each. The positions 

of the vertices belonging to each group are described in Sec. II.

 6 2  the rhombohedron takes on the shape of a cube.

 

Figure 65 A set of 27 points located at the vertices of the 8 small cubes.

dron (or truncated 

from Fig. 64 does not have sixfold 

Show that the set of points from Fig. 65 has threefold and 

for the case 

In Fig. 65 it is shown a regular hexagon defined by 6 of 27 lattice 

Let us consider a threefold rotation axis of the set of 27 

points from Fig. 65; 24 of them define 5 plane figures in planes 

orthogonal to the threefold axis. Find the edges of the plane figures and 

s. Draw also the 

66 shows a rhombohedron constructed inside a 

. Two vertices of the 

in the geometric centers of the hexagonal 

3 vertices each. The positions 

II.6. Show 

ape of a cube. 

A set of 27 points located at the vertices of the 8 small cubes. 



 

Exercise 6 In Fig. 67

hexagonal prism 

the basis vectors

a.) Show that the vector given by the sum 

the longest diagonal of the rhombohedron and its longitude is 

Find the sum of the vectors graphically. 

Figure 66 

Figure 67 (a) A rhombohedron constructed inside a hexagonal prism 

(b) The highlighted face of the rhombohedron from (a). 

in (a). 

Three-Dimensional Crystal Lattice 

In Fig. 67a it is shown a rhombohedron constructed in

hexagonal prism of side a and height c. The rhombohedron is defined by 

vectors 
1a
�

, 
2a
�

, 
3a
�

. 

Show that the vector given by the sum ( )1 2 3a a a+ +
� � �

 is lying along 

the longest diagonal of the rhombohedron and its longitude is 

Find the sum of the vectors graphically.  

 

Figure 66 A rhombohedron constructed inside a hexagonal prism. 

A rhombohedron constructed inside a hexagonal prism of side a and 

The highlighted face of the rhombohedron from (a). (c) The right triangle highlighted

61 

it is shown a rhombohedron constructed inside a 

rhombohedron is defined by 

is lying along 

the longest diagonal of the rhombohedron and its longitude is c. 

 

and height c. 

The right triangle highlighted              
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b.) Calculate the volume of the rhombohedron and compare it with the 

volume of the hexagonal prism. 

Hint: Show that the volume of the prism is 9 times the volume of 

the rhombohedron. 

Exercise 7 Figure 67b shows the face of the rhombohedron that is 

highlighted in Fig. 67a. This face is defined by vectors 
1a
�

 
and 

2a
�

. 

Figure 67c, in turn, displays the right triangle highlighted in Fig. 67a. 

This triangle is defined by the vector 
2a
�

 
and its projection onto the 

bottom base of the hexagonal prism. 

a.) Using the plane figures from Figs. 67b and 67c, show that                        

the relation between the parameters 
ra , 

rα  that describe the 

rhombohedron and the parameters a, c that describe the hexagonal 

prism (in which this rhombohedron is inscribed) is the following 

 

( )

( )

22 2

2

1
3 3

3 3

3
sin

2 2 3

r

r

a
a a c c a

c a

α


= + = +




=
 +

.  

b.) Show that the c a  ratio is expressed only by the parameter 
rα  of 

the rhombohedron 

 
( )

2

9
3

4sin 2r

c

a α

= − .  

Exercise 8 Figure 68 shows all the NNs, some of the NNNs and also 

some of the TNNs of a lattice point located in the center of the displayed 

fcc lattice with a lattice constant a.  

a.) Show that the NNs, NNNs, TNNs, and also fourth and fifth nearest 

neighbors of a lattice point in the fcc lattice are at distances 

2 4 6 8 10
,  ,  ,  ,  and 

2 2 2 2 2
a a a a a ,  

from this point, respectively. 

b.) Situate all the NNNs and the TNNs of the lattice point in 

consideration that fit in the empty cubes shown in Fig. 68. 



 

c.) Is it possible to estimate the number of the 

a lattice point in the 

point b.)? 

Exercise 9 Show that the 

centered monoclinic lattices are equivalent in the case of the 

setting.  

Hint: In order to do this, find a body centered cell

conventional cell for the monoclinic system

shown in Fig. 69.

Figure 68 All the NNs, some

located in the center of the displayed 

Figure 69 Two monoclinic lattices: 

setting is assumed. 

Three-Dimensional Crystal Lattice 

Is it possible to estimate the number of the NNNs and the T

a lattice point in the fcc lattice using the information obtained in 

Show that the A-face centered, C-face centered, and body 

centered monoclinic lattices are equivalent in the case of the 

In order to do this, find a body centered cell (with a shape 

conventional cell for the monoclinic system) for each of the lattices 

in Fig. 69. 

 

s, some of the NNNs, and also some of the TNNs of a lattice point 

located in the center of the displayed fcc lattice. 

Two monoclinic lattices: (a) C-face centered and (b) A-face centered. The 
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TNNs of  

lattice using the information obtained in 

face centered, and body 

centered monoclinic lattices are equivalent in the case of the b-axis 

with a shape of the 

each of the lattices 

 

s of a lattice point 

 

face centered. The b-axis 
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Exercise 10 Calculate the angles between the axes that define the 

primitive rhombohedral unit cell of the 

Hint: Follow the steps shown in Sec. II.10 when calculating the angles 

between the axes that define the primitive rhombohedral unit cell of the 

fcc lattice. 

Exercise 11 In the 

cell defined by axes with 

a.) What type of rhombohedral unit cell did you obtain?

b.) How many lattice points

c.) Calculate the volume of the rhombohedral unit cell and compare it 

with the volume of the primitive cubic cell.

Exercise 12 We know from Table 5 that mercury at 5 K crystallizes in a 

trigonal structure. Draw the hexagonal prism composed of three triple 

hexagonal R unit cells for the Hg crystal structure. 

parameters a  

Table 5 and then find the 

Hg crystal structure in real proportions.

Hint: See Exercise 7.

Exercise 13 Starting from Fig. 49 draw the hexagonal prism composed 

of the three triple hexagonal 

picture will contain 

unit cells for the 
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Calculate the angles between the axes that define the 

primitive rhombohedral unit cell of the bcc lattice. 

Follow the steps shown in Sec. II.10 when calculating the angles 

between the axes that define the primitive rhombohedral unit cell of the 

In the sc lattice from Fig. 70 draw the rhombohedral unit 

cell defined by axes with 109 28′°  angles between them. 

What type of rhombohedral unit cell did you obtain? 

How many lattice points do belong to this cell? 

Calculate the volume of the rhombohedral unit cell and compare it 

with the volume of the primitive cubic cell. 

We know from Table 5 that mercury at 5 K crystallizes in a 

trigonal structure. Draw the hexagonal prism composed of three triple 

unit cells for the Hg crystal structure. Find first

 and c  for the hexagonal R cell using the data from 

and then find the c a  ratio to draw the hexagonal prism of the 

Hg crystal structure in real proportions. 

See Exercise 7. 

Starting from Fig. 49 draw the hexagonal prism composed 

of the three triple hexagonal R unit cells for the fcc lattice. The resulting 

picture will contain the cubic F, rhombohedral P, and triple hexagonal 

unit cells for the fcc lattice, all of them with a common origin. 

 

Figure 70 A simple cubic lattice. 

Calculate the angles between the axes that define the 

Follow the steps shown in Sec. II.10 when calculating the angles 

between the axes that define the primitive rhombohedral unit cell of the 

lattice from Fig. 70 draw the rhombohedral unit 

Calculate the volume of the rhombohedral unit cell and compare it 

We know from Table 5 that mercury at 5 K crystallizes in a 

trigonal structure. Draw the hexagonal prism composed of three triple 

Find first the 

cell using the data from 

to draw the hexagonal prism of the 

Starting from Fig. 49 draw the hexagonal prism composed 

lattice. The resulting 

, and triple hexagonal R 



 

Exercise 14  

a.) Draw the fourfold axes of the regular dodecahedron shown in 

Fig. 71 (the Wigner

axes does it have?

b.) Draw a threefold axis of the dodecahedron. How many such axes 

does it have?

 
 

Three-Dimensional Crystal Lattice 

Draw the fourfold axes of the regular dodecahedron shown in 

71 (the Wigner-Seitz cell of the fcc lattice). How many such 

axes does it have? 

threefold axis of the dodecahedron. How many such axes 

have? 

 

Figure 71 A regular dodecahedron. 
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Draw the fourfold axes of the regular dodecahedron shown in 

lattice). How many such 

threefold axis of the dodecahedron. How many such axes 
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III. CRYSTAL STRUCTURES OF 

ELEMENTS 

 

 

1. Introduction 

 

In this chapter, we will consider the crystal structure of most metallic 

elements, nonmetals from column IV of the periodic table, and noble gases. 

More than 30 elements crystallize in two monoatomic crystal structures, fcc 

and bcc, at room temperature and normal pressure. There are also a large 

number of elements that crystallize in a structure that can be described by a 

hexagonal Bravais lattice but with two-atom basis. This is the so called 

hexagonal close-packed (hcp) crystal structure. To describe this structure, 

identical spheres are arranged in a regular array to minimize the interstitial 

volume. This close-packing of spheres may lead, however, to many different 

arrangements. One of them turns out to be nothing more than the fcc 

structure. Under normal conditions, more than 40% of the elements 

crystallize in the hcp, fcc and other close-packed crystal structures. All of 

them will be considered in this chapter. 

In some sense, the idea of close-packing of spheres, to obtain crystal 

structures, coincides with the idea to consider atoms (or ions) as 

impenetrable hard spheres of a certain radius r. This model, even being so 

simple, is quite useful in the description of crystal structures. For example, it 

allows for the prediction of interatomic distances of new structures to a first 

approximation. The atomic radius is deduced from observed atomic 

separations in a set of crystals. However, the results may vary from set to set 

since the atomic separation depends on the type of chemical bonding. The 

principal bonds in crystals are: metallic, ionic, and covalent. The radius of 

an atom in the crystal of an element is given by half the observed minimal 

atomic separation. 

The atomic radius depends on the kind of bond in the crystal because the 

nature of bonding is strongly connected to the spatial distribution of 

electrons. The degree of impenetrability of atoms (or ions) depends on their 

electronic configuration. The highest impenetrability is achieved in the case 

of atoms (or ions) with closed electron shells. This is, for example, the case 

of noble gases, positive ions of alkali metals (Li
+

, Na
+

, K
+

, Rb
+

, or Cs
+

) or 

negative ions of the halogens (F
−

, Cl
−

, Br
−

, or I
−

). The high degree of 

impenetrability of such an atom (or ion) is a consequence of the Pauli 
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exclusion principle and a large energy gap existing between the lowest 

unoccupied atomic orbital and the highest occupied one.  

The idea to consider an atom (or ion) as a hard sphere will be used 

frequently in this chapter. 

 

 

2. Pearson Notation and Prototype Structure 

 

The Pearson notation, together with the prototype structure, allows 

shorthand characterization of crystal structures. It consists of the symbol of 

the Bravais lattice corresponding to the structure in consideration followed 

by the number of atoms per conventional unit cell. Table 8 lists Pearson 

symbols for the 14 Bravais lattices. The assignation of the Pearson symbol 

to a crystal structure is not unique, it means, in general one Pearson symbol 

corresponds to more than one crystal structure. To achieve a unique 

identification of a crystal structure, to each structure type is assigned a 

representative (prototype) element or compound, in a proper phase, having 

that structure. The Pearson symbol together with the prototype structure 

identifies the crystal structure of a given element or compound. The 

Table 8 Pearson symbols corresponding to 14 Bravais lattices. In these symbols n expresses 

the number of atoms per conventional unit cell. The last column gives examples of Pearson 

symbols which together with the prototype structures correspond to crystal structures of 

elements. 

Crystal system 
Bravais lattice 

symbol 
Pearson symbol 

Example of crystal 

structure 

Triclinic (anorthic) aP aPn  

Monoclinic 
mP 

mS (mA, mB, mC) 

mPn 

mSn 

mP4-γBi 

mS4-βBi 

Orthorombic 

oP 

oS (oA, oB, oC) 

oI 

oF 

oPn 

oSn 

oIn 

oFn 

oP8-αNp 

oS4-αU 

 

oF8-γPu 

Tetragonal 
tP 

tI 

tPn 

tIn 

tP4-βNp 

tI2-In 

Trigonal 

(rhombohedral) 
hR hRn* hR1-αHg 

Hexagonal hP hPn hP2-Mg 

Cubic 

cP 

cI 

cF 

cPn 

cIn 

cFn 

cP1-αPo 

cI2-W 

cF4-Cu 

*In the Pearson symbol hRn, the number of atoms, n, refers to the primitive rhombohedral 

unit cell. 
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examples listed in the last column of Table 8 correspond to crystal       

structures of elements. 

 

 

3. The Filling Factor 

 

The filling factor of a crystal structure is defined as the fraction of the 

total crystal volume filled with atoms considered hard spheres. Sometimes 

instead of filling factor the expressions “atomic packing factor” or “packing 

fraction” are used.  

The filling factor gives us an idea how close “the atoms are packed” in 

the crystal structure. The closest packing of atoms is achieved when the 

number of NNs is the highest possible. In conclusion, the filling factor 

together with the coordination number give us an idea about the degree of 

filling the crystal volume with atoms, and, at the same time, tells us how 

close the atoms in a crystal are packed. 

In order to calculate the filling factor, we have to know first the radii            

for atoms considered hard spheres. In the case of elements the radius is half 

the distance between NNs. To do the calculations, we can limit ourselves to 

the conventional unit cell of the crystal structure. The filling factor is 

defined as 

 
( )

volume occupied by atoms 
hard spheres  within the unit cell

filling factor
cell volume

= . 

Below we will consider different crystal structures in which crystallize 

the elements. We will begin with the simple cubic structure. 

 

 

4. Simple Cubic Structure 

 

Pearson symbol: cP1, prototype: α-Po. Let us assume that the vertices 

of the cubic unit cell of the sc structure coincide with the centers of atoms. 

Figure 72 shows the plane of one of the faces of the cube with the cross 

sections of the atoms that, being considered hard spheres, are represented by 

circles on this plane. Each atom from a cube face has two of its NNs on this 

face. The NNs are at a distance equal to the lattice constant a. The atomic 
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radius is equal to half of 

the cube is given by

 

and the filling factor for 

 

The result for the filling factor shows that in the case of the 

about half of the crystal volume is filled with atoms and the oth

corresponds to the interstices. Of course this is reflected al

coordination number; 

structure is only 6. The next nearest neighbors

the distance about 40% 

volume in the sc crystal structure is quite 

Under normal conditions

crystallizes in the sc

Figure 72 The plane that c

sections of atoms considered hard spheres.

Basic Elements of Crystallography 

radius is equal to half of a, so the volume of the only one atom belonging to 

the cube is given by 

3

34
V

3 2 6
atom

a
a

π
π





=


= 


 

and the filling factor for the sc structure is the following: 

( )

3

3

6 0.52
6sc

a

filling factor
a

π

π
= = ≅ . 

The result for the filling factor shows that in the case of the sc structure 

about half of the crystal volume is filled with atoms and the oth

corresponds to the interstices. Of course this is reflected also by the 

coordination number; the number of the NNs of an atom in the case of the 

structure is only 6. The next nearest neighbors (NNN) are already 12, but at 

the distance about 40% higher than the NNs. In conclusion, the interstitial 

crystal structure is quite large. 

Under normal conditions, only one element, polonium in the α

sc structure. However, there are three elements, As, Sb, 

 

The plane that contains a face of a cubic unit cell of the sc structure with the cross 

atoms considered hard spheres. 

longing to 

(III.1) 

(III.2) 

structure 

about half of the crystal volume is filled with atoms and the other half 

so by the 

s of an atom in the case of the sc 

are already 12, but at 

s. In conclusion, the interstitial 

α-phase, 

structure. However, there are three elements, As, Sb, 

structure with the cross 



 

 

and Bi (discussed already in the

trigonal structure, which 

 

 

5. Body Centered Cubic Structur

 

Pearson symbol: 

bcc structure. In this case

the atom that is in the center of the cube (see Fig. 73a), and those atoms are 

in contact with it. The point of contact between two atoms is found in a 

plane defined by two body diagonals of the cube, as

We can see in Fig. 73b that the atoms are in contact with each other

only along the body diagonals of the cube

Figure 73 (a) Unit cell of the 

cube shown in (a). In this plane

its NNs. 

Crystal Structures of Elements 

and Bi (discussed already in the previous chapter) that crystallize in the 

trigonal structure, which is a slightly distorted sc structure.  

Body Centered Cubic Structure 

Pearson symbol: cI2, prototype: W. Now, we will see the case of the 

structure. In this case, the atoms of the vertices of the cube are 

the atom that is in the center of the cube (see Fig. 73a), and those atoms are 

in contact with it. The point of contact between two atoms is found in a 

ned by two body diagonals of the cube, as it is shown in Fig. 73.

We can see in Fig. 73b that the atoms are in contact with each other

the body diagonals of the cube, while, the atoms that are 

 

Unit cell of the bcc structure. (b) A plane defined by two body diagonals of the 

cube shown in (a). In this plane, there are the points of contact between the central atom and 
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that crystallize in the 

the case of the 

of the cube are NNs of 

the atom that is in the center of the cube (see Fig. 73a), and those atoms are 

in contact with it. The point of contact between two atoms is found in a 

is shown in Fig. 73. 

We can see in Fig. 73b that the atoms are in contact with each other           

the atoms that are at the 

A plane defined by two body diagonals of the 

there are the points of contact between the central atom and 
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vertices are at a distance greater than 2r (r – radius of the atom). There are 

two atoms in the cubic cell of the bcc structure, so the filling factor is 

 ( )

3

3

4 3
2

3 4 3
 0.68

8bcc

a

filling factor
a

π

π

 
 
 

= = ≅ . (III.3) 

Please note that the filling factor for the bcc structure is higher than that 

one for the sc structure. This is consistent with the fact that the number of 

NNs in bcc is also higher than in sc (8 and 6, respectively). Moreover, the 

distance of the 6 NNNs of an atom in the bcc structure differs from the 

distance of its NNs by less than 15%. Therefore, an atom in this structure 

has effectively 14 atoms close to it. 

Table 9 reports lattice constants a for all elements that crystallize in the 

bcc structure at room temperature and normal pressure. All of them are 

metals. In this table, we can also find lattice constants for a number of 

metals that crystallize in the bcc structure at high temperatures and normal 

Table 9 Lattice constants of elements that crystallize in the bcc structure at normal 

pressure. The data is provided at room temperature, unless otherwise specified. 

Metal a (Å) Metal a (Å) 

α-Ba 5.023 β-Pm 4.100 (1163 K) 

β-Ca 4.380 (773 K) β-Pr 4.130 (1094 K) 

δ-Ce 4.120 (1030 K) ε-Pu 3.638 (773 K) 

α-Cr 2.8847 Ra 5.148 

α-Cs 6.141 α-Rb 5.705 

β-Dy 4.030 (1654 K) β-Sc 3.752 (1623 K) 

α-Eu 4.5827 β-Sr 4.850 (887 K) 

α-Fe 2.8665 Ta 3.3031 

δ-Fe 2.9346 (1712 K) β-Tb 4.070 (1562 K) 

β-Gd 4.060 (1538 K) β-Th 4.110 (1723 K) 

K 5.321 β-Ti 3.3065 (1173 K) 

γ-La 4.260 (1160 K) β-Tl 3.882 (506 K) 

β-Li 3.5093 γ-U 3.524 (1078 K) 

δ-Mn 3.081 (1413 K) V 3.024 

Mo 3.147 W 3.1651 

β-Na 4.291 β-Y 4.100 (1751 K) 

Nb 3.3007 γ-Yb 4.440 (1036 K) 

β-Nd 4.130 (1156 K) β-Zr 3.609 (1135 K) 

γ-Np 3.520 (873 K)   



 

 

pressure. Under normal conditions

crystallize in structures different from 

One of them, manganese

due to its magnetic (antiferromagnetic) properties. This structure may be 

considered as bcc with 56 additional atoms, it means, in total 58 atoms per 

unit cell (Pearson symbol 

viewed as build of 

2 3 3 3 54× × × =  atoms with still 4 additional atoms added. A number of 

these atoms are slightly shifted from the ideal positions in the small 

cells. The NN interatomic distances in 

8.9125 Åa =  (at 298

 

 

6. Face Centered Cubic Structure

 

Pearson symbol: 

the fcc structure. The cubic unit 

The atom placed in the center of a face of the cube has 4 of its 

vertices of this face. Fig

with the cross sections of 5 atoms considered hard spheres. The points of 

contact between the ato

In the case of the 

therefore the filling factor is

Figure 74 (a) Unit cell of the 

with the cross sections of 5 atoms considered hard spheres. The points of contact between the 

NNs are found in this plane.

Crystal Structures of Elements 

normal conditions, these metals (with exception of Fe) 

crystallize in structures different from bcc and they will be considered later

One of them, manganese (α-Mn), crystallizes in a very complex structure 

due to its magnetic (antiferromagnetic) properties. This structure may be 

with 56 additional atoms, it means, in total 58 atoms per 

unit cell (Pearson symbol cI58). On the other hand, this supercell may be 

viewed as build of 3 3 3 27× × =  cubic bcc unit cells containing 

atoms with still 4 additional atoms added. A number of 

these atoms are slightly shifted from the ideal positions in the small 

interatomic distances in α-Mn, with lattice 

298 K), are in the range of 2.244-2.911 Å . 

Face Centered Cubic Structure 

Pearson symbol: cF4, prototype: Cu. We will now turn to the case of 

structure. The cubic unit cell of this structure is shown in Fig. 74

The atom placed in the center of a face of the cube has 4 of its NN

of this face. Figure 74b shows the plane of the front face of the cube 

cross sections of 5 atoms considered hard spheres. The points of 

contact between the atoms are found on the face diagonals.  

In the case of the fcc structure, there are four atoms in the cubic cell, 

therefore the filling factor is 

Unit cell of the fcc structure. (b) Plane of the front face of the cube from (a) 

oss sections of 5 atoms considered hard spheres. The points of contact between the 

s are found in this plane. 
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these metals (with exception of Fe) 

they will be considered later. 

, crystallizes in a very complex structure 

due to its magnetic (antiferromagnetic) properties. This structure may be 

with 56 additional atoms, it means, in total 58 atoms per 

upercell may be 

unit cells containing 

atoms with still 4 additional atoms added. A number of 

these atoms are slightly shifted from the ideal positions in the small bcc unit 

with lattice constant 

We will now turn to the case of 

this structure is shown in Fig. 74a. 

NNs at the 

74b shows the plane of the front face of the cube 

cross sections of 5 atoms considered hard spheres. The points of 

structure, there are four atoms in the cubic cell, 

 

Plane of the front face of the cube from (a) 

oss sections of 5 atoms considered hard spheres. The points of contact between the 
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This filling factor is the largest one among the filling factors for the cubic 

structures and at the same time the larges one among the filling factors for 

all structures for the elements. In this case 3 4  of the crystal volume is filled 

with atoms considered hard spheres and only 1 4  is empty. The number of 

the NNs, equal to 12, is also the largest possible.  

Table 10 lists lattice constants a of all metals that crystallize at room 

temperature and normal pressure in the fcc structure. Besides that, in this 

table are also given the lattice constants of four noble gases (argon, krypton, 

neon, and xenon) and a number of metals that crystallize in the fcc structure 

at temperatures different from room temperature. A similar number of 

metallic elements crystallize in the fcc and bcc structures under normal 

conditions, what can be seen comparing Tables 9 and 10. 

The fcc structure represents one of the close-packed structures. We will 

discuss them below. 

 

Table 10 Lattice constants of elements that crystallize in the fcc structure at normal 

pressure. The data is given at room temperature, unless otherwise specified. 

Element a (Å) Element a (Å) 

Ac 5.311 β-La 5.303 (598 K) 

Ag 4.0861 γ-Mn 3.863 (1373 K) 

α-Al 4.0496 Ne 4.462 (4.2 K) 

Ar 5.311 (4.2 K) Ni 3.5241 

Au 4.0784 α-Pb 4.9502 

α-Ca 5.5884 Pd 3.8901 

α-Ce 4.850 (77 K) Pt 3.924 

γ-Ce 5.1610 δ-Pu 4.637 (592 K) 

α-Co 3.569 (793 K) Rh 3.803 

Cu 3.6149 α-Sr 6.084 

Es 5.750 α-Th 5.084 

γ-Fe 3.630 (1373 K) Xe 6.309 (145 K) 

Ir 3.8391 β-Yb 5.4848 

Kr 5.796 (96 K)   



 

 

7. Close-Packed Structures

 

The name “close

order to obtain the highest possible 

structures it is worthwhile to analyze 

the same radius, in order 

possible. For this purpose

one on the top of the other

within a layer is in contact with six others and a layer represents a 

dimensional close-packed hexagonal structure.

is shown in Fig. 75. We will differentiate the holes existing between spheres 

of a layer as of type (a) or type (b) (see Fig. 75).

Figure 76 shows the plane defined by centers o

and the projection of centers of spheres of the second layer. The centers of 

the second layer spheres are above the centers of the holes of type (a) 

specified in Fig. 75. The spheres of the second layer just rest 

type (a). 

The centers of the holes of type (a) coincide with the geometric centers 

of the equilateral triangles shown in

Figure 75 A close-packed layer of spheres that is a two

structure. 
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Packed Structures 

ame “close-packed” refers to the way of packing the atoms in 

order to obtain the highest possible filling factor. To consider close

structures it is worthwhile to analyze first the manner of placing spheres of 

the same radius, in order for the interstitial volume to be as small as 

possible. For this purpose, the spheres are arranged in layers that are placed 

one on the top of the other in the way we will explain below. Each sphere 

within a layer is in contact with six others and a layer represents a 

packed hexagonal structure. The cross section of a layer 

is shown in Fig. 75. We will differentiate the holes existing between spheres 

of a layer as of type (a) or type (b) (see Fig. 75). 

76 shows the plane defined by centers of spheres of the first layer 

of centers of spheres of the second layer. The centers of 

the second layer spheres are above the centers of the holes of type (a) 

specified in Fig. 75. The spheres of the second layer just rest in the holes o

The centers of the holes of type (a) coincide with the geometric centers 

of the equilateral triangles shown in Fig. 76 (of course the same occurs in 

packed layer of spheres that is a two-dimensional close-packed hexagonal 

75 

packed” refers to the way of packing the atoms in 

factor. To consider close-packed 

the manner of placing spheres of 

be as small as 

the spheres are arranged in layers that are placed 

in the way we will explain below. Each sphere 

within a layer is in contact with six others and a layer represents a two-

The cross section of a layer 

is shown in Fig. 75. We will differentiate the holes existing between spheres 

first layer 

of centers of spheres of the second layer. The centers of 

the second layer spheres are above the centers of the holes of type (a) 

the holes of 

The centers of the holes of type (a) coincide with the geometric centers 

Fig. 76 (of course the same occurs in 

 

packed hexagonal 
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the case of holes of type (b), see Fig. 77a). Therefore, each sphere of the 

second layer is in contact with three spheres of the layer below it. 

 The third layer can be placed in two ways as depicted in Fig. 77. In              

the case shown in Fig. 77a the centers of spheres of the third layer are              

above the centers of the holes of type (b) of the first layer, specified in              

Fig. 75, whereas in the case shown in Fig. 77b the spheres of the third layer 

lie directly above the spheres of the first layer. 

We will show now that the close-packed arrangement displayed in                

Fig. 77a corresponds to the fcc structure. A part of Fig. 77a, with the cubic 

cell of the fcc structure, is drawn in Fig. 78. We can see in this figure that the 

fcc structure is of type ABCABC…, where A, B, and C denote three two-

dimensional close-packed layers shifted horizontally one with respect to the 

other. The layer planes are orthogonal to a body diagonal of the cubic unit 

cell of this structure. The second layer, B, is shifted with respect to the first 

one, A, by vector t
�

, defined in Fig. 76. In this way, the spheres of the B 

layer are placed in holes of type (a), shown in Fig. 75, of layer A. The 

spheres of C layer are placed over the holes in the A layer not occupied by 

the spheres from B layer, it means, of type (b) in Fig. 75. The C layer is 

shifted with respect to the A layer by vector 2t
�

, and with respect to the B 

layer by vector t
�

, so each sphere of the C layer is in contact with 3 spheres 

 

 

Figure 76 The centers of spheres of the first layer and the projection of the centers of spheres 

of the second layer in a close-packed arrangement of equal spheres. 



 

 

of the B layer. The spheres of the fourth layer lie directly above the spheres 

of the first one. 

To conclude, we can say that in the 

a cubic close-packed 

fcc one. This is an 

the 12 NNs of an atom in the 

which is placed the atom in consideration, while half of the other 6 belong to 

the layer below and the other half to the layer above.

In the case shown in Fig. 77b we have a 

structure of an ABAB…

with the hexagonal prism. We can see in Fig. 79 that the 

represents a hexagonal

Figure 77 (a) and (b) 

described in (a) differs from that one in (b) in the 

respect to the spheres of the first and second layer

Crystal Structures of Elements 

layer. The spheres of the fourth layer lie directly above the spheres 

To conclude, we can say that in the case shown in Fig. 77a we have 

packed (ccp) structure that was already introduced as the 

one. This is an ABCABC… type structure. Now it is easy to visualize 

s of an atom in the fcc structure; 6 of them belong to the layer in 

which is placed the atom in consideration, while half of the other 6 belong to 

the layer below and the other half to the layer above. 

In the case shown in Fig. 77b we have a hexagonal close-packed

ABAB… type. Figure 79 shows a part of Fig. 77b together 

with the hexagonal prism. We can see in Fig. 79 that the hcp structure 

hexagonal Bravais lattice with two-atom basis. Each atom in 

 show two close-packed arrangements of equal spheres. The case 

described in (a) differs from that one in (b) in the positions of spheres of the third 

of the first and second layers. 

77 

layer. The spheres of the fourth layer lie directly above the spheres 

case shown in Fig. 77a we have                

that was already introduced as the              

visualize 

belong to the layer in 

which is placed the atom in consideration, while half of the other 6 belong to 

packed (hcp) 

79 shows a part of Fig. 77b together 

structure 

atom basis. Each atom in 

 

packed arrangements of equal spheres. The case 

 layer with 
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this structure has 12 

them belong to the layer in which is placed the atom in consideration and the 

other 6 belong to the adjacent layers. The difference between 

structures consists in the location of the 

adjacent layers. In the

holes and the other three (b) holes (specified in Fig. 75)

to which belongs the atom in consideration. I

these 6 NNs occupy holes of type (a)

side of the layer. Twelve is the maximum number of spheres that can be 

arranged to touch a given sphere. The 

details later. 

There is an infinite number of possible ways of close

spheres, since any sequence of 

alike, represents a po

Therefore, a close-packed structure can be obtained only if two consecutive 

layers are of a different type. In this case, each sphere touches 12 other 

spheres and this characteristic of all close

Figure 78 The fcc structure viewed as a close

consecutive layers of this structure are marked as 

Basic Elements of Crystallography 

this structure has 12 NNs (as it is also the case for the fcc structure); 6 of 

them belong to the layer in which is placed the atom in consideration and the 

other 6 belong to the adjacent layers. The difference between ccp 

structures consists in the location of the NN atoms that belong to the 

adjacent layers. In the case of the ccp structure three of them occupy (a) 

holes and the other three (b) holes (specified in Fig. 75), present in the layer 

to which belongs the atom in consideration. In the case of the hcp structure 

s occupy holes of type (a): 3 from the top and 3 from the bottom 

. Twelve is the maximum number of spheres that can be 

arranged to touch a given sphere. The hcp structure will be discussed in 

There is an infinite number of possible ways of close-packing equal 

spheres, since any sequence of A, B, C layers, with no two successive layers 

alike, represents a possible close-packing arrangement of equal spheres. 

packed structure can be obtained only if two consecutive 

layers are of a different type. In this case, each sphere touches 12 other 

spheres and this characteristic of all close-packed structures could be seen 

structure viewed as a close-packed structure (cubic close-packed). Three 

consecutive layers of this structure are marked as A, B, and C. 

re); 6 of 

them belong to the layer in which is placed the atom in consideration and the 

ccp and hcp 

atoms that belong to the 

structure three of them occupy (a) 

, present in the layer 

structure 

he top and 3 from the bottom 

. Twelve is the maximum number of spheres that can be 

structure will be discussed in 

packing equal 

layers, with no two successive layers 

packing arrangement of equal spheres. 

packed structure can be obtained only if two consecutive 

layers are of a different type. In this case, each sphere touches 12 other 

ructures could be seen 

 

packed). Three 



 

 

already in the case of 

packed structure that represents a Bravais lattice with one

fcc structure. 

Below we will give an example of a close

from the fcc and 

ABACABAC…. This structure is called a 

(dhcp) structure.  

 

 

8. Double Hexagonal Close

 

Pearson symbol: 

dhcp structure are of 

close-packed structures with the coordination number 12. Under normal 

conditions, in the 

lanthanum (α-La), cerium (

Figure 79 The 

Table 11 Lattice constants of lanthanides that crystallize in the 

conditions. The data for 

Element 

α-La 

β-Ce 

α-Pr 

α-Nd 

α-Pm 

δ-Sm (4.0 GPa) 

Crystal Structures of Elements 

already in the case of fcc and hcp structures. Please note, that the only close

packed structure that represents a Bravais lattice with one-atom basis is the 

Below we will give an example of a close-packed structure, different 

and hcp structures, which has a layer sequence 

. This structure is called a double hexagonal close

Double Hexagonal Close-Packed Structure 

Pearson symbol: hP4; prototype: α-La. Two consecutive layers in the 

structure are of a different type, so it represents indeed one of the 

packed structures with the coordination number 12. Under normal 

in the dhcp structure crystallize 5 rare earth (RE) 

La), cerium (β-Ce), praseodymium (α-Pr), neodymium (

The ABAB… stacking of atomic layers in the hcp structure. 

attice constants of lanthanides that crystallize in the dhcp structure under normal 

conditions. The data for δ-Sm correspond to room temperature and 4.0 GPa. 

a (Å) c (Å) c a

3.7740 12.171 2 × 1.61

3.681 11.857 2 × 1.61

3.6721 11.8326 2 × 1.61

3.6582 11.7966 2 × 1.61

3.65 11.65 2 × 1.60

3.618 11.66 2 × 1.61

79 

structures. Please note, that the only close-

atom basis is the 

packed structure, different 

structures, which has a layer sequence 

double hexagonal close-packed 

Two consecutive layers in the 

, so it represents indeed one of the 

packed structures with the coordination number 12. Under normal 

 metals: 

Pr), neodymium (α-Nd), 

 

structure under normal 

c a  

1.61 

1.61 

1.61 

1.61 

1.60 

1.61 
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promethium (α-Pm),

americium (α-Am), curium (

(α-Cf). Cerium exhibits 

phases: beta and gamma

phase transition from 

β-Ce exists below this

experimental lattice parameters 

under normal conditions, and for

pressure 4.0 GPa, while Table 1

and c for actinides obtained under normal conditions. The parameters 

c are defined in Fig. 80.

The hexagonal prism that represents a convention

dhcp structure, which has the same point symmetry as an infinite structure, 

Table 12 Lattice constants of actinides that crystallize in the 

conditions.  

Element 

α-Am 

α-Cm 

α-Bk 

α-Cf 

Figure 80 Double hexagonal close

is shown. 

Basic Elements of Crystallography 

Pm), all of them lanthanides, and the following actinides: 

Am), curium (α-Cm), berkelium (α-Bk), and califo

Cerium exhibits at room temperature and normal pressure two 

phases: beta and gamma (γ-Ce has the fcc structure, see Table 10

phase transition from β-Ce to γ-Ce occurs close to the room temperature and 

Ce exists below this temperature. In Table 11 we have listed the 

experimental lattice parameters a and c for La, Ce, Pr, Nd, and Pm, obtained 

under normal conditions, and for δ-Sm obtained at room temperature and 

pressure 4.0 GPa, while Table 12 gives the experimental lattice parameters 

for actinides obtained under normal conditions. The parameters 

are defined in Fig. 80. 

The hexagonal prism that represents a conventional unit cell of

structure, which has the same point symmetry as an infinite structure, 

Lattice constants of actinides that crystallize in the dhcp structure under normal 

a (Å) c (Å) c a

3.468 11.241 2 × 1.62

3.496 11.331 2 × 1.62

3.416 11.069 2 × 1.62

3.390 11.015 2 × 1.63

Double hexagonal close-packed structure. The ABACABAC… sequence of layers 

all of them lanthanides, and the following actinides: 

Bk), and californium              

at room temperature and normal pressure two 

10). The 

Ce occurs close to the room temperature and 

we have listed the 

, obtained 

Sm obtained at room temperature and 

parameters a 

for actinides obtained under normal conditions. The parameters a and 

cell of the              

structure, which has the same point symmetry as an infinite structure, 

structure under normal 

c a  

1.62 

1.62 

1.62 

1.63 
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is shown in Fig. 80. In this figure, we also show the sequence, 

ABACABAC…, of the two-dimensional hcp layers. 

In the next section, we will consider the structure of samarium at room 

temperature and pressure (α-Sm). 

 

 

9. Samarium Type Close-Packed Structure 

 

Pearson symbol: hR3, prototype: α-Sm. Samarium in the alpha phase 

crystallizes in a complex close-packed structure with a layer sequence 

ABABCBCACA…. It means, represents the repetition of a unit consisting 

of 9 two-dimensional hcp layers, as can be seen in Fig. 81c. The smallest 

unit cell of this structure is rhombohedral (inscribed in the hexagonal prism 

from Fig. 81c), so the α-Sm structure is trigonal. Its rhombohedral unit cell 

contains 3 atoms, while the triple hexagonal cell contains 9 atoms. The cell 

parameters of the two unit cells, triple hexagonal and rhombohedral, are 

3.629Åha = , 26.207Åhc =  and 8.996Åra = , 23.22rα = ° , respectively (at 

room temperature and normal pressure). About half of the RE metals 

crystallize at high pressure in the Sm-type structure. They are: yttrium (Y), 

gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium 

(Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). In the case of three of 

them (Y, Tb, and Dy) the following pressure-induced sequence of phase 

transitions is observed at room temperature: 

   Sm-type    hcp dhcp fcc→ → → . 

For yttrium, e.g., the experimentally determined transformations are: from 

hcp to Sm-type at 10-15 GPa, from Sm-type to dhcp at 25-28 GPa, and from 

dhcp to fcc at 46 GPa. A similar sequence, of pressure-induced phase 

transitions (at room temperature), is observed for Ho, Er, and Tm: 

hcp → Sm-type → dhcp. 

It is interesting to mention that the two sequences involve close-packed 

structures that are, to some degree, mutually related. The dhcp and Sm-type 

structures can be viewed as a certain mixture of the hcp and ccp (fcc) 

structures. 

Figures 81 and 82 show hexagonal prisms for the four close-packed 

structures considered by us. The hexagonal prisms for the hcp, dhcp, and 
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Sm-type structures are drawn in Fig

is shown the hexagonal prism for the 

sequence of the two

displayed in Fig. 82 can reproduce the 

(point symmetry) than an infinite 

 

Figure 81 Hexagonal prisms for three of the four

us: hcp, dhcp, and Sm-

is shown. The hexagonal prism for the fourth close

Fig. 82. 
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type structures are drawn in Figs. 81a-81c, respectively, while in Fig. 82 

is shown the hexagonal prism for the fcc structure. In each case, the 

sequence of the two-dimensional hcp layers is shown. The hexagonal prism 

in Fig. 82 can reproduce the fcc structure, but has less symmetry 

(point symmetry) than an infinite fcc structure. 

 

l prisms for three of the four close-packed structures considered by 

-type. In each case, the sequence of the two-dimensional hcp

. The hexagonal prism for the fourth close-packed structure (ccp) is displayed

, while in Fig. 82 

In each case, the 

The hexagonal prism 

structure, but has less symmetry 

sidered by                   

hcp layers                

displayed in     



 

 

 

10. Hexagonal Close

 

Pearson symbol: 

hexagonal close-packed structure in more details. The hexagonal prism 

represents a conventional unit cell that has the same point symmetry as an 

infinite hcp structure. In this case

The hexagonal unit cell defined by vectors 

reproduce the whole 

structure, but here it c

within the hexagonal unit cell are given in Fig. 84.

Figure 82 Hexagonal prism for the 

/ 6,c a = see Fig. 78). 

Figure 83 The conventional unit cell of the 

c
�

. 
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Hexagonal Close-Packed Structure 

Pearson symbol: hP2, prototype: Mg. Now, we will analyze the 

packed structure in more details. The hexagonal prism 

represents a conventional unit cell that has the same point symmetry as an 

structure. In this case, the highest order rotation axis is threefold. 

The hexagonal unit cell defined by vectors a
�

, b
�

, c
�

 in Fig. 83 can 

reproduce the whole hcp structure, as in the case of the simple hexagonal 

but here it contains two atoms. The positions of the two atoms 

within the hexagonal unit cell are given in Fig. 84. 

 

Hexagonal prism for the ccp (fcc) structure (the cell parameters ratio

78). The sequence of layers A, B, and C is shown.  

 

The conventional unit cell of the hcp structure defined by the basis vectors 
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we will analyze the 

packed structure in more details. The hexagonal prism 

represents a conventional unit cell that has the same point symmetry as an 

order rotation axis is threefold. 

in Fig. 83 can 

structure, as in the case of the simple hexagonal 

of the two atoms 

cell parameters ratio is 

basis vectors a
�

, b
�

, 
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We will now calculate the 

considered hard spheres

this case. The three atoms marked

three marked as 5, 6, 7 (from the top base

as 4, and they are in contact with it. Likewise, atoms marked

contact among themselves. As the distance between the centers of spheres 1 

and 2 is a, so is the distance between the centers of spheres 1, 2, 

center of sphere 4. 

To obtain the c a

and r
⊥

�
 that are the components of the position vector 

atom marked as 4 in Fig. 85. In

Figure 84 Positions of the two atoms within the hexagonal unit 

coordinates are expressed in units of 

Figure 85 The 6 of 12 

at the vertices of the hexagonal unit cell. The vector 

as 4. 
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calculate the c a  ratio in an ideal case when the atoms

considered hard spheres touch their NNs. Figure 85 shows the unit cell for 

this case. The three atoms marked as 1, 2, 3 (from the bottom base) and the 

5, 6, 7 (from the top base) are the NNs of the atom marked

and they are in contact with it. Likewise, atoms marked as 1, 2, 3 are in 

contact among themselves. As the distance between the centers of spheres 1 

, so is the distance between the centers of spheres 1, 2, or 3 and the 

c a  ratio, we first derive the expression for the vectors 

that are the components of the position vector r
�

 of the center of the 

as 4 in Fig. 85. In Fig. 86 we show the plane of the rhombic 

 

of the two atoms within the hexagonal unit cell of the hcp structure.

coordinates are expressed in units of a and c. 

The 6 of 12 NNs of the atom marked 4 (the ones marked 1-3, and 5-

the vertices of the hexagonal unit cell. The vector r
�

 gives the position of the atom marked

ratio in an ideal case when the atoms 

85 shows the unit cell for 

1, 2, 3 (from the bottom base) and the 

s of the atom marked 

1, 2, 3 are in 

contact among themselves. As the distance between the centers of spheres 1 

or 3 and the 

vectors r
�

�
 

of the center of the 

Fig. 86 we show the plane of the rhombic 

structure. The 

 

-7) located               

gives the position of the atom marked 



 

 

base of the hexagonal unit cell which conta

expressed as a linear combination of 

Vectors r
�

�
 and r

⊥

�
 can be then wri

 

r

r
⊥


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= +



�

�

� �

and can be expressed 

 

Finally, from (III.6) we obtain

 

Since the module of vector 

1 and 4), then 

 

Figure 86 
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base of the hexagonal unit cell which contains r
⊥

�
. This vector can be 

linear combination of basis vectors 
1a
�

 and 
2a
�

 (see Fig. 86).

can be then written as 
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expressed in terms of orthogonal versors as 
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Finally, from (III.6) we obtain that vector r
�

 is 

1 3 1
ˆ ˆ ˆr r r x y z

2 6 2
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⊥
= + = + +

�
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Figure 86 The base of the hexagonal unit cell shown in Fig. 85. 
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This vector can be 

(see Fig. 86). 

(III.5) 

(III.6) 

(III.7) 

(the distance between the centers of atoms 

(III.8) 
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and the c a  ratio is 

 
8

1.633 
3

c

a
= ≅ . (III.9) 

Therefore, in the ideal hcp structure the c a  ratio is about 1.63. 

Table 13 lists lattice parameters a and c for all elements that crystallize 

in the hcp structure at room temperature and normal pressure. As in the case 

of bcc and fcc structures all of them are metals. The table reports also lattice 

parameters of other metals and also helium, obtained at conditions different 

from normal conditions. We can observe in the table that with exception of 

two metals, cadmium and zinc, for the rest of them the ratio c a  is quite 

close to the ideal value 1.63. The structures of cadmium and zinc are 

somewhat distorted from the ideal hcp structure. The NNs of an atom are not 

12 but 6 (the ones from the same layer), while the other 6 atoms, which are 

placed in adjacent layers, are 10% farther away. However, the point 

symmetry of the hcp structure does not depend on the c a  ratio.  

It is interesting to note that under normal conditions more than 25% of 

the elements crystallize in the hcp and dhcp structures. This information is 

given in Table 14. 

Table 13 Lattice parameters of metals that crystallize in the hcp structure. The data is given 

at room temperature and normal pressure, unless otherwise specified. Values for helium 

(3He and 4He) are also included. 

Element a (Å) c (Å) c a  Element a (Å) c (Å) c a  

α-Be 2.286 3.585 1.57 Os 2.734 4.320 1.58 

Cd 2.979 5.620 1.89 Re 2.761 4.458 1.62 

ε-Co 2.507 4.069 1.62 Ru 2.706 4.282 1.58 

α-Dy 3.5915 5.6501 1.57 α-Sc 3.3088 5.2680 1.59 

α-Er 3.5592 5.5850 1.57 β-Sm (723 K) 3.663 5.845 1.60 

α-Gd 3.6336 5.7810 1.59 α´-Tb 3.6055 5.6966 1.58 
3
He  

(3.48 K, 0.163 GPa) 
3.501 5.721 1.63 Tc 2.738 4.393 1.60 

4
He  

(3.95 K, 0.129 GPa) 
3.470 5.540 1.60 α-Ti 2.9503 4.6836 1.59 

α-Hf 3.1946 5.0511 1.58 α-Tl 3.457 5.525 1.60 

α-Ho 3.5778 5.6178 1.57 α-Tm 3.5375 5.5546 1.57 

α-Li (78 K) 3.111 5.093 1.64 α-Y 3.6482 5.7318 1.57 

α-Lu 3.5052 5.5494 1.58 α-Yb 3.8799 6.3859 1.65 

Mg 3.2093 5.2107 1.62 Zn 2.644 4.9494 1.87 

α-Na (5 K) 3.767 6.154 1.63 α-Zr 3.2317 5.1476 1.59 
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Let us now proceed to calculate the filling factor for the ideal hcp 

structure. The hexagonal unit cell volume is given by 

 

( ) ( )

( )

1 2 3

2 2
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1 3
0

2 2

3 3 8
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(III.10)

 

then 

 ( )

3

3

4
2

23 2
 0.74

62
hcp

a

filling factor
a

π

π

 
 
 

= = ≅ . (III.11) 

Note that we obtained the same result as in the case of the fcc (ccp) 

structure. This is the value of the filling factor for any close-packed 

structure. All of them characterize the maximum number, 12, of the NNs of 

an atom. 

Under normal conditions, more than 40% of elements crystallize in three 

close-packed structures: fcc, hcp, and dhcp, what is shown in the periodic 

table of elements (see Table 14).  

 

 

11. Interstices in Close-Packed Structures 

 

We will now examine the interstices – empty spaces between atoms 

(hard spheres) – in close-packed structures. They are of two types: 

tetrahedral and octahedral. A tetrahedral interstice could be found already                

in Fig. 85. In this figure, the centers of spheres marked as 1, 2, 3, and 4 

represent vertices of a tetrahedron. The edges of this tetrahedron are of the 

same longitude, 2r (where r is the sphere radius), so this is a regular 

tetrahedron. The empty space between the four spheres defining a 

tetrahedron is what we call a tetrahedral interstice. Spheres marked in                   

Fig. 85 as 4, 5, 6, and 7 define another regular tetrahedron. The two 

tetrahedrons have different spatial orientation. The top view of the two types  
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of tetrahedrons is shown in Fig. 87a, in which we have the plane 

hexagonal layer A

layer A. Three vertices of one of the tetrahedrons shown in this figure are

found in layer A

tetrahedron with a second 

and the fourth in layer 

A regular octahedron is visualized in Fig. 87b; three of its six vertices 

are placed in the A

between the 6 spheres that

type of interstices that are present between two different types of layers in a 

close-packed structure, the so called 

edge length is 2r like in the case of the tetrah

Let us show now interstices that are present in conventional unit cells 

for the two most common close

the tetrahedral interstices present in a hexagonal prism which is a 

conventional unit cell of the

of the tetrahedral and one octahedral interstices present in a cube that 

represents a conventional unit cell of 

in which such interstices may be occupied by additional 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 87 Centers of spheres of the 

B layer. (a) Three vertices

and three vertex projections for the tetrahedron with the second spatial orientation are shown. 

(b) Top view of octahedron bases lying on 

Crystal Structures of Elements 

tetrahedrons is shown in Fig. 87a, in which we have the plane 

A and the projection of the centers of spheres of layer 

. Three vertices of one of the tetrahedrons shown in this figure are

A and the fourth in layer B. The opposite occurs for the 

tetrahedron with a second orientation in which three vertices are in layer 

and the fourth in layer A. 

A regular octahedron is visualized in Fig. 87b; three of its six vertices 

A layer and the other three in the B layer. The empty space 

between the 6 spheres that define a regular octahedron represents the second 

type of interstices that are present between two different types of layers in a 

packed structure, the so called octahedral interstices. The octahedron 

like in the case of the tetrahedron edges. 

Let us show now interstices that are present in conventional unit cells 

for the two most common close-packed structures. Figure 88 shows three of 

the tetrahedral interstices present in a hexagonal prism which is a 

conventional unit cell of the hcp structure. Whereas, in Fig. 89 we show two 

of the tetrahedral and one octahedral interstices present in a cube that 

represents a conventional unit cell of fcc (ccp). There are crystal structures

in which such interstices may be occupied by additional atoms. In general

 

 

Centers of spheres of the A layer and projection of the centers of spheres of the

vertices and one vertex projection for one tetrahedron and one vertex

and three vertex projections for the tetrahedron with the second spatial orientation are shown. 

Top view of octahedron bases lying on A and B layers. 

89 

tetrahedrons is shown in Fig. 87a, in which we have the plane of a 

and the projection of the centers of spheres of layer B on 

. Three vertices of one of the tetrahedrons shown in this figure are 

. The opposite occurs for the 

orientation in which three vertices are in layer B 

A regular octahedron is visualized in Fig. 87b; three of its six vertices 

layer. The empty space 

define a regular octahedron represents the second 

type of interstices that are present between two different types of layers in a 

. The octahedron 

Let us show now interstices that are present in conventional unit cells 

88 shows three of 

the tetrahedral interstices present in a hexagonal prism which is a 

structure. Whereas, in Fig. 89 we show two 

of the tetrahedral and one octahedral interstices present in a cube that 

). There are crystal structures 

atoms. In general 

of the centers of spheres of the              

trahedron and one vertex            

and three vertex projections for the tetrahedron with the second spatial orientation are shown. 
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these atoms are of another type than the atom

This gives rise to

terms of a close-packing of equal spheres. We will discuss this in details for 

binary compounds.

Summarizing, w

structures: 

a.) Three-dimensional clo

hcp layers of equal spheres (see Fig. 75). Each sphere of such

in contact with 6 other spheres, which is the maximum possible

of NNs in two 

 

 

 

Figure 88 Three tetrahedral interstices inside a hexagonal prism which is a conventional unit 

cell that has the same point symmetry as the 

is shown. 

Figure 89 Two tetrahedral 

(ccp) structure. The sequence of layers 

cube, is shown. 

Basic Elements of Crystallography 

these atoms are of another type than the atoms of the close-packed structure. 

es rise to a large number of compounds that can be described in 

packing of equal spheres. We will discuss this in details for 

binary compounds. 

, we have learned the following about close

dimensional close-packed structures are built of two-dimensional 

layers of equal spheres (see Fig. 75). Each sphere of such

in contact with 6 other spheres, which is the maximum possible

s in two dimensions. 

 

Three tetrahedral interstices inside a hexagonal prism which is a conventional unit 

cell that has the same point symmetry as the hcp structure. The sequence of layers 

Two tetrahedral (a) and one octahedral (b) interstices in a cubic unit cell of the 

) structure. The sequence of layers A, B, and C, orthogonal to a body diagonal of the 

packed structure. 

e described in 

packing of equal spheres. We will discuss this in details for 

e have learned the following about close-packed 

dimensional 

layers of equal spheres (see Fig. 75). Each sphere of such a layer is 

in contact with 6 other spheres, which is the maximum possible number 

Three tetrahedral interstices inside a hexagonal prism which is a conventional unit 

structure. The sequence of layers A and B  

 

interstices in a cubic unit cell of the fcc 

orthogonal to a body diagonal of the 
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b.) The consecutive layers in a three-dimensional close-packed structure 

are shifted horizontally one with respect to the other, so we distinguish 

three types of layers: A, B, and C, defined in Fig. 78. 

c.) As two consecutive layers are of a different type, the spheres of each 

layer rest in the holes of the layer below. Therefore, each sphere, apart 

from the 6 NNs in its own layer, has 3 NNs in each of the adjacent 

layers. 

d.) There are tetrahedral and octahedral interstices between two 

consecutive layers of a close-packed structure. 

We already know that metallic elements have the tendency to crystallize 

in close-packed structures. Moreover, noble gases also crystallize in those 

structures. The type of bonding between atoms of these elements gives 

preference for the coordination number 12, what is indeed achieved in a 

close-packed structure. Whereas, other types of bond (covalent or ionic) 

require 4, 6, or 8 NNs of an atom. The presence of tetrahedral and 

octahedral interstices in close-packed structures offers the possibility to 

form bonds with 4 or 6 NNs when an atom is placed inside a tetrahedral or 

octahedral interstice, respectively. 

In general the atom (or ion) that is located inside the interstice pushes 

apart the atoms at the vertices of the tetrahedron or octahedron. As a 

consequence the hcp layers (A, B, C) do not represent any longer close-

packed layers but only two-dimensional hexagonal structures. In these 

layers, the atoms do not touch each other and in addition the atoms from 

adjacent layers are not in contact with them. We will see this on the 

example of 4 elements that crystallize in the diamond structure. The atoms 

in this structure have 4 NNs. 

The diamond structure represents a sequence of layers of 

AABBCCAABBCC… type, where each layer is a two-dimensional 

hexagonal (but not close-packed) structure. This sequence can be seen as a 

superposition of two equal sequences of ABCABC… type. It means that we 

are in presence of a superposition of two fcc structures. One of them is 

translated with respect to the other in such a way that the atoms of each of 

them occupy half of the tetrahedral interstices of the other. Thus, each atom 

has 4 NNs as is required in the case of pure covalent bonding. The diamond 

structure will be considered below in more details. 

The A, B, C layers (two-dimensional hexagonal structures that are in 

general not close-packed) are present also in the case of various important 
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binary compounds. This will be shown in the next chapter on examples of 

compounds that crystallize in the zinc blende, wurtzite, NiAs, or NaCl 

structures. In general, in a binary compound, the atoms (ions) of a given 

type form a structure which is at the same time its substructure. Each of 

these substructures, in the case of structures mention above, represents a 

sequence of layers of ABAB… or ABCABC… type (or only of AA… type 

like in the case of cations in NiAs). In general, each layer (A, B, or C) 

represents a two-dimensional hexagonal structure, which is rarely a true 

close-packed layer. 

When a three-dimensional structure is not really close-packed, it means, 

when an atom considered hard sphere is not in contact with 12 atoms closest 

to it, but it is still built of A, B, C (or A and B) layers in the way that two 

consecutive layers are of a different type, it is also called close-packed. 

In zinc blende and wurtzite structures each substructure is of 

ABCABC… and ABAB… type, respectively, and the atoms of a given type 

occupy half of the tetrahedral interstices present in the other substructure. In 

NiAs the substructure of anions is of ABAB… type and the cations occupy 

its octahedral interstices, whereas NaCl is composed of substructures with a 

layer stacking ABCABC…. The ions from one substructure in NaCl occupy 

the octahedral interstices present in the other substructure. All these 

structures will be described in details in the next chapter. 

 

 

12. Diamond Structure  

 

Pearson symbol: cF8, prototype: C. Four elements, from column IV 

of the periodic table, crystallize in the diamond structure, namely: carbon, 

silicon, germanium and gray tin (which is one of the two allotropes of tin at 

normal pressure and temperature). The atoms of each of these elements 

have four electrons in the outermost shell (the so called valence shell). By 

completing this shell with four additional electrons those atoms can achieve 

a state of the highest stability. This stability is reached in the crystal of each 

of these elements in which an atom is surrounded by four neighboring 

atoms that in turn form covalent chemical bonds (represented schematically 

in Fig. 90) with it. In the diamond structure, each atom shares four electrons 

with its 4 NNs and each of these neighbors shares an electron with the atom 

under consideration. Therefore, all atoms can complete the 4 electrons that 

were lacking to achieve the highest stability. 



 

 

The neighborhood of an atom in the diamond structure is shown in 

Fig. 91. The four 

structure are placed 

under consideration in the center, like

 

 

 

 

 

 

 

 

 

 

 

Figure 90 Two-dimensional schematic representation of covalent chemical bonds in the 

diamond structure. 

Figure 91 (a) A tetrahedron defined by the 

tetrahedron from (a) inscribed in a cube. 

covalent bonds between an atom and its 4 

Crystal Structures of Elements 

The neighborhood of an atom in the diamond structure is shown in 

Fig. 91. The four NNs of each atom of an element that crystallize in this 

structure are placed at the vertices of a regular tetrahedron that has the atom 

under consideration in the center, like it is shown in Fig. 91a. The regular 

 

dimensional schematic representation of covalent chemical bonds in the 

 

A tetrahedron defined by the NNs of an atom in the diamond structure. 

tetrahedron from (a) inscribed in a cube. (c) Three-dimensional schematic representation of 

covalent bonds between an atom and its 4 NNs. 
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The neighborhood of an atom in the diamond structure is shown in            

s of each atom of an element that crystallize in this 

s of a regular tetrahedron that has the atom 

is shown in Fig. 91a. The regular 

dimensional schematic representation of covalent chemical bonds in the 

s of an atom in the diamond structure. (b) The 

ematic representation of 
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tetrahedron is easier to draw if we place it inside a cube, what was done in 

Fig. 91b. In addition, Fig. 91c shows a three-dimensional schematic 

representation of covalent bonds between an atom in the diamond structure 

and its 4 NNs. 

We should observe that the cubic volume that we have drawn in                 

Fig. 91b does not, of course, represent a unit cell of the diamond structure, 

since it does not have atoms in all its vertices. However, we can easily 

locate it within the cubic unit cell of this structure. Figure 92 shows two of                    

the 4 possible positions of the small cube inside the diamond cubic unit              

cell. We may also observe in Fig. 92 that this unit cell is just the cubic unit 

cell of the fcc structure with 4 additional atoms placed inside (on the body 

diagonals). The distance between each additional atom and its nearest            

cube vertex is 1 4  of the cube body diagonal, and those additional atoms 

occupy tetrahedral interstices present in the fcc cubic unit cell. We can see 

in Fig. 92 that in this cell, there is a total of 8 tetrahedral interstices and in 

the case of the diamond structure half of them are filled with atoms. 

The tetrahedral interstices present in the fcc structure have been already 

considered by us in the previous section. In that opportunity, the fcc 

structure was seen as a sequence of two-dimensional hcp layers of 

ABCABC… type. In Fig. 89a, we have shown two examples of tetrahedral 

interstices present in the cubic cell of the fcc structure. 

 

Figure 92 Two small cubes from Fig. 91b placed in two of the four possible positions inside 

a cubic unit cell of the diamond structure. 



 

 

To help visualize the position

unit cell of the diamond structure, we have dra

orthogonal vertical planes

diagonals of the cube and the 4 atoms are placed on these diagonals in the 

way explained in this figure.

It is obvious that the neighborhood of each atom in the diamond 

structure is the same. This can be verified by drawing two cubic unit cells, I 

and II, in the diamond structure in such a way that cube II 

respect to cube I along one of its body diagonals, to a segment equal in 

length to 1 4  of the diagonal length. We obtain then that the atoms that are 

in the interior of cube I coincide with the vertices or centers of 

cube II, thus suc

atoms on the diagonals of cube I. This is illustrated in 2D in Fig. 94, where 

we have plotted a plane with 12 atoms from certain region of the crystal. 

This plane includes 

diagonals. One of these atoms is placed at a vertex of cube II and the other 

one at its face center. We can see in Fig. 94a that the atoms that are located 

on the body diagonals of the cubes have the same s

atoms from vertices and faces of cube I. It is also easy to observe in 

Fig. 94b the equivalence between the relative distributions of atoms of each

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 93 Relative positions

are inside the cubic unit cell are distributed in two vertic

diagonals of the cube.

Crystal Structures of Elements 

To help visualize the positions of the 4 atoms that are inside of the cubic 

e diamond structure, we have drawn in Fig. 93 two mutually 

orthogonal vertical planes A and B. Each plane is defined by two body 

cube and the 4 atoms are placed on these diagonals in the 

way explained in this figure. 

It is obvious that the neighborhood of each atom in the diamond 

structure is the same. This can be verified by drawing two cubic unit cells, I 

and II, in the diamond structure in such a way that cube II is shifted with 

respect to cube I along one of its body diagonals, to a segment equal in 

of the diagonal length. We obtain then that the atoms that are 

in the interior of cube I coincide with the vertices or centers of the faces of 

ch atoms of cube II have the same neighborhood as the 

atoms on the diagonals of cube I. This is illustrated in 2D in Fig. 94, where 

we have plotted a plane with 12 atoms from certain region of the crystal. 

This plane includes a cross section of cube I with two atoms from the 

diagonals. One of these atoms is placed at a vertex of cube II and the other 

one at its face center. We can see in Fig. 94a that the atoms that are located 

on the body diagonals of the cubes have the same spatial distribution as the 

atoms from vertices and faces of cube I. It is also easy to observe in 

Fig. 94b the equivalence between the relative distributions of atoms of each

 

 

Relative positions of atoms belonging to the diamond structure. The 4 atoms that 

are inside the cubic unit cell are distributed in two vertical planes defined by the body 

diagonals of the cube. 
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4 atoms that are inside of the cubic 

two mutually 

. Each plane is defined by two body 

cube and the 4 atoms are placed on these diagonals in the 

It is obvious that the neighborhood of each atom in the diamond 

structure is the same. This can be verified by drawing two cubic unit cells, I 

is shifted with 

respect to cube I along one of its body diagonals, to a segment equal in 

of the diagonal length. We obtain then that the atoms that are 

the faces of 

have the same neighborhood as the 

atoms on the diagonals of cube I. This is illustrated in 2D in Fig. 94, where 

we have plotted a plane with 12 atoms from certain region of the crystal. 

a cross section of cube I with two atoms from the 

diagonals. One of these atoms is placed at a vertex of cube II and the other 

one at its face center. We can see in Fig. 94a that the atoms that are located 

patial distribution as the 

atoms from vertices and faces of cube I. It is also easy to observe in                 

Fig. 94b the equivalence between the relative distributions of atoms of each 

of atoms belonging to the diamond structure. The 4 atoms that 

al planes defined by the body 
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type (from the body diagonals and from the vertices and faces).

can say that it is the atomic arrangement in the diamond structure which 

Figure 94 (a) Comparison of the distribution of atoms from v

unit cells with those from their body diagonals in the diamond structure. 

atoms (considered hard spheres) from (a) 

the relative distributions of atoms o

those from its diagonals) is visualized.
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(from the body diagonals and from the vertices and faces). Finally, we 

can say that it is the atomic arrangement in the diamond structure which 

Comparison of the distribution of atoms from vertices and faces of the cubic 

unit cells with those from their body diagonals in the diamond structure. (b) Cross sections of 

atoms (considered hard spheres) from (a) are shown. In this figure, the equivalency between 

the relative distributions of atoms of each type (those from vertices and faces of the cube and 

those from its diagonals) is visualized. 

Finally, we 

can say that it is the atomic arrangement in the diamond structure which 

 

ertices and faces of the cubic 

Cross sections of 

shown. In this figure, the equivalency between 

f each type (those from vertices and faces of the cube and 



 

 

allows each atom to be in the middle of a regular tetrahedron with 4 

(located at the vertices of the tetrahedron) that are covalently bonded to it.

To conclude, we can say that the diamond structure is just a 

superposition of two 

the other in the way described above. Each substructure may be seen as a 

sequence of layers of 

shifted one with respect to the other, to a segment shorter than the distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 95 Left part of Fig. 94b with the

Figure 96 Cubic and rhombohedral unit cells for the diamond structure (left). 

is also shown the position

Crystal Structures of Elements 

each atom to be in the middle of a regular tetrahedron with 4 

(located at the vertices of the tetrahedron) that are covalently bonded to it.

To conclude, we can say that the diamond structure is just a 

superposition of two fcc substructures that are shifted one with respect to 

the other in the way described above. Each substructure may be seen as a 

sequence of layers of ABCABC… type and the two substructures are 

shifted one with respect to the other, to a segment shorter than the distance 

 

Left part of Fig. 94b with the cross sections of the A, B, and C layer planes adde

Cubic and rhombohedral unit cells for the diamond structure (left). In the figure, it 

he positions of the two atoms belonging to the rhombohedral unit cell (right).
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each atom to be in the middle of a regular tetrahedron with 4 NNs 

(located at the vertices of the tetrahedron) that are covalently bonded to it. 

To conclude, we can say that the diamond structure is just a 

substructures that are shifted one with respect to 

the other in the way described above. Each substructure may be seen as a 

substructures are 

shifted one with respect to the other, to a segment shorter than the distance 

planes added. 

 

In the figure, it 

of the two atoms belonging to the rhombohedral unit cell (right). 
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between two consecutive layers in the substructures, in the direction 

orthogonal to the layer planes. Thus, the diamond structure represents 

indeed a sequence 

see in Fig. 95, where we have added the cross sections of

layer planes to Fig. 94b.

The smallest unit cell of the diamond structure 

the primitive rhombohedral unit cel

cell contains 2 atoms as shown in Fig. 96. Therefore, the diamond structure 

can be seen as a fcc

Finally, let us show the position

cubic unit cell. Fig

cell and Fig. 97b shows the projection of these atoms on the cell base. The 

coordinates of the 8 atoms, in Fig. 97a, are given in terms of the cub

a
�

, b
�

, c
�

, and the fractions near the atom projections in Fig. 97b represent 

the coordinates of these atoms in the 

13. Atomic Radius

 

We have show

important crystal structures for elements

radius. As we remember

and its radius is given by half of the distance between 

Figure 97 (a) Position

The coordinates are expressed in units of 

fraction nearby the projection of an atom represents its coordinate in the 
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between two consecutive layers in the substructures, in the direction 

orthogonal to the layer planes. Thus, the diamond structure represents 

indeed a sequence of layers of AABBCCAABBCC… type, what is easy to 

see in Fig. 95, where we have added the cross sections of the A, 

s to Fig. 94b. 

The smallest unit cell of the diamond structure is of the same shape as

the primitive rhombohedral unit cell of the fcc structure, but in this case the 

cell contains 2 atoms as shown in Fig. 96. Therefore, the diamond structure 

fcc Bravais lattice with two-atom basis. 

Finally, let us show the positions of atoms belonging to the diamond 

cubic unit cell. Figure 97a shows the coordinates of 8 atoms within the unit 

cell and Fig. 97b shows the projection of these atoms on the cell base. The 

coordinates of the 8 atoms, in Fig. 97a, are given in terms of the cub

the fractions near the atom projections in Fig. 97b represent 

the coordinates of these atoms in the c
�

 axis. 

Atomic Radius 

We have shown all along this chapter, on the examples of the most 

important crystal structures for elements, how to determine the atomic 

As we remember, the atom is considered a hard, impenetrable sphere 

and its radius is given by half of the distance between NNs, 

Positions of the eight atoms within the cubic unit cell of the diamond structure. 

The coordinates are expressed in units of a. (b) Projection of atoms on the cell base. The 

fraction nearby the projection of an atom represents its coordinate in the c
�

 axis. 

between two consecutive layers in the substructures, in the direction 

orthogonal to the layer planes. Thus, the diamond structure represents 

type, what is easy to 

, B, and C 

is of the same shape as 

structure, but in this case the 

cell contains 2 atoms as shown in Fig. 96. Therefore, the diamond structure 

f atoms belonging to the diamond 

97a shows the coordinates of 8 atoms within the unit 

cell and Fig. 97b shows the projection of these atoms on the cell base. The 

coordinates of the 8 atoms, in Fig. 97a, are given in terms of the cubic axes 

the fractions near the atom projections in Fig. 97b represent 

on the examples of the most 

how to determine the atomic 

atom is considered a hard, impenetrable sphere 

 which is 

 

e diamond structure. 

Projection of atoms on the cell base. The 
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determined by the experimentally obtained lattice constant (or constants). 

The radius of such a sphere depends strongly on the type of bonding 

between atoms in a crystal. Until now we have considered metals, noble 

gases, and the elements from column IV of the periodic table. In each of 

those cases the bonding is different and the type of bonding determines the 

coordination number. We could observe that the metallic bonding prefers 

the coordination number 12. Some metals crystallize also in bcc structure 

with coordination number 8. The elements from column IV characterize 

pure covalent bonding, in case of which each atom requires 4 NNs. The 

predominantly ionic and partially ionic and partially covalent bonds appear 

in case of compounds and will be discussed on the examples of binary 

compounds in Chapter 4. 

In Table 15 we list experimental lattice constants, NN interatomic 

distances, and covalent radii (all parameters obtained under normal 

conditions) of elements that crystallize in the diamond structure. The 

covalent radius for each element is calculated as half of the distance 

between NNs, d, determined by the experimental lattice constant a 

according to the expression  

 
1

3
8

d a= . (III.12) 

In similar way, we have calculated the metallic radii for all metals that 

crystallize in structures with coordination number 12. Since the system of 

metallic radii is set up for the coordination number 12, for those metals that 

crystallize in the bcc structure, and therefore, have coordination number 8, 

we have made a correction (commonly used by chemists) consisting in 

increasing their radii by 3%. 

Table 15 Lattice constants of elements that crystallize in the diamond structure under 

normal conditions. In addition, the NN distances, d, and the covalent radii, cov
r , are given. 

Element a (Å) d (Å) cov
r  (Å) 

C 3.5669 1.545 0.772 

α-Si 5.4306 2.352 1.176 

α-Ge 5.6574 2.450 1.225 

α-Sn 6.4892 2.810 1.405 
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The NN interatomic distances and metallic radii of all metals considered 

in this chapter are listed in Tables 16 and 17, respectively. We can observe 

in Table 16 that in the case of metals that crystallize in the hcp, dhcp,                    

and Sm-type structures we are giving two values for the interatomic 

distances. The upper value corresponds to the distance of an atom to its                             

6 NNs located in the same layer to which the atom belongs, and the lower 

value corresponds to the distance to its 6 NNs from the adjacent layers. As 

we can see in Table 16 the two values are substantially different (by about 

10%) only in the case of cadmium and zinc. The metallic radii reported in 

Table 17, for metals that crystallize in the hexagonal close-packed 

structures, were calculated using the average value for the NN distance. 

 

 

14. Problems 

 

Exercise 1 Calculate the filling factor for the diamond structure. 

a.) Draw a cross section of the cubic unit cell for the diamond structure 

which contains the points of contact between the atoms considered 

hard spheres. 

b.) Express the covalent atomic radius of the atom as a function of the 

lattice constant a and calculate the filling factor for the diamond 

structure. 

c.) Make a comparison between the filling factor for the diamond 

structure and the filling factors for the fcc (or ideal hcp) bcc and sc 

structures. What is the coordination number in each case? 

Exercise 2 Inside the hexagonal prism for the dhcp structure: 

a.) Draw the hexagonal unit cell and the basis vectors a
�

, b
�

, c
�

 which 

define it. 

b.) Find the positions of the atoms within the hexagonal unit cell. 

Express the coordinates of atoms in units of lattice constants a and 

c. 

Hint: A similar work was done for the hcp structure in Fig. 84. 

Exercise 3 Gadolinium at room temperature and 44 GPa crystallizes in 

the triple hexagonal close-packed (thcp) structure which is a six-layered 

structure with a layer sequence ABCBACABCBAC….  

a.) Draw the hexagonal prism for this structure showing the layer 

sequence.  
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b.) Draw the hexagonal unit cell of the thcp structure with the basis 

vectors a
�

, b
�

, c
�

 that define it. 

c.) In the similar way as it was done in Fig. 84 for the hcp structure, 

show the positions of the atoms within the hexagonal unit cell of the 

thcp structure. Express the coordinates of atoms in units of the 

lattice constants a and c. 

d.) The experimental cell parameters of gadolinium at room 

temperature and 44 GPa are 2.910Åa =  and 14.31Åc = . Show 

that the crystal structure of Gd is nearly a perfect close-packed 

structure (each atom has its 12 NNs almost at the same distance to 

it). 

Hint: For that purpose show that the distance of an atom to its 6 

NNs located in adjacent layers differs from the distance to the 6 

NNs located within the same layer by less than 0.3%. 

Exercise 4 Samarium under normal conditions (α-Sm) crystallizes in 

the trigonal structure. This structure may be seen as a 

3-trigonal lattice  atom basis+  

or as a 

9-hexagonal lattice atom basis+ . 

Figure 98 shows the hexagonal prism for α-Sm. 

a.) Draw the rhombohedral unit cell of the α-Sm structure inside the 

hexagonal prism shown in Fig. 98. 

b.) Draw a triple hexagonal unit cell of the α-Sm structure. What is the 

relation between the volume of this cell and the volume of the 

rhombohedral unit cell? 

c.) How close is the α-Sm structure to an ideal close-packed structure? 

Express your answer in percentage. 

Hint: Use the experimental data given in Fig. 98 to calculate the 

hc a  ratio, where c is the distance between every second layer in α-

Sm. 

Exercise 5 Show the positions of the atoms within a triple hexagonal 

unit cell of the α-Sm structure. Express the coordinates of those atoms 

in units of lattice constants 
ha  and 

hc . 

Hint: See Exercise 4. 
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Exercise 6 In the case of ytterbium the transition from the alpha to beta 

phase occurs in a broad temperature range near the room temperature. 

Tables 10 and 13 report the experimental lattice constants obtained for 

both phases at room temperature and normal pressure. Show that the 

average NN interatomic distance in α-Yb differs from the NN 

interatomic distance in β-Yb only by about 0.3%. 

 

 

Figure 98 Hexagonal prism for the α-Sm structure. 
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Exercise 7 For cerium the transition from the beta to gamma                     

phase occurs in a broad temperature range near the room temperature. 

Tables 10 and 11 report the experimental lattice constants obtained              

for both phases under normal conditions. Show that the average NN 

interatomic distance in β-Ce differs from the NN interatomic distance in 

γ-Ce only by about 0.4%. 

Exercise 8 Compare the NN interatomic distances of α-Fe at normal 

conditions and δ-Fe at 1712 K and normal pressure, both having                 

bcc structure. The appropriate lattice constants should be taken from 

Table 9. Note that the volume of a solid usually increases with 

temperature and this is reflected by the positive value of the so called 

coefficient of thermal expansion.  

Exercise 9 On the examples of metals for which we reported the 

experimental data for different phases, show that the NN interatomic 

distance derived from the experimental lattice constant of the bcc 

structure is smaller than the NN interatomic distance obtained from the 

data reported for close-packed structures, although the data for the bcc 

structure were obtained at higher temperatures. Compare the NN 

interatomic distances for the following cases: 

a.) β-Ca (773 K) and α-Ca (room temperature), 

b.) δ-Ce (1030 K) and γ-Ce (room temperature), 

c.) δ-Fe (1712 K) and γ-Fe (1373 K), 

d.) β-Li (room temperature) and α-Li (78 K), 

e.) β-Na (room temperature) and α-Na (5 K). 

The appropriate lattice constants are listed in Tables 9, 10, and 13. 
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IV. CRYSTAL STRUCTURES OF 

IMPORTANT BINARY COMPOUNDS 

 

 

1. Introduction 

 

In this chapter, we will consider important structures for binary 

compounds. As we could learn already on the examples of elements, the 

type of crystal structure depends significantly on the type of bonding 

between the NNs; at least the preference for the coordination number is 

determined by the type of bonds. Until now, we have discussed the 

structures of elements, mainly with metallic and covalent bonding. In the 

case of compounds, however, an important role plays the ionic bonding. In 

most cases the bonding is partially ionic and partially covalent. It means that 

the atoms are partially ionized and the atomic radii depend mainly on the 

degree of their ionization and also, however less, on the coordination 

number. The two types of ions in a binary compound have in general 

different radii and its crystal structure depends strongly on the cation to 

anion radius ratio. 

 

 

2. The Ionic Radius Ratio and the Coordination Number 

 

In this section, we will show the relation between the cation to anion 

radius ratio, r r
+ −

, and the number of NNs of a cation in a binary 

compound. The cations are in general smaller than the anions, so the r r
+ −

ratio is, in most cases, smaller than 1. The cation tries to surround itself           

with as many anions as possible and as closely as possible. The  packing 

arrangement in most cases is such that the cations, considered hard                   

spheres, are in contact with the anions, while the anions surround each 

cation without touching one another. Depending on the r r
+ −

 ratio this                 

can be achieved in different arrangements of ions, corresponding to    

different coordination numbers. Here, we will find the limiting radius ratio 

for the case of coordination number 4, on the example of the zinc blende 

structure. 

In the zinc blende structure (also known as the sphalerite structure) 

crystallize binary compounds in which the contribution of covalent bonding 

to the interatomic bonds is important. Among them there is zinc sulphide in 
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the beta phase, β-ZnS, which gives the name to this structure. ZnS is an 

example of a binary compound in which the ionic bonding contributes

more degree than the covalent one (62%), but each ion has four 

a characteristic of covalent bonding. Both, Zn and S, have their 

vertices of a regular tetrahedron with Zn or S in its center. This is shown in 

Fig. 99.   

It is easy to realize that the zinc blende structure has the same atomic 

arrangement as the diamond structure, but now the two 

made of different ions. The cations occupy half of the 

in the fcc anion substructure and 

unit cell for the zinc blende structure. In this figure, we have also shown the 

diagonal cross section of the cube in which we can find the centers of the 

Figure 99 Zinc blende structure.

anion in its center. (b)

tetrahedron. 

Figure 100 Unit cell for the zinc blende structure. A plane 

the cube is shown. 
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ZnS, which gives the name to this structure. ZnS is an 

example of a binary compound in which the ionic bonding contributes

more degree than the covalent one (62%), but each ion has four NNs, what is 

a characteristic of covalent bonding. Both, Zn and S, have their NN

vertices of a regular tetrahedron with Zn or S in its center. This is shown in 

 

It is easy to realize that the zinc blende structure has the same atomic 

arrangement as the diamond structure, but now the two fcc substructures are 

made of different ions. The cations occupy half of the tetrahedral interstices 

anion substructure and vice versa. In Fig. 100 we show the cubic 

unit cell for the zinc blende structure. In this figure, we have also shown the 

diagonal cross section of the cube in which we can find the centers of the 

 

Zinc blende structure. (a) Regular tetrahedron defined by Zn cations with the S 

(b) Nearest neighbors of the Zn cation at the vertices of a regular 

 

Unit cell for the zinc blende structure. A plane defined by two body diagonals of 

ZnS, which gives the name to this structure. ZnS is an 

example of a binary compound in which the ionic bonding contributes in 

s, what is 

NNs at the 

vertices of a regular tetrahedron with Zn or S in its center. This is shown in 

It is easy to realize that the zinc blende structure has the same atomic 

substructures are 

tetrahedral interstices 

. In Fig. 100 we show the cubic 

unit cell for the zinc blende structure. In this figure, we have also shown the 

diagonal cross section of the cube in which we can find the centers of the 

Regular tetrahedron defined by Zn cations with the S 

the vertices of a regular 

defined by two body diagonals of 
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NNs and the points of contact between them. As an example

section for silicon carbide in the beta phase

Silicon carbide is a IV

its bonds (82%). Therefore, in Fig. 101, we have drawn the circles, that 

represent the cross sections of Si and C atoms, with radii having the same 

ratio as for the covalent radii of the Si and C elements. The points of contact 

between neighboring atoms are found on the diagonals of the cube. We can 

observe in Fig. 101 that the Si atoms surround C atoms without touching one 

another. This is the typical situat

limiting case is achieved when the anions touch one another. This is shown 

in Fig. 102.  

We see in Fig. 102 that the sum of the ionic radii is 

diagonal longitude (

 

On the other hand, r

 

 

Figure 101 Cross section from Fig. 100 of the cubic unit cell 

phase. Larger circles correspond to the cross sections of Si atoms and the smaller ones to the 

cross sections of C atoms.

Crystal Structures of Important Binary Compounds 

s and the points of contact between them. As an example, the cross 

section for silicon carbide in the beta phase, β-SiC, is shown in Fig. 101. 

Silicon carbide is a IV-IV compound so it has a large covalent component in 

its bonds (82%). Therefore, in Fig. 101, we have drawn the circles, that 

represent the cross sections of Si and C atoms, with radii having the same 

for the covalent radii of the Si and C elements. The points of contact 

between neighboring atoms are found on the diagonals of the cube. We can 

observe in Fig. 101 that the Si atoms surround C atoms without touching one 

another. This is the typical situation in any zinc blende structure. The 

limiting case is achieved when the anions touch one another. This is shown 

We see in Fig. 102 that the sum of the ionic radii is 1 4  of the body 

diagonal longitude ( 3a , where a is the cube edge) 

1
3

4
r r a

− +
+ = . 

r
−  is 1 4  of the length of the cube face diagonal  

1
2

4
r a

−
= , 

 

 

Cross section from Fig. 100 of the cubic unit cell for silicon carbide in the beta 

circles correspond to the cross sections of Si atoms and the smaller ones to the 

cross sections of C atoms. 
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the cross 

, is shown in Fig. 101. 

IV compound so it has a large covalent component in 

its bonds (82%). Therefore, in Fig. 101, we have drawn the circles, that 

represent the cross sections of Si and C atoms, with radii having the same 

for the covalent radii of the Si and C elements. The points of contact 

between neighboring atoms are found on the diagonals of the cube. We can 

observe in Fig. 101 that the Si atoms surround C atoms without touching one 

ion in any zinc blende structure. The 

limiting case is achieved when the anions touch one another. This is shown 

of the body 

(IV.1) 

 

(IV.2) 

 

for silicon carbide in the beta 

circles correspond to the cross sections of Si atoms and the smaller ones to the 
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so 

 

and the radius ratio for the limiting case depicted in 

 

It is obvious that only in cases when 

 

the cations are in contact with anions, otherwise a cation would occupy the 

central region of the tetrahedral interstice present in the anion sub

without touching the anions. This situation rather does not occur as the 

structure would not be stable.

Figure 102 A plane defined by two body diagonals of the cubic unit cel

structure shown in Fig. 100. In the figure, we show the limiting case in which the anions, 

represented by larger circles, touch one another and are in contact with the cations (smaller 

circles). 
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1 1
3 ( 3 2)

4 4

1
2

4

r a r a

r a

+ −

−


= − = −




=


 

and the radius ratio for the limiting case depicted in Fig. 102 is 

3 2 1
6 1 0.225

22

r

r

+

−

−
= = − ≅ . 

It is obvious that only in cases when  

0.225
r

r

+

−

≥  

the cations are in contact with anions, otherwise a cation would occupy the 

central region of the tetrahedral interstice present in the anion substructure

without touching the anions. This situation rather does not occur as the 

structure would not be stable. 

A plane defined by two body diagonals of the cubic unit cell for the zinc blende 

structure shown in Fig. 100. In the figure, we show the limiting case in which the anions, 

represented by larger circles, touch one another and are in contact with the cations (smaller 

(IV.3) 

(IV.4) 

(IV.5) 

the cations are in contact with anions, otherwise a cation would occupy the 

structure, 

without touching the anions. This situation rather does not occur as the 

 

l for the zinc blende 

structure shown in Fig. 100. In the figure, we show the limiting case in which the anions, 

represented by larger circles, touch one another and are in contact with the cations (smaller 
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In Table 18 we list the limiting radius ratios for different cation 

coordination numbers. This ratio for the coordination number 4 has been 

calculated above and the limiting radius ratios for the coordination numbers 

6 and 8 will be calculated later. In Table 18 we also show the range for the 

radius ratio that would be expected for each coordination number and the 

possible crystal structures in which the cations have this coordination 

number. The ranges for the radius ratios are determined based on the fact 

that when r r
+ −  

reaches the limiting value for the higher coordination 

number, the structures, in which the cation has this coordination number, 

become more stable. In practice only about 50% of cases can be classified 

according to the radius ratio ranges given in Table 18. This will be shown on 

the examples of alkali halides that crystallize in the NaCl structure. 

We are assuming in Table 18 that the r r
+ −  ratio is less than 1, what 

means that the cation is smaller than the anion, as it is the case in most 

compounds. In these cases, the cations, which occupy the interstices present 

in the anion substructure, are expected to touch the anions, what can be 

achieved in a structure for which the r r
+ −  ratio is larger than the limiting 

radius ratio for this structure. However, in occasions the situation is the 

opposite, the cations are larger than the anions, and then the r r
− +  

ratio has 

to be considered in the way as r r
+ −

 was in Table 18. This will be shown 

later, on the examples of some alkali halides. 

We have already mentioned before that the ionic radii depend both on 

the degree of ionization of the atom and on the coordination number. The 

dependence on the coordination number is exemplified in Table 19. The 

comparison between the ionic radii and the metallic radius is also done in 

this table. We can observe the large difference between the values for the 

metallic and the ionic radii. We can also observe that, in the case of common 

Table 18 Expected radius ratio ranges for different cation coordination numbers. The 

crystal structures from the last column of the table will be fully described in this chapter. 

Cation coordination 

number 

Limiting values 

for r r
+ −+ −+ −+ −

 

Expected radius 

ratio range 

Possible crystal 

structures 

4 0.225  0.225 0.414−  
zinc blende, wurtzite, 

anti-fluorite 

6 0.414  0.414 0.732−  
sodium chloride, 

nickel arsenide 

8 0.732  0.732 0.999−  
cesium chloride, 

fluorite 

12 1   
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coordination numbers for binary compounds (IV, VI, and VIII), exists a 

quite large difference between the values for r
+

 in the cases of coordination 

numbers IV and VI respect to the case of coordination number VIII. 

 

 

3. Zinc Blende Structure 

 

Pearson symbol: cF8, prototype: ZnS. In Fig. 103 we show two types 

of conventional unit cells for the zinc blende structure. The top part of this 

figure (Fig. 103a) shows two cubic cells that can be proposed for this 

structure: one with S ions and the other one with Zn ions at the vertices. The 

cubic unit cell has 8 ions (4 of each kind). In addition, in Fig. 103b we show 

a rhombohedral unit cell with two ions (one of each kind) belonging to it. 

In the zinc blende structure crystallize compounds in which the covalent 

contribution to the bonds prevails over the ionic contribution or at least is 

significant. Among them there are III-V compounds, for which we have 

listed the experimental lattice parameters in Table 20. In this structure 

crystallize also compounds that contain a transition metal (TM) and an 

element from columns VI or VII of the periodic table. The lattice parameters 

for those compounds are given in Tables 21 and 22 for elements from 

columns VI and VII, respectively. Four II-VI compounds also crystallize in 

the zinc blende structure, although most of them, as we will see later, 

crystallize in the NaCl structure. They are: BeS, BeSe, BeTe, and BePo, and 

the lattice parameters for these compounds are listed in Table 21. 

It was already mentioned in Sec. IV.2 that silicon carbide in the beta 

phase (β-SiC) also crystallizes in the zinc blende structure. The lattice 

Table 19 Ionic radii for Na+, K+, and Ca2+, for different coordination numbers. For 

comparison we have also listed the metallic radii for Na, K, and Ca taken from Table 17. 

Element 

Ionic radius (in Angstroms) Metallic radius (in Angstroms) 

Coordination number 

IV VI VIII XII XII 

Na
++++

 0.99 1.02 1.18 1.39  

Na     1.91 

K
++++

 1.37 1.38 1.51 1.64  

K
 

    2.37 

Ca
2+2+2+2+

  1.00 1.12 1.34  

Ca
     1.98 
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constant for this compound at normal conditions is 4.35845 Å. In Fig.

we had a plane defined by two body diagonals of the cubic unit cell for 

β-SiC, with the cross sections of the Si and

have the same ratio as the ratio of the covalent radii for Si and C elements. It 

is interesting to mention that although silicon carbide has 18% of ionic

contribution to its bonds, the sum of Si and C covalent radii (take

Table 15), which is 

Figure 103 (a) Two cubic unit cells for the zinc blende structure of ZnS: one with Zn cations 

and the other one with S anions 

blende structure with the two ions belongi

Table 20 Lattice constants (

compounds that crystallize in the zinc blende structure.

 N 

B BN (3.6159) 

Al  

Ga GaN (4.511) 

In  

Crystal Structures of Important Binary Compounds 

constant for this compound at normal conditions is 4.35845 Å. In Fig.

we had a plane defined by two body diagonals of the cubic unit cell for 

with the cross sections of the Si and C atoms drawn with the radii that 

have the same ratio as the ratio of the covalent radii for Si and C elements. It 

is interesting to mention that although silicon carbide has 18% of ionic

contribution to its bonds, the sum of Si and C covalent radii (take

 

Two cubic unit cells for the zinc blende structure of ZnS: one with Zn cations 

and the other one with S anions at the vertices. (b) A rhombohedral unit cell for the zinc 

blende structure with the two ions belonging to it. 

Lattice constants (in Angstroms) obtained under normal conditions for III

compounds that crystallize in the zinc blende structure. 

P As Sb

 BP (4.5383) BAs (4.777)  

AlP (5.4625) AlAs (5.656) AlSb (6.1355)

 GaP (5.4504) GaAs (5.65317) GaSb (6.0961)

InP (5.847) InAs (6.05836) InSb (6.4794)

113 

constant for this compound at normal conditions is 4.35845 Å. In Fig. 101, 

we had a plane defined by two body diagonals of the cubic unit cell for 

with the radii that 

have the same ratio as the ratio of the covalent radii for Si and C elements. It 

is interesting to mention that although silicon carbide has 18% of ionic 

contribution to its bonds, the sum of Si and C covalent radii (taken from 

 

Two cubic unit cells for the zinc blende structure of ZnS: one with Zn cations 

A rhombohedral unit cell for the zinc 

in Angstroms) obtained under normal conditions for III-V 

Sb 

 

AlSb (6.1355) 

GaSb (6.0961) 

InSb (6.4794) 
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Si C 1.176 Å 0.772 Å 1.948 År r+ = + = , 

is to within 3% equal to the sum of the Si and C radii obtained using                   

Eq. (IV.1). This means that the amount (18%) of the ionic character of the 

bonds is almost not reflected in the sum of the Si and C radii. 

In the diamond and zinc blende structures only half of the tetrahedral 

interstices present in the cubic unit cell are occupied with atoms or ions. We 

will show below an example of a structure that has the same conventional 

cubic unit cell but with all 8 tetrahedral interstices occupied with ions. This 

is the case of the calcium fluoride structure. 

 

4. Calcium Fluoride Structure 

 

4.1. Fluorite Structure 

Pearson symbol: cF12, prototype: CaF2. The calcium fluoride (CaF2) 

structure, more commonly known as the fluorite structure, has its positive 

ions forming the fcc substructure and usually larger negative ions occupying 

tetrahedral interstices in this substructure. This is shown in Fig. 104a for 

CaF2. Each F
−

 anion is placed in the center of a tetrahedral interstice and has 

4 NNs (see also Fig. 105a). In Fig. 104b, we show the cubic unit cell for the 

CaF2 structure with the anions in its vertices. We can see in this figure that 

Table 21 Lattice constants (in Angstroms) obtained under normal conditions for 

compounds of Be-VI and TM-VI type that crystallize in the zinc blende structure. 

 O S Se Te Po 

Be  BeS (4.8624) BeSe (5.1477) BeTe (5.6225) BePo (5.838) 

Mn  β-MnS (5.601) β-MnSe (5.902) α-MnTe (6.338)  

Zn ZnO (4.63) β-ZnS (5.4109) ZnSe (5.6676) β-ZnTe (6.1037) ZnPo (6.309) 

Cd  β-CdS (5.8304) CdSe (6.077) CdTe (6.4809) CdPo (6.665) 

Hg  β-HgS (5.8537) α-HgSe (6.0854) α-HgTe (6.453)  

Table 22 Lattice constants (in Angstroms) obtained under normal conditions for 

compounds of TM-VII type that crystallize in the zinc blende structure. 

 F Cl Br I 

Cu CuF (4.255) γ-CuCl (5.4202) γ-CuBr (5.6955) γ-CuI (6.05844) 

Ag    γ-AgI (6.4991) 
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the anions define 8 small cubes with cations in their centers, 

Ca
2+ 

cation, contrary to the anion,

In addition to CaF

structure. They are listed at t

compounds that crystallize in this structure, we can mention hydrides, 

silicides, oxides, and fluorides of some TMs (mainly RE metals and 

actinides) and also lead difluoride

dioxide in the alpha phase (

obtained under normal conditions for the compounds specified above, are 

listed in Table 23. This table allows to identify quickly which metals form 

compounds within a given group of hydrides, silicides, oxides, fluoride

chlorides (see columns of the table) and also allows to see how many 

compounds with the fluorite struc

rows of the table). 

Figure 104 Cubic unit cells for the CaF

cations in (a) and F− anions in 

Figure 105 (a) Regular tetrahedron defined by the 

defined by the NNs of the Ca

Crystal Structures of Important Binary Compounds 

the anions define 8 small cubes with cations in their centers, therefore

, contrary to the anion, has 8 NNs, what is shown in Fig. 105b.

In addition to CaF2, other II-VII compounds crystallize in the fluorite 

structure. They are listed at the top of Table 23. Among other examples of 

compounds that crystallize in this structure, we can mention hydrides, 

silicides, oxides, and fluorides of some TMs (mainly RE metals and 

actinides) and also lead difluoride in the beta phase (β-PbF2) and poloniu

dioxide in the alpha phase (α-PoO2). The experimental lattice constants, 

obtained under normal conditions for the compounds specified above, are 

listed in Table 23. This table allows to identify quickly which metals form 

compounds within a given group of hydrides, silicides, oxides, fluoride

chlorides (see columns of the table) and also allows to see how many 

compounds with the fluorite structure can be formed by a given metal (see 

Cubic unit cells for the CaF2 structure. In the cube vertices are placed 

anions in (b). 

 

Regular tetrahedron defined by the NNs of the F− anion in CaF2. 

the Ca2+ cation in CaF2. 
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therefore each 

s, what is shown in Fig. 105b. 

VII compounds crystallize in the fluorite 

he top of Table 23. Among other examples of 

compounds that crystallize in this structure, we can mention hydrides, 

silicides, oxides, and fluorides of some TMs (mainly RE metals and 

) and polonium 

The experimental lattice constants, 

obtained under normal conditions for the compounds specified above, are 

listed in Table 23. This table allows to identify quickly which metals form 

compounds within a given group of hydrides, silicides, oxides, fluorides, or 

chlorides (see columns of the table) and also allows to see how many 

ure can be formed by a given metal (see 

 

structure. In the cube vertices are placed Ca2+ 

. (b) Cube 
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When the ionic positions are reversed, and the anions and cations 

occupy the Ca
2+

 and F
−

 positions, respectively, we obtain the anti-fluorite 

structure, which will be considered below. 

Table 23 Lattice parameters (in Angstroms) obtained under normal conditions for II-VII 

compounds and hydrides, silicides, oxides, and fluorides of some TMs, all of them 

crystallizing in the fluorite structure. In addition, the data for β-PbF2 and α-PoO2 are 

included. 

 H Si O F Cl 

Ca    CaF2 (5.46295)  

Sr    SrF2 (5.7996) SrCl2 (6.9767) 

Ba    BaF2 (6.1964)  

Ra    RaF2 (6.368)  

Sc ScH2 (4.78315)     

Co  CoSi2 (5.365)    

Ni  NiSi2 (5.406)    

Y YH2 (5.207)     

Zr   ZrO2 (5.09)   

Nb NbH2 (4.566)     

Cd    CdF2 (5.393)  

Pt PtH2 (5.517)     

Hg    HgF2 (5.5373)  

Ce CeH2 (5.581)  CeO2 (5.413)   

Pr PrH2 (5.516)  PrO2 (5.392)   

Nd NdH2 (5.4678)     

Sm SmH2 (5.3773)     

Eu    EuF2 (5.796)  

Gd GdH2 (5.303)     

Tb TbH2 (5.246)  TbO2 (5.213)   

Dy DyH2 (5.2049)     

Ho HoH2 (5.165)     

Er ErH2 (5.1279)     

Tm TmH2 (5.0915)     

Lu LuH2 (5.0330)     

Th   ThO2 (5.5997)   

Pa   PaO2 (5.505)   

U   UO2 (5.470)   

Np   NpO2 (5.4341)   

Pu   PuO2 (5.39819)   

Am   AmO2 (5.3746)   

Cm   CmO2 (5.368)   

Pb    β-PbF2 (5.9463)  

Po   α-PoO2 (5.637)   
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4.2. Anti-Fluorite Structure

Pearson symbol: 

the anions are in a fcc

interstices present in the anion 

cations have a coordination number 4. Fig

for the anti-fluorite structure with the cations 

in that figure that the 8 

cube that represents one eight of the cubic unit cell.

an anion are shown in Figs. 107a and 107b, respectively.

In the anti-fluorite structure crystallize some alkali metals with elements 

from column VI of the periodic table

selenides, and tellurides. They all are listed in Table 2

some II-III and II

crystallize in the anti

Figure 106 Cubic unit cells of Li

cube vertices are placed O

Figure 107 (a) Regular tetrahedron defined by the 

defined by the NNs of the

Crystal Structures of Important Binary Compounds 

luorite Structure 

Pearson symbol: cF12, prototype: Li2O. In the anti-fluorite structure, 

fcc arrangement and the cations occupy all the tetrahedral 

interstices present in the anion substructure. This is shown in Fig. 106a. The 

cations have a coordination number 4. Figure 106b shows the cubic unit cell 

fluorite structure with the cations at the vertices. We can observe 

in that figure that the 8 NNs of an anion are placed at the vertices of a small 

cube that represents one eight of the cubic unit cell. The NNs of a cation and 

an anion are shown in Figs. 107a and 107b, respectively. 

fluorite structure crystallize some alkali metals with elements 

from column VI of the periodic table, forming metal oxides, sulfides, 

selenides, and tellurides. They all are listed in Table 24. In Table 25

III and II-IV compounds, and also phosphides of TM

crystallize in the anti-fluorite structure. 

Cubic unit cells of Li2O which crystallizes in the anti-fluorite structure. In the 

cube vertices are placed O2− anions in (a) and Li+ cations in (b). 

 

Regular tetrahedron defined by the NNs of the Li+ cation in Li2O. 

the O2− anion in Li2O. 
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fluorite structure, 

arrangement and the cations occupy all the tetrahedral 

. This is shown in Fig. 106a. The 

106b shows the cubic unit cell 

the vertices. We can observe 

the vertices of a small 

of a cation and 

fluorite structure crystallize some alkali metals with elements 

forming metal oxides, sulfides, 

5 we list 

TMs that 

 

fluorite structure. In the 

. (b) Cube 
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5. Wurtzite Structure 

 

Pearson symbol: hP4, prototype: ZnS. Zinc sulphide and most of the 

binary compounds that crystallize in the zinc blende structure crystallize also 

in a hexagonal structure, the so called wurtzite structure. ZnS in the wurtzite 

structure is in the alpha phase (α-ZnS). The wurtzite structure is composed 

of two-dimensional hexagonal layers A and B and is of the AABBAABB… 

type, where one layer (A or B) corresponds to one kind of ions and another 

one to the other kind of ions, so in the case of α-ZnS we have: 

AZnASBZnBSAZnASBZnBS… , 

whereas in the case of β-ZnS (ZnS in the zinc blende structure) we have: 

AZnASBZnBSCZnCSAZnASBZnBSCZnCS… . 

In Fig. 108 we show two hexagonal prisms for α-ZnS: one with Zn cations at 

the vertices (see Fig. 108a) and the other one with S anions at the vertices 

(see Fig. 108b). In this figure it is also easy to distinguish the two 

substructures of the wurtzite structure: that formed by cations and that 

Table 24 Lattice constants (in Angstroms) obtained under normal conditions for I-VI 

compounds that crystallize in the anti-fluorite structure. 

 O S Se Te 

Li Li2O (4.6114) Li2S (5.71580) Li2Se (6.0014) Li2Te (6.517) 

Na Na2O (5.55) Na2S (6.5373) Na2Se (6.825) Na2Te (7.314) 

K K2O (6.436) K2S (7.406) K2Se (7.676) K2Te (8.152) 

Rb Rb2O (6.755) Rb2S (7.65)   

Table 25 Lattice constants obtained under normal conditions for some II-III and II-IV 

compounds, and also phosphides, all of them crystallizing in the anti-fluorite structure. 

Compound a (Å) Compound a (Å) 

Be2B 4.663 Mg2Sn 6.765 

Be2C 4.3420 Mg2Pb 6.815 

Mg2Si 6.351 Rh2P 5.5021 

Mg2Ge 6.3894 Ir2P 5.543 
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formed by anions. Each substructure is a

it do not touch each other, since the 

are of another type. Each ion from one substructure occupies a tetrahedral 

interstice from the other substructure.

The smallest volume that 

hexagonal unit cell. Fig

structure of ZnS, one

other one with S anions 

cell for the wurtzite structure contains two ions of each type. We have 

 

Figure 109 Two conventional unit cells for ZnS in the wurtzi

cations at the vertices and in 

Figure 108 Hexagonal prism for ZnS in the wurtzite structure, with Zn cations at the vertices 

(a) and with S anions at the vertices 

Crystal Structures of Important Binary Compounds 

Each substructure is a hcp structure. However, the ions in 

it do not touch each other, since the NNs of an ion in the wurtzite structure 

are of another type. Each ion from one substructure occupies a tetrahedral 

interstice from the other substructure. 

The smallest volume that can reproduce the wurtzite structure is the 

hexagonal unit cell. Figure 109 shows two hexagonal cells for the wurtzite 

, one with Zn cations at the vertices (see Fig. 109a)

other one with S anions at the vertices (see Fig. 109b). The hexagonal unit 

cell for the wurtzite structure contains two ions of each type. We have 

 

Two conventional unit cells for ZnS in the wurtzite structure: in (a)

the vertices and in (b) with S anions at the vertices. 

Hexagonal prism for ZnS in the wurtzite structure, with Zn cations at the vertices 

and with S anions at the vertices (b). 
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the ions in 

s of an ion in the wurtzite structure 

are of another type. Each ion from one substructure occupies a tetrahedral 

reproduce the wurtzite structure is the 

109 shows two hexagonal cells for the wurtzite 

the vertices (see Fig. 109a) and the 

. The hexagonal unit 

cell for the wurtzite structure contains two ions of each type. We have 

(a) with Zn 

 

Hexagonal prism for ZnS in the wurtzite structure, with Zn cations at the vertices 
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shown in Fig. 110 the coordinates, 

of the four atoms belonging to each unit cell from Fig. 109.

Similarly to the zinc blende structure, each ion in the wurtzite structure 

has a tetrahedral arrangement of

contribution to their 

shown in Figs. 111a and 111b

and Zn ions, respectively. 

inside the hexagonal cells from Fig. 109.

We will consider now an ideal case, when the tetrahedrons from 

Fig. 111 are regular. The para

fulfill then the relation

structure. The wurtzite 

is very close to the ideal case. 

the last column of that table, the 

the wurtzite structure.

by Zn cations, which is inside a hexagonal unit ce

Figure 110 (a) and (b) show the

and 109b, respectively. The coordinates are expressed in units of 

Figure 111 (a) A tetrahedron 

defined by the NNs of the Zn cation

(b) in both cells from Fig. 109.
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shown in Fig. 110 the coordinates, given with respect to the a
�

, b
�

, 

of the four atoms belonging to each unit cell from Fig. 109. 

Similarly to the zinc blende structure, each ion in the wurtzite structure 

has a tetrahedral arrangement of the four NNs, although the ionic 

contribution to their bonds is, in general, larger than the covalent one. This is 

shown in Figs. 111a and 111b for α-ZnS, where four NNs surround 

, respectively. These central ions and their NNs can be found 

hexagonal cells from Fig. 109. 

We will consider now an ideal case, when the tetrahedrons from 

Fig. 111 are regular. The parameters of the hexagonal unit cell, a

fulfill then the relation 8 3 1.633c a = ≅ , as in the case of an ideal 

structure. The wurtzite structure of ZnS and many other binary compounds 

is very close to the ideal case. This can be seen in Table 26 where we list, in 

the last column of that table, the c a  ratios for compounds that crystallize i

the wurtzite structure. In Fig. 112a, we show a regular tetrahedron defined 

which is inside a hexagonal unit cell. The cations from the 

 

show the positions of ions belonging to the unit cells from Figs. 109a 

and 109b, respectively. The coordinates are expressed in units of a and c. 

 

A tetrahedron defined by the NNs of the S anion in α-ZnS. (b) A tetrahedron 

s of the Zn cation in α-ZnS. We can envision the tetrahedrons from (a) and 

(b) in both cells from Fig. 109. 

, c
�

 axes, 

Similarly to the zinc blende structure, each ion in the wurtzite structure 

s, although the ionic 

larger than the covalent one. This is 

s surround the S 

s can be found 

We will consider now an ideal case, when the tetrahedrons from                         

a and c, 

, as in the case of an ideal hcp 

ZnS and many other binary compounds 

where we list, in 

that crystallize in 

we show a regular tetrahedron defined 

ll. The cations from the 

ositions of ions belonging to the unit cells from Figs. 109a 

A tetrahedron 

ZnS. We can envision the tetrahedrons from (a) and 
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tetrahedron vertices are the 

tetrahedron. We can also see in Fig. 112a that the distance, 

defines also the distance between layers

substructure is shifted with respect to the Zn substructure by 

c axes. 

Let us now express 

Fig. 112a, we show a vertical cross section of the regular tetrahedron that 

includes one of its e

are equilateral triangles. The three segments (

in Fig. 112b. Inside this triangle we highlighted a right triangle of sides

t
h u− , h x− , and 

highlighted one and have sides 

the similitude of the last two triangles we have

 

then 

 

finally 

 

Figure 112 (a) A regular

cell for the wurtzite structure of ZnS. 

(a). See text for detailed explanation.

Crystal Structures of Important Binary Compounds 

tetrahedron vertices are the NNs of the S anion located in the center of the 

tetrahedron. We can also see in Fig. 112a that the distance, u, between 

defines also the distance between layers AS and AZn, so the S 

substructure is shifted with respect to the Zn substructure by u along the 

Let us now express u as a function of the lattice parameters. In 

we show a vertical cross section of the regular tetrahedron that 

includes one of its edges a and two heights h of the tetrahedron faces

are equilateral triangles. The three segments (a, h, h) define a triangle shown 

in Fig. 112b. Inside this triangle we highlighted a right triangle of sides

 u. There is also a larger triangle that is similar to the 

highlighted one and have sides x, h, and 
th . The lengths of x is 3h

the similitude of the last two triangles we have 

1

13

3

t

h
h u x

u h h

−

= = = , 

1

3
th u u− = , 

2 8
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egular tetrahedron, defined by Zn cations, located inside a hexagonal unit 

cell for the wurtzite structure of ZnS. (b) A vertical cross section of the tetrahedron shown in 

(a). See text for detailed explanation. 
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s of the S anion located in the center of the 

, between NNs 

, so the S hcp 

along the                

as a function of the lattice parameters. In                   

we show a vertical cross section of the regular tetrahedron that 

tetrahedron faces, which 

define a triangle shown 

in Fig. 112b. Inside this triangle we highlighted a right triangle of sides 

. There is also a larger triangle that is similar to the 

3h . From 

(IV.6) 

(IV.7) 

(IV.8) 

tetrahedron, defined by Zn cations, located inside a hexagonal unit 

of the tetrahedron shown in 
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So, in an ideal wurtzite structure each atom has 4 

( )3 8 c . As it was

between layers AS and 

shown in Fig. 113 for the wurtzite structure of ZnS. In this figure, we show 

also that the distance between layers 

Each anion from layers 

BZn layers at a distance 

close to the case of an ideal wurtzite structure. The 

anions at a distance 

consideration and the other six from two adjacent layers in the substructure 

of anions. Since the 

of course, close-packed. The same analysis is valid 

Zn cations. 

The experimental lattice 

for binary compounds that crystallize in the wurtzite structure are given in 

Table 26. We can observe

column of the table, is for each case close to that for the ideal case and as a 

consequence, there is a 

structures of these compounds, although the symmetry of both structures is 

different. 

Let us now summarize important similarities and differences between 

the zinc blende and the ideal wurtzite structures:

a.) Looking at the NNs, we cannot tell whether it is zinc blende or wurtzite 

structure. 

Figure 113 Hexagonal layers 

distances between the consecutive layers are shown.

Basic Elements of Crystallography 

So, in an ideal wurtzite structure each atom has 4 NNs at a distance 

was mentioned before, the same distance can be found 

and AZn and, of course, also layers BS and BZn. This is 

Fig. 113 for the wurtzite structure of ZnS. In this figure, we show 

also that the distance between layers AZn and BS or BZn and AS is (1 8

Each anion from layers AS or BS has 4 NNs located in adjacent 

layers at a distance ( )3 8 c
 
(see Fig. 113), since the c a  ratio is for ZnS 

close to the case of an ideal wurtzite structure. The NNNs of an anion are 12 

anions at a distance a: six from the layer to which belongs the anion in 

consideration and the other six from two adjacent layers in the substructure 

Since the anions do not touch each other, this substructure is not, 

packed. The same analysis is valid for the substructure of 

The experimental lattice parameters obtained under normal conditions

for binary compounds that crystallize in the wurtzite structure are given in 

can observe that the c a  ratio, which is given in the last 

table, is for each case close to that for the ideal case and as a 

there is a similarity between the hexagonal and cubic 

structures of these compounds, although the symmetry of both structures is 

Let us now summarize important similarities and differences between 

the zinc blende and the ideal wurtzite structures: 

Looking at the NNs, we cannot tell whether it is zinc blende or wurtzite 

 

Hexagonal layers AS, AZn, BS, and BZn in the wurtzite structure of ZnS. The 

between the consecutive layers are shown. 

s at a distance 

the same distance can be found 

. This is 

Fig. 113 for the wurtzite structure of ZnS. In this figure, we show 

)1 8 c . 

s located in adjacent AZn and 

ratio is for ZnS 

s of an anion are 12 

the anion in 

consideration and the other six from two adjacent layers in the substructure 

this substructure is not, 

for the substructure of 

under normal conditions 

for binary compounds that crystallize in the wurtzite structure are given in 

ratio, which is given in the last 

table, is for each case close to that for the ideal case and as a 

hexagonal and cubic 

structures of these compounds, although the symmetry of both structures is 

Let us now summarize important similarities and differences between 

Looking at the NNs, we cannot tell whether it is zinc blende or wurtzite 

in the wurtzite structure of ZnS. The 
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b.) In both cases, the NN and the NNN distances are very close in value. 

These values for the NNs of some compounds are listed in Table 27. 

c.) The number (12) of NNNs is the same in both cases. 

d.) There is a difference in the location of 3 NNNs. This will be explained 

in details below. 

In both structures, zinc blende and wurtzite, each ion has 6 NNNs in the 

layer, let us say A, to which belongs. The other 6 of 12 NNNs belong to two 

adjacent layers in the substructure of the ion in consideration. In the case of 

the wurtzite structure, the adjacent layers are of B type, while in the case of 

the zinc blende structure one of them is of B type and the other one is of C 

type. Therefore, the 3 NNNs of an atom from layer A, that make the 

Table 26 Lattice parameters, obtained under normal conditions, of binary compounds that 

crystallize in the wurtzite structure. 

Compound a (Å) c (Å) c a  

CuH 2.893 4.614 1.59 

α-BeO 2.6967 4.3778 1.62 

γ-MnS 3.987 6.438 1.61 

γ-MnSe 4.12 6.72 1.63 

γ-MnTe 4.48 7.32 1.63 

γ-ZnO 3.25030 5.2072 1.60 

α-ZnS 3.8227 6.2607 1.64 

ZnSe 4.003 6.540 1.63 

γ-ZnTe 4.31 7.09 1.65 

α-CdS 4.1365 6.7160 1.62 

CdSe 4.2999 7.0109 1.63 

β-AgI 4.599 7.524 1.64 

BN 2.555 4.21 1.65 

AlN 3.11197 4.98089 1.60 

GaN 3.1878 5.1850 1.63 

InN 3.53774 5.7037 1.61 

SiC 3.079 5.053 1.64 

Table 27 Comparison between NN distances for zinc blende and wurtzite structures of 

some binary compounds. The values were obtained from the lattice parameters listed in 

Tables 20, 21, and 26.  

Compound 
NN distance (Å) 

Zinc blende Wurtzite 

MnSe 2.555 2.52 

MnTe 2.744 2.75 

ZnSe 2.454 2.453 

CdSe 2.631 2.629 

GaN 1.953 1.944 
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difference between the two structures, 

blende structure and in the 

the substructure of the ion in consideration)

 

 

6. Nickel Arsenide Related Structures

 

6.1.  NiAs Structure

Pearson symbol: 

and wurtzite structures, the nickel arsenide (NiAs) structure is related to a 

close-packed arrangement of ions. It is composed of anion and cation layers 

placed alternately one on the top of the other, in the way illustrated in 

Fig. 114. Each layer represents a two

hexagonal prism is a conventional unit cell that has the same point symmetry 

as an infinite NiAs 

reduced here (as in the case of the wurtzite structure) to a threefold 

symmetry axis. In Fig. 114a

compound. In addition

case when 8 3c a =

hcp and wurtzite structures. We can see in Fig. 114 that the 

Figure 114 (a) Hexagonal prisms for the prototypical NiAs. 

ideal case when c a =

Basic Elements of Crystallography 

difference between the two structures, are located in the C layer in the zinc 

blende structure and in the B layer in the wurtzite structure (in both cases in 

the substructure of the ion in consideration). 

Nickel Arsenide Related Structures 

tructure 

Pearson symbol: hP4, prototype: NiAs. Similarly to the zinc blende 

and wurtzite structures, the nickel arsenide (NiAs) structure is related to a 

packed arrangement of ions. It is composed of anion and cation layers 

d alternately one on the top of the other, in the way illustrated in 

Fig. 114. Each layer represents a two-dimensional hexagonal structure and a 

hexagonal prism is a conventional unit cell that has the same point symmetry 

as an infinite NiAs structure, but a sixfold symmetry axis of the prism is 

reduced here (as in the case of the wurtzite structure) to a threefold 

symmetry axis. In Fig. 114a, we show the hexagonal prism for the 

. In addition, we show in Fig. 114b the NiAs structure in the ideal 

8 3 . Such case has been already discussed before for the 

and wurtzite structures. We can see in Fig. 114 that the c/a ratio for the 

Hexagonal prisms for the prototypical NiAs. (b) The NiAs structure for the 

8 3 . 

layer in the zinc 

(in both cases in 

imilarly to the zinc blende 

and wurtzite structures, the nickel arsenide (NiAs) structure is related to a 

packed arrangement of ions. It is composed of anion and cation layers 

d alternately one on the top of the other, in the way illustrated in               

dimensional hexagonal structure and a 

hexagonal prism is a conventional unit cell that has the same point symmetry 

structure, but a sixfold symmetry axis of the prism is 

reduced here (as in the case of the wurtzite structure) to a threefold 

the NiAs 

re in the ideal 

discussed before for the 

ratio for the 

 

The NiAs structure for the 
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prototypical NiAs differs 15% from the value that corresponds to the id

case, while in compounds that crystallize in the wurtzite structure it nearly 

approaches the ideal ratio.

We can observe in Fig. 114 that 6 

of the hexagonal prism define an octahedron. This octahedron is shown in 

Fig. 115a for the NiAs compound.

octahedron is a regular polyhedron and is shown in Fig. 115b. In Fig. 115 

we can also see two additional ions that are the 

placed in the center of each

structure, those cations are at a distance 15% longer than the distance to the 

NNs from the cation in consideration. However, in the case of the NiAs 

compound the distance from a cation to its nearest cations is o

than the distance to the 

compound has effectively 8 

forming bonds with this cation (see Fig. 115a). It is also important to 

mention that the length of the Ni

within 1%, equal to the metallic bond length in the crystal of nickel. 

Therefore, we can expect that the Ni

for the NiAs compound,

ones, since the Ni-Ni ionic bond would be longer than the Ni

bond. 

In Fig. 116a, we show two hexagonal prisms for the NiAs structure: 

one with anions and another one with cations 

We observe in this figure that each ca

over a cation from any layer below. Therefore, t

 

Figure 115 Octahedrons defined by anions that are the NNs of a cation

compound and (b) in the ideal NiAs structure.

cations to the cation placed in the center
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prototypical NiAs differs 15% from the value that corresponds to the id

case, while in compounds that crystallize in the wurtzite structure it nearly 

approaches the ideal ratio. 

We can observe in Fig. 114 that 6 NNs of a cation located in the center 

of the hexagonal prism define an octahedron. This octahedron is shown in 

ig. 115a for the NiAs compound. In the case of the ideal NiAs structure the 

octahedron is a regular polyhedron and is shown in Fig. 115b. In Fig. 115 

we can also see two additional ions that are the closest cations to the cation 

placed in the center of each octahedron. In the case of the ideal NiAs

those cations are at a distance 15% longer than the distance to the 

s from the cation in consideration. However, in the case of the NiAs 

compound the distance from a cation to its nearest cations is only 3% longer 

than the distance to the NNs. It means that each cation in the NiAs 

compound has effectively 8 NNs (6 anions and 2 cations) all of them 

forming bonds with this cation (see Fig. 115a). It is also important to 

mention that the length of the Ni-Ni bond in the NiAs compound is, to 

within 1%, equal to the metallic bond length in the crystal of nickel. 

Therefore, we can expect that the Ni-Ni bonds, which we are describing here 

for the NiAs compound, are closer to the metallic bonds than to the ionic

Ni ionic bond would be longer than the Ni-Ni metallic 

In Fig. 116a, we show two hexagonal prisms for the NiAs structure: 

one with anions and another one with cations at the vertices of the prism. 

We observe in this figure that each cation from a cation layer lies directly 

over a cation from any layer below. Therefore, the cations form a simple

 

Octahedrons defined by anions that are the NNs of a cation (a) in the NiAs 

in the ideal NiAs structure. In this figure we also show the two neares

cations to the cation placed in the center of each octahedron. 
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prototypical NiAs differs 15% from the value that corresponds to the ideal 

case, while in compounds that crystallize in the wurtzite structure it nearly 

s of a cation located in the center 

of the hexagonal prism define an octahedron. This octahedron is shown in 

ideal NiAs structure the 

octahedron is a regular polyhedron and is shown in Fig. 115b. In Fig. 115 

the cation 

octahedron. In the case of the ideal NiAs 

those cations are at a distance 15% longer than the distance to the 

s from the cation in consideration. However, in the case of the NiAs 

nly 3% longer 

It means that each cation in the NiAs 

all of them 

forming bonds with this cation (see Fig. 115a). It is also important to 

Ni bond in the NiAs compound is, to 

within 1%, equal to the metallic bond length in the crystal of nickel. 

bonds, which we are describing here 

are closer to the metallic bonds than to the ionic 

Ni metallic 

In Fig. 116a, we show two hexagonal prisms for the NiAs structure:            

the vertices of the prism. 

tion from a cation layer lies directly 

form a simple  

in the NiAs 

two nearest 
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hexagonal substructure since each of their layers is of the same type. In 

Fig. 116 all cation layers are of 

anions, there are two types of layers (labeled 

the case of the hcp structure, there

Let us now make a comparison between the neighborhood of a cation 

and an anion in the NiAs structure. We 

tetrahedral and octahedral interstices between consecutive hexagonal layers 

of different types (see Fig. 87). This is the c

case of the wurtzite structure

one hcp substructure, are occupied by ions belonging to the other

 

Figure 116 (a) Two hexagonal prisms 

and another one with cations 

each hexagonal prism on the hexagonal base. We can observe that the triangles defined by the 

ions from the Ba layer have

hexagonal prism base. 
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ture since each of their layers is of the same type. In 

Fig. 116 all cation layers are of A type and are labeled Ac. In the case of 

anions, there are two types of layers (labeled Aa and Ba in Fig. 116) like in 

structure, therefore the anions form a hcp substructure.

Let us now make a comparison between the neighborhood of a cation 

and an anion in the NiAs structure. We already know that there are 

tetrahedral and octahedral interstices between consecutive hexagonal layers 

of different types (see Fig. 87). This is the case of the hcp structure. In the 

wurtzite structure half of the tetrahedral interstices, present in 

substructure, are occupied by ions belonging to the other

Two hexagonal prisms for the NiAs structure: one with anions at the vertices 

and another one with cations at the vertices. (b) Projection of the centers of ions belonging to 

each hexagonal prism on the hexagonal base. We can observe that the triangles defined by the 

layer have in each case from (a) different orientations with respect to the 

ture since each of their layers is of the same type. In           

. In the case of 

in Fig. 116) like in 

substructure. 

Let us now make a comparison between the neighborhood of a cation 

know that there are 

tetrahedral and octahedral interstices between consecutive hexagonal layers 

structure. In the 

half of the tetrahedral interstices, present in 

substructure, are occupied by ions belonging to the other 

 

the vertices 

Projection of the centers of ions belonging to 

each hexagonal prism on the hexagonal base. We can observe that the triangles defined by the 

with respect to the 
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substructure and the octahedral interstices are vacant. 

zinc blende structure half of the tetrahedral interstices present in the

substructure of ions

the octahedral interstices 

structure the cations occupy all octahedral interstices present in the 

substructure of anions and the tetrahedral interstices are vacant. Turning 

now to the neighborhood of an anion in

all cation layers are of the sa

octahedral nor tetrahedral interstices. Each anion occupies the center of a 

trigonal prism, what can be seen in Fig. 114.

In Fig. 117 we have

the NiAs structure. 

vertices. These anions are the 

octahedron. Similarly, Fig. 117b shows the NNs of an anion that is located 

in the center of a trigonal prism with cations 

number of NNs is the same but the distribution of cations with respect to the 

anion is different from the distribution of anions with respect to the cation.

We will now calculate the value for the ideal 

already done in Sec

calculations were based on the geometric characteristics of a regular 

tetrahedron defined by the 

presence of such a

structure determines 

will calculate c a  using a regular octahedron defined 

in the ideal NiAs structure.

As we already know, a regular octahedron 

Figure 118 shows such a situation. The longitude of the cube body diagonal 

is equal to ( )3 2 c , what can be verified

 

Figure 117 Octahedron defined by the NNs of a cation 

the NNs of an anion (b) 
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substructure and the octahedral interstices are vacant. Also in the case of t

zinc blende structure half of the tetrahedral interstices present in the

of ions of one type are occupied by ions of the other type and 

the octahedral interstices remain vacant. Contrary to those cases, in the NiAs

structure the cations occupy all octahedral interstices present in the 

substructure of anions and the tetrahedral interstices are vacant. Turning 

now to the neighborhood of an anion in the NiAs structure, we can say that

all cation layers are of the same type and between them, there are neither 

octahedral nor tetrahedral interstices. Each anion occupies the center of a 

trigonal prism, what can be seen in Fig. 114. 

In Fig. 117 we have drawn the neighborhood of the two types of ions in 

the NiAs structure. Fig. 117a shows an octahedron with anions in its 

anions are the NNs of a cation that is in the center of the 

Similarly, Fig. 117b shows the NNs of an anion that is located 

in the center of a trigonal prism with cations at the vertices. In both cases the 

number of NNs is the same but the distribution of cations with respect to the 

anion is different from the distribution of anions with respect to the cation.

We will now calculate the value for the ideal c a  ratio. This was 

already done in Sec. III.10 for the hcp structure. In that opportunity, the 

calculations were based on the geometric characteristics of a regular 

tetrahedron defined by the NNs of an atom in the ideal hcp structure

a tetrahedron inside the hexagonal unit cell of the 

determines the c a  ratio in the ideal case. This time, in turn, we 

using a regular octahedron defined by the NNs of a cation 

in the ideal NiAs structure. 

As we already know, a regular octahedron may be inscribed in a cube. 

118 shows such a situation. The longitude of the cube body diagonal 

, what can be verified in the following way: 

 

 

Octahedron defined by the NNs of a cation (a) and the trigonal prism defined 

 in the NiAs structure. 
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Also in the case of the 

zinc blende structure half of the tetrahedral interstices present in the fcc 

occupied by ions of the other type and 

Contrary to those cases, in the NiAs 

structure the cations occupy all octahedral interstices present in the hcp 

substructure of anions and the tetrahedral interstices are vacant. Turning 

we can say that 

me type and between them, there are neither 

octahedral nor tetrahedral interstices. Each anion occupies the center of a 

the neighborhood of the two types of ions in 

Fig. 117a shows an octahedron with anions in its 

er of the 

Similarly, Fig. 117b shows the NNs of an anion that is located 

the vertices. In both cases the 

number of NNs is the same but the distribution of cations with respect to the 

anion is different from the distribution of anions with respect to the cation. 

ratio. This was 

structure. In that opportunity, the 

calculations were based on the geometric characteristics of a regular 

structure; the 

unit cell of the hcp 

This time, in turn, we 

by the NNs of a cation 

may be inscribed in a cube. 

118 shows such a situation. The longitude of the cube body diagonal 

and the trigonal prism defined by 
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a.) The anion layers cross the body diagonal of the cube in the points that 

divide the diagonal in three segments of the same longitude.

b.) The distance between two consecutive anion layers is equal to 

taking into account point a.) we can conclude that the longitude of the 

body diagonal of the cube is equal

From the considerations made in Fig. 118, we can conclude that, indeed, the 

octahedron defined by the NNs of a cation is

8 3c a = . 

The smallest unit cell

type (a) or (b) from 

Figure 118 (a) Hexagonal prism for an ideal NiA

The regular octahedron defined by 6 anions located inside this prism is also shown. In 

addition, this octahedron is inscribed in a cube. 

a body diagonal of the cube

triangles shown in (b). In this figure we show the relation between the lattice constant 

the cube edge ac. 

Basic Elements of Crystallography 

The anion layers cross the body diagonal of the cube in the points that 

e the diagonal in three segments of the same longitude. 

The distance between two consecutive anion layers is equal to 

taking into account point a.) we can conclude that the longitude of the 

body diagonal of the cube is equal to ( ) ( )3 2 3 2c c= . 

From the considerations made in Fig. 118, we can conclude that, indeed, the 

octahedron defined by the NNs of a cation is a regular polyhedron

The smallest unit cell that can reproduce the NiAs structure may be of 

 Fig. 119. In both cases, the unit cell contains two anions 

Hexagonal prism for an ideal NiAs structure with the cations at the vertices. 

The regular octahedron defined by 6 anions located inside this prism is also shown. In 

addition, this octahedron is inscribed in a cube. (b) The cube defined in (a). The longitude of 

a body diagonal of the cube is expressed as a function of the lattice constant c. (c) One of the 

triangles shown in (b). In this figure we show the relation between the lattice constant 

The anion layers cross the body diagonal of the cube in the points that 

2c , so, 

taking into account point a.) we can conclude that the longitude of the 

From the considerations made in Fig. 118, we can conclude that, indeed, the 

polyhedron when 

s structure may be of 

Fig. 119. In both cases, the unit cell contains two anions 

 

s structure with the cations at the vertices. 

The regular octahedron defined by 6 anions located inside this prism is also shown. In 

defined in (a). The longitude of 

One of the 

triangles shown in (b). In this figure we show the relation between the lattice constant a and 
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and two cations. Fig

a
�

, b
�

, c
�

 axes, of the four ions belonging to each unit cell from Fig. 119.

Some binary compounds crystallize in the so called anti

that is the same as the NiAs struc

and vice versa. Figure

the VP compound. We can see in this figure that now the vanadium cations 

form the hcp substructure, while the p

simple hexagonal substructure.

In the NiAs structure crystallize compounds that contain TMs and 

elements from columns III, IV, V

compounds may be included:

 

Figure 119 Two conventional unit cells for the NiAs structure: 

and (b) with cations at the vertices.

Figure 120 (a) and (b) show the

and 119b, respectively. The coordinates are expressed in units of 

Crystal Structures of Important Binary Compounds 

and two cations. Figure 120 shows the coordinates, given with respect to

, of the four ions belonging to each unit cell from Fig. 119.

binary compounds crystallize in the so called anti-NiAs structure 

that is the same as the NiAs structure, but with cations replaced by anions, 

. Figure 121 shows the anti-NiAs structure on the example of 

the VP compound. We can see in this figure that now the vanadium cations 

substructure, while the phosphorus anions are arrang

simple hexagonal substructure. 

In the NiAs structure crystallize compounds that contain TMs and 

elements from columns III, IV, V, or VI of the periodic table. The following 

compounds may be included: 

 

Two conventional unit cells for the NiAs structure: (a) with anions at the vertices 

the vertices. 

 

show the positions of ions belonging to the unit cells from Figs. 119a 

and 119b, respectively. The coordinates are expressed in units of a and c. 
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given with respect to the 

, of the four ions belonging to each unit cell from Fig. 119. 

NiAs structure 

ture, but with cations replaced by anions, 

NiAs structure on the example of 

the VP compound. We can see in this figure that now the vanadium cations 

anions are arranged in a 

In the NiAs structure crystallize compounds that contain TMs and 

or VI of the periodic table. The following 

the vertices 

ositions of ions belonging to the unit cells from Figs. 119a 
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Column III: 

B: PtB* 

Tl: NiTl 

Column IV: 

C: γ'-MoC** 

Sn: FeSn, NiSn, CuSn, RhSn, PdSn, IrSn, PtSn, AuSn

Pb: NiPb, IrPb, PtPb*

Column V: 

N: δ'-NbN,* ε-NbN**

P: TiP,** VP,* β-ZrP,** HfP**

As: α-TiAs,** β-TiAs,* MnAs, NiAs, 

Sb: TiSb, VSb, CrSb, MnSb, FeSb, CoSb, NiSb, CuSb, PdSb, IrSb, 

Bi: MnBi,* NiBi,* RhBi,* PtBi*

Column VI: 

S: TiS, VS, CrS, β-FeS, CoS, 

Se: TiSe, VSe, CrSe, FeSe, CoSe, 

Te: ScTe, TiTe, VTe, CrTe, 

IrTe 

Po: MgPo, ScPo,* TiPo, NiPo, ZrPo, HfPo.

In the above classification, the compounds marked with one star crystallize 

in the anti-NiAs structure, whereas those marked with two stars in the TiAs 

structure, which will be discussed in the next section.

Figure 121 Anti

Basic Elements of Crystallography 

FeSn, NiSn, CuSn, RhSn, PdSn, IrSn, PtSn, AuSn 

NiPb, IrPb, PtPb* 

NbN** 

ZrP,** HfP** 

TiAs,* MnAs, NiAs, α-ZrAs,** HfAs** 

TiSb, VSb, CrSb, MnSb, FeSb, CoSb, NiSb, CuSb, PdSb, IrSb, PtSb

MnBi,* NiBi,* RhBi,* PtBi* 

FeS, CoS, α-NiS, NbS 

TiSe, VSe, CrSe, FeSe, CoSe, β-NiSe, RhSe, AuSe 

ScTe, TiTe, VTe, CrTe, α-MnTe, FeTe, CoTe, NiTe, ZrTe, RhTe, PdTe, 

ScPo,* TiPo, NiPo, ZrPo, HfPo. 

In the above classification, the compounds marked with one star crystallize 

NiAs structure, whereas those marked with two stars in the TiAs 

structure, which will be discussed in the next section. 

 

Anti-NiAs structure shown on the example of the VP compound

PtSb 

e, NiTe, ZrTe, RhTe, PdTe, 

In the above classification, the compounds marked with one star crystallize 

NiAs structure, whereas those marked with two stars in the TiAs 

ample of the VP compound. 
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Experimental lattice parameters for compounds that crystallize in the 

NiAs, anti-NiAs, or TiAs structures of TM-III, TM-IV, TM-V, and TM-VI 

types are listed in Tables 28–31, respectively. We can observe in Tables 28 

and 29 that, with exception of γ'-MoC, all compounds crystallize with the 

c a  ratio much smaller than the ideal one ( 8 3 1.633).=  In the Table 30 

more than half of the compounds contain metals from the group of iron. We 

can also observe in that table that the antimonides and bismuthides of TMs 

crystallize with the c a  ratio much smaller than the perfect one. In all such 

cases, the ions that occupy the octahedral interstices in the hcp substructure 

have indeed 8 NNs, like in the case of the Ni cation in NiAs.  

We can observe in Table 31 that the iron group metals are present in 

more than 2 3of compounds listed there. The c a  ratios are in this table, 

for about half of the compounds, quite close to the ideal value, and the CrS, 

VSe, CrSe, FeSe, ScTe, α-MnTe, and MgPo compounds have the c a  ratio 

remarkably approaching that value. 

Summarizing the data given in Tables 28-31, we can say that in the case 

of nickel arsenide related structures the values for c a
 
are in the wide range 

between 1.21 and 1.96. As a consequence the ions in these structures may 

have different number of NNs and NNNs. Let us see this on the example of 

a cation in the NiAs structure. For the lower-bound value of c a
 
each cation 

has 8 NNs (6 anions and 2 cations) and 6 cations as NNNs, while for the 

upper-bound value of the c a
 
ratio a cation in the NiAs structure has 6 

anions as NNs and 8 NNNs (all of them cations).
 

Table 28 Lattice parameters, obtained under normal conditions, of PtB and NiTl that 

crystallize in the anti-NiAs and NiAs structures, respectively. 

Compound a (Å) c (Å) c a  

PtB* 3.358 4.058 1.21 

NiTl 4.426 5.535 1.25 

*anti-NiAs structure 

Table 29 Lattice parameters obtained under normal conditions for compounds of TM-IV 

type that crystallize in the NiAs, anti-NiAs, or TiAs structures. 

Compound a (Å) c (Å) c a  Compound a (Å) c (Å) c a  

γ'-MoC** 2.932 10.97 2×1.87 IrSn 3.988 5.567 1.40 

γ-FeSn 4.216 5.244 1.24 PtSn 4.104 5.436 1.32 

NiSn 4.048 5.123 1.27 AuSn 4.3218 5.523 1.28 

CuSn 4.198 5.096 1.21 NiPb 4.15 5.28 1.27 

RhSn 4.340 5.553 1.28 IrPb 3.993 5.566 1.39 

PdSn 4.378 5.627 1.29 PtPb* 4.258 5.467 1.28 

*anti-NiAs structure 

**TiAs structure 
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In the next section, we will describe the TiAs structure which is related 

to the NiAs structure. 

Table 30 Lattice parameters obtained under normal conditions for compounds of TM-V 

type that crystallize in the NiAs, anti-NiAs, or TiAs structures. 

Compound a (Å) c (Å) c a  Compound a (Å) c (Å) c a  

δ´-NbN* 2.968 5.549 1.87 CrSb 4.115 5.493 1.33 

ε-NbN** 2.9513 11.248 2×1.91 MnSb 4.140 5.789 1.40 

TiP** 3.513 11.75 2×1.67 FeSb 4.072 5.140 1.26 

VP* 3.178 6.222 1.96 CoSb 3.866 5.188 1.34 

ββββ-ZrP** 3.684 12.554 2×1.70 NiSb 3.9325 5.1351 1.31 

HfP** 3.65 12.38 2×1.70 CuSb 3.874 5.193 1.34 

α-TiAs** 3.642 12.064 2×1.66 PdSb 4.078 5.593 1.37 

β-TiAs* 3.645 6.109 1.68 IrSb 3.978 5.521 1.39 

MnAs 3.722 5.702 1.53 PtSb 4.126 5.481 1.33 

NiAs 3.619 5.034 1.39 MnBi* 4.290 6.126 1.43 

α-ZrAs** 3.804 12.867 2×1.69 NiBi* 4.07 5.33 1.31 

HfAs** 3.765 12.680 2×1.68 RhBi* 4.0894 5.6642 1.39 

TiSb 4.1033 6.2836 1.53 PtBi* 4.315 5.490 1.27 

VSb 4.27 5.447 1.28     

*anti-NiAs structure 

**TiAs structure 

Table 31 Lattice parameters obtained under normal conditions for compounds of TM-VI 

type that crystallize in the NiAs or anti-NiAs structures. The values for MgPo are also 

included in the table. 

Compound a (Å) c (Å) c a  Compound a (Å) c (Å) c a  

TiS 3.299 6.380 1.93 VTe 3.942 6.126 1.55 

VS 3.33 5.82 1.75 CrTe 3.978 6.228 1.57 

CrS 3.419 5.55 1.62 α-MnTe 4.147 6.711 1.62 

ββββ-FeS 3.4436 5.8759 1.71 FeTe 3.800 5.651 1.49 

CoS 3.374 5.187 1.54 CoTe 3.888 5.378 1.38 

α-NiS 3.4395 5.3514 1.56 NiTe 3.965 5.358 1.35 

NbS 3.32 6.46 1.95 ZrTe 3.953 6.647 1.68 

TiSe 3.572 6.205 1.74 RhTe 3.987 5.661 1.42 

VSe 3.66 5.95 1.63 PdTe 4.152 5.672 1.37 

CrSe 3.71 6.03 1.63 IrTe 3.939 5.386 1.37 

FeSe 3.62 5.92 1.64 MgPo 4.345 7.077 1.63 

CoSe 3.62 5.286 1.46 ScPo* 4.206 6.92 1.65 

ββββ-NiSe 3.6613 5.3562 1.46 TiPo 3.992 6.569 1.65 

RhSe 3.642 5.486 1.51 NiPo 3.95 5.68 1.44 

AuSe 4.12 5.39 1.31 ZrPo 4.031 6.907 1.71 

ScTe 4.120 6.748 1.64 HfPo 4.058 6.717 1.66 

TiTe 3.834 6.390 1.67     

*anti-NiAs structure 
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6.2. TiAs Structure

Pearson symbol: 

anions are arranged in the 

and the cations occupy all octahedral interstices present in it. We can 

observe in Fig. 122 that the arrangement of ions in the down half of the 

hexagonal prism for the TiAs structure (see Fig. 122b) looks the same as the 

arrangement of ions in the hexag

122a). The sequence of the two

is the following: 

  AaA

where it is easy to separate the layer sequence 

corresponding to the anion substructure from the layer sequence 

AcAcBcBcAcAcBcBc… 

can observe the presence of consecutive cation layers of both the same and 

different type, what

Figure 122 Hexagonal prisms: 

lattice parameters, a and 
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tructure 

Pearson symbol: hP8, Prototype: TiAs. In the TiAs structure, the 

anions are arranged in the dhcp substructure shown in Fig. 80 (Sec.

and the cations occupy all octahedral interstices present in it. We can 

observe in Fig. 122 that the arrangement of ions in the down half of the 

hexagonal prism for the TiAs structure (see Fig. 122b) looks the same as the 

arrangement of ions in the hexagonal prism for the NiAs structure (see Fig. 

122a). The sequence of the two-dimensional hcp layers in the TiAs structure 

AcBaAcAaBcCaBcAaAcBaAcAaBcCaBc..., 

where it is easy to separate the layer sequence AaBaAaCaAaB

corresponding to the anion substructure from the layer sequence 

… for the cation substructure. In the last sequence, we 

can observe the presence of consecutive cation layers of both the same and 

what marks the difference from the NiAs structure 

Hexagonal prisms: (a) for the NiAs structure and (b) for the TiAs structure. The 

and c, are shown in both cases. 
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In the TiAs structure, the 

Sec. III.8) 

and the cations occupy all octahedral interstices present in it. We can 

observe in Fig. 122 that the arrangement of ions in the down half of the 

hexagonal prism for the TiAs structure (see Fig. 122b) looks the same as the 

onal prism for the NiAs structure (see Fig. 

layers in the TiAs structure 

BaAaCa... 

corresponding to the anion substructure from the layer sequence 

for the cation substructure. In the last sequence, we 

can observe the presence of consecutive cation layers of both the same and 

marks the difference from the NiAs structure whose 

 

for the TiAs structure. The 
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cation substructure 

between consecutive layers of the TiAs cation substructure are present not 

only trigonal prism interstices, but also octahedral and tetrahedral interstices. 

Half of the trigonal prism

occupied by anions.

 

 

7. Sodium Chloride Structure

 

Pearson symbol: 

structure of sodium chloride. In those compounds that crystallize in this 

structure the ionic bonding prevails over the covalent one. Most of the 

binary compounds that have a high degree of ionicity in their bonds 

crystallize in this structure and among them the alkali halides which have 

over 90% of ionic contribution in their bonds.

 In alkali halides the positive ion is one of the alkali metals (Li

K
+

, Rb
+

, or Cs
+

) and the negative ion is one of the halogens (F

I
−

). Except for CsCl, CsBr, and CsI

structure under normal conditions.

 In the NaCl structure, eac

cation, have their NN

or cation in its center, what

in Fig. 123. The coordination number 6, which is higher than for the case of 

the zinc blende and wurtzite structures, allows to maximize the ionic 

bonding. 

Figure 123 The structure of NaCl

Cl− anion in its center. 

octahedron. 
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 has all the layers of the same type. As a consequence, 

between consecutive layers of the TiAs cation substructure are present not 

only trigonal prism interstices, but also octahedral and tetrahedral interstices. 

Half of the trigonal prism interstices and all octahedral interstices are 

ied by anions. 

Sodium Chloride Structure 

Pearson symbol: cF8, prototype: NaCl. We will now talk about the 

structure of sodium chloride. In those compounds that crystallize in this 

structure the ionic bonding prevails over the covalent one. Most of the 

binary compounds that have a high degree of ionicity in their bonds 

this structure and among them the alkali halides which have 

over 90% of ionic contribution in their bonds. 

In alkali halides the positive ion is one of the alkali metals (Li

) and the negative ion is one of the halogens (F
−

, Cl
−

). Except for CsCl, CsBr, and CsI, all of them crystallize in the NaCl 

structure under normal conditions. 

In the NaCl structure, each ion has six NNs and both, the anion and the 

NNs at the vertices of a regular octahedron with the anion 

or cation in its center, what is shown, using as example the NaCl compound, 

in Fig. 123. The coordination number 6, which is higher than for the case of 

the zinc blende and wurtzite structures, allows to maximize the ionic 

 

structure of NaCl. (a) Regular octahedron defined by Na+ cations with the 

anion in its center. (b) Nearest neighbors of a Na+ cation at the vertices of a regular 

As a consequence, 

between consecutive layers of the TiAs cation substructure are present not 

only trigonal prism interstices, but also octahedral and tetrahedral interstices. 

and all octahedral interstices are 

We will now talk about the 

structure of sodium chloride. In those compounds that crystallize in this 

structure the ionic bonding prevails over the covalent one. Most of the 

binary compounds that have a high degree of ionicity in their bonds 

this structure and among them the alkali halides which have 

In alkali halides the positive ion is one of the alkali metals (Li
+

, Na
+

, 
−

, Br
−

, or 

all of them crystallize in the NaCl 

the anion and the 

the vertices of a regular octahedron with the anion 

is shown, using as example the NaCl compound, 

in Fig. 123. The coordination number 6, which is higher than for the case of 

the zinc blende and wurtzite structures, allows to maximize the ionic 

cations with the 

the vertices of a regular 
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The sodium chloride structure represents a sequence o

hexagonal layers of 

ANa

 type. This sequence can

ABCABC… type, one for cations and another one for anions

layers are displaced

has 6 NNs. 

 Concluding, we can say that the NaCl structure is a superposition of 

two fcc substructures, each one for a given type o

can reproduce this structure:

one with cations at

In Fig. 124b, we show a rhombohedral unit cell with two ions (

Figure 124 (a) Two cubic unit cells for the 

cations at the vertices and the other one with Cl

unit cell with two ions (one anion and one cation), which is the smallest unit cell that 

reproduces the NaCl structure.

Crystal Structures of Important Binary Compounds 

The sodium chloride structure represents a sequence of two-dimensional 

hexagonal layers of 

NaCClBNaAClCNaBClANaCClBNaAClCNaBCl… 

type. This sequence can be seen as a superposition of two subsequences of 

type, one for cations and another one for anions. The cation 

displaced with respect to the anion layers in the way that each ion

Concluding, we can say that the NaCl structure is a superposition of 

substructures, each one for a given type of ions. Two cubic unit cell

can reproduce this structure: one with anions at the vertices and the other 

at the vertices. These two cells are shown in Fig. 124a. 

we show a rhombohedral unit cell with two ions (an 

Two cubic unit cells for the structure of sodium chloride: one with Na

the vertices and the other one with Cl− anions at the vertices. (b) A rhombohedral 

unit cell with two ions (one anion and one cation), which is the smallest unit cell that 

reproduces the NaCl structure. 
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dimensional 

be seen as a superposition of two subsequences of 

. The cation 

in the way that each ion 

Concluding, we can say that the NaCl structure is a superposition of 

f ions. Two cubic unit cells 

the vertices and the other 

the vertices. These two cells are shown in Fig. 124a.                

an anion              

 

sodium chloride: one with Na+ 

A rhombohedral 

unit cell with two ions (one anion and one cation), which is the smallest unit cell that 
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and a cation) belonging to it, which is the smallest unit cell that reproduces 

the NaCl structure. The rhombohedron shown in Fig. 124b is the same as the 

primitive unit cell for the 

can be considered a 

cation and one anion.

We can observe in Fig. 124a that the substructure of anions (cations) is 

displaced with respect to the substructure

edge by half of its lengths. Thus, an anion (cation) occupies an octahedral 

interstice in the cation (anion) substructure. Fig

stacking of A, B, C

NaCl. In this figure

shown. The layers are orthogonal to a body diagonal of the cube

we show the coordinates, 

the eight ions belonging to the cubic unit cell shown on the left side of

Fig. 124a. 

In the next few tables we will list about 300 binary compounds that 

crystallize in the NaCl structure. This represents a significant percentage of 

the total number of compounds having that structure. 

by report experimental lattice parameters for I

halides. We can observe in this table that, with exception of 

and Csl, all other I-

given the lattice constants of I

crystallize in the NaCl structure. We can see in this table that nearly all 

compounds that contain one of the alkaline

calcium, strontium, and barium) crystallize in 

and 35 we report the lattice parameters for compounds of TM

Figure 125 The sequence of two

CCl in the structure of NaCl
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cation) belonging to it, which is the smallest unit cell that reproduces 

The rhombohedron shown in Fig. 124b is the same as the 

primitive unit cell for the fcc lattice. Therefore, the sodium chloride structure 

can be considered a fcc Bravais lattice with two-atom basis consisting of one 

cation and one anion. 

We can observe in Fig. 124a that the substructure of anions (cations) is 

displaced with respect to the substructure of cations (anions) along the cube 

edge by half of its lengths. Thus, an anion (cation) occupies an octahedral 

interstice in the cation (anion) substructure. Figure 125 illustrates the 

C layers for both types of ions in the cubic unit ce

In this figure, the ANaCClBNaAClCNaBClANa... sequence of layers

he layers are orthogonal to a body diagonal of the cube. In Fig. 126 

we show the coordinates, given with respect to the a
�

, b
�

, c
�

 axes

the eight ions belonging to the cubic unit cell shown on the left side of

In the next few tables we will list about 300 binary compounds that 

crystallize in the NaCl structure. This represents a significant percentage of 

the total number of compounds having that structure. We begin in Table 32 

report experimental lattice parameters for I-VII compounds and the silver 

We can observe in this table that, with exception of CsCl, CsBr, 

-VII compounds have the NaCl structure. In Table 33 are 

given the lattice constants of II-VI, IV-VI, and V-VI compounds that 

crystallize in the NaCl structure. We can see in this table that nearly all 

compounds that contain one of the alkaline earth metals (magnesium, 

calcium, strontium, and barium) crystallize in this structure. In Tables 34

and 35 we report the lattice parameters for compounds of TM-VI, and TM

 

The sequence of two-dimensional hexagonal layers ANa, BNa, CNa, ACl

NaCl. 

cation) belonging to it, which is the smallest unit cell that reproduces 

The rhombohedron shown in Fig. 124b is the same as the 

Therefore, the sodium chloride structure 

atom basis consisting of one 

We can observe in Fig. 124a that the substructure of anions (cations) is 

of cations (anions) along the cube 

edge by half of its lengths. Thus, an anion (cation) occupies an octahedral 

125 illustrates the 

cubic unit cell of 

of layers is 

In Fig. 126 
�

axes, of                

the eight ions belonging to the cubic unit cell shown on the left side of            

In the next few tables we will list about 300 binary compounds that 

crystallize in the NaCl structure. This represents a significant percentage of 

We begin in Table 32 

VII compounds and the silver 

CsCl, CsBr, 

VII compounds have the NaCl structure. In Table 33 are 

VI compounds that 

crystallize in the NaCl structure. We can see in this table that nearly all 

earth metals (magnesium, 

structure. In Tables 34 

VI, and TM-V 

Cl, BCl, and 
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type, respectively. We can observe in Table 34 that nearly all chalcogenides 

of the RE metals and of the light actinides (thorium, uranium, neptunium, 

plutonium, and americium) crystallize in the NaCl structure.

also crystallize oxides of 

 

Figure 126 Positions of ions belonging to the cubic unit cell of the NaCl structure. The 

coordinates are expressed in units of 

Table 32 Lattice parameters (

metal halides and silver halides that crystallize in the NaCl 

indicated which of the considered compounds crystallize in the CsCl or zinc blende structures.

 F 

Li LiF (4.027) 

Na NaF (4.632) 

K KF (5.34758)

Rb RbF (5.6516)

Cs CsF (6.014) 

Ag AgF (4.92) 

Table 33 Lattice parameters (in Angstroms), obtained und

also some IV-VI and V

also indicated which of the considered compounds crystallize in the wurtzite or NiAs 

structures.  

 O 

Mg MgO (4.2113) 

Ca CaO (4.8105) 

Sr SrO (5.1615) 

Ba BaO (5.539) 

Sn  

Pb  

Bi  

Crystal Structures of Important Binary Compounds 

respectively. We can observe in Table 34 that nearly all chalcogenides 

of the RE metals and of the light actinides (thorium, uranium, neptunium, 

plutonium, and americium) crystallize in the NaCl structure. In this structure 

crystallize oxides of the TMs, which are mainly from the iron group

 

Positions of ions belonging to the cubic unit cell of the NaCl structure. The 

coordinates are expressed in units of a. 

Lattice parameters (in Angstroms), obtained under normal conditions, of alkali 

metal halides and silver halides that crystallize in the NaCl structure. In the table, it is also 

indicated which of the considered compounds crystallize in the CsCl or zinc blende structures.

Cl Br 

 LiCl (5.12952) LiBr (5.5013) α-LiI (6.0257)

 NaCl (5.6401) NaBr (5.9732) NaI (6.472

KF (5.34758) KCl (6.2952) KBr (6.6005) KI (7.0656)

RbF (5.6516) RbCl (6.5810) RbBr (6.889) RbI (7.342)

 CsCl CsCl CsCl

 AgCl (5.5463) AgBr (5.7721) zinc blende

Lattice parameters (in Angstroms), obtained under normal conditions, of II

and V-VI compounds that crystallize in the NaCl structure. In the table, it is 

also indicated which of the considered compounds crystallize in the wurtzite or NiAs 

S Se Te 

MgS (5.20182) MgSe (5.451) wurtzite NiAs

CaS (5.6948) CaSe (5.916) CaTe (6.356) CaPo (6.514)

SrS (6.0198) SrSe (6.2432) SrTe (6.660) SrPo (6.796)

BaS (6.3875) BaSe (6.593) BaTe (7.0012) BaPo (7.119)

SnS (5.80) SnSe (5.99) SnTe (6.320) 

PbS (5.9362) PbSe (6.1243) PbTe (6.4591) PbPo (6.590)

 BiSe (5.99) BiTe (6.47) 
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respectively. We can observe in Table 34 that nearly all chalcogenides 

of the RE metals and of the light actinides (thorium, uranium, neptunium, 

In this structure 

TMs, which are mainly from the iron group,  

Positions of ions belonging to the cubic unit cell of the NaCl structure. The 

in Angstroms), obtained under normal conditions, of alkali 

In the table, it is also 

indicated which of the considered compounds crystallize in the CsCl or zinc blende structures. 

I 

LiI (6.0257) 

NaI (6.4728) 

KI (7.0656) 

RbI (7.342) 

CsCl 

zinc blende 

s, of II-VI and 

In the table, it is 

also indicated which of the considered compounds crystallize in the wurtzite or NiAs 

Po 

NiAs 

CaPo (6.514) 

SrPo (6.796) 

BaPo (7.119) 

 

PbPo (6.590) 
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Table 34 Lattice parameters (in Angstroms) obtained under normal conditions for 

compounds of the TM-VI type that crystallize in the NaCl structure. In the table, it is also 

indicated which of the considered compounds crystallize in the NiAs or zinc blende 

structures. 

 O S Se Te Po 

Sc  ScS (5.19) ScSe (5.398) NiAs NiAs 

Ti TiO (4.1766) NiAs NiAs NiAs NiAs 

V VO (4.073) NiAs NiAs NiAs  

Cr CrO (4.16)  NiAs NiAs  

Mn MnO (4.446) 
α-MnS 

(5.2236) 

α-MnSe 

(5.462) 
NiAs  

Fe FeO (4.326) NiAs NiAs NiAs  

Co CoO (4.264) NiAs NiAs NiAs  

Ni NiO (4.1771) NiAs NiAs NiAs NiAs 

Y  YS (5.493) YSe (5.711) YTe (6.098)  

Zr ZrO (4.62) ZrS (5.1522)  NiAs NiAs 

Nb NbO (4.212) NiAs    

Rh   NiAs NiAs  

Pd    NiAs  

Cd CdO (4.6953) zinc blende zinc blende zinc blende zinc blende 

Hf     NiAs 

Ta TaO (4.431)     

Ir    NiAs  

Pt PtO (5.15)     

Au   NiAs   

Hg  zinc blende zinc blende zinc blende HgPo (6.250) 

La  LaS (5.854) LaSe (6.066) LaTe (6.429)  

Ce  CeS (5.779) CeSe (5.9920) CeTe (6.36)  

Pr  PrS (5.731) PrSe (5.944) PrTe (6.315)  

Nd  NdS (5.689) NdSe (5.907) NdTe (6.282)  

Sm SmO (4.9883) SmS (5.9718) SmSe (6.202) SmTe (6.594) SmPo (6.724) 

Eu EuO (5.142) EuS (5.9708) EuSe (6.197) EuTe (6.594) EuPo (6.720) 

Gd  GdS (5.565) GdSe (5.76) GdTe (6.139)  

Tb  TbS (5.5221) TbSe (5.7438) TbTe (6.1150) TbPo (6.254) 

Dy  DyS (5.489) DySe (5.690) DyTe (6.079) DyPo (6.214) 

Ho  HoS (5.465) HoSe (5.680) HoTe (6.049) HoPo (6.200) 

Er  ErS (5.422) ErSe (5.656) ErTe (6.063)  

Tm  TmS (5.412) TmSe (5.688) TmTe (6.346) TmPo (6.256) 

Yb YbO (4.86) YbS (5.687) YbSe (5.9321) YbTe (6.361) YbPo (6.542) 

Lu  LuS (5.355) LuSe (5.572) LuTe (5.953) LuPo (6.159) 

Th  ThS (5.6851) ThSe (5.880)   

Pa PaO (4.961)     

U UO (4.92) US (5.486) USe (5.751) UTe (6.155)  

Np NpO (5.01) NpS (5.527) NpSe (5.8054) NpTe (6.2039)  

Pu PuO (4.958) PuS (5.5412) PuSe (5.7934) PuTe (6.1774)  

Am AmO (5.045) AmS (5.592)  AmTe (6.176)  
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Table 35 Lattice parameters (in Angstroms) obtained under normal conditions for the 

compounds of the TM-V type that crystallize in the NaCl structure. The data for some tin 

pnictides are also included. In addition, we indicate in the table which of the considered 

compounds crystallize in the NiAs or TiAs structures. 

 N P As Sb Bi 

Sc ScN (4.44) ScP (5.312) ScAs (5.487) ScSb (5.8517) ScBi (5.954) 

Ti TiN (4.235) TiAs NiAs and TiAs NiAs  

V VN (4.1361) NiAs  NiAs  

Cr CrN (4.148)   NiAs  

Mn   NiAs NiAs NiAs 

Fe    NiAs  

Co    NiAs  

Ni   NiAs NiAs NiAs 

Cu    NiAs  

Y YN (4.877) YP (5.661) YAs (5.786) YSb (6.165) YBi (6.256) 

Zr ZrN (4.585) 
α-ZrP (5.263) 

and TiAs 

β-ZrAs (5.4335) 

and TiAs 
  

Nb 

δ-NbN 

(4.394), 

NiAs, and TiAs 

    

Rh     NiAs 

Pd    NiAs  

Hf HfN (4.52) TiAs TiAs   

Ta NiAs     

Ir    NiAs  

Pt    NiAs NiAs 

La LaN (5.301) LaP (6.0346) LaAs (6.151) LaSb (6.490) LaBi (6.578) 

Ce CeN (5.020) CeP (5.909) CeAs (6.072) CeSb (6.420) CeBi (6.5055) 

Pr PrN (5.155) PrP (5.903) PrAs (6.009) PrSb (6.375) PrBi (6.4631) 

Nd NdN (5.132) NdP (5.838) NdAs (5.9946) NdSb (6.321) NdBi (6.4222) 

Sm SmN (5.0481) SmP (5.760) SmAs (5.921) SmSb (6.271) SmBi (6.3582) 

Eu EuN (5.017) EuP (5.7562)    

Gd GdN (4.9987) GdP (5.723) GdAs (5.854) GdSb (6.217) GdBi (6.3108) 

Tb TbN (4.9344) TbP (5.688) TbAs (5.824) TbSb (6.178) TbBi (6.2759) 

Dy DyN (4.9044) DyP (5.653) DyAs (5.794) DySb (6.154) DyBi (6.2491) 

Ho HoN (4.8753) HoP (5.626) HoAs (5.769) HoSb (6.131) HoBi (6.228) 

Er ErN (4.842) ErP (5.606) ErAs (5.7427) ErSb (6.106) ErBi (6.2023) 

Tm TmN (4.8021) TmP (5.573) TmAs (5.711) TmSb (6.087) TmBi (6.1878) 

Yb YbN (4.7852) YbP (5.555) YbAs (5.698) YbSb (6.079)  

Lu LuN (4.7599) LuP (5.533) LuAs (5.680) LuSb (6.0555) LuBi (6.156) 

Th ThN (5.1666) ThP (5.8324) ThAs (5.978) ThSb (6.318)  

Pa   PaAs (5.7560)   

U UN (4.890) UP (5.5883) UAs (5.7767) USb (6.203) UBi (6.3627) 

Np NpN (4.897) NpP (5.6148) NpAs (5.8366) NpSb (6.2517) NpBi (6.370) 

Pu PuN (4.9049) PuP (5.6613) PuAs (5.8565) PuSb (6.2375) PuBi (6.2039) 

Am AmN (5.005) AmP (5.7114) AmAs (5.876) AmSb (6.240) AmBi (6.332) 

Sn  SnP (5.5359) SnAs (5.716) SnSb (6.130)  
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and oxides of the actinides mentioned above. In Table 34 we can also 

observe that the chalcogenides of TMs that are not RE

crystallize in the NiAs structure. 

there is also a small group of compounds that crystallize in the zinc blende 

structure, like CdPo and cadmium

Similarly as in Table 34 are organized the experimental data in Table 35 

for TM nitrides, phosphides, arsenides, antimonides, and bismuthides.

was the case in Table 34, in this table the compounds of the RE metals and 

that of the actinides crystallize in the NaCl structure, while those that 

contain other TMs prefer to crystallize in 

(NiAs or TiAs). Besides the v

the lattice constants for alkali and some TM hydrides and also for TM 

borides and carbides

Hydrides: LiH (4.0856

CsH (6.376 Å), NiH

Borides: ZrB (4.65 

Carbides: ScC (4.51

ZrC (4.6828 Å), NbC

TaC (4.4540 Å), 

NpC (5.005 Å), and PuC

Figure 127 The plane of a face of the NaCl cubic unit cell with the cross sections of 9 ions 

considered hard spheres. The large ion, located in the center of the face, makes c

its NNs (small spheres) and also with the NNNs (large spheres). The NN distance, 

to the sum of the ionic radii, 
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and oxides of the actinides mentioned above. In Table 34 we can also 

chalcogenides of TMs that are not RE metals

crystallize in the NiAs structure. Among compounds of the TM-VI type, 

is also a small group of compounds that crystallize in the zinc blende 

like CdPo and cadmium and mercury chalcogenides. 

Similarly as in Table 34 are organized the experimental data in Table 35 

for TM nitrides, phosphides, arsenides, antimonides, and bismuthides.

was the case in Table 34, in this table the compounds of the RE metals and 

that of the actinides crystallize in the NaCl structure, while those that 

contain other TMs prefer to crystallize in structures different from NaCl 

. Besides the values given in Tables 32-35, below we also list 

the lattice constants for alkali and some TM hydrides and also for TM 

borides and carbides: 

(4.0856 Å), NaH (4.880 Å), KH (5.704 Å), RbH (6.037

Å), NiH (3.740 Å), and PdH (4.02 Å) 

 Å), HfB (4.62 Å), and PuB (4.905 Å) 

(4.51 Å), TiC (4.3186 Å), VC (4.182 Å), CrC (4.03

Å), NbC (4.4691 Å), CeC (5.135 Å), HfC (4.63765

ThC (5.346 Å), PaC (5.0608 Å), UC (4.9606

Å), and PuC (4.731 Å). 

The plane of a face of the NaCl cubic unit cell with the cross sections of 9 ions 

considered hard spheres. The large ion, located in the center of the face, makes contact with 

its NNs (small spheres) and also with the NNNs (large spheres). The NN distance, d

to the sum of the ionic radii, r r
− +

+ . 

and oxides of the actinides mentioned above. In Table 34 we can also 

metals often 

VI type, 

is also a small group of compounds that crystallize in the zinc blende 

Similarly as in Table 34 are organized the experimental data in Table 35 

for TM nitrides, phosphides, arsenides, antimonides, and bismuthides. As 

was the case in Table 34, in this table the compounds of the RE metals and 

that of the actinides crystallize in the NaCl structure, while those that 

structures different from NaCl 

, below we also list 

the lattice constants for alkali and some TM hydrides and also for TM 

(6.037 Å), 

(4.03 Å),               

(4.63765 Å),                

(4.9606 Å),                   

 

The plane of a face of the NaCl cubic unit cell with the cross sections of 9 ions 

ontact with 

d, is equal 
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Let us now proceed to calculate the limiting radius ratio for the NaCl 

structure. We can see in Fig. 124a

center of a cubic unit cell face, are located in the centers of the face edges. 

Figures 127, 128, and 129 show the plane of one of the faces of the cube 

with cross sections of ions that, being considered hard spheres, are 

represented by circles on this plane.

three cases: 

Figure 128 The same plane as in Fig. 127, but now the large ion, located in the center of the 

cube face, makes contact only with the NNs (small spheres). The NN distance, 

r r
− +

+ . 

Figure 129 The same plane as in Figs. 127 and 128, but now the smaller ion is too small to 

make contact with larger ions and as a consequence the ion located in the center of the cube 

face makes contact only with its NNNs (large spheres). The NN distance, 

defined only by the radius of the larger ion.

Crystal Structures of Important Binary Compounds 

proceed to calculate the limiting radius ratio for the NaCl 

structure. We can see in Fig. 124a that 4 NNs of the Cl
−

 ion, placed in the 

center of a cubic unit cell face, are located in the centers of the face edges. 

s 127, 128, and 129 show the plane of one of the faces of the cube 

with cross sections of ions that, being considered hard spheres, are 

circles on this plane. We can easily distinguish the following 

 

The same plane as in Fig. 127, but now the large ion, located in the center of the 

cube face, makes contact only with the NNs (small spheres). The NN distance, d, is 

The same plane as in Figs. 127 and 128, but now the smaller ion is too small to 

make contact with larger ions and as a consequence the ion located in the center of the cube 

face makes contact only with its NNNs (large spheres). The NN distance, d r=

defined only by the radius of the larger ion. 
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proceed to calculate the limiting radius ratio for the NaCl 

ion, placed in the 

center of a cubic unit cell face, are located in the centers of the face edges. 

s 127, 128, and 129 show the plane of one of the faces of the cube 

with cross sections of ions that, being considered hard spheres, are 

We can easily distinguish the following 

 

The same plane as in Fig. 127, but now the large ion, located in the center of the 

, is equal to 

 

The same plane as in Figs. 127 and 128, but now the smaller ion is too small to 

make contact with larger ions and as a consequence the ion located in the center of the cube 

2d r
−

= , is 



142 Basic Elements of Crystallography 

 

a.) Each anion makes contact with its NNs (cations) and with the nearest 

anions as is shown in Fig. 127. 

b.) Each anion makes contact only with its NNs (cations), see Fig. 128. 

c.) Each anion makes contact only with the nearest anions as is illustrated in 

Fig. 129. 

We will now proceed to calculate the r r
+ −

 ratio for the case described 

in Fig. 127. We can see in this figure, that  

 2 2r r a
− +

+ = , (IV.9) 

as 

 2 4a r
−

= , (IV.10) 

then 

 
4

2 2 2 2
2

r
r r r−

− + −
+ = =  (IV.11) 

and finally 

 2 1 0.414
r

r

+

−

= − ≅ . (IV.12) 

 

When 0.414r r
+ −

= , each anion touches both its NNs (cations) and the 

NNNs (anions). This is the limiting radius ratio for the NaCl structure which 

was already reported in Table 18. When the radius ratio is higher than the 

limiting one,  

 0.414
r

r

+

−

> , (IV.13) 

each large ion makes contact only with the NNs (small ions) but not with the 

NNNs (see Fig. 128) and the structure is stable. In the opposite case, when 

the radius ratio is smaller than the limiting one, each large ion is in contact 

only with the NNNs (see Fig. 129). However, in principle, this situation 

would lead to a less stable structure and in this case a lower coordination 

number is expected. 

We can see in Table 36, in which are given the data for alkali halides, 

that the listed there radius ratios are smaller than the limiting one, 
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 0.414
r

r

+

−

< , (IV.14) 

only for LiBr and LiI. In the rest of the alkali halides that have the NaCl 

structure, each ion touches its NNs that are of opposite sign. We can also 

observe in this table that in the case of KF, RbF, and CsF compounds the 

cation radius is larger than the anion radius and, as a consequence, the 

condition 

 0.414
r

r

−

+

>  (IV.15) 

has to be considered instead of the condition given by Eq. (IV.13).  

In Table 36 we list values for r r
+ −

or r r
− +

 and r r
− +

+  or 2r
−

, 

depending on the case in consideration. Those values were calculated using 

ionic radii given in the table. Table 36 contains also values for the distances, 

2d a= , between the NNs, obtained using experimental lattice constants 

taken from Table 32. In those cases when the NNs touch each other, d 

should fulfill the equality 

 r r d
− +

+ = , (IV.16) 

what indeed happens to within 2% (see Table 36). This validates the concept 

of ionic radii, since the same radii can be used to calculate the interatomic 

distances for several compounds and those distances are very close to the 

experimental values obtained from the lattice constants. 

In cases when the large ion makes contact only with its NNNs  

( 0.414),r r
+ −

<
 
the distance to the NNs fulfills the following equality 

 2r d
−

= . (IV.17) 

This happens with very good accuracy for LiBr, and LiI (see Table 36). 

Finally, we can observe in Table 36 that about half of the compounds 

considered there have their ionic radius ratios r r
+ −

 (or r r
− +

) in the range 

from 0.414 to 0.732, which is the expected range for the NaCl structure (see 

Table 18). The LiBr and LiI compounds represent the exceptions, for which 

the zinc blende structure (or wurtzite) is predicted according to the ranges 

for ionic radius ratios listed in Table 18. The other exceptions, NaF, KF, 
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RbF, CsF, KCl, RbCl, and RbBr, have the radius ratios within the range 

corresponding to the CsCl structure. 

In this section, we have learned that, among many other compounds, in 

the NaCl structure crystallize compounds of doubly ionized elements from 

columns II and VI of the periodic table, except for the beryllium compounds 

and MgTe. Geometric considerations, similar to that made for alkali halides, 

show that also in the case of II-VI compounds having the NaCl structure 

their ions may be considered, in good approximation, as hard impenetrable 

spheres of definite radii. 

 

 

8.  Cesium Chloride Structure  

 

Pearson symbol: cI2, prototype: CsCl. In the NaCl structure 

(discussed in the previous section), the smaller in general cations are located 

in octahedral interstices (defined by 6 anions) present in the anionic fcc 

substructure. With the increase of the r r
+ −

 ratio, a cubic interstice defined 

by 8 anions becomes a better option for the cations. This is the case of the 

cesium chloride (CsCl) structure, for which the limiting radius ratio is 0.732. 

The CsCl structure is a superposition of two simple cubic substructures. 

Both the cations and the anions occupy the cubic interstices present in each 

Table 36 Several values for alkali halides: a.) cation and anion radii (below the ion symbols), 

b.) ionic radius ratios ( r r
+ −  

or r r
− +

), c.) sums of the ionic radii ( r r
− +

+ ) in cases when 

0.414r r
+ −

>
 
or 2r

−
 in cases when 0.414r r

+ −
< , and d.) experimental values for the NN 

distances, 2d a= , where the lattice constants, a, are given in Table 32. 
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substructure. In Fig. 130 we show the smallest unit cell for CsCl. The cell is 

a cube with one type of ions 

One of the two principal

conditions, crystallize in the CsCl structure is 

halides: CsBr, CsCl,

and TlI. We can see in Table 3

the largest univalent ions (remember that these ions have somewhat different 

radii in the case of the coordination number 8). The other

Figure 131 A plane defined by two body diagonals of the cube shown in Fig. 130. 

plane, there are the points of contact between the cation and its four NNs.

Figure 130 

Crystal Structures of Important Binary Compounds 

Fig. 130 we show the smallest unit cell for CsCl. The cell is 

a cube with one type of ions at the vertices and an opposite ion in the center.

One of the two principal groups of compounds that, under normal 

crystallize in the CsCl structure is formed by three cesium 

CsBr, CsCl, and CsI, and also three thallium halides: TlBr, TlCl, 

and TlI. We can see in Table 36 that CsBr, CsCl, and CsI are the halides of 

the largest univalent ions (remember that these ions have somewhat different 

n the case of the coordination number 8). The other numerous group of 

A plane defined by two body diagonals of the cube shown in Fig. 130. 

plane, there are the points of contact between the cation and its four NNs. 

 

Figure 130 Conventional unit cell for cesium chloride. 
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Fig. 130 we show the smallest unit cell for CsCl. The cell is 

the vertices and an opposite ion in the center. 

under normal 

by three cesium 

TlBr, TlCl, 

that CsBr, CsCl, and CsI are the halides of 

the largest univalent ions (remember that these ions have somewhat different 

group of 

 

A plane defined by two body diagonals of the cube shown in Fig. 130. In this 
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compounds that crystallize in the CsCl structure is formed by intermetallic 

compounds. 

Let us now calculate the limiting radius ratio for the CsCl structure. As 

in the case of the bcc structure, the ions that are at the vertices of the cube 

are the NNs of the ion that is in the center of the cube. Figure 131 shows a 

plane defined by two body diagonals of the cube with the cross section of              

a cation placed in the center and the cross sections of four anions placed at 

the vertices of the cube. We can see in the figure that the points of contact 

between the cation and the anions are on the body diagonals of the cube. 

We can see in Fig. 131 that 

 2 2 3r r a
− +

+ = , (IV.18) 

Table 37 Lattice parameters, obtained under normal conditions, of cesium and thallium 

halides that crystallize in the CsCl structure. 

Compound a (Å) Compound a (Å) 

CsBr 4.286 TlBr 3.970 

CsCl 4.123 TlCl 3.834 

CsI 4.567 TlI 4.205 

Table 38 Lattice parameters (in Angstroms) obtained under normal conditions for 

intermetallic compounds of the RE-Mg or RE-III type that crystallize in the CsCl structure. 

The elements in the compound symbols are listed alphabetically. 

 Mg Al In Tl 

Sc MgSc (3.597) AlSc (3.450) 
  

Y MgY (3.79) AlY (3.754) InY (3.806) TlY (3.751) 

La LaMg (3.965)  InLa (3.985) LaTl (3.922) 

Ce CeMg (3.899) AlCe (3.86)  CeTl (3.893) 

Pr MgPr (3.888) AlPr (3.82) InPr (3.955) PrTl (3.869) 

Nd MgNd (3.867) AlNd (3.73)  NdTl (3.848) 

Sm MgSm (3.848) AlSm (3.739) InSm (3.815) SmTl (3.813) 

Eu    EuTl (3.975) 

Gd GdMg (3.824) AlGd (3.7208) GdIn (3.830) GdTl (3.7797) 

Tb MgTb (3.784)   TbTl (3.760) 

Dy DyMg (3.776) AlDy (3.6826) DyIn (3.7866) DyTl (3.743) 

Ho HoMg (3.770)  HoIn (3.774) HoTl (3.735) 

Er ErMg (3.758)  ErIn (3.745) ErTl (3.715) 

Tm MgTm (3.744)  InTm (3.737) TlTm (3.711) 

Yb   InYb (3.8138) TlYb (3.826) 

Lu LuMg (3.727)    
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as 2a r
−

=  
then 

 2 2 2 3r r r
− + −

+ =  (IV.19) 

and finally 

 3 1 0.732
r

r

+

−

= − ≅ . (IV.20) 

Table 39 Lattice parameters (in Angstroms) obtained under normal conditions for 

intermetallic compounds of the RE-TM type that crystallize in the CsCl structure. The 

elements in the compound symbols are listed alphabetically. 

 Cu Zn Rh Ag Cd Au Hg 

Sc 
CuSc 

3.256 

ScZn 

3.35 

RhSc 

3.206 

AgSc 

3.412 

CdSc 

3.513 

AuSc 

3.370 

HgSc 

3.480 

Y 
CuY 

3.4757 

YZn 

3.577 

RhY 

3.410 

AgY 

3.6196 

CdY 

3.719 

AuY 

3.559 

HgY 

3.682 

La 
 

 

LaZn 

3.759 
 

AgLa 

3.814 

CdLa 

3.904 
 

HgLa 

3.845 

Ce 
 

 

CeZn 

3.696 
 

AgCe 

3.755 

CdCe 

3.855 
 

CeHg 

3.815 

Pr 
 

 

PrZn 

3.678 
 

AgPr 

3.746 

CdPr 

3.829 

AuPr 

3.68 

HgPr 

3.799 

Nd 
 

 

NdZn 

3.667 
 

AgNd 

3.716 

CdNd 

3.819 

AuNd 

3.659 

HgNd 

3.780 

Sm 
CuSm 

3.528 

SmZn 

3.627 

RhSm 

3.466 

AgSm 

3.673 

CdSm 

3.779 

AuSm 

3.621 

HgSm 

3.744 

Eu 
CuEu 

3.479 

EuZn 

3.808 
  

CdEu 

3.951 
 

EuHg 

3.880 

Gd 
CuGd 

3.501 

GdZn 

3.609 

GdRh 

3.435 

AgGd 

3.6491 

CdGd 

3.748 

AuGd 

3.6009 

GdHg 

3.719 

Tb 
CuTb 

3.480 

TbZn 

3.576 

RhTb 

3.417 

AgTb 

3.627 

CdTb 

3.723 

AuTb 

3.576 

HgTb 

3.678 

Dy 
CuDy 

3.462 

DyZn 

3.562 

DyRh 

3.403 

AgDy 

3.609 

CdDy 

3.716 

AuDy 

3.555 

DyHg 

3.676 

Ho 
CuHo 

3.445 

HoZn 

3.548 

HoRh 

3.377 

AgHo 

3.601 

CdHo 

3.701 

AuHo 

3.541 

HgHo 

3.660 

Er 
CuEr 

3.430 

ErZn 

3.532 

ErRh 

3.361 

AgEr 

3.574 

CdEr 

3.685 

AuEr 

3.5346 

ErHg 

3.645 

Tm 
CuTm 

3.414 

TmZn 

3.516 

RhTm 

3.358 

AgTm 

3.562 

CdTm 

3.663 

AuTm 

3.516 

HgTm 

3.632 

Yb  
YbZn 

3.629 

RhYb 

3.347 

AgYb 

3.6787 

CdYb 

3.8086 

AuYb 

3.5634 

HgYb 

3.735 

Lu  
LuZn 

3.491 

LuRh 

3.334 
 

CdLu 

3.640 

AuLu 

3.4955 

HgLu 

3.607 
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Equation (IV.20) gives the value for the limiting radius ratio for the CsCl 

structure. This value was already included in Table 18. In that limiting case 

each anion touches both its NNs (cations) and the NNNs (anions). 

In Tables 37–40 we list the data for about 200 compounds that 

crystallize in the CsCl structure. Table 37 gives the lattice parameters for 

cesium and thallium halides, while Tables 38–40 report the data for 

intermetallic compounds. In those intermetallic compounds that are listed in 

Tables 38 and 39 one of the metallic elements is a RE metal. We can 

observe in these tables that the number of such compounds is significant. In 

the case of the intermetallic compounds in which at least one of the elements 

is a TM, we adopted the convention according to which the elements in 

compound symbols are listed alphabetically. 

 

Table 40 Lattice parameters obtained under normal conditions for intermetallic 

compounds that crystallize in the CsCl structure. The elements are listed alphabetically in 

those compounds where at least one of the elements is a TM. 

Compound a (Å) Compound a (Å) Compound a (Å) 

ββββ-AgCd 3.332 CaTl 3.851 HoIr* 3.383 

AgGa 3.171 CdSr 4.003 InNi 3.093 

ββββ-AgLi 3.168 CoFe 2.857 InPd 3.246 

ββββ-AgMg 3.124 CoGa 2.880 IrLu* 3.332 

ββββ-AgZn 3.1558 CoHf 3.164 IrSc* 3.205 

ββββ-AlCo 2.864 CoSc* 3.145 LiTl 3.435 

AlFe 2.908 CoTi 2.995 LuPd* 3.415 

AlIr 2.983 CoZr 3.181 MgRh 3.099 

ββββ-AlNi 2.882 ββββ-CuPd 2.988 MgSr 3.908 

AlOs 3.001 ββββ-CuZn 2.950 MgTl 3.635 

AuCd 3.3232 CuZr 3.2620 ββββ-MnRh 3.044 

AuCs 4.262 FeRh 2.983 NiSc* 3.171 

AuMg 3.266 FeTi 2.976 NiTi 3.01 

ββββ-AuZn 3.1485 FeV 2.910 OsTi 3.07 

BaCd 4.207 GaIr 3.004 PdSc* 3.282 

BaHg 4.125 ββββ-GaNi 2.886 PtSc* 3.268 

BeCo 2.624 GaRh 3.0063 RuSc* 3.203 

BeCu 2.702 GaRu 3.010 RuTi 3.06 

BeNi 2.6121 HgLi 3.287 SrTl 4.038 

BePd 2.813 HgMg 3.448 TlBi 3.98 

BeRh 2.740 HgMn 3.316 ZnZr 3.336 

CaHg 3.759 HgSr 3.930   

*Intermetallic binary compounds where one of the elements is a RE metal 
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9. Problems 

 

Exercise 1 How many cations and anions do belong to the cubic unit 

cell of the zinc blende structure? Draw this cell and the ions belonging 

to it. Find the position of each ion expressing its coordinates in units of 

the lattice constant a. 

Exercise 2 Repeat Exercise 1, but now for the fluorite structure. 

Exercise 3 Table 27 lists the distances of an ion to the NNs in MnSe, 

MnTe, ZnSe, CdSe, and GaN, for two crystal structures: zinc blende and 

wurtzite. These distances have been obtained using experimental lattice 

constants. Make a similar table with the distances, dNNN, of an ion to the 

NNNs. Express, in percentage, the difference between dNNN obtained for 

the zinc blende and wurtzite structures. In your calculations use the 

experimental lattice constants listed in Tables 20, 21, and 26. 

Exercise 4  

a.) Draw a hexagonal prism for β-ZnS, which crystallizes in the zinc 

blende structure. This prism should be able to reproduce the β-ZnS 

structure. Show on the figure two-dimensional hcp layers AZn, BZn, 

CZn and AS, BS, CS, and the distances between the consecutive 

layers.  

Hint: Similar work was done in Fig. 113 for the wurtzite structure 

of ZnS. See also Figs. 82, 94, and 95. 

b.) How many ions of each type do belong to the hexagonal prism you 

have drawn in a.) and how many ions do belong to the hexagonal 

prism for the wurtzite structure? 

Exercise 5 Let us consider 8 and 12 closest cations to a given cation in 

the NiAs and anti-NiAs structures, respectively. In the case of the NiAs 

structure the 8 cations can be divided, according to the distance to the 

cation in consideration, into two groups of 2 and 6 ions which are closer 

and more distant to the cation, respectively. Using similar criterion, the 

12 cations considered in the anti-NiAs structure can be divided into two 

groups of 6 ions each. In each case the distances depend on the lattice 

constant ratio c a .  

a.) For the following compounds: VSb ( 1.28c a = ), VSe ( 1.63c a = ), 

VS ( 1.75c a = ), and TiS ( 1.93c a = ), that crystallize in the NiAs 

structure, calculate the two closest cation-cation distances, VV

I
d  and 
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VV

IId  (or 
TiTi

Id  and 
TiTi

IId ). For each compound, compare the obtained 

distances expressing the difference in percentage. How does this 

difference change with the increase of the c a  ratio? How many 

NNNs has a cation in each compound? Use the lattice constants a 

and c from Table 30 for VSb and from Table 31 for TiS, VS, and 

VSe. 

Hint: When calculating the number of NNNs assume that whenever 

VV

Id  and 
VV

IId  (or 
TiTi

Id  and 
TiTi

IId ) differ by less than 10%, then the 

ions at both distances are NNNs. On the other hand, if the shortest 

distance differs from the distance of a cation to its nearest anions by 

less than 10%, then the cations at such a distance join the group of 

NNs of the cation in consideration. 

b.) Do a similar work as in a.) for the anti-NiAs structure on the 

example of the following compounds: PtB ( 1.21c a = ), ScPo                   

( 1.65c a = ), δ´-NbN ( 1.87c a = ), and VP ( 1.96c a = ). How 

many NNNs has each Pt ion in the PtB compound (and also V ion in 

the VP compound)? To which two-dimensional hcp layer do those 

ions belong? Answer similar questions for the ScPo and δ´-NbN 

compounds. Use lattice constants a and c from Table 28 for PtB, 

from Table 30 for δ´-NbN and VP, and from Table 31 for ScPo. 

Hint: To determine the number of the NNNs of a given cation use 

the criterions suggested in the Hint of a.). 

Exercise 6 In the case when the lattice constant ratio c a  is much 

smaller than 1.633, each cation in the NiAs structure has indeed 8 NNs: 

6 anions and 2 cations. 

a.) Show that the above is true, to within 3% of the NN interatomic 

distance, for the following compounds: CuSb ( 1.34c a = ), PdSb               

( 1.37c a = ), IrSb ( 1.39c a = ), and IrTe ( 1.37c a = ). Use lattice 

constants a and c from Table 30 for CuSb, PdSb, and IrSb and from 

Table 31 for IrTe. 

b.) Compare the cation-cation distances CuCud , PdPdd , and IrIrd , 

calculated in a.), with the distances 
CuCu

element
d , 

PdPd

element
d , and 

IrIr

element
d , 

respectively, between Cu, Pd, and Ir NNs in the crystals of these 

elements. Confirm that in each case XXd  differ from 
XX

element
d  by less 

than 2%. Use the NN interatomic distances for elements, listed in 

Table 16. 
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Exercise 7 Tables 30 and 35 report the experimental data obtained 

under normal conditions for ZrP in the beta (TiAs structure) and alpha 

(NaCl structure) phases, respectively. 

a.) Calculate and compare the distances NaCl

ZrPd  and TiAs

ZrPd  
between the 

NNs in the two structures. 

b.) Calculate the distance, NaCl

ZrZrd , between the NNNs in α-ZrP. Calculate 

also the distances 
TiAs

ZrZrd  between a given Zr ion and the 10 closest     

Zr ions to it in β-ZrP. Compare the obtained distances with NaCl

ZrZrd , 

expressing the differences in percentage. When making comparisons 

take into account the number of ions at each distance. 

Exercise 8 Tables 30 and 35 report the experimental data obtained 

under normal conditions for δ'-NbN (anti-NiAs structure) and ε-NbN 

(TiAs structure), and δ-NbN (NaCl structure), respectively. 

a.) Calculate and compare the NN distances: NaCl

NbNd , NiAs

NbNd , and TiAs

NbNd , 

for the three structures. 

b.) Calculate the distance between the NNNs in δ-NbN. Calculate also 

the two and three closest distances between the Nb ions in the anti-

NiAs and TiAs structures, respectively. 

Hint: Draw the hexagonal prism with the Nb cations in its vertices 

to visualize better the location of the NNNs of a cation in the anti-

NiAs structure.  

c.) Compare the two distances obtained in b.) for the case of the 

anti-NiAs structure with the distance between the nearest Nb ions in 

δ-NbN. When making comparisons take into account the number of 

ions at each distance. 

d.) Do the same as in c.) for NbN in the TiAs structure. Note that for 

this structure you have to consider the three closest distances 

between the Nb ions. 

Exercise 9 Find the filling factors for the following compounds                 

that crystallize in the NaCl structure: LiCl ( 0.42r r
+ −

= ), NaCl                        

( 0.56),r r
+ −

=  RbCl ( 0.84r r
+ −

= ), and KF ( 0.96r r
− +

= ). The cation 

radii, r
+

, and the anion radii, r
−

, are listed in Table 36 and the lattice 

parameters a for I-VII compounds are listed in Table 32. 

a.) What is the relation between the values for the filling factor and the 

r r
+ −

 (or r r
− +

) ratio? 

b.) What would be the value of the filling factor in the case when 

1r r
+ −

= ? Answer without doing any calculations. 
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Exercise 10 Prepare a similar table to Table 36 for II-VI compounds that 

crystallize in the NaCl structure. The radii of the double ionized 

elements from column II of the periodic table are: 0.72 Å for Mg
2+

, 

1.00 Å for Ca
2+

, 1.18 Å for Sr
2+

, and 1.35 Å for Ba
2+

, and the radii for 

the double ionized elements from column VI are: 1.40 Å for O
2−

, 1.84 Å 

for S
2−

, 1.98 Å for Se
2−

, and 2.21 Å for Te
2−

. Show that the interatomic 

distance, d, expressed by the sum of ionic radii, r r
− +

+ , if 0.414r r
+ −

> , 

or by 2r
−

, if 0.414r r
+ −

< , agree to within 2% with the value 

obtained from the experimental lattice constant ( 2d a= ). The lattice 

parameters a for II-VI compounds are listed in Table 33. 
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V. RECIPROCAL LATTICE 

 

 

1. Introduction 

 

Crystal structures considered in previous chapters correspond to ideal 

crystalline materials, it means, refer to the cases when the atoms are in their 

equilibrium positions, what obviously represents the first approximation in 

the description of such materials. We know already that an infinite crystal 

structure possesses a translation symmetry which together with the point 

symmetry characterizes the lattice of a given structure. In this chapter, we 

will introduce the concept of the so called reciprocal lattice which has the 

same point symmetry as the crystal lattice (direct lattice) and plays an 

important role in the description of the physical properties of crystalline 

materials. 

 

 

2. The Concept of the Reciprocal Lattice 

 

The concept of the reciprocal lattice will be introduced starting from the 

fact that in an ideal infinite crystalline material the electrostatic potential 

produced by all the charges present in it is periodic with the periodicity of 

the crystal lattice. Let us denote the lattice translation vector as 
na �
�

. This 

vector can be expressed as a linear combination of three non collinear 

primitive translation vectors 
1a
�

, 
2a
�

, 
3a
�

 or as a linear combination of the 

versors 
1â , 

2â , 
3â  

 
n 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

ˆ ˆ ˆa a a a a a an n n n a n a n a= + + = + +�
� � � �

, (V.1) 

where 
1 2 3, ,n n n ∈ℤ . A position vector r

�
 of any point in the crystal may be 

expressed in the 
1â , 

2â , 
3â  basis 

 
1 1 2 2 3 3
ˆ ˆ ˆr a a aξ ξ ξ= + +

�
, (V.2) 

where the real numbers 
1ξ , 

2ξ , 
3ξ  are coordinates of the vector in this  

basis. 

 In the approximation in which we are considering the crystalline 

material the r
�

 and ( )n
r a+ �

� �

 
points, shown in Fig. 132, are physically 

equivalent and as a consequence the electrostatic potential, ( )rV
�

, produced 
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by all the charges present in the crystal has the same value in both                

points 

 ( ) ( )n
r r aV V= + �

� � �

.  (V.3) 

That means the potential is periodic. Any periodic function can be expanded 

into its Fourier series. We will do that for ( )rV
�

 with respect to each of the 

components of the argument r
�

 in axes 
1ξ , 

2ξ , 
3ξ , along of which the 

periodicity occurs. We have then 

 ( ) ( )
1 2 3

1 2 3

3 31 1 2 2
1 2 3

1 2 3

r , , exp 2
l l l

l l l

ll l
V V V i

a a a

ξξ ξ
ξ ξ ξ π

∞ ∞ ∞

=−∞ =−∞ =−∞

  
= = + +  

   
∑ ∑ ∑

�

,  

(V.4) 

where
 1l , 

2l , 
3l  are integer numbers and ( )1 2 3

, ,V ξ ξ ξ  is periodic with 

respect to each of its arguments 
1ξ , 

2ξ , 
3ξ  with periods 

1a , 
2a , 

3a , 

respectively. It is easy to show that the potential expressed in this way is 

indeed periodic. Since 

 ( ) ( ) ( )n 1 1 1 1 2 2 2 2 3 3 3 3
ˆ ˆ ˆr a  a  a  an a n a n aξ ξ ξ+ = + + + + +�

� �

, (V.5) 

 

Figure 132 A two-dimensional crystal lattice. The points r
�

 and ( )nr + a �
� �

 have equivalent 

positions in the infinite lattice. 



 

we have 

( )

1 2 3

1 2 3

nr a

l l l

l l l

l l l

l l l

V

V i

V i l n l n l n i

∞ ∞ ∞

=−∞ =−∞ =−∞

∞ ∞

=−∞ =−∞ =−∞

+

= + +

= + + ⋅ + +

∑ ∑ ∑

∑ ∑

�

� �

1 2 3

l l l

l l l

V i V

∞

∞ ∞ ∞

=−∞ =−∞ =−∞

= + + =

∑

∑ ∑ ∑

where we took into account that

 1 1 2 2 3 3 1 1 2 2 3 3l n l n l n i l n l n l n+ + =

 

Now, we will make a transformation to an ort

system. The coordinates of the position vector 

shown in Fig. 133 can be expressed as a function of its coordinates given in 

the 
1ξ  

and 
2ξ  axes 

 

Figure 133 The relation between the components of the vector 

orthogonal coordinate systems.

Reciprocal Lattice  

( ) ( ) (

( )

1 2 3

1 2 3

1 1 1 1 2 2 2 2 3 3 3 3

1 2 3

1 1 2 2
1 1 2 2 3 3

1 2 3

exp 2

exp 2 exp 2

l l l

l l l

l n a l n a l n a
V i

a a a

l l
V i l n l n l n i

a a a

ξ ξ ξ

π

ξ ξ
π π

  + + + = + +    

  
  = + + ⋅ + +      

( )
1 2 3

3 31 1 2 2

1 2 3

exp 2 r ,l l l

ll l
V i V

a a a

ξξ ξ
π

   = + + =      

�

into account that 

( )1 1 2 2 3 3 1 1 2 2 3 3(integer number)  exp 2 1l n l n l n i l n l n l nπ+ + = ⇒  + +  
 

we will make a transformation to an orthogonal coordinate 

. The coordinates of the position vector r
�

 in the orthogonal system 

shown in Fig. 133 can be expressed as a function of its coordinates given in 

 

The relation between the components of the vector r
�

 in the orthogonal and non 

systems. 
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)1 1 1 1 2 2 2 2 3 3 3 3

1 2 3

3 31 1 2 2

1 2 3

l n a l n a l n a

a a a

l

a a a

ξ

  + + +      

   = + + ⋅ + +     

   

(V.6) 

(integer number)  exp 2 1 =  . 

(V.7) 

coordinate 

in the orthogonal system 

shown in Fig. 133 can be expressed as a function of its coordinates given in 

in the orthogonal and non 
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1 1 2

2 2

cos

sin

x

x

ξ ξ ϕ

ξ ϕ

= +


=
. (V.8) 

The above represents a system of linear equations for 
1ξ  and 

2ξ . By solving 

for 
2ξ  first and 

1ξ  after, we find 

 

2 2

1 1 2

2 2
1 1 2

1

cotsin
                       

cos csc

sin

x
x x

x
x x

ξ

ξ ϕϕ

ϕ ξ ϕ
ξ

ϕ


=

= −
⇒ 

=
= −



. (V.9) 

The formulas for 
1ξ  and 

2ξ  can be rewritten more generally as follows 

 

1 11 1 12 2 11 12

2 21 1 22 2 21 22

,         where      1  and  cot

,         where      0  and  csc

a x a x a a

a x a x a a

ξ ϕ

ξ ϕ

= + = = −


= + = =
. (V.10) 

In a three-dimensional case, if the origins of the non orthogonal and 

orthogonal coordinate systems coincide, we have 

 

3

1 11 1 12 2 13 3 1

1

3

2 21 1 22 2 23 3 2

1

3

3 31 1 32 2 33 3 3

1

k k

k

k k

k

k k

k

a x a x a x a x

a x a x a x a x

a x a x a x a x

ξ

ξ

ξ

=

=

=


= + + =




= + + =



= + + =


∑

∑

∑

, (V.11) 

where the 
ika  coefficients are determined by the angles between axes 

iξ  and 

kx . 

We will now substitute 
1ξ , 

2ξ , 
3ξ given by Eqs. (V.11) into Eq. (V.4), 

then    

 ( ) [ ]
1 2 3

1 2 3

r exp 2
l l l

l l l

V V iAπ

∞ ∞ ∞

=−∞ =−∞ =−∞

= ∑ ∑ ∑
�

, (V.12) 

where 
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3 3 3
31 2

1 2 3

1 1 11 2 3

3 31 3 321 11 2 21 1 12 2 22
1 2

1 2 3 1 2 3

1 13 2 23 3 33
3

1 2 3

k k k k k k

k k k

ll l
A a x a x a x

a a a

l a l al a l a l a l a
x x

a a a a a a

l a l a l a
x

a a a

= = =

= + +

      = + + + + +        

  + + +   

∑ ∑ ∑

 

(V.13)

 

and abbreviating  

 

3 311 11 2 21
1

1 2 3

3 321 12 2 22
2

1 2 3

1 13 2 23 3 33
3

1 2 3

2

2

2

l al a l a
b

a a a

l al a l a
b

a a a

l a l a l a
b

a a a

π

π

π

  
= + +  

 
  

= + +  
 

   = + + 
  

 (V.14) 

we obtain 

 ( ) ( )
1 2 3

1 2 3

1 1 2 2 3 3
r exp

l l l

l l l

V V i b x b x b x
∞ ∞ ∞

=−∞ =−∞ =−∞

=  + +  ∑ ∑ ∑
�

. (V.15) 

From this point on, the summation over 
1l , 

2l , 
3l  will be replaced by the 

summation over discreet parameters 
1b , 

2b , 
3b , determined by the 

( ) 1,2,3
k

l k =  according to Eqs. (V.14). Moreover, it will be helpful to 

consider 
ib  ( 1,2,3i = ) as coordinates of a certain vector b

�

 in the orthogonal 

coordinate system. In this manner 

 
1 1 2 2 3 3 b rb x b x b x+ + = ⋅

�

�

 (V.16) 

and then 

 ( ) ( ) ( )
1 2 3

1 2 3

1 1 2 2 3 3 b
b

r exp exp b r
b b b

b b b

V V i b x b x b x V i=  + +  = ⋅ ∑∑∑ ∑ �

�

�

� �

. 

  (V.17) 
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The components of vector b
�

 are given by Eqs. (V.14), however, it is 

convenient to determine the formula for this vector again, starting from the 

condition of periodicity of the crystal potential, which guides us to the 

following conclusion: 

 

( ) ( )

( )

( )

n nb
b

nb
b n

b
b

r a exp ib r a

exp ib r exp ib a r
exp ib a 1

and

r exp ib r

V V

V V

V V

 + = ⋅ +  


   = ⋅ ⋅ ⋅ =      ⇒ ⋅ =  



 = ⋅   

∑

∑

∑

�� �

�

� �

�
�

�

�

�� � � �

� �� � �
� �

�� �

.                              

(V.18) 

This means that in order for the potential to be periodic with periods na �
�

, the 

following equality has to be achieved 

 
nexp ib a 1 ⋅ = 
�

� �
. (V.19) 

It is easy to see that Eq. (V.19) implies the periodicity of the function 

( )exp bri
��

, since 

 

( ) ( ) ( ) ( )

( ) ( )

n n

n

exp b r a exp b r exp b a exp b r

exp b r a exp b r

i i i i

i i

 ⋅ + = ⋅ ⋅ ⋅ = ⋅ 

⇓

 ⋅ + = ⋅ 

� �

�

� � � �� � � � �

� �� � �

 (V.20) 

and vice versa, (V.20) implies Eq. (V.19). In conclusion, the potential ( )rV
�

 

can be expressed as a function of plane waves ( )exp b ri ⋅

� �
 which are periodic 

with the periodicity of the lattice. Next, we will use Eq. (V.19) to find the 

expression for the vector b
�

 that characterizes such plane waves. We have 

 
n nexp b a 1  b a (integer number) 2 ,  for all vectors ni π ⋅ = ⇒ ⋅ = ⋅ 
� �

� �� � �
 

  (V.21) 

and using Eq. (V.1) we obtain 
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( )

( ) ( ) ( )

n 1 1 2 2 3 3

1 1 2 2 3 3

b a b a a a

b a b a b a

(integer number) 2

n n n

n n n

π

⋅ = ⋅ + +

= ⋅ + ⋅ + ⋅

= ⋅

�

� �� � � �

� � �� � �
, 

(V.22)

 

for all possible 
1 2 3, ,n n n ∈ℤ . The condition given by Eq. (V.22) is satisfied 

only if 

 

1 1

2 2 1 2 3

3 3

b a 2

b a 2 ,  where  , ,

b a 2

g

g g g g

g

π

π

π

 ⋅ = ⋅


⋅ = ⋅ ∈


⋅ = ⋅

� �

� �
ℤ

� �

. (V.23) 

The above represents three scalar equations for three components of vector 

b
�

. To solve these equations, instead of using the orthogonal coordinate 

system, we are going to express vector b
�

 as a linear combination of three 

non collinear vectors defined in the following manner: 

 
1 2 2 3 3 1a a ,  a a ,  a a× × ×
� � � � � �

. (V.24) 

We have then 

 ( ) ( ) ( )1 2 2 3 3 1b a a a a a aα β γ= × + × + ×

� � � � � � �
, (V.25) 

where the scalars α, β, and γ are coefficients of the linear combination. The 

task of solving Eqs. (V.23) consists now in finding the expression for the α, 

β, γ coefficients. To this end we substitute Eq. (V.25) into Eqs. (V.23) and 

obtain 

 

( )

( )

( )

1 2 3 1 1
0 1

2 3 1 2 2 0 2

0 3
3 1 2 3 3

b a a a a 2 2

b a a a a 2   2

2b a a a a 2

g g

g g

gg

β π β π

γ π γ π

α πα π

 ⋅ = × ⋅ = ⋅
Ω = ⋅

 
⋅ = × ⋅ = ⋅ ⇒ Ω = ⋅ 

 
Ω = ⋅⋅ = × ⋅ = ⋅ 

� � � � �

� � � � �

� � � � �

, (V.26) 

since 

 ( ) ( ) ( )1 2 3 2 3 1 3 1 2 0
a a a a a a a a a× ⋅ = × ⋅ = × ⋅ = Ω
� � � � � � � � �

. (V.27) 
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From (V.26) we finally obtain the following expressions for the coefficients 

α, β, γ 

 3 1 2

0 0 0

2 ,  2 ,  2
g g g

α π β π γ π= = =

Ω Ω Ω

, (V.28) 

then vector b
�

 has the following formula 

 

( ) ( ) ( )2 3 3 11 2

3 1 2

0 0 0

1 1 2 2 3 3

a a a aa a
b 2 2 2

b b b

g g g

g g g

π π π

× ××

= + +

Ω Ω Ω

= + +

� � � �� �
�

� � �
, (V.29) 

where  

 2 3 3 1 1 2
1 2 3

0 0 0

(a a ) (a a ) (a a )
b 2 ,  b 2 ,  b 2π π π

× × ×
= = =

Ω Ω Ω

� � � � � �
� � �

. (V.30) 

We obtained that vector b
�

 is a linear combination of vectors 1b
�

, 2b
�

, 3b
�

, 

defined by Eqs. (V.30), with integer coefficients 1g , 2g , 3g . We have then 

a set of discreet vectors b
�

 and this makes them similar to vectors na �
�

, 

defined by Eq. (V.1), that go from one point to any other of the crystal 

lattice (direct lattice). In analogy to na �
�

 we define vectors gb�
�

 as 

 g 1 1 2 2 3 3 1 2 3b b b b ,   , ,g g g g g g= + + ∈�

� � � �
ℤ . (V.31) 

It is convenient to call lattice a set of points generated by all possible vectors 

gb�
�

. This lattice is called the reciprocal lattice and vectors 1b
�

, 2b
�

, 3b
�

 are its 

primitive translation vectors. From Eqs. (V.30) we can see that they are 

defined by vectors 1a
�

, 2a
�

, 3a
�

 
that are three non collinear primitive 

translation vectors of the direct lattice. The primitive translation vectors of 

the reciprocal lattice define the unit cell of this lattice, which is shown in 

Fig. 134. 

In conclusion, we can say that the plane waves gexp( b r)i ⋅�

� �
, in                 

which the periodic crystal potential was expanded, are characterized                     

by the translation vectors gb�
�

 of the reciprocal lattice. The relation between 

the reciprocal and direct lattices is such that the translation vectors of the 

reciprocal lattice define the plane waves that have the periodicity of the 

direct lattice. So we have that 



 

 

what, at the same time, guarantees the periodicity of the 

(r)V
�

.  

It can be easily 

 

and we will use this property of vectors 

the unit cell of the reciprocal lattice. Since 

 

1 2 3 1 2 1 2

0 0

V (b b ) b (b b ) (a a )

2π

= × ⋅ = × ⋅ ×

= ⋅ ⋅ − ⋅ ⋅ =

Ω Ω

� � � � �

where we have used the identity

 (A B C D A C B D A D B C× ⋅ × = ⋅ ⋅ − ⋅ ⋅

� � � � � �� � � � � �

which is true for any three vectors

the relations given by Eq. (V.33). We can see from (V.34) that the 

volume of the unit cell of the reciprocal lattice is equal to the inverse of 

the volume of the unit cell of the direct lattice multiplied by factor 

Figure 134 The unit cell of a reciprocal lattice defined by the primitive translation vectors

1 2 3b ,b ,and b .
� � �

 

Reciprocal Lattice  

g n gexp( b (r a )) exp( b r)i i⋅ + = ⋅� � �

� �� � �
, 

what, at the same time, guarantees the periodicity of the crystal potential

proved that 

0,    for  
a b 2

2 ,    for  
i k ik

i k

i k
πδ

π

≠
⋅ = = 

=

��
 

and we will use this property of vectors a i

�
 and b

k

�
 to calculate the volume of 

the unit cell of the reciprocal lattice. Since 3 1 2 0b 2 (a a )π= × Ω

� � �
, we have

( ) ( ) ( ) ( )
( )

1 2 3 1 2 1 2

0

3

1 1 2 2 1 2 2 1

0 0

2
V (b b ) b (b b ) (a a )

2
b a b a b a b a

π

ππ

= × ⋅ = × ⋅ ×

Ω

 = ⋅ ⋅ − ⋅ ⋅ = 
Ω Ω

� � � � � � �

� � � �� � � �
, 

where we have used the identity 

) ( ) ( )( ) ( )( )A B C D A C B D A D B C× ⋅ × = ⋅ ⋅ − ⋅ ⋅

� � � � � �� � � � � �
, 

h is true for any three vectors and in the last step, we have used 

the relations given by Eq. (V.33). We can see from (V.34) that the 

of the unit cell of the reciprocal lattice is equal to the inverse of 

volume of the unit cell of the direct lattice multiplied by factor (2
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(V.32) 

potential 

(V.33) 

to calculate the volume of 

, we have  

(V.34) 

(V.35) 

we have used                     

the relations given by Eq. (V.33). We can see from (V.34) that the               

of the unit cell of the reciprocal lattice is equal to the inverse of              

)
3

2π . 

 

The unit cell of a reciprocal lattice defined by the primitive translation vectors 
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3. Examples of Reciprocal

 

We will now 

example, we will consider the triclinic lattice.

 

3.1. Reciprocal of the Triclinic L

We can see in Fig. 135 that the reciprocal 

triclinic. As we remember from Chapter 

lengths of the unit cell edges or on their interaxial angles

Given that the reciprocal of a triclinic lattice is also triclinic

for the reciprocal lattice.

Each of the b
�

reciprocal lattice, see Fig. 135) 

the three vectors 1a
�

should be noted that the dimensions of the 

comparable since the unit of 

We will consider now two more lattices

crystal system. 

  

3.2. Reciprocal of 

The primitive unit cell of the reciproca

shape, so this reciprocal lattice is also simple cubic.

Figure 135 Primitive unit cell 

also the primitive unit cell for the 
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eciprocal Lattices 

give some examples of reciprocal lattices. As a first 

we will consider the triclinic lattice. 

l of the Triclinic Lattice 

We can see in Fig. 135 that the reciprocal of a triclinic lattice is also 

As we remember from Chapter II, there are no restrictions on the 

lengths of the unit cell edges or on their interaxial angles in a triclinic lat

the reciprocal of a triclinic lattice is also triclinic, the same is true 

for the reciprocal lattice. 

b
i

�

 
vectors (which define a primitive unit cell of the 

see Fig. 135) is orthogonal to the plane defined by two of 

1a
�

, 2a
�

, 3a
�

, which are the generators of the direct lattice.

hould be noted that the dimensions of the cells in Fig. 135 

comparable since the unit of 
ia  is meter and that of 

ib  
is inverse meter

We will consider now two more lattices, which belong to the cubic 

 the Simple Cubic Lattice 

The primitive unit cell of the reciprocal of the sc lattice has a cubic 

reciprocal lattice is also simple cubic. This is shown in 

 

Primitive unit cell of the reciprocal of the triclinic lattice. In the figure, we show 

the primitive unit cell for the direct lattice. 

some examples of reciprocal lattices. As a first 

a triclinic lattice is also 

there are no restrictions on the 

a triclinic lattice. 

the same is true 

a primitive unit cell of the 

is orthogonal to the plane defined by two of 

generators of the direct lattice. It 

 are not 

meter. 

which belong to the cubic 

lattice has a cubic 

This is shown in                

. In the figure, we show 



 

Fig. 136.  The volume of the unit

the expression 

 

 

where 
0Ω  is the volume of the primitive unit cell for the direct lattice.

Figure 136 

Figure 137 Cubic unit cell 

that define a rhombohedral unit cell for this lattice.

Reciprocal Lattice  

The volume of the unit cell of the reciprocal lattice is given by 

( ) ( )
3 3

1 2 3 3

0

2 2
V b b b

a

π π

= ⋅ ⋅ = =

Ω

, 

is the volume of the primitive unit cell for the direct lattice.

Figure 136 Cubic unit cells of the sc lattice and its reciprocal lattice. 

Cubic unit cell of the fcc lattice and the primitive translation vectors a
�

rhombohedral unit cell for this lattice. 
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lattice is given by            

(V.36) 

is the volume of the primitive unit cell for the direct lattice. 

 

 

1a
�

, 2a
�

, 3a
�
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3.3. Reciprocal of the Face Centered Cubic Lattice 

Let us first remind some basics about the fcc lattice. The primitive 

translation vectors that define a rhombohedral unit cell for the fcc lattice are 

shown in Fig. 137. The volume of the rhombohedral unit cell is also given in 

this figure. The three non collinear primitive translation vectors for the 

reciprocal of the fcc lattice are calculated below. We have 

 

2 3 1 1
1 2 231

0 4 1 1
2 2

3 1 1 1
2 2 231

0 4 1 1
2 2

1 2 1 1
3 2 231

0 4 1 1
2 2

ˆ ˆ ˆx y z
a a 2 2 2 2

ˆ ˆ ˆb 2 0 x y z

0

ˆ ˆ ˆx y z
a a 2 2 2 2

ˆ ˆ ˆb 2 0 x y z

0

ˆ ˆ ˆx y z
2 2 2 2

ˆ ˆ ˆb 2 0 x y z

0

a a
a a a a

a a

a a
a a a a

a a

a a
a a

a a a a
a a

π π π π
π

π π π π
π

π π π π
π

×

= = = − +

Ω

×

= = = + −

Ω

×

= = = − + +

Ω

� �
�

� �
�

� �
�

. (V.37) 

Using the above expressions for bi

�

 it is easy to show that  

 

2

1 2 3

2 2 3
3b b b

a a

π π 
= = = = 

 
 (V.38) 

and also 

 ( ) ( ) ( )1 2 2 3 1 3b ,b b ,b b ,b= =

� � � � � �

∢ ∢ ∢ . (V.39) 

This means that the primitive unit cell of the reciprocal lattice has also a 

rhombohedral shape. If we now compare the expressions for vectors 
1b
�

, 
2b
�

, 

3b
�

 given by Eqs. (V.37) with the expressions for the vectors 
1a
�

, 
2a
�

, 
3a
�

 

given in Chapter II for the bcc lattice (see the equations in Fig. 44) then we 

find that bcc is the reciprocal lattice of the fcc lattice with lattice constant 

4 aπ (see Fig. 138). It is also true that fcc is the reciprocal lattice of the bcc 

lattice. 



 

In Fig. 138 we have placed the rhombohedral unit cell and the cubic unit 

cell for the reciprocal of the 

of the cube shown in the figure 

to this cube (the ones that 

 

 

4. Problems 

 

Exercise 1 Eq. (V.22) 

two-dimensional lattice

 
n 1 1 2 2b a b a b a (integer number) 2⋅ = ⋅ + ⋅ = ⋅�

� � �� � �

for all possible 

translation vectors 

lattice generated by primitive vectors 

Eq. (V.40) is satisfied only if

 

Figure 138 Primitive rhombohedral

by primitive translation vectors

Reciprocal Lattice  

In Fig. 138 we have placed the rhombohedral unit cell and the cubic unit 

cell for the reciprocal of the fcc lattice. Note that vectors bi

�
 go from a

shown in the figure towards three centers of the cubes 

(the ones that share a common vertex with this cube). 

Eq. (V.22) is reduced to the following form in the case of a 

dimensional lattice 

( ) ( )n 1 1 2 2b a b a b a (integer number) 2n n π⋅ = ⋅ + ⋅ = ⋅

� � �� � �
, 

for all possible 
1 2,n n ∈ℤ . The above represents the condition for

translation vectors b
�

 of the reciprocal of a two-dimensional cry

generated by primitive vectors 
1a
�

 and 
2a
�

. The condition given by 

) is satisfied only if 

1 1

1 2

2 2

b a 2
,  where  , .

b a 2

g
g g

g

π

π

 ⋅ = ⋅
∈

⋅ = ⋅

� �

ℤ� �  

rhombohedral unit cell for the bcc reciprocal lattice. The cell is defined 

by primitive translation vectors
1b
�

, 
2b
�

, 
3b
�

 with coordinates given in the figure. 
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In Fig. 138 we have placed the rhombohedral unit cell and the cubic unit 

go from a vertex 

 adjacent 

case of a 

(V.40) 

. The above represents the condition for 

dimensional crystal 

The condition given by 

(V.41) 

 

reciprocal lattice. The cell is defined 
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From Eqs. (V.41) we 

to 1a
�

 or 2a
�

. Two such vectors are shown in Fig. 139. 

those two vectors

a.) Show that the translation vector 

following expression

 

where 1g , 

orthogonal to

Hint: Express the translation vector 

versors 1b̂  and 

 

then find those coefficients and the

translation vectors 

b.) For each of the five lattices existing in two dimensions draw the 

primitive unit cell for its reciprocal lattice (defined by the vectors 

and 2b
�

 specified

cell for the direct lattice shown in Fig. 15.

Exercise 2 Show that the primitive translation vectors 

2b
�

 for a two-dimensional

satisfy Eq. (V.33). 

Hint: Solve first point a.) in Exercise 1 in order to have the expressions 

for 1b
�

and 2b
�

. 

 

Figure 139 Vectors 1a
�

reciprocal lattices, respectively.

Basic Elements of Crystallography 

qs. (V.41) we deduce that there are vectors b
�

 that are orthogonal 

Two such vectors are shown in Fig. 139. Let us

two vectors, that are primitive translation vectors, as 1b
�

 and 

Show that the translation vector b
�

 of the reciprocal lattice 

expression 

1 1 2 2b b bg g= +

� � �
, 

, 
2g  are defined by Eqs. (V.41), and 1b

�
and 

orthogonal to 2a
�

 and 1a
�

, respectively. 

xpress the translation vector b
�

 as a linear combination of 

and 2b̂  with coefficients α and β 

1 2
ˆ ˆb b bα β= +

�
, 

those coefficients and the expressions for the primitive 

translation vectors 1b
�

 and 2b
�

. 

For each of the five lattices existing in two dimensions draw the 

primitive unit cell for its reciprocal lattice (defined by the vectors 

specified in a.)) together with the conventional primitive unit 

cell for the direct lattice shown in Fig. 15. 

Show that the primitive translation vectors 
1a
�

, 2a
�

dimensional crystal lattice and its reciprocal, respectively, 

satisfy Eq. (V.33).  

Solve first point a.) in Exercise 1 in order to have the expressions 

 

1a
�

, 2a
�

 and 
1b
�

, 
2b
�

 that generate the two-dimensional direct and 

reciprocal lattices, respectively. 

that are orthogonal 

Let us denote 

and 2b
�

. 

of the reciprocal lattice has the 

(V.42) 

and 2b
�

 are 

linear combination of 

(V.43) 

expressions for the primitive 

For each of the five lattices existing in two dimensions draw the 

primitive unit cell for its reciprocal lattice (defined by the vectors 1b
�

 

in a.)) together with the conventional primitive unit 

2a
�

and 1b
�

, 

, respectively, 

Solve first point a.) in Exercise 1 in order to have the expressions 

dimensional direct and 
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Exercise 3  

a.) Show that the reciprocal of the bcc Bravais lattice (with lattice 

constant a) is the fcc lattice (with lattice constant 4 aπ ). 

b.) Using the primitive translation vectors for the fcc reciprocal lattice, 

obtained in a.), draw the primitive unit cell inside the cubic unit cell 

for this lattice. 

Exercise 4 Prove that the reciprocal of a reciprocal lattice is its direct 

lattice. 

Hint: Substitute the expressions for 1b
�

, 2b
�

, 3b
�

 
given by Eqs. (V.30) 

into the expressions for the primitive translation vectors of the reciprocal 

of a reciprocal lattice given by 

2 3 3 1 1 2(b b ) (b b ) (b b )
2 ,  2 ,  2

V V V
π π π

× × ×

� � � � � �

, 

where V is the volume of the primitive unit cell of the reciprocal lattice. 

To simplify the result, make use of the vector identity

 

( ) ( ) ( )A B C B A C C A B× × = ⋅ − ⋅

� � � � � �� � �
 

and Eq. (V.34).
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VI. DIRECT AND RECIPROCAL LATTICES 

 

 

1. Introduction 

 

A three-dimensional Bravais lattice may be seen as a set of two-

dimensional lattices, whose planes are parallel to each other and equally 

spaced. Each of these planes represents a lattice plane of the three-

dimensional Bravais lattice. The way of seeing a three-dimensional lattice as 

a set of two-dimensional lattices is not unique. A set of parallel, equally 

spaced lattice planes is known as a family of lattice planes. The orientation 

of the planes belonging to each family is given by the so called Miller 

indices. We will show in this chapter that the Miller indices represent the 

components of a translation vector of the reciprocal lattice which is 

orthogonal to the family of the lattice planes labeled with these indices. In 

the next section, we will learn how to obtain the Miller indices. 

 

 

2. Miller Indices 

 

We will show, first, examples of lattice planes in a given Bravais lattice. 

A lattice plane is defined by at least three non collinear lattice points. In    

Fig. 140 we can see four lattice planes with different orientations in the sc 

lattice. 

Let us now introduce the Miller indices. They specify the orientation of 

a Bravais lattice plane (or the family of planes) in a very useful manner, 

what we will see later. The Miller indices, h, k, l, can be obtained as follows: 

a.) From the family of lattice planes that are parallel to each other, we select 

a plane that crosses the lattice axes (defined by the primitive translation 

vectors 
1a
�

, 
2a
�

, 
3a
�

) in the lattice points. The position vectors of these 

points, given in the non orthogonal reference system with axes along 
1a
�

, 

2a
�

, 
3a
�

 (see Fig. 141), are
 1 1 1r   as=
� �

, 
2 2 2r   as=
� �

, 
3 3 3r   as=
� �

, where 

1 2 3, ,s s s ∈ℤ . 

b.) Next, we take the inverse values of the numbers 
1s , 

2s , 
3s  and reduce 

them to the smallest integers with the same ratio, namely, 

 
1 2 3

1 1 1
: : : :h k l

s s s
= . (VI.1) 
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The integer numbers with no common factors, 

way are known as the Miller indices, which placed in parenthesis, 

denote a family of lattice planes parallel to each other.

As a first example

Fig. 141. For this case

 

that is to say, the Miller indices of the plane represented in Fig. 141 are 4, 

3, 6 and the plane is specified by (436).

in Figs. 140a-140d. In these figures, we can find four lattice planes in the 

lattice. The plane shaded in Fig. 140a includes a cube face. It intersects

only the x axis in the point 

Figure 140 Four lattice planes with different orientation

Basic Elements of Crystallography 

The integer numbers with no common factors, h, k, l, obtained in this 

way are known as the Miller indices, which placed in parenthesis, 

denote a family of lattice planes parallel to each other. 

As a first example, we will use Eq. (VI.1) for the case shown in 

Fig. 141. For this case 

1 2 3

1 1 1 1 1 1
: : : : 4:3:6 : :

3 4 2
h k l

s s s
= = = , 

that is to say, the Miller indices of the plane represented in Fig. 141 are 4, 

3, 6 and the plane is specified by (436). Let us next describe the cases shown 

d. In these figures, we can find four lattice planes in the 

lattice. The plane shaded in Fig. 140a includes a cube face. It intersects

axis in the point 
1 1r 1a=
� �

 (the other intercepts are at the “infinity”),

Four lattice planes with different orientations in the sc lattice. 

, obtained in this 

way are known as the Miller indices, which placed in parenthesis, (hkl), 

for the case shown in                 

(VI.2) 

that is to say, the Miller indices of the plane represented in Fig. 141 are 4,                

the cases shown 

d. In these figures, we can find four lattice planes in the sc 

lattice. The plane shaded in Fig. 140a includes a cube face. It intersects              

(the other intercepts are at the “infinity”), 

 

 



 

 

thus Eq. (VI.1) turns to the following form for this case:

 

In the similar way, we obtain the Miller indices for the rest of the p

shown in Fig. 140, namely,

 

1 1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 -1

for Figs. 140b-140d, respectively. 

the z axis in the point 

Figure 141 Three-dimensional c

1a
�

, 2a
�

, 3a
�

. The lattice plane shown in the figure intersects the axes 

points. 

Direct and Reciprocal Lattices 

Eq. (VI.1) turns to the following form for this case: 

( ) ( )
1 1 1

: : 1: 0 :0   100
1

hkl= ⇒ =

∞ ∞

. 

In the similar way, we obtain the Miller indices for the rest of the p

shown in Fig. 140, namely, 

( ) ( )

( ) ( )

( ) ( )

1 1 1
: : 1:1: 0   110 ,

1 1

1 1 1
: : 1:1:1  111 ,   and

1 1 1

1 1 1
: : 1:1: 1   111

1 1 -1

hkl

hkl

hkl

= ⇒ =

∞

= ⇒ =

= ⇒ =

 

d, respectively. The shaded plane in Fig. 140d intersects 

axis in the point 
3 3r -1a=
� �

 (see also Fig. 142). Due to the convention, 

dimensional crystal lattice generated by the primitive translation vectors

. The lattice plane shown in the figure intersects the axes 1ξ , 2ξ , 3ξ  in the lattice 
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(VI.3) 

In the similar way, we obtain the Miller indices for the rest of the planes 

(VI.4) 

. 140d intersects 

(see also Fig. 142). Due to the convention, 

 

rystal lattice generated by the primitive translation vectors 

in the lattice 
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the negative Miller indices are

we have 1 . From the definition of the Miller indices, it is easy to see that

 

Figure 142 A complementary figure to Fig. 140d

where the ( )11 1  plane crosses the 

Figure

Basic Elements of Crystallography 

the negative Miller indices are written with a bar, it means, instead of 

From the definition of the Miller indices, it is easy to see that

( ) ( )  h k l hkl= . 

 

A complementary figure to Fig. 140d. In this figure is indicated the lat

plane crosses the z axis defined by the translation vector 3a
�

. 

 

Figure 143 The ( )111  and ( )1 1 1  planes in the sc lattice. 

written with a bar, it means, instead of -1            

From the definition of the Miller indices, it is easy to see that 

(VI.5) 

the lattice point 

 



 

 

The equality (VI.5) is illustrated in Fig.

( )1 1 1  planes in the 

As we have learned, the Miller indices are used to identify a single 

lattice plane and also a family of planes parallel to each other. For a set of 

lattice planes (or 

equivalent by symmetry of the lattice, there is also

illustrate this on the example of the planes which include the three faces of 

the cubic unit cell for the 

{ }100 , designate the 

that are equivalent by lattice

refers to the ( )hkl

equivalent to them by symmetry of the lattice.

Now, we will introduce a convention to specify a di

lattice. Such direction can be identified by the three components of vector 

l
a �
�

, which is the shortest one in this direction (see Fig. 145).

determine the components of this vector

two lattice points in

to the three smallest integers. For example, in Fig. 145 we have proposed

1 2 3R 3a 0a 3a= + +

�

� � �

primitive translation vectors 

integers having the same ratio: 

obtain the components of the vector 

shortest one in the lattice direction in consideration. The notation 

square brackets instead of round brackets, is used t

Figure 144 Three lattice planes in the 

Direct and Reciprocal Lattices 

The equality (VI.5) is illustrated in Fig. 143 for the case of the (111

planes in the sc lattice that are parallel to each other. 

As we have learned, the Miller indices are used to identify a single 

lattice plane and also a family of planes parallel to each other. For a set of 

lattice planes (or a set of families of parallel lattice planes) that are 

equivalent by symmetry of the lattice, there is also a notation. Let us 

illustrate this on the example of the planes which include the three faces of 

the cubic unit cell for the sc lattice shown in Fig. 144. “Curly” brackets, 

, designate the ( )100
 
plane together with the ( )010  and (001

are equivalent by lattice symmetry to it. In general, the notation 

hkl  planes and all other families of lattice planes that are 

equivalent to them by symmetry of the lattice. 

Now, we will introduce a convention to specify a direction in a direct 

lattice. Such direction can be identified by the three components of vector 

which is the shortest one in this direction (see Fig. 145). In order to 

determine the components of this vector, we can take a vector R
�

 defined by 

in the direction in consideration and make the reductions 

to the three smallest integers. For example, in Fig. 145 we have proposed

; next, we take the integer numbers that multiply the 

primitive translation vectors 
1a
�

, 
2a
�

, 
3a
�

 and then reduce them to the smallest 

integers having the same ratio: 3 : 0 : 3 1: 0 :1= . In this manner, we can 

obtain the components of the vector 1 2 3l
a 1a 0a 1a= + +�

� � � �

, which is the 

shortest one in the lattice direction in consideration. The notation [101]

square brackets instead of round brackets, is used to specify the lattice 

 

Three lattice planes in the sc lattice that are equivalent by symmetry of the lattice.
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)111  and 

As we have learned, the Miller indices are used to identify a single 

lattice plane and also a family of planes parallel to each other. For a set of 

lattice planes) that are 

a notation. Let us 

illustrate this on the example of the planes which include the three faces of 

lattice shown in Fig. 144. “Curly” brackets, 

)001  planes 

In general, the notation { }hkl  

planes and all other families of lattice planes that are 

rection in a direct 

lattice. Such direction can be identified by the three components of vector 

In order to 

defined by 

the direction in consideration and make the reductions 

to the three smallest integers. For example, in Fig. 145 we have proposed

integer numbers that multiply the 

and then reduce them to the smallest 

. In this manner, we can 

, which is the 

[101] , with 

o specify the lattice 

lattice that are equivalent by symmetry of the lattice. 
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direction shown in Fig. 145. In general, the notation 

lattice direction with the shortest translation vector 

All directions that are equivalent to 

denoted with the symbol 

equivalent directions, 

these directions, together with 

100 . 

Figure 145 A lattice direct

Figure 146 Three directions equivalent by lattice symmetry in the 

Basic Elements of Crystallography 

direction shown in Fig. 145. In general, the notation 
1 2 3[ ]l l l  denotes a crystal 

lattice direction with the shortest translation vector 1 1 2 2 3 3l
a a a al l l= + +�
� � � �

directions that are equivalent to 
1 2 3[ ]l l l  by lattice symmetry

ed with the symbol 1 2 3l l l . Figure 146 shows an example of three 

equivalent directions, [100], [010] , and [001] , in the sc lattice. The set of 

, together with [100] , [010] , and [001] , is denoted

 

A lattice direction. The vector 
l

a �
�

 is the shortest one in this direction.

 

Three directions equivalent by lattice symmetry in the sc lattice.

denotes a crystal 

1 1 2 2 3 3a a a al l l= + +
� � � �

. 

by lattice symmetry are 

146 shows an example of three 

lattice. The set of 

, is denoted by 

is the shortest one in this direction. 

lattice. 



 

 

3. Application of Miller Indices

 

We are going to describe now some of the properties of Bravais lattices 

with the aid of Miller i

Property 1 

First, we will look for the

plane which is the closest to the plane that passes thro

non orthogonal reference system

1a
�

, 
2a
�

, 
3a
�

 (see Fig. 147

positions of three lattice points. 

3ξ  axes in these points has the following Miller indices:

 

The other ( )133  lattice plane shown in Fig. 147 

one that passes through the origin.

points given by vectors

Figure 147 Two ( )133  lattice planes in a lattice generated by the primitive translation vectors 

1a
�

, 2a
�

, 3a
�

. 

Direct and Reciprocal Lattices 

Application of Miller Indices 

We are going to describe now some of the properties of Bravais lattices 

with the aid of Miller indices. 

look for the positions of three points that define a lattice 

plane which is the closest to the plane that passes through the origin

non orthogonal reference system, defined by the primitive translation vectors 

see Fig. 147). The vectors 
1r
�

, 
2r
�

, 
3r
�

 shown in Fig. 147 give the 

positions of three lattice points. The lattice plane that intersects the 

axes in these points has the following Miller indices: 

1 1 1
: : : : 1:3:3

3 1 1
h k l = = . 

lattice plane shown in Fig. 147 is the closest plane to the 

that passes through the origin. This plane crosses the lattice axes in the 

vectors 

lattice planes in a lattice generated by the primitive translation vectors 
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We are going to describe now some of the properties of Bravais lattices 

positions of three points that define a lattice 

the origin of the 

defined by the primitive translation vectors 

shown in Fig. 147 give the 

he lattice plane that intersects the 
1ξ , 

2ξ , 

(VI.6) 

closest plane to the 

crosses the lattice axes in the 

 

lattice planes in a lattice generated by the primitive translation vectors 
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Therefore, the plane intersects the 

3a l
�

, respectively.

geometric considerations related to the

equidistant and parallel to each 

Property 2 

Next, we will show that the reciprocal lattice vector

1 2 3b b b b
hkl

h k l= + +

� � � �

To demonstrate that, from all the planes 

the one that crosses the lattice axes (defined by the primitive translation 

vectors 
1a
�

, 
2a
�

, 
3a
�

collinear vectors (a a

Figure 148 Two (623

vectors 1a
�

, 2a
�

, 3a
�

. 

Basic Elements of Crystallography 

1
1 1

2
2 2

3
3 3

a
r 1a

a1
r a

3

a1
r a

3

h

k

l


′ = =




′ = =



′ = =


�
� �

�
� �

�
� �

. 

plane intersects the 
1ξ , 

2ξ , 
3ξ  axes at the points 

1a h
�

, respectively. This general statement can be deduced from the 

considerations related to the intercepts with the axes of 

parallel to each other ( )hkl  planes. 

e will show that the reciprocal lattice vector

1 2 3b b b bh k l
� � � �

 is perpendicular to the ( )hkl  direct lattice plane. 

To demonstrate that, from all the planes of the ( )hkl  family, we will take 

the one that crosses the lattice axes (defined by the primitive translation 

3a
�

) in the points given by 
1a h
�

, 
2a k
�

, 
3a l
�

. The non 

)2 1a ak h−
� �

 and ( )2 3a ak l−
� �

 

are on a (hkl

)623  lattice planes in a lattice generated by the primitive translation 

(VI.7) 

h , 
2a k
�

, 

This general statement can be deduced from the 

ts with the axes of 

e will show that the reciprocal lattice vector 

direct lattice plane.                     

family, we will take 

the one that crosses the lattice axes (defined by the primitive translation 

. The non 

)hkl  plane              

 

lattice planes in a lattice generated by the primitive translation 



 

 

that is the closest to the origin, what is illustrated for the case of the 

plane in Fig. 148. It will suffice to show that 

( )2 3b a a
hkl

k l⊥ −

� � �

( )hkl  planes. We will calculate the follow

purpose 

 

2 1 2 1

2 2

a a a a
b b b b 2 2 0

a aa a
b b b b 2 2 0

hkl

hkl

k h k h

k l k l

   
⋅ − = + + ⋅ − = − =      

   
⋅ − = + + ⋅ − = − =      

� � � �
� � � �

� �� �
� � � �

In this manner, we have demonstrated that

orthogonal to the family of 

the Miller indices, h

vector 1 2 3b b b bhkl h k l= + +

� � � �

direct lattice. Of course, any vector that is a multiple of the

bhkln
�

, is also orthogonal to 

specified in Fig. 149, fulfill the relation 

 

then b b
g hkl

n=�

� �
 and 

conclude, we can say that the direction defined by the vector 

reciprocal lattice corresponds to the 

vector bhkl

�
 can be used to define a versor that is orthogonal to (

Figure 149 The direction given by

family of ( )hkl  direct lattice planes.

Direct and Reciprocal Lattices 

that is the closest to the origin, what is illustrated for the case of the 

148. It will suffice to show that ( 2 1b a a
hkl

k h⊥ −

� � �

k l  to be able to say that bhkl

�
 is orthogonal to the family of 

planes. We will calculate the following scalar products for this 

( )

( )

2 1 2 1
1 2 3

3 32 2

1 2 3

a a a a
b b b b 2 2 0

a aa a
b b b b 2 2 0

h k l
k h k h

h k l
k l k l

π π

π π

   
⋅ − = + + ⋅ − = − =      

   
⋅ − = + + ⋅ − = − =      

� � � �
� � � �

� �� �
� � � �

. 

we have demonstrated that the vector bhkl

�
 is indeed 

orthogonal to the family of ( )hkl  lattice planes. Concluding, we can say that 

h, k, l, are the coordinates of the shortest reciprocal lattice 

1 2 3b b b bh k l= + +

� � � �
, which is orthogonal to the ( )hkl  planes in the 

direct lattice. Of course, any vector that is a multiple of the bhkl

�

, is also orthogonal to the ( )hkl  plane. Certainly, if 
1g , 

ed in Fig. 149, fulfill the relation 
1 2 3: : : :g g g h k l= , that is to say

31 2 gg g
n

h k l
= = = ∈ℤ , 

and the b
g
�

�
 vector is orthogonal to the ( )hkl  plane.

conclude, we can say that the direction defined by the vector bhkl

�

reciprocal lattice corresponds to the ( )hkl  planes in the direct lattice. 

can be used to define a versor that is orthogonal to (hkl) planes

The direction given by the vector b
hkl

�
 in the reciprocal lattice is orthogonal to the 

direct lattice planes. 

177 

that is the closest to the origin, what is illustrated for the case of the (623) 

)2 1b a ak h
� �

 and 

is orthogonal to the family of 

ing scalar products for this 

b b b b 2 2 0

 (VI.8) 

is indeed 

lattice planes. Concluding, we can say that 

are the coordinates of the shortest reciprocal lattice 

planes in the 

hkl

�
 vector, 

2g , 
3g , 

that is to say 

(VI.9) 

plane. To 

bhkl

�
 in the 

planes in the direct lattice. The 

) planes 

 

in the reciprocal lattice is orthogonal to the 
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The versor given by Eq. (VI.10) 

denoted (hkl). 

Property 3 

At last, we will calculate the distance between two consecutive 

planes, 
hkld , using the 

sufficient to project, for example, 

( )hkl  planes (as it is done

 hkl hkld

This means that two consecutive planes of the family of 

a distance which is equal to the inverse o

multiplied by 2π . 

As an example,

for the sc lattice. We will

The information about the vectors that generate the direct, 

Figure 150 Two consecutive 

by versor n̂hkl , is shown. T

Basic Elements of Crystallography 

b
n̂ hkl

hkl

hklb
=

�

. 

The versor given by Eq. (VI.10) specifies the orientation of a lattice plane 

ast, we will calculate the distance between two consecutive 

, using the vector n̂hkl
. To obtain the 

hkld  parameter 

project, for example, 
1a h
�

 in the direction orthogonal to the 

it is done in Fig. 150), that is to say 

( )1 2 3
1 1

b b ba a 2
n̂hkl hkl

hkl hkl

h k l

h h b b

π
+ +

= ⋅ = ⋅ =

� � �
� �

. 

wo consecutive planes of the family of ( )hkl  planes are at

a distance which is equal to the inverse of the modulus of the b
hkl

�

, let us now apply the formula that we obtained for 

We will start with the family of the ( )100  lattice planes. 

The information about the vectors that generate the direct, 
1a
�

, 
2a
�

, 

Two consecutive ( )hkl  planes. The direction orthogonal to these planes, defined 

, is shown. The distance, hkld , between these planes is also indicated. 

(VI.10) 

a lattice plane 

ast, we will calculate the distance between two consecutive ( )hkl  

parameter it is 

in the direction orthogonal to the 

(VI.11) 

planes are at 

b
hkl

�
 vector 

now apply the formula that we obtained for 
hkld  

lattice planes. 

, 
3a
�

, and 

 

The direction orthogonal to these planes, defined 

 



 

 

the reciprocal, 1b
�

, 

in this figure that 

100 1 2 3 1b 1b 0b 0b b= + + =

� � � � �

distance between two consecutive 

faces that are parallel to each other,

to the cube edge lengths as it should be.

As a second example, 

orthogonal to a body diagon

of the sc lattice. Two of t

The figure shows also the cubic unit cell of the reciprocal lattice, generated 

by the primitive translatio

the primitive translation vectors 

vector 111b
�

 is parallel to the body diagonals of both cubes

indeed orthogonal to the 

shown in Fig. 152 divide

three segments of equal longitude. Thus the distance between these planes is 

equal to 1 3  of the longitude of the diagonal of the cube

 

Figure 151 The ( )100  p

the sc lattice. The cubic unit ce

reciprocal lattice is also shown.

planes. 

Direct and Reciprocal Lattices 

, 2b
�

, 3b
�

, lattices is given in Fig. 151. We can see 

figure that 1 1b a
� �
� , 2 2b a

� �
� , and 3 3b a

� �
� . So the vector

100 1 2 3 1b 1b 0b 0b b= + + =

� � � � �
 is indeed orthogonal to the ( )100  plane. The 

distance between two consecutive ( )100  planes, which include two cube 

faces that are parallel to each other, is 
100 1002d b aπ= = , it means, it is equal 

to the cube edge lengths as it should be. 

As a second example, we will consider the family of planes that are 

body diagonal of the cube that represents the cubic unit cell 

Two of these planes, denoted ( )111 , are shown in Fig. 152. 

The figure shows also the cubic unit cell of the reciprocal lattice, generated 

by the primitive translation vectors 1b
�

, 2b
�

, 3b
�

, which were obtained using 

the primitive translation vectors 
1a
�

, 
2a
�

, 
3a
�

. We can see in Fig. 152 that the 

is parallel to the body diagonals of both cubes. So this vector is 

indeed orthogonal to the ( )111  direct lattice planes. The two ( )111

shown in Fig. 152 divide the body diagonal of the direct lattice unit cell in 

three segments of equal longitude. Thus the distance between these planes is 

of the longitude of the diagonal of the cube: 

111

1 3
3

3 3
d a a= = . 

planes which include two cube faces that are parallel to each other

lattice. The cubic unit cell defined by primitive translation vectors 
1b
�

, 
2b
�

, 

is also shown. The translation vector 
100 1b b=

� �
 is orthogonal to the

179 

, lattices is given in Fig. 151. We can see                

. So the vector 

plane. The 

anes, which include two cube 

it means, it is equal 

we will consider the family of planes that are 

al of the cube that represents the cubic unit cell 

, are shown in Fig. 152. 

The figure shows also the cubic unit cell of the reciprocal lattice, generated 

, which were obtained using 

152 that the 

vector is 

)111  planes 

the body diagonal of the direct lattice unit cell in 

three segments of equal longitude. Thus the distance between these planes is 

(VI.12) 

 

which include two cube faces that are parallel to each other in 

, 
3b
�

 of the 

the ( )100  
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The distance between the 

 

This result agrees with

geometric considerations.

 

 

4. Problems 

 

Exercise 1 In the 

a.) draw five (111

b.) draw all (221

the ( )010  front large cube face.

if necessary

Figure 152 The cubic unit cells of the 

of the reciprocal lattice is orthogonal to the 

Basic Elements of Crystallography 

distance between the ( )111  planes calculated using Eq. (VI.11) is

111

111

2 2 3

2 3
3

d a
b

a

π π

π
= = = . 

his result agrees with 
111d  given by Eq. (VI.12), which we obtained from 

considerations. 

In the sc lattice from Fig. 153 

)111  lattice planes, 

)221  lattice planes that contain at least two points from 

front large cube face. Place additional points on the 

if necessary. 

The cubic unit cells of the sc direct lattice and the reciprocal to it. The vector 

of the reciprocal lattice is orthogonal to the ( )111  planes in the direct lattice. 

is  

(VI.13) 

, which we obtained from 

lattice planes that contain at least two points from 

Place additional points on the z axis 

 

direct lattice and the reciprocal to it. The vector 
111b
�

 



 

 

Does the ( )221

set of planes specified in b.)?

Exercise 2 For each case from Exercise

between two consecutive planes.

Exercise 3  

a.) Without doing any calculations show that the consecutive lattice 

planes, orthogonal to body diagonals of the cubic unit cells of the 

and fcc lattices with the same lattice constant 

distance. Fin

Hint: Draw such lattice planes inside the cubic unit cells of the 

and fcc lattices (both having

b.) Check your result, obtained for the case of the 

calculating the distance in consideration 

Hint: Use the primitive translation vectors that define the 

rhombohedral unit cell 

c.) Find the distance between the consecutive planes

body diagonal of the cubi

lattice constant 

111d  calculated there.

Figure 153 A simple cubic lattice

1a
�

, 2a
�

, 3a
�

.  

Direct and Reciprocal Lattices 

221  lattice plane that is the closest to the origin belong to 

planes specified in b.)? 

For each case from Exercise 1 calculate the distance 

between two consecutive planes. 

Without doing any calculations show that the consecutive lattice 

orthogonal to body diagonals of the cubic unit cells of the 

lattices with the same lattice constant a, are at the same 

nd this distance. 

Draw such lattice planes inside the cubic unit cells of the 

lattices (both having the same edge a). 

Check your result, obtained for the case of the fcc lattice in a.),

calculating the distance in consideration using Eq. (VI.11). 

Use the primitive translation vectors that define the 

rhombohedral unit cell of the fcc lattice. 

Find the distance between the consecutive planes, orthogonal to a 

body diagonal of the cubic unit cell of the bcc lattice with the same 

lattice constant a as has the fcc lattice in b.), and compare it with 

calculated there. 

 

A simple cubic lattice, of lattice constant a, generated by the translation vectors 

181 

belong to the 

calculate the distance 

Without doing any calculations show that the consecutive lattice 

orthogonal to body diagonals of the cubic unit cells of the sc 

are at the same 

Draw such lattice planes inside the cubic unit cells of the sc 

lattice in a.), 

Use the primitive translation vectors that define the 

orthogonal to a 

lattice with the same 

and compare it with 

generated by the translation vectors 
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Hint: Choose appropriate primitive translation vectors for the bcc 

lattice. 

Exercise 4 Figure 154 shows a two-dimensional lattice generated by 

the primitive translation vectors 1a
�

, 2a
�

 and four consecutive ( )41  

planes in this lattice (Note, that in a two-dimensional lattice the planes 

are one-dimensional and are characterized by two Miller indices.). The 

Miller indices, 4 and 1, were calculated using the integer numbers 1s  

and 2s  specified in Fig. 154: 

 
1 2

1 1 1 1
: : 4 :1 :

1 4
h k

s s
= = = . (VI.14) 

It is also true that 

 1 2

1 1
: :s s

h k
= , (VI.15) 

thus the inverse of the Miller indices are at same ratio as 
1s  and 

2s . Due 

to Eq. (VI.7) the ( )41  lattice plane, that is the closest to the plane that 

passes through the origin, intersects the axes
 1ξ  and 

2ξ  in the points 

( ) 11 ah ⋅
�

 and ( ) 21 ak ⋅
�

, respectively. It means, the intercepts of this 

lattice plane with the axes
 1ξ  and 

2ξ  are 1 h  and 1 k , respectively. Fig. 

154 shows also three ( )41  planes whose intercepts with the 
1ξ  axis 

represent the multiples of the smallest intercept, 1 h , and are not larger 

than the integer 
1s , that is 

1

1 1 1
2 ,   3 ,   and  4 s

h h h
⋅ ⋅ ⋅ = . 

In similar way are obtained the intercepts of these planes with the 
2ξ  

axis, which are 

2

1 1 1
2 ,   3 ,   and  4 s

k k k
⋅ ⋅ ⋅ = . 

The plane with integer intercepts 
1s  and 

2s  is the one that we usually 

use to determine the Miller indices. 

a.) Show at least one more lattice point in each of the ( )41  lattice 

planes from Fig. 154 that have only one lattice point in the figure. 



 

 

b.) Find and draw 

vectors 1b
�

 and 

the vector b
�

Hint: To find the primitive translation vectors 

indications 

 

Figure 154 Two-dimensional 

2a
�

. In the figure four consecutive 

Direct and Reciprocal Lattices 

Find and draw (keeping proportions) the primitive translation 

and 
2b
�

 of the reciprocal lattice and show graphically that 

41b
�

 is orthogonal to the ( )41  planes. 

To find the primitive translation vectors 
1b
�

 and 2b
�

 follow the 

indications given in Exercise 1 from Chapter V. 

dimensional crystal lattice generated by the primitive translation vectors 

our consecutive ( )41  lattice planes are shown. 

183 

the primitive translation 

and show graphically that 

follow the 

 

primitive translation vectors 1a
�

, 
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INDEX 

 

A 

 

A-face   29, 31-2, 63 

α-Mn   73 

α-MnTe   114, 130-2 

α-NiS   130, 132 

α-PoO2   115-16 

α-Sm   81, 103-4 

α-Yb   86, 104 

α-ZnS   118, 120, 123 

α-ZrP   139, 151 

actinides   80, 115, 137, 140 

Ag   74, 114 

americium   80, 137 

AmO   116, 138 

anions   107-8, 110-11, 113-22, 

124-9, 131, 133-6, 142, 144, 

146, 148-50 

antimonides   131, 140 

antimony   49-50 

arsenic   49-50 

atomic basis   3-4, 6-7, 48, 50 

AuSe   130, 132 

axes   17-18, 20-4, 40, 42-3,  

46-53, 58, 64-5, 98,  

120-1, 129, 136, 154-6,  

169-72, 175-6, 180,  

182 

   fourfold   19, 58, 65 

   lattice   169, 175-6 

   onefold   24 

   sixfold   26, 50-1, 124 

   threefold   18-19, 21, 23, 27, 39, 

43, 46, 51, 58, 60, 65 

   twofold   20, 24 

axis, sixfold hexagonal prism   51 

 

 

B 

 

β-Ca   72, 105 

β-Ce   79-80, 105 

B-face   29, 31-2, 34 

β-Li   72, 105 

β-Na   72, 105 

β-PbF2   115-16 

β-SiC   109, 112-13 

β-Yb   74, 104 

β-ZnS   114, 118, 149 

Ba   116, 126 

BAs   113, 137 

basis atoms   9-10, 48-50 

basis vectors   2-3, 5, 7-10, 24, 

26, 36, 40, 42-4, 46-7, 51, 

53-4, 83, 85, 102-3 

   conventional   5 

bcc (body centered cubic)   35, 

39, 41-2, 46, 54-5, 67, 71-3, 

86, 88, 101-2, 164-5, 181 

BePo   112, 114 

BeS   112, 114 

BeSe   112, 114 

BeTe   112, 114 

Bi   49-50, 71, 130, 137 

bismuth   49-50 

bismuthides   131, 140 

BN   113, 123 

bonds   67, 91, 107, 109, 112-14, 

120, 125, 134 

   chemical   92-3 

   covalent   91, 93-4, 99, 107-8 

   ionic   107-8, 134 

   metallic   99, 125 

borides   140 



188 Index 

 

 

Bravais lattice symbol   35 

Bravais lattices   28, 35-8, 48, 56, 

68, 77, 79, 98 

   bcc   167 

   centered   29, 36, 56 

   hexagonal   67 

   orthorhombic   36 

   trigonal   49 

BS   122, 149 

BZn   122, 149 

 

C 

 

C-face   29, 31, 33-4, 43, 63 

cadmium   86, 102, 140 

CaF2   114-16 

calcium fluoride   114 

californium   80 

carbides   140 

cations   92, 107-8, 110-11,  

115-20, 125-9, 131, 133-6, 

142, 144-6, 148-51 

ccp (cubic close-packed)   77-8, 

81-3, 87, 89-90 

Cd   86, 116 

CdPo   114, 140 

CdSe   114, 123, 149 

Ce   80, 147 

cell   2, 4-6, 28-36, 39-44, 46-58, 

64-5, 73, 80, 84, 90, 94, 98, 

103, 119-21, 162-3, 165-6 

   centered   29-30, 33-4, 63 

   centered monoclinic   31, 36 

   conventional   12-14, 24-9,  

32-4, 37, 50, 63 

   primitive rhombohedral   53, 55 

cell parameters   29, 81 

   conventional   24, 26, 29 

   experimental   103 

cell parameters ratio   83 

cell volumes   4, 41, 69 

   hexagonal unit   87 

centering points   47, 51-2 

centering type   29, 31 

cerium   79-80, 105 

cesium chloride   111, 144-5 

chalcogenides   137, 140 

Cl   134-6, 141, 144 

compounds   90, 92, 99, 107,  

111-15, 117, 120, 122-3, 

125, 129-32, 134, 136-40, 

143-6, 148-51 

   binary   90, 92, 99, 107, 112, 

118, 120, 122-3, 129, 134, 

136, 148 

   I-VI   118 

   I-VII   136, 151 

   II-III and II-IV   117-18 

   II-VI   112, 144, 152 

   II-VII   115-16 

   intermetallic   146-8 

   IV-VI   136-7 

   V-VI   136-7 

coordination number   38, 41,  

46, 69-70, 79, 91, 99, 102, 

107, 111-12, 117, 134,  

142, 145 

CoSb   130, 132 

CoSe   130, 132 

CrS   130-2 

CrSb   130, 132 

CrSe   130-2 

CrTe   130, 132 

crystal families   35-6 

crystal lattice   153, 160, 166, 

171, 183 

crystal structure   1-7, 9, 13-15, 

50, 67-70, 88-9, 103, 107, 

109, 111, 117, 119, 121, 

127, 135, 145 



 Index 189 

 

   close-packed   67 

   Hg   50, 64 

   monoatomic   48, 67 

   one-dimensional   1 

   sc   48, 50, 69-70, 72, 102 

   three-dimensional   92 

   two-dimensional   4, 6-7, 9-10, 

14 

crystal systems   13, 24-8, 35, 37, 

162 

   cubic   25-6, 34-5, 46 

   hexagonal   26, 35 

   monoclinic   24, 29, 32-3, 63 

   orthorhombic   32-4 

   tetragonal   26, 34 

   triclinic   24, 29 

   trigonal   26-7, 46, 50 

crystalline materials   153 

Cs   67, 134, 144, 149 

CsBr   134, 136, 145-6 

CsCl   134, 136-7, 144-6 

CsI   134, 136, 145-6 

Cu   73-4, 150 

CuSb   130, 132, 150 

 

D 

 

dhcp (double hexagonal close-

packed)   79-82, 86-8, 100-2, 

133 

dodecahedron   58, 65 

   regular   65 

Dy   81 

 

E 

 

ε-NbN   132, 151 

Er   81, 138-9, 146-7 

Eu   116, 146 

experimental data   50, 103, 105, 

140, 143-4, 151 

 

F 

 

fcc (face centered cubic)   42-3, 

45-6, 48-9, 63-5, 67, 73-4, 

77-9, 81-3, 87-90, 97-8,  

101-2, 108, 117, 127, 135, 

181 

Fe   73, 139 

FeS   130, 132 

FeSb   130, 132 

FeSe   130-2 

FeTe   130, 132 

filling factor   69-70, 72-4, 87, 

102, 151 

fluorides   115-16 

 

G 

 

gadolinium   81, 102-3 

GaN   123, 149 

Gd   81, 103 

graphical symbols   9, 13, 60 

 

H 

 

halides   136, 145 

   alkali   111, 134, 142-4 

   silver   137 

   thallium   145-6, 148 

halogens   67, 134 

hard spheres   68-70, 73-4, 84, 87, 

92, 96, 102, 140-1 

hcp (hexagonal close-packed)   

67, 77-9, 81-4, 86-91,  

100-2, 120-1, 124, 126-7, 

129, 133 

 



190 Index 

 

 

helium   86 

hexagon   9, 11, 13, 59-60 

   regular   13, 20, 59-60 

hexagonal prism   18, 26-7,  

50-2, 54, 60-2, 64, 77,  

80-3, 89-90, 102-4, 118-19, 

124-6, 128, 133, 149,  

151 

hexagonal structure   118, 124 

   two-dimensional   75, 91-2 

HfAs   130, 132 

HfP   130, 132 

HfPo   130, 132 

Hg   49-50, 116 

Ho   81, 86, 116, 138-9 

hydrides   115-16, 140 

 

I 

 

interatomic distances   67,  

73, 100, 102, 104, 143,  

152 

interstices   70, 87, 89-91, 94, 

111, 117, 119, 134, 136 

   cubic   144 

   octahedral   89, 91-2, 126-7, 

131, 133-4, 144 

   tetrahedral   87, 89-92, 94, 108, 

110, 114, 126-7, 134 

   trigonal prism   134 

Ir   74, 138-9 

IrSb   130, 132, 150 

IrSn   130 

IrTe   130, 132, 150 

 

K 

 

KCl   137, 144 

KF   137, 143, 151 

 

L 

 

La   79-80, 147 

lanthanides   79-80 

lattice   1-10, 12-15, 17-20, 24-6, 

28-36, 38-9, 41-3, 45-9,  

51-4, 56, 63-5, 160, 162-7, 

170-6, 179, 181-2 

   bcc   39-42, 54-8, 64, 164, 182 

   centered   32, 34 

   centered hexagonal   51, 53 

   cubic   34, 46-7, 55, 64, 181 

   direct   153, 160-3, 166-7, 177, 

180 

   fcc   43-5, 48, 55-8, 62-4, 136, 

163-4, 167, 181 

   fcc Bravais   136 

   hexagonal   8, 13-15, 51-2,  

103 

   infinite   8-9, 12-13, 15, 17-18, 

24, 29, 32, 36, 154 

   monoclinic   29-32, 63 

   orthorhombic   33 

   primitive   34-5 

   primitive cubic   35 

   primitive monoclinic   29 

   sc   46-9, 163, 169-73, 178-80 

   tetragonal   34 

   three-dimensional   17, 36,  

169 

   triclinic   24, 29, 162 

   trigonal   35-6, 46, 49-53, 103 

   two-dimensional   13, 15, 169, 

182-3 

   two-dimensional crystal   154 

lattice constants   48, 72, 74, 80, 

99, 102-3, 105, 113-14, 118, 

128, 136, 143-4, 149-50, 

164, 167, 181 



 Index 191 

 

   experimental   99, 104-5, 115, 

143, 149, 152 

lattice direction   173-4 

lattice nodes   9 

lattice parameters   39, 86, 112, 

116, 121, 123, 131-3, 137-9, 

146-8, 151-2 

   experimental   50, 80, 112, 122, 

131, 136 

lattice planes   169-71, 173, 175-

8, 180-3 

   family of   169, 173 

lattice point symmetries   24 

lattice points   2-9, 24, 28-9, 31-2, 

36, 38-9, 41-51, 53, 55-8, 

62-4, 169, 173, 175, 182 

   centering   29 

lattice translation vector   153 

lattice types   13, 28-9, 31 

layer planes   76, 98 

layers   75-8, 82, 86, 89-92, 97-8, 

100, 102-3, 118, 121-6,  

133-6 

   adjacent   78, 86, 91, 100,  

102-3, 122-3 

   anion   128, 135 

   cation   124-7 

   close-packed   76, 91-2 

   consecutive   78-9, 91-2, 98, 

122, 134, 149 

   hexagonal   89, 118, 122, 126, 

135-6 

   sequence of   79-81, 83, 90-2, 

97, 102, 133, 136 

   two-dimensional hcp   81, 94, 

149-50 

Li   67, 117-18, 134, 137, 144 

Li2O   117-18 

LiBr   137, 143 

LiCl   137, 151 

LiI   137, 143 

limiting radius ratio   107, 111, 

141-2, 144, 146, 148 

Lu   81, 116, 138-9, 146-7 

 

M 

 

mercury   50, 64 

mercury chalcogenides   140 

metal halides   137 

metal oxides   117 

metallic elements   67, 74, 91, 

101, 148 

metals   1, 72-4, 79, 86, 88,  

99-100, 102, 105, 115, 131, 

137, 140, 148 

   alkali   67, 117, 134 

   alkaline earth   136 

   iron group   131 

MgPo   130, 132 

Miller indices   169-73, 175, 177, 

182 

MnAs   130, 132 

MnBi   130, 132 

MnSb   130, 132 

MnTe   123, 149 

monoclinic cells   32 

 

N 

 

Na   67, 112, 134-5, 144 

NaCl   92, 134, 136-7, 140-1,  

151 

Nb   72, 116, 138-40, 151 

NbN   130, 132, 139, 150-1 

NbS   130, 132 

 

Ni   74, 116, 125, 131, 139 

NiAs   92, 124-5, 127-8, 130-2, 

137-40, 149, 151 



192 Index 

 

 

NiBi   130, 132 

nickel arsenide   111, 124, 131 

NiPo   130, 132 

NiSb   130, 132 

NiTe   130, 132 

NN interatomic distances   39,  

99-102, 105, 123, 140-1, 

150-1 

NNN interatomic distances   39, 

123 

NNs (nearest neighbors)   38,  

56-8, 69-74, 84, 90-4, 

97-100, 102-5, 107-9,  

117, 119-23, 125, 127-8, 

131, 134-5, 140-6,  

148-51 

NNNs (next nearest neighbors)   

38, 56-8, 62-3, 70, 72,  

122-3, 131, 140-3, 148-51 

noble gases   67, 74, 88, 91,  

99 

normal conditions   67, 70, 73-4, 

80, 86-8, 99-101, 103, 105, 

113-16, 118, 122-3, 131-2, 

134, 137-9, 146-8, 151 

normal pressure   67, 72, 74, 80-1, 

86, 92, 104-5 

 

O 

 

octahedron   18, 20, 38, 56, 58-60, 

89, 91, 125, 127-8, 134 

   regular   19-20, 38, 58-9, 89, 

127-8, 134 

   truncated regular   56, 59 

oxides   115-16, 140 

 

P 

 

packing fraction   69 

parallelogram   5-7, 11, 13 

Pb   116, 130, 137 

Pd   74, 138, 150 

PdSb   130, 132, 150 

PdTe   130, 132 

Pearson symbol   68-9, 71, 73, 79, 

81, 83, 92, 112, 114, 117-18, 

124, 133-4, 144 

periodic table   67, 87, 92, 99, 

112, 117, 129, 144, 152 

periodicity   153-4, 158, 160-1 

phase transitions   80-1 

phosphides   117-18, 140 

Po   116, 130, 137 

polonium   70, 115 

polyhedron   56, 128 

   regular   125 

Pr   116, 138-9, 146 

prototype   68-9, 71, 73, 79, 81, 

83, 92, 112, 114, 117-18, 

124, 133-4, 144 

prototype structure   68 

Pt   74, 116, 150 

PtB   130-1, 150 

PtBi   130, 132 

 

PtSb   130, 132 

Pu   116, 138-9 

 

R 

 

Ra   72, 116 

radii   67, 69-70, 72, 75, 98-9, 

101, 107, 109, 113-14, 141, 

143, 145, 151-2 

   anion   143-4, 151 

 

   atomic   67, 98, 102, 107 

   cation   143 

   covalent   99, 102, 109, 113 
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   ionic   109, 111-12, 140, 143-4, 

152 

   metallic   99, 102, 111-12 

radius ratios   110-11, 142, 144 

Rb   67, 118, 134, 137, 144 

RbBr   137, 144 

RbCl   137, 144, 151 

RbF   137, 143-4 

RE (rare earth)   79, 137, 140, 

146-8 

reciprocal lattice   153, 155, 157, 

159-67, 169, 171, 173, 175, 

177, 179-81, 183 

reciprocal lattice vector   176 

Rh   74, 138-9 

RhBi   130, 132 

rhombohedron   27, 39-40, 43, 46, 

49-51, 60-2, 136 

RhSe   130, 132 

RhTe   130, 132 

room temperature   67, 72, 74,  

79-81, 86, 102-5 

rotation axes   18-23, 58, 60 

   fourfold   20, 23-4, 26, 60 

   threefold   21-2, 60 

   twofold   20 

rotation points   9, 11, 13, 20,  

60 

   fourfold   20 

   highest order   14 

   n-fold   9 

   sixfold   8-10, 12-13 

   threefold   8-9 

   twofold   13 

 

S 

 

samarium   81, 103 

Sb   49-50, 70, 113, 130, 139 

sc (simple cubic)   35, 38-9, 46, 

48-9, 64, 70, 72, 162, 170, 

173-4, 179-81 

ScPo   130, 132, 150 

ScTe   130-2 

Se   114, 118, 130, 137-8 

setting   29, 35, 52-3, 63 

   b-axis   32, 63 

   c-axis   30, 32 

   obverse   53, 55 

   reverse   53, 55 

Si   109, 113-14, 116 

silicides   115-16 

silicon carbide   109, 112-13 

Sm   80, 82, 116, 138-9, 146-7 

Sn   130, 137, 139 

sodium chloride   111, 134-5 

structure   1-10, 14-15, 48-50, 64, 

67-84, 86-7, 89-99, 102-5, 

107-53 

   anti-fluorite   111, 116-18 

   anti-NiAs   130-2, 149-51 

   bcc   71-2, 74, 99, 105, 146 

   close-packed   74, 81-2, 87, 89, 

91, 102-3, 105 

   CsCl   144-8 

   cubic   74 

   dense-packed   88, 101 

   dhcp   79 

   diamond   91-9, 102, 108 

   fcc   67, 73-4, 76-7, 79-80, 82, 

86, 91, 94 

   fluorite   114-17, 149 

   hcp   79, 83, 86-7, 102-3, 119 

   honeycomb   7-9, 15 

   NaCl   92, 111-12, 134-40,  

142-4, 151-2 

   NiAs   124-7, 129-33, 140,  

149-50 
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   sc   69-71 

   Sm-type   81, 88, 100-2 

   sodium chloride   134-6 

   sphalerite   107 

   thcp   103 

   TiAs   131-3, 139, 151 

   two-dimensional boron nitride   

14 

   wurtzite   92, 111, 118-20,  

122-6, 134, 137, 143, 149 

   zinc blende   107-9, 112-14, 

118, 120, 123, 127, 137-8, 

143, 149 

substructure   7, 92, 97-8, 108, 

114, 117-19, 121-4, 126-7, 

129, 135-6, 145 

   anion   92, 108, 111, 122, 127, 

133, 136 

   cation   133-4, 136 

   cubic   144 

   fcc   114, 144 

   hcp   131 

   hexagonal   15, 126, 129 

symmetry   2, 9, 11, 14, 17, 20, 

22-4, 27-9, 33, 46, 122, 173 

   lattice   174 

   point   9, 12-15, 17-18, 24, 29, 

32, 34, 36, 48, 56, 80, 82-3, 

86, 90, 124, 153 

   translation   9-10, 17, 153 

symmetry axes   17-18, 20, 22, 

24, 26, 51, 124 

symmetry axis, highest order   27, 

81 

symmetry center   18 

symmetry points   9, 17, 19-20 

 

T 

 

Tb   81, 86 

tetradecahedron   56, 59-60 

tetrahedron   18-20, 87, 89, 91, 

93-4, 97, 108, 120-1, 127 

   regular   19, 58-9, 87, 93, 97, 

108, 115, 117, 120-1 

thcp (triple hexagonal close-

packed)   103 

Ti   138-9 

TiAs   130, 133-4, 139-40, 151 

tin   92 

tin pnictides   139 

TiP   130, 132 

TiPo   130, 132 

TiSb   130, 132 

TiSe   130, 132 

TiTe   130, 132 

Tm   81, 86, 116, 139, 146-7 

TMs (transition metals)   81, 112, 

114-17, 129, 131-2, 136-8, 

140, 148 

TNNs (third nearest neighbors)   

38-9, 56, 62-3 

translation vectors   4, 17, 24, 52, 

153, 160, 164-6, 169, 172, 

179, 181 

   primitive   1-2, 5-6, 9, 13,  

36, 39, 160-1, 163-7, 169, 

171, 173, 175-6, 179,  

181-3 

   shortest   5, 42-3, 174 

trigonal prism   127, 134 

two-atom basis   9, 48-9, 67, 77, 

98, 136 

 

U 

 

unit cell   6-8, 14-15, 31-3, 36, 

47-50, 53-6, 64, 73, 81,  

94-6, 98, 108, 120, 127-9, 

135-6, 160-2 
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   centered   35 

   centered cubic   43 

   centered hexagonal   51 

   centered rhombohedral   46-7 

   centered tetragonal   34 

   conventional   15, 18, 24, 34, 

46, 68-9, 83, 89, 112, 119, 

124, 129, 145 

   conventional primitive   5-6, 8, 

12-13, 15, 30, 166 

   cubic   28, 41-5, 48, 69-70,  

72-3, 76, 90, 94-5, 98,  

109-10, 112-15, 117, 135-7, 

163, 173, 179-81 

   diamond cubic   94 

   direct lattice   179 

   F-centered cubic   48 

   fcc cubic   94 

   hexagonal   51, 53, 83-5, 102-3, 

119-20 

   NaCl cubic   136, 140 

   primitive   2-3, 5, 7, 13, 17, 29, 

32, 36, 39-44, 46, 56, 136, 

162-4, 166-7 

   primitive cubic   47, 64 

   primitive rhombohedral   40, 

43-4, 46, 48-50, 53, 55, 64, 

68 

   primitive tetragonal   34 

   rhombohedral   26, 46-7, 52-3, 

64, 81, 97, 103, 112-13, 135, 

163-5, 181 

   

 triple hexagonal   51-3, 55, 81, 

103 

UO   116, 138 

 

 

 

 

V 

 

VP   129-30, 132, 150 

VSb   130, 132, 149-50 

VSe   130-2, 149-50 

VTe   130, 132 

 

W 

 

Wigner-Seitz cell   56-8, 65 

wurtzite structure of ZnS   121-2, 

149 

 

Y 

 

Y   81, 86, 116, 139, 146-7 

Yb   72, 74, 81, 86, 104, 138-9, 

146-7 

ytterbium   81, 104 

yttrium   81 

 

Z 

 

zinc   86, 102, 113, 124 

zinc blende   92, 110-11, 122-4, 

134, 137-8, 140, 149 

zinc sulphide   107, 118 

Zn   86, 108, 112-13, 118-22 

 

ZnS   108, 112-13, 118-22, 149 

ZnSe   114, 123, 149 

Zr   116, 138-9, 151 

ZrP   130, 132, 151 

ZrPo   130, 132 

ZrTe   130, 132 
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