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Chapter 1. Basic Electrostatics: Charges in Vacuum 

 

Much of the material covered in this chapter should be known to the students from their undergraduate 
studies. Because of that, the explanations are very brief. For the remedial reading, virtually any 
undergraduate E&M textbook may be used; I can recommend, e.g., D. J. Griffiths, Introduction to 
Electrodynamics, 3rd ed., Prentice-Hall, 1999. 

 

1.1. Coulomb law and the superposition principle 

 A serious discussion of the Coulomb law (formulated in the 1780s by Charles Augustin de 
Coulomb) requires a common agreement on the meaning of the following notions: 

 - electric charges qi,1 as revealed, most explicitly, by experimental observation of electrostatic 
forces acting between the charged bodies whose relative speed is much less than the speed of light;2  

 - space and time, including the notion of coordinate systems (“reference frames”), 

 - mechanical forces which may be defined, for example, via the 2nd Newton law for particle 
motion in inertial coordinate systems – see, e.g., Chapter 1 of the Classical Mechanics part of my 
lecture notes; and 

 - a point electric charge, meaning a charged object so small that its size and shape are 
insignificant for the problem under study. The point’s position is completely described (in a given 
reference frame) by its radius-vector rr = {x, y, z}. 

 I will assume that these notions are known to the reader (though my strong advice is to give 
some thought to their vital importance for this course). This allows us to formulate the (experimental!) 
Coulomb law for the electrostatic interaction of two point charges in vacuum: 
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(Here index 12 denotes the force exerted on charge 1 by charge 2.) Several remarks are due here: 

 (i) Equation (1)3 implies that a point charge does not interact with itself. This fact may look 
trivial, but becomes less evident (though still true) in quantum mechanics where the electric charge of 
even an elementary particle is effectively spread around some volume, together with particle’s 
wavefunction. Moreover, there are some widely used approximations, e.g., the Kohn-Sham equations in 

1 One of the most important experimental facts is the electric charge conservation, mathematically meaning that 
the algebraic sum of all qi  inside any closed volume is conserved, unless the charged particles cross the volume’s 
border. We will use (or imply) this law in many parts of this course. 
2 In the modern metrology, the speed of light in vacuum is considered as a fixed (exact) number, c = 
2.99792458×108 m/s, consistent with the legacy standards of length and time, but postulating an exact relation for 
the re-definition of  the meter and the second in more fundamental terms. 
3 As in all other parts of my lecture notes, the chapter number is omitted in the references to equations, figures, 
and sections within the same chapter. 
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the density functional theory of condensed matter, which essentially violate this law (thus limiting their 
accuracy and applicability. 

 (ii) According to Eq. (1), the magnitude of the force, F12, is inversely proportional to the square 
of the distance between the two charges – the well-known undergraduate-level formulation of the law. 

 (iii) Direction-wise, Eq. (1) gives the force exerted by charge 1 upon charge 2; according to the 
3rd Newton law, the reciprocal force is equal in magnitude but opposite in direction: 1221 FF

rr
−= . 

 (iv) The constant k in Eq. (1) depends on the system of units. In the Gaussian (“CGS”) units, 
most widely used in theoretical physics, k is set to one, for the price of introducing a special unit of 
charge (the “statcoulomb”). On the other hand, in the international  system (“SI”) of units, the charge 
unit is one coulomb (abbreviated C),4 and k is different from unity:5 
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I have to (regretfully) notice that the struggle between the proponents of these systems bears all the 
unfortunate signs of a religious war, with slim chances for any side to give up in any foreseeable future. 
In my humble view, both systems have their advantages and handicaps, and that any educated physicist 
should know them both. Following the recent (3rd) edition of the common textbook by J. D. Jackson, I 
will mostly use SI units in these notes, but will duplicate the key formulas in the Gaussian units. 

 Another experimental fact vital for electrostatics (and independent of the Coulomb law as 
formulated above) is the linear superposition principle: the electrostatic forces exerted on some point 
charge (say, q) by other charges do not affect each other and add up as vectors to form the net force: 
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where the summation is extended over all charges but q. Combining this equation with Eq. (1), we get 
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where rr  is the position of charge q. The second form of this equation implies that it makes sense to 
intrude the notion of the electric field  
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as some entity independent of the “probe” charge q, so that the force acting on the charge might be 
presented in a very simple form 
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4 In the formal metrology, one coulomb is defined as the charge carried over by constant current of one ampere 
(see Ch. 5 for its definition) during one second. 
5 Constant ε0 is sometimes called the “free space permittivity”; from Eq. (2), ε0 ≈ 8.854×10-12 SI units.  
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This form is so appealing that Eq. (6) is used well beyond the boundaries of the electrostatics in free 
space. Moreover, the notion of field becomes virtually unavoidable in time-dependent phenomena (such 
as EM waves), where the electromagnetic field shows up as a specific form of matter, with zero rest 
mass, and hence different from the usual material particles. 

 Many problems involve so many closely located point charges that it is possible to approximate 
them with a continuous charge distribution with volume (3D) density ρ defined as6 
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In this approximation, sum (5) turns into an integral: 
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 This equation may be used even in the case of discrete point charges, if we use the notion of 
Dirac’s δ-function which is a mathematical approximation for a very sharp function equal to zero 
everywhere but one point, and still having a finite (unit) integral. This function may be formally defined 
by equation 
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where f is a smooth but otherwise arbitrary function of coordinates. Indeed, in this formalism, a set of 
point charges qj  located in points jrr  may be presented by the pseudo-continuous distribution with 
density  
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Plugging this expression into Eq. (8) and using the definition (9), we come back to the discrete version 
(5) of the Coulomb law. 

 

1.2. The Gauss law and the first Maxwell equations 

 Due to this extension to discrete charges, it may seem that Eqs. (6) and (8) is all we need for 
solving any problem of electrostatics. This is not so, due to many reasons. Most superficially, the direct 
use of Eq. (8) frequently leads to complex calculations. Indeed, let us consider a very simple example: 
the electric field produced by a spherically-symmetric charge distribution with density ρ(r’). We may 
immediately use the problem symmetry to argue that the electric field should be also spherically-
symmetric, with only one component in spherical coordinates: ,)( rnrEE rr

= where rrnr /rr
≡  is the unit 

vector in the direction of the field observation point rr .  

6 The 2D (areal) charge density σ and 1D (linear) density λ may be defined absolutely similarly: dQ = σd2r,  
dQ = λdr. Note that a finite value of σ and λ means that the volume density ρ is infinite in the charge location 
points; for example for a plane z = 0, charged with a constant areal density σ, ρ = σδ(z). 
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 Taking this direction as the polar axis of a spherical coordinate system, we can use the evident 
independence of the elementary radial field dE (Fig. 1), created by the elementary charge ρ(r’)d3r’ = 
ρ(r’)r’2sinθ dr’ dθ’dϕ’, on the azimuth angle ϕ’, and reduce integral (8) to 
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where a, h, θ, and r’’ are geometrical parameters defined in Fig. 1. Since they all may be expressed via 
r’ and θ’, 
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integral (11) may be eventually reduced to a one-dimensional integral over r’ (see below) but this would 
require some effort. For more complex problem, integral (8) may be much more complex, defying an 
analytical solution. 

 One could argue that with the present-day abundance of computers and numerical algorithm 
libraries, one can always resort to numerical integration. This argument may be enhanced by the fact 
that numerical integration is based on the replacement of the integral by a sum, and summation is much 
more robust to (unavoidable) discretization and rounding errors than the finite-difference schemes 
typical for the numerical solution of differential equations.  

 These arguments are only partly justified, since in many cases the numerical approach runs into a 
problem sometimes called the “curse of dimensionality”, in which the last word refers to the number of 
input parameters of the problem to be solved. Let us discuss this issue (which is common for most fields 
of physics and, more generally, any quantitative science).  

 If the number of the parameters of a problem is small, the results of its numerical solution may 
be of the same (and in some sense higher) value than the analytical ones. For example, if a problem has 
no parameters, and its result is just one number (say, π2/4), this “analytical” answer hardly carries more 
information than its numerical form 2.4674011… Now, if the problem has one input parameter (say, a), 
the result of an analytical approach in most cases may be presented as an analytical function f(a). If the 
function is simple (say, f(a) = sin a), this function gives us everything we want to know. However, if the 
function is complicated, you would need to calculate it numerically for a set of values of parameter a 
and possibly present the result as a plot. The same results (and the same plot) can be calculated 
numerically, without using analytics at all. This plot may certainly be very valuable, but since the 
analytical form has a potential of giving you more information (say, the values of f(a) outside the plot 

Fig. 1.1. One of the simplest problems of 
electrostatics: electric field produced by a 
spherically-symmetric charge distribution. 
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range, or the asymptotic behavior of the function), it is hard to say that the numerics completely beat the 
analytics here. 

 Now let us assume that you have more input parameters. For two parameters (say, a and b), 
instead of one curve f(a) you would need a family of such curves for several (sometimes many) values 
of b. Still, the plots sometimes may fit one page, so it is still not too bad. Now, if you have three 
parameters, the full representation of the results may require many pages (maybe a book) full of curves, 
for four parameters we may speak about a bookshelf, for five parameters something like a library, etc. 
For large number of parameters, typical for many scientific problems, the number of points in the 
parameters space grows exponentially, even the volume of calculations necessary for the generation of 
this data may become impracticable, despite the dirt-cheap CPU time we have now. 

 Thus, despite the current proliferation of numerical methods in physics, and with all due respect 
to them,7 I believe that analytical results have an ever-lasting value, and we should try to get them 
whenever we can. For our current problem of finding electric field generated by a fixed set of electric 
charges, large help comes from the Gauss law. 

 Let us consider a single point charge q inside a smooth, closed surface A (Fig. 2), and calculate 
the product EndA where dA is an infinitesimal element of the surface (which may be well approximated  
with a plane of that area), and En is the component of the electric field  in that point, normal to that 
plane. This component can of course be calculated as E cos θ, where θ is the angle between vector E

r
 

and the unit vector nr  normal to the surface. (Alternatively and equivalently, En may be presented as the 
scalar product nE rr

⋅ .) Now let us notice that the product cosθ dA is nothing more than the area dA’ of a 
projection of dA onto the direction of vector rr  connecting charge q with this point of the surface (Fig. 
2), because the angle between the planes dA’ and dA is also equal to θ. 

 

  

 

 

 

 

  

  

 

 

 

 Using for E the Coulomb law, we get 

7 Later in this chapter, I will give a brief introduction to the finite-difference methods applicable for the solution 
of boundary problems of electrodynamics. 

(a)       (b) 

Fig. 1.2. To the derivation of the Gauss law: (a) the point charge is inside volume V and (b) outside of that 
volume.
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But the ratio dA’/r2 is nothing more than the solid angle dΩ under which areas dA’ and dA are seen from 
the charge point, so that EndA may be presented as just a product of dΩ and a constant (q/4πε0). 
Integrating it over the whole surface, we get 
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since the full solid angle equals 4π. (The integral in the LHP of this equation is called the (full) flux of 
electric field through surface A.) Equation (14) expresses the Gauss law for one point charge. However, 
it is only valid if the charge is located inside the volume limited by the surface. In order to find the flux 
created by a charge outside of the surface, we still can use all the equations leading to Eq. (13), 
including that equality, but to proceed we have to be careful with the signs of the elementary 
contributions EndA. Namely, the unit vector nr  should always point out of the volume we consider (the 
so-called outer normal), so that the elementary product dAnEdAEn )( rr

⋅=  and hence dΩ = EndA/r2 are 

positive if vector E
r

 is pointing out of the volume (like in the example shown in Fig. 2a and the upper 
area in Fig. 2b), and negative in the opposite case (for example, the lower area in Fig. 2b). As the latter 
figure shows, if the charge is located outside of the volume, for each positive contribution dΩ there is 
always equal and opposite contribution to the integral. As a result, at the integration over the solid angle 
the positive and negative contributions cancel exactly, and 

      .0=∫ dAEn       (1.15) 

 In order to reveal the real power of the Gauss law, let us generalize it to the case of many 
charges within volume V. Since the calculation of flux is a linear operation, the linear superposition 
principle (3) means that the flux created by several charges equals the (algebraic) sum of individual 
fluxes from each charge, for which either Eq. (14) or Eq. (15) are valid, depending on the charge 
position (in or out of the volume). As the result, for the total flux we get: 
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where QV is the net charge inside volume V. This is the full Gauss law. In order to understand its 
problem-solving power, let us return to the problem presented in Fig. 1, and apply Eq. (16) to a sphere 
of radius r, with the center coinciding with the center of the charge distribution. Due to its symmetry, 
which had already been discussed above, the electric field is perpendicular to the surface of the sphere in 
each point (i.e., En = E), and its magnitude  is the same at all points: En = E = E(r). As a result, the flux 
calculation is trivial: 
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Now, applying the Gauss law (16), we get: 
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so that, finally, 
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where Q(r) is the full charge inside the sphere of radius r: 
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In particular, this formula shows that the field outside of a sphere of a finite radius R is exactly the same 
as if all its charge Q = Q(R) was concentrated in the sphere’s center. (Note that this important result is 
only valid for the spherically-symmetric charge distribution.) 

 For the field inside the sphere, finding electric field still requires integration (20), but this 1D 
integral is much simpler that the 2D integral (11), and in some important cases may be taken 
analytically. For example, if charge Q is uniformly distributed inside a sphere of radius R, 
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Then the integration is elementary: 
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We see that in this case the field is growing linearly from the center to the sphere’s surface, and only 
then starts to decrease in agreement with the Coulomb law. Another important observation is that our 
results for r < R and r > R give the same value (Q/4πε0R2) at the charged sphere’s surface, so that the 
electric field is continuous. 

 In order to understand this fact better, let us consider one more elementary example of the Gauss 
law’s application. Consider a thin plane sheet (Fig. 3) charged uniformly, with areal density σ = const 
(see Footnote 5 above). 

 

  

 

 

 

  

 In this case, it is fruitful to use the Gauss volume in the form of a planar “pillbox” of thickness 
2z (where z is the Cartesian coordinate perpendicular to charged plane) – see Fig. 3. Due to the 
symmetry of the problem, it is evident that the electric field should be: (i) directed along axis z, (ii) 
constant on each of the upper and bottom side of the pillbox, (iii) equal and opposite on these sides, and 
(iv) vanish on the side surfaces of the box. As a result, the electric field flux is just 2AE(z), so that the 
Gauss law (16) yields 

Fig. 1.3. Electric field of a charged plane. 
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and we get a very simple (but very important) formula 
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Note that, somewhat, counter-intuitively, the field magnitude does not depend on the distance from the 
charged plane. From the point of view of the Coulomb law (5), this result may be explained as follows, 
the farther the observation point from the plane, the weaker the effect of each elementary charge, dQ = 
σd2r, but the more such elementary charges give contributions to the vertical component of vector E

r
. 

 Note also that though the magnitude EE
r

≡ of the electric field is constant, its vertical 

component Ez changes sign at z = 0 (Fig. 3), experiencing a “discontinuity” (jump) equal to ΔEz = σ/ε0. 
This jump disappears if the surface is not charged (σ = 0). This statement remains true in a more general 
case of finite volume (but not surface!) charge density ρ. Returning for a minute to our charged sphere 
problem, very close to its surface it may be considered plane, so that the electric field should indeed be 
continuous, as it is. 

 In order to complete our discussion of the Gauss law, let us mention what is sometimes called its 
differential form. It may be obtained from the “integral form” (16) of this law, using the following 
divergence theorem which, according to the vector algebra, is valid for any continuous vector, in 
particular E

r
, and for any volume V limited by closed surface A: 
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(The scalar product in the RHP of this equation is nothing more that the divergence of vector E
r

, i.e. just 
the sum of its first partial derivatives over all three Cartesian coordinates.) Combining Eq. (25) with the 
Gauss law (16), we get8 
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For a given distribution of electric charge (and hence of the electric field), this equation should be valid 
for any choice of volume V. This can only be true if the function under the integral vanishes at each 
point, i.e.9 

            .
0ε
ρ

=⋅∇ E
rr

     (1.27) 

8 Note that in a sharp contrast with the integral form (16),  Eq. (26) is local: it relates the electric field divergence 
to the charge density in the same point. 

9 Due to the key importance of this relation, it is useful to remember it in the Gaussian units as well: 
.4πρ=⋅∇ E

rr
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 This equation is sometimes called the differential form of the Gauss law, but it may be also 
thought about as the differential form of the Coulomb law (8). I believe that a much better choice is to 
call it the (stationary version of) the first Maxwell equation. One more of such embryos may be obtain 
by noticing that for the Coulomb field of a single point charge (and hence, due to the linear 
superposition principle,  for the electrostatic field of any charge system), 

            .0=×∇ E
rr

      (1.28) 

(We will arrive at two other Maxwell equations in Chapter 5, and then generalize them to their full, 
time-dependent form.) 

 Just to feel Eq. (27) better, let us apply it to the same example of a uniformly charged sphere 
(Fig. 1). Vector algebra teaches us in the case of spherical symmetry ( rnrEE rr

)(= ) the divergence of 
any differentiable vector field may be simply expressed in spherical coordinates: 

      )'(1 2
2 Er

r
E =⋅∇
rr

,     (1.29) 

where the prime sign denotes the differentiation over r. As a result, Eq. (27) yields a linear, ordinary 
differential equation for the function E(r): 
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which may be readily integrated on each of the segments: 
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In order to determine the integration constant C1, we should use boundary condition E(0) = 0. (It follows 
from the symmetry: in the center of the sphere, electric field has to vanish, because otherwise which side 
would it be directed?)  Constant C2 may be found from the continuity condition E(R-0) = E(R+0), which 
has already been discussed above. As a result, we arrive at to our old results (19) and (22).   

 We can see that in this particular case, using the differential form of the Gauss law is more 
complex than its integral form. (For our second example, shown in Fig. 3, it is even less natural – see 
Exercise 1.) However, Eq. (27) and its generalizations may be invaluable in the cases where the charge 
distribution in not known a priori and has to be found in a self-consistent way. (We will discuss many 
such cases below.) 

 

1.3. Scalar potential and energy of the electric field 

 One more help for solving electrostatics (and more complex) problems may be obtained from the 
notion of the electrostatic potential which is just the potential energy U of a charged particle, 
normalized on its charge:10 

10 This definition is kept in any system of units. 
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(In electrostatics, both U and Φ are functions of the charge position rr , but not time.) 

 The reason for the introduction of these notions is given by classical mechanics (see, e.g., Sec. 
1.4 in the CM part of my notes). Briefly, the use of potential energy allows us to solve many problems 
much more easily. (Later in this section, just one but very convincing example will be given.) The 
benefits of this formalism are especially large for the case of potential forces, for example those 
depending just on the particle position. Equations (6) and (8) show that, in the static situations, the 
electric field clearly falls into this category.  

 For such field, the potential energy may be defined as a scalar function )(rU r which allows the 
force to be calculated as 
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rr

.      (1.32) 

Dividing by the charge of the particle upon which the force is exerted, and using Eq. (31), we get11 
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In order to find the scalar potential, let us start with the simplest case of a single point charge q placed at 
origin. For it, the Coulomb law (5) takes a simple form 
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It is easy to check that the last fraction in the RHP of this equation is equal to )/1( r∇−
r

. (This may  be 
either by Cartesian components or just using the well-known expression rndrdff rr

)/(=∇  valid for any 
spherically-symmetric scalar function f.) Hence, according to the definition (33), for this particular 
case12 
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Note that we could add an arbitrary constant to this potential (and indeed to any other formula for Φ 
given below) without changing the force, but it is convenient to define the potential energy to be zero at 
infinity. 

 For a single charge in an arbitrary position (say, jrr ), r should be evidently replaced for jrr rr
− . 

Now, the linear superposition principle (3) allows for an easy generalization of this formula to the case 
of an arbitrary set of discrete charges, 
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11 This relation is closely related to Eq. (28), because according to vector algebra, any gradient field has 
vanishing curl. 
12 This fundamental formula looks even simpler in the Gaussian units: Φ = q/r. 
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Finally, using the same arguments as in Sec. 1, we can use this result to argue that in the case of an 
arbitrary  continuous charge distribution 
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Again, the notion of the Dirac delta-function allows to use the last equation for discrete charges as well, 
so that Eq. (37) may be considered as the final result for the electrostatic potential.  

  Before going further, let us demonstrate how useful the notion of Φ is, on a very simple 
example. Let two similar charges q  be launched from afar, with an initial velocity v0 << c each, straight 
toward each other (with zero impact parameter). Since, according to the Coulomb law, the charges repel, 
they will stop at some minimum distance rmin from each other, and will than fly back (Fig. 4). 

 

 

 

 

 We could of course find rmin directly from the Coulomb law. However, for that we would need to 
write the 2nd Newton law for each particle (actually, due to the problem symmetry they would be 
similar), then integrate them over time to find the particle velocity v as a function of distance, and then 
recover rmin from the requirement v = 0. 

 The notion of potential allows this problem to be solved in one line. Indeed, a particle’s 
mechanical energy E = T + U is conserved in the field of potential forces, and in our non-relativistic 
case, the kinetic energy T is just mv2/2 and the potential energy U = qΦ. Hence, equating the total 
energy of two particles in the points r = ∞ and r = rmin, and using Eq. (35) for Φ, we get 

        
min

2

0

2
0

4
100

2
2

r
qmv

πε
+=+ ,     (1.38) 

immediately giving us rmin. One, however, may question whether we were right to count the potential 
energy only once, despite having two particles in the problem. The answer is yes, as may be explained 
by the following arguments. 

 The definitions (32), (33) may be of course re-written in the integral form: 

   ∫∫ +⋅−=Φ+⋅−=
rr

rdrErrdrFrU  const, )()( i.e.         const, )()( rrrrrrrr   (1.39) 

Let us use the fact that the potential energy does not depend on the way the configuration has been 
created, and consider the following process. First, let us move one charged particle (say, q1) from 
infinity to an arbitrary point of space ( 1r

r ) in the absence of other charges. Equations (39) show that since 
during the motion the particle does not experience any force (remember, the charge does not interact 
with itself!), its potential energy is the same as at infinity (with our choice of the arbitrary constant, 
zero): U1 = 0. Now let us fix the position of that charge, and move in another charge (q2) from infinity to 

0v 0v

qm, qm,?min =r

Fig. 1.4. A simple problem of electric particle motion. 
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point 2r
r . This particle does experience the force excerted by q1 during its motion, so that its contribution 

to the final potential energy  

      )( 2122 rqU r
Φ= .     (1.40) 

Since the first particle was not moving during this process, the total potential energy U of the system is 
equal to just U2. This is exactly the fact which we used when writing Eq. (38). (Prescribing a similar 
energy to charge q1 as well would constitute a very popular error called the double-counting.) 

 Let us extend these arguments to calculate a very important expression for the potential energy 
of an arbitrary system of electric charges (Fig. 5). Fixing the first two charges in points 1r

r  and 2r
r , 

respectively, and bringing in the third charge (slowly, in order to avoid any magnetic field effects!) from 
infinity, we increment the potential energy by 

[ ])()( 323133 rrqU rr
Φ+Φ= (1.41) 

It is clear how to generalize this result to an arbitrary (jth) charge: 

    [ ] ∑
<

Φ=+Φ+Φ+Φ=
jk

jkjjjjjj rqrrrqU )(...)()()( 321
rrrr   (1.42)  

(Notice the condition k < j which suppresses the erroneous double-counting.)  

 

 

 

 

 

 

 

 Now, summing up all the increments, for the total electrostatic energy of the system we get: 

     ∑∑
<

Φ==

jk
kj

jkj
j

j rqUU
,

)(r .     (1.43) 

This is a very important formula, but for its generalization to the continuous charge case it is better to 
rewrite it in a more symmetric form using Eq. (35): 

     .
4

1
,0
∑
<

−
=

jk
kj kj

jk

rr

qq
U rrπε

      (1.44) 

The expression under the sum is evidently symmetric with respect to the index swap, so that (ignoring 
the way Eq. (44) has been derived), we can rewrite it in a fully symmetric form 

     ∑
≠

−
=

jk
kj kj

jk

rr

qq
U

,08
1

rrπε
       (1.45) 

11, rq r

22 , rq r

33, rq r

{ }jkjk rq <<
r,

jj rq r,
from ∞ 

Fig. 1.5. To the derivation of the potential energy of a 
system of electric charges. 
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which is now easily generalized to the continuous case: 

            ∫ ∫ −
=

'
)'()('

8
1 33

0 rr
rrrdrdU rr

rr ρρ
πε

.    (1.46) 

Note that in this case the restriction expressed in the discrete charge case as k ≠ j is not important, 
because if the charge density is a continuous function, integral (46) does not diverge at point 'rr rr

= .13  
 To some extent, Eq. (46) is the most explicit result for the electrostatic field energy, but 
sometimes it is useful to rewrite it in a different form. For that, let us notice that according to Eq. (37), 
the integral over r’ in Eq. (46) (divided by 4πε0) is just the full electrostatic potential at point r, and 
hence 

      ).()(
2
1 3 rrrdU rr

Φ= ∫ ρ     (1.47) 

For the discrete charge case, this becomes  

            ∑ Φ=
j

jj rqU )(
2
1 r ,     (1.48) 

but now it is important to remember that the “full” potential’s value )( jrrΦ should exclude the (infinite) 
contribution of charge j itself.  

 Equations (46) and (47) seem to imply that the contribution into the electrostatic field energy 
come only from the regions where electric charge is located. However, one of the beautiful features of 
physics is that sometimes completely different views at the same problem are possible. In order to get an 
alternative view of our current problem, let us first recast Eq. (37) into a differential form of Eq. (37). It 
is easy to derive it by plugging the definition Eq. (33) into the differential form (27) of the Gauss law:   

             .)(
0

2

ε
ρ

−=Φ∇≡Φ∇∇
rr

     (1.49) 

This it the famous Poisson equation – so convenient for applications that even its particular case for ρ = 
0, 

          02 =Φ∇       (1.50) 

has earned a special name – the Laplace equation (and the differential operation denoted as ∇2, a special 
name of the Laplace operator). The Poisson equation may be less convenient than the Gauss law for the 
calculation of the field of a fixed charge distribution )(rrρ , but is indispensable for many problems in 
which the distribution should be found in a self-consistent way, simultaneously with the field – see the 
next chapter. 

 Now we can return to Eq. (47) for the potential energy, and plug into it the charge density 
expressed from the Poisson equation: 

13 Nevertheless, one should remember this restriction when returning from Eq. (46) back to the discrete form, 
using the Dirac delta-function. 



Classical Electrodynamics 

 
© K. Likharev, 2007   14 

           ∫ Φ∇Φ−= 230

2
rdU

ε
.     (1.51) 

This expression may be integrated by parts: 

    ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ∇−⋅Φ∇Φ−= ∫∫

VA

rddAnU
230 )(

2

rrrε
,    (1.52) 

where A is the closed surface limiting the integration volume V. If this surface is so far from the charges 
we consider that electric field on it is negligibly small (or if we integrate over all space), the surface 
integral vanishes, and using the basic relation (33) we get a very important formula 

      ∫= rdEU 320

2
ε

.     (1.53) 

It certainly invites an interpretation very much different than Eq. (47): it is natural to present it in the 
form14 

    ),(
2

)(,)( 203 rErurdruU rrr ε
== ∫      (1.54) 

and treat )(ru r as the density of the potential energy of the electric field, which is continuously 
distributed over all the space where the field exists (rather than just where the charge sits). Of course, 
within the realm of electrostatics, Eqs. (47) and (54) are equivalent, but electrodynamics shows that the 
latter equation is more general, and that it is more adequate to associate energy with the field than with 
its sources (in our current case, electric charges). 

  

 

 

 

  

 

 

 

 

  

 

14 In the Gaussian units, u = E2/8π. 


