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Preface

This book is meant to be a text for a first course in quantum physics. It is assumed
that the student has had courses in Modern Physics and in mathematics through
differential equations. The book is otherwise self-contained and does not rely on
outside resources such as the internet to supplement the material. SI units are used
throughout except for those topics for which atomic units are especially convenient.

It is our belief that for a physics major a quantum physics textbook should be
more than a one- or two-semester acquaintance. Consequently, this book contains
material that, while germane to the subject, the instructor might choose to omit
because of time limitations. There are topics and examples included that are not
normally covered in introductory textbooks. These topics are not necessarily too
advanced, they are simply not usually covered. We have not, however, presumed to
tell the instructor which topics must be included and which may be omitted. It is
our intention that omitted subjects are available for future reference in a book that
is already familiar to its owner. In short, it is our hope that the student will use the
book as a reference after having completed the course.

We have included at the end of most chapters a “Retrospective” of the chapter.
This is not meant to be merely a summary, but, rather, an overview of the importance
of the material and its place in the context of previous and forthcoming chapters. For
example, the Retrospective in Chapter 3 we feel is particularly important because,
in our experience, students spend so much time learning about eigenstates that they
get the impression that physical systems “live” in eigenstates.

We believe that students should, after a very brief review of salient experiments
and concepts that led to contemporary quantum physics (Chapter 1), begin solv-
ing problems. That is, the formal aspects of quantum physics, operator formalism,
should be introduced only after the student has seen quantum mechanics in action.
This is certainly not a new approach, but we prefer it to the alternative of the for-
mal mathematical introduction followed by problem solving. More importantly, we
believe that the students benefit from this approach. To this end we begin with a
derivation (read: rationalization) of the Schrödinger equation in Chapter 2. This
chapter continues with a discussion of the nature of the solutions of the Schrödinger
equation, particularly the wave function. We discuss at length both the utility of the
wave function and its characteristics. It is our observation that the art of sketching
wave functions has been neglected. We are led to this conclusion from discussions
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with graduate students who have had the undergraduate course, but are unable to
sketch wave functions for an arbitrarily drawn potential energy function. We think
that such a skill is crucial for understanding quantum mechanics at the introductory
level and, thus, we spend a good deal of Chapter 2 discussing qualitative aspects of
the wave function.

In Chapter 3 we solve the Schrödinger equation for two of the most important po-
tential energy functions, the infinite square well and the harmonic oscillator. A point
of contrast between the these potentials is penetration of oscillator wave functions
into the classically forbidden region. We discuss this penetration at length because,
in our experience, students have a great deal of difficulty with this concept. We then
elaborate upon this concept by presenting the details of a problem not often seen in
elementary texts, an infinite square well with a barrier in the middle. This affords
the opportunity to see that, for energies less than the barrier height, the particle
can be found on either side of the classically impenetrable barrier, thus making the
particle’s presence inside the barrier undeniable. This problem also sets the stage
for solution of the more conventional barrier penetration problems in Chapter 5.

In Chapter 4 we discuss time-dependent states. We choose to do this at this point
to contrast these states with those studied in the previous chapter. While we discuss
the free particle wave packet (as does virtually every other text), we also present
wave packets under the influence of a constant force and of a harmonic force. This
discussion will, we believe, relate nicely to a later presentation of harmonic oscilla-
tor coherent states (Chapter 7).

Chapter 5 is an extension of Chapter 3 in that we solve the time-independent
Schrödinger equation for several different one-dimensional potential energies. In-
cluded is one of the most successful analytic potential energy functions for charac-
terizing diatomic molecular vibrations, the Morse potential. The chapter concludes
with the WKB method for approximating solutions.

Chapter 6 presents the formalism of quantum physics, the mechanics of quan-
tum mechanics, including a set of postulates. For completeness we also discuss the
Schrödinger and Heisenberg pictures. Chapter 7 is devoted to the operator solu-
tion of the Schrödinger equation for the harmonic oscillator with emphasis on the
properties of the ladder operators. Harmonic oscillator coherent states are also dis-
cussed. Chapter 8 introduces three-dimensional problems and is devoted to angular
momentum. It is emphasized in this chapter that the concept of angular momen-
tum in quantum mechanics transcends three-dimensional rotations (orbital angular
momentum).

Chapters 9 and 10 are devoted to solving the radial Schrödinger equation for
several different central potentials. In addition to the common central potentials,
Chapter 9 includes a thorough discussion of the isotropic harmonic oscillator using
the shell model of the nucleus as an example. The isotropic oscillator also permits
introduction the concept of accidental degeneracy. Because they are constituents of
oscillator eigenfunctions, an attempt is made to decrypt the different conventions
that are used for Laguerre polynomials and associated Laguerre polynomials. In
our experience, this is a source of confusion to many students. Also contained in
this chapter is an elaboration on the Morse potential in which three-dimensional
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molecular motion is considered through rotation–vibration coupling. The discus-
sion of the hydrogen atom, the sole content of Chapter 10, is standard, but, as for
the isotropic oscillator, accidental degeneracy is stressed. Chapter 11 is included to
demonstrate to the student that there are angular momenta in quantum mechanics
other than orbital and spin angular momenta. It includes the introduction of the Lenz
vector, its consequences and ramifications. This subject is not usually covered at the
introductory level, but it is certainly not beyond the beginning student.

The material in the remaining four chapters depends heavily upon approxima-
tion methods. Chapter 12 presents time-independent approximation methods, while
Chapter 13 illustrates the use of these methods to solve problems of physical in-
terest. One problem that is included in Chapter 13, albeit superficially, is the effect
of fine structure on the shell model of the nucleus. Chapter 14 treats the Stark and
Zeeman effects. Particular attention is paid to the consequences of breaking the
spherical symmetry of central potentials by application of an external field. Chapter
15 presents time-dependent approximation methods, followed by a discussion of
atomic radiation including the Einstein coefficients.

There are more than two hundred problems. A detailed solutions manual is avail-
able. There are a number of appendixes to the book, including the answers to all
problems for which one is required. Among the other appendixes is one listing the
Greek alphabet with notations on common usage of these symbols in the book.
There is also a short table of acronyms used in the book. The remaining appendixes
contain material that is intended to be quick reference material and helpful with
the core material in the book. A list of (the inevitable) corrections can be found at:
http://users.stlcc.edu/cburkhardt/ and http://www.umsl.edu/∼jjl/homepage/.

We are indebted to several people, without whose help this manuscript would not
have been completed. Helen and Charles Burkhardt, parents, read the manuscript
critically. Discussions with Dr. J. D. Kelley were invaluable, as was his critical read-
ing of the manuscript. Professor. S. T. Manson also read the manuscript and made
many useful suggestions. Discussions with Dr. M. J. Kernan were very helpful, as
were her suggestions. To all of these people we offer our sincere thanks.

Charles E. Burkhardt
Jacob J. Leventhal
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Chapter 1
Introduction

As students begin their study of quantum physics they are usually bombarded with
descriptions of experiments and theoretical innovations from the early part of the
twentieth century that demonstrated and attempted to clarify the inadequacy of the
physics at that time. We will describe only a few of the experiments and some of the
concepts that are particularly pertinent to the material to be presented in this book.
We take some liberties with chronology to dramatize the details.

1.1 Early Experiments

1.1.1 The Photoelectric Effect

The photoelectric effect was discovered in 1887 by Gustav Ludwig Hertz while
performing experiments directed toward confirming Maxwell’s theory of electro-
magnetic waves. He observed that charged particles (electrons) were ejected from
metal surfaces when the surface was illuminated by light. The electron flux was
strongly dependent upon the wavelength of the light. Although Hertz did not follow
up on his discovery, one of his students, Philipp Eduard Anton von Lenard, reported
quantitative measurements of the effect in 1902. For this work Lenard received the
Nobel Prize in 1905. The citation reads: “for his work on cathode rays.” Subse-
quently, in 1925, Hertz shared the Nobel Prize for a different body of work, a subject
that will be discussed later in this chapter.

The origin of the photoelectric effect remained a mystery until, in one of his three
remarkable papers published in 1905, Albert Einstein, using Max Planck’s treatment
of blackbody spectra, explained the effect. Subsequently, in 1916, Robert Andrews
Milliken performed detailed experiments that confirmed Einstein’s explanation. Ein-
stein received the Nobel Prize in 1921 for this work, although many think that his
work on relativity also deserves a prize. The citation for Einstein’s prize reads: “for
his services to Theoretical Physics, and especially for his discovery of the law of
the photoelectric effect.” Milliken was also awarded a Nobel Prize, his in 1923, the
citation for which reads: “for his work on the elementary charge of electricity and
on the photoelectric effect.”

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 1
DOI: 10.1007/978-0-387-77652-1 1, C© Springer Science+Business Media, LLC 2008



2 1 Introduction

In 1901 Max Karl Ernst Ludwig Planck published his revolutionary hypothesis.
In equation form, it is

E = nhν (1.1)

where E and ν are the energy and frequency of an oscillator in the solid; n is a
positive integer. The constant h = 6.626 × 10−34 J·s is Planck’s constant. For this
innovation Planck was awarded the Nobel Prize in 1918, the citation for which reads
“in recognition of the services he rendered to the advancement of Physics by his
discovery of energy quanta”.

Equation 1.1, the Planck relation, is often written in terms of the angular fre-
quency ω = 2πν and � = h/2π . The symbol � is read “h-bar” and

E = n�ω (1.2)

Einstein’s explanation of the photoelectric effect rested on Planck’s assumption that
Equation 1.1 also applied to light emitted by the oscillators. As a consequence, it
was inferred that light (electromagnetic radiation) could be considered to be made
up of bundles or “quanta” called photons, each having energy E and frequency
ν. Thus was born the concept of wave particle duality. That is, light exhibits both
particle properties, quanta having energy E , and wave properties as represented by
the frequency ν. It is common to speak of light in terms of the wavelength λ rather
than the frequency, in which case Equation 1.1 takes the form

E = hc

λ
(1.3)

where c is the speed of light.
Now, what are the details of the photoelectric effect? The observations are best

understood in terms of the experiments. A schematic diagram of the apparatus used
by Lenard, and later Milliken, is shown in Fig. 1.1a.

Light of a fixed frequency (monochromatic light) illuminates an elemental metal,
the photocathode. Electrons are emitted from the photocathode, collected on the

Fig. 1.1 (a) Schematic
diagram of the apparatus used
in the photoelectric effect.
The photocathode and anode
are labeled PC and A,
respectively. Monochromatic
light of frequency hν

illuminates the photocathode.
(b) Simulated data
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anode, and measured using an ammeter as shown in Fig. 1.1. The photocathode and
the anode are encased in a glass envelope from which the air has been evacuated. The
potential difference between the photocathode and the anode is variable as shown
and may be either positive or negative. Because the ejected electrons acquire kinetic
energy, the anode voltage VA, if sufficiently negative, can repel them and prevent
them from being collected and detected.

Several modes of data acquisition are employed, but one of the most striking is a
plot of VA versus IA at fixed intensity of the light I . As seen in the hypothetical data
in Fig. 1.1b for three different intensities, the anode current saturates at sufficiently
high values of VA, but the value of the stopping voltage VA = −VS at which the
electrons are turned around is independent of the intensity. This shows unequivo-
cally that the electron kinetic energy is not determined by the intensity of the light.
Moreover, experiments performed with different frequencies show that the value of
VS changes with both the frequency of the light and the material out of which the
photocathode is constructed.

Einstein explained these data in terms of quanta of light called photons. These
photons each carry an amount of energy in accord with Equation 1.1. Thus, the
kinetic energy imparted to each electron (having charge of magnitude e) depends
upon the energy per photon, not I , the number of photons per second falling upon
the photocathode. Einstein wrote a simple relation between the photon energy hν,
the electron kinetic energy K E , and the stopping voltage VS

K E = hν − eVS (1.4)

Equation 1.4 tells us that the kinetic energy of the ejected electron is equal the
photon energy hν minus the energy required to liberate the electron from the photo-
cathode. This amount of energy, called the work function W = eVS, differs for each
different photocathode material. Equation 1.4 is usually written in the form

K E = hν − W (1.5)

and is known as the Einstein relation.
It is not our goal here to study the photoelectric effect in detail. We wish to note

that Einstein’s explanation clearly showed that light exhibited particle characteris-
tics. While the wave properties of light had been known for centuries before the
photoelectric effect, its explanation in terms of particles was revolutionary.

1.1.2 The Franck–Hertz Experiment

The Franck–Hertz experiments provided early evidence of the quantization of
atomic energy levels. They demonstrated that the amount of energy that could be
stored in an atom was not arbitrary. Rather, these energies come in discrete incre-
ments. Moreover, the increments were different for different atoms. For their work,
first reported in 1914, James Franck and Gustav Ludwig Hertz shared the 1925
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Fig. 1.2 (a) Schematic
diagram of the apparatus used
in the Franck–Hertz
experiment. The cathode, grid
and anode are labeled C, G,
and A, respectively.
(b) Simulated data

Nobel Prize in Physics. The citation for the 1925 prize reads: “for their discovery
of the laws governing the impact of an electron upon an atom.” Notice that this is
the same Hertz who discovered the photoelectric effect and whose student, Lenard,
won the Nobel Prize for elucidating it.

Figure 1.2a shows a schematic diagram of the apparatus used for this experi-
ment. It consists of a cathode C from which electrons are emitted by heating with
a high current (not shown in the diagram), an anode A to collect the electrons, and
a grid G between the cathode and anode. The entire apparatus is contained within a
glass envelope from which the air has been evacuated and atoms of a given species
introduced. In the original experiments, mercury atoms were used, but any atom
will suffice. Electrons emitted from the cathode are accelerated by the grid voltage
VG , pass through the grid and are collected at the anode. The anode is kept at a
slightly lower potential than the grid to prevent the electrons from acquiring addi-
tional kinetic energy. Electrons arriving at the anode are collected and the current i A

measured.
Data are in the form of graphs of VG versus i A. As expected, the current increases

as VG increases, but it decreases at regular intervals as shown in the hypothetical
data plotted in Fig. 1.2b. These data clearly suggest quantized atomic energy levels.
For any setting of the grid voltage the maximum electronic kinetic energy in the
apparatus is eVG . When eVG is lower than energy separation between the lowest
atomic level, referred to as the “ground state”, and the next highest level, the “first
excited state,” none of the electronic kinetic energy can be converted to atomic in-
ternal energy. This is because there simply isn’t any level to excite between the
ground state and the first excited state. The only thing that can occur is elastic scat-
tering between the electrons and the atoms. When, however, eVG reaches the energy
separation between the ground state and the first excited state some of the atoms
“become excited.” In these inelastic collisions the exciting electrons lose kinetic
energy (by an amount equal to the excitation energy) and are thus not collected at
the anode. The result is that the current decreases. As VG is further increased, the
electrons that have already excited the atom once can be reaccelerated and collected.
The current thus increases again. When these electrons are accelerated to a kinetic
energy sufficient to excite the atom again, the anode current again decreases. (For
simplicity we are assuming that only the ground and first excited states are important
in this experiment.) Thus, the peaks in the curve of VG versus i A will be equally
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spaced. From the hypothetical data we would conclude that the energy separation
between the ground state and the first excited state is e�V . This experiment clearly
demonstrates that the atomic energy levels are quantized, for if they weren’t the
current would simply rise continuously and then level off (saturate) when all the
electrons were collected.

While energies in the SI system are measured in joules, this is a rather large unit
for measurement and discussion of atomic energies. It is frequently more convenient
to use the electron-volt, abbreviated eV. One electron-volt is the kinetic energy ac-
quired by a particle of charge e when it is accelerated through a potential difference
of one volt. Thus,

1eV = (
1.602 × 10−19C

)
(1V)

= 1.602 × 10−19J (1.6)

It is often convenient to write Planck’s constant in terms of eV rather than J in which
case � = 6.58×10−16 eV ·s. In the original Franck-Hertz experiment the separation
between peaks along the abscissa was roughly 4.9 V.

1.1.3 Atomic Spectroscopy

Emission Spectroscopy

Perhaps the most important experiments for the development of quantum theory
were those using atomic spectroscopy. There are two general types of atomic spec-
troscopy, absorption and emission spectroscopy. In emission spectroscopy a sample
of atoms is “excited,” usually with an electrical discharge such as a spark. This
has the effect of exciting the atoms, not just to the first excited state, but to a va-
riety of excited states. In general, however, these states have finite lifetimes. When
they decay to lower states, not just the ground state, they do so by emitting light.
(Whether visible or not, physicists generally refer to electromagnetic radiation as
“light.”) Because the energy levels are uniquely quantized for each atom, the en-
ergy of the emitted light is quantized and hence, in accord with Equation 1.3, the
wavelengths that are emitted are unique. Emission spectroscopy is routinely used
for identification and trace analysis. In the early days of spectroscopy, the latter part
of the nineteenth century and the beginning of the twentieth century, the detector in
common use (aside from the human eye) was a photographic plate. Using prisms or
diffraction gratings, the light in an emission spectroscopy experiment was dispersed
into its constituent wavelengths and focused on a photographic plate. Because only
certain discrete wavelengths were emitted most of the plate was dark, that is, not
exposed. The portion that was exposed exhibited lines at the discrete wavelengths
emitted by the atoms. These atomic spectra were thus known as “line spectra” and
the transitions are known, even today, as lines.

Figure 1.3 shows a schematic diagram of a photographic plate of an emis-
sion spectrum of atomic hydrogen. Never mind that hydrogen occurs naturally as
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Fig. 1.3 Schematic diagram
of a photographic plate of the
emission spectrum of atomic
hydrogen in the visible region
of the electromagnetic
spectrum. Shown are the lines
of the Balmer series

diatomic molecules. When an electrical discharge occurs, most of the molecules
dissociate and become atoms, so the observed spectrum is predominantly that of
atomic hydrogen. The first lines of atomic hydrogen to be discovered were those of
the Balmer series, so named because in 1885 a Swiss school teacher, J. J. Balmer,
without any physical explanation, set forth a formula that accurately predicted the
observed wavelengths of the known lines of atomic hydrogen.

The wavelengths of these Balmer lines had been known for many years, but it
was Balmer who first related them through his now-famous formula. There are many
other lines in the spectrum of atomic hydrogen, but the lines of the Balmer series
were discovered first because the strongest of these lines lie in the visible region of
the spectrum. The Balmer series actually terminates in the near-ultraviolet region
of the spectrum at a wavelength of about 365 nm (see Problem 3). Because Balmer
was unaware of the origination of these lines he designated them Hα , Hβ and so on,
meaning the first hydrogen line, the second line, and so on. The lines of series that
were discovered later employ a similar designation, but using the first letter of the
discoverer’s name. For example, the first line of the Lyman series is Lα.

The wavelengths of the Balmer lines λB are given by the relation

λB = 364.56
n2

n2 − 22
nm (1.7)

where n is an integer that is greater than 2. Thus, for example, the wavelength of Hα

is 656.2 nm. Equation 1.7 can, however, be put in a more convenient form for later
use by writing the inverse of the wavelength:

1

λB
= RH

(
1

22
− 1

n2

)
(1.8)

where RH is called the Rydberg constant because Johannes Rydberg was instrumen-
tal in developing a generalized version of Equation 1.8 that predicted the wavelength
λnm between any two states, m and n, of hydrogen. In this generalized formula the
22 was replaced by the square of another integer. Thus,

1

λnm
= RH

(
1

m2
− 1

n2

)
(1.9)
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From Equation 1.7 and the known Balmer wavelengths, RH ≈ 1.097 m−1. While
the Balmer formula was deduced on purely empirical grounds it was, as we shall
see, crucial to the development of the Bohr theory of hydrogen.

There is a very useful relation between the wavelength of light λ and the energy
E of a photon of that wavelength. This relation is easily obtained from Equation 1.3
using convenient units, nm and eV. We have

λ(in nm)E (in eV) = hc

= 1240 (1.10)

For example, according to this simple formula, the energy per photon of red light
of wavelength 620 nm is 2eV. On the other hand, photons having energy of 5eV
correspond to a wavelength of 248 nm.

Absorption Spectroscopy

In absorption spectroscopy a continuous source of light such as light from an incan-
descent bulb (blackbody radiation) irradiates an atomic sample. The light passing
through the sample is detected. Again a photographic plate may be used as the de-
tector. In this case the background is the continuous bright incident light, but there
are “holes” in the continuum due to absorption at specific wavelengths by the atomic
sample. This might be thought of as a Frank–Hertz experiment with photons. One of
the earliest such experiments was performed in 1824 by Fraunhofer. He dispersed
the light from the sun. His continuous source was the solar interior and the atomic
sample was the solar atmosphere. There are also molecules in the solar atmosphere,
but let us concentrate on the atomic constituents. Fraunhofer observed an abundance
of lines which he labeled alphabetically from the red end of the spectrum. Because
the solar atmosphere contains hydrogen it would be surprising if lines of the Balmer
series were not present. Indeed, C and F are Hα and Hβ , respectively. Interestingly,
the fourth line from the red end, a strong “hole” in the yellow portion of the spec-
trum, was, of course, labeled D. We now know this line (actually a pair of lines)
to be the result of absorptions by atomic sodium. Observation of the “D-line” is
a favorite test for the presence of sodium in elementary chemistry. In that test, the
heat from the flame from the Bunsen burner excites sodium atoms to the first excited
state from which they decay, emitting yellow light, the D-line.

1.1.4 Electron Diffraction Experiments

Two seminal experiments were reported in 1925. One of these, commonly re-
ferred to as the Davisson–Germer experiment, was performed in the United States.
The other was performed by G. P. Thomson and his coworkers in Great Britain.
These experiments are complementary to the photoelectric effect because, while
the explanation of the photoelectric effect relied on the particle nature of light, the
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explanation of these results relied on the wave nature of particles (electrons). This
made clear that the same wave–particle duality associated with photons exists for
material particles. Just how particles behave as waves is the subject of this book
and, indeed, quantum physics. More about that later in this chapter.

Davisson and Germer were studying electron scattering from metallic surfaces
when an experimental accident forced them to subject a nickel surface to a high
temperature. The effect was to crystallize the nickel and make it, in effect, a diffrac-
tion grating for electrons. The data were explainable as a diffraction pattern. That
is, the electrons were interfering with each other in the same way that light waves
were known to interfere to produce familiar diffraction patterns. This experiment
was performed after Louis de Broglie’s hypothesis (see below) that ascribed wave
properties to matter. The explanation of the data was consistent with de Broglie’s
hypothesis. Thomson’s experiments were also consistent with de Broglie’s hypoth-
esis. They were similar in nature to the Davisson–Germer experiment, but Thomson
used thin metal foils as the “diffraction grating.”

In 1937 Clinton Joseph Davisson and George Paget Thomson shared the Nobel
Prize in Physics “for their experimental discovery of the diffraction of electrons by
crystals.” Interestingly, George Thomson was the son of yet another Nobel laureate,
Joseph John Thomson, who was awarded the Nobel Prize in 1906 “in recognition of
the great merits of his theoretical and experimental investigations on the conduction
of electricity by gases”.

In summary, while the wave–particle duality was hard to understand for pho-
tons, it was virtually incomprehensible for material particles. The question to be
answered was: what is it that is doing the waving? This is the subject of this
book.

1.1.5 The Compton Effect

The Compton effect was studied in 1922 and was additional evidence of the wave
particle duality of photons. It was performed using x-rays, high-frequency elec-
tromagnetic radiation, scattered from electrons that are bound in atoms. For this
work Arthur Holly Compton was awarded the Nobel Prize in Physics in 1927
the citation for which read “for his discovery of the effect named after him.”
Because the Compton effect is of considerable importance we will derive the
result.

Figure 1.4 shows a schematic diagram of the scattering process. A photon of
frequency ν is incident on an electron at rest. The electron is not actually at rest,
but its kinetic energy is small compared with the energy of the x-rays. The ini-
tial momentum of the photon is pp = hν/c where c is the speed of light. The
photon is assumed scattered at an angle θ with momentum p′

p = hν ′/c where
ν ′ is the frequency of the scattered photon. The momentum of the scattered elec-
tron is p′

ε , a vector. We wish to find the wavelength λ′ = c/ν ′ of the scattered
photon.
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Fig. 1.4 The kinematics of
Compton scattering

Conservation of energy dictates that

hν + mec2 = hν ′ +
√

p′2
e c2 + m2

ec4 (1.11)

where me is the mass of the electron. We (necessarily) used the relativistic formula
for the energy of the electron. We can isolate p′2

e in Equation 1.11 by squaring:

p′2
e =

[(
hν

c
− hν ′

c

)
+ mec

]2

− m2
ec2 (1.12)

To eliminate p′2
e we note from Fig. 1.4 that

p′2
e = (

pp − p′
p

)2

= p2
p + p′2

p − 2 pp p′
p cos θ

=
(

hν

c

)2

+
(

hν ′

c

)2

− 2

(
hν ′

c

)(
hν

c

)
cos θ (1.13)

Substituting Equation 1.13 into Equation 1.12 and writing the resulting equation in
terms of the difference in wavelengths between the incident and scattered photons
�λ we have

�λ = λ′ − λ

= λc (1 − cos θ ) (1.14)

where λc is known as the Compton wavelength of the electron:

λc = h

mec
≈ 2.43 × 10−3nm (1.15)

Equation 1.15 can be put in another form by multiplying the numerator and denom-
inator by c, the speed of light. The denominator is thus the rest mass of the electron,
0.51 × 106 MeV, while the numerator is 1240 (see Equation 1.10).

Equation 1.14 is known as the Compton equation. One of the remarkable features
of it is that the change in wavelength of the photon does not depend upon its
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incident wavelength. The maximum difference in wavelength that can be detected
is twice (when θ = π) the Compton wavelength, ∼ 5 × 10−3nm. For this reason
it is very difficult to perform Compton scattering experiments using visible light
(λ ≈ 400−700 nm) because the �λ would be only a tiny fraction of the wavelength
of the incident photon wavelength. For much shorter wavelengths, as short as ∼ λc,
however, �λ/λ can be large enough to measure. Thus, an incident photon of energy
comparable with the rest energy of the electron, ∼ 500 keV, is required. Compton
used x-rays having wavelength 0.071nm, roughly 17 keV in his experiments. While
17 keV is more than an order of magnitude lower than the rest mass of the electron,
the effect was indeed detectable.

The Compton wavelength is often seen written as

λc = �

mec
≈ 0.39 × 10−3nm (1.16)

The reason for this is that the actual value of the Compton wavelength is not really
important. It is the order of magnitude of it that is significant. This will be discussed
later in this chapter.

Equation 1.14 shows that the wavelength of the scattered photon is always longer
than the wavelength of the incident photon because cos θ is always less than unity.
Thus, �λ > 0. The process can thus be envisioned as one in which the pho-
ton is elastically scattered by the electron, imparting momentum and kinetic en-
ergy to the electron. Because conservation of energy dictates that the photon loses
energy, it must, in accord with Equations 1.2, have lower frequency and longer
wavelength.

1.2 Early Theory

1.2.1 The Bohr Atom and the Correspondence Principle

Confronted with overwhelming evidence that the amounts of internal energy that
could be stored in an atom were not arbitrary, but were, instead, quantized, physicists
attempted to explain the origin of these quantum levels. The experiments performed
in Great Britain by Lord Rutherford clearly established that the atom consisted of a
tiny massive positively charged nucleus surrounded by very light negatively charged
electrons that orbited this nucleus. A major problem was that, according to classical
electromagnetic theory, accelerating charges emit electromagnetic energy (light).
Thus, an orbiting electron should lose energy as it revolves about the nucleus, thus
spiraling into the nucleus. If that spiraling process were to take a very long time,
say 1050 years, then there would be no problem because that is longer than the age
of the universe. On the other hand, if the “lifetime” of these atoms is short, then
the planetary model of the atom had to be reconciled with classical electromagnetic
theory. Because it is important to understand the problem that presented itself to
these pioneers of quantum physics it is worthwhile to do a simple calculation to
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estimate τ , the classical lifetime for a hydrogen atom, that is, the decay time due to
radiation of an electron in orbit around a proton.

From electromagnetic theory the famous Larmor formula gives the instantaneous
power P radiated by an electron undergoing acceleration a. In SI units, which we
will use throughout this book unless otherwise stated,

P = − e2a2

6πε0c3
(1.17)

where the minus sign indicates that power is being radiated away. If we assume that
each successive loop of the spiral toward the nucleus is a circle of radius r , then we
may compute the acceleration a using Coulomb’s law:

a = 1

me

(
1

4πε0

)
e2

r2
(1.18)

The total mechanical energy (TME) E of the electron in the orbit is the sum of
kinetic energy and the Coulomb potential energy:

E = 1

2
mev

2 −
(

1

4πε0

)
e2

r
(1.19)

The motion is assumed to be circular so we can eliminate the velocity by equating
the centripetal force to the Coulomb force between the electron and proton. This
results in

E = −1

2

(
1

4πε0

)
e2

r
(1.20)

Now, P is the rate of loss of energy d E/dt so we may differentiate Equation 1.20
with respect to time and equate it to Equation 1.17. We obtain

dr

dt
= −4

3

e4

m2
ec3r2

(1.21)

which, when integrated from the initial radius R to the nucleus, yields τ :

τ = m2
ec3 R3

4e4
(1.22)

From Rutherford’s experiments it was known that R ∼ 0.1nm. The other parameters
in this equation for τ were reasonably well known. When inserted in Equation 1.22
the result is τ ∼ 10−11s, hardly comparable with the age of the universe. There was
clearly a problem.
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Niels Bohr attempted to explain the quantized levels using a combination of clas-
sical ideas, quantal hypotheses, and postulates of his own [1]. This pioneering work
was published in 1913 and Bohr was awarded the Nobel Prize in Physics in 1922
“for his services in the investigation of the structure of atoms and of the radiation
emanating from them.”

To deal with the problem of radiation by an accelerating charge Bohr simply
avoided it by postulating his way out of it. Paraphrasing the first of his postulates:

I. An atom exists in a series of energy states such that the accelerating electron does not
radiate energy when in these states. These states are designated as stationary states.

The designation as “stationary states” has survived time and is used today. Why the
accelerating electron ignored the classical laws of electromagnetic theory by not
radiating was simply finessed, that is, ignored. Bohr’s second postulate accounted
for the emitted and absorbed radiation in terms of the stationary states.

II. Radiation is absorbed or emitted during a transition between two stationary states. The
frequency of the absorbed or emitted radiation is given by Planck’s theory.

Bohr’s reference here to “Planck’s theory” is the relationship between the energy
and the frequency, Equation 1.1, that was used by Planck to explain blackbody ra-
diation. The energy was taken to be the difference in the energies of the two states
involved in the transition. Thus, the frequency, ν, of this radiation is given by

hν = E ′ − E ′′ (1.23)

where h is Planck’s constant and E ′ and E ′′ are the energies of the two states in-
volved in the emission or absorption.

Bohr had a third postulate, although he did not state it as such. It is the famous
and ingenious correspondence principle. Loosely stated, the correspondence princi-
ple states that when quantum systems become large they behave in a manner that
is consistent with classical physics. Bohr essentially used this as his third postulate,
although many derivations of the consequences of the Bohr model of the atom of-
ten ignore the correspondence principle. Instead, these treatments postulate that the
angular momentum must be quantized in units of �. Bohr made no such postulate,
although it does lead to the correct answers without appealing to the correspondence
principle. These derivations usually then present the correspondence principle as a
consequence of this erroneous postulate.

It is a simple matter to obtain the relationship between the TME of the electron
E and the circular orbital radius r using elementary classical mechanics and elec-
tromagnetic theory. Equating the centripetal force to the Coulomb force we have

mev
2

r
=

(
e2

4πε0

)
1

r2
(1.24)

where v is the speed of the electron in the orbit of radius r . For simplicity and
convenience we are assuming that the reduced mass of the electron–proton system
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is the same as me. From Equation 1.24 we can solve for the kinetic energy of the
electron so the TME is

E = 1

2

(
e2

4πε0

)
1

r
−

(
e2

4πε0

)
1

r

= −1

2

(
e2

4πε0

)
1

r
(1.25)

If we now apply Postulate II assuming a transition from state n to state m, we
note that the only variable in the expression for the energy, Equation 1.25, is the
orbital radius r . We must therefore attach a subscript to r to designate to which state
it belongs For definiteness we assume that n > m and, applying Postulate II, we
write

hνnm = 1

2

(
e2

4πε0

)(
1

rm
− 1

rn

)
(1.26)

where νnm is the frequency of the photon emitted in the transition from the higher
state n to the lower state m.

At this point there were two ingenious steps taken by Bohr. The first was to note
the similarity between Equation 1.26 and the generalized Balmer formula, Equation
1.9 (recall the reciprocal relationship between ν and λ). The orbital radius is the only
variable in Equation 1.26 so it is clear that it is rn that is quantized. That is, each of
the stationary states must have a unique orbital radius. Moreover, to be consistent
with Equation 1.9 these orbital radii must be such that

rn = n2a0 (1.27)

where a0 has units of length. It is called the Bohr radius. To find it Bohr imposed
the correspondence principle.

We had noted that accelerating charges radiate electromagnetic energy. But that is
not the whole story. If these accelerating charges are being accelerated periodically,
for example, a harmonically oscillating charge or a circularly moving charge, then
the frequency of the emitted radiation is the same as the frequency of the motion.
Bohr therefore stated that as n and m become very large, the frequency νnm in Equa-
tion 1.26 must approach the frequency νorbit of the circular motion of the electron at
the nth Bohr radius. The orbital frequency is

νorbit = vn

2πrn
(1.28)

where vn is the orbital speed in the nth Bohr orbit, Equation 1.24. Working with the
square of νorbit for convenience and using Equation 1.28 we have
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ν2
orbit = 1

4π2n4a2
0

[
1

me

(
e2

4πε0

)
1

n2a0

]
(1.29)

We can calculate ν2
(n+1)n for high values of n from Equation 1.26 by substituting

Equation 1.27 for the orbital radii. We obtain

lim
n→∞ν2

(n+1)n = lim
n→∞

{
1

2

(
e2

4πε0

)
1

ha0

[
1

n2
− 1

(n + 1)2

]}2

= lim
n→∞

{
1

2

(
e2

4πε0

)
1

ha0

[
(2n + 1)

n2 (n + 1)2

]}

=
(

e2

4πε0

)
1

ha0

1

n3
(1.30)

To apply the correspondence principle we equate ν2
orbit and ν2

(n+1)n for high n and
obtain

a0 = (4πε0)
�

2

mee2
(1.31)

Examination of Equation 1.25 shows that, because the orbital radii are quantized
in accord with Equation 1.27, the total internal energy of the atom must also be
quantized. We may thus write Equation 1.25, replacing r with n2a0 and E with En

to indicate the nth energy level. We obtain

En = −
(

e2

4πε0

)
1

2n2a0
(1.32)

where n is called the principal quantum number. Substituting for a0 we have

En = −1

2

(
e2

4πε0

)2 (me

�2

)
· 1

n2
(1.33)

Note that the minus sign is required since the electron is bound to the proton. The
TME must therefore be negative. E = 0 corresponds to infinitely separated proton
and electron each having zero kinetic energy.

Equation 1.33 is called the Bohr energy. Although the Bohr model is not entirely
correct, the Bohr energy is correct. It applies to any quantum level of the hydrogen
atom as designated by the quantum number n. In fact, it applies to any one-electron
atom, for example helium with one electron removed, when the number of protons in
the nucleus is included. When compared with Equation 1.9, the Bohr energy yields
the value of the Rydberg constant, which is found to be
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RH =
(

e2

4πε0

)2
me

4πc�3

= 1.0973731568525 × 107 m−1 (1.34)

where the numerical value given is the accepted value today. The agreement be-
tween this theoretically obtained value and that empirically determined using atomic
spectroscopy was astonishing. While we know today that some of the concepts of
the Bohr model are incorrect, it remains a paradigm of clear and creative thinking.
Bohr’s use of known empirical facts together with his statement of the correspon-
dence principle led to a breakthrough in physics that gave birth to quantum physics
as we know it today. Although physicists know that the wave nature of matter, as ex-
emplified by, for example, the Davisson–Germer experiment, makes precise location
of particles problematic, most nevertheless envision a Bohr-like atom when thinking
about atoms (even if they don’t admit it in public). Besides permitting visualization,
the Bohr model also gives the correct order of magnitude and scaling with principal
quantum number of parameters, such as orbital distances and electronic velocities.
Most importantly, it also gives the correct quantized energies.

It also follows from the above analysis that the electronic angular momentum
must be quantized in units of �, the postulate that is incorrectly attributed to Bohr.
Indeed, this postulate follows as a consequence of the his two stated postulates and
the correspondence principle. Note, however, that � has units of angular momentum
(as does h).

Before leaving the Bohr energy it is useful to cast this important quantity in terms
of other, more revealing, parameters. One of the most convenient ways of writing
it is in terms of the fine structure constant, which is a combination of fundamental
constants that results in a pure number that is very nearly 1/137. This number is of
fundamental importance in quantum physics. It is given by

α =
[

e2

(4πε0) �c

]

� 1

137
(1.35)

The Greek letter α is universally used for the fine structure constant. Regrettably, it
is also universally used for a number of other important quantities. In terms of the
fine structure constant the Bohr energy is

En = −1

2
α2

(
mec2

)

n2
(1.36)

The reason Equation 1.36 is convenient is that most physics students know that
the rest mass of the electron is 0.51MeV (1MeV = 106eV). A simple calculation
shows that the lowest energy state of the Bohr atom, and, consequently, hydrogen, is
−13.6 eV. This energy is also called the ionization potential since it is the minimum
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energy required to liberate the electron from the hydrogen atom, leaving behind a
“hydrogen ion.” A hydrogen ion is simply a proton, but the term “ionization poten-
tial” is applied to all atoms and molecules. It is also convenient to remember the
Bohr energy in electron-volts. For this purpose we may rewrite Equation 1.33 as

En = −13.6056923 eV

n2
(1.37)

from which it is clear that the ionization potential of hydrogen is 13.6 eV.
From the Bohr energy as given in Equation 1.37 it is a simple matter to calculate

energy differences between any pair of levels. We have

�En n′ = 13.6056923 eV

(
1

n2
− 1

n′2

)
(1.38)

where it is assumed that n < n′. If we let n = 2 and use the relation E = hc/λ
we immediately recover the Balmer formula, Equation 1.9, the formula that pre-
dicts the wavelengths of emitted radiation for which the lower state is n = 2, the
Balmer series. There are, however, other series that are observed. For example, if
we let n = 1 we obtain a formula that predicts the wavelengths of the Lyman series.
Because the ground state lies much lower than n = 2 these energy differences are
considerably greater than those of the Balmer series. Consequently, transitions in
the Lyman series yield radiation in the ultraviolet region of the spectrum.

Let us now investigate the relationship between the quantum number n and the
angular momentum. From Equations 1.24, 1.31, and 1.27 the electronic velocity in
the nth orbit is

vn =
√

1

me

(
e2

4πε0

)
1

n2a0

= 1

me

�

n2a0
(1.39)

so the angular momentum of the electron in the nth orbit is

Ln = mevnrn

= n� (1.40)

We have therefore resurrected the “postulate” that the orbital angular momentum
is quantized in units of �. Interestingly, this result is incorrect because, as we will
learn later, the states of hydrogen can have any integer multiple of � or zero as long
as it is less than the principal quantum number n. This means that the electronic
angular momentum in the ground state is zero, not unity as predicted by Equation
1.40. Nonetheless, the Bohr model of the atom provides us with quantities that give
the correct order of magnitude of actual atomic parameters. For this reason it is



1.2 Early Theory 17

extremely useful. For example, a bit of algebra permits us to write vn in the form
(see Problem 5)

vn = α

n
c (1.41)

Notice that Equation 1.41 tell us that the highest orbital velocity for an electron
occurs in the ground state, but, even then, this velocity is more than two orders of
magnitude smaller than the speed of light, thus justifying the nonrelativistic treat-
ment. It is often convenient to express Bohr parameters in terms of the fine structure
constant, so we present in Table 1.1 a partial listing.

Before leaving the subject of the Bohr atom we discuss another of the conve-
niences afforded by it. Since the model is that of an electron circling a proton, the
electric current that is the result of the electronic motion is the source of a magnetic
field. Therefore, a Bohr atom has a magnetic dipole moment associated with the
orbital motion of the electron about the proton and the atom generates a magnetic
field identical to that of a bar magnet. The magnitude of this magnetic moment
for the ground state of the Bohr atom is referred to as the Bohr magneton, and is
designated by the symbol μB . Magnetic moments are often measured in terms of
the Bohr magneton so we calculate its value. Figure 1.5 is a schematic diagram of
the Bohr atom with the magnetic field lines due to the orbital motion of the electron.
Also indicated in this figure are the relevant parameters.

The magnetic moment of a current-carrying loop is given by the product of the
area of the loop and the current. The current is the electronic charge divided by the
period of the motion, T = 2πa0/v. Therefore, the magnetic moment is

Table 1.1 Quantities from
the Bohr model of the atom in
terms of the fine structure
constant α

α = e2

(4πε0) �c

En = − 1
2 α2 mec2

n2

a0 = �

mecα
vn = α

n
c

Fig. 1.5 The Bohr model of
the atom shown with the
magnetic field lines generated
by the orbiting electron
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μ = e

(
v

2πa0

)
(
πa2

0

)

= eva0

2
(1.42)

which may be written in terms of the orbital angular momentum L = meva0 as

μ = − e

2me
L (1.43)

where the vector nature of the angular momentum has been taken into account.
Because the electronic charge is negative, the angular momentum and the mag-
netic moment are in opposite directions. From Equation 1.43 it is clear that there
is a direct relationship between the magnetic moment and the angular momen-
tum. Because the angular momentum is quantized in units of � (see Equation
1.40), the magnitude of the magnetic moment in the first Bohr orbit, the Bohr
magneton, is

μB = e�

2me
(1.44)

1.2.2 The de Broglie Wavelength

In 1923 Louis de Broglie, in his doctoral thesis at the Sorbonne in Paris, proposed
that material particles, that is, particles having nonzero mass such as electrons, ex-
hibit a wave–particle duality as had been established for light. At first this notion
was met with skepticism, but after some encouragement from notable scientists,
particularly Einstein, it gained credibility. A few years later, the experiments of
Davisson and Germer validated the idea as did other experiments performed in other
laboratories. In 1929 de Broglie was awarded the Nobel Prize in Physics “for his
discovery of the wave nature of electrons.”

de Broglie set forth a relationship between the momentum of a particle and the
“wavelength” of matter waves, as they were called. Today we simply refer to the de
Broglie wavelength. He deduced a relation between photons and their momentum
and proposed the same relation for particles. The relativistic relation between energy
and momentum for a particle of rest mass, m0, is given by

E =
√

p2c2 + m2
0c4 (1.45)

which, for the massless photon, reduces to

E = pc (1.46)
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de Broglie inserted the Planck relation, Equation 1.3, for the energy and arrived at a
relation between the wavelength and momentum of a photon:

p = h

λ
(1.47)

He then postulated that this relation also applied to material particles and that the
wavelength of the matter wave is

λ = h

p
(1.48)

What is it that is doing the waving in the case of matter waves is, at this point,
still not clear, but, for now let us simply note that this was indeed a brilliant step.
Experiments of the type described in Section 1.1.4 verified the validity of Equation
1.48.

It is interesting that the Bohr energy can be easily derived by simply requiring
that a half-integral number of de Broglie wavelengths fit in each allowed Bohr or-
bital circumference (see Problem 8). Why a half-integral number of wavelengths?
Because that is what is required to establish a standing wave which, in this context,
may be correlated with Bohr’s stationary states. This is important because the de
Broglie hypothesis is consistent with the Bohr model of the atom.

1.2.3 The Uncertainty Principle

Among his many scientific accomplishments, one of Heisenberg’s most important
is his formulation of the uncertainty principle. For this, and other contributions,
Werner Karl Heisenberg was awarded the Nobel Prize in Physics in 1932 “for the
creation of quantum mechanics, the application of which has, inter alia (among other
things), led to the discovery of the allotropic forms of hydrogen.”

In his 1927 paper Heisenberg introduced the concept that position and momen-
tum could not be measured with unlimited precision. The principle may be stated
mathematically as

�x�px ≥ �/2 (1.49)

where �x and �px are the uncertainties in the measurements of position and mo-
mentum, respectively. For simplicity we confine the discussion to one-dimension
and specify the x-component of the momentum to emphasize that the principle holds
only when the coordinate and the component of the linear momentum are the same.
It is important to understand that the uncertainties, �x and �px , are not the result of
any flaw in our measurement technique or apparatus. They are consequences of the
wave–particle duality that, as we have seen above, is inherent in nature.
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The principle can be illustrated by examining the familiar single-slit diffraction
experiment from physical optics as is illustrated in Fig. 1.6. If the monochromatic
waves of wavelength λ that are incident on the single slit of width a are light waves,
the diffraction pattern observed on the screen will be proportional to sin2 β/β2

where β = πa sin θ/λ. From physical optics, the position of the first minimum is

sin θ = λ

a
(1.50)

which we take to be the angular spread.
We can also imagine the incident “waves” to be monoenergetic electrons, that

is, electrons that all have the same kinetic energy p2/2me. Therefore, all of the
electrons will have the same de Broglie wavelength λ = h/p and the same pattern
will be observed. (Recall we have not yet specified what it is that is doing the wav-
ing.) What causes the diffraction pattern in either case, photons or electrons, is an
uncertainty in the x-component of momentum. This uncertainty is given by

�px = p sin θ

=
(

h

λ

)(
λ

a

)
(1.51)

Note that, from relativity and from the de Broglie relation, Equation 1.48, the mo-
mentum is (h/λ) for either photons or electrons. Now, the uncertainty in x , �x , is
the width of the slit a, so we have recovered the uncertainty principle. The impor-
tant point to be made here is that the wave properties of light and matter and the
uncertainty principle are inextricably linked.

There is another experiment that can be carried out using electrons and slits that
demonstrates the wave nature of matter. It is analogous to the two-slit experiment
first performed by Young in 1801. We will not go into detail about this experiment
here other than to note that it also demonstrates the interference properties of matter
waves.

Equation 1.49 is not the only uncertainty relationship. Because � has units of
angular momentum it is, at least dimensionally, correct (always a good start). There
are, however, other combinations of variables, the products of which have the correct
units, that could provide suitable uncertainty relations. An important such relation is

Fig. 1.6 Schematic diagram
of a single-slit diffraction
experiment showing the
intensity of the diffraction
pattern. The secondary
maxima have been
exaggerated for clarity
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the energy–time uncertainty relation. We can rationalize the relationship by imagin-
ing a particle having kinetic energy E = p2/2m. The uncertainty in energy is then

�E = p�p

m
≥ v

(
�/2

�x

)
=

(
�/2

�x/v

)
(1.52)

But �x/v = �t , the uncertainty in time which leads to the relation

�E�t ≥ �/2 (1.53)

This energy–time uncertainty relation has many consequences. For example,
even if the resolution of the photographic plates were perfect and there were no
other mechanism for broadening the lines observed in atomic spectroscopy, some
lines would be broader than others. This is because the lifetimes of the initial states
involved in the transitions can differ by orders of magnitudes. These finite lifetimes,
which may be regarded as �t in the uncertainty relation, are accompanied by an
uncertainty in the energy. Thus, the photon energies are not truly monoenergetic and
a broadened line is observed on the photographic plate. In practice there are other
mechanisms that serve to broaden the lines, but modern spectroscopic techniques
can eliminate these so the “natural” linewidth, that associated with the uncertainty
in the energy of the state, can be observed.

1.2.4 The Compton Wavelength Revisited

It was noted in our discussion of the Bohr atom that, although not strictly correct, it
provides a good model for visualization and it leads to correct orders of magnitudes
and scaling for atomic parameters. In view of the uncertainty principle, we wish to
examine the question of whether it is reasonable to consider the electron (with its
wavelike properties) to really be “pointlike” as compared with the size of an atom,
∼ a0. To this end we ask the question: when are the nonrelativistic treatment offered
by the Bohr theory and the (nonrelativistic) quantum mechanics in this book valid?

Evidently, relativity will become important when the kinetic energy T of any of
the particles (including massless particles) is sufficient to cause creation of particle
pairs, that is, when T ∼ mec2. Let us imagine performing a Compton scattering
experiment in which we try to confine an electron within a small distance δ (we
will use one-dimension for simplicity). The more precisely we try to confine the
electron, that is, the smaller we wish to make δ (which is essentially the uncertainty
in position), the greater is the uncertainty in momentum �p of the photon. As �p
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increases, so does the energy of the incident photon. In terms of the uncertainty
principle this means that

δ = �/2

�p
(1.54)

Multiplying numerator and denominator by c makes the denominator the energy of
the (massless) photon in accord with the relativistic formula given in Equation 1.45.
If we now require that this energy be less than the amount of energy required to
create an electron–positron pair, namely, ∼ mec2, we have

δ = �c

2c�p

= �c

2mec2

∼ λc (1.55)

Thus, the minimum dimension for δ in which the electron may be localized before
relativistic considerations are required is the order of the Compton wavelength. We
may, therefore, regard the Compton wavelength as the intrinsic quantum mechani-
cal “size” of an electron. The Compton wavelength is, very roughly, the minimum
length in which a particle may be localized according to quantum mechanics. To
localize it further would require such a high momentum that the energy would be
sufficient for pair production.

Returning to the Bohr model, we may compare the size of the electron λc with
the size of the atom ∼ a0. According to Equation 1.31,

a0 = (4πε0)
�

2

mee2

=
[

(4πε0) �c

e2

](
�

mec

)

= 1

α
λc (1.56)

where α is the fine structure constant, Equation 1.35. Therefore, in terms of the Bohr
radius the size of the electron, the Compton wavelength, is

λc = αa0

∼
1

137
a0 (1.57)

which means that the electron’s intrinsic quantum mechanical size is roughly two
orders of magnitude smaller than the diameter of the atom. We conclude, therefore,
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that the Bohr model of the atom is viable in the sense that it can, indeed, be viewed
as a point electron orbiting a stationary nucleus.

1.2.5 The Classical Radius of the Electron

While the fact that the Compton wavelength is much smaller than the Bohr radius
validates the assumption of nonrelativistic quantum mechanics, there is another
quantity of interest, the classical radius of the electron. The assumptions that go
into the calculation of the classical radius are of dubious validity, but comparison of
it with the Compton wavelength of the electron is interesting.

The calculation is simple. We imagine that the charge e of the electron is dis-
tributed uniformly over the surface of a sphere of radius Re, the classical radius
of the electron. We now assume that the energy required to assemble this charge,
W , is equal to the rest energy of the electron. There are several ways to calculate
the energy of the charge distribution. One way is to use the fact that the energy
to assemble the charges is the sum of charge multiplied by the electric potential.
Adapted to the current problem this means that we must integrate the product of the
surface charge density and the potential at r = Re over the surface of the sphere and
multiply by one-half. Thus,

W = 1

2

(
e

4π R2
e

)(
e

4πε0 Re

)∫

S
d S

= 1

2

(
e2

4πε0 Re

)
(1.58)

Equating W to the rest energy of the electron mec2 leads to

Re = 1

2

(
e2

4πε0

)(
1

mec2

)

= 1

2

(
e2

4πε0�c

)(
�

mec

)

∼ αλc

∼ α2a0 (1.59)

which shows that the classical radius of the electron is roughly two orders of magni-
tude smaller than the Compton wavelength of the electron and four orders of magni-
tude smaller than an atom. Thus, although the concept upon which the calculation of
the classical radius of the electron is suspect, it is consistent with the visualization of
the electron as a “probability cloud,” the radius of which is the Compton wavelength.
Moreover, physicists love it when quantities can be expressed in terms of previously
known parameters multiplied by the fine structure constant.
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1.3 Units

In this book we will usually use SI units, although eV will frequently be used. In
addition to these units, it is often convenient to devise units of energy that are tai-
lored to a particular problem. For example, the eV, while convenient for the Bohr
atom, is so much smaller than nuclear quantum levels that the MeV, one million eV,
is usually used. Another commonly used unit of “energy” is the MHz. Technically,
this is a unit of frequency, but, in accord with Equation 1.1, it may be regarded as
a unit of energy if it is understood that it is actually the energy divided by Planck’s
constant. Table C.1 contains a listing of some of these contrived, but nonetheless,
very useful, units and their relationships to the eV.

Problems involving atomic or molecular calculations can be facilitated using yet
another system of units, atomic units, abbreviated a.u. These units can lessen the
calculational burden because many of the common atomic parameters are set equal
to unity. After obtaining answers in a.u. it is a relatively simple matter to convert
back to more familiar units.

In atomic units, by definition, the electronic charge e, the mass of the electron
me, and � are all set equal to unity. The unit of length is chosen to be the Bohr
radius a0 = [

(4πε0) �
2
]
/
(
mee2

)
. Thus, in atomic units

e = 1 = � = me = 1

4πε0
= 1 (1.60)

The conversion between a.u. and SI units can be effected with the aid of Table 1.2.
Notice that the unit of velocity is simply the velocity of the electron in the first

Bohr orbit while the unit of time is the period of the electron in the first Bohr
orbit divided by 2π . The unit of energy is twice the ground-state Bohr energy,
or 27.2 eV. The extra factor of 2 is merely a convenience. Interestingly, from the
definition of the fine structure constant, Equation 1.35, the speed of light is simply
c = α−1. That is, in a.u. the speed of light is 137 a.u. of length/a.u. of time (see
Problem 6).

Table 1.2 Atomic units (a.u.)

Quantity a.u. Value (SI)
Mass me = 1 9.10 × 10−31 kg
Charge e = 1 1.60 × 10−19 C
Angular momentum � = 1 1.06 × 10−34 Js
Length a0 = 1 5.29 × 10−11 m
Velocity v0 = αc 2.20 × 106 m/s
Time a0/v0 = 1/αc 2.42 × 10−17 s
Energy e2/ (4πε0a0) = 1 4.36 × 10−18 J
Electric field e/

(
4πε0a2

0

) = 1 5.14 × 1011 V/m
Bohr magneton e�/ (2me) = 1/2 9.274 × 10−24 J/T
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In practice two of these quantities are used more than the others, length and
energy. Both have names in a.u. although they are seldom used. The unit of length
in a.u. is the bohr and the unit of energy is the hartree, so named for D. R. Hartree
who proposed the unit in 1926. Usually, however, most physicists simply say “one
a.u. of length” or “one a.u. of energy.”

1.4 Retrospective

A variety of experimental observations during the late nineteenth and early twen-
tieth centuries showed that classical physics was inadequate for describing many
phenomena. These observations led to the formulation of quantum physics as we
know it today, the subject of this book. Only a few of these early studies that
led to the development of contemporary quantum physics have been discussed in
this chapter because the chapter is intended primarily as background for the re-
mainder of the book. Emphasis was placed on key points that required resolution
in the new quantum physics including the particlelike behavior of light and the
wavelike behavior of particles. This wave–particle duality, which Bohr elaborated
upon in his principle of complementarity, is dealt with in quantum mechanics by
incorporating both the Planck relation E = hν and the de Broglie wavelength
λ = h/p in the mathematical formulation. It is the inclusion of these quanti-
ties that accounts for the quantized nature of subatomic energy levels. It remains
“merely” to deduce an equation of motion that adequately describes quantum me-
chanical systems. After that we are done—except for the calculational details. In
essence, this is all of quantum physics, at least in a first formulation which we now
embark upon.

1.5 References

1. N. Bohr, “On the quantum theory of line-spectra,” in “Sources of Quantum Mechanics,” edited
by B. L. van der Waerden (Dover, New York, 1967).

Problems

1. Light of wavelength λ illuminates a metal surface and photoelectrons having
maximum kinetic energy of 1eV are ejected. The light source is replaced by a
one which emits light of wavelength λ/2 and the photoelectrons are observed
to have a maximum kinetic energy of 4.28 eV. What is the work function of the
metal? Find a table of work functions and decide which metal it is.

2. If the state of mercury atoms that is excited by electrons in the Franck–Hertz
experiment decays back to the state from which it was excited by emitting light,
what will be the wavelength of that light?



26 1 Introduction

3. Calculate the following:

(a) The wavelengths in nm of the first three lines of the Lyman series and the
Balmer series.

(b) The series limit of the Lyman and Balmer series. The series limit is defined
as the shortest possible wavelength.

4. It is possible to form a hydrogenlike atom with a proton and a negative μ-meson
having mass mμ ≈ 200me. Find the radius of the first Bohr orbit in terms of a0,
the velocity of the μ-meson in the first Bohr orbit in terms of the same quantity
for hydrogen, and the ionization energy from the ground state in electron-volts.

5. Show that a0 = �/ (mecα) and that the speed of the electron in the nth Bohr
orbit is vn = αc/n.

6. Using the definition of the fine structure constant α, (Equation 1.35), and its
known value, show that, in atomic units, the speed of light is 137 a.u. of length
per a.u. of time.

7. Compton scattering experiments can be performed using protons rather than
electrons.

(a) Find the Compton wavelength of the proton in terms of the Compton wave-
length of the electron.

(b) If the apparatus is such that �λ/λ must be ∼ 0.03, what must be the
wavelength of the incident photon? In what region of the electromagnetic
spectrum are photons of this energy?

8. Show that fitting de Broglie waves to the circumference of the Bohr orbits leads
to the postulate that Bohr never made, that is, angular momentum is quantized
in units of �.



Chapter 2
Elementary Wave Mechanics

2.1 What is Doing the Waving?

In nonrelativistic quantum physics, particles are treated as points. That is, they
have no finite dimensions (zero volume) so they cannot, for example, spin. We are
therefore justified in asking “what is doing the waving?” The answer is that it is
the probability of finding the particle in a particular region of space. Actually, it is
the probability of finding the particle within a particular range of some physically
measurable parameters such as linear momentum or angular momentum, but let us
confine our attention to coordinates for now. The application of quantum physics to
solve problems thus becomes one of solving the appropriate equation of motion for
the function that represents this probability. The mechanics of doing this is called
quantum mechanics or, archaically, wave mechanics. The intention of this chapter
is to introduce this equation of motion and, using it, to better understand the answer
to the question what is doing the waving.

2.2 A Gedanken Experiment—Electron Diffraction Revisited

It is reasonable to ask if we can imagine an experiment that will demonstrate the
wave nature of the probability and, simultaneously, the pointlike “structure” of the
particles. Gedanken is the German word for thought, so a Gedanken experiment
is not one that can actually be performed, but one that can be imagined and used
to understand a particular phenomenon. Modern technology has, however, made it
possible to perform experiments that were envisioned as Gedanken experiments dur-
ing the development of quantum mechanics. Because of the counterintuitive nature
of quantum physics, many Gedanken experiments were imagined, especially in the
early development of quantum physics. For the present purpose, we return to the
electron diffraction experiment described in Section 1.2.3 and use it to perform a
Gedanken experiment.

Imagine the screen to be constructed of a material that phosphoresces when
struck by an electron. Phosphorescent materials continue to emit light after be-
ing energized and we assume, for the purpose of this experiment, that our screen

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 27
DOI: 10.1007/978-0-387-77652-1 2, C© Springer Science+Business Media, LLC 2008
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phosphoresces indefinitely. Now, let us lower the intensity of the electron beam so
we can easily see each electron as it strikes the screen, lights it up, and leaves a
signature of its presence in the form of a persistent pinpoint of light. The first elec-
tron strikes somewhere, we cannot predict where with certainty. From the known
diffraction pattern we know where it is most likely to strike. Perhaps it is a contrary
electron and strikes in a region in which the diffraction pattern has low intensity,
perhaps not. Bear in mind that it is a single event. Wherever it strikes, it leaves
its signature. A second electron arrives. It too leaves its signature. Again, we do
not know where it will land, only where it is most likely to land. After perhaps
100 electrons have struck the screen we have a pattern, but it may not look like
the known diffraction pattern because 100 is not, statistically speaking, a very large
number. When, however, a large number of electrons have struck the screen it is
lit up with the known diffraction pattern. This pattern is composed of many points
of light representing the point electrons, but the pattern represents the diffraction
pattern characteristic of wave motion.

The important point to remember is that the particles are not magically turning
into slithering sausages as they make their way through the narrow slit. They main-
tain their identity as point particles. It is, perhaps, Avogadro’s number of them that
are required to demonstrate the wavelike properties of matter.

2.3 The Wave Function

Paramount to obtaining the probability distribution is the wave function, � (x, t).
We use the capital Greek letter to designate the wave function when the time is
included and, for now, we work with only one-dimension, x . We point out that
the wave function need not be written in terms of any coordinates. It could be in
terms of another variable (called an observable in quantum mechanics), but we will
consider only coordinates and time for now. Now, by postulate, � (x, t) contains all
the information that the uncertainty principle permits us to know about the particle.
Using an asterisk to signify the complex conjugate, the probability that the particle
will be found in the interval dx at time t is given by

�∗ (x, t) � (x, t) dx = |� (x, t)|2 dx (2.1)

provided � (x, t) has been normalized so that

∫ ∞

−∞
�∗ (x, t) � (x, t) dx = 1 (2.2)

Normalization assures that the total probability cannot exceed unity. The complex
conjugate is required because � (x, t) may very well be a complex function. On
the other hand, the probability must be real so the absolute value in Equation 2.1
assures us that the probability will be real. We see then that, while � (x, t) does
not give physical information, its absolute square does. The quantity |� (x, t)|2 is
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the probability density so that, in one-dimension, it has units of probability per unit
length.

If we wish to calculate the average value of some quantity that is a function of
x , say f (x), we multiply this function by the normalized probability distribution
�∗ (x, t) � (x, t) dx , which weights the values of f (x). We then integrate over all
possible values of x to obtain 〈 f (x)〉, the average value of f (x). This procedure
is analogous to calculating the class average on an examination by multiplying
each possible score by the number of students achieving that score, adding these
quantities, and then dividing by the total number of students. Division by the total
number has already been accounted for if the wave function is normalized. If not,
the integral in Equation 2.2 must be computed, which amounts to normalizing the
wave function. In the case of the class average the number of students is a discrete
number as are the possible test scores. Clearly the computation of 〈 f (x)〉 requires
integration so we define

〈 f (x)〉 ≡
∫ ∞

−∞
�∗ (x, t) f (x) � (x, t) dx = 1 (2.3)

Notice that 〈 f (x)〉 need not be one of the possible values f (x) just as the class
average of an examination need not be a score that any particular student actually
achieved. In quantum physics the average value as defined in Equation 2.3 is often
referred to as the expectation value, a fancy term for average value.

2.4 Finding the Wave Function—the Schrödinger Equationö

Just as there are equations of motion in classical physics, there are equations of
motion of the wave function in quantum physics. Such equations are called wave
equations. In this book we deal with nonrelativistic quantum physics so we will use
the Schrödinger wave equation, an equation that cannot be derived. It can be ratio-
nalized, but it cannot be derived. This is not the first time you have encountered such
an equation. Newton’s second law, F = ma, cannot be derived. It works though, so
we accept it as being a law (at least nonrelativistically). It was deduced by Newton.
We can presume that he tried others, but settled on F = ma as the correct law of
motion because it worked. This is the same approach taken by Erwin Schrödinger
who shared the 1933 Nobel Prize in Physics with Paul Adrien Maurice Dirac. The
citation for their prize reads: “for the discovery of new productive forms of atomic
theory.”

The validity of the Schrödinger equation lies in the fact that it satisfactorily ex-
plains nonrelativistic quantal phenomena. It is, however, worthwhile to see how this
equation can be rationalized because we can see what is built into the Schrödinger
equation. The (nonrelativistic) TME E of a particle of mass m in terms of the po-
tential energy U (x), the particle’s momentum p is
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E = p2

2m
+ U (x) (2.4)

If we incorporate both of the important quantal relations, the Planck relation, Equa-
tion 1.2, and the de Broglie wavelength, Equation 1.48, into Equation 2.4, we have

�ω = (�k)2

2m
+ U (x) (2.5)

where we have replaced the de Broglie wavelength with the wave number k de-
fined as

k = 2π/λ ⇒ p = �k (2.6)

The term in Equation 2.5 that makes it particularly difficult to write a wave equation
for a particle is the potential energy, so we will temporarily ignore it. (We are, after
all, only rationalizing, not deriving.) If the particle were massless, for example a
photon, then the electromagnetic wave equation would pertain. That is, the equation
of motion is

�2 A (x, t)

�x2
= 1

c2

�2 A (x, t)

�t2
(2.7)

where A (x, t) is the space- and time-dependent amplitude (electric or magnetic
field) of the wave, and c is, as usual, the speed of light. Partial derivatives are
required because the wave function is a function of two variables. A solution to
Equation 2.7 is a plane wave

A (x, t) = K ei(kx−ωt) (2.8)

where K is a constant and i = √−1. Before proceeding let us recall that wave
motion is always described by a function of (x − vt) where v is the velocity of the
wave. Equation 2.8 is such a function with v = ω/k. For electromagnetic waves
v = c, the speed of light.

Suppose we try to apply Equation 2.7 to the case of a material particle (nonzero
mass), but, for simplicity, continue to let U (x) = 0. When U (x) = 0 we have
a “free particle.” We then replace the amplitude A (x, t) with the wave function
� (x, t), let c → v and assume a plane wave solution analogous to Equation 2.8 and
insert this solution into Equation 2.7. After dividing by the � (x, t) on both sides of
the equation we obtain

(ik)2 = 1

v2
(−iω)2 (2.9)

Equation 2.9 is, however, inconsistent with Equation 2.5 because, with U (x) = 0,
k2 ∝ ω, not ω2. We can see that in order to get only the first power of ω we must
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differentiate � (x, t) only once with respect to time. This results in a modification of
Equation 2.7 with A (x, t) → � (x, t) and �2 A (x, t) /�t2 → �� (x, t) /�t to yield

�2� (x, t)

�x2
= K

�� (x, t)

�t
(2.10)

where K is a constant. Inserting Equation 2.8 into Equation 2.10 and solving for K
we have

K = k2

iω
(2.11)

But, from Equation 2.5 we see, with U (x) = 0,

�ω = �
2k2

2m
=⇒ k2

ω
= 2m

�
(2.12)

Therefore,

K = −i
2m

�
(2.13)

and we have

�2� (x, t)

�x2
= −i

2m

�

�� (x, t)

�t
(2.14)

This equation can be put in its usual form by multiplying both sides by −�
2/2m,

the advantage of which is that both sides have units of energy. We have

− �
2

2m

�2� (x, t)

�x2
= −�

i

�� (x, t)

�t
(2.15)

This wave equation is applicable only to a free particle, that is, a particle for which
the de Broglie wavelength is constant throughout. The de Broglie wavelength is
constant because the total energy is presumed constant, so the kinetic energy and
therefore the momentum is constant. How do we account for a nonzero potential
energy? A constant potential energy is easy because the de Broglie wavelength is
constant; U (x) = 0 is a special case of U (x) = U0 = a constant. Thus, we can,
without any guilt, write

[
− �

2

2m

�2

�x2
+ U0

]
� (x, t) = −�

i

�� (x, t)

�t
(2.16)

which is consistent with Equation 2.5 with U (x) replaced by U0. Notice that we
have factored the � (x, t) to the right of the bracket on the left-hand side of Equa-
tion 2.16. The significance of this is that the quantity in brackets is an operator and
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it operates to the right. The first term is a differential operator and must be kept to
the left of the function � (x, t). The second term is, however, merely a multiplica-
tive operator, but an operator nonetheless. We will see that, in quantum mechanics,
observable quantities such as energy, momentum, and position are represented by
operators. We will deal with this in depth in a later chapter touching on it only
superficially here. It is not a great leap of faith to replace U0 in Equation 2.16 with
the function U (x) thus obtaining the time-dependent Schrödinger equation

[
− �

2

2m

�2

�x2
+ U (x)

]
� (x, t) = −�

i

�� (x, t)

�t
(2.17)

which, for brevity, we will refer to as the TDSE.
You may be wondering why we went through all this sleight of hand to arrive at

Equation 2.17, after having stated at the outset that it couldn’t be derived. After all,
you probably never had anyone rationalize F = ma. Why then go to all the trouble
to rationalize the TDSE? Why not just state it and get down to business solving
quantum mechanics problems? The reason lies in Equation 2.5. This equation for
the total energy of the particle comprises the two fundamental relations of quantum
physics, the de Broglie wavelength and the Planck relation. Thus, these manifestly
quantal quantities are incorporated in the TDSE.

There are a few mathematical consequences of using the TDSE as our equation
of motion that we should recognize. First, it is a homogeneous linear differential
equation. This means that linear combinations of solutions are also solutions, a
characteristic that has profound physical consequences. Second, the TDSE is merely
a differential equation. As such, it does not quantize anything. It could very well
appear at the end of a chapter in a book on differential equations as an exercise
asking the student to solve it for a given function U (x). It is the physics of a par-
ticular system that imposes quantization on a system, if indeed quantization occurs.
In other words, we as physicists must specify the conditions on the wave function
that are dictated by the system under consideration. These conditions may or may
not quantize the energy levels, as well as other physical parameters.

2.5 The Equation of Continuity

The TDSE, together with the probability interpretation of |� (x, t)|2 leads to a con-
tinuity equation for probability. This means that there is a flux of probability that
must be conserved. To take a concrete example, if an electron is moving from, say,
left to right, the probability is leaving one region of space and occupying another.
Let us be quantitative and examine the time dependence of the normalization of the
wave function:

�

�t
|� (x, t)|2 = �∗ (x, t)

�� (x, t)

�t
+ � (x, t)

��∗ (x, t)

�t
(2.18)
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We may, however, replace the partial derivatives with respect to time on the right-
hand side of Equation 2.18 using the TDSE Equation 2.17 and its complex conju-
gate. The potential energy function, being a real function, drops out and we have

�

�t
|� (x, t)|2 = �

2im

[
� (x, t)

�2�∗ (x, t)

�x2
− �∗ (x, t)

�2� (x, t)

�x2

]

�

�t
|� (x, t)|2 = �

�x

{
�

2im

[
�∗ (x, t)

�� (x, t)

�x
− � (x, t)

��∗ (x, t)

�x

]}
(2.19)

Now, define the quantity in curly brackets as the probability current j (x, t):

j (x, t) = �

2im

[
�∗ (x, t)

�� (x, t)

�x
− � (x, t)

��∗ (x, t)

�x

]
(2.20)

which leads to

� |� (x, t)|2
�t

+ �

�x
j (x, t) = 0 (2.21)

which is the desired continuity equation. The analogy with the equation of continu-
ity in electricity is often made. This analogy is more concrete if we imagine the wave
function to represent a beam of electrons so that the electronic charge e multiplied by
|� (x, t)|2 is, in a very real sense, the charge density. Thus, if we multiply Equation
2.21 by e we recover the continuity equation from electricity inasmuch as we now
identify the quantity ej (x, t) with the current density.

2.6 Separation of the Schrödinger Equation—Eigenfunctions

The potential energy term in Equation 2.17 does not contain the time. This will
almost always be the case (certainly in this book). We attempt to solve the TDSE
equation by the time-honored technique of separation of variables assuming a solu-
tion of the form

� (x, t) = ψ (x) T (t) (2.22)

Notice that the Greek psi on the right-hand side is lower-case which we reserve
for a function of coordinates only. Inserting Equation 2.22 into Equation 2.17 and
dividing by ψ (x) T (t) we have

1

ψ (x)

[
− �

2

2m

d2

dx2
+ U (x)

]
ψ (x) = −�

i

dT (t)

dt
(2.23)
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Note that, on the left-hand side of Equation 2.23, the ψ (x) in the denominator and
the ψ (x) in the numerator do not cancel because the one in the numerator must be
operated upon by the quantity in square brackets.

Now, the left-hand side of Equation 2.23 contains only coordinates while the
right-hand side only time. The only way these quantities, each containing a variable,
can be equal is if they are each equal to a constant which we choose to be E (because
we know the answer). Now, the equation in x cannot be solved unless we know
U (x), but the equation for time can be easily solved. The general solution is

T (t) = e−i(E/�)t (2.24)

which is the universal time part of the wave function as long as the potential en-
ergy is independent of time. We need not bother with a normalization constant in
Equation 2.24 because that will be absorbed in the normalization for ψ (x).

Setting the left-hand side of Equation 2.23 equal to the separation constant E we
have

[
− �

2

2m

d2

dx2
+ U (x)

]
ψ (x) = Eψ (x) (2.25)

This is the time-independent Schrödinger equation, the TISE. We will devote much
of the remainder of this book to the solution of Equation 2.25. It should be noted
that, as discussed above, the quantity in square brackets is an operator. This operator
represents the total energy of the system and is called the Hamiltonian, the same
Hamiltonian as in classical mechanics. If the potential energy does not contain the
time, the Hamiltonian, designated by the symbol Ĥ , is the TME. Moreover, since
the TME is the sum of kinetic plus potential energies it is clear the the first term
is the kinetic energy operator which can be written in terms of the momentum,
p̂2

x/2m. The “hat” over the momentum signifies that it is an operator. We will also
use a hat to designate a unit vector in any coordinate system, for example, ı̂, ĵ , k̂
in Cartesian coordinates or âr , âθ , âφ in spherical coordinates. This should cause
no confusion with the hat designation of operators. Now, the momentum is a vector
quantity (operator), so we use the subscript to denote the component even though
we are dealing with only one-dimension in this chapter. In terms of the Hamiltonian,
the (one-dimensional) TISE may be written as

Ĥψ (x) = Eψ (x)

=
[

p̂2
x

2m
+ U (x)

]
ψ (x) (2.26)

and the time-dependent Schrödinger wave equation, the TDSE, is

Ĥ� (x, t) = −�

i

�� (x, t)

�t
(2.27)
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In general, there will be many solutions of the TISE, each corresponding to a
different value of ψ (x) and its corresponding eigenvalue, E . We therefore attach
subscripts to distinguish the different ψn (x) and to correlate them with their corre-
sponding eigenvalues, En . Equations that have the form of Equation 2.26 are called
eigenvalue equations. The different values of En are the eigenvalues and the corre-
sponding values of ψn (x) are called eigenfunctions. It is also possible that some
eigenfunctions can share the same eigenvalue, in which case the eigenfunctions
are said to be degenerate. We will ignore degeneracy for now because, for bound
states in one-dimension, the eigenfunctions are nondegenerate. It will, however, be
an important consideration when we attack three-dimensional problems.

We can actually find the form of the x-component of the momentum operator by
noting that the square of an operator simply means that we should apply it twice in
succession. Thus, comparing the first terms in the brackets of Equations 2.25 and
2.26 we see that

p̂x = �

i

d

dx
(2.28)

The appearance of the imaginary number i is not a cause of concern because the
wave functions themselves can be complex functions. Recall that it is the absolute
squares of the wave functions that must be real. It will, however, be a requirement
that the eigenfunctions of any operator that represents an observable quantity, such
as momentum or energy, must be real, for it would be absurd to imagine measuring
an imaginary momentum.

2.7 The General Solution to the Schrödinger Equation

As noted above, an important property of the TISE is that it is a linear differen-
tial equation. This means that linear combinations of solutions are also solutions.
Moreover, as will be shown later, the eigenfunctions constitute a complete set of
functions. That is, the eigenfunctions are complete in the sense that any function
can be represented as a linear combination of them, much as any vector in three-
dimensional space can be represented as a linear combination of the unit vectors
ı̂, ĵ , and k̂. Indeed, the eigenfunctions span a vector space, the “vectors” being
any function that can be constructed as a linear combination of the ψn (x). Thus, a
general solution to the TISE, call it ψ (x), the absence of a subscript signifying that
it is not an eigenfunction, may be written

ψ (x) =
∞∑

n=1

anψn (x) (2.29)

where, because ψ (x) may be complex, as may be the expansion coefficients, the an.
An additional property that will be proven in a later chapter is that the ψn (x) are
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orthogonal in the same sense that the unit vectors are orthogonal. To designate this
orthogonality, the notation can be condensed to

∫ ∞

−∞
ψn (x) ψm (x) dx = 0 m �= n (2.30)

The integral in Equation 2.30 is the equivalent of the dot product for real vectors.
Suppose that ψ (x), as given by Equation 2.29, represents the total wave function

at t = 0, that is,

� (x, 0) = ψ (x)

=
∞∑

n=1

anψn (x) (2.31)

then, using the universal time dependence, Equation 2.24, it is a simple matter to
write the wave function for all time. We have

� (x, t) =
∞∑

n=1

anψn (x) e−i(En/�)t (2.32)

Equations 2.29 and 2.32 represent one of the most important theorems in quantum
mechanics, the superposition theorem. At this stage in our discussion these two
equations are merely mathematical constructions, but we will see that they have
profound implications for the behavior of physical systems and the states that they
occupy.

Because � (x, t), as given in Equation 2.32, is a solution of the TDSE, it is said
that the system is in a superposition of states. Moreover, the expansion represented
by Equation 2.32 is a coherent superposition of states in the sense the “components”
of the expansion have definite phase with respect to each other as contained in the
expansion coefficients and the time dependence. Suppose we have a large number
of identical systems and a measurement of some physical quantity, say the energy, is
made on a single one of these systems. The only possible result of this measurement
is one of the energy eigenvalues. If an identical measurement is made on another
of these systems, again, only one of the eigenvalues could result, but, possibly, a
different one than the other measurement. If measurements are made on many of
these identical systems (by many we mean many, say Avogadro’s number), then
the absolute squares of the expansion coefficients, the an, give the probabilities of
measuring the corresponding En’s.

The measurement process described above alters the system and changes the
wave function by forcing the system into the particular eigenstate, the eigenstate that
corresponds to the measured eigenvalue. In particular, if the energy measurement
yielded the i th eigenvalue Ei , then the wave function of the system becomes the
eigenfunction ψi (x). The language that goes with this is that the wave function has
been “collapsed” into the i th state.
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Consider a simple example. Suppose we have only two states in the expansion
and that the normalized wave function � (x, t) is given by

� (x, t) = 1√
3
ψ1 (x) e−iω1t +

√
2

3
ψ2 (x) e−iω2t (2.33)

where ωi = Ei/�. For simplicity, let ψ1 (x) and ψ2 (x) be real functions. The prob-
ability density is

|� (x, t)|2 = 1

3

{|ψ1 (x)|2 + 2 |ψ2 (x)|2

+2
√

2ψ1 (x) ψ2 (x) cos [(ω1 − ω2) t]
}

(2.34)

which is oscillatory, the frequency depending upon the difference in the energy and
the amplitude depending upon the expansion coefficients. Incidentally, it is clear
from Equation 2.34 that if there is only one component of � (x, t) then |� (x, t)|2
does not contain the time, thus justifying its designation as a “stationary state”.

Let us assume that we have a large number of identical systems, each described
by the wave function of Equation 2.33. Now, what can we expect if we measure
the energy of each of these identical systems? We have already stated that the only
possible result of such a measurement is one of the eigenvalues. In the present case
the measurement can yield only E1 or E2 because the system is in a superposi-
tion of only ψ1 (x) and ψ2 (x). What is the probability of measuring each of these
eigenvalues? Without resorting to mathematical formalism to which we have not
yet been exposed, it is relatively easy to deduce the answer. Suppose, rather than
the expansion coefficients used in Equation 2.33, � (x, t) is an equal admixture of
ψ1 (x) and ψ2 (x). (For an unknown reason it is customary to use the word admixture
here rather than mixture.) For this equal admixture only E1 or E2 could be measured,
but with equal probabilities, 1

2 . The normalized wave function must therefore be

� (x, t) = 1√
2
ψ1 (x) e−iω1t + 1√

2
ψ2 (x) e−iω2 t (2.35)

Consequently, we conclude that it is the square of the expansion coefficient that
gives the probability of measuring the corresponding eigenvalue. If the system is
described by the wave function of Equation 2.33, we would therefore measure E2

twice as often as we would measure E1.
The consequence of the above discussion is that the system is indeed in more than

one eigenstate—as long as we are not “looking,” that is “making a measurement.”
When we make the measurement (and look), we necessarily perturb the system,
immediately collapsing the wave function into one of the eigenstates.
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2.8 Stationary States and Bound States

Bohr’s characterization of the states of hydrogen as stationary states has been broad-
ened and retained in modern quantum physics. It refers to any state � (x, t) for
which the expansion, Equation 2.32, consists of a single term. Thus, the probability
density |� (x, t)|2 reduces to

|� (x, t)|2 = ψn (x) e−i(En/�)tψ∗
n (x) e+i(En/�)t

= ψn (x) ψ∗
n (x)

= function of x only (2.36)

Because this probability density is independent of time, it is defined as a “stationary
state.” On the other hand, if the wave function, � (x, t), contains two or more terms
in Equation 2.32, the probability density will be time-dependent and the state does
not qualify as a stationary state (see for example Equation 2.34).

If a particle is confined to a region of space by a potential energy function, then
the resulting quantum states are referred to as “bound states.” Incidentally, physicists
often get sloppy and refer to the potential energy function as, simply, the potential.
We will follow this custom and use the two interchangeably. Obviously Bohr’s sta-
tionary states are examples of bound states, but there are many other examples of
bound states. The wave function representing a particle confined by such a poten-
tial energy function may be a stationary state or it may be a linear combination of
them as in Equation 2.32. If there is more than one term in the expansion of the
wave function that represents the quantum system, then the system is said to be
in “a superposition of states.” More will be said about this designation when we
discuss the formalism of quantum mechanics. In this chapter we will concentrate
on the characteristics of stationary bound states of some simple systems. A great
simplification exists for bound states in one-dimensional problems. They are always
nondegenerate (see Problem 3).

2.9 Characteristics of the Eigenfunctions ψn (x)

What must be the character of an eigenfunction ψm (x)? First, it may be a real,
imaginary, or complex function because it is the absolute square of ψn (x) that gives
the probability density. It must, however, be single valued and it must be contin-
uous. Even in the mysterious world of quantum mechanics a particle cannot be in
two places at once. If ψn (x) had, say, two different values at a given value of x ,
then |ψn (x)|2 would be similarly double valued and there would be two different
probabilities of finding the particle at a given value of x . Accepting that this is
absurd, even in quantum physics, we require that ψn (x) is single valued. A similar
incongruity would occur if the wave function were discontinuous. These are, in fact,
characteristics of any general solution to the TISE ψ (x), not just eigenfunctions.
Figure 2.1 illustrates three hypothetical wave functions ψ (x) that are unacceptable.
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Fig. 2.1 Hypothetical wave
functions ψ (x) that, for the
indicated reasons, would be
unacceptable bound state
wave functions

In addition to these general conditions on ψ (x), we are also interested in the
important case in which U (x) supports bound states. This means that the particle
motion is restricted to a particular region of space by the potential energy func-
tion, similar to the way the planets are bound by the potential energy of the sun.
In such cases the particle is confined by the potential energy function and, as a
consequence, the probability density and therefore the wave function must approach
zero as |x | → ∞. The language that goes with this is to say that the wave function
is “normalizable” or “square integrable.” This means that the wave function can be
multiplied by a constant such that

∫ ∞

−∞
ψ∗ (x) ψ (x) dx = 1 (2.37)

Equation 2.37 is called the normalization integral and it signifies that the probability
of finding the particle somewhere is unity. Moreover, for bound states it cannot be
found at infinity because the nature of the potential localizes it in space. Notice that
multiplication of the eigenfunction by a constant does not change the magnitude of
the corresponding eigenvalue because the eigenfunction ψ (x) occurs in each term of
the TISE, Equation 2.25. Combining the orthogonality property with normalization,
we may write for eigenfunctions

∫ ∞

−∞
ψ∗

n (x) ψm (x) dx = δmn (2.38)

where δmn is the Kronecker delta defined as

δmn = 0 if m �= n

= 1 if m = n (2.39)

Eigenfunctions that obey Equation 2.38 are said to be orthonormal.
Now we must ask about the derivative of ψ (x). The TISE contains the second

derivative, so that if U (x) is a continuous function, both ψ (x) and dψ (x) /dx must
be continuous. Even if U (x) has a finite discontinuity, both ψ (x) and dψ (x) /dx
must be continuous. This is so because, from the TISE, d2ψ (x) /dx2 will then have
a finite discontinuity (imagine solving Equation 2.23 for d2ψ (x) /dx2) from which
it follows that dψ (x) /dx must be continuous and that ψ (x) is continuous. An
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Fig. 2.2 Sketch of a
hypothetical potential energy
with a discontinuity that
occurs as ε → 0

unacceptable discontinuity of the derivative is illustrated in Fig. 2.1. To place this
on a more mathematical foundation we may imagine a potential energy function that
has a finite discontinuity at some value of x , say x = x0 as illustrated in Fig. 2.2.

We simply integrate the TISE across the discontinuity from x0 − ε to x0 + ε:

∫ ε

−ε

d

dx

[
dψn (x)

dx

]
dx =

(
−2m

�2

)∫ ε

−ε

[E − U (x)] ψn (x) dx (2.40)

and take the limit as ε → 0:

lim
ε→0

dψn (x)

dx

∣∣
∣
∣
x=ε

− lim
ε→0

dψn (x)

dx

∣∣
∣
∣
x=−ε

=
(

−2m

�2

)
lim
ε→0

∫ ε

−ε

[E − U (x)] ψn (x) dx (2.41)

As long as the discontinuity in U (x) that occurs when ε → 0 is finite, the integral
on the right-hand side of Equation 2.41 vanishes in the limit and dψ/dx must be
continuous at x = x0. If, on the other hand, the discontinuity is infinite, as would
occur if U → ∞, then the integral on the right-hand side does not necessarily vanish
in the limit and the derivative need not be continuous.

There is a great deal that we can learn about the nature of the eigenfunctions, the
ψn (x), without ever actually solving the TISE. Let us solve Equation 2.25 for the
second derivative and, again, for simplicity, imagine ψn (x) to be a real function:

d2ψn (x)

dx2
=

(
−2m

�2

)
[E − U (x)] ψn (x) (2.42)

Now, recall that the second derivative of a function is a measure of the curvature of
the function. A high value of the second derivative means a “tight” curve, while
a low value means a gentle curve. Moreover, the sign of the second derivative
indicates the direction of curvature. (Recall that this is the basis for determining
whether a zero of the first derivative is a maximum or a minimum.) A negative
second derivative means that the function is concave down while a positive second
derivative is concave up. These features of the second derivative are summarized in
Fig. 2.3 for an arbitrary function f (x).
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Fig. 2.3 Illustrations of
various possible second
derivatives of the function
f (x). The curves labeled 1
and 2 have positive values of
d2 f (x) /dx2 and are
therefore concave up. Curve 3
is concave down. The second
derivative of curve 1 is
greater than that of curve 2

If the curvature of a wave function ψ (x) is high as, for example, the curve labeled
number 1 in Fig. 2.3, then the de Broglie wavelength of the particle that it represents
is short and the momentum and kinetic energy are high. This is characteristic of a
high-energy state. Thus, we expect the lowest energy states to have the longest de
Broglie wavelengths and their eigenfunctions to have the gentlest curvatures. In
such a case the wave function will not go through zero (a node) except at ±∞ so
the lowest state, the ground state, will have no nodes. The first excited state, having
slightly higher energy, has one node, and so on. In essence, we are fitting de Broglie
waves into the region of space that is dictated by the potential energy function. In
this sense the ground state is the fundamental and the first excited state the first
overtone.

There is still more that we can learn from Equation 2.42. Figure 2.4 shows a
sketch of a fictitious potential energy curve.

The horizontal line represents E , the TME of a particle. Let us temporarily as-
sume classical motion so that E can take on any value as determined by the initial
conditions. Because U (x) (in the illustration) extends to values higher than E , the
motion will be bound. The limits of this motion will be xc1 and xc2. These points
are known as classical turning points. At these points the particle has zero kinetic
energy and it turns around. Classically, the particle cannot move beyond the clas-
sical turning points because this would require a negative kinetic energy and, thus,
an imaginary speed. Nevertheless, quantum mechanics, being the contrary branch
of physics that it is, permits motion into this “classically forbidden region.” Let us

Fig. 2.4 A hypothetical
potential energy curve with a
presumed total mechanical
energy (TME) showing the
classical turning points xc1

and xc2
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examine the nature of ψ (x) in both the classically allowed and forbidden regions of
space.

In the classically allowed region E is always greater than U (x) so the the quan-
tity in square brackets in Equation 2.42 is necessarily positive. Thus, if ψ (x) is
positive, the second derivative is negative. On the other hand, if ψ (x) is nega-
tive, then d2ψ (x) /dx2 > 0. The consequence of this is that, in the classically
allowed region, the wave function always curves toward the x-axis as illustrated
in Fig. 2.5 where we have superposed a presumed wave function on the potential
function of Fig. 2.4 using the line representing the TME as the zero of ψ (x). Thus,
the second derivative is shown to be positive on the left-hand side where ψ (x) is
negative and negative on the right-hand side where it is positive. At the xc2, where
the wave function crosses into the classically forbidden region, the wave function
undergoes an inflection point and the second derivative changes from negative to
positive.

These characteristics of the second derivative are typical of sinusoidal functions
for the classically allowed region and exponentially decaying functions for the for-
bidden regions. Indeed, the wave functions in the forbidden regions must decrease
as x → ±∞ in order for the wave function to be normalizable, as it must be to
correctly describe a bound state.

There is yet another bit of general information that can be obtained in certain
cases from the TISE equation. Let us make the assumption that the potential function
is an even function so that U (x) = U (−x). Recall that functions may have definite
parity. That is, they may be even or they may be odd. They may also be neither. To
check the parity of a function f (x) simply let x → −x . If f (x) has definite parity,
then one of the conditions

f (x) = f (−x) even

f (x) = − f (x) odd (2.43)

will prevail. An easy way to think of these functions is that even functions are sym-
metric with respect to the ordinate, while odd functions are symmetric with respect
to the origin as illustrated in Fig. 2.6.

We let x → −x in the TISE, Equation 2.25 with the condition that U (x) =
U (−x) and obtain

Fig. 2.5 A hypothetical wave
function sketched on the
potential curve shown in
Fig. 2.4. The signs of the
second derivative of the wave
function, the curvature, in
different regions are
displayed; inflection points
are indicated by solid circles
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Fig. 2.6 Even and odd
functions of x , f (x)

[
− �

2

2m

d2

dx2
+ U (x)

]
ψn (−x) = Eψn (−x) (2.44)

where we have used the subscripts on the wave function to emphasize that they are
eigenfunctions. Clearly ψn (−x) and ψn (x) are solutions of the same TISE, and,
importantly, have the same eigenvalue En . Because ψn (−x) and ψn (x) have the
same eigenvalue, they can differ only by a constant. That is,

ψn (−x) = βψn (x) (2.45)

We can, however, change the sign of x again so that

ψn (x) = βψn (−x)

= β [βψn (x)]

= β2ψn (x) (2.46)

from which it is clear that β = ±1. The conclusion is, therefore, that in the not so
special case in which the potential energy is an even function, the eigenfunctions of
the TISE have definite parity. That is, if U (x) = U (−x), then the eigenfunctions
ψn (x) are such that they have definite parity, ψn (x) = ±ψn (−x). We note that the
ground state must have no nodes so it must have even parity.

2.10 Retrospective

The statistical nature of the quantum description of matter is the most important
distinction between quantum physics and classical physics. The concept of a wave
function from which all allowable information can be extracted is new to most stu-
dents and the idea that probabilities, averages, and other statistical quantities must be
employed to describe a physical system is novel. The Schrödinger equation, which
is the equation of motion for the wave function, incorporates the Planck relation
and the de Broglie wavelength, neither of which have classical analogs. Thus, one
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can, in principle, find the wave function for a given set of conditions. But, what is
this wave function? It isn’t something that we can measure. Obviously though, it is
important. From our current perspective, the perspective that the wave function is a
solution to the TDSE and is a function of position and time, we must regard it as
a function, such that when its absolute square is taken, it yields the probability of
finding the particle between x and x + dx during the time interval between t and
t + dt . We can say no more. This is, however, a great deal—quantum mechanically
speaking. It should thus be borne in mind when going through the mathematical
gymnastics required to solve the TDSE that we ultimately seek these probabilities.

Problems

1. A particle of mass m that is confined in a potential well is known to be in an
eigenstate having eigenfunction ψ (x) = Ae−α2 x2/2 and energy (α�)2 / (2m).

(a) Find the potential energy function U (x) that confines the particle.
(b) What is the force that confines the particle?
(c) Find the value of the constant A that is required to normalize this eigen-

function.

2. The normalized wave function of a particle of mass m is given by

� (x, t) =
√

α

π1/4
e−α2 x2/2ei(kx−ωt)

(a) What is the probability of finding the particle between x and x + dx at
time t?

(b) What is the probability of finding the particle in the range −∞ < x < ∞?

3. Prove that for bound states in one-dimension the energy eigenfunctions are non-
degenerate. Note that it is crucial that this proof applies only to one-dimension
and to bound states.

4. A particle is represented by the wave function ψ (x) = Aei(kx−ωt) where k =
p/� = 2π/λ where λ is the de Broglie wavelength and p is the momentum.

(a) Calculate the probability current density j (x, t).
(b) The particle encounters a rise in potential energy that causes p to decrease

by a factor of 2. Find the resulting change in amplitude of the wave after
the encounter.

5. Six potential wells with possible wave functions ψ (x) sketched on the wells
are shown. The dashed lines are located at the energy of the state that ψ (x) is
intended to represent. The dashed lines also represent ψ (x) = 0. Which ψ (x)
are acceptable wave functions and which are unacceptable? Give reasons.
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Potential wells and possible wave functions for Problem 5

6. Assume that the TISE has been solved for a potential energy function that sup-
ports bound states and the orthonormal energy eigenfunctions are denoted by
ψn (x) with corresponding energy eigenvalues En . A large number of energy
measurements are made, but only three different values of the energy are ac-
tually observed, E1, E2, and E3. The ratio of occurrences of these values is
(in order) 3 : 4 : 5.

(a) What is the normalized wave function � (x, 0) at t = 0?
(b) What is the normalized wave function � (x, t)?
(c) What is the expectation value of the energy at t = 0?
(d) What is the expectation value of the energy for t > 0?

7. A free particle having wave number kI is traveling in the +x direction when
it encounters a sudden change in the potential energy to some constant lower
value. After a finite distance the potential energy increases to its original value.
Sketch the wave function that represents this particle in all three regions of
space. Pay particular attention to the de Broglie wavelengths in each region.
Note the properties of this wave function such as amplitude, continuity, and
derivatives.

8. A particle of mass m is subjected to a potential energy such that at t = 0 the
wave function that describes the particle is given by

� (x, 0) =
[√

2

3
ψ1 (x) +

√
6

3
ψ2 (x) + 1

3
ψ3 (x)

]

where the ψn (x) are eigenfunctions of the Hamiltonian Ĥ , each of which has
energy eigenvalue − (

1/n2
)

E0 where E0 is a positive constant.

(a) If an energy measurement is made, what are the possible results of the
measurement?

(b) What is the probability of measuring each of these energies?
(c) What is the expectation value of the energy?
(d) Suppose there is another physical quantity that may be measured, a quan-

tity that is represented mathematically by Q. Assume that the ψn (x) are
also eigenfunctions of the operator that represents this quantity, Q̂, with
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eigenvalues nQ0. If the energy is measured first and found to be − (1/9) E0

and then a measurement of Q is made, what will be the value of Q that is
measured?

9. A one-dimensional potential energy function is given in a.u. by

U (x) = ∞ x ≤ 0

= − 1

x
x > 0

(a) Sketch the potential energy. Is it possible that this potential will support
bound states?

(b) Only one of the wave functions listed below is the eigenfunction that rep-
resents the ground state. Which one?

ψ1 (x) = Ae−αx ; ψ2 (x) = Axe−αx

ψ3 (x) = Ae−α2 x2
; ψ4 (x) = A

(
x − 2x2

)
e−α2 x2

(c) What is the ground state energy in a.u.?
(d) What is 〈x〉 for the ground state?



Chapter 3
Quantum Mechanics in One Dimension—Bound
States I

3.1 Simple Solutions of the Schrödinger Equation

3.1.1 The Infinite Square Well—the “Particle-in-a-Box”

Eigenfunctions and Eigenvalues

The L-box

One of the most important problems in the study of quantum mechanics is the infi-
nite square well often referred to as the particle-in-a-box. It is important because it is
simple and easily solvable, so the mathematical details do not obscure the physics.
The particle-in-a-box is also often used as a basis for tractable problems in more ad-
vanced aspects of quantum mechanics. We begin by specifying the potential energy
function U (x) for this problem. It is

U (x) = 0 0 ≤ x ≤ L

= ∞ otherwise (3.1)

For convenience, we refer to this potential energy function as the L-box. We remind
the reader again (see Section 2.8) that physicists often refer to potential energy func-
tions as potentials. All physics students know that there is a monumental difference
between the electric potential and the potential energy, but that is the way physicists
converse. We will adhere to this longstanding tradition of casual (read “sloppy”)
jargon and often use the term potential when we really mean potential energy.

Graphically U (x) has the form shown in Fig. 3.1. Despite the simplicity of this
potential, we will be compelled to employ the exception to the rule about continuity
of the derivative of the wave function. Recall that this continuity was emphasized
in Section 2.9, but with the caveat that it would not be continuous at an infinite
discontinuity in the potential energy. This is such a case so we should be prepared
for it at x = 0 and x = L. The rule about continuity of ψ (x) itself is, however,
inviolable.

The potential energy in the box is zero so the particle moves freely between
the walls. All of the mechanical energy in this region is kinetic energy. The walls

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 47
DOI: 10.1007/978-0-387-77652-1 3, C© Springer Science+Business Media, LLC 2008



48 3 Quantum Mechanics in One Dimension—Bound States I

Fig. 3.1 Potential energy
function for an infinite square
well, an L-box

are, however, “rigid” as signified by the infinity of the potential energy. This means
that they are impenetrable, classically and quantum mechanically. When the particle
encounters infinite potentials, it encounters a brick wall. Quantum mechanically this
means that the probability of finding the particle in the walls is zero! We therefore
must force the wave function to vanish in the classically forbidden region, a consid-
erable simplification. Thus, the wave function must vanish at the walls so that

ψ1 (x) = 0 x ≤ 0

ψ3 (x) ≡ 0 x ≥ L (3.2)

The TISE inside the box is simply

d2ψ2 (x)

dx2
+ k2ψ2 (x) = 0 (3.3)

where k2 = 2m E/�
2. The choice of the letter k was not capriciously made. As

substitution of Equation 2.6 shows, it is indeed the wave number, so its designa-
tion as k is justified. Equation 3.3 is perhaps the most ubiquitous equation in all of
physics. It describes simple harmonic motion and has sinusoidal solutions (which,
incidentally, curve toward the abscissa). A convenient form in which to write these
sinusoidal solutions for this problem is

ψ (x) = A sin kx + B cos kx (3.4)

It is customary to designate the solution inside the well by ψ (x), without any ref-
erence being made to it being inside the well because the remaining portion of the
wave function (outside the well) is zero. We adopt this convention, but it should be
borne in mind that the region in which ψ (x) = 0 is should not be ignored.

The boundary condition at x = 0 clearly shows that B = 0 for if it were not the
cosine term would prevent ψ (x) from vanishing at x = 0. Inserting the boundary
condition at x = L imposes the restriction that

kn = nπ

L
(3.5)
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where n is an integer. A subscript n has been attached to the wave number in Equa-
tion 3.5 because it is obviously quantized since n is an integer. The eigenfunction
is thus

ψn (x) = A sin
(nπx

L

)
0 ≤ x ≤ L

= 0 otherwise (3.6)

Evidently any sine wave having an argument that is an integral multiple of (πx/L)
is acceptable. Thus, there are an infinite number of solutions. This is not surprising
inasmuch as the well is infinitely deep. It is important to include the portions of the
eigenfunction that are zero, ψ1 (x) and ψ3 (x). This portion of the wave function
is just as important as the sinusoidal part. (Zero is a perfectly good constant.) To
complete the job of obtaining the eigenfunction we must normalize it, a simple
task that will be left as an exercise (see Problem 2). Normalization requires that
|A|2 = 2/L .

The energy eigenvalues that are associated with each of the energy eigenfunc-
tions, Equation 3.6, are easily obtained by squaring kn in Equation 3.5, inserting the
value of the constant k, and solving for the energy E . We have

En = n2π2
�

2

2mL2
(3.7)

where we have attached a subscript n to the energy as required by the condition
imposed on kn by the boundary condition. Notice that the quantum numbers n begin
with n = 1, not n = 0. This is consistent with the uncertainty principle for, in view
of Equation 3.7, if n were zero, then the (kinetic) energy and hence the momentum
would be zero. This would make the uncertainty in position infinite although we
know that, at maximum, �x = L.

There is a great deal of physics still to be learned from the L-box. First, let us
not forget the de Broglie wavelength. Because, for a given energy state, the kinetic
energy in the box is constant, the momentum p is also constant. We should designate
it pn because pn = �kn. Thus, the de Broglie wavelength for each state, λn =
h/pn, is constant The lowest energy state will (always) have the longest de Broglie
wavelength. Moreover, the impenetrability of the walls means that the de Broglie
waves must have nodes at the walls. In short, de Broglie waves must fit in the well.
Actually, it is half de Broglie waves that must fit in the well because a full wave
has a node in the middle and we know that the ground state has no nodes. (In this
problem the nodes at x = ±∞ are the same as the nodes at the walls.) The longest
de Broglie wave that will fit in the box is therefore one having wavelength twice the
length of the box. Thus, for the ground state of the box λ1 = 2L The de Broglie
wavelength of the first excited state will be L, the second excited state (2/3) L, etc.
In general,

λn = 2
L

n
= h

pn
(3.8)
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which is identical with Equation 3.7 (see Problem 4). This shows that the energy
is quantized merely by fitting de Broglie waves in the box. This is only possible
because in this particularly simple case the de Broglie wavelength is constant within
the well. Thus, de Broglie could have solved for the energy eigenvalues of the
particle-in-a-box. The derivation of the energy eigenvalues of the particle-in-a-box
using Equation 3.8 emphasizes, however, that the TISE is indeed a wave equation.
As such, it could appear as an exercise at the end of a chapter in a course on dif-
ferential equations with a variety of different potential energy functions U (x). It is,
however, the imposition of the boundary conditions that fit de Broglie waves in the
box that causes the quantization.

The a-box

The a-box is also an infinite square well, but with the x-axis translated so the poten-
tial energy function is given by

U (x) = 0 − a/2 ≤ x ≤ a/2

= ∞ otherwise (3.9)

While this may not seem to be a very significant change, it often makes some aspects
of the problem more apparent. First, this potential energy function is symmetric
about the U (x) axis, that is, it is an even function. As was seen in Section 2.9,
when the potential energy function is even, the eigenfunctions must have definite
parity, they must be even or odd. Parity is very important in quantum mechanics.
Parity considerations can save a great deal of labor. Of course, the eigenfunctions
for the L-box obviously have definite parity with respect to the line x = L/2, but
there can be advantages to using the a-box. One disadvantage, however, is that the
eigenfunctions cannot be written as simply as they can for the L-box for which
they are all sine waves, see Equation 3.6. In this case the eigenfunctions alternate
between cosines and sines and are easily found to be

ψn (x) =
√

2

a
cos

(nπx

a

)
− a

2
≤ x ≤ a

2
n odd (even parity)

ψn (x) =
√

2

a
sin

(nπx

a

)
− a

2
≤ x ≤ a

2
n even (odd parity)

= 0 otherwise for all values of n (3.10)

Of course the energy is the same as Equation 3.7, with L replaced with a.

Information Obtained from the Eigenfunctions

Figure 3.2 shows the first three eigenunctions for the particle-in-a-box. For this dis-
cussion we will use the L-box, but the conclusions pertain to both boxes. A common
way of displaying the eigenfunctions is to graph them directly on the potentials from
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Fig. 3.2 Eigenfunctions for
the first three states of an
L-box. The zeros of these
wave functions are taken to
be the corresponding energy
eigenvalues. Notice that the
eigenfunctions continue
outside the box where they
vanish

which they arise, and vertically at the energy eigenvalue to which they correspond.
The amplitudes have been adjusted to fit on the figure. As noted above, it is impor-
tant to remember that the eigenunctions continue into the brick wall region. They
happen to be zero in there, but they are there. Recall that it is the continuity of the
wave function that forced us to match the wave function inside the wall (zero) to the
wave function in the box that produced the actual wave function in the box.

Clearly the sinusoidal eigenunctions fit the criterion that the wave function in
the classically allowed region must curve toward the axis. It was noted that the
condition on the second derivative in the classically forbidden region was typical
of exponential decay. In this extreme case (extreme because of the infinite walls)
we can imagine the exponential to be e−κ |x| where κ is a real number (and a Greek
kappa) in the limit κ → ∞. We have already discussed the discontinuity of the
derivative at the walls as being due to the infinite discontinuity in the potential en-
ergy. Incidentally, if this were a finite box, that is, a box with infinite slope, but finite
depth, the derivative would indeed have to be continuous.

We do not expect the eigenfunctions for the L-box to have definite parity because
the potential energy is not even, at least with respect to x = 0. We do, however,
expect the eigenfunctions of the a-box to have definite parity because the a-box po-
tential energy is even. Indeed, the pure cosines and sines that are the eigenfunctions
alternate between even and odd for the a-box. When making a choice between the
two boxes for working a given problem, the L-box offers the advantage that the
wave functions all have the same form, sines. On the other hand, the a-box offers
the advantage that the wave functions have definite parity and this may be helpful
if there are many integrals to compute. Incidentally, it is easy to remember that the
ground state of the a-box is the cosine because, despite the fact the n = 1 (an odd
number), the eigenfunction must be even to keep it nodeless.
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Fig. 3.3 Probability
distributions for the first three
states of an infinite square
well

Once we have the eigenfunctions, the most obvious physical quantity that we can
find is the probability density (probability per unit length) which will be different in
different states. For the nth eigenstate, this density will simply be

Pn (x) = ψ∗
n (x) ψn (x) (3.11)

Graphs of Pn (x) for the lowest three eigenstates are shown in Fig. 3.3.
Clearly the probability of finding the particle at the walls is zero. In the ground

state we see that the maximum probability occurs in the middle. That is, if many
measurements of the location of the particle were made, most of these measurements
would yield values near x = L/2. On the other hand, if the particle were in the first
excited state, we would almost never find it to be near x = L/2 because there is
a node there. Indeed, if the particle is in any excited state having an even quantum
number, it could never be found in the middle because there must be a node there.
This is more obvious using an a-box because of the definite parity of the wave
functions. Recall that states with odd quantum numbers have even parity.

If we were to examine the problem classically, the probability distribution would
be a straight line because the speed is constant throughout the box. Therefore, the
particle spends an equal amount of time in any given interval dx . Figure 3.4 shows
this uniform probability distribution characteristic of a classical particle-in-a-box at
the top of the figure, together with the probability distribution for n = 20, which was
chosen to be characteristic of a “high quantum number”. While n = 20 is “high,” the
oscillations in the probability density are still apparent. Also shown for comparison
is the probability density for the ground state. The important point here is that as
the quantum number becomes large, the peculiar behavior that was deduced at low
quantum numbers such as the particle being prohibited from being found at certain
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Fig. 3.4 Probability
distributions for the ground
state of an L-box for a state
of high quantum number
(n = 20) and for the classical
limit, the horizontal line at
the top

locations disappears. This is a manifestation of the correspondence principle. As the
system approaches classical dimensions and the quantum number becomes large,
the behavior tends toward familiar classical behavior.

It is of interest to concentrate on the low quantum states, and consider the peculiar
probability distribution as compared with the classical expectation. We may focus on
the ground state to be definite and, without loss of generality, consider symmetric
potentials (an a-box may be more comfortable here). From our discussion of the
general features of wave functions it is clear that the ground state probability will
always have a maximum in the middle (or near the middle, if the potential isn’t
symmetric). This is because the ground state wave function cannot have any nodes—
it must be even. It is a matter of semantics, but, here, we are not designating the zeros
of ψn (x) at x = 0 and x = L to be nodes.

There is more. Because |ψ (x)|2 gives the distribution over x we may calculate
the average value (expectation value) of any function of x say f (x) as discussed
in Section 2.3. We illustrate by calculating

〈
x2

〉
, the average value of the square of

the position. We could calculate 〈x〉 instead of
〈
x2

〉
, but that would be too easy. It is

obviously L/2 for the L-box and zero for the a-box. Notice that this is true for any
of the eigenstates, including the odd states for which the probability of finding the
particle at L/2 is zero because |ψ (x)|2. In general, an average value is not one of
the averaged numbers. For example, the average of 7 and 9 is 8.

To evaluate
〈
x2

〉
we simply sum (integrate) x2 over the distribution function. We

don’t have to worry about dividing by anything (analogous to the number of students
in the class) as long as the wave functions are normalized. If they were not, we would
simply divide by

∫ ∞

−∞
ψ∗ (x) ψ (x) dx

which is equivalent to having normalized the wave function in the first place. Using
the L-box, evaluation of our expectation value is accomplished by performing a
single simple integral:
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〈
x2〉

n
=

∫ ∞

−∞
ψ∗

n (x) x2ψn (x) dx

= 2

L

∫ ∞

−∞
x2 sin2

(nπx

L

)
dx

= L2

3

[
1 − 3

2 (nπ)2

]
(3.12)

In Equation 3.12 we have attached a subscript n to
〈
x2

〉
because it is clear that the

average value depends upon which state (as designated by the quantum number n) is
chosen. Obviously as n → ∞ the value approaches L2/3. Notice that if we evaluate〈
x2
〉

for an a-box, the physics would, of course, be the same. The calculation would
be a bit more laborious because we would have to do it twice, once for the odd
eigenfunctions and once for the even.

Clearly the average value of any function of x can be evaluated in this way. This,
however, leaves a gap in our knowledge. How about the kinetic energy, p2/2m?
How can we evaluate the expectation value of the square of the momentum if we
have only the probability distribution for x? We will consider this question later.

Consider now the relationship between the quantities �x and �p as introduced
in the Heisenberg uncertainty principle (see Equation 1.49) and the average values
as discussed above. The uncertainty of a quantity Q, call it �Q, is defined in quan-
tum physics to be the root mean square of a quantity, also known as the standard
deviation:

�Q =
√〈(

Q̂ − 〈
Q̂
〉)2

〉
(3.13)

Squaring and carrying out the operations, we have

(�Q)2 = 〈
Q̂2〉 − 2

〈
Q̂
〉 〈

Q̂
〉 + 〈

Q̂
〉2

= 〈
Q̂2

〉 − 〈Q〉2 (3.14)

We may as well use Equation 3.14 to check our assertion that the nonzero ground
state energy is consistent with the uncertainty principle. Inside the well the TME is
all kinetic energy. In an eigenstate the expectation value of the energy is simply the
energy eigenvalue (see Problem 1). Therefore, according to Equation 3.7

〈E1〉 =
〈
p̂2

1

〉

2m

= π2
�

2

2mL2
(3.15)

Because, however, 〈 p̂1〉 = 0,
〈
p̂2

1

〉 = (� p̂)2. That 〈 p̂1〉 = 0 is because neither the
+x nor the −x direction is favored. A more mathematical proof can be obtained by
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inserting the operator equivalent for p̂x , Equation 2.28, in the computation of 〈 p̂1〉.
That is,

〈 p̂x〉 = 2

L

∫ L

0
sin

(πx

L

)
p̂x sin

(πx

L

)
dx

= 2

L

∫ L

0
sin

(πx

L

)(
�

i

d

dx

)
sin

(πx

L

)
dx

= 2π�

i L2

∫ L

0
sin

(πx

L

)
cos

(πx

L

)
dx

= 2�

i L

∫ π

0
sin y cos ydy

≡ 0 (3.16)

Returning to Equation 3.15 we may write for n = 1

(� p̂)2 = π2
�

2

L2
(3.17)

Using Equation 3.12 with n = 1 we calculate (�x)2

(�x)2 = 〈
x2
〉
1 − 〈x〉2

= L2

3

[
1 − 3

2π2

]
−

(
L

2

)2

≈ 0.324L2 (3.18)

Solving Equation 3.18 for L2 and inserting it in Equation 3.17 we find the uncer-
tainty product to be

� p̂�x = 0.18π� > �/2 (3.19)

Thus, the lowest energy state, the zero-point energy of the infinite square well, is
consistent with the uncertainty principle.

Energy Estimates Using the Particle-in-a-Box

Let us examine the expression for the values of the quantized energy, Equation 3.7,
more closely because it exhibits features that are characteristic of quantum mechan-
ical energies. The quantity of interest is �E , the spacing between adjacent levels.
It is

�E = En+1 − En

= π2
�

2

2mL2
(2n + 1) (3.20)
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Now, the exact dependence of �E on n is unimportant. Rather, we are interested in
the dependence of �E on the parameters of the well and the particle, in particular,
the mass m and dimension of the well L. The (2n + 1) that appears in Equation
3.20 is peculiar to the infinite square well and is not important here. We see that the
energy is inversely proportional to both m and the L2. Thus, the lighter the particle,
the greater will be the spacing between the levels. Additionally, the narrower the
box, the greater will be the spacing between levels. The box can be used as a crude
model for an atom or a nucleus. We can easily estimate these energies using atomic
units. To simulate an atom and estimate the energy difference between the n = 2
and n = 1 states using a.u. we choose m = 1 and L = 8 (the atomic diameter of
the n = 2 state) and obtain for n = 1

�E = π2

2 · 64
(5) ≈ 0.39 ≈ 10.5 eV (3.21)

The actual difference between the n = 2 and n = 1 states of the hydrogen atom
is 10.4 eV, but this close agreement should not be taken seriously. This correlation
is actually too good to be true and, given the crudeness of the estimate involved,
must be considered a coincidence (although Mother Nature abhors coincidence).
The important point here is not the actual value obtained, but the fact that the energy
difference has the correct order of magnitude. That is, our estimate of �E yielded
∼ eV, which is the correct order of magnitude for the difference between atomic
energy levels. On the other hand, if the mass of the confined particle is increased by
a factor of 2000 making it comparable with that of a nucleon, but the dimension of
the box shrunk by a factor of ∼ 105 making it roughly the size of a nucleus, then the
energy level spacing increases by a factor of about 107. In this case �E ≈ 10 MeV
comparable with the energy level spacing of typical nuclei.

3.1.2 The Harmonic Oscillator

While there is a great deal of quantum physics to be learned in the simple particle-in-
a-box problem, there are some features of it that can be misleading. This is because
the rigid walls, together with the zero potential energy within the box, cause the
de Broglie wavelengths of the eigenfunctions within the box to be constant. This
constant de Broglie wavelength manifests itself as a purely sinusoidal eigenfunction
within the well. Equally important, however, is that we, by virtue of the rigid walls,
have forced the eigenfunctions to vanish in the classically forbidden region. It was
thus a simple matter to find the boundary condition, that is, to match the wave func-
tion at the boundary between the classically forbidden region and the classically
allowed region. If, however, the potential energy function is not impenetrable, then
the boundary conditions are more challenging.

When the potential energy varies with x we may think of the de Broglie wave-
length in the classically allowed region as being variable across the well, chang-
ing as the kinetic energy (and therefore the momentum) changes. Because of its
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importance in a wide variety of applications we will study the harmonic oscilla-
tor in detail. This potential is the basis for all problems in which vibrations occur
ranging from molecular and nuclear vibrations as well as vibrations of electromag-
netic fields. For now, however, we concentrate on the details of the solution. In this
chapter we will solve the problem by brute force. That is, we will solve the TISE
equation by a conventional method for solving differential equations. In truth, the
labor of solving the differential equation isn’t very interesting, but there is some
interesting physics near the end of it so it is worthwhile (a bit like medicine). Later
we will learn a more elegant and more useful method of solving the TISE with the
harmonic oscillator potential energy function. Again, we should bear in mind as we
solve the TISE that most of the effort is rather mechanical. The fun begins when we
impose the physical conditions that lead to quantization and the curious phenomena
predicted by quantum physics.

We begin by writing the potential as

U (x) = 1

2
kx2

= 1

2
mω2x2 (3.22)

where k is the usual spring constant and m is the mass of the particle that is trapped
in this potential well. The usual substitution, ω2 = k/m, has also been made. Clas-
sically, the particle executes simple harmonic motion with the amplitude depending
upon the TME of the system. The TME is a characteristic of the system and may
be regarded as an initial condition. Thus, we may imagine the TME to be imparted
to the oscillator either by an initial displacement (potential energy), an initial veloc-
ity (kinetic energy), or a combination of the two. The TME is assumed to remain
constant because there are no dissipative forces acting. Figure 3.5 shows a graph of
the simple harmonic oscillator potential with a given TME of value E drawn as a
horizontal line. For any given value of E there are two limits of the classical motion,
the amplitudes. They are here designated ±xc, and are referred to in this context as
the classical turning points. One can imagine the motion of an imaginary particle
sliding on the inside of the well that is defined by the potential energy curve. At the

Fig. 3.5 Potential energy
function for a harmonic
oscillator showing the
classical turning points
x = ±xc for total mechanical
energy E of the particle
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intersection of the horizontal line E and the potential energy curve this particle has
zero kinetic energy and maximum potential energy, (1/2) mω2x2

c . At x = 0 the par-
ticle has zero potential energy and maximum kinetic energy, also (1/2) mω2x2

c . At
values of x between the classical turning points and not at the origin the particle has
both potential energy and kinetic energy. The total is always E . Classically E can
take on any value as determined by the initial conditions and this value determines
the value of xc.

Before actually solving the TISE with the harmonic oscillator potential let us try
to visualize the eigenfunctions based on the considerations of Section 2.9 and our
experience with the particle-in-a-box. Although it is always dangerous to project a
special case such as the infinite square well to a more general case such as a har-
monic oscillator, we risk it because the exercise provides insight. Imagine yourself
in the middle of an a-box standing with your palms on each of the rigid walls. You
now push the walls so they slant out (symmetrically) and simultaneously cause the
bottom of the well to bulge as illustrated in Fig. 3.6. Thus, the derivative of the
potential energy curve is no longer infinite at x = ±a/2 and the corners on the infi-
nite well are rounded. The right-hand wall has positive slope and the left-hand wall
negative slope. Because the walls no longer have infinite slope, the wave function
need not, indeed, cannot vanish at the classical turning point. The walls are “soft”!
Notice that Fig. 3.6 also illustrates the transition of the ground state eigenfunction
from that for an infinite square well to that of a harmonic oscillator.

All three of the potential energy curves in Fig. 3.6 are infinitely deep. It is the
infinite slope together with the infinite potential energy of the rigid walls of the
infinite square well that causes the wave function to vanish in the classically forbid-
den region. In view of the Gedanken experiment illustrated in Fig. 3.6, we expect
the wave function to be finite at the classical turning points and to penetrate the
classically forbidden region. We fully expect the ground state to have the appearance
shown in the figure. Of course, it will have no nodes, but it will penetrate the classi-
cally forbidden region. In accord with the correspondence principle, we expect the
extent of penetration into the forbidden region to decrease with increasing quantum
state.

We must now solve the TISE with the harmonic oscillator potential. We have

[
− �

2

2m

d2

dx2
+ 1

2
mω2x2

]
ψ (x) = Eψ (x) (3.23)

Fig. 3.6 Illustration of the
transition of an infinite square
well distorted to become a
harmonic oscillator potential
and the resulting effect on the
ground state eigenfunction



3.1 Simple Solutions of the Schrödinger Equation 59

which we write in the form

d2ψ (x)

dx2
+ 2m

�2

(
E − 1

2
mω2x2

)
ψ (x) = 0 (3.24)

It is useful to rescale x and the energy E to eliminate constants. To rescale x we use
the Greek letter ξ (xi), and for the energy we use the Greek letter ε and write

ξ = αx where α =
√

mω

�
(3.25)

ε = 2E

�ω
(3.26)

Clearly ε is dimensionless, and, because α has dimensions inverse length, ξ is also
dimensionless. Making these substitutions we have

d2ψ (ξ )

dξ2
+ (

ε − ξ2
)
ψ (ξ ) = 0 (3.27)

and it is now our task to solve this deceptively simple equation.
A tried-and-true method of solving such a differential equation is to attempt a

series solution, sometimes referred to as the method of Frobenius. Before using this
method we examine the asymptotic solution. At large ξ , the ε term in Equation 3.27
is insignificant so, asymptotically, the equation to be solved is

d2ψa (ξ )

dξ2
− ξ2ψa (ξ ) = 0 (3.28)

where we use the subscript a to designate the asymptotic solution. This equation is
very nearly satisfied if we take

ψa (ξ ) = e−ξ 2/2 (3.29)

since

dψa (ξ )

dξ
= −ξe

−ξ2/2
(3.30)

and

d2ψa (ξ )

dξ2
= ξ2e

−ξ2/2 − e
−ξ2/2

(3.31)
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Inserting this into Equation 3.28 we must have e
−ξ2/2 = 0 which is in keeping with

our quest for the asymptotic solution. Therefore, Equation 3.29 is indeed the asymp-
totic solution.

We can write the most general solution of the TISE, Equation 3.27, as a product
of the asymptotic solution, Equation 3.29, and an infinite power series in ξ , call
it H (ξ ):

ψ (ξ ) = H (ξ ) e−ξ 2/2 (3.32)

Inserting Equation 3.32 into Equation 3.27, and dividing by e
−ξ2/2

(which can never
be zero) we have a differential equation for H (ξ ):

d2 H (ξ )

dξ
− 2ξ

d H (ξ )

dξ
+ (ε − 1) H (ξ ) = 0 (3.33)

It is important to remember that, because ψ (ξ ) as written in Equation 3.32 must be
normalizable. Therefore, the function H (ξ ) cannot violate the condition

lim
ξ→∞

H (ξ ) < eξ 2/2 (3.34)

Indeed, if this condition is violated the wave function will diverge as ξ → ∞.
Now we must replace H (ξ ) by an infinite series and attempt to solve for that

infinite series. It is worth reiterating that, because the harmonic oscillator potential
is an even function, the eigenfunctions will have definite parity. Therefore, because
e−ξ 2/2 is even, the series part of the eigenfunctions, the H (ξ ), will alternate between
even and odd in successive eigenstates. Of course, the ground state will be even.
Nonetheless, we will maintain generality, at least temporarily. Writing H (ξ ) as

H (ξ ) =
∞∑

n=0

anξ
n (3.35)

substituting this expansion into Equation 3.33 and collecting coefficients of like
powers of ξ we have

∞∑

n=2

n (n − 1) anξ
n−2 +

∞∑

n=0

(ε − 1 − 2n) anξ
n = 0

∞∑

k=0

(k + 2) (k + 1) ak+2ξ
k +

∞∑

n=0

(ε − 1 − 2n) anξ
n = 0 (3.36)

where we have let n = k + 2 in the first summation in Equation 3.36. The indices
are dummy indices so we may factor all coefficients of like powers of ξ and change
back to a summation over n to obtain

∞∑

n=0

[
(n + 2) (n + 1) an+2 + (ε − 1 − 2n) an

]
ξn = 0 (3.37)
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The powers of ξ are linearly independent, so the only way Equation 3.37 can be
valid is if the coefficient of each power of ξ vanishes. We thus obtain a relation
between an+2 and an . Such a relation is called a recursion relation. Notice that, in
accord with our knowledge of parity of the eigenfunctions, the recursion relation is
not between successive terms. Rather, it skips a term thus assuring definite parity
for the solution which it must have because U (x) = 1

2 kx2 is an even function.
The recursion relation is

an+2 = − (ε − 1 − 2n)

(n + 2) (n + 1)
an (3.38)

According to Equation 3.38, if we know an, we may find an+2 from which we may
find an+4 and so on. In principle, the problem has been solved. We must provide
both a0 and a1 to start us off, but that is not surprising since the TISE is, after
all, a second-order differential equation and, thus, there will be two constants of
integration. Of course, we know from parity considerations that one of these two
constants must be zero.

So far our solution has been purely mathematical. Now, here comes the physics.
The particle must be bounded by the potential energy. Therefore, we must make
sure that our solution is bounded. That is, we must make sure that the eigenfunc-
tion as given by Equation 3.32 is normalizable with H (ξ ) defined by Equations
3.35 and 3.38. Therefore, we must demand that H (ξ ) does not overpower e−ξ 2/2

as ξ → ±∞. If it does, then our solution, Equation 3.32, while a solution of the
TISE, will not be acceptable on physical grounds. We must therefore investigate
the convergence of H (ξ ). As discussed in connection with the restriction placed on
H (ξ ) by Equation 3.34, even if it does converge, it must converge in accord with
this relation. From Equation 3.38 the ratio of successive coefficients is

lim
n→∞

an+2

an
= 2

n
(3.39)

we know that H (ξ ) does indeed converge. Our concern is how it converges.
We must compare the behavior of H (ξ ) for large ξ with that of e−ξ 2/2 for large

ξ . We choose to speculate that H (ξ ) ∝ e+βξ 2
with β > 0. If this is indeed the case,

then the eigenfunction in Equation 3.32 will diverge for β > 1
2 . Beginning with the

series expansion for ex (see Equation I.2) we obtain the series expansion for e+βξ 2

by letting x → βξ2:

e+βξ 2 = 1 +
(
βξ2

)

1!
+

(
βξ2

)2

2!
+

(
βξ2

)3

3!
+ ...

=
∞∑

k=0

βkξ2k

k!

=
∞∑

n=0

bnξ
n =⇒ bn = βn/2

(n/2)!
(3.40)
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The ratio of successive powers of ξ is

bn+2

bn
= β (n/2)+1

[(n/2) + 1]!
· (n/2)!

βn/2

= β

[(n/2) + 1]
= 2β

n + 2
(3.41)

Now we compare the ratio of successive terms in Equation 3.41 with that in Equation
3.39. We have

lim
n→∞

bn+2

bn
= 2β

n
(3.42)

Thus, the asymptotic behavior of the series solution for H (ξ ) is identical with the
series expansion for eβξ 2

with β = 1 so, in the limit of large ξ , the series that
represents H (ξ ) behaves as eξ 2

. As it stands H (ξ ) will overpower e−ξ 2/2 as ξ → ∞
in Equation 3.32, making it impossible to normalize the eigenfunction. The infinite
series that represents H (ξ ) is therefore unacceptable! What can we do? The only
way to salvage our solution is to force this series to terminate. If H (ξ ) is a finite
series, there is no convergence problem. We impose physics on the solution! That is,
we force the eigenfunctions to be normalizable, so that they conform to the known
physical situation. These are boundary conditions.

To terminate the series we must force an to vanish for some value of n. This, in
turn, forces every subsequent term of the same parity to vanish because the recursion
relation is between powers of the same parity. We have already deduced that either
a0 or a1 vanishes. To force termination of the infinite series, we set the numerator of
Equation 3.38 equal to zero and, substituting for ε, Equation 3.26, we have

(
2E

�ω
− 1 − 2n

)
= 0 (3.43)

Solving for the energy and attaching a subscript n we have

En =
(

n + 1

2

)
�ω (3.44)

This expression for the energy eigenvalues of the simple harmonic oscillator is
unusual in the sense that it is one of the few systems in quantum mechanics in
which the energy quantum number begins with zero. Notice, however, that there is
a built-in “zero point” energy of 1

2 �ω. That is, even in the lowest state, the total
energy is not zero. This means that, even in the lowest energy state the momentum
is nonzero and there is an uncertainty associated with it as was the case for the
particle-in-a-box. This is characteristic of quantum mechanical systems, for if the
TME were zero, the kinetic energy would be zero, the momentum would be zero,
and the position would be completely uncertain. This is inconsistent with the system
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being in a bound state. If it is bound, we must know something about its position
because it is localized in space. Therefore, all bound quantum mechanical systems
must have a “zero point” energy. In the case of the harmonic oscillator that energy
is 1

2 �ω.
Returning to the eigenfunctions, we can write Equation 3.32 in terms of the

quantum number n and a yet-to-be-determined normalization constant Nn . Note
the subscript on the normalization constant, indicating that, in general, we expect
it to depend upon the quantum state. Our single experience with such constants
was for the particle-in-a-box, which is unusual in that the normalization constant is
independent of the quantum state.

The harmonic oscillator eigenfunctions are

ψn (ξ ) = Nn Hn (ξ ) e−ξ 2/2 (3.45)

The H (ξ ) are finite polynomials that are well known special functions, Hermite
polynomials, which are listed in any handbook of mathematical functions. They are
solutions to Hermite’s differential equation which need not concern us here. They
may be generated by a Rodrigues formula [1]:

Hn (ξ ) = (−)n eξ 2 dne−ξ 2

dξn
(3.46)

While Equation 3.46 can be used to generate any of the polynomials, symbolic
mathematics computer programs already contain these special functions so it is not
necessary to actually generate them. As expected, the index n signifies the parity
of the polynomial; it is also the highest power of ξ that occurs in the polynomial.
Hermite polynomials are defined in a way such that the coefficient of the highest
power of ξ is 2n. This is illustrated in Table 3.1 which is a listing of the first six
Hermite polynomials, more than will be needed for any problem in this book.

Fortunately, there is a great deal known about the Hermite polynomials and their
properties. One important property is the integral formula

∞∫

−∞
Hn (ξ ) Hm (ξ ) e−ξ 2

dξ = √
π2nn!δmn (3.47)

Table 3.1 The first six
Hermite polynomials

H0 (ξ ) = 1

H1 (ξ ) = 2ξ

H2 (ξ ) = 4ξ 2 − 2

H3 (ξ ) = 8ξ 3 − 12ξ

H4 (ξ ) = 16ξ 4 − 48ξ 2 + 12

H5 (ξ ) = 32ξ 5 − 160ξ 3 + 120ξ
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which is an orthogonality relation with the weighting factor e−ξ 2
. We may take ad-

vantage of Equation 3.47 to find the normalization constant Nn for the eigenfunctions
as follows:

∫ ∞

−∞
dxψ∗

n (x) ψn (x) = 1

=
∫ ∞

−∞
(αdξ ) ψ∗

n (ξ ) ψn (ξ )

= |Nn |2 α

∞∫

−∞
dξ Hn (ξ ) Hm (ξ ) e−ξ 2

= |Nn |2 α
(√

π2nn!
)

(3.48)

Solving for |Nn |2 and replacing ξ with αx , the normalized harmonic oscillator
eigenfunctions are

ψn (x) =
√

α

2nn!

(
1

π

)1/4

Hn (αx) e−α2 x2/2 (3.49)

From Equation 3.49, it is clear that the harmonic oscillator eigenfunctions are sim-
ple Gaussian functions, multiplied by the appropriate Hermite polynomial. Because
H0 (ξ ) = 1, the ground state eigenfunction and probability density are simple Gaus-
sian functions.

There are a number of other relations involving the Hermite polynomials that are
helpful for determining the properties of the harmonic oscillator. Some of the most
useful of these relations are compiled in Table 3.2 together with the few that were
listed above.

Table 3.2 Some properties of the Hermite polynomials

Generating function e2μξ−μ2 =
∞∑

n=0

Hn (ξ ) μn

n!

Rodrigues formula H (ξ ) = (−)n eξ2 dne−ξ2

dξ n

Orthogonality
∞∫

−∞
dξ Hn (ξ ) Hm (ξ ) e−ξ2 = √

π2nn!δmn

Parity Hn (ξ ) = (−)n Hn (−ξ )

H2n−1 (0) = 0

Special result H2n (0) = (−)n 2n · 1 · 3 · 5 · · · (2n − 1)

Recurrence relation 2ξ Hn (ξ ) = Hn+1 (ξ ) + 2nHn−1 (ξ )

Recurrence relation
d Hn (ξ )

dx
= 2nHn−1 (ξ )
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Table 3.3 The first four complete harmonic oscillator eigenfunctions

ψ0 (x) =
√

α√
π

e−α2 x2/2

ψ1 (x) =
√

α

2
√

π
2 [(αx)] e−α2 x2/2

ψ2 (x) =
√

α

2
√

π

[
2 (αx)2 − 1

]
e−α2 x2/2

ψ3 (x) =
√

α

3
√

π

[
2 (αx)3 − 3 (αx)

]
e−α2 x2/2

For convenience, the first four normalized eigenfunctions are listed in Table 3.3
in terms of x .

It is worthwhile to examine these eigenfunctions in some detail. Figure 3.7 is a
graph of the first five of the wave functions superimposed on the harmonic oscillator
potential energy.

The zero of these functions is taken to be the energy eigenvalue corresponding to
the eigenfunction as was done for the particle-in-a-box in Fig. 3.2. The first, almost
startling characteristic of these wave functions is that they actually penetrate the
classically forbidden region. This means that the probability density |ψ (x)|2 also
penetrates the classically forbidden region, a region in which the particle will have
a negative kinetic energy. True! It can happen. Why? The uncertainty principle.
yBecause of the uncertainty in position and momentum, the particle can indeed find
itself in the classically forbidden region where it will have a negative kinetic energy.
It cannot be observed to be there because a measurement of its position would alter
the momentum (kinetic energy) and force the particle into the classically allowed
region. Recall that the wave functions for the particle-in-a-box do not penetrate the
classically forbidden region because, in that case, it was really classically forbidden
because of the infinite potential walls.

Although it is not obvious from the five eigenfunctions plotted in Fig. 3.7, as
expected from the correspondence principle, penetration of the classically forbidden
region decreases as n increases. This can be clarified by examining the probability

Fig. 3.7 The first five
eigenfunctions for the
harmonic oscillator
superimposed on the
harmonic oscillator potential
energy plotted with their
zeros at the corresponding
eigenvalues
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Fig. 3.8 Probability densities
of the first five eigenstates of
the harmonic oscillator
superimposed on the
harmonic oscillator potential
energy plotted with their
zeros at the corresponding
eigenvalues

densities for the same states shown in Fig. 3.7. These probability densities are
shown in Fig. 3.8. Although it is difficult to see at these low quantum numbers,
it is indeed true that the fraction of probability density that occupies the classi-
cally forbidden region decreases with increasing n as required by the uncertainty
principle.

It is instructive to compare the probability density with that expected for a clas-
sical oscillator. Calculation of the classical probability density, Pcl (x), is based on
time spent in an interval �x . It is the fraction of a period T that the particle spends in
the interval. The time spent in the interval is just �x divided by the velocity which
is a function of x . The classical equation of motion is

x = x0 sin ωt (3.50)

where x0 is the amplitude of the motion. Differentiating to find the velocity dx/dt =
ẋ = ωx0 cos ωt and eliminating the time we find that

ẋ = ω

√
x2

0 − x2

Classically, the probability that the particle will be found in the interval �x is the
probability density Pcl (x) times �x . We have then

Pcl (x) �x =
(

2�x

ẋ

)
·
(

1

T

)
(3.51)

= �x

π

√
x2

0 − x2
(3.52)

where we have used the relation between frequency and period, T = 2π/ω. The
factor of 2 in Equation 3.51 arises because the particle occupies �x “coming” and
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“going.” Solving for Pcl and using the relation between the TME energy E and the
amplitude x0 =

√
2E/mω2 we have

Pcl (x) = 1

π

√
2E

mω2
− x2

(3.53)

Equation 3.53 gives the probability density for a classical oscillator of energy E .
It has the expected form because the particle spends most of its time at the turning
points where it is instantaneously stopped. It spends the least time in the center
where the kinetic energy, and hence the speed, is the greatest. Notice that while the
probability density Pcl (x) is infinite at the turning points, the probability of finding
the particle in a region dx is Pcl (x) dx and is always less than unity.

Figure 3.9 is a graph of the quantal and classical probability densities for the
ground state of the harmonic oscillator. Pcl (x) is the curve marked classical with
E = (1/2) �ω. The Gaussian curve labeled quantum is |ψ0 (x)|2 for the harmonic
oscillator. It is clear that the quantum mechanical and classical results are antitheti-
cal. Moreover, the quantum mechanical result is counterintuitive because the particle
is expected to spend the least time where it is moving the fastest, at x = 0.

Disturbing as the discrepancy between the two curves in Fig. 3.9 is, the com-
parison is a bit of a ruse because, while the Gaussian curve does indeed represent
the ground state of the quantum mechanical oscillator, the classical curve does not
represent the ground state of the classical oscillator. The two curves in Fig. 3.9
represent the probability distributions for the same oscillator energies, but not the
same oscillator states. Indeed, the ground state of the classical oscillator is patently
uninteresting, E = 0, x = 0, and v = 0. In short, in the classical ground state, the
particle is at rest at the origin. Nothing is going on. There is no quantum mechanical
analog to this state because the classical probability density is a spike at x = 0 and
zero otherwise. (We will discuss this very useful function in more detail in Chapter
4.) It is clear that such a probability distribution is a violation of the uncertainty
principle because both �x = 0 and �p = 0. As discussed above, such a situation
is quantum mechanically forbidden. Thus, although comparison of the probability

Fig. 3.9 Quantum
mechanical and classical
probability densities for a
harmonic oscillator having
energy 1

2 �ω superimposed on
the U (x) = (1/2) kx2

potential energy curve



68 3 Quantum Mechanics in One Dimension—Bound States I

Fig. 3.10 Illustration of the
transition of the probability
distribution of the ground
state of the classical
harmonic oscillator into the
ground state of the quantum
mechanical harmonic
oscillator

densities in Fig. 3.9 is often used to illustrate the differences between the quantum
mechanical and classical solutions, a more appropriate comparison would be that of
the Gaussian curve with a spike at the origin representing the probability density of
the classical ground state.

Figure 3.10 is an illustration of the evolution of the classical ground state into
the quantum mechanical ground state. The solid line at the center of the left-hand
potential energy curve with its base at the minimum of the curve is meant to illustrate
the parameters of the classical ground state, E = 0 and x = 0. If one imagines the
conversion of this classical system into its quantum mechanical analog, the energy
must be raised because �p cannot be zero. Note that �p cannot be zero because
this is a bound state. This means that the particle is confined to some region of
space and thus �x cannot be infinity, implying that �p �= 0. This produces the
zero point energy discussed above and the concomitant �x which, in the case of the
oscillator ground state, manifests itself as a Gaussian distribution.

While a proper comparison of probability distributions may indeed be that shown
in Fig. 3.10, the probability distributions in Fig. 3.9 are nonetheless conflicting.
In particular, the quantum mechanical probability distribution remains counterintu-
itive. As with many aspects of quantum physics, the best way to rationalize such
instances is to appeal to the correspondence principle. As the quantum number in-
creases, we expect the quantum and classical results to coincide. Figure 3.11 is a
graph of the quantal and classical probability densities as in Fig. 3.9, but in this case
for n = 10.

Fig. 3.11 Quantum
mechanical and classical
probability densities for the
n = 10 state of the harmonic
oscillator superimposed on
the harmonic oscillator
potential energy curve,
U (x) = (1/2) kx2. Because
the potential energy curve is
so steep in this region it
essentially defines the
classically allowed and
forbidden regions of space
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Fig. 3.12 Harmonic
oscillator eigenfunction for
the n = 3 state on an
expanded scale to show the
penetration of the particle
into the classically forbidden
region

Even though the state displayed in Fig. 3.11 is not a truly high quantum number,
it can be seen that, except for the oscillations in the quantum mechanical probability
density, they are beginning to approach each other. In accord with the correspon-
dence principle, as n → ∞ we fully expect the two to match.

Before leaving the discussion of the nature of the harmonic oscillator eigenfunc-
tions, let us examine one of them, ψ3 (x), in more detail. In particular, we wish to see
how the harmonic oscillator eigenfunctions conform with the general characteristics
of eigenfunctions laid out at the beginning of this chapter. The eigenfunctions for
the particle-in-a-box do indeed conform, but, as noted previously, the infinite step
in the potential energy and zero potential energy in the box introduced features and
peculiarities in the wave function that are not present when the potential energy is
a smooth (more realistic) function. Figure 3.12 is a graph of ψ3 (x) on an expanded
scale compared with that of the previous figures.

Several of the aforementioned characteristics of wave functions are apparent.
First, it is clear that in the classically allowed region, the region between the por-
tions of the potential energy curve, the wave function curves toward the abscissa.
For example, if ψ3 (x) > 0, then d2ψ3 (x) /dx2 < 0. Whether positive or neg-
ative ψ3 (x) always curves toward the axis. On the other hand, in the classically
forbidden region the wave function curves away from the abscissa, characteristic
of an exponentially decaying probability density. We also see that the ψ3 (x) has
three nodes, exactly what we expect since, because of the quantum numbering pe-
culiar to the harmonic oscillator, the quantum number also signifies the number of
nodes.

3.2 Penetration of the Classically Forbidden Region

Let us consider in more detail the question of the nonzero probability density for a
bound state in the classically forbidden region. To do this we examine the ground
state of the harmonic oscillator. In the classically forbidden region, the kinetic
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energy is negative so the momentum (speed) is imaginary. This is absurd, so a
measurement of the momentum cannot be made. Therefore, a measurement of the
position while the particle is in the classically forbidden region cannot be made
either. Why not? Of course, the answer is the uncertainty principle. What happens
is that the measurement of x adds so much energy to the particle that it makes
the kinetic energy positive again. That is, the measurement drives the particle back
into the classically allowed region. Another way of saying this is to say that the
uncertainty in position, �x , is large compared with the penetration distance into the
classically forbidden region. Therefore, the measurement of x causes the particle to
go back where it belongs into the classically allowed region.

The ground state eigenfunction of the harmonic oscillator is given by

ψ0 (x) =
√

α√
π

e−α2 x2/2 (3.54)

so the probability density is

P0 (x) = ψ∗ (x) ψ0 (x)

= α√
π

e−α2 x2
(3.55)

We wish to compare the degree of penetration with the uncertainty in position of the
ground state �x0 which is (see Problem 9)

(�x0)2 ≡ 〈
x2

〉 − 〈x〉2

= 1

2α2
(3.56)

To make the penetration definite, we arbitrarily define the penetration depth δ as that
depth into the forbidden region when P0 (x) has decreased by one e-fold of the value
it had when it entered the forbidden region at one of the classical turning points. For
the ground state, these turning points occur at

xc0 = xc = ± 1

α
(3.57)

so that

P0 (xc + δ) = α√
π

e−α2(xc+δ)2

= α√
π

exp
[− (1 + αδ)2

]
(3.58)
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We may, however, compute P0 (xc + δ) from the definition of δ:

P0 (xc + δ) = 1

e
P0 (xc)

= 1

e

(
α√
π

e−1

)

= α√
π

e−2 (3.59)

Comparing Equation 3.59 with Equation 3.58 we see that

(1 + αδ) =
√

2 (3.60)

from which we find that

δ = 1

α

(√
2 − 1

)

≈
0.414

α
(3.61)

We may express α in terms of �x0 from Equation 3.56:

1

α
=

√
2�x0 (3.62)

which permits us to express δ in terms of �x0. We have

δ =
√

2�x0

(√
2 − 1

)

≈ 0.59�x0 (3.63)

which shows that, indeed, δ < �x0.
Figure 3.13 shows a plot of P0 (x) for positive values of x . The units on the

abscissa are �x0. Note that the uncertainty in x extends well into that portion of
the classically forbidden region for which there is appreciable probability of finding
the particle. This suggests that a measurement of the position in this region will
force the momentum (and thus the energy) uncertainty beyond the negative value of
the kinetic energy that must accompany the particle’s incursion into the forbidden
region.

To make a measurement that detects the particle to be in the forbidden region
we must make it to within an uncertainty of less than ∼ δ (or some other arbitrary,
but reasonable penetration depth). According to Equation 3.63, δ is about 3/5 of
the uncertainty in position. This is verified graphically in Fig. 3.13. We can argue
that to successfully make such a measurement we must have an uncertainty smaller
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Fig. 3.13 The probability
density for the ground state of
the harmonic oscillator
(positive x). The units of the
abscissa are �x0, the
uncertainty in position of the
ground state as calculated
from (�x0)2 = 〈

x2
〉 − 〈x〉2.

Also shown are the classical
turning point xc, P (xc), and
e−1 P (xc)

than the penetration depth, but, since this is smaller than the inherent uncertainty
in a measurement of position, such a measurement is quite impossible. We may
use the uncertainty principle to see this mathematically. For the ground state of the
harmonic oscillator

�x0�p0 = �

2
(3.64)

so we have

�p0 = �

2
· 1

�x0
= �

2
·
√

2α = 1√
2

√
mω

�
·� =

√
2m�ω (3.65)

The uncertainty in the kinetic energy �T that is introduced by the measurement of
position is thus given by

�T = (�p)2

2m

= 1

2m
(2m�ω)

= �ω (3.66)

But, this uncertainty in the kinetic energy is twice the maximum kinetic energy that
the particle can ever have in the ground state, again showing that you just can’t beat
the uncertainty principle.
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3.2.1 The Infinite Square Well with a Rectangular Barrier Inside

Consider an infinite square well, an a-box. We choose an a-box to take advantage of
the symmetry. Inside the well, symmetrically placed, is a finite rectangular barrier
of height U0, as shown in Fig. 3.14. The width of the barrier is αa where 0 < α < 1.

We wish to analyze a bound state eigenfunction corresponding to an eigenvalue
E < U0. This restriction on the eigenvalue assures us that if the particle’s position
is measured and found to be on one side of the barrier and later found to be on the
other side of it, penetration of the forbidden region must have occurred. The algebra
required to solve this problem is a bit more tedious than that in our previous prob-
lems, but it is straightforward. It simplifies matters somewhat that we are only inter-
ested in the form of the eigenfunction, not the precise analytic function. Moreover,
we are not even interested in the exact eigenvalue, but we may as well see how these
eigenvalues can be obtained because similar techniques will be employed later.

Because there are discontinuities, we must solve the TISE in each region of
space and then match the boundary conditions. There are five such regions, but the
ones to the left and right of x = − (a/2) and x = + (a/2) are trivial because the
wave function vanishes due to the infinite potential energy. We therefore label the
three regions with Roman numerals as shown in Fig. 3.14. The TISE inside the box
is then

− �
2

2m

d2ψI (x)

dx2
= EψI (x)

− �
2

2m

d2ψI I (x)

dx2
+ U0ψI I (x) = EψI I (x)

− �
2

2m

d2ψI I I (x)

dx2
= EψI I I (x) (3.67)

The solutions to these differential equations may be written as

Fig. 3.14 An infinite square
well, an a-box, with a
rectangular bump of height
U0 in the middle as shown.
Also shown is a sketch of the
ground state eigenfunction
for this well
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ψI (x) = A sin (kx + B) where k2 = 2m E

�2

ψI I (x) = C ′eκx + D′e−κx where κ2 = 2m (U0 − E)

�2

ψI I I (x) = F sin (kx + G) (3.68)

where all of the capital letters, except the energy eigenvalue E , are constants of
integration. The primes are inserted for later convenience. Now U (x) is an even
function so C ′ = ±D′. Therefore, we may write ψI I (x) as an even function ψe

I I (x)
or an odd function ψo

I I (x). That is,

ψe
I I (x) = C cosh (κx)

ψo
I I (x) = C sinh (κx) (3.69)

Applying the boundary conditions at x = −α (a/2) we have

ψe : A sin
[
−kα

(a

2

)
+ B

]

= C cosh
[
−κα

(a

2

)]
= C cosh

[
κα

(a

2

)]

ψo : A sin
[
−kα

(a

2

)
+ B

]

= D sinh
[
−κα

(a

2

)]
= −C sinh

[
κα

(a

2

)]

dψe

dx
: Ak cos

[
−kα

(a

2

)
+ B

]

= Cκ sinh
[
−κα

(a

2

)]
= −Cκ sinh

[
κα

(a

2

)]

dψo

dx
: Ak cos

[
−kα

(a

2

)
+ B

]

= Dκ cosh
[
−κα

(a

2

)]
= Dκ cosh κα

(a

2

)
(3.70)

The derivatives of the wave function must be continuous at x = ±a (a/2) despite the
discontinuity in the potential because the discontinuity is finite. The wave function
itself must be continuous everywhere. We can eliminate the constants that are not
part of the arguments of the trigonometric and hyperbolic functions by dividing
these boundary conditions, even and odd, to obtain:

k cot
(
−kα

a

2
+ B

)
= −κ tanh

(
κα

a

2

)
even (3.71)

and

k cot
(
−kα

a

2
+ B

)
= −κ coth

(
κα

a

2

)
odd (3.72)
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Employing the same procedure at the other finite discontinuity, x = α (a/2) we have

k cot
(

kα
a

2
+ F

)
= −κ tanh

(
κα

a

2

)
even (3.73)

and

k cot
(

kα
a

2
+ F

)
= −κ coth

(
κα

a

2

)
odd (3.74)

Now, the equations at x = +α (a/2) must be consistent with those at x =
−α (a/2). For example, the even function, Equation 3.71, can be rewritten as

− k cot
[
−

(
kα

a

2
− B

)]
= −κ tanh

(
κα

a

2

)

k cot
(

kα
a

2
− B

)
= −κ tanh

(
κα

a

2

)
(3.75)

Comparing the two expressions for −κ tanh
(
κα

a

2

)
in Equations 3.75 and 3.73

it is clear that F = −B . Applying the same treatment to the odd transcendental
equations verifies this relation.

We may eliminate the remaining constants by applying the boundary conditions
at x = ±a/2. We have

ψI

(
−a

2

)
= 0 ⇒ k

(
−a

2

)
+ B = 2nπ (3.76)

and

ψI

(a

2

)
= 0 ⇒ k

(a

2

)
− B = 2mπ (3.77)

Subtracting leads to

− ka + 2B = 2 (n − m) π ⇒ B = k
a

2
+ (n − m)

2
π (3.78)

We can, however, drop the term in π because the cotangent is periodic in π , so we
have for the transcendental equations that will determine the energy eigenvalues:

even: − k cot
[
k
(a

2

)
(1 − α)

]
= κ tanh

[
κα

(a

2

)]
(3.79)

odd: − k cot
[
k
(a

2

)
(1 − α)

]
= κ coth

[
κα

(a

2

)]
(3.80)
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At this point it is worthwhile to examine our solution to see if it has a chance of
being correct. That is, does it reduce to a known result if we simplify? An obvious
limit is that for which α → 0, in which case we should retrieve the result for an
a-box. For the even eigenvalues (which correspond to odd quantum numbers) we
have

α = 0: − k cot
[
k
(a

2

)]
= 0 ⇒ k

(a

2

)
= n

π

2
(3.81)

Substituting for k yields the correct result for the particle-in-a-box. While this limit
does not prove that our results are correct, it does provide us some comfort.

Now, let us briefly review. Our goal here is to verify that the wave function
sketched in Fig. 3.14 does indeed represent a possible eigenstate of this particular
U (x). If it does, then the probability density |ψ (x)|2 will have significant values
on each side of the barrier and there will be substantial probability inside the bar-
rier. As discussed previously, a measurement of position cannot reveal the particle’s
presence inside the barrier (classically forbidden region), but if measurements of
position yield values on each side of the barrier we have no choice than to believe
that the particle was actually inside the classically forbidden region. The mathe-
matics used in the solution above assumed that the energy eigenvalue was lower
than U0, the height of the barrier. That is how the real exponential and the sub-
sequent hyperbolic functions were obtained. Indeed, Fig. 3.14 was sketched under
this assumption. It is, however, to be determined if such a solution can exist. We
therefore wish to determine whether there is some combination of values of α and
U0 that will yield an energy eigenvalue E < U0. If so, then the particle had to have
traversed the classically forbidden region. We are only interested in one value, so
we examine the ground state for which the even transcendental equation, Equation
3.71, is appropriate.

We begin by defining two new variables

η = ka ; ς = κa (3.82)

In view of the definitions of k and κ we find that

η2 + ς2 = 2mU0

�2
a2

≡ β2 (3.83)

where β2 = 2mU0a2/�
2 and is a manifestly positive number. Notice that β2 is an

intrinsic property of this system [mass of the particle m and the potential energy
function U (x)] in that it contains no variables. We multiply both sides of Equation
3.71 by a and insert η and ς . We then eliminate ς using Equation 3.83 and obtain a
new transcendental equation

η cot

[
η

(1 − α)

2

]
= −

√
β2 − η2 tanh

[√
β2 − η2

(α

2

)]
(3.84)
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Fig. 3.15 Graph of the two
functions that make up the
left- and right-hand sides of
Equation 3.84 showing an
intersection at approximately
η = 6.8

Although this is a formidable-looking equation, we only require a single solution
subject to the restriction η2 < β2. This restriction is necessary to keep the expression
under the radical real. It also assures an eigenvalue E < U0. The method of solution
is to pick values of α and β and then plot the left- and the right-hand sides of Equa-
tion 3.84 as separate functions on the same graph. Their intersection determines the
common value of η and, thus, the solutions. Choosing α = 1/3, which is roughly
the width of the barrier shown in Fig. 3.14, and β = 10, the graph is as shown
in Fig. 3.15. Examination of this graph reveals an intersection at roughly η = 6.8
which meets the condition for an eigenvalue to be lower in value than the height of
the barrier. Therefore, we conclude that, indeed, the particle must have penetrated
the classically forbidden region and tunneled through the barrier.

3.3 Retrospective

By virtue of their simplicity, two of the most important problems in quantum physics
are the particle-in-a-box and the harmonic oscillator. They are of pedagogical im-
portance, but their value transcends pedagogy. They are often used as a basis for
estimating the properties of more complicated systems.

The emphasis placed on obtaining the eigenstates in this chapter might lead the
student to infer that quantum mechanical systems “live” in eigenstates. This is not
true! In general they do not. Rather, quantum mechanical systems may be described
as existing in a superposition of these states since, as will be seen in a later chapter,
the eigenstates constitute a complete set, a basis set, upon which any arbitrary wave
function may be expanded. These superpositions are possible only because the
Schrödinger equation is a linear differential equation, so that linear combinations of
solutions are also solutions.

3.4 References

1. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Harcourt, New York,
2001).
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Problems

1. Show that in the nth eigenstate of any potential energy function that supports
bound states, the expectation value of the energy is the eigenvalue En.

2. Normalize the eigenfunctions for a particle in an L-box. That is, find A in
Equation 3.6.

3. The zero point energy of a particle-in-a-box is the ground state energy. If an
electron is confined to the box, what must be the length of the box such that the
zero point energy equals the rest energy of the electron? Express your answer
in terms of the Compton wavelength of the electron λc = 2π�/mec ≈ 2.43 ×
10−12m.

4. Show that the expression for the energy eigenvalues for an L-box, Equation
3.7, can be obtained by fitting de Broglie waves into the box.

5. Show that
〈
p̂2

x

〉
for any state of a particle-in-a-box is

(
n2π2

�
2/L2

)
, consistent

with Equation 3.17.
6. The normalized wave function for a particle in an L-box at t = 0 is given by

� (x, 0) = 1√
3
ψ1 (x) +

√
2

3
ψ2 (x)

where ψ1 (x) and ψ2 (x) represent the ground and first excited state eigenfunc-
tions.

(a) What is the expectation value of the energy at t = 0?
(b) What is the wave function � (x, t) for any time t > 0?

7. The normalized wave function for a particle in an L-box at t = 0 is given by

� (x, 0) =
√

8

L
sin

(
2πx

L

)
cos

(
2πx

L

)

What is the expectation value of the energy at t = 0?
8. For an L-box:

(a) Calculate the classical probability density
(b) Find the classical values of 〈x〉classical and

〈
x2

〉
classical and show that the quan-

tum mechanical values of 〈x〉 and
〈
x2

〉
approach the classical values as the

quantum number n → ∞.

9. Calculate �x0, the uncertainty in position for the ground state of the harmonic
oscillator.

10. For an L-box:

(a) Use symmetry considerations to determine the expectation value of the
momentum p̂.

(b) Calculate the expectation value of the square of the momentum p̂2 using
two methods. First, use the form of the momentum operator in coordinate
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space given in Equation 2.28 as in Problem 5. Second, notice that the square of
the momentum is proportional to the kinetic energy operator.

11. Find �x , the uncertainty in x for an arbitrary eigenstate state of an L-box, and
show that it is always less than the dimension of the box.

12. A particle is in the ground state of an L-box. At t = 0 the wall at x = L is
suddenly moved to 2L.

(a) If an energy measurement is made after the wall is moved, what is the
probability of measuring the energy to be that of the ground state of the
new box?

(b) What is the probability of measuring the energy to be that of the first ex-
cited state of the new box?

13. The wave function at t = 0 for a particle of mass m trapped in an a-box is
given by

� (x, 0) = K x

(
1 − 2x

a

)(
1 + 2x

a

)
− a

2
< x <

a

2
= 0 otherwise

(a) Normalize � (x, 0).
(b) Find the probability that a measurement of the energy t = 0 will produce

the nth energy eigenfunction. Rather than work out the required integrals,
it is suggested that a mathematical handbook be consulted to obtain the
Fourier series for � (x, 0). What is the probability that the energy of the
ground state will be measured? The first excited state? Can you rationalize
the result?

(c) Check your answer to part b by summing over all states.
(d) Find the expectation value of the energy 〈E〉 by direct integration and by

using the probabilities found in part b. Put the answer in terms of E2 the
energy eigenvalue of the first excited state and discuss the answer. Verify
that the value of 〈E〉 is the same using both methods.

14. A particle is in the ground state of an a-box. At t = 0 both walls are suddenly
moved symmetrically to −a and a.

(a) If an energy measurement is made after the walls are moved, what is the
probability of measuring the energy to be that of the ground state of the
new box?

(b) What is the probability of measuring the energy to be that of the first excited
state of the new box?

(c) Why are the answers different from those in Problem 12?

15. Show that for the harmonic oscillator α = √
mω/� has dimensions inverse

length.
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16. Find the uncertainties �x and �p, and therefore the uncertainty product, for
the ground state of the harmonic oscillator.

17. Calculate the probability that a particle under the influence of a harmonic os-
cillator potential will be found in the classically forbidden region for the lowest
two states to see the trend toward the correspondence principle. You will need
to use the error function defined as:

erf (z) = 2√
π

∫ z

0
e−t2

dt

Two values that will be essential are: erf (1) = 0.843 and erf
(√

3
)

= 0.986.

18. Verify the uncertainty relation in the classically allowed region of a harmonic
oscillator in a way that is similar to that employed for the classically forbidden
region. Take the �x to be one-half of the allowed region.

19. Find the eigenvalues and eigenfunctions for the “half-harmonic oscillator,” that
is, a potential energy function.

U (x) = 1

2
mω2x2 x > 0

= ∞ x ≤ 0

No calculations are required.
20. Consider a particle in one-dimension that is initially coupled to two identical

springs, each with constant k, in parallel as shown.

Spring configuration for Problem 20

(a) What are the energy eigenvalues of the particle when it is connected to both
springs? What is the ground state energy eigenfunction?

(b) One spring is cut so the particle is bound to a single spring. If the particle
was in the ground state of the two-spring system before the cut, what is the
probability that it will be in the ground state of the one-spring system after
the cut?

(c) What will be the probability that the particle will be in the first excited state
of the one-spring system after the cut?

21. Starting with an a-box, let a/2 = L so the width of the box is 2L. Write
the energy eigenfunctions and the energy eigenfunctions. Now apply the same
technique as that used in Problems 19 to recover the correct eigenfunctions and
energy eigenvalues for an L-box.
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22. At t = 0 the normalized wave function of a particle of mass m subject to a
harmonic oscillator potential U (x) = 1

2 mω2 is

� (x, 0) =
√

β

π1/2
e−β2 x2/2

where β �= α = √
mω/�, but is real and positive.

(a) If a measurement of the energy E is made, what is the probability P of
measuring E = 1

2 �ω?
(b) Show that if β = α, then P = 1, but if β �= α, then P < 1.

23. An electron is subject to a harmonic oscillator potential with natural frequency
ω. At t = 0 a constant electric field F = F ı̂ is applied.

(a) Find the energy eigenfunctions and eigenvalues after the field has been
switched on.

(b) Assuming that the electron was in the ground state of the field-free oscilla-
tor potential what is the probability of finding it in the ground state of the
oscillator plus field?



Chapter 4
Time-Dependent States in One Dimension

Thus far our detailed studies have been of the stationary states of quantum mechan-
ical systems. It was remarked in Section 3.3, however, that, in general, quantum
mechanical systems exist in a superposition of states. In such states the probability
density is necessarily time-dependent (see Section 2.7). These states are usually
referred to as “wave packets” because it is a superposition of waves of differing
de Broglie wavelengths that constitute the wave function. Indeed, wave packets
provide the mechanism by which a quantum mechanical particle “moves” and this
movement provides the connection between quantal and classical particles. We will
first examine the connection between the expectation values of position and momen-
tum and the classical concepts of these quantities. Following this we will examine a
few specific wave packets in detail.

4.1 The Ehrenfest Equations

In 1927 P. Ehrenfest demonstrated the relationship between the motion of a wave
packet and the motion of a classical particle, yet another manifestation of the corre-
spondence principle. Let us first examine the expectation value of position:

〈x〉 =
∫ ∞

−∞
�∗ (x, t) x� (x, t) dx (4.1)

where it is assumed that the wave function is normalized so they vanish at x = ±∞.
Differentiating 〈x〉 with respect to time and substituting from the TDSE, Equation
2.17, we have

d

dt
〈x〉 =

∫ ∞

−∞

��∗ (x, t)

�t
x� (x, t) dx +

∫ ∞

−∞
�∗ (x, t)

�� (x, t)

�t
x

�� (x, t)

�t
dx

= i

�

∫ ∞

−∞
x

(
− �

2

2m

)[
� (x, t)

�2

�x2
�∗ (x, t) − �∗ (x, t)

�2

�x2
� (x, t)

]
dx

=
(

− i�

2m

)∫ ∞

−∞
x

�

�x

[
� (x, t)

�

�x
�∗ (x, t) − �∗ (x, t)

�

�x
� (x, t)

]
dx

(4.2)
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Notice that the terms involving the potential energy cancel so the potential energy
(assumed to be real) does not appear. Integrating by parts with

u = x

dv = �

�x

[
� (x, t)

�

�x
�∗ (x, t) − �∗ (x, t)

�

�x
� (x, t)

]
dx (4.3)

and recalling that the wave functions vanish at ±∞ we have

d

dt
〈x〉 =

(
i�

2m

)∫ ∞

−∞

[
� (x, t)

�

�x
�∗ (x, t) − �∗ (x, t)

�

�x
� (x, t)

]
dx (4.4)

Now integrating the first integral by parts with

u = � (x, t)

dv = �

�x
�∗ (x, t) dx (4.5)

we arrive at

d

dt
〈x〉 =

(
1

m

)∫ ∞

−∞
�∗ (x, t)

(
�

i

�

�x

)
� (x, t) dx (4.6)

From Equation 2.28 we recognize the quantity in parentheses in the integrand as the
momentum operator. Therefore,

d

dt
〈x〉 = 〈p〉

m
(4.7)

which is the classical relationship between position and momentum applied to the
expectation values of these quantities. Thus, it is the average values of these vari-
ables that correspond to their classical counterparts. Equation 4.7 is often referred
to as the first Ehrenfest equation.

The second Ehrenfest equation may be obtained by differentiating the first in the
form of Equation 4.6. We have

d2

dt2
〈x〉 =

(
�

im

)∫ ∞

−∞

[
��∗ (x, t)

�t

�� (x, t)

�x
+ �∗ (x, t)

�2� (x, t)

�t�x

]
dx (4.8)

After interchanging the order of differentiation in the second derivative we replace
the partial derivatives with respect to time using the TDSE, Equation 2.17. In this
case the potential energy does not cancel and, after integrating by parts twice, we
obtain
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d2

dt2
〈x〉 =

(
1

m

)∫ ∞

−∞
�∗ (x, t)

(
−dU (x)

dx

)
� (x, t) dx (4.9)

or, noting that the negative gradient (−d/dx in one-dimension) is the force, we have
a relationship between the average force and the acceleration, Newton’s second law:

〈
−dU (x)

dx

〉
= m

d2

dt2
〈x〉 (4.10)

Equation 4.10 is the second Ehrenfest equation. We will see in Section 6.3.3 that
these results can be generalized to obtain the time derivative of the expectation value
of any quantum mechanical operator.

4.2 The Free Particle

As the name implies, the free particle is one that is not subjected to any potential
energy function so U (x) = 0. This condition leads to a deceptively simple wave
function. The solution to the TISE is

� (x, t) = (
Aeikx + Be−ikx

)
e−iωt

= Aei(kx−ωt) + Be−i(kx+ωt)

= Aeik(x−ωt/k) + Be−ik(x+ωt/k) (4.11)

where A and B are constants and, as usual,

k =
√

2m E

�2
and ω = E

�
= �k2

2m
(4.12)

Of course, Equations 4.11 can also be written in terms of sines and cosines using
the Euler relations, but, for now, the exponentials are more convenient. Because
U (x) = 0, the TME is E = p2/2m and we may write

k = p

�
and ω = p2

2m�
(4.13)

Recalling that wave motion in one-dimension is characterized by a function of x±vt
where v is the velocity of propagation (minus represents motion to the right and
plus to the left), we see the terms in Equations 4.11 represent waves propagating
in opposite directions. It is clear that ω is the angular frequency of the motion; k is
referred to as the wave number and is, in essence, the momentum.

Suppose we have a free particle propagating to the right so that B = 0. We see
immediately that the wave function for such a particle cannot be normalized. This
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state represents a stationary state, but � (x, t) �∗ (x, t) = |� (x, t)|2 = |A|2 which,
because

∫ ∞

−∞
� (x, t) �∗ (x, t) dx = ∞ (4.14)

cannot be normalized. This is consistent with the uncertainty principle because the
free particle, by its very nature, has definite momentum so �p = 0 and, commen-
surately, �x = ∞. The fact that the wave function cannot be normalized should not
be a cause for concern. All this means is that the wave function does not represent
a bound state which, by definition, is confined by some potential energy function to
a specific region of space. Only bound state wave functions must be normalizable,
square integrable.

Now, how about the speed of the “particle”? Because

kx ± ωt = k
(

x ± ω

k
t
)

(4.15)

it is clear that the speed of the wave that represents the particle is

vwave = ω

k

= p

2m
(4.16)

This is in contrast to the (classical) speed of the particle, p/m. Therefore, ω/k
cannot correspond to the speed of the particle. More will be said about this later.
Notice that the free particle has a fixed de Broglie wavelength, which in terms of
k is

λ = h

p

= 2π

k
(4.17)

A free particle propagating in either direction, A = 0 or B = 0 in Equation 4.11, is
usually referred to as a plane wave because � (x, t) does not depend upon either y
or z.

4.3 Quantum Representation of Particles—Wave Packets

In Chapter 2 we noted that, because the TISE is a linear differential equation, it was
possible to write the wave function for any bound state as a linear combination of
eigenstates with the appropriate exponential time dependences. Such an expansion is
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not limited to bound states. Indeed, particles need not be bound by a potential energy
function. They may be free as discussed above or they may be subject to a potential
energy function that does not confine them to a region of space, for example, a step
function. For such a situation we may use the free particle as a starting point to
construct a quantum mechanical representation for a particle, but the formalism is
not limited to unbound particles. We merely wish to localize the particle and seek a
wave representation for such a particle. To do this we may imagine a superposition
of free particle wave functions each of a different de Broglie wavelength. These
free particle wave functions can interfere constructively and destructively to form a
localized packet of probability that will adequately represent a quantum mechani-
cal particle. Because there are available to us a continuously variable supply of de
Broglie wavelengths, it will be necessary to form the sum over wave numbers as an
integral rather than a summation.

The framework for this superposition of k-states already exists, namely, the
Fourier integrals (see Appendix J). If we include the time in the wave function,
we can construct a wave packet as

� (x, t) = 1√
2π

∫ ∞

−∞
A (k, t) eikx dk (4.18)

where A (k) is the amplitude of the kth component of the wave packet. The fac-
tor 1/

√
2π is inserted for convenience (see below). Equation 4.18 is nothing more

than an expansion of a function � (x, t) on the complete set of coordinate space
eigenfunctions of the free particle Hamiltonian eikx where the time dependence is
contained in A (k, t). Because, however, we know that the time dependence of the
free particle eigenfunctions is simply e−i Et/�, we may write

� (x, t) = 1√
2π

∫ ∞

−∞
A (k)

[
eikx e−i�k2 t/2m

]
dk (4.19)

where we have replaced the free particle energy with

E = p2

2m

= �
2k2

2m
(4.20)

The Fourier integral is a generalization of the Fourier series in which the sin nθ

and cos nθ are used in exactly the same way that the unit vectors ı̂, ĵ , and k̂ are
used to form any arbitrary vector. The unit vectors are basis vectors upon which
any vector may be expanded. Similarly, the sines and cosines are basis “vectors” or
functions upon which any periodic function may be expanded. The fact that there
are an infinite number of sines and cosines while there are only three unit vectors is
a mere technicality. Of course, the sines and cosines can be written in exponential
form so the step from Fourier series to Fourier integral is not too steep. We see that
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the function A (k) simply weights the free particle wave numbers, presumably in a
way that will cause them to constructively and destructively interfere to represent a
localized particle.

Before proceeding, we return to the question of the actual speed of the particle
that our packet is to represent. Let us write Equation 4.18 by substituting the Planck
relation E = �ω in the exponent:

� (x, t) = 1√
2π

∫ ∞

−∞
A (k) ei(kx−ωt)dk (4.21)

The wave frequency ω is, in general, a function of the wave number k. If it is as-
sumed that ω is slowly varying and expand it in a Taylor series about some arbitrary
value of k = k0 for which ω = ω0 we have

ω (k) ≈ ω0 +
(

dω

dk

)

k=k0

(k − k0) + ... (4.22)

which, when inserted in Equation 4.21, gives

� (x, t) = 1√
2π

eik0(x−ω0 t/k0 )
∫ ∞

−∞
A (k) exp

{

i

[

x −
(

dω

dk

)

k=k0

t

]

(k − k0)

}

dk

(4.23)

From Equation 4.23 it can be seen that the wave function � (x, t) represents a plane
wave (see Equation 4.11) propagating with velocity vp = ω0/k0 = p0/2m that is
reshaped by the integral that multiplies it. As was noted previously, vp, called the
phase velocity, is not the particle velocity. It is the velocity of the plane wave under
the condition that the exponential in the integral is equal to unity, the so-called
stationary phase condition. The velocity of the centroid of the packet, called the
group velocity, moves with constant velocity and, for a free particle of wave number
k0, is given by

vg =
(

dω

dk

)

k=k0

=
[

d

dk

(
�k2

2m

)]

k=k0

(4.24)

= �k0

m

= p0

m
(4.25)

which is, indeed, the classical particle velocity.
Because the expansion of � (x, t) in Equation 4.18 is an expansion on free parti-

cle wave functions, the energy is simply the free particle energy, the kinetic energy
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of a particle of momentum p = �k, that is, p2/2m. We may therefore replace ω in
Equation 4.18 using

E = �ω

= p2/2m

= �
2k2/2m (4.26)

so that

� (x, t) = 1√
2π

∫ ∞

−∞
A (k) eikx e−ik2

�t/(2m)dk (4.27)

Before considering the movement of wave packets we examine the relationship
between the two functions, � (x, t = 0) and A (k). The Fourier integral at t = 0 is
[using the notation � (x, 0) = ψ (x)]

ψ (x) = 1√
2π

∫ ∞

−∞
A (k) eikx dk (4.28)

The function ψ (x) in Equation 4.28 is the Fourier transform of A (k) while A (k) is
the Fourier transform of ψ (x):

A (k) = 1√
2π

∫ ∞

−∞
ψ (x) e−ikx dx (4.29)

We may also write an expression for A (k, t). It is

A (k, t) = 1√
2π

∫ ∞

−∞
� (x, t) e−ikx dx

= 1√
2π

∫ ∞

−∞
ψ (x) e−ikx e−ik2

�t/(2m)dx (4.30)

where e−ikx e−ik2
�t/(2m) are the momentum space eigenfunctions.

Notice the symmetry between Equations 4.27 and 4.30. While ψ (x) is the famil-
iar wave function in what we will now refer to as coordinate space, A (k) has all the
earmarks of a wave function, but rather than being a function of x it is a function of
k = p/�, the momentum. Recall that x and p are the variables that appear in the
Heisenberg uncertainty relation. Thus, while A (k) plays the role of the expansion
coefficients in the infinite sum (that is actually an integral) in Equation 4.28 to pro-
duce ψ (x), we see that ψ (x) plays exactly the same role if we regard A (k) as a wave
function that is a function of momentum. What then is the usefulness of this A (k)?
We might (correctly) presume, by analogy, that the quantity |A (k)|2 dk represents
the probability that the particle can be found with wave number between k and k+dk



90 4 Time-Dependent States in One Dimension

just as |ψ (x)|2 dx represents the probability that the particle can be found between
x and x + dx . The function A (k) is referred to as the wave function in momentum
space (even though k is only proportional to the momentum). We note that the
relations between ψ (x) and A (k) in their Fourier transforms are not restricted to
unbound particles. These relations hold for any wave functions including the bound
stationary states that we have already studied in Chapter 3.

Rather than writing the Fourier transform of ψ (x) in terms of wave number k and
A (k) it is often useful to write it in terms of the momentum p and the momentum
wave function φ (p) defined as

φ (p) ≡ 1√
�

A (k)

= 1√
2π�

∫ ∞

−∞
ψ (x) e−i px/�dx (4.31)

and

� (p, t) = 1√
2π�

∫ ∞

−∞
e−i px/�e−i p2t/(2m�)dx (4.32)

Clearly φ (p) is also a wave function in momentum space. Inserting the A (k) ≡√
�φ (p) into Equation 4.28 we obtain ψ (x) in terms of φ (p):

ψ (x) = 1√
2π�

∫ ∞

−∞
φ (p) eipx/�dp (4.33)

The symmetry between Equations 4.31 and 4.33 makes clear the reason for the
factor of 1/

√
� in the defining relation between A (k) and φ (p). We may also rewrite

Equation 4.27 in terms of the momentum. We have

� (x, t) = 1√
2π�

∫ ∞

−∞
φ (p) eipx/�e−i p2t/(2m�)dp (4.34)

4.3.1 Momentum Representation of the Operator x

Previously, Equation 2.28, we deduced a representation for the momentum operator
p̂x in terms of the coordinate x . That is, we found that

p̂ = �

i

d

dx
(4.35)

where we have dropped the subscript on the momentum operator because we are
working in one-dimension. Let us examine the effect of this operator on ψ (x) by
operating on Equation 4.33 (ignoring the relation in Equation 4.35):
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p̂ψ (x) = 1√
2π�

∫ ∞

−∞
pφ (p) eipx/�dp

=
[

�

i

d

dx

]{
1√
2π�

∫ ∞

−∞
φ (p) eipx/�dp

}

=
[

�

i

d

dx

]
ψ (x) (4.36)

which confirms the result in Equation 4.35.
The derivation of the expression for p̂, Equation 4.35, suggests that it may be

possible to obtain an analogous expression for the coordinate “operator” x . After
all, if x and p̂ are on an equal footing, they should both be considered to be op-
erators in the quantum mechanical sense. Indeed they are, although the “hat” is
frequently suppressed for coordinate operators. We will follow this tradition except
where noted. Proceeding as we did with p̂x we investigate the effect of operating on
φ (p) with x . We have

xφ (p) = 1√
2π�

∫ ∞

−∞
xψ (x) e−i px/�dx

=
[
−�

i

d

dp

]{
1√
2π�

∫ ∞

−∞
ψ (x) e−i px/�dx

}

=
[
−�

i

d

dp

]
φ (p) (4.37)

Thus, we see that the coordinate operator is given by

x = −�

i

d

dp
(4.38)

4.3.2 The Dirac δ-function

At this point it is worthwhile to digress from the main subject of this chapter to
introduce an extremely useful function that pervades quantum physics, the Dirac
δ-function, or simply the δ-function. To do this we replace φ (k) in Equation 4.28
with Equation 4.29, interchange the order of integration, and obtain

ψ (x) = 1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
ψ

(
x ′) e−ikx′

dx ′
]

eikx dk

=
∫ ∞

−∞
ψ

(
x ′) dx ′

[
1

2π

∫ ∞

−∞
eik(x−x′)dk

]
(4.39)

where we have used x ′ as a dummy variable to distinguish it from x which is on the
left-hand side of the equation. The quantity in square brackets is defined to be the
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δ-function. Note that it depends only on
(
x − x ′) because the k integrates out. By

definition then

δ
(
x − x ′) ≡ 1

2π

∫ ∞

−∞
eik(x−x′)dk (4.40)

Now, the integral in Equation 4.40 is undefined as can be seen by converting
the exponential to sines and cosines. What then is its meaning? In fact, the name
δ-“function” is not proper. Mathematicians refer to such an entity as a distribution.
No matter! We must use it in the context of its properties and its usage in quantum
mechanics. In terms of the δ-function Equation 4.39 is

ψ (x) =
∫ ∞

−∞
δ
(
x − x ′)ψ

(
x ′) dx ′ (4.41)

This equation illustrates one of the most important properties of the δ-function, the
sifting property. According to Equation 4.41 δ

(
x − x ′) sifts out the value of ψ

(
x ′)

at x ′ = x and replaces the entire integral with ψ
(
x ′ = x

)
.

The properties of the δ-function are usually listed in terms of some arbitrary func-
tion f (x) and a constant. Three of the most important properties of the δ-function
are listed in Table 4.1.

The fact that the δ-function is an even function can be proved by making the
substitution y = −x in the first line of Table 4.1 with x0 = 0.

∫ ∞

−∞
δ (−x) f (x) dx =

∫ −∞

∞
δ (y) f (−y) (−dy)

=
∫ ∞

−∞
δ (y) f (−y) dy

= f (0)

=
∫ ∞

−∞
δ (x) f (x) dx (4.42)

Thus, δ (−x) and δ (x) have the same effect on the integral so they must be equal. Ex-
amination of the sifting property of the δ-function as described in Table 4.1 clearly
shows that it is nonzero only at x0. The picture that emerges is one of an infinitely
high spike of zero width at x = x0, but, because of the normalization integral,

Table 4.1 Some properties of the Dirac delta-functions

Mathematical operation Name

f (x0) = ∫ ∞
−∞ δ (x − x0) f (x) dx Sifting property

δ (−x) = δ (x) Parity: even (if x0 = 0)
∫ ∞

−∞ δ (x − x0) = 1 Normalization

δ (ax) = (1/ |a|) δ (x) None
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Fig. 4.1 Schematic illustration of a the function δ (x − x0). It is zero everywhere except at x = x0

at which point it is infinitely high, but has zero width. Nonetheless, (believe it or not) the area under
this spike is unity

the “area” under this spike is unity. This is precisely the function we alluded to in
Chapter 3 when discussing the probability density of the ground state of the classical
harmonic oscillator (with x0 = 0). This abstraction is extremely useful. A highly
schematic conception of a δ-function is illustrated in Fig. 4.1. Note that δ (x − x0)
has even parity with respect to x = x0.

4.3.3 Parseval’s Theorem

We may use the δ-function to prove an important theorem, Parseval’s theorem. We
begin with the integral over all momenta of the absolute square of φ (k) and insert
the Fourier transforms:

∫ ∞

−∞
φ (k) φ∗ (k) dk =

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
ψ (x) e−ikx dx

]

×
[

1√
2π

∫ ∞

−∞
ψ∗ (x ′) eikx′

dx ′
]

dk

=
∫ ∞

−∞
ψ (x) dx

{∫ ∞

−∞
ψ∗ (x ′)

[
1

2π

∫ ∞

−∞
eik(x′−x)dk

]
dx ′

}

=
∫ ∞

−∞
ψ (x) dx

{∫ ∞

−∞
ψ∗ (x ′) [δ

(
x ′ − x

)]
dx ′

}

=
∫ ∞

−∞
ψ (x) dx

{
ψ∗ (x)

}

=
∫ ∞

−∞
ψ (x) ψ∗ (x) dx (4.43)

Written in the more usual form we have

∫ ∞

−∞
|φ (k)|2 dk =

∫ ∞

−∞
|ψ (x)|2 dx (4.44)

which makes it clear that the normalization is preserved in going from coordinate
space to momentum space.
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4.4 The Harmonic Oscillator Revisited—Momentum
Eigenfunctions

In Chapter 3 we solved the TISE for the bound state eigenfunctions and energy
eigenvalues for the harmonic oscillator potential U (x) = 1

2 mω2x2. In view of our
discussion in this chapter, however, we should clarify the nature of wave functions
that we obtained by noting that they are coordinate space wave functions. That is, in
the context of this chapter, the wave functions that we obtained in Chapter 3 were
ψ (x)’s rather than φ (p)’s.

The harmonic oscillator is a very special problem in quantum physics. One rea-
son for its uniqueness is that the coordinate x occurs in the TISE to exactly the
same power as does the momentum p. Inserting the potential energy function into
Equation 2.26 the TISE may be written

[
p̂2

2m
+ 1

2
mω2x2

]
ψ (x) = Eψ (x) (4.45)

Because we are working in one-dimension we have again dropped the subscript
x that denotes the component of the momentum. Examination of Equation 4.45
together with the (near) symmetric operator relations

p̂ → �

i

d

dx
and x → −�

i

d

dp
(4.46)

makes it clear that the momentum and coordinate energy eigenfunctions must have
the same general form. It is not necessary to actually solve the TISE in momentum
space to obtain the set of φn (p) since we have already done the work. All we must do
is replace x by its operator equivalent in p-space and put the resulting equation in the
form of the differential equation that led us to the coordinate space eigenfunctions:

ψn (x) =
√

1

2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/(2�) (4.47)

We then find the analogous constants and simply write the solutions (see Problem
11). The harmonic oscillator momentum eigenfunctions are found to be

φn (p) =
√

1

2nn!

(
1

πmω�

)1/4

Hn

(
1√

mω�
p

)
e−p2/(2mω�) (4.48)

It may seem peculiar that in the midst of this chapter we have seemingly di-
gressed to reexamine an already solved problem. If, however, the relationship be-
tween ψ (x) and φ (p) that is contained in their Fourier transforms is valid, we
should be able to check it with the easily derived oscillator eigenfunctions. We
examine the ground state for which both the coordinate and momentum space
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eigenfunctions are simple Gaussian functions. Including normalization constants we
have (recalling that α = √

mω/�)

ψ0 (x) =
(mω

π�

)1/4
e−mωx2/(2�)

=
√

α

π1/4
e−α2 x2/2 (4.49)

and

φ0 (p) =
(

1

πmω�

)1/4

e−p2/(2mω�)

= 1

π1/4
√

α�
e−p2/(2α2

�
2) (4.50)

Inserting Equation 4.49 in the Fourier transform, Equation 4.31, we have

φ (p) = 1√
2π�

(mω

π�

)1/4
∫ ∞

−∞
e−mωx2/(2�)e−i px/�dx (4.51)

Completing the square and using the integral given in Equation H.4 we do indeed
recover φ (p) as given by Equation 4.50.

There is more! Let us examine the uncertainty principle for the ground state of
the harmonic oscillator, that is, for a Gaussian wave function. (Note that we need
not specify whether we mean a Gaussian wave function in coordinate space or mo-
mentum space because the Fourier transform of a Gaussian is a Gaussian.) By sym-
metry, it is clear that both 〈x〉 and 〈p〉 vanish. We need calculate only (�x)2 = 〈

x2
〉

and (�p)2 = 〈
p2
〉
. Using the definite integral, Equation H.5, we find (see Problem

6) that

�x = 1√
2α

=
√

�

2mω
and �p = 1√

2
α� =

√
mω�

2
(4.52)

so that

�x�p ≡ 1

2
� (4.53)

Thus, for the ground state of the harmonic oscillator the uncertainty relation is an
equality. That is, the Gaussian wave function has the minimum uncertainty possi-
ble. From Equation 4.52 it is clear that as �p increases (decreases), �x decreases
(increases).
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Finally, we note that in terms of the wave number k the ground state wave func-
tion is

A0 (k) = 1

π1/4
√

α
e−k2/(2α2) (4.54)

and the uncertainty in the wave number �k is

�k = 1√
2
α (4.55)

so, in terms of x and k, the uncertainty relation is

�x�k =
(

1√
2α

)(
1√
2
α

)
(4.56)

= 1

2
(4.57)

4.5 Motion of a Wave Packet

We wish to investigate the fate of a wave packet with increasing time. To do this we
must specify either � (x, 0) or � (p, 0) and find the time-dependent wave functions.
To be definite we will assume that the initial wave functions are Gaussians. Our rea-
soning is that we already know that if the momentum wave function is Gaussian, the
coordinate wave function is also Gaussian. Moreover, the values of the definite inte-
grals involving Gaussian functions are known. Now, let us be clear that because we
are starting with a Gaussian does not mean that we are starting with the ground state
of the harmonic oscillator, an eigenstate (see Problem 22 of Chapter 3). How can
we imagine the creation of such a packet? There is more than one way. Suppose that
we have a bound system, for example a particle subjected to a harmonic oscillator
potential. Suppose further that the particle is not in an eigenstate, but that the wave
function is a Gaussian. This means that the constant α = √

mω/� is not present
in the exponent in the wave function. If the constant analogous to α is designated
β with the stipulation that β �= α, then the initial Gaussian wave packet cannot be
an eigenfunction of the harmonic oscillator. There is another method of creating an
initial Gaussian wave packet that is not the ground state wave function, in this case
even if the system is initially in the ground state. This will be explained below. Our
initial wave functions can be represented as linear combinations of the eigenstates
of the harmonic oscillator. (Indeed, it can be represented as a linear combination
of the eigenstates of any Hamiltonian provided the potential energy has the same
boundary conditions as the harmonic oscillator potential.)

To create the initial conditions, we imagine a particle that is initially subjected
to a harmonic oscillator potential and at t = 0 is described by a momentum
wave function � (p, 0) and a coordinate wave function � (x, 0) that are Fourier
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transforms of each other. We specify, however, that they are each some form of
Gaussian, but not the ground state of a harmonic oscillator. Physically, we may
imagine the particle is attached to a spring and oscillating, but not in any eigenstate
of the harmonic oscillator Hamiltonian. Thus, our Gaussian wave packet has been
created while under the influence of a harmonic oscillator potential. At t = 0 we
investigate the fate of the packet under three different circumstances.

• Case I. The spring is cut and nothing is done thereafter (it is a free packet/particle).
• Case II. The spring is cut and a constant field is turned on at t = 0.
• Case III. Nothing is done. That is, the packet remains under the influence of the

spring.

In our treatment of these three cases we will tailor our initial Gaussian packet
for computational convenience of the particular case. Before doing this we write the
wave functions in coordinate space and momentum space for a general Gaussian
packet. That is, suppose we imagine a Gaussian wave packet that is displaced from
the origin by an amount x0 and given initial momentum p0. The wave functions are
Fourier transforms of each other and are given by

� (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2 · eip0x/� (4.58)

and

� (p, 0) = 1

π1/4
√

β�
e−(p−p0)2/2β2

�
2 · e−i px0/� (4.59)

where we have used the constant β (rather than α as defined in Equation 3.25) to
emphasize that, even though it has the appearance of the ground state eigenfunction
of the harmonic oscillator, the system is not in an eigenstate. It is easily shown that

for these wave packets �x0 = 1/
(√

2β
)

and �p0 = β�/
√

2 (see Problem 6). We

may therefore write Equations 4.58 and 4.59 in terms of the uncertainties �x0 and
�p0:

� (x, 0) = 1

π1/4

(
1

21/4
√

�x0

)
e−(x−x0 )2/4�x2

0 · eip0x/� (4.60)

� (p, 0) = 1

π1/4

(
1

21/4
√

�p0

)

e−(p−p0)2/4�p2
0 · e−i px0/� (4.61)

Equations 4.60 and 4.61 illustrate an important property of Fourier transforms
of Gaussian wave packets. Their uncertainties are equal in the sense that they occur
in precisely the same form in each � (x, 0) and � (p, 0). An alternative way of
saying this is that if (x − x0) and (p − p0) are measured in units of their respective
uncertainties, then the functions have decreased by the same amount. For example,
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if (x − x0) = 2�x , then � (x, 0) has decreased by one e-fold. In order for � (p, 0)
to decrease by one e-fold requires (p − p0) = 2�p.

It is actually more useful to have the absolute squares of � (x, 0) and � (p, 0) in
terms of �x0 and �p0 at our disposal. They are

|� (x, 0)|2 = 1√
2π

(
1

�x0

)
e−(x−x0 )2/2�x2

0 (4.62)

|� (p, 0)|2 = 1√
2π

(
1

�p0

)
e−( p−p0)2/2�p2

0 (4.63)

In what follows we will be interested in finding the time dependence of the uncer-
tainties. It is a simple matter to include the time in the last two equations. We have

|� (x, t)|2 = 1√
2π

(
1

�x (t)

)
e−(x−x0 )2/2[�x(t)]2

(4.64)

|� (p, t)|2 = 1√
2π

(
1

�p (t)

)
e−(p−p0)2/2[�p(t)]2

(4.65)

4.5.1 Case I. The Free Packet/Particle

We choose to cut the spring at a time such that x0 = 0. The packet will then have
nonzero average momentum p0. The Gaussian packet in momentum space at t = 0
is therefore (see Equation 4.59)

� (p, 0) = 1

π1/4
√

β�
e−( p−p0)2/2β2

�
2

(4.66)

Let us first ask what we expect. Certainly we expect the packet to propagate in
the direction of p0, +x or −x . We also expect the packet to change shape. The
mathematics will tell us exactly how the packet propagates and how it reshapes
after it is free. On the other hand, being a free particle we expect no change in the
momentum so that the initial spread in momentum �p cannot change in time.

First we will find the wave function in coordinate space � (x, t). Inserting
� (p, 0) = � (p) in Equation 4.34 we have

� (x, t) = 1√
2π�

1

π1/4
√

β�

∫ ∞

−∞
e−( p−p0)2/(2β2

�
2)eipx/�e−i p2t/(2m�)dp (4.67)

Now, there is some unpleasant algebra in the exponent, but it is straightforward to
complete the square and integrate. The result is
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� (x, t) = β1/2

π1/4

1
√

1 + iβ2
�t

m

× exp

[

−β2 (x − p0t/m)2

2
(
1 + iβ2�t/m

)

]

× exp

[
i

�
p0

(
x − p0

2m
t
)]

(4.68)

The absolute square of the wave function, the probability density, tells us how the
packet spreads. Squaring Equation 4.68 we obtain

|� (x, t)|2 = 1√
π

β
√

1 + β4
�

2t2

m2

exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−β2

⎡

⎢
⎢
⎢
⎣

(x − p0t/m)2

(
1 + β4

�
2t2

m2

)

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.69)

or in terms of �x0 = 1/
(√

2β
)

|� (x, t)|2 = 1√
2π

1

�x0

√

1 + �
2t2

4m2�x4
0

exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−

⎡

⎢
⎢⎢
⎣

(x − p0t/m)2

2�x2
0

(
1 + �

2t2

4m2�x4
0

)

⎤

⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.70)
From Equation 4.69 we see that, because x and t occur in the combination x −vt ,

the probability packet travels with group velocity vg = p0/m = 〈p〉 /m which
corresponds to the classical particle velocity. Moreover, 〈x (t)〉 = (p0/m) t which
corresponds to the particle position. Additionally, the phase factor in Equation 4.68
shows that the phase velocity vp = p0/ (2m).

Comparing Equation 4.69 with Equation 4.64, we see that the uncertainty as a
function of time is given by

�x (t) = �x0

√

1 +
(

�t

2�x2
0m

)2

(4.71)

so that, in terms of �x (t), Equation 4.70 may be written more compactly as

|� (x, t)|2 = 1√
2π

1

�x (t)
exp

{

−
[

(x − p0t/m)2

2�x (t)2

]}

(4.72)

Notice that comparison with Equation 4.64 provides a double check because
�x (t) occurs in both the exponent and the preexponential factor. From Equation 4.71
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it is seen that, in coordinate space, the packet spreads as it moves along. On the
other hand, this is a free particle so �p must be independent of time. This may be
seen quantitatively by examining the appropriate integrals. Because the only time
dependence in the momentum wave function is in the imaginary exponent, the time
will not appear in the integrand of either

〈
p2
〉
or 〈p〉. The time appears in �x because

x and x2 must be changed to their momentum notation, derivatives, which operate
on the time-dependent part of the imaginary exponent. Thus, the uncertainty product
�x�p, while initially its minimum value, grows with time. Figure 4.2 illustrates the
motion in time of the packet.

Another feature of this packet is that the amplitude of the probability density
decreases as indicated by the preexponential factor. This decrease in amplitude is
compensated by the spreading with time of �x (t). The normalization of � (x, t)
is preserved in time as may be seen by evaluating the integral of |� (x, t)|2 (see
Problem 8). Thus, while the Gaussian wave packet propagates and spreads with in-
creasing time, the area under it remains constant. Note that if we imagine the packet
to have originated from cutting the spring when the particle was in an eigenstate of
the harmonic oscillator so that 〈p〉 = 0, the packet would not propagate because
vg = 0. The packet would, however, spread just as described by Equation 4.71
because the momentum does not enter into this result. In other words, the concave
up parabola that is U (x) disintegrates and the Gaussian ground state in coordinate
space would spread symmetrically forever.

The probability density represented in Equation 4.69 may be more revealing if it

is cast in terms of the initial uncertainty in position �x (t = 0) = �x0 = 1/
(√

2β
)

,

which is identical with Equation 4.52 with α → β. Rewriting Equation 4.71 and
letting

t0 = 2m

�
�x2

0 (4.73)

we have

�x (t) = �x0

√

1 + t2

t2
0

(4.74)

Fig. 4.2 A free Gaussian
wave packet shown at three
different times. Note that the
width of the packet increases
in time, but the area under the
curve remains constant
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We see from Equation 4.74 that �x (t) > �x0 for t > 0. Naturally, we expect this
effect to be evident only at the microscopic level. For a free electron we can assume
the initial uncertainty to be the order of the Compton wavelength �/ (mec) so that

t0 = 2�

mec2

= 2
(
6.58 × 10−16eV · s

)

0.51 × 106eV
= 2.6 × 10−21s (4.75)

Thus, the probability density representing a free electron initially confined to a re-
gion of space comparable with its own Compton wavelength spreads very rapidly.
On the other hand, if it is a macroscopic particle of mass say 10−4kg having di-
ameter 10−3m, appreciable spreading takes more than 1017s, roughly the age of the
universe.

4.5.2 Case II. The Packet/Particle Subjected to a Constant Field

At t = 0 the Gaussian packet is subjected to a constant force ϕ. How could such
a situation arise? If the particle of mass m carries an electrical charge and if it is
in a region of constant electric field, then the force is the product of the charge and
the electric field. It would also occur if a particle oscillating on a hanging spring
were suddenly set free by cutting the spring. After cutting the spring the particle is
subjected to the constant gravitational force.

Without specifying the origin of the force we may write the potential as

U (x) = −ϕx ; − ∞ < x < ∞ (4.76)

To simplify the mathematics we take the Gaussian packet to be one for which the
average momentum and average displacement are zero. In momentum space the
initial packet is described by

� (p, 0) = 1

π1/4
√

β�
e−p2/2β2

�
2

(4.77)

The TDSE with the potential energy of Equation 4.76 can be solved exactly in co-
ordinate space (see Section 5.5), but for the present purpose it is convenient to write
the TDSE in momentum space. Using Equation 4.38 to replace x → (i�) �/� p in
the TDSE with a linear potential, we have

p2

2m
� (p, t) − i�ϕ

�� (p, t)

� p
= i�

�� (p, t)

�t
(4.78)



102 4 Time-Dependent States in One Dimension

This partial differential equation may be solved by making the substitution

� (p, t) = �
(

p′) f (p) where p′ = p − ϕt (4.79)

which leads to a differential equation for the function f (p)

ϕ
d f (p)

dp
= p2

2m (i�)
f (p) (4.80)

the solution to which is

f (p) = exp

(
− i p3

6m�ϕ

)
(4.81)

so that

� (p, t) = � (p − ϕt) exp

(
− i p3

6m�ϕ

)
(4.82)

where � (p − ϕt) is any function of (p − ϕt) (see Problem 12). Initial conditions
fix � (p − ϕt).

To determine the � (p − ϕt) that corresponds to the wave packet in Equation
4.77 we set t = 0 in Equation 4.82 and equate the result to the wave function
representing the initial Gaussian wave packet, Equation 4.77. This permits deter-
mination of � (p) which can immediately be converted to � (p − ϕt) because this
function can contain p and t in only the combination ( p − ϕt) (see Problem 13).
We obtain

� (p − ϕt) =
(

1

π1/4
√

β�

)
exp

(

− (p − ϕt)2

2β2�2
+ i (p − ϕt)3

6m�ϕ

)

(4.83)

Substituting Equation 4.83 into Equation 4.82 we obtain the time-dependent wave
function in momentum space for a Gaussian wave packet:

� (p, t) =
(

1

π1/4
√

β�

)
exp

(

− (p − ϕt)2

2β2�2

)

exp

[

i

(
(p − ϕt)3 − p3

6m�ϕ

)]

(4.84)

and the probability density in momentum space is

|� (p, t)|2 =
(

1√
πβ�

)
exp

[

− (p − ϕt)2

β2�2

]

(4.85)
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or in terms of �p0 = β�/
√

2

|� (p, t)|2 =
(

1√
2π�p0

)
exp

[

− (p − ϕt)2

2�p2
0

]

(4.86)

Comparing Equation 4.85 with Equation 4.65 reveals that

�p (t) = �p0 (4.87)

which contains no time dependence. Thus, as for the free particle Gaussian wave
packet, this packet does not spread in momentum. Why is this? After all, there is
a force applied. The force is, however, constant so all momentum components are
affected equally. The packet moves as a unit in momentum space, but it does not
spread.

It is straightforward to extract the time-dependent expectation values 〈x (t)〉 and
〈p (t)〉 (see Problem 15). We obtain

〈x (t)〉 = ϕt2

2m
and 〈p (t)〉 = ϕt (4.88)

both of which are consistent with the Ehrenfest equations. Note that 〈x (t)〉 has the
familiar t2 dependence of any particle under the influence of a constant force be-
cause, by Newton’s second law, the acceleration is ϕ/m. The expectation value of
the momentum is indeed Newton’s second law because the force is the time rate of
change of the (average) momentum.

Consider now the uncertainty in position �x (t). We already know 〈x (t)〉 so one
method of obtaining �x (t) is to compute

〈
x (t)2

〉
using the momentum space wave

function, Equation 4.84, and replacing x2 in the integral with �
2d2/dp2. Alterna-

tively, we could obtain � (x, t) by performing a Fourier transform on the momentum
wave function, squaring, and identifying �x (t) by comparing with Equation 4.64.
The Fourier transform yields

� (x, t) = 1

π1/4

√
β

γ
exp

[
iϕt

�

(
x − ϕt2

6m

)]
· exp

{

−
[
x − ϕt2/ (2m)

]2

(
2γ /β2

)

}

(4.89)

where, defining t0 = m/
(
�β2

)
as in Equation 4.73,

γ = 1 + i t

t0
and t0 = m

�β2
= 2m

�
�x2

0 (4.90)
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The probability density in coordinate space is then

|� (x, t)|2 = 1√
π

⎛

⎝ 1
√

|γ |2 /β2

⎞

⎠ exp

{

−
[
x − ϕt2/ (2m)

]2

(|γ |2 /β2
)

}

(4.91)

Comparing Equation 4.91 with Equation 4.64 we see that

2�x (t)2 = |γ |2
β2

(4.92)

so that in terms of �x (t) we have

|� (x, t)|2 = 1√
2π

(
1

�x (t)

)
exp

{

−
[
x − ϕt2/ (2m)

]2

2�x (t)2

}

(4.93)

where, recalling that �x0 = 1/
(√

2β
)

�x (t) = �x0

(
1 + t2

t2
0

)1/2

(4.94)

which is identical to Equation 4.71, again a consequence of the constant force being
applied.

4.5.3 Case III. The Packet/Particle Subjected to a Harmonic
Oscillator Potential

In this case we assume that we have a Gaussian wave packet that is a linear super-
position of harmonic oscillator eigenstates and that we know the wave function in
coordinate space � (x, 0). To be specific we choose an initial wave function of the
form

� (x, 0) =
√

α

π1/4
e−α2(x−x0 )2/2 (4.95)

where, in this case, α = √
mω/�, the same constant that appears in the eigenfunc-

tions of the harmonic oscillator. The inclusion of a nonzero average displacement,
however, assures us that Equation 4.95 is not an eigenfunction of the harmonic
oscillator Hamiltonian. Of course, it may be expanded upon the complete set of
harmonic oscillator eigenfunctions. Despite not being an eigenfunction, Equation
4.95 is nonetheless a Gaussian distribution with average displacement x0 and zero
initial momentum which (classically) is equivalent to pulling the particle to x = x0
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and releasing it with no initial momentum. Such a state is sometimes referred to
as a displaced ground state. In the case studied here, the particle remains under the
influence of the potential energy U (x) = 1

2 kx2.
We wish to find the function � (x, t) so that we may determine the time depen-

dence of the probability distribution |� (x, t)|2. There is no need to determine the
momentum space wave function so we do not require any Fourier transforms. Using
the superposition theorem we write

� (x, t) =
∞∑

n=1

anψn (x) e−i(En/�)t (4.96)

Of course, it makes sense to choose as our complete set, the ψn (x), the harmonic os-
cillator eigenfunctions; the En in the exponents are then the corresponding harmonic
oscillator energy eigenvalues. To complete the task we would have to multiply both
sides by � (x, 0) and integrate, taking advantage of the orthogonality of the eigen-
functions. In this particular case, however, there is an easier way. It involves using
the generating function for the Hermite polynomials. Although generating functions
may seem intimidating, this exercise will illustrate the friendliness of such functions.
Recall that for the Hermite polynomials the generating function is (see Table 3.2)

e2μξ−μ2 =
∞∑

n=0

Hn (ξ ) μn

n!
(4.97)

For simplicity of notation let us temporarily use the scaled distance ξ = αx . The
initial packet is

� (ξ, 0) =
√

α

π1/4
e−(ξ−ξ0)2/2 (4.98)

which, with a prescient eye toward using the generating function we let ξ0 = 2μ so
that

� (ξ, 0) =
√

α

π1/4
exp

[
−ξ2

2
+ 2μξ − 2μ2

]

=
√

α

π1/4
exp

[
−ξ2

2
− μ2 + 2μξ − μ2

]

=
√

α

π1/4
exp

[
−

(
ξ2

2
+ μ2

)]
· exp

(
2μξ − μ2) (4.99)

In this form, the last term is recognized as the generating function of the Hermite
polynomials. We may therefore replace it using Equation 4.97:
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� (ξ, 0) =
√

α

π1/4
exp

[
−

(
ξ2

2
+ μ2

)] ∞∑

n=0

Hn (ξ ) μn

n!

=
√

α

π1/4
e−μ2

∞∑

n=0

μn

n!

{
e−ξ 2/2 Hn (ξ )

}
(4.100)

Notice, however, that the terms in the brackets in Equation 4.100 are precisely the
harmonic oscillator eigenfunctions. Comparing Equation 4.100 with Equation 4.96
we see that we have “accidentally” calculated the expansion coefficients, the an .

To include the time in the wave function we multiply each harmonic oscil-
lator eigenfunction in the summation by an exponential that contains the corre-
sponding energy eigenvalue. Inserting the time dependence into Equation 4.100
we have

� (ξ, t) =
√

α

π1/4
e−μ2

∞∑

n=0

μn

n!

{
e−ξ 2/2 Hn (ξ )

}
exp

[
−i

(
n + 1

2

)
ωt

]

=
√

α

π1/4
e−μ2

e−iωt/2
∞∑

n=0

μn

n!

{
e−ξ 2/2 Hn (ξ )

}
e−inωt (4.101)

Removing e−ξ 2/2 from the summation and regrouping the terms we have

� (ξ, t) =
√

α

π1/4
e−μ2

e−iωt/2e−ξ 2/2
∞∑

n=0

[(
μe−iωt

)n

n!
Hn (ξ )

]

(4.102)

Incredibly, the summation is the generating function for the Hermite polynomials
with μ → μe−iωt as is easily seen from Equation 4.97. That is,

∞∑

n=0

Hn (ξ )
(
μe−iωt

)n

n!
= exp

[
2ξμe−iωt − (

μe−iωt
)2
]

(4.103)

so that, after substituting μ = ξ0/2, Equation 4.102 becomes

� (ξ, t) =
√

α

π1/4
e−iωt/2 exp

[
−

(
ξ2

2
+ ξ2

0

4

)]
· exp

[
ξ0ξe−iωt − ξ2

0

4
e−2iωt

]
(4.104)

Converting to sines and cosines, we have

� (ξ, t) =
√

α

π1/4
e−iωt/2 exp

[
−1

2

(
ξ2 + ξ2

0

2
(1 + cos 2ωt) − 2ξ0ξ cos ωt

)]

× exp

[
i

2

(
ξ2

0

2
sin 2ωt − 2ξ0ξ sin ωt

)]
(4.105)
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Finally, the time-dependent probability density is

|� (ξ, t)|2 = α√
π

exp

{
−

[
ξ2 + ξ2

0

2
(1 + cos 2ωt) − 2ξ0ξ cos ωt

]}

= α√
π

exp
[− (ξ − ξ0 cos ωt)2

]
(4.106)

or, in terms of the coordinate x ,

|� (x, t)|2 = α√
π

exp
[−α2 (x − x0 cos ωt)2] (4.107)

Equation 4.107 shows that the wave packet oscillates about x = 0 so the expec-
tation value of position as a function of time is (see Problem 18)

〈x (t)〉 = x0 cos ωt (4.108)

Comparison with Equation 4.64 shows that the uncertainty in position is

�x (t) = 1√
2α

= �x0 (4.109)

which is time-independent. The packet oscillates without any change in shape!
(Remember, the harmonic oscillator is special.) This was first pointed out by
Schr‘̀odinger in 1926 and is often referred to as the coherent state, but, in truth, it is
really a coherent state. We will return to this state in a future chapter. The reason
for this special behavior is that the energy levels are equally spaced. There are few
other systems that exhibit such a feature. The behavior is illustrated in Fig. 4.3 at
three different values of the time.

There are some other interesting features of this wave packet. Rewriting � (ξ, 0)
from Equation 4.100 we have

Fig. 4.3 A Gaussian wave
packet under the influence of
a harmonic oscillator
potential shown at three
different times. Note that the
shape of the packet does not
change
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� (ξ, 0) =
√

α

π1/4
e−ξ 2

0 /4
∞∑

n=0

(ξ0/2)n

n!
e−ξ 2/2 Hn (ξ )

=
∞∑

n=0

(
ξn

0 e−ξ 2
0 /4

√
2nn!

)[√
α

2nn!

1

π1/4
e−ξ 2/2 Hn (ξ )

]
(4.110)

The form of this last equation isolates the expansion coefficients an in Equation 4.96
because the expression in the square brackets represents the normalized harmonic
oscillator eigenfunctions (see Equation 3.49). Thus,

an = ξn
0 e−ξ 2

0 /4

√
2nn!

= αn xn
0 e−α2 x2

0 /4

√
2nn!

(4.111)

As x0 → 0 it is clear from the form of the initial wave packet that it approaches
the ground state of the harmonic oscillator, a stationary state. It might be said that
the packet oscillates about x = 0 with zero amplitude. Thus, we expect that a0 = 1
and all other expansion coefficients vanish. Note that in Equation 4.111 the limit as
x0 → 0 for n = 0 is indeterminate because zero to the zero power is indeterminate.
On the other hand,

lim
x0→0

an ≡ 0 for all n ≥ 1 (4.112)

so we conclude that, in this case, indeed, the mathematics yield a0 = 1.
In the opposite extreme the correspondence principle tells us that the motion

should emulate that of a classical oscillator. In that case it can be shown that
for large x0 high harmonic oscillator eigenstates make significant contributions.
Moreover, for high n the maximum contribution to the admixture comes from the
state that has the same energy as the classical oscillator having amplitude x0 (see
Problem 19).

4.6 Retrospective

Wave packets provide the crucial link between classical and quantum physics. Un-
derstanding of this concept should not be obscured by the morass of Fourier trans-
forms attendant to the mathematical description of wave packets. While quantum
mechanics permits particles to retain their pointlike properties, the probabilistic
nature of quantum physics manifests itself via constructive and destructive inter-
ference of probability waves that produce localized probability distributions, thus
emulating the characteristics of a classical particle. As we have seen, however, the
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price that Mr. Heisenberg exacts from us for having precise knowledge of position
is that we must ante up by relinquishing knowledge of the particle’s momentum.
On the other hand, a pure de Broglie wave is the antithesis of such a particle. Here
we have precise knowledge of the momentum so we must pay by having no idea
of the particle’s position. Such is the life of a quantum mechanic. Mathematically,
Fourier transforms account for the Heisenberg uncertainty principle, but physical
comprehension should trump mathematical quagmires.

Problems

1. Derive the Ehrenfest equation that is the relationship between the expectation
values of the time rate of change of momentum and the force.

2. To see how the superposition of waves can cause the probability density to
cluster, add two waves of differing frequencies and make a plot of their sum as
a function of time at a fixed value of x . For ease of computation use �1 (x, t) =
15x cos t and �2 (x, t) = −3x cos (17t). The trigonometric identity cos A −
cos B = 2 sin

[
1
2 (A + B)

]
sin

[
1
2 (B − A)

]
will be helpful.

3. Find (�x)2 = 〈
x2

〉
and (�p)2 = 〈

p2
〉

for the ground state of the harmonic
oscillator to show that, indeed, �x�p ≡ 1

2 � for a Gaussian wave function.
4. For the wave functions

� (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2eip0 x/�

and

� (p, 0) = 1

π1/4
√

β�
e−(p−p0)2/2β2

�
2 · e−i px0/�

show that 〈x〉 = x0 and 〈p〉 = p0. Do the calculations in both coordinate and
momentum space.

5. (a) Show that for φ (p) = 1

π1/4
√

�β
e−(p−p0)2/(2β2

�
2), 〈p〉 = p0 and

〈
p2
〉 =

β2
�

2

2
+ p2

0 so that (�p)2 = 〈
p2
〉 − 〈p〉2 = β2

�
2

2
.

(b) Show that both of these average values are independent of time.

6. Show that for the Gaussian wave packet

� (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2

the uncertainty in position and momentum at t = 0 are �x = 1/
(√

2β
)

and

�p =
(
β�/

√
2
)

.
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7. For a free particle Gaussian wave packet for which

� (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2 · eip0 x/�

and

� (p, 0) = 1

π1/4
√

β�
e−(p−p0)2/2β2

�
2 · e−i px0/�

show that

(a) the time-dependent expectation value of the position 〈x (t)〉 is consistent
with the first of Ehrenfest equations, Equation 4.7.

(b) the uncertainty in position as a function of time is given by

�x (t) = 1√
2β

√

1 +
(

β2�

m

)2

t2

8. Show that the normalization is preserved in time for the free Gaussian wave
packet for which the probability density is given by Equation 4.69.

9. Prove the property of δ-functions: δ (ax) = (1/ |a|) δ (x).
10. At t = 0 a position measurement of a particle of mass m in an a-box reveals it

to be in the middle of the box.

(a) What is the wave function in coordinate space at t = 0? Do not attempt to
normalize!

(b) Find the probabilities that a measurement of the energy of the particle at
t = 0 will yield each of the energy eigenvalues. Why was normalization
not recommended?

(c) Could you have guessed at least part of the answer to Part b?
(d) Find the wave function for t > 0.

11. Use Equation 2.28 to write the TISE in momentum representation for the har-
monic oscillator and find the normalized momentum energy eigenfunctions.

12. Show that Equation 4.78 can be solved using the substitutions given in Equation
4.79 and that the result is

� (p, t) = � (p − ϕt) exp

(
− i p3

6m�

)

13. Derive Equation 4.83 if the initial wave packet is given by Equation 4.77 and it
is under the influence of a constant force ϕ.

14. Use Equation 2.28 to write the TISE in momentum representation for the po-
tential
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U (x) = eFx x > 0

= ∞ x ≤ 0

where the product eF is a constant and find the unnormalized momentum en-
ergy eigenfunctions.

15. Show that for an initial Gaussian wave packet having expectation values
〈x (t = 0)〉 = x0 = 0 and 〈p (t = 0)〉 = p0 = 0, Equation 4.77, the expectation
values as a function of time are given by

〈x (t)〉 = ϕt2

2m
and 〈p (t)〉 = ϕt

16. Supply the missing steps in the derivation of the time-dependent Gaussian wave
function, Equation 4.106, under the influence of a harmonic oscillator potential.

17. Perform the integration in which the Fourier transform of the ground state wave
function of the harmonic oscillator in coordinate space

ψ0 (x) =
√

α

π1/4
e−α2 x2/2

is shown to be the ground state wave function of the harmonic oscillator in
momentum space (see Problem 11):

φ0 (p) = 1

π1/4
√

α�
e−p2/(2α2

�
2)

18. Show that for Case III in Section 4.5 the expectation value of x is given by
Equation 4.108 thus confirming that the wave packet oscillates about x = 0.

19. Show that for the Gaussian wave packet subjected to a harmonic oscillator po-
tential and having large average displacement from the origin x0, the energy of
the eigenstate giving maximum contribution to the admixture is equal to that
of the classical oscillator having average displacement of the packet. Ignore
the zero-point energy. Apply Stirling’s approximation to the logarithm of the
expansion coefficient for large n and then maximize n. Stirling’s approximation
is: ln n! ≈ n ln n − n.



Chapter 5
Stationary States in One Dimension II

In this chapter we continue the work begun in Chapter 3 on solutions of the TISE
for one-dimensional potentials. The two potentials that were studied in detail in that
chapter, the infinite potential well (particle-in-a-box) and the harmonic oscillator,
are perhaps the most important of these potentials from a pedagogical point of view,
but other potentials offer additional insight into quantum physics. We emphasize that
stationary states are not necessarily bound states as we will see in the first example.

5.1 The Potential Barrier

In Section 3.2 we discussed penetration of the classically forbidden region by a
particle. This concept was elaborated upon in Section 3.2.1 where the TISE was
solved for an infinite square well with a barrier inside the well. It was found that
penetration of the barrier inside the well could lead to the appearance of the particle
on either side of the barrier, even though the particle did not have sufficient energy
to surmount the barrier in the middle of the well. In this section we will examine
further the effects of a barrier on a (previously) free particle. Indeed, we can imagine
that if the particle penetrates far enough into the barrier it could well materialize on
the classically forbidden side of the barrier. This is referred to as the tunnel effect.

It might be supposed that the solution already obtained for bound state problem
for the barrier inside the square well might be extended by taking the limit as the
walls of the square well approach infinity. This approach, while aesthetically appeal-
ing, actually offers no simplification over beginning the problem anew. We therefore
consider a potential energy function

U (x) = 0 x < 0

= U0 0 < x < L

= 0 x > 0 (5.1)

which is a rectangular barrier as shown in Fig. 5.1. The notation is intended to be
consistent with that used for the L-box.

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 113
DOI: 10.1007/978-0-387-77652-1 5, C© Springer Science+Business Media, LLC 2008



114 5 Stationary States in One Dimension II

Fig. 5.1 The potential barrier
as described in the text. The
three regions of space in
which the TISE must be
solved are designated by
Roman numerals

The most interesting case to consider is that in which a free particle of kinetic
energy E < U0 is incident from the left of the barrier (moving in the +x direction).
The momentum of this particle is k so the kinetic energy E = �

2k2/2m. Classically,
the particle would simply bounce off the barrier and move in the −x direction and
that would be that. Nothing interesting would happen. Perhaps the barrier would
heat up due to an inelastic collision, but that is not our concern here. We are inter-
ested in more esoteric quantum effects.

To investigate the effect of the barrier on the moving particle we solve the TISE
in each of the three regions of space indicated in Fig. 5.1. We assume that a particle
is incident from the left of the barrier traveling in the +x direction and seek the
probability that the particle will be reflected upon encountering the barrier. This
will provide the probability of transmission through the barrier inasmuch as there
are only two possibilities, reflection or transmission. The probability of transmission
is simple to comprehend. It is the absolute square of any portion of the wave func-
tion that we find that is nonzero in region III. Because quantum mechanics permits
the incoming beam to penetrate the classically forbidden region, the barrier, this
penetration could be sufficiently deep to allow it to seep through the barrier and
emerge into region III. In other words, if a particle makes it a distance L through the
barrier it has indeed tunneled its way through. Classically this is nonsense. Quantum
mechanically it is perfectly reasonable.

Before solving the TISE let us discuss the physical situation from another point
of view. Suppose instead of a single particle incident on the barrier, we have a
beam of particles, all of the same energy, a monoenergetic beam. In this case the
formulation of the problem is identical to that for the single particle except that
for a beam the probabilities give the fraction of particles reflected and transmitted.
Frequently the discussion involves the “flux” of incident, reflected, and transmitted
particles, but often the term flux is applied to the probability current. In this sense the
word is similar to its application in electricity and magnetism. Nonetheless, incident
beams of particles are used in many experiments in physics. These are referred to as
scattering experiments. Either point of view is satisfactory.

From our experience with the barrier in the square well we can immediately write
the wave function in the three regions of space. For completeness we will include
the time dependence.
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�I (x, t) = (
Aeikx + Be−ikx

)
e−iωt

�I I (x, t) = (
Ceκx + De−κx

)
e−iωt ; κ2 = 2m (U0 − E) /�

�I I I (x, t) = (
Feikx + Ge−ikx

)
e−iωt (5.2)

(Note that we did not use E as one of the constants of integration to avoid confusion
with the energy.) We evaluate the constants of integration by matching the boundary
conditions. That is, we must match the wave functions and their derivatives at x = 0
and at x = a. Before doing so, however, let us understand the form of the wave
functions in Equations 5.2. We see that the time dependences all have the same
value ω. What is ω? As usual, it is the energy corresponding to the spatial part of
the wave function. In regions I and III the energy is all in the form of kinetic energy
E . In region II the energy is divided between kinetic and potential energy, but the
total energy is, nonetheless, E . Therefore, the ω’s in Equation 5.2 are all the same
and, for the purpose of determining the constants, we can ignore them. It is possible
to eliminate one of the constants in Equation 5.2 before we begin matching the
boundary conditions. The first terms in regions I and III, ei(kx−ωt) , represent plane
waves traveling in the +x direction while the second, e−i(kx+ωt) , describes a plane
wave traveling in the −x direction. We are prepared to entertain the possibility that
the particle will be reflected as would a classical particle. Therefore, there is a plane
wave traveling in the −x direction in region I so that B �= 0. On the other hand,
initially there was no beam moving in that direction in region III so it is absurd to
imagine that one would appear, even in quantum mechanics. Therefore, the constant
G = 0. Finally, as in the barrier in the square well, we cannot discard the positive
real exponential in region II because this region does not extend to infinity. Both
exponentials must be retained.

Ignoring the time dependence because this is a state we have

ψI (x) = Aeikx + Be−ikx x < 0

ψI I (x) = Ceκx + De−κx 0 < x < L

ψI I I (x) = Feikx L < x (5.3)

Before applying the boundary conditions and solving for the constants let us exam-
ine their meanings. This will lead to some simplification in the calculations. If we
apply the equation of continuity, Equation 2.21, to ψI (x) and ψI I I (x), we find that
the probability currents (see Problem 4, Chapter 2) in the two regions are

jI (x) = �k

m

(|A|2 − |B|2) (5.4)

and

jI I I (x) = �k

m
|F |2 (5.5)
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Now, the two terms in jI (x) represent the incident and reflected probability cur-
rents, respectively. Note that �k/m is simply the particle velocity and the amplitudes
represent the probabilities associated with the incoming and reflected probabilities,
respectively. It is now clear that we should measure the transmission and reflection
in terms of the probability currents. An obvious definition is that the transmission
coefficient T should be defined as the ratio of the transmitted probability current to
the incident current so that

T =
�k

m
|F |2

�k

m
|A|2

= |F |2
|A|2 (5.6)

Similarly, the reflection coefficient is

R = |B|2
|A|2 (5.7)

and we must have

R + T = 1 (5.8)

Note that the particle velocity does not appear in the expression for T . This is
because the particle velocity in region III is the same as it is in region I in this
problem. If, for example, the potential energy on the right-hand side of the barrier
were, say, (1/2) U0, but zero to the left of the barrier, then the velocities would enter
into the equation for T . Of course, this is not a consideration for R because the
incident and reflected waves occupy the same region of space. Incidentally, a more
judicious choice for the constants would have been to choose A = 1 since we can
normalize the incident probability to any number we please, unity being particu-
larly convenient. We will, however, keep the constants we have chosen for the time
being.

As discussed at length in Chapter 2, we can sketch the wave functions before
we evaluate the constants. The nature of these wave functions is shown in Fig. 5.2.
While these are merely sketches, they do contain the essential features including
continuity of the wave functions and their derivatives at the boundaries. Notice that
the de Broglie wavelength in regions I and III are the same although the amplitude
in region III has been reduced on the presumption that there will be some reflection
at the barrier. The curvature of the wave function inside the classically forbidden
barrier is away from the x-axis.

Applying continuity of the wave function and its derivative at x = 0 and x = L
we have
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Fig. 5.2 Sketch of the wave
functions for a particle
incident on a rectantular
barrier from the left traveling
with energy E < U0

A + B = C + D

ik (A − B) = κ (C − D)

CeκL + De−κL = FeikL

κ
(
CeκL − De−κL

) = ik FeikL (5.9)

These are four simultaneous equations with five unknowns. Because we are free to
choose any one of them we elect to set A = 1. Moreover, the constants C and D are
patently uninteresting. It is only B and F that give the information that we desire.
One way to solve these equations for only the constants that we desire is to use the
method of determinants. While the algebra is uninspiring, the result is of interest.
We obtain

TE<U0 =
[

1 + 1

4

(
k2 + κ2

kκ

)2

sinh2 (κ L)

]−1

(5.10)

After substituting the original parameters back into the equations we obtain

TE<U0 = 1
[

1 + U 2
0

4E (U0 − E)
sinh2

(
L

�

√
2m (U0 − E)

)] (5.11)

and, using Equation 5.8, we have

RE<U0 =

⎡

⎢
⎢
⎣1 + 4E (U0 − E)

U 2
0 sinh2

(
L

�

√
2m (U0 − E)

)

⎤

⎥
⎥
⎦

−1

(5.12)

Equation 5.11 shows that, as we predicted, there is transmission through the bar-
rier even when E < U0. Because the transmission coefficient depends upon the
hyperbolic sine there are, however, no interference effects.

There are some interesting effects even when E > U0. In this case the wave
function inside the barrier is sinusoidal rather than exponential, but the de Broglie
wavelength is longer than it is outside the barrier because the kinetic energy inside
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Fig. 5.3 Sketch of the wave
functions for a particle
incident on a rectangular
barrier from the left travelling
with energy E > U0

the barrier is reduced. Fig. 5.3 shows the barrier together with a sketch of the wave
function in each of the three regions of space.

Because the only difference between this case and the case for which E < U0 is
the sinusoidal wave function in the barrier, the only changes that must be made are
in the third and fourth of Equations 5.9. We do not have to solve the problem again.
We merely make the substitution κ → ik ′ where k ′ = √

2m (E − U0) in Equation
5.10 noting that sinh i x = i sin x . The transmission coefficient is therefore

TE>U0 =
[

1 + 1

4

(
k2 − k ′2

kk ′

)2

sin2 (k ′L
)
]−1

=
[

1 + U 2
0

4E (E − U0)
sin2

(
L

�

√
2m (E − U0)

)]−1

= 4E (E − U0)

4E (E − U0) + U 2
0 sin2

(
L

�

√
2m (E − U0)

) (5.13)

The reflection coefficient is, according to Equation 5.8,

RE>U0 =

⎡

⎢⎢
⎣1 + 4E (E − U0)

U 2
0 sin2

(
L

�

√
2m (E − U0)

)

⎤

⎥⎥
⎦

−1

(5.14)

While we found the counterintuitive result that transmission occurs for E < U0,
it is equally surprising that reflection occurs for E > U0. That is, there is not total
transmission for all values of E > U0. There is total transmission only when the
sine function in Equation 5.13 vanishes which occurs when the argument of the sine
is equal to integral values of π . Fig. 5.4 is a plot of the transmission as a function of
E/U0 for this ratio greater than and less than unity, that is, the figure contains both
Equations 5.11 and 5.13 in a single graph.

It is clear that there are resonances in the transmission (and reflection) for
E/U0 > 1. One way to view these resonances is that the classically illogical
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Fig. 5.4 The transmission
coefficient T as a function of
the ratio E/U0

reflections occur when de Broglie waves fail to “fit” in the barrier. This can be seen
by writing the last of Equations 5.13 in terms of the de Broglie wavelength in the
barrier λd = √

2m (E − U0)/h.

TE>U0 = 4E (E − U0)

4E (E − U0) + U 2
0 sin2

[
2π

(
L

λd

)] (5.15)

Now imagine keeping the ratio of the incident particle energy E to the barrier height
U0 fixed and plot TE>U0 versus the ratio L/λd as shown in Fig. 5.5.

From this figure it is seen that perfect transmission occurs when the barrier width
is an integral multiple of half de Broglie wavelengths. This phenomenon is identical
to that which occurs in optics and is the basis for the operation of the Fabry-Perot
interferometer.

Fig. 5.5 The transmission
coefficient for a rectangular
barrier as a function of the
ratio of the barrier width to
the deBroglie wavelength of
the particles inside the barrier.
The ratio E/U0 is fixed at a
value greater than unity
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Although the one-dimensional barrier might seem to be a contrived example, it
does exhibit features encountered in nature. Physicists often make rather audacious
approximations merely to get an answer, any answer, just to get an idea of what is
going on. There is a famous story about the multinational company that took over
an unsuccessful racetrack. To rehabilitate their finances the company brought in
experts including nutritionists, veterinarians, and a lone physicist. On the appointed
day all gave their reports, the last being by the physicist who began with “ladies and
gentlemen, consider the horse as a sphere.” Well, the rectangular barrier is such an
approximation to, say, an atom. Certainly it doesn’t look like an atom, but it does
have some features that, believe it or not, can simulate an atom. We must, however,
be careful with our expectations. For example, we cannot compare the resonances
in the transmission to those that Franck and Hertz observed in their experiments.
Why? Because their experiments were inelastic scattering experiments. They ob-
served transfer of kinetic energy to internal energy of the mercury atoms. The fact
that the energy transferred had to be quantized was a manifestation of the quantum
nature of the bound states of atoms, analogous to the bound states that we have
already studied. Notwithstanding, the type of resonances encountered in the barrier
problem have indeed been observed in atomic scattering experiments. In the 1920s
C. Ramsauer and J. Townsend, independently, discovered that when electrons were
scattered from inert gas atoms there were certain electron energies at which the gas
seemed to be transparent to the electrons. This is elastic scattering because there is
no internal energy change in the inert gas atoms as there was in the mercury atoms in
the Franck–Hertz experiments. In other words, there was nearly total transmission
of the electrons through the gas at energies corresponding to resonant de Broglie
wavelengths. This is almost the problem we have been discussing, but not quite
because the electron inert gas interaction is an attractive one so, rather than a barrier,
the analogy with a one-dimensional problem would be to scattering from a (finite)
square well (see Problem 7, Chapter 2). In fact, the mathematics is identical. All that
is required is to make the substitution U0 → −U0. The result is that instead of the
de Broglie wavelength inside the barrier being longer than outside, the de Broglie
wavelength inside the well is shorter than outside because the kinetic energy, and
hence the momentum, is greater.

Since the original electron–rare gas experiments were performed, a great deal of
effort has been devoted to investigating other collision systems searching for similar
effects. One such experiment that is analogous to the barrier potential is helium–
helium scattering [3]. Helium atoms do not form diatomic molecules because the
interatomic potential for helium atoms in their ground states is repulsive. Likening
these atoms to the spherical horse, we approximate the interatomic potential as a
rectangular barrier. Figure 5.6 shows the actual data from the helium-helium scat-
tering experiment [3] in which the Ramsauer–Townsend effect was observed.

The lower abscissa in this figure is the relative energy E while the upper abscissa
is the relative velocity which is the form in which the original data were presented.
The ordinate is the “scattering cross section” which is a measure of the degree
to which the incoming He atoms are scattered. In the context of our discussion,
the scattering cross section may be considered to be analogous to the reflection



5.2 The Potential Step 121

Fig. 5.6 Data showing elastic
scattering of helium atoms on
helium atoms excerpted with
permission from Reference
[3]. Copyrighted by the
American Physical Society.
The ordinate represents the
probability that a He atom is
scattered. The minimum near
E = 0.1 meV is the
Ramsauer minimum and
represents a maximum in the
transmission

coefficient. Thus, the dip in the data just above E = 0.1eV, which is known as a
Ramsauer minimum, corresponds to a maximum in transmission. This represents
a matching of the de Broglie wavelengths of the barrier that is presented by one
helium atom to another. (It is not known as to why the minimum is not referred to
as a Ramsauer–Townsend minimum.)

5.2 The Potential Step

The potential step, as depicted in Fig. 5.7, might, at first, seem to be a special case
of the barrier. That is, we should be able to obtain the reflection and transmission
coefficients by simply taking the appropriate limits as L → ∞. Indeed, this can be
done, but there are some interesting aspects of this problem that are not apparent
from the solution of the potential barrier.

If E < U0, it is a simple matter to take the limit as L → ∞ because
lim

x→∞ sinh2 x = ∞. Thus, from Equations 5.11 and 5.12 we see immediately that

the reflection coefficient is unity while the transmission coefficient vanishes. This is

Fig. 5.7 Potential step and a
sketch of the wave function
for incident energy E < U0,
the height of the step
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sensible because, no matter how far the particle penetrates the semi-infinite barrier
it must eventually be squirted back into region I as indicated by the sketched wave
function in Fig. 5.7.

The case for which E > U0 presents a bit of a mathematical dilemma since
one cannot take the limit of a sine function as the argument approaches infinity.
Moreover, we must consider the fact that the particle velocities in the two regions
of space are different. Recall that in regions I and III in the case of the finite barrier
the particle velocities were the same. Using the same notation as that in Section 5.1
we write the wave function for this step as

ψI (x) = Aeikx + Be−ikx x < 0

ψI I (x) = Feik′ x 0 < x (5.16)

Because the wave numbers are real in both regions of space we designate them by
k =

√
2m E/�2 and k ′ =

√
2m (E − U0) /�2 for regions I and II, respectively. The

probability currents are then

jI (x) = �k

m

(|A|2 − |B|2)

jI I (x) = �k ′

m
|F |2 (5.17)

and, as before,

R = |B|2
|A|2 (5.18)

In this case, however, T must be the ratio of the intensity of the transmitted proba-
bility current to the incident probability current (see Problem 4, Chapter 2) which is
given by the ratio

T =
�k ′

m
|F |2

�k

m
|A|2

(5.19)

Solving for the coefficients A, B , and F yields R and T (see Problem 4) and, in-
cluding the results for E < U0, we have

R =
(
1 − √

1 − U0/E
)2

(
1 + √

1 − U0/E
)2

E > U0

= 1 E < U0 (5.20)
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Fig. 5.8 The transmission
and reflection coefficients R
and T for a step function
potential as a function of
E/U0

and

T = 4
√

1 − U0/E
(
1 + √

1 − U0/E
)2 E > U0

= 0 E < U0 (5.21)

From Equations 5.20 and 5.21 it can be seen that there is perfect reflection and
zero transmission when E = U0, but that the reflection decreases monotonically for
higher values of the incident energy. As expected, the transmission approaches unity
for high values of the incident energy. Figure 5.8 shows graphs of the reflection and
transmission coefficients. The feature of the potential step that is not present in the
case of the potential barrier is the necessity of accounting for the different speeds of
the particle in the two regions of space.

5.3 The Finite Square Well—Bound States

The potential energy function for a finite square well may be written as

U (x) = 0 x < −a

= −U0 − a < x < a

= 0 x > −a (5.22)

where U0 is a positive number. This well is shown in Fig. 5.9.

Fig. 5.9 Finite square well
potential having
−U0 ≤ U (x) ≤ 0
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As was noted in Section 5.1, the positive energy states of such a well form a
continuum. These are the scattering solutions. Suppose, however, that a particle is
bound in the well so that the TME of the particle is in the range −U0 < E < 0. We
expect that the solution of the TISE will yield quantized bound states. The study of
a well of finite depth provides the opportunity to examine a condition that we have
not yet encountered. Previously we solved the TISE for the bound states of potential
energy functions that extended to infinity, the infinite square well and the harmonic
oscillator. Such wells support an infinite number of bound states because the particle
will always be confined. For a well of finite depth, however, we expect, in general,
a limited number of bound states, if indeed the well can support any bound states at
all. It may be that the parameters of the well are such that even a single bound state
cannot fit in the well. The finite square well provides the opportunity to examine the
conditions under which a limited number of bound states can exist and to determine
the number of such bound states that a given well will support.

We have chosen U (x) to be centered on the ordinate to take advantage of the
parity of the eigenfunctions. The zero of potential energy is at the top of the well
so bound states can only occur for values of the energy E < 0. Notice that, in
contrast to the (infinite) a-box, the width of this well is 2a, not a. This dimension
was chosen for mathematical convenience. Because the eigenfunctions must have
definite parity, we need only work with two of the three regions of space. The TISE
in regions II and III are

d2ψI I (x)

dx
+ k2ψI I (x) = 0; k =

√
2m (E + U0) /�2

d2ψI I I (x)

dx
− κ2ψI I I (x) = 0; κ =

√
2m (−E) /�2 (5.23)

Before discussing the solutions of these equations let us discuss the signs of k and
κ . For bound states E < 0 so κ is real and the ψI I I (x) will curve away from the
abscissa as a decreasing exponential. The depth of the well U0 is, by our definition,
a positive number (see Fig. 5.9) so |E | < U0. Therefore, k is real and k2 > 0. This
assures us that the wave functions inside the well will curve toward the abscissa.
Because the TME E must be less than zero, κ is also real.

We proceed as we did when we solved the problem of the barrier within the
infinite square well. We can use our knowledge that the wave functions have definite
parity to shorten the task. First, we know that the solutions to the TISE in region II
will be linear combinations of sines and cosines. That is,

ψI I (x) = C sin kx + D cos kx (5.24)

where and C and D are constants. Because the wave function must be odd or even,
either C or D must vanish. The solutions in regions I and III are

ψI (x) = Aeκx + Be−κx (5.25)
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and

ψI I I (x) = Feκx + Ge−κx (5.26)

As usual, the increasing exponential cannot be present in the classically forbidden
regions I and III because these regions extend to x = ±∞ so we must set B = F =
0. Moreover, again from parity considerations, we know that A = ±G, where the
sign will be chosen to conform with the known parity of the eigenfunction. We have
then two sets of solutions, one even and one odd. We list the even ones first because
we know that they will include the nodeless ground state.

even

ψI (x) = Aeκx

ψI I (x) = D cos kx (5.27)

ψI I I (x) = Ae−κx

odd

ψI (x) = Aeκx

ψI I (x) = D sin kx (5.28)

ψI I I (x) = −Ae−κx

To solve for the energies of the bound states it is not necessary to evaluate the
constants. To eliminate them we apply the boundary conditions to the wave func-
tions and their derivatives. At this point it is useful to introduce the logarithmic
derivative. Rather than apply the boundary conditions to the wave function and its
derivative separately we demand continuity of the logarithmic derivative of the wave
function. Why the logarithmic derivative? Because it is the same as applying the
boundary conditions on the wave function and its derivative and then dividing each
side to eliminate the constants. It is some fancy, but universally used semantics,
but, because the constants fall out immediately, it is a convenient mathematical
construction.

The logarithmic derivative is defined as

logarithmic derivative = 1

ψ (x)

dψ (x)

dx
(5.29)

Requiring continuity of the logarithmic derivative at x = a for the even eigenfunc-
tions we have

1

D cos ka
(−Dk sin ka) = 1

Ge−κa
− κGe−κa (5.30)

or
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k tan ka = κ (5.31)

Similarly, for the odd eigenfunctions

k cot ka = −κ (5.32)

Equations 5.31 and 5.32 are deceptively simple. They cannot yield the wave func-
tions because the constants have been eliminated, but the quantized energies are
contained in these equations, buried in k and κ . Unfortunately, these equations are
transcendental, meaning that they cannot be solved in closed form for E . This is not
a problem today with modern computers, but our goal here is an understanding of the
physics, not necessarily to crank out solution after solution for various parameters.
Actually, solving the transcendental equations the old-fashioned way, graphically,
does indeed provide insight into the nature of the energy levels for the finite square
well.

We begin by making the same substitutions that were made in the case of the
barrier in the infinite square well, Section 3.2.1. Let

η = ka; ς = κa (5.33)

which leads to

η2 + ς2 = 2m
(
U0a2

)

�2

= ρ2 (5.34)

Plotting η and ζ as Cartesian coordinates, Equation 5.34 is the equation of a circle

of radius ρ =
√

2m
(
U0a2

)
/�2. Notice that for a given well the “strength” of the

well, the quantity
(
U0a2

)
and the mass m of the confined particle determine the

radius of this circle. Therefore, ρ is peculiar to a given problem. It depends only
upon the parameters of the well and the mass of the confined particle. The allowed
energies are contained in the values of η and ς that are common to the circle defined
by Equation 5.34 and the equations

ς = η tan η even eigenfunctions (5.35)

and

ς = −η cot η odd eigenfunctions (5.36)

which are simply Equations 5.31 and 5.32, respectively, after having multiplied each
by a.

To obtain the energies corresponding to the even wave functions, that is, the
ground state, the second excited state, etc., we must find the values of k that are
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Fig. 5.10 Graphical solution of Equations 5.34 and 5.35 for two different well depths. The points
of intersection lead to the allowed quantized energies. For U0 = 2 a.u. there are two such intersec-
tions. Thus, there are either three or four bound quantum levels for this particular well, depending
upon the number of energy eigenvalues corresponding to odd eigenfunctions. For U0 = 0.7 a.u.
there are either one or two bound quantum levels

common to Equations 5.34 and 5.35. This is conveniently done by plotting each
equation on Cartesian axes as shown in Fig. 5.10.

The points of intersection represent those values of η and, therefore the energies,
that are solutions to Equation 5.35 subject to the condition of Equation 5.34. Both η

and ς must be positive so we are interested only in the first quadrant of the graph. It
is clear that, because the branch of Equation 5.35 that lies in the range 0 < η < π/2
intersects the origin (because tan 0 = 0) no matter what the well parameters, there
will always be at least one bound state. Figure 5.10 shows the solutions of the even
transcendental equations for two different sets of well parameters. In both cases the
half-width of the well is taken to be a = 1 a.u. and the mass is that of an electron (1
a.u.), but two different values of U0 are used. The circle of larger radius for which
there are two solutions has U0 = 2 a.u. while the smaller circle for which there is
only one energy level has U0 = 0.7 a.u. Notice that in the case in which there are
two solutions there must be at least three solutions because there will be at least one
odd solution in between these two even ones.

To examine the odd solutions we must solve the transcendental equation for the
odd solutions, Equation 5.36. Figure 5.11 shows the solutions for the same well
parameters employed in Fig. 5.10. We see that for U0 = 0.7 a.u. and a = 2.4
a.u. there are exactly two energy levels, one even and the other odd. Indeed, for any
combination of parameters such that ρ < 4.032 a.u. there will be exactly two energy
levels as given by the solutions shown in Figs. 5.10 and 5.11.

Because the smallest positive value of −η cot η occurs when cot η = 0, (η =
π/2) it is possible to have well parameters that will yield a circle of radius ρ that
is too small to intersect −η cot η. Thus, it is possible that there will not be an odd
eigenstate, but there must be at least one even state. Therefore, for the symmetric
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Fig. 5.11 Graphical solution
of Equations 5.34 and 5.36.
The well parameters are
identical with those of
Fig. 5.10. As in that figure,
the points of intersection lead
to the allowed quantized
energies

finite square well of Equation 5.22 there must be at least one bound state, but not
necessarily more.

Concentrating on the case for which U0 = 2 a.u. and a = 2.4 a.u. or, more
generally for which U0a2 = 11.52, we see from Figs. 5.10 and 5.11 that there will
be four bound states. Moreover, the highest of these levels is expected to be only
barely bound as evidenced by the intersection of the circle and the curve near η = 5
in Fig. 5.11. These energies as obtained from the solutions of the transcendental
equations for U0a2 = 11.52 are listed in Table 5.1.

As anticipated, the highest energy level, the n = 4 state, is only barely bound.
To illustrate the magnitudes of these energies, Fig. 5.12 is a plot of these levels
superposed on this finite square well. The difference between E = 0 at which
point the continuum of energies begins and the highest energy bound state E4 has
been exaggerated by a factor of 25 to make it obvious. Otherwise E4 would have
coincided with E = 0 on the scale of the drawing.

The probability densities, the absolute squares of the wave functions, for each
of the four bound states are shown in Fig. 5.13. Notice that the penetration of the
classically forbidden region is minimal for the deepest state, the ground state, but
for the highest state there is considerable penetration. Of course, the next state up
is a continuum state that is, in essence, a pure sinusoid extending from minus to
positive infinity.

One final point is worth making before leaving the finite square well. The prob-
abilities shown in Fig. 5.13 were based on eigenfunctions that were, necessarily,
calculated using their correct energy eigenvalues. The correct energies are those

Table 5.1 Energies for a finite square well of half-width 2.4 a.u. and depth 2 a.u

n Energy (a.u.)
1 −1.85
2 −1.42
3 −0.75
4 −0.011
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Fig. 5.12 Energy levels for a
finite square well having
U0 = 2 a.u. and a = 2.4 a.u.
(U0a2 = 11.52) plotted on
the well. Note that the highest
energy bound state is very
close to the continuum states.
The dashed levels correspond
to odd eigenfunctions and the
solid levels to even
eigenfunctions

Fig. 5.13 Squares of the
eigenfunctions corresponding
to the four bound states that
are supported by the finite
square well having U0 = 2
a.u. and a = 2.4 a.u.
(U0a2 = 11.52). The vertical
scales are the same
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Fig. 5.14 Comparison of the
correct ground state wave
function (bottom) used in
computing the probability
density shown in Fig. 5.13
with one obtained by using a
slightly incorrect eigenenergy
illustrating the dramatic
discontinuity that is
introduced in the derivative of
the wave function

that have been forced on us by continuity of the logarithmic derivative. This means
that the de Broglie wavelengths fit into the well as described in Section 2.9. To em-
phasize the sensitivity of the eigenfunctions to the continuity conditions, we show in
Fig. 5.14 the correct ground state wave function together with a function obtained
using only a nearly correct energy eigenvalue for the computation. The dramatic
consequences on the discontinuity in the derivative of the wave function at x = ±a
are clear and illustrate the importance of fitting de Broglie wave in the well by the
boundary conditions as discussed at length in Section 2.9.

5.4 The Morse Potential

Although the potential well problems we have studied might seem somewhat con-
trived (another example of the spherical horse), they do provide a basis for under-
standing more realistic potentials. One potential function that is indeed a realistic
one has been employed to describe the interaction of the two atoms that constitute
a diatomic molecule. Molecules can have vibrational and rotational energy states
as well as the electronic states that are characteristic of atoms. Electronic states are
states that depend upon the motion of the electron in an atom or molecule. In this
section we will concentrate on vibration of the nuclei.

Let us understand exactly what particle it is that is bound. For molecular vi-
brations the “particle” of mass equal to the reduced mass μ of the two nuclei is
bound by the potential energy between the nuclei. We can imagine two positively
charged nuclei being glued together by sharing the negatively charged electrons be-
tween them. The electrons, in effect, shield the nuclei from each other, thus negating
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(to a degree) the Coulomb repulsion between the nuclei. This electron glue is not
rigid so it acts as a spring and the atoms vibrate. Because they are subject to the laws
of quantum physics, the vibrational energy levels must be quantized, reminiscent of
a harmonic oscillator.

Because we are ignoring rotation, we may treat the problem as a one-dimensional
problem. At large internuclear separations there is virtually no bonding of the
atoms and the potential energy is nonexistent. At small internuclear separations the
Coulomb repulsion between the nuclei wins over the bonding of the electrons so
the potential energy must become very large. In between these two extremes, there
is a minimum in the potential energy if the molecule is bound. Therefore, there is
a potential well that supports the bound states that comprise the vibrational states
of the molecule. The minimum in the well occurs at an internuclear separation re

which is called the equilibrium internuclear separation.
There have been a number of proposals for analytic forms of potentials that would

accurately simulate potential energy functions for diatomic molecules. Perhaps the
most successful of these in the sense that it is relatively easy to solve the TISE and
the results give a reasonable approximation to reality is that proposed by Philip M.
Morse in 1929 [1]. It is given by

U (r ) = De
[
e−2α(r−re) − 2e−α(r−re)

]
(5.37)

where the variable r is the internuclear separation; De and α are constants that are
peculiar to each diatomic molecule as is re the equilibrium internuclear separation,
also peculiar to a given molecule. It is easy to show that re is the position of the
minimum in U (r ) (see Problem 10). Figure 5.15 shows a graph of Equation 5.37
and illustrates the significance of the parameters De and re.

From Equation 5.37 it is seen that for r = 0 the potential energy is finite. In a
real molecule when the nuclei are on top of each other the potential energy must
be infinite. The (incorrect) finite value of the Morse potential at r = 0 is not a
significant deficiency of this potential because the region near r = 0 is never sam-
pled by the nuclei. The ground vibrational level has been sketched at the bottom of
the well in Fig. 5.15 to show the parameter D0 which is known as the dissociation
energy of the molecule. This is the amount of energy required to break the bond and
separate the constituent atoms (with zero kinetic energy). Notice that, at this time,
we are using the coordinate r as is customary in molecular spectroscopy. We are,
however, considering only one-dimensional rotationless levels in this section so we
will change to x shortly. Before doing so it is instructive to estimate the spacing
between the vibrational levels and compare this spacing to typical atomic energy
level spacing as epitomized by the Bohr atom.

We write a general potential energy function that can support bound states as a
Taylor expansion about the internuclear separation re:

U (r ) = U (re) + 1

2

d2U (r )

dr2

∣
∣
∣∣
r=re

(r − re)2 + ... (5.38)
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Fig. 5.15 Morse curve
showing the lowest
vibrational level of the
diatomic molecule that it
represents

The first derivative is not present because it vanishes at r = re. Equation 5.38 shows
that, except for the constant term U (re), the leading term is quadratic in (r − re) so
the first approximation to the vibrational levels is that of a harmonic oscillator with

1

2

d2U (r )

dr2

∣∣
∣
∣
r=re

= 1

2
μω2 (5.39)

Of course, as (r − re) increases, the higher order terms must be included. Nonethe-
less, we can use the harmonic approximation to estimate the order of magnitude of
the spacing between vibrational levels. Incidentally, this estimate is independent of
the specific potential energy function.

The Coulomb potential between the two nuclei is the dominant contributor to the
potential energy. It is ∼ Z Z ′e2/ (4πε0r ) where Z and Z ′ are the atomic numbers of
each of the nuclei. Therefore, we set

1

2

d2U (r )

dr2

∣
∣∣
∣
r=re

= Z Z ′ e2

4πε0

(
1

re

)3

(5.40)

Typically, however, internuclear separations are the order of Bohr radii so we let
re = a0 in Equation 5.40 and, in the harmonic approximation, we have

1

2
μω2 = Z Z ′ e2

4πε0

(
1

a0

)3

(5.41)

With the aid of Equation 1.32 we write Equation 5.41 as

1

2
μω2 = 2Z Z ′

[(
e2

4πε0

)(
1

2a0

)](
1

a0

)2

= 2Z Z ′ [E1]

(
4πε0

e2

)2

4E2
1 (5.42)
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where E1 is the ground state energy of the hydrogen atom. Solving for the vibra-
tional spacing which is ∼ �ω we have, using Equation 1.33 to eliminate 4πε0/e2,

�ω = 2

√
2Z Z ′me

μ
E1 (5.43)

Equation 5.43 gives the approximate vibrational spacing in terms of the Bohr
energy, 13.6 eV. We see that this spacing is determined largely by the square root of
the ratio of the electronic mass to the reduced mass of the nucleus the smallest value
of which is one-half the mass of the proton (for the hydrogen molecule). Therefore,
in general, the radical in Equation 5.43 will almost always be a fraction that is con-
siderably smaller than unity so the vibrational energy level spacing is ∼ 0.1 eV as
compared with typical energy level spacings which are ∼ eV. For typical molecules
De ∼ 5 − 10 eV so it is expected that a potential energy curve can support many
vibrational levels.

Now we return to the solution of the TISE with the Morse potential without
rotational motion, a one-dimensional problem. When we deal with three dimensions
we will deal with rotation of the diatomic molecule. To simplify the calculation we
make the substitution x = r − re which merely shifts the zero of the abscissa.
This substitution also permits easier comparison with the solutions of the harmonic
oscillator potential (see Section 3.1.2). To facilitate this comparison we write the
constituent terms, the exponentials, of the Morse function, Equation 5.37, in a Taylor
series about x = 0 (r = re) and obtain

U (x) = De
[
e−2αx − 2e−αx

]

= De
[−1 + α2x2...

]
(5.44)

Notice that the linear term in x is not present because [dU (x) /dx]x=0 = 0. Thus,
the leading term in the expansion (aside from the constant) is the quadratic term.
Comparing with the harmonic oscillator we find that

Deα
2 = 1

2
μω2

0 (5.45)

where μ is the reduced mass of the two-nucleus system and ω0 is the frequency
of vibration of an equivalent simple harmonic oscillator. Both De and ω0, which
determine α, can be determined experimentally. For the purpose of the graph shown
in Fig. 5.15 and subsequent graphs in this section we have selected the parameters
in arbitrary units. These parameters are listed in Table 5.2. The numbers have been
chosen merely for convenience and do not represent any particular molecule.

The TISE can be solved exactly for the Morse potential. That is, it is possible to
obtain both the eigenfunctions and the eigenvalues. Inserting the Morse potential in
the form of Equation 5.44 we have



134 5 Stationary States in One Dimension II

Table 5.2 Parameters used in constructing the graphs of the Morse functions in this section

Parameter Value

� 1
De 10
α 1
μ 10
ω0

√
2

− �
2

2μ

d2ψ (x)

dx2
+ De

[
e−2αx − 2e−αx

]
ψ (x) = Eψ (x) (5.46)

The method of solution is reminiscent of that employed to solve the TISE with the
harmonic oscillator potential. We first make the substitution

y = K e−αx (5.47)

which, together with the chain rule for differentiation, leads to

d2ψ (x)

dx2
= α2 y2 d2ψ (y)

dy2
+ α2 y

dψ (y)

dy
(5.48)

Making these substitutions in the TISE we have

d2ψ (y)

dy2
+ 1

y

dψ (y)

dy
+ 2μ

α2�2

(
E

y2
− De

K 2
+ 2De

K y

)
ψ (y) = 0 (5.49)

This equation can be simplified by judicious choice of K , in particular

K 2 = 8μDe

α2�2
(5.50)

which converts Equation 5.49 into

d2ψ (y)

dy2
+ 1

y

dψ (y)

dy
+

(
−β2

y2
− 1

4
+ K

2y

)
ψ (y) = 0 (5.51)

where

β2 = − K 2 E

4De
(5.52)

Recall that E < 0 so β2 > 0. It is much more convenient to write the constant K in
terms of the equivalent harmonic oscillator potential, that is, the harmonic oscillator
approximation to the Morse potential as embodied in Equation 5.45. Making the
substitutions we obtain
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K 2 = 16D2
e

�2ω2
0

(5.53)

Now, to solve for the eigenfunction ψ (y), as was done for the harmonic oscil-
lator, we examine the asymptotic solution and make it part of our test solution. As
r → ∞, x → ∞, and y → 0 so the 1/y2 dominates. Therefore, as y → 0 we have

d2ψ (y)

dy2
+ 1

y

dψ (y)

dy
− β2

y2
ψ (y) = 0 (5.54)

a solution of which is ψ (y) = yβ . Because the Morse potential is not an even
function, as is the harmonic oscillator potential, we must also consider the case of
x → −∞ for which t → ∞. In this case Equation 5.49 reduces to

d2ψ (y)

dy2
− 1

4
ψ (y) = 0 (5.55)

The solution of this asymptotic equation that we will keep is ψ (y) = e−y/2.
Before solving the differential equation, let us scrutinize these limits. The r →

∞, x → ∞, y → 0 limit is no problem because there is no restriction on r → ∞.
This simply means that dissociation occurs and the atoms are free of each other.
On the other hand, the limit x → −∞, y → ∞ implies that r → −∞. This is
clearly impossible since r = 0 is the minimum value. One of the inadequacies of
the Morse potential that was mentioned above is that it is finite at r = 0. The true
interatomic potential energy should become infinite (like the Coulomb potential)
at r = 0. As noted above, however, in practice this is not a serious limitation.
Nonetheless, because we are solving the problem in one-dimension the necessity
of letting x → −∞ deserves some attention. We permit this artifact merely so the
problem can be solved. It is of no consequence since the limitation on the bound
states that can be supported by the Morse function is determined by its behavior for
positive r .

We may now write the wave function ψ (y) as a product of these two asymptotic
forms and a function that can be expanded as a power series which we designate
� (y) (� is the Greek letter digamma which we use because we are running out
of symbols that do not traditionally designate other functions). Our wave function
takes the form

ψ (y) = e−y/2 yβ
� (y) (5.56)

subject to the condition that

lim
ξ→∞

yβ
� (y) < ey/2 (5.57)
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Inserting this into Equation 5.49 and performing the operations we obtain a dif-
ferential equation for � (y).

y
d2

� (y)

dy2
+ (2β + 1 − y)

d� (y)

dy
+

(
−β − 1

2
+ K

2

)
� (y) = 0 (5.58)

Expanding � (y) in a power series as was done for the harmonic oscillator we have

� (y) =
∞∑

n=0

an yn (5.59)

which, when inserted into Equation 5.58, yields

∞∑

n=1

[(n − 1) + (2β + 1)] nan yn−1 +
∞∑

n=0

(
K

2
− β − 1

2
− n

)
an yn = 0 (5.60)

Letting n → n + 1 in the first summation in order to make both summations cover
the same range yields

∞∑

k=0

[k + (2β + 1)] (k + 1) ak+1 yk +
∞∑

n=0

(
K

2
− β − 1

2
− n

)
an yn = 0 (5.61)

Factoring all coefficients of like powers of y in Equation 5.61 we have

∞∑

n=0

[
(n + 1) (n + 2β + 1) an+1 +

(
K

2
− β − 1

2
− n

)
an

]
yn = 0 (5.62)

Because the powers of y are linearly independent the coefficient of each power of y
must vanish. This leads to a recursion relation between an+1 and an given by

an+1 = − (K/2 − β − 1/2 − n)

(n + 1) (n + 2β + 1)
an (5.63)

In principle, we have solved the differential equation. As in the case of the
harmonic oscillator, however, we must make sure that the eigenfunctions that we
have obtained are physically acceptable. Because we are dealing with a potential
well that will confine the particle to a specific region of space, the particle must be
bounded and the wave function must be normalizable in accord with the condition
set forth in Equation 5.57 which assures that the wave function in Equation 5.56 is
normalizable. From the recursion relation Equation 5.63 it is seen that

lim
n→∞

an+1

an
= 1

n
(5.64)
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It is a relatively simple matter to show that, in the limit as x → ∞, the coefficients
of the Taylor series for ex behave in the same way (see Problem 9). Therefore, for
large values of y, � (y) behaves as ey which overpowers e−y/2 in Equation 5.56.
Note that the yβ term in Equation 5.56 is of no consequence in this regard because
Equation 5.64 is still valid as n → ∞. As was necessary in the case of the harmonic
oscillator, we must terminate the series that represents � (y). To accomplish this we
set the numerator equal to zero thus terminating the recursion relation after some
nth term. The constant β contains the energy so we expect to obtain the quantized
energies. We have

(
K

2
− βn − 1

2
− n

)
= 0 (5.65)

where we have attached a subscript to β to signify that they will be functions of the
index n. Substituting for βn and solving for the energy we obtain

En = −De +
(

n + 1

2

)
4De

K
−

(
n + 1

2

)2 4De

K 2
(5.66)

Equation 5.66 can be put into a much more revealing form by substituting for K
in terms of the first approximation to the Morse potential, the harmonic oscillator
parameters, Equation 5.53. We obtain

En = −De +
(

n + 1

2

)
�ω −

(
1

4De

)[(
n + 1

2

)
�ω

]2

(5.67)

which casts the Morse levels in terms of the equivalent harmonic oscillator levels.
The first term De merely shifts the scale to the bottom of the well while the second
term is the harmonic oscillator energy levels. As the Morse oscillator is excited,
oscillator levels are excited, but the third term in Equation 5.67 causes the separation
between adjacent levels to decrease. This decrease clearly becomes more important
as n increases. The fact that the depth of the well appears in the denominator of the
third term reflects the fact that near the bottom of the well the harmonic oscillator is a
good approximation to the Morse function (as well as most other functions of similar
shape). As the energy increases and the well deviates from a parabola the levels
become more closely spaced. Figure 5.16 shows a graph of both the Morse potential
and the harmonic oscillator potential. As can be seen, on the side of the potential
at which the molecule is stretched, r > re, the Morse potential is “soft.” That is,
the force, the derivative of the potential energy, is lower than that of an equivalent
harmonic oscillator. In compression, however, the Morse potential is “hard.” The
softness of the potential for r > re causes the levels to become more closely spaced
as the state of excitation of the molecule approaches dissociation of the molecule
into isolated atoms.

Figure 5.17 is a plot of a Morse potential with the levels for that well superposed
on the well. As may be seen, the levels appear to be those of a harmonic oscillator
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Fig. 5.16 Morse potential
and harmonic oscillator
potential plotted on the same
axis showing the close
correlation between the two
near their respective minima,
but the subsequent divergence

Fig. 5.17 Morse potential
plotted with the energy levels
for this particular well

near the bottom of the well, but get closer together as the top of the well is ap-
proached, consistent with the formula in Equation 5.67.

Because the well has a finite depth there may be only a finite number of levels
that can be supported. We can deduce the number of levels that will fit in the well by
noting that a plot of En versus n in Equation 5.67 is a concave-downward parabola.
The value of n at which the maximum of this parabola occurs is the maximum
number of levels that fit in a given Morse potential well. For the parameters used
in this section the significant portion of the parabola is shown in Fig. 5.18. From
this figure it is seen that this maximum occurs near n = 14. Indeed, if we find the
maximum of Equation 5.67 it is at roughly n = 14 (see Problem 11) so there are 15
levels.

Before leaving the subject of molecular vibrations it is worthwhile to discuss
briefly molecular excited states and units. Molecules, like atoms, have excited states
that are formed when electrons are “promoted.” In molecules these states are re-
ferred to as electronic states. The designation as electronic states is unnecessary in
atoms because there are no other types of excited states. In molecules, however,
there are also excited rotational states and vibrational states. The eigenstates of the
Morse potential are vibrational states of a particular electronic state, the electronic
state being that associated with the Morse potential. When an electron is excited,
a new electronic state is formed. To this new state corresponds a new potential
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Fig. 5.18 Graph of En versus
n in Equation 5.67 for the
parameters used in this
section showing that for these
parameters the Morse
potential supports only 14
levels

energy curve which supports a different set of vibrational levels. This curve too
may be represented by a Morse potential. Electromagnetic transitions occur with the
absorption or emission of photons between these states. Transitions between elec-
tronic states (which are complicated by transitions between different vibrational and
rotational levels of each of the electronic states involved) usually involve energies
of the order of eV, just as for atoms. Transitions between vibrational levels of the
same electronic state occur at lower energies so these transitions are in the infrared
region of the spectrum. Of course, these vibrational transitions are complicated by
having different rotational levels superposed. Transitions between rotational levels
of the same vibrational level occur at still lower energies and are characteristic of
the far-infrared region of the spectrum.

The arbitrary units used in Table 5.2 were chosen for convenience of illustration.
Typical dissociation energies are the order of eV. If the value De = 10 that was used
in the illustrations were actually 10 eV, the molecule would be a rather strongly
bound one, perhaps nitrogen, N2 which has three electron pairs to glue the two
atoms together. Some important molecules (important to physicists because they are
simple) such as once ionized hydrogen H+

2 have much lower dissociation energies,
∼ 2.7eV, because H+

2 doesn’t have as much glue as, for example, N2.

5.5 The Linear Potential

The list of potential energy functions for which the TISE can be solved exactly
is not very long. One deceptively simple function is linear in x for x > 0, but
infinite for x ≤ 0. Such a situation might exist for a particle falling in a uniform
gravitational field and reflected elastically at the surface. Another such situation is
that of a charged particle, say an electron, forced against an infinite potential wall
by a constant electric field of magnitude F (we choose F for the electric field rather
than E to avoid confusion with the energy). The potential may thus be written

U (x) = eFx x > 0

= ∞ x ≤ 0 (5.68)
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In Section 4.5.2 we examined the fate of a Gaussian wave packet under the influence
of a linear potential without the infinite wall. In that case the potential extended from
−∞ to +∞ so it could not support bound states. In the present case the force for
x > 0 is given by

F (x) = −dU (x)

dx
ı̂

= −eF ı̂ (5.69)

so the electron is confined in a potential well as illustrated in Fig. 5.19 and bound
states are expected.

The TISE for x > 0 is

[
− �

2

2me

d2

dx2
+ eFx

]
ψ (x) = Eψ (x) (5.70)

subject to the boundary conditions ψ (0) = 0 and ψ (∞) → 0. Our goal is to find the
energy eigenvalues En > 0 and the eigenfunctions in coordinate space. Of course
the energy eigenvalues are independent of the space in which the eigenfunctions
are viewed, but there are two ways of solving for the eigenfunctions. One is to
simply attempt to solve the TISE in coordinate space, an approach we have taken
several times. Another is to convert this equation to momentum space and solve
for the φn (p) as was done in Problem 11 of Chapter 4 for the harmonic oscillator.
The coordinate space eigenfunctions can always be recovered by taking the Fourier
transforms of the φn (p) . We elect to first convert to momentum space.

In momentum space the TISE, Equation 5.70, is

[
p2

2me
− eF

�

i

d

dp

]
φ (p) = Eφ (p) (5.71)

In contrast to the TISE in coordinate space, this equation is separable! We have

Fig. 5.19 Graph of potential
energy function in Equation
5.68
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dφ (p)

φ (p)
= i

eF�

(
p2

2me
− E

)
dp (5.72)

Integrating both sides we have

ln φ (p) = i

eF�

(
p3

6me
− Ep

)
+ ln K (5.73)

where the constant of integration has been written as ln K for convenience. Solving
for φ (p) we have

φn (p) = K exp

[
i

eF�

(
p3

6me
− En p

)]
(5.74)

where we have attached the subscript to φ (p) and E to indicate that we are presum-
ing quantization. We may now evaluate the constant K by normalizing φn (p). The
orthogonality and normalization condition is

∫ ∞

−∞
φ∗

n′ (p) φn (p) dp = δ (En − En′) (5.75)

which, after substituting Equation 5.74, becomes

|K |2
∫ ∞

−∞
exp

[
i

eF�
(En − En′) p

]
dp = δ (En − En′) (5.76)

Now, from the definition of the δ-function, Equation 4.40, we see that the integral is
2πδ [(En − En′) / (eF�)] so, applying the last of the relations in Table 4.1, that is,
δ (ax) = (1/ |a|) δ (x), we obtain

|K |2 = 1

2π�eF
(5.77)

thus giving the complete eigenfunction in momentum space. We have not, how-
ever, found the eigenvalues because we have not applied the boundary conditions
that will force quantization on the system. The boundary conditions are, however,
in coordinate space, not momentum space. We must therefore find the coordinate
eigenfunctions ψn (x) from the momentum eigenfunctions φn (p) using the Fourier
transform. Using the Fourier transform in Equation 4.33 we have

ψ (x) = 1

2π�
√

eF

∫ ∞

−∞
exp

[
i

eF�

(
p3

6me
− En p

)]
· eipx/�dp (5.78)

Applying the condition ψ (0) = 0 means that the integrand vanishes. This may not
seem like much of a simplification until we recall that the remaining exponential
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can be written as the sum of a sine and a cosine. Because the sine is an odd function,
the integral over symmetric limits vanishes. We are left with

∫ ∞

0
cos

[
1

eF�

(
p3

6me
− En p

)]
dp = 0 (5.79)

where we have replaced the lower limit of integration by zero because the cosine
is even. Equation 5.79 still doesn’t look familiar, but the integral is a well known
function, the Airy function. Not only is it well-known and well-tabulated, but most
symbolic mathematics computer programs have it in their libraries. To put Equation
5.79 in standard form we make the substitution y = p/ (2meeF�)1/3 which leads to

1

π

∫ ∞

0
cos

[
y3

3
− En

(
2me

e2 F2�2

)1/3

y

]

dy = Ai

[

−En

(
2me

e2 F2�2

)1/3
]

(5.80)

Thus, the condition specified by Equation 5.79 determines the quantized energies.
We see that for given values of F , me, and e the quantized energies are determined
by the zeros of the Airy function

Ai

[

−En

(
2me

e2 F2�2

)1/3
]

= 0 (5.81)

Moreover, as seen from Equation 5.78, the eigenfunctions in coordinate space are
merely the Airy functions. It is left as an exercise to show that the argument of
the Airy function is indeed dimensionless (see Problem 12). To understand how
to compute the energy eigenvalues we carefully examine the Airy function Ai (ξ )
which is plotted in Fig. 5.20 to include the first ten of its zeros.

The zeros that are shown in Fig. 5.20 are also listed in Table 5.3 where ξn repre-
sents the coordinate of a zero of the function and n the order of the zero.

Fig. 5.20 The Airy function
Ai (ξ ) showing the first ten
zeros
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Table 5.3 The first ten zeros of the Airy function

n ξn

1 −2.338
2 −4.088
3 −5.521
4 −6.787
5 −7.944
6 −9.023
7 −10.040
8 −11.009
9 −11.936
10 −12.829

The energies are computed by setting

− En

(
2me

e2 F2�2

)1/3

= ξn (5.82)

from which we find

En = −ξn

(
e2 F2

�
2

2me

)1/3

(5.83)

Notice that the energies are positive as they must be for the potential of Equation
5.68.

We now return to the TISE for the linear potential in coordinate space, Equation
5.70, which we rewrite as

[
− d2

dx2
+

(
2meeF

�2
x − 2me E

�2

)]
ψ (x) = 0 (5.84)

To simplify further we make the substitution

(
2meeF

�2
x − 2me E

�2

)
= αx − β

= γ ξ (5.85)

where

α = 2meeF/�
2 and β = 2me E/�

2 (5.86)

and γ is a constant to be determined; ξ is a variable. Equation 5.84 becomes

[
− d2

dx2
+ γ ξ

]
ψ (x) = 0 (5.87)
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We must now convert all quantities to the variable ξ in Equation 5.87. Using the
chain rule

dψ

dx
= dψ

dξ

dξ

dx

= dψ

dξ

α

γ
(5.88)

and

d2ψ

dx2
= d2ψ

dξ2

(
α

γ

)2

(5.89)

so that Equation 5.84 becomes

d2ψ (ξ )

dξ2
−

(
γ 3

α2

)
ξψ (ξ ) = 0 (5.90)

The form of this equation suggests that a propitious choice of γ would be γ 3 =
α2 = (

2meeF/�
2
)2

thus making Equation 5.90

d2ψ (ξ )

dξ2
− ξψ (ξ ) = 0 (5.91)

This is precisely Airy’s equation, the solutions to which are Airy functions. Being a
second-order differential equation, there are two Airy functions, but only one

ψ (ξ ) = Ai (ξ )

= 1

π

∫ ∞

0
cos

(
y3

3
+ ξy

)
dy (5.92)

will be of interest here because the other one diverges at infinity. The other Airy
function Bi (ξ ) will be useful later. To plot the eigenfunctions in coordinate space
we must replace ξ with x in Equation 5.92. We obtain

ψn (x) = Ai

[(
2meeF

�2

)1/3

x − En

(
2me

e2 F2�2

)1/3
]

(5.93)

which can be shown to be identical to Equation 5.78 that was obtained as the Fourier
transform of the momentum space wave function.

We have already seen how to compute the energy eigenvalues. Using Equa-
tion 5.93 (or a suitably modified Equation 5.78) we can compute the wave func-
tions. To simplify the calculation we set all the parameters equal to unity, that is,
e = F = me = �. Then, in these reduced units the energy eigenvalues are simply
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Fig. 5.21 Normalized
eigenfunctions for the linear
potential using the reduced
units discussed in the text.
The ordinate is the energy E

the ξn divided by 21/3
≈ 1.26. Figure 5.21 is a plot of the normalized eigenfunc-

tions superposed on the potential energy function and located at the values of their
respective energy eigenvalues. These eigenfunctions clearly have the characteristics
that are expected. They have increasing numbers of nodes starting with zero nodes
for the ground state. There is an inflection point at the classical turning point and
the wave function in the classically forbidden region curves away from the x -axis.

5.6 The WKB Approximation

5.6.1 The Nature of the Approximation

The potential energy functions we have encountered to this point have all been such
that the TISE was exactly solvable. The Wentzel, Kramers, Brillouin (WKB) ap-
proximation provides a method for approximating the energy levels of bound states
and their wave functions when an exact solution of the TISE is not possible. It
also makes it possible to estimate the rate at which particles penetrate and emerge
through a potential barrier of arbitrary shape, called tunneling, thus permitting cal-
culations of important physical constants such as rates of alpha decay.

The WKB approximation is applicable in cases in which the potential energy is a
slowly varying function over several de Broglie wavelengths. To make this statement
more concrete we write the TISE in the form

[
p (x)2

2m
+ U (x)

]

ψ (x) = Eψ (x) (5.94)
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where p (x) is the momentum which is given by

p (x) =
√

2m [E − U (x)] (5.95)

Because the momentum and the de Broglie wavelength λd are inextricably entwined,
we may regard the de Broglie wavelength in a region in which U (x) is not constant,
that is, anything but a square well, to be a function of position. If, however, the
momentum, and therefore λd , are constant, the solutions to Equation 5.94 are sinu-
soidal in the classically allowed region and decaying exponential in the classically
forbidden regions. Concentrating our attention on the classically allowed region, we
can imagine a zeroth approximation to the wave function to be

ψ (x) = e±i(p/�)x (5.96)

where p is a constant. If we generalize to a situation in which the momentum is
a function of position, we may, following the derivation of Rapp [2], make the
substitution

ψ (x) = F (x) ei S(x) (5.97)

This form of the wave function merely permits us to keep track of which part of it
represents the momentum and therefore the inverse of the de Broglie wavelength.
This can be seen by noting that when U (x) is constant S (x) = ± (p/�) x where
p is a constant. We see also that d S (x) /dx =̂ p (x). (The symbol =̂ stands for
“corresponds to.”)

Substituting Equation 5.97 into the TISE yields

{
d2 F (x)

dx2
− F (x)

[
d S (x)

dx

]2

+ k (x)2 F (x)

}

+i

{
2

d F (x)

dx

d S (x)

dx
+ F (x)

d2S (x)

dx2

}
= 0 (5.98)

Notice that the wave number k (x) has been explicitly designated as a function of x .
Now, if a complex number vanishes, its real and imaginary parts must each van-

ish. Therefore,

d2 F (x)

dx2
− F (x)

[
d S (x)

dx

]2

+ k (x)2 F (x) = 0 (5.99)

and

2
d F (x)

dx

d S (x)

dx
+ F (x)2 d2S (x)

dx2
= 0 (5.100)
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So far, there is no approximation involved. We have merely assumed a form of ψ (x),
Equation 5.97, and inserted it into the TISE. The resulting equations, Equations 5.99
and 5.100, are equivalent. Equation 5.100 is recognizable as an exact differential of
F (x)2 d S (x) /dx so that

d

[
F (x)2 d S (x)

dx

]
= 0 (5.101)

and

F = C√
d S/dx

(5.102)

where C is a constant. This permits us to eliminate F (x) from our assumed form
of ψ (x), Equation 5.97. This is not too surprising since we wrote the single function
ψ (x) in terms of two unknown functions F (x) and S (x). Nevertheless, our assumed
ψ (x), which, incidentally, is still exact, is written in a form in which there is a
physically significant quantity, the momentum (de Broglie wavelength). We have

ψ (x) = C√
d S/dx

ei S(x) (5.103)

An interesting feature of Equation 5.103 is that the probability density |ψ (x)|2 ∝
1/p (x). For this reason (and others) the WKB approximation is often referred to as
the semiclassical approximation because, classically, the probability of the finding
the particle in a particular region of space should indeed be inversely proportional
to its speed in that region.

Now for the approximation. Wentzel, Kramers, and Brillouin cleverly arranged it
so the derivative of S (x) represents the momentum (give or take an �). To see this,
note that any exponent must be unitless. If U (x) were constant, then S (x) = kx
(k = p/� = constant). If U (x) is slowly varying, then S (x) and its derivative
(slope) will also be slowly varying. Equation 5.102 assures us that F (x) is also
slowly varying and we may take the second derivative term in Equation 5.99 to be
negligible with respect to the others. The resulting differential equation is

(
d S

dx

)2

− [k (x)]2 = 0 (5.104)

so that

d S

dx
= ±k (x) (5.105)
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This gives us the denominator of Equation 5.103. Integrating once gives the
exponent

S (x) = ±
∫

k (x) dx (5.106)

which leads immediately to a general solution to the TISE. Therefore, in the classi-
cally allowed region a linear combination of

ψallowed (x) = C±√
k (x)

exp

[
±i

∫
k (x) dx

]
(5.107)

is an approximate solution to the TISE under the condition of a slowly varying
potential energy function.

To convert Equation 5.107 to make it valid in the classically forbidden region for
which U (x) > E we let

κ (x) =
√

2m [U (x) − E]

�2
(5.108)

and replace ik (x) in the integral of Equation 5.107 with κ (x) and obtain the WKB
approximation wave function for the classically forbidden region

ψforbidden (x) = C
′
±√

κ (x)
exp

[
±

∫
κ (x) dx

]
(5.109)

One of our goals is to find an expression for the quantized energy levels. We are
not quite ready to do this though because there is some trouble with the approx-
imate wave functions that we have derived. The trouble is that they are inversely
proportional to the square root of the momentum and the momentum vanishes at
the classical turning points. Thus, the approximate wave functions blow up at the
turning points. This is not good! To correct the problem we must connect the wave
function that is valid in the classically allowed region to the one that is valid in the
classically forbidden region. This is done by assuming a form of the potential in
the region of the turning points and deriving formulas that connect these two wave
functions across the turning points.

5.6.2 The Connection Formulas for Bound States

We assume the potential has the form shown in Fig. 5.22. If the energy is E , as
shown in the figure, the turning points are at x = a and x = b and, as usual, we
have designated the three regions of space by Roman numerals.

From our knowledge of the characteristics of wave functions and from Equa-
tions 5.107 and 5.109 the approximate wave functions in the three regions of space,
according to the WKB approximation, are
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Fig. 5.22 Potential energy
curve U (x) with classical
turning points at x = a and
x = b for a particle energy E .
Also shown is the linear
potential used to connect the
approximate wave functions
at the right-hand classical
turning point

ψI (x) = A√
κ (x)

exp

[∫ a

x
κ (x) dx

]
(5.110)

ψI I (x) = B√
k (x)

exp

[
i
∫ x

a
k (x) dx

]

+ C√
k (x)

exp

[
−i

∫ x

a
k (x) dx

]
(5.111)

ψI I I (x) = D√
κ (x)

exp

[
−

∫ x

b
κ (x) dx

]
(5.112)

The wave function ψI I (x) could have been written in terms of the turning point at
x = b in which case, for consistency, the limits of integration would have been from
x to b, maintaining our convention of going from left to right.

To connect these wave functions at the turning points we assume a form of the
potential energy in the vicinity of the turning points. The simplest function that
is not a constant is a linear potential. For convenience we will first work with the
right-hand turning point at x = b. This permits us to consider x → +∞ first and
avoids a pesky minus sign. We will deal with the left-hand turning point at x = a
after we are seasoned veterans of connection formula mathematics.

We assume a potential energy function near this turning point of the form

U (x) = E + μb (x − b) (5.113)

The Greek letter μ, which is not otherwise used in this section, has been chosen to
indicate the slope of the straight line because the traditional choice of m might be
confused with mass. The assumed connecting potential U (x) is shown in Fig. 5.22
which makes clear that μb is a positive number. The TISE in the vicinity of this
turning point may be written in the form
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d2ψ (x)

dx2
−

(
2mμb

�2

)2/3
[(

2mμb

�2

)1/3

(x − b)

]

ψ (x) = 0 (5.114)

which can be translated and rescaled with the substitution

ξ =
(

2mμb

�2

)1/3

(x − b) (5.115)

This transforms Equation 5.114 into

d2ψ (ξ )

dξ2
− ξψ (ξ ) = 0 (5.116)

Note that the translation defined by Equation 5.115 means that the turning point
occurs at ξ = 0.

To those who have read Section 5.5 Equation 5.116 will be recognized as being
identical to Equation 5.91, the solutions to which are Airy functions Ai (ξ ) and
Bi (ξ ). In that section we knew that we were dealing with bound states so we imme-
diately discarded the Airy function Bi (ξ ) on physical grounds because it diverges at
infinity. Here, however, we must include it. The general solution to Equation 5.116 is

ψ (ξ ) = ηAi (ξ ) + ζ Bi (ξ ) (5.117)

where η and ζ are constants. Thus, Equation 5.117 is the general form of the wave
function for the linearized potential.

The approach will be to find an approximate wave function that is a solution to
Equation 5.116, which is essentially the TISE for a linear potential in the region
of the turning point. We will then compare this wave function with the wave func-
tion obtained from the WKB approximation. Recall that the WKB wave function
is not good, indeed it is invalid at the turning points, so we must compare it to the
linearized potential solution far away. How can we do this since we are linearizing
the potential in the region of the turning point? The answer lies in the nature of the
approximation. We are assuming that the potential is “slowly varying”. Therefore,
the linear potential is assumed good over a wide range of x (or ξ ), see Equation
5.115. The consequence of all this is that we will require asymptotic forms of the
Airy functions for comparison with the WKB wave functions. These asymptotic
forms of Ai (ξ ) are

Ai (ξ ) ∼
1

2
√

πξ1/4
exp

(
−2

3
ξ3/2

)
ξ > 0 (5.118)
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Ai (ξ ) ∼
1√

π (−ξ )1/4 sin

[
2

3

(−ξ3/2
) + π

4

]
ξ < 0 (5.119)

and the asymptotic forms of Bi (ξ ) are

Bi (ξ ) ∼
1√

πξ1/4
exp

(
2

3
ξ3/2

)
ξ > 0 (5.120)

Bi (ξ ) ∼
1√

π (−ξ )1/4 cos

[
2

3

(−ξ3/2) + π

4

]
ξ < 0 (5.121)

A graph of Ai (ξ ) is shown in Fig. 5.20 while that of Bi (ξ ) is shown in Fig. 5.23.
To the right of the turning point at ξ = 0 the wave function based on the lin-

earized potential must have the asymptotic form (see Equations 5.117, 5.118, and
5.120)

ψ (ξ ) = η
1

2
√

πξ1/4
exp

(
−2

3
ξ3/2

)
+ ζ

1√
πξ1/4

exp

(
2

3
ξ3/2

)
(5.122)

We must now find the WKB form of the wave function for the linearized potential.
In the vicinity of x = b we write the TME E as the sum of the kinetic energy and
the potential energy

E = (�k)2

2m
+ E + μb (x − b) (5.123)

or, substituting from Equation 5.115, we have

k2 = −
(

2mμb

�2

)2/3

ξ (5.124)

so that

Fig. 5.23 The Airy function
Bi (ξ ) showing the
divergence for ξ → ∞
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k (ξ ) =
(

2mμb

�2

)1/3

(−ξ )1/2 (5.125)

in the classically allowed region. In the classically forbidden region we have

κ (ξ ) =
(

2mμb

�2

)1/3

(ξ )1/2 (5.126)

The WKB wave function in Region III is therefore

ψI I I (ξ ) = D

ξ1/4
exp

[

−
∫ ξ

0

(
2mμb

�2

)1/3

ξ1/2 �
2/3dξ

(2mμb)1/3

]

= D

ξ1/4
exp

[
−

∫ ξ

0
ξ1/2dξ

]

= D

ξ1/4
exp

[
−2

3
ξ3/2

]
(5.127)

where the constants associated with ξ1/4 have been embedded in D. Lo and be-
hold this matches the asymptotic form of the wave function deduced from the exact
solution for the linear potential, Equation 5.122, provided

η = 2
√

π D and ζ = 0 (5.128)

We must now force matching for Region II in which the WKB wave function for
the linearized potential is

ψI I (ξ ) = 1

(−ξ )1/4

{
B exp

[
i
2

3
(−ξ )3/2

]
+ C exp

[
−i

2

3
(−ξ )3/2

]}
(5.129)

Before we compare the WKB wave function in Equation 5.129 with the wave func-
tion from the exact solution for the linear potential, Equation 5.122, it is important
to point out that our deduction that ζ = 0 in Equation 5.128 is still valid in Region
II. The reason for this is that the Airy functions are continuous across the turning
point and are therefore the solutions of the differential equation, Equation 5.116,
over all space. This is in contrast to, for example, the case of the finite square well
where the discontinuous potential requires separate solutions to the TISE in each of
the three regions of space. Thus, the comparison of the wave function in Equation
5.129 is facilitated by knowledge that Bi (ξ ) has already been excluded from the
comparison. In fact, Bi (ξ ) will be excluded from any region of space that includes
x = ±∞ for a bound state problem because it diverges.

The solution to the linear potential to which Equation 5.129 must be compared
is (see Equation 5.119)
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ψ (ξ ) = η√
π (−ξ )1/4 sin

[
2

3

(−ξ3/2
) + π

4

]
ξ < 0 (5.130)

We therefore make the substitution C = −ieiπ/2 B in Equation 5.129 and obtain

ψI I (ξ ) = B

(−ξ )1/4

{
eiπ/4 exp

[
i

2

3
(−ξ )3/2

]

−e−iπ/4 exp

[
−i

2

3
(−ξ )3/2

]}

= 2B

(−ξ )1/4
sin

[
2

3

(−ξ3/2) + π

4

]
(5.131)

which shows that

η = 2
√

π B (5.132)

We can, however, eliminate η (for the same reason that ζ = 0 over the whole range
of x using Equation 5.128). We obtain

B = D (5.133)

Thus, the wave functions on each side of x = b are given by

ψb
I I (x) = 2D√

k (x)
sin

[∫ x

b
k (x) dx + π

4

]
(5.134)

ψI I I (x) = D√
κ (x)

exp

[
−

∫ x

b
κ (x) dx

]
(5.135)

where a superscript b has been associated with the ψI I (x) in Equation 5.134 to
designate the fact that it was derived from the turning point at x = b. Note the
change of the limits of integration in Equation 5.134 since ξ = 0 → x = b (see
Equation 5.115).

To find an expression for the bound state energy we must obtain another ex-
pression for ψI I (x), an expression derived from consideration of the other turn-
ing point. It is, after all, the existence of the two turning points that confines the
particle and makes this a bound state problem. We follow the same procedure as
above for the turning point at x = a. The potential at the left-hand turning point is
written

U (x) = E − μa (x − a) (5.136)
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where μa is the slope and taken to be a positive number at x = a (see Fig. 5.22).
The TISE is

d2ψ (x)

dx2
+

(
2mμa

�2

)2/3
[(

2mμa

�2

)1/3

(x − a)

]

ψ (x) = 0 (5.137)

and we make the substitution

ξ = −
(

2mμa

�2

)1/3

(x − a) (5.138)

so, again, ξ = 0 corresponds to the turning point. With this substitution we arrive
at exactly the same equation, Equation 5.116, for which the solutions are the Airy
functions. The difference of the minus sign in Equations 5.115 and 5.138 makes the
arguments of the Airy functions negative so the graphs in Figs. 5.20 and 5.23 should
be mirror images. That is, as x → ∞, ξ → −∞. The procedure is identical to that
above and we obtain analogous formulas

ψI (x) = A√
κ (x)

exp

[∫ a

x
κ (x) dx

]
(5.139)

ψa
I I (x) = 2A√

k (x)
sin

[∫ x

a
k (x) dx + π

4

]
(5.140)

where a superscript a has been associated with the ψI I (x) in Equation 5.140 to
designate that it originated from the turning point at x = a.

Now, the two expressions for ψa
I I (x) and ψb

I I (x) in Equations 5.134 and 5.140
represent the same wave function. They must therefore be identical except perhaps
for a multiplicative constant K . Note that these two expressions do indeed differ
because they have different limits of integration. Equating the two expressions and
rewriting the left-hand side we have

sin

[∫ x

a
k (x) dx + π

4

]
= K sin

[∫ x

b
k (x) dx + π

4

]

sin

[∫ b

a
k (x) dx +

∫ x

b
k (x) dx + π

4

]
= K sin

[∫ x

b
k (x) dx + π

4

]
(5.141)

Equation 5.141 is valid only if the first integral on the left-hand side is equal to a
half-integral multiple of π and if K = (−)n. This leads to the quantization of energy
in the form

∫ b

a
k (x) dx =

(
n + 1

2

)
π (5.142)
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which is more customarily seen in terms of the momentum

∫ b

a
p (x) dx =

(
n + 1

2

)
π� (5.143)

We note that, classically, the particle would oscillate between the turning points so a
cycle of the particle plotted in the p − x plane, referred to as phase space, would be

∮
p (x) dx =

(
n + 1

2

)
h (5.144)

In this form the integral represents the Bohr–Sommerfeld quantization rule, a rule
that we have not discussed, but which bridged the gap between the Bohr theory of
the atom and the development of the TDSE. For our purpose we write Equation
5.144 in terms of the de Broglie wavelength

∮
dx

λ (x)
=

(
n + 1

2

)
(5.145)

which is equivalent to requiring a half-integral number of wavelengths in a complete
“orbit” in the p − x plane. Moreover, in the spirit of the WKB approximation, these
expressions are truly valid only for large n. For example, if we consider an infinite
square well, an L-box, λ (x) = constant and the integral is equal to 2L. Thus,

2L

λn
=

(
n + 1

2

)
=⇒ En = p2

2m
= (2n + 1)2 h2

32L2m
(5.146)

These are not the correct energy eigenvalues, but they are correct in the limit as
n → ∞ (see Problem 13). Another point of view is to consider Equation 5.142 to
be the accumulated phase shift of a one-way trip from a to b, k (x) = 2π/λ (x).

5.6.3 A Bound State Example—the Linear Potential

In Section 5.5 we found the exact solution to the problem of an electron bound in
a linear potential. We may therefore use these exact results to assess the validity
of the WKB approximation to this same problem. The potential energy is given by
Equation 5.68.

U (x) = eFx x > 0

= ∞ x ≤ 0 (5.147)
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Before embarking on the calculation, however, we must modify the quantization
condition, Equation 5.142, to account for the necessity of having ψ (0) = 0 due to
the infinite wall at x = 0. This is easily done by examining the first of Equations
5.141 with a = 0 and with b the turning point corresponding to a given TME En

where we have attached a subscript to the energy because we know the values will
be quantized. To fulfill this boundary condition we must have

sin

[∫ 0

0
k (x) dx + π

4

]
= K sin

[∫ b

0
k (x) dx + π

4

]
(5.148)

where the left-hand side is zero. Equation 5.148 requires that

∫ b

0
k (x) dx + π

4
= nπ (5.149)

or

∫ b

0
p (x) dx =

(
n − 1

4

)
π� (5.150)

Now

bn = En

eF
(5.151)

so

p (x) =
√

2me (E − eFx)

= (2meeF)1/2
√

bn − x (5.152)

Using the notation from Section 5.5, Equation 5.86, let

α = 2meeF

�2
(5.153)

so that

p (x) =
(

2meeF

�2

)1/2

�

√
bn − x

= α1/2
�

√
bn − x (5.154)

The integral in Equation 5.150 is then
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∫ bn

0
p (x) dx = α1/2

�

∫ bn

0

√
bn − xdx

= 2

3
b3/2

n �α1/2 (5.155)

Equating the values of the integrals found in Equations 5.150 and 5.155 we have

2

3
b3/2

n �α1/2 =
(

n − 1

4

)
π� (5.156)

Substituting for bn using Equation 5.151 and solving for the energy we obtain (see
Problem 14)

En =
(

e2 F2
�

2

2me

)1/3 [
3π

8
(4n − 1)

]2/3

(5.157)

Now let us rearrange the equation that yielded the exact energies, Equation 5.83,
to facilitate comparison with the WKB result. We have

En =
(

e2 F2
�

2

2me

)1/3

(−ξn) (5.158)

where the ξn are the zeros of the Airy function. It is seen that the factors that depend
upon the parameters of the problem in the approximation, Equation 5.157, and the
exact energy, Equation 5.158, are identical. Thus, to compare the approximation
with the exact answer we need only compare the numerical factor in square brackets
in Equation 5.157 with the (negatives of the) positions of the zeros of the Airy
function. This comparison is shown in Table 5.4. It is clear that the approximation
produces remarkably close results, even at low quantum numbers.

Table 5.4 The negatives of the first ten zeros of the Airy function −ξn compared with the numer-
ical factor F (n) = [(3π/8) (4n − 1)]2/3 in the approximate expression for the energy as derived
from the WKB approximation for the linear potential

n −ξn F (n)

1 2.338 2.320
2 4.088 4.082
3 5.521 5.517
4 6.787 6.785
5 7.944 7.943
6 9.023 9.021
7 10.040 10.039
8 11.009 11.008
9 11.936 11.935

10 12.829 12.828
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5.6.4 Tunneling

The penetration of a rectangular barrier and subsequent emergence from this bar-
rier, the tunnel effect, was discussed in Section 5.1. If, however, a barrier has some
arbitrary shape, then an approximation is often required. The method most often em-
ployed is the WKB approximation. A sketch of a barrier of arbitrary shape is shown
in Fig. 5.24 as well as the three regions of interest. We assume a beam incident from
left to right on the barrier.

The wave functions may be written in an analogous manner to the bound state
case, only, in a manner of speaking, inside out. That is, the real exponentials and the
imaginary exponentials are exchanged. Using the same constants that were used in
the treatment of the rectangular barrier in Equation 5.3 of Section 5.1 we have

ψI (x) = A√
k (x)

exp

[
i
∫ x

a
k (x) dx + π

4

]

+ B√
k (x)

exp

[
−i

∫ x

a
k (x) dx + π

4

]

ψI I (x) = C√
κ (x)

exp

[
−

∫ x

a
κ (x) dx

]

+ D√
κ (x)

exp

[∫ x

a
κ (x) dx

]

ψI I I (x) = F√
k (x)

exp

[
i
∫ x

b
k (x) dx + π

4

]
(5.159)

where we have added the π/4 phase in the oscillatory terms taking advantage of
our now veteran status and knowledge of the asymptotic forms of the Airy func-
tions with which we will be comparing the WKB wave functions, Equations 5.119
and 5.121. This phase factor is merely a constituent of the constants in ψI (x)
and ψI I I (x). Additionally, as for the rectangular barrier, we have not included
the term in ψI I I (x) that represents a wave traveling from right to left. We seek
T = |F |2 / |A|2 and R = |B|2 / |A|2 = 1 − T and this is the aim of the WKB
approximation for transmission through a barrier.

To establish the relations between the coefficients we must use the connection
formulas, but we must now include the Airy function Bi (x) in the wave functions
because its divergence at infinity is not forbidden. Figure 5.23 shows a graph of a

Fig. 5.24 Potential energy
curve U (x) with classical
turning point at x = a for a
particle energy E incident
from the left
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portion of Bi (ξ ) that illustrates the divergence for positive ξ . Our goal is to find the
coefficients in Region I in terms of F the coefficient of the outgoing wave in Region
III. The constants C and D are of no consequence except that they link the constants
of interest.

Again we begin with the right-hand turning point. We will connect the wave
functions in precisely the same way as was done for the case of bound states taking
advantage of the algebra that we have already performed. We write the general form
of the wave function for the linearized potential in Region III as before:

ψI I I (ξ ) = ηAi (ξ ) + ζ Bi (ξ ) (5.160)

The WKB form of the wave function in Region III is a wave traveling from left
to right as indicated in Equation 5.159. Because of Equations 5.129 and 5.159 we
know that ψI I I (ξ ) must have the form

ψI I I (ξ ) = F

(−ξ )1/4
exp

{
i

[
2

3
(−ξ )3/2 + π

4

]}
(5.161)

To compare the form of the wave function in Equation 5.161 with the asymptotic
forms of the Airy functions, Equations 5.119 and 5.121, we must convert the expo-
nential in Equation 5.161 to trigonometric functions. The comparison yields

η√
π

= i F ;
ζ√
π

= F =⇒ α = iβ (5.162)

The linear combination of Airy functions for ψI I (ξ ), to be used for comparison
with the WKB wave function in that region, can now be written in terms of a single
constant because the constants η and ζ are valid in Regions II and III in the vicinity
of x = b. We have

ψI I (ξ ) = iζ Ai (ξ ) + ζ Bi (ξ ) (5.163)

and, from Equations 5.159 and 5.127 this is to be compared to

ψb
I I (ξ ) = C

ξ1/4
exp

(
−2

3
ξ3/2

)
+ D

ξ1/4
exp

(
2

3
ξ3/2

)
(5.164)

where, necessarily, the increasing exponential term has been included in Equation
5.164. Using Equations 5.118 and 5.120 we compare Equations 5.163 and 5.164
and find that

C = iζ

2
√

π
= i

2
F

D = ζ√
π

= F (5.165)
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so that

ψb
I I (x) =

(
i

2
F

)
1√
κ (x)

{
exp

[
−

∫ b

x
κ (x) dx

]

−2i exp

[∫ b

x
κ (x) dx

]}
(5.166)

We must now perform the same connection mathematics at x = a in order to
find the constant A tht represents the initial particle flux. While ψb

I I (x) as given
in Equation 5.166 is the wave function that was obtained by matching to the wave
function in Region III, it can be used at the turning point at x = a by rewriting the
integrals

∫ b

x
κ (x) dx =

∫ a

x
κ (x) dx +

∫ b

a
κ (x) dx

= −
∫ x

a
κ (x) dx +

∫ b

a
κ (x) dx (5.167)

The last integral in Equation 5.167 is a definite integral so we may designate it by a
symbol. Let

� = exp

[
−

∫ b

a
κ (x) dx

]
(5.168)

The wave function ψa
I I (x), as derived from ψb

I I (x), is

ψa
I I (x) =

(
i

2
F

)
1√
κ (x)

{
� exp

[∫ x

a
κ (x) dx

]

−2i�−1 exp

[
−

∫ x

a
κ (x) dx

]}

= F√
κ (x)

{
i

2
� exp

[∫ x

a
κ (x) dx

]

+�−1 exp

[
−

∫ x

a
κ (x) dx

]}
(5.169)

Converting Equation 5.169 to ψ (ξ ) for the linearized potential in the vicinity of
x = a we have

ψI I (ξ ) = 1

ξ1/4

[
i

2
F� exp

(
2

3
ξ3/2

)
+ F�−1 exp

(
−2

3
ξ3/2

)]
(5.170)

which is to be compared to the general form of the wave function for the linearized
potential in Region II which we write
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ψI I (ξ ) = 	Ai (ξ ) + δBi (ξ ) (5.171)

The constants γ and δ were used in Equation 5.171 to emphasize that they are dif-
ferent from the constants in Equation 5.160. Using the asymptotic forms Equations
5.118 and 5.120 the comparison between Equations 5.170 and 5.171 yields

γ

2
√

π
= F�−1;

δ√
π

= i

2
F� (5.172)

Now we must turn our attention to Region I. From Equations 5.159 and 5.129 we
can write

ψI (ξ ) = 1

(−ξ )1/4

[
A exp (iϑ) + B exp (−iϑ)

]

= 1

(−ξ )1/4
[(A + B) cos ϑ + i (A − B) sin ϑ] (5.173)

where

ϑ = 2

3
(−ξ )3/2 + π

4
(5.174)

Since the relation between the constants γ and δ is valid in Region I we may write

ψI (ξ ) = 2
√

π F�−1 Ai (ξ ) + i

2

√
π F�Bi (ξ ) (5.175)

Comparison of Equations 5.173 and 5.175 leads to

A + B = 2F�−1; A − B = F�

2
(5.176)

from which we can solve for F in terms of A, thus permitting calculation of the
transmission coefficient T . We find

F

A
= 1

(
1

�
+ �

4

)

=
(

�

1 + �2/4

)
(5.177)

Typically, the WKB approximation for penetration of a barrier is applied to a high,
broad barrier. Thus, the definite integral � is small which is tantamount to saying that
the probability of transmission through the barrier is small. In this approximation
F/A ≈ � and the transmission coefficient T is given by
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T = �2

= exp

[
−2

∫ b

a
κ (x) dx

]

= exp

[
− 2

�

∫ b

a

√
2m [U (x) − E]dx

]
(5.178)

5.6.5 Comparison with a Rectangular Barrier

It is important to clarify the meaning of the terms “high” and “broad.” Because we
are discussing physics and not poetry, it is incumbent upon us to specify these terms.
High with respect to what? Broad with respect to what? To do this we compare the
WKB result, Equation 5.178, with the exact result for a rectangular barrier obtained
in Section 5.1. This will give us a sense of the approximation made and the meaning
of these terms.

For a rectangular barrier of height U0 and length L, see Fig. 5.3, the WKB ap-
proximation predicts a transmission probability

TW K B = exp

[
−2

∫ L

0
κ (x) dx

]

= exp

[
− 2

�

∫ L

0

√
2m (U0 − E)dx

]

= exp

[
−2L

�

√
2m (U0 − E)

]
(5.179)

The exact result for T for the energy E < U0 the transmission probability is given
by Equation 5.11:

TE<U0 = 1
[

1 + U 2
0

4E (U0 − E)
sinh2

(
L

�

√
2m (U0 − E)

)] (5.180)

where L is the length of the barrier. For a broad, high barrier the argument of the
hyperbolic sine is large so that sinh x → (

1
2

)
ex and sinh2 x → (

1
4

)
e2xand the

second term in the denominator is a large number which we may write in the form

TE<U0 = 1

[1 + X]
≈

1

X

≈

[
16E (U0 − E)

U 2
0

]
exp

[
−2L

�

√
2m (U0 − E)

]
(5.181)

Thus, in order for the WKB result and the exact result to match, E ≈ (1/16) U0

which we may consider to be a definition of the term high.
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5.6.6 A Tunneling Example—Predissociation

There are numerous examples of applications of the WKB tunneling formula, Equa-
tion 5.178, to physical phenomena. Among the first was the satisfactory explanation
of α-decay, a process in which a bare helium nucleus (no electrons), an α particle,
is emitted from a more massive nucleus. Although the potential energy that confines
the α particle within the nucleus is greater than the kinetic energy of the α particle
inside the nucleus, it nonetheless escapes. This is α-decay. In1928 George Gamow
and, independently, R. W. Gurney and E. U. Condon explained the phenomenon
using tunneling and the WKB approximation. Since this α-decay is described in
numerous texts we will resist the temptation to do so here. Instead, we will present
an example from molecular physics.

Consider, for example, the Morse potential discussed in Section 5.4. It is conceiv-
able that this potential energy curve might be modified by any of several different
mechanisms. For example, we ignored molecular rotation in Section 5.4 because we
were concentrating on one-dimensional problems. If, however, the molecule is ro-
tating, there is the usual centrifugal term proportional to 1/r2 that must be added to
the potential energy. This term will, as in classical mechanics, cause a modification
of the potential energy curve as illustrated in Fig. 5.25.

The hump in the potential energy above U (x) = 0 is caused by addition of a
centrifugal term to a Morse potential. The exact mechanism that causes the hump is
of no consequence in the present discussion. It can have causes other than molecular
rotation. What is significant is that the hump can support bound states, vibrational
states with positive energy. Because positive energy implies that the constituent
molecules are separated, that is, dissociated, for large x , we see why tunneling
through this barrier is termed predissociation. These states are then not really bound
because they will ultimately decay by leaking through the barrier. Such states are
usually referred to as quasibound states.

Can we calculate the decay rate using the WKB approximation? Of course we can
if we know the shape of the barrier. That is not to say the decay rate that we calculate
will be accurate, but we can certainly go through the mechanics of the computation.

Fig. 5.25 Modified Morse
curve showing the effects of
centrifugal distortion
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(There is that spherical horse again.) We simply take the digitized form of the curve
that represents the barrier, put it in an appropriate computer program and crank
out the answer. This is not very pedagogically interesting so, for our purpose we
assume a curve that looks like the barrier, but one that is judiciously chosen to make
the integral in Equation 5.178 analytically viable. We choose a parabola such as that
illustrated in Fig. 5.26. While the actual barrier width is considerably wider than the
parabola, our purpose will be met with the added benefit of analytic tractability.

We may as well choose the center of the parabola at the origin to facilitate the
calculation so we write the potential for the barrier as

U (x) = U0

(
1 − x2

L2

)
(5.182)

where x = ±L are the zeros of U (x). The parabola is shown in Fig. 5.27. It is
assumed that the energy of the tunneling particle is E .

By symmetry, the limits of integration in Equation 5.178 go from −a to +a
where a is given by

Fig. 5.26 Morse curve with
rotational barrier and a
parabola approximating the
barrier

Fig. 5.27 Parabola used to
simulate the barrier in Figure
5.26
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a2 = L2

(
1 − E

U0

)
(5.183)

Solving Equation 5.183 for E and inserting it and U (x) into the integrand in Equa-
tion 5.178 we have

T = exp

[
−2

√
2mU0

�L

∫ a

−a

√
a2 − x2dx

]
(5.184)

Using the integral given in Equation H.7 we have

T = exp

[
−2

√
2mU0

�L

1

2
π L2

(
1 − E

U0

)]
(5.185)

= exp

[
−

√
2mU0

�
π L

(
1 − E

U0

)]
(5.186)

where we have substituted for a2 using Equation 5.183.
This result shows that, as usual, the WKB approximation should be valid if the

barrier is broad (large L) and high (large U0). Notice also that if the tunneling par-
ticle is massive, the tunneling rate is low, something we already knew from our
experience with the rectangular barrier. For diatomic molecules the mass is actu-
ally the reduced mass. For this reason, predissociation has often been studied using
hydrides, molecules containing one hydrogen atom for which the reduced mass is
essentially the mass of the hydrogen atom.
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Problems

1. Assume that a monoenergetic beam of particles of mass m is incident on a
potential barrier at x = 0 in the form of a δ-function so that

U (x) = U0δ (x) where U0 > 0

Find the reflection and transmission coefficients. To handle the discontinuity in
the potential integrate the TISE across x = 0 from −ε → +ε as described in
Section 2.9.
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2. Suppose the potential energy function is a δ-function such that

U (x) = −U0δ (x) where U0 > 0

Assuming that U0 is a positive constant so this potential might support bound
states of a particle of mass m, show that there will be one and only one bound
state (state of negative energy). Find the energy of this bound state and its
eigenfunction.

3. For a potential well

U (x) = ∞ x < 0

= −U0 0 < x < a

= 0 x > −a

where U0 is a real positive number

(a) sketch the wave function for particles of positive energy E incident on the
potential well.

(b) find the expression for the transmission coefficient for incident particles of
kinetic energy E .

(c) show that perfect transmission occurs when the kinetic energy of the parti-
cles while “over the well” is exactly equal to one of the quantized energies
of an L-box of the same dimensions.

4. Solve for the coefficients A, B , and F and hence R and T in the case of E > U0

for the potential step and convince yourself that, indeed, R + T = 1.
5. Find the eigenfunctions for the problem for which the potential energy is given

by

U (x) = ∞ x < 0

= −U0 0 < x < a

= 0 x > −a

No calculations are required. You may state the answer.
6. If the strength of a finite well is U0a2 < π2

�
2/ (8m), show that there can be

only a single bound state.
7. Assuming that U0a2 << π2

�
2/ (8m) for a finite square well, see Problem 6,

find the approximate energy eigenvalue of the lone energy level. In the spirit of
this approximation take π2/8 ≈ 1.

8. Consider the odd solutions to a finite square well.

(a) Find the ratio of the probabilities that the particle is inside the well to out-
side the well for an arbitrary odd bound state.

(b) Under what conditions on the strength of the well (U0a2) can the probabil-
ity of finding the particle inside the well go to zero?
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9. Show that in the limit as x → ∞ the ratio of successive coefficients of the
Taylor series for ex behave as 1/n.

10. Show that the minimum in the Morse potential, Equation 5.37, occurs at r = re

and that U (re) = −De.
11. Find the maximum value of the quantity (n + 1/2) in the equation for the en-

ergy for the Morse oscillator, Equation 5.67, and show that for the Morse pa-
rameters used to produce the graphs in Section 5.4 (see Table 5.2) the maximum
number of levels is 15.

12. Show that the argument of the Airy function that leads to quantization of the
energy for the linear potential is indeed unitless as it should be.

13. Show that the WKB result for the expression for the energy levels of an infinite
square well, an L-box, Equation 5.146, reduces to the exact result, Equation
3.7, in the limit of large n.

14. Verify Equation 5.157.
15. Use the WKB approximation to find the energy levels of the harmonic oscillator.
16. Use the WKB approximation to find the energy levels of a one-dimensional

hydrogen atom for which the potential is

U (x) = − K

x
where K = e2

4πε0

17. One of the first successes of the WKB approximation was the correct descrip-
tion of α-decay. As noted in the text, this problem is treated in most books
on this subject. The inverse process, capture of an α-particle (as well as other
atomic nuclei), occurs in nature when stars burn. This is called nuclear fusion.
In this case an incoming charged particle must surmount the Coulomb repul-
sive barrier between the capturing nucleus and the incoming nucleus. Com-
pute the transmission probability for such a capture process. Comment on the
dependence of the transmission coefficient on the kinetic energy E of the in-
coming nucleus to see why the temperature must be very high for fusion to
occur.

18. The electrons in a metal having work function W (see Section 1.1.1) may be
considered to be trapped in a finite square well. If a constant electric field is
applied, the wall on one side of the well can be lowered forming a triangular
barrier as shown in the figure below.

Potential energy diagram for Problem 18

Assuming that the potential representing the barrier can be represented as
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U (x) = 0 x < 0

= U0 − eFx

where F is the magnitude of the field, calculate the probability that an electron
having the highest energy of any electron in the well E will tunnel through the
barrier. Assume the work function is W = U0 − E . Transmission through this
barrier is referred to as field emission.



Chapter 6
The Mechanics of Quantum Mechanics

The quantum mechanics of Schrödinger relies on the solution of a differential equa-
tion to describe the physical properties of a system. This is a convenient way to intro-
duce the mysterious properties of quantum physics. As we shall see in subsequent
chapters, however, there are quantities that do not lend themselves to description
through differential equations. It is therefore necessary to have alternative methods
of describing quantal phenomena in our mathematical toolbox. In fact, Heisenberg,
simultaneous with Schrödinger, developed a mathematical formalism based on ma-
trix algebra, a formalism that is equivalent to the Schrödinger description. Later,
Dirac used linear vector spaces to unify the two approaches and provide a concise
method of treating quantum mechanical problems. In this chapter we will describe
the formalism of quantum mechanics using both the matrix algebra of Heisenberg
and the vector space notation of Dirac. This formalism constitutes the mechanics
of quantum physics and thus accounts for the title of this chapter. At the end of
the chapter we will correlate this new formalism to a problem that we have already
encountered.

6.1 Abstract Vector Spaces

The three-dimensional Cartesian Euclidean space is a special case of an abstract
vector space. Because it is a familiar vector space it is convenient to relate abstract
spaces to the Euclidean vector space. In Euclidean space any three-dimensional vec-
tor α may be written as the sum of its components

α = αx ı̂ + αy ĵ + αz k̂ (6.1)

where the unit vectors ı̂, ĵ , k̂ point in the x , y, and z directions, respectively. Thus,
ı̂, ĵ , k̂ constitute an orthonormal basis set (although not a unique one) because
en·em = δnm where en and em represent any of the ı̂, ĵ , and k̂. These vectors are
said to span the space because any vector in the space may be written as a linear
combination of them. The components of α are simply

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 169
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αx = α · ı̂ αy = α · ĵ αz = α · k̂ (6.2)

where the dot or scalar product has the usual meaning. The dot product is, however,
a special case of the inner product, a term that applies to any vector space. Note that
if two vectors, Euclidean or otherwise, are orthogonal, their inner product vanishes.

Before continuing, let us clarify the statement that ı̂, ĵ , k̂ do not constitute a
unique orthonormal basis set. This is easily done by noting that, for example, the
three unit vectors

1√
2

(ı̂ + ĵ ) ;
1√
2

(ı̂ − ĵ ) ; k̂ (6.3)

constitute an orthonormal basis set (see Problem 1). Clearly other linear combina-
tions will also span the space. Thus, generalizing to the case in which the vectors
are functions, linear combinations of the basis functions can also form a basis set.

Let us return to one of the problems for which we solved the TISE for the en-
ergy eigenfunctions and their eigenvalues, the L-box. Because the TISE is a linear
differential equation, linear combinations of the eigenfunctions

√
2/L sin (nπx/L)

having different values of n are also solutions. In this case the linear combinations
are Fourier series. If an energy measurement is made, the probability of measuring
the energy eigenvalue associated with a particular energy eigenfunction is the square
of the expansion coefficient of that eigenfunction in the linear combination. This is
reminiscent of the components of α discussed above. The eigenfunctions do indeed
constitute an orthonormal basis set upon which any wave function may be expanded.
In the case of an L-box the basis consists of the all functions

√
2/L sin (nπx/L)

where n goes from 1 → ∞. Thus, there are an infinite number of basis functions
so the space is of infinite dimension. Although the infinity of functions seems to be
much more complicated than the case for which ı̂, ĵ , k̂ span the Euclidean space,
the concept of spanning the space is the same. Never mind if there are a few more
basis vectors (functions)! Any vector/function can be expressed as a linear com-
bination of the basis vectors/functions. Note that, in general, the set of functions
sin (nπx/L) and cos (nπx/L) are required to span the space, but the limits imposed
by the potential energy function for the L-box make the inclusion of the cosines
unnecessary. They are, however, required if one uses an a-box. The analog of the
dot product, the inner product, in the case of the Fourier series is the integral

∫ L

0

(√
2

L
sin

nπx

L

)(√
2

L
sin

mπx

L

)

dx = δnm (6.4)

A knowledge of abstract vector spaces is crucial in quantum physics because
the state of a system is represented by a vector called a “state vector.” The state
vector is a more general description of the state of a system than is a wave function
because it contains all the information that can be known about the system, not just
coordinate or momentum information. We will derive the relationship between state
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vectors and wave functions later in this chapter. Given that the state vector contains
all the available information about the system, we may use the formalism of abstract
vector spaces to extract that information.

To summarize, we must expand our conception of a vector. Vector spaces do
not necessarily consist of arrows that represent three-dimensional quantities such as
displacement and velocity. Vectors may be functions such as sines and cosines or,
indeed, any of a number of other entities.

6.1.1 Matrix Representation of a Vector

We can represent vectors by matrices after specifying the basis set with which we are
working. For example, the vector α in Equation 6.1 may be represented as a three-
component matrix in which the components are simply αx , αy , and αz so the basis
set is ı̂, ĵ , k̂. The matrix can be either a column matrix or a row matrix depending
upon its function. For example, because of the rules for matrix multiplication, the
inner product α · β must be written

α · β = (
αx αy αz

)
⎛

⎝
βx

βy

βz

⎞

⎠

= αxβx + αyβy + αzβz (6.5)

To write the column matrix first would make it impossible to perform the multipli-
cation. As we have seen in the problems that we have solved, there may be many
bound states, in some cases an infinite number, so the vectors in our spaces are not
restricted to being composed of only three components. Moreover, there is no a
priori restriction that the components are real. Thus, our row and column matrices
may have any number of elements and these elements can be real, imaginary, or
complex. So, while Equation 6.5 is quite satisfactory for a three-dimensional space
in which the components are real numbers, we must generalize the relationship of a
row matrix to its corresponding column matrix in the case in which the components
may be complex. This is done by defining the Hermitian (pronounced hermishun)
conjugate matrix, a definition that applies to matrices in general, not just column
and row matrices. For now let us define the Hermitian conjugate for the column and
row matrices. The dagger symbol (†) is commonly used to designate the Hermitian
conjugate so we will apply it to a three-element matrix:

⎛

⎝
αx

αy

αz

⎞

⎠

†

≡ (
α∗

x α∗
y α∗

z

)
(6.6)

where the asterisk denotes the complex conjugate. Obviously, α†† = α and the Her-
mitian conjugate of a scalar is the complex conjugate of the scalar. The Hermitian
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conjugate of a matrix is also referred to as the conjugate transpose because the rows
and columns are transposed (exchanged) and complex conjugated.

6.1.2 Dirac Notation for a Vector

Dirac used the term “ket” to designate a vector. A ket is equivalent to a column
matrix so we write

|α〉 =̂

⎛

⎜
⎜
⎜
⎜
⎝

α1

α2

.

.

αN

⎞

⎟
⎟
⎟
⎟
⎠

(6.7)

where we have now allowed for the possibility that the vector space is N-dimensional.
(Recall that the symbol =̂ means “corresponds to.”) The equivalent of a row vector,
the Hermitian conjugate of the ket |α〉 is written 〈α| and is called a “bra.” The inner
product α · β in the multi-dimensional space is the 〈bra |ket〉

〈α |β〉 = (
α∗

1 α∗
2 . . α∗

N

)

⎛

⎜
⎜
⎜
⎜
⎝

β1

β2

.

.

βN

⎞

⎟
⎟
⎟
⎟
⎠

(6.8)

The complex conjugate of an inner product is obtained by simply reversing the
bra and ket as is easily seen from Equation 6.8. Thus,

〈α |β〉∗ = 〈β |α〉 (6.9)

In terms of components we may write |α〉 as a linear combination on some basis
set. The vector space is, however, of infinite dimension so we will require a more
generalizable notation than ı̂, ĵ , k̂. We choose to represent each of the orthonormal
basis vectors by the ket |ei〉. Because they are orthonormal we have

〈ei

∣
∣e j

〉 = δi j (6.10)

An arbitrary ket may then be written

|α〉 =
N∑

i=1

αi |ei 〉 (6.11)

and its Hermitian conjugate
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〈α| =
N∑
〈ei |

i=1

α∗
i (6.12)

The inner product of a vector with itself is called the norm. More usually it is
referred to as the square of the absolute value by analogy with the length of a three-
dimensional vector being the square root of its dot product with itself. Thus,

〈α |α〉 =
N∑

j=1

N∑

i=1

αiα
∗
j

〈
e j |ei

〉

=
N∑

i=1

|αi |2

≥ 0 (6.13)

The norm of a vector/ket is often written ||α||, but it may also be written with only a
single vertical line on each side. We will use the single vertical line, |α|. As in three
dimensions, if the inner product of a vector with itself is unity, the vector is said to
be normalized.

6.1.3 Operators in Quantum Mechanics

It should be clear from the discussion above that the wave functions that we have
discussed in the preceding chapters will now, in a formal sense, correspond to
vectors (kets), that is, state vectors. This does not mean that the state vectors are
necessarily eigenvectors. In general, a wave function can be represented as a linear
combination of the eigenfunctions. In the language of the current discussion we say
that a state vector may be represented as a linear combination of eigenvectors. It is
only the act of measurement that forces the system into one of the eigenstates, the
state vector of which is an eigenvector. Thus, the state vector is collapsed by the act
of measurement. This is identical to the collapse of the wave function discussed in
Section 2.7. Mathematically, the act of measuring is a projection of the state vector
onto one of the eigenstates of the observable being measured.

To make a geometrical analogy, suppose we wish to project an arbitrary vector in
a plane A = Ax ı̂ + Ayĵ onto the x-axis. This projection can be accomplished using
matrix multiplication:

(
1 0
0 0

) (
Ax

Ay

)
=

(
Ax

0

)
=̂Ax ı̂ (6.14)

The 2×2 matrix in Equation 6.14 is a “projection operator”. This is a trivial example,
but in quantum mechanics, projection operators select a component of a state vector
in an analogous manner.
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Operators in quantum mechanics transform vectors into other vectors. In terms
of kets we may represent such an operation by the equation

Â |α〉 = |β〉 (6.15)

where Â is an operator. In quantum mechanics the vast majority of the operators
that we will deal with are linear operators. That is, they have the property

Â (a |α〉 + b |β〉) = a Â |α〉 + b Â |β〉 (6.16)

where a and b are complex constants.
The inner product of 〈β| with Â |α〉 is written

〈β| ( Â |α〉) = 〈β| Â |α〉 (6.17)

Inner products such as the one in Equation 6.17 are often referred to as matrix
elements.

Successive operations with operators

Different operators may be applied in succession and are represented as products of
operators which obey the distributive and associative laws, but not necessarily the
commutative law. That is,

Â B̂ �= B̂ Â (6.18)

Thus, in general, Â and B̂ do not commute.

Functions of operators

A power series of operators is defined by the series that has the same coefficients as
the analogous power series in a common variable. That is, if a series of operations,
not necessarily an infinite series, is represented by

f
(

Â
) =

∞∑

n=0

an Ân (6.19)

then f
(

Â
)

is the same function as the power series that it represents. This has impor-
tant ramifications. For example, suppose an infinite series of successive operations
by an operator Â is given by

f
(
Â
) = 1 + Â

1!
+ Â2

2!
+ Â3

3!
· · · (6.20)
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Then

f
(

Â
) = eÂ (6.21)

Such a representation pertains to any exponentiated operator Â.

The identity operator

The definition of the identity operator Î , also known as the unit operator, may seem
trivial, but it is vital to subsequent operations. It is defined such that

Î |α〉 = |α〉 (6.22)

If |α〉 is represented by a column matrix having N components, the matrix repre-
sentation of Î is an N × N matrix consisting of zeros except for ones along the
diagonal.

The matrix representation of an operator is a diagonal matrix if the basis
set consists of the eigenvectors of the operator

If a matrix is diagonal, then the diagonal elements are the eigenvalues. Unless the
basis set used to construct the matrix that represents an operator consists of the
eigenkets of the operator, the matrix is not diagonal. If Â is an operator having
eigenvalues Aii , then the eigenvectors |αi 〉 are represented as column matrices with
only a single nonzero entry. For example, if i = 1 → 4, then the eigenvalue equation
for the eigenvector |α2〉 is, in matrix notation

⎛

⎜
⎜
⎝

A11 0 0 0
0 A22 0 0
0 0 A33 0
0 0 0 A44

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ = A22

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ (6.23)

If the operator is not diagonal, the process of solving the eigenvalue equation and
then representing the operator in terms of the eigenvectors is called “diagonalizing
the matrix”.

The inverse of an operator

The inverse of an operator Â, designated Â−1, is defined such that

Â Â−1 = Î (6.24)

It is conceivable that the inverse may not exist, but we will not concern ourselves
with this technicality at this point.
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The Hermitian conjugate of an operator

In Section 6.1.1 we defined the Hermitian conjugate of a column/row matrix as
the conjugate transpose. This definition persists beyond column/row matrices. More
illuminating, however, are the properties of the Hermitian conjugate of an oper-
ator in Dirac notation. It is easiest to begin with the an operational definition of
the Hermitian conjugate of a ket, which, from our definition of the conjugate of a
column/row matrix, is

(|α〉)† = 〈α| (6.25)

so that

(
Â |α〉)† = 〈α| Â† (6.26)

In view of Equation 6.26 we may take the Hermitian conjugate of the inner product
in Equation 6.17:

(〈β| Â |α〉)† = 〈α| Â† |β〉 (6.27)

We can also examine the Hermitian conjugate of a product of operators ÂB̂ using
Equation 6.26 and the identifications |α〉 → B̂ |α〉 and 〈β| Â| → 〈β| Â|:

(〈β| Â B̂ |α〉)† = 〈β| Â|B̂ |α〉†
= 〈α| B̂†| Â† |β〉 (6.28)

The inner product in Equation 6.28 may also be written

(〈β| Â B̂ |α〉)† = 〈α| (Â B̂
)† |β〉 (6.29)

Comparing the right-hand sides of Equations 6.28 and 6.29 shows that

(
Â B̂

)† = B̂† Â† (6.30)

Unitary operators

If the inverse of an operator Û is equal to its Hermitian conjugate Û †, then the
operator is said to be unitary. Thus, Û is unitary if

Û−1 = Û † (6.31)
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and

ÛÛ−1 = ÛÛ †

= Î (6.32)

Hermitian operators

The most important of all linear operators in quantum physics is the Hermitian oper-
ator. Quite simply, an operator is Hermitian if it is equal to its Hermitian conjugate.
That is, Â is Hermitian if

Â = Â† (6.33)

In quantum mechanics, the observable quantities, quantities that can be measured,
are represented by Hermitian operators for reasons that we shall see very shortly.

The commutator

It was seen above, that, in general

Â B̂ �= B̂ Â (6.34)

This property of quantum mechanical operators has extremely important conse-
quences, so important that the difference ÂB̂ − B̂ Â is given a special symbol and a
special name. It is written as

[
Â, B̂

] ≡ Â B̂ − B̂ Â

= − [
B̂, Â

]
(6.35)

and called the commutator of Â and B̂. If two operators commute, their commutator
vanishes.

It is often useful to employ commutator identities such as those listed in Ap-
pendix K. These are frequently proved by adding and subtracting the necessary
terms to the expansion of the left-hand side. For example,

[
Â, B̂Ĉ

] = Â B̂Ĉ − B̂Ĉ Â + (
B̂ ÂĈ − B̂ ÂĈ

)

= (
ÂB̂Ĉ − B̂ ÂĈ

) + (
B̂ ÂĈ − B̂Ĉ Â

)

= (
ÂB̂ − B̂ Â

)
Ĉ + B̂

(
ÂĈ − Ĉ Â

)

= [
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
(6.36)

A specific example of a noncommuting operator is in order here. In this chapter
we have, so far, been very abstract. The payoff for this abstract formalism is that
it will simplify computations later (you have heard that before). Nonetheless, let us
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consider the operators that we discussed in Section 4.3.1. Recall that the momentum
operator in coordinate representation is given by (see Equation 2.28)

p̂x = �

i

d

dx
(6.37)

Let us examine the commutator [x, p̂x]. When an operator is a differential operator
the method that must be employed to determine its action is to examine its oper-
ation on a function, in this case some arbitrary function of x , call it f (x). Thus,
performing the indicated operations

[x, p̂x] f (x) = �

i

{
x

d f (x)

dx
− d [x f (x)]

dx

}

= −�

i
f (x) (6.38)

We conclude therefore that [x, p̂x] is an example of a commutation relation that
does not vanish. Moreover, we have evaluated it and found that

[x, p̂x] = i� Î (6.39)

Often the Î is understood, but in Equation 6.39 it has been displayed for clarity.
While Equation 6.39 pertains specifically to the coordinate x and the x-component

of linear momentum, it can be generalized to reflect the fact that the coordinates are
independent as are the components of momentum. Therefore, we may write

[
xi , p̂ j

] = i�δi j[
xi , x j

] = 0
[

p̂i , p̂ j
] = 0 (6.40)

where the subscripts i and j refer to any of the x, y, or z-components. For exam-
ple, x2 = y and p2 = py. These commutation rules are sometimes referred to as
the canonical commutation rules because they are often taken to be postulates of
quantum physics.

From the first of Equations 6.40 we can derive a commutation rule involving
the powers of xi or p̂ j . Using the identity given in Equation K.3, the canonical
commutation rules, and mathematical induction, we may derive the relation (see
Problem 10)

[
x, p̂n

x

] = i�n p̂n−1
x (6.41)

Moreover, if a function of p̂x , f ( p̂x) is assumed to be expandable in a power series
we may write
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[x, f ( p̂x)] = i�
� f ( p̂x)

�x
(6.42)

In an analogous fashion the companion commutation rule for p̂x and g (x), a func-
tion of x that can be expressed as a power series,

[ p̂x, g (x)] = −i�
�g (x)

� px
(6.43)

can also be derived. Of course, Equations 6.42 and 6.43 can be generalized to the
other coordinates as well.

6.2 The Eigenvalue Equation

To continue with our three-dimensional analogy, suppose an operator merely changes
the length of the vector. In Dirac notation this simple operation is represented by

Â |α〉 = a |α〉 (6.44)

where, in this case, a is the factor by which Â stretches or compresses the vector
|α〉. This is a trivial example of an eigenvalue equation, almost too trivial to make
the point that an operator operating on an (unknown) eigenvector reproduces that
eigenvector multiplied by an eigenvalue. In the general case, the eigenvalue, which
is a number, might be a complex number. Additionally, there will be a set of eigen-
vectors, each having its own eigenvalue.

We have already encountered the eigenvalue equation in disguise, the TISE. Writ-
ten in Dirac notation to be consistent with Equation 6.44 the TISE is

Ĥ |ψn〉 = En |ψn〉 (6.45)

where Ĥ is the Hamiltonian operator, the |ψn〉 are the eigenvectors, or eigenkets,
and the En are the corresponding eigenvalues. As previously, we attach a subscript
to signify that the solution of the eigenvalue equation consists of an array of eigen-
vectors and eigenvalues, possibly even an infinite array. The particle-in-a-box and
the harmonic oscillator are examples of potentials that cause their Hamiltonian op-
erators to have an infinite array of eigenvectors and eigenvalues.

To complicate matters, there are cases in which the same eigenvalue corresponds
to two or more distinctly different eigenvectors. In such cases the eigenstates rep-
resented by the eigenvector are said to be degenerate. The number of eigenstates
having the same eigenvalue is called the degree of degeneracy or simply the degen-
eracy of the states. For one-dimensional potentials, however, there is no degeneracy
of the energy eigenstates (see Problem 3, Chapter 2).

When the operator in an eigenvalue equation is Hermitian, the eigenvectors and
eigenvalues possess special properties that are particularly important for quantum



180 6 The Mechanics of Quantum Mechanics

mechanical applications. We therefore present some of the most important of these
properties.

6.2.1 Properties of Hermitian Operators
and the Eigenvalue Equation

The eigenvalues of Hermitian operators are real.

For a Hermitian operator the eigenvalues are real. This is important because it
is Hermitian operators that are used to represent physical observables, for exam-
ple, Ĥ =̂ energy. Surely the eigenvalues, the possible results of a measurement,
cannot be imaginary if they are to represent observable quantities! The proof is
straightforward.

Proof

Let Â represent an arbitrary Hermitian operator such that

Â|αi 〉 = αi |αi 〉 i = 1, 2, ...N (6.46)

That is, the set of numbers αi are the eigenvalues associated with the eigenkets |αi 〉.
Taking the complex conjugate of Equation 6.46 we have

〈
α j

∣∣ Â† = 〈
α j

∣∣α∗
j j = 1, 2, ...N (6.47)

Now take the inner product of Equation 6.46 with the bra
〈
α j

∣
∣. This is commonly

referred to as “multiplying on the left” by
〈
α j

∣
∣. Similarly, multiply Equation 6.47

on the right by |αi 〉. The resulting inner products on the left-hand sides are identical
because Â is Hermitian. We may therefore equate the right-hand sides and obtain

αi
〈
α j |αi

〉
=α∗

j

〈
α j |αi

〉
(6.48)

or

(
α∗

j − αi
) 〈

α j |αi
〉 = 0 (6.49)

Now set i = j . The inner product of a vector with itself cannot vanish so we must
have

α∗
i = αi (6.50)

thus proving that the eigenvalues of a Hermitian operator are real.



6.2 The Eigenvalue Equation 181

The eigenvectors of a nondegenerate Hermitian operator are mutually
orthogonal.

Proof

Using Equation 6.49 from the proof above with i �= j we have

〈
α j |αi

〉 = δi j (6.51)

because we have already proved that the eigenvalues are real. Also, in Equation
6.51 we have assumed that the eigenvectors are normalized. Note that Equation
6.51 is only true if the operator is nondegenerate for if α j = αi the inner product in
Equation 6.49 can take on any value.

Degeneracy is an important property of quantum mechanical operators. We there-
fore discuss this property before returning to the properties of Hermitian operators.

The eigenvectors corresponding to the same eigenvalue are not unique. Any
linear combination of degenerate eigenvectors is also an eigenvector with the
same eigenvalue.

Proof

Assume a twofold degeneracy such that

B̂ |β1〉 = β |β1〉 and Â |β2〉 = β |β2〉 (6.52)

We form two arbitrary linear combinations of |β1〉 and |β2〉 as follows:

|α1〉 = a |β1〉 + b |β2〉 and |α2〉 = c |β1〉 + d |β2〉 (6.53)

where a, b, c, and d are arbitrary constants. Clearly |α1〉 and |α2〉 are eigenvectors
of B̂ with eigenvalue β as may be seen by simply operating on them. As an example
we choose |α1〉.

B̂ |α1〉 = a B̂ |β1〉 + bB̂ |β2〉
= aβ |β1〉 + bβ |β2〉
= β (a |β1〉 + b |β2〉)
= β |α1〉 (6.54)

Thus, the eigenvectors |β1〉 and |β2〉 are not unique since we may choose any val-
ues of the constants a, b, c, and d and still obtain an eigenvector with the same
eigenvalue.
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The operator |αi 〉 〈αi | is called a projection operator and picks out the αi th
“component” of an arbitrary vector |ψ〉 that is given by

|ψ〉 =
N∑

i=1

αi |αi 〉 (6.55)

Proof

Assume that |ψ〉 in Equation 6.55 is normalized and take the inner product with
〈
α j

∣
∣

to get

〈
α j |ψ

〉 = α j (6.56)

Now replace a j in Equation 6.55 using Equation 6.56 with j = i . We have

|ψ〉 =
N∑

i=1

|αi 〉 (〈αi | ψ〉)

=
(

N∑

i=1

|αi 〉 〈αi |
)

|ψ〉 (6.57)

Now, |ψ〉 is an arbitrary vector so the quantity in parentheses must be the identity
operator, that is,

(
N∑

i=1

|αi 〉 〈αi |
)

= Î (6.58)

Equation 6.58 is known as the completeness relation. Because the quantity in paren-
theses in Equation 6.58 is the identity it may be inserted virtually anywhere in a
string of bras and kets in order to facilitate a proof.

Let us assume that |ψ〉 is normalized and take the inner product 〈ψ| ψ〉. Bearing
in mind that the |αi 〉 are orthonormal 〈ψ| ψ〉 may be written

〈ψ| ψ〉 = 1

= 〈ψ| Î |ψ〉

= 〈ψ|
(

N∑

i=1

|αi 〉 〈αi |
)

|ψ〉

=
N∑

i=1

〈ψ |αi 〉 〈αi | ψ〉



6.2 The Eigenvalue Equation 183

=
N∑

i=1

|〈αi | ψ〉|2

=
N∑

i=1

|αi |2 (6.59)

This shows that, as long as |ψ〉 is normalized, the sum of the absolute squares of the
expansion coefficients is equal to unity.

The inside out inner product that is part of the completeness relation, Equation
6.58, must be an operator. Clearly it is not a vector, but, when operating on a vector
it produces another vector. This fits the definition of an operator. Let us see what op-
eration it performs by having it operate on an arbitrary vector, say |ψ〉 as expressed
as the linear combination of the basis set |αi 〉 in Equation 6.55.

(|αi 〉 〈αi |) |ψ〉 = (|αi 〉 〈αi |)
N∑

j=1

α j

∣
∣α j

〉

= |αi 〉
⎛

⎝〈αi |
N∑

j=1

α j

∣
∣α j

〉
⎞

⎠

= 〈αi |
⎛

⎝
N∑

j=1

α j 〈αi

∣
∣α j

〉
⎞

⎠

= 〈αi |
(
α jδi j 〈αi

∣
∣α j

〉)

= αi |αi 〉 (6.60)

The operator |αi〉 〈αi |, which is sometimes referred to as an outer product, picks out
the αi th “component” of the vector |ψ〉. It therefore projects |ψ〉 onto the |αi〉 state
and is called a projection operator.

We may apply this formalism to the two-dimensional vector A as in
Section 6.1.3. We identify |ψ〉 =̂A and, for example, |αi 〉 =̂ı̂. We have

(ı̂ ı̂) ·A = ı̂ (ı̂ · A)

= ı̂
(
ı̂·Ax ı̂ + ı̂·Ay ĵ

)

= Ax ı̂ (6.61a)

from which it is clear that the “operator” ı̂ ı̂ “projects” the vector A onto the x-axis.
It is understood that the operator on the right-hand side of the projection operator
ı̂ ı̂ must act first. In quantum mechanical terms, they project a vector onto the “axis”
corresponding to a particular eigenvector. To simplify the notation we designate a
projection operator as

P̂i = |αi 〉 〈αi | (6.62)
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so that

P̂i |ψ〉 = αi |αi 〉 (6.63)

Clearly the eigenvectors of the projection operator are the basis vectors them-
selves so that

P̂j |αi 〉 = δi j |αi 〉 (6.64)

It is seen then that the matrix representation of the |αi 〉 consists of column vectors
with N entries, all of which are zero except for unity in the i th position. This means
that the matrix representation of the projection operator P̂i is an N × N matrix with
all entries zero except for unity in the i th location along the diagonal (see Equation
6.14). This shows us how to represent the outer product |αi 〉 〈αi | by a matrix.

The eigenvectors corresponding to the same eigenvalue are not (necessarily)
orthogonal, but an orthogonal set can always be constructed.

Proof

From the proof in Section 6.2.1 it is clear that we may choose a, b, c, and d such
that the inner product

〈α1| α2〉 �= 0 (6.65)

which means that there is no requirement that any set of linearly independent degen-
erate eigenvectors need be mutually orthogonal. On the other hand, proper choice
of a, b, c, and d would guarantee that an orthonormal set can be constructed. The
process by which an orthogonal set is constructed is known as the Gram–Schmidt
orthogonalization procedure.

To demonstrate, we construct a set of orthogonal eigenvectors by judiciously
choosing linear combinations of the eigenvectors associated with the degenerate
eigenvalue, the degenerate eigenvectors. Assume that the set of N linearly indepen-
dent normalized kets |β1〉, |β2〉, |β3〉 ... |βN 〉 all have the same eigenvalue β. We wish
to use these eigenvectors to construct a set of orthonormal eigenvectors |α1〉, |α2〉,
|α3〉,...,|αN 〉, all of which have the eigenvalue β. We begin by letting

|α1〉 = |β1〉 (6.66)

and use terminology borrowed from Euclidean vector spaces in an effort to clarify
the procedure by analogy.

To guarantee that |α2〉 has no component parallel to |α1〉, thus guaranteeing that
they are orthogonal, we simply subtract the component of |β2〉 along the |α1〉 (and
|β1〉) axis from the eigenvector |β2〉. This is easily done using the projection operator
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|α1〉 〈α1| which, when operating on |β2〉, produces the component of |β2〉 along the
|α1〉 axis. We therefore construct |α2〉 as

c2 |α2〉 = |β2〉 − |α1〉 〈α1| β2〉 (6.67)

where the constant c2 is to be adjusted to insure that |α2〉 is normalized. Note that
|α1〉 is automatically normalized because the |βi〉 are assumed to be normalized.

We can verify that |α2〉 as given in Equation 6.67 is orthogonal to |α1〉 by taking
the inner product 〈α1| α2〉 = 〈β1| α2〉.

c2 〈α1| α2〉 = 〈α1 |β2〉 − 〈α1 |α1〉 〈α1| β2〉 (6.68)

Because 〈α1 |α1〉 = 〈β1 |β1〉 = 1, it is clear that 〈α1 |α2〉 = 0.
The constant c2 is evaluated by demanding normality of the |α2〉. Therefore,

|c2|2 〈α2| α2〉 = |c2|2
= 〈β2 |β2〉 − 2 |〈β2 |α1〉|2

+ 〈β2 |α1〉 〈α1 |α1〉 〈α1| β2〉
= 1 − |〈β2 |α1〉|2 (6.69)

and the normalization constant c2 is given by

c2 =
√

1 − |〈β2 |α1〉|2 (6.70)

Of course, the procedure can be continued N times until all of the |αi 〉 have been
constructed. For example, |α3〉 will be

c3 |α3〉 = |β3〉 − |α1〉 〈α1| β3〉 − |α2〉 〈α2| β3〉 (6.71)

where now both the components along the |α1〉 and |α2〉 axes have been subtracted
from |α3〉 and c3 must be adjusted for normality.

Because an orthonormal set can always be constructed from the degenerate
eigenvectors there will always be a complete set of eigenvectors upon which any
arbitrary vector may be expanded. This set would be composed of the orthonormal
sets of degenerate eigenvectors plus any nondegenerate eigenvectors. The nonde-
generate eigenvectors are orthogonal to the degenerate orthogonal eigenvectors by
virtue of having different eigenvalues.

The number of eigenvectors may be finite or, indeed, it may be infinite, but the
set of mutually orthogonal |αi〉 do indeed constitute a basis set. Here the set |αi 〉 is
taken to represent the complete set of eigenvectors, degenerate and nondegenerate.
This is analogous to the paradigm three-dimensional geometrical case represented
by Equation 6.1 in which an arbitrary vector is expanded on the ı̂, ĵ , k̂ basis set.
Thus, we may still expand an arbitrary ket as given in Equation 6.55. In quantum
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physics it is assumed that the set of |αi 〉 span the space so that any suitable state
vector may be written as a linear combination of the |αi 〉.

6.2.2 Properties of Commutators

It will be seen later that the vanishing of the commutator has important conse-
quences. We will therefore consider the properties of commuting operators in some
detail.

If two operators have common eigenvectors, then they commute.

Proof

Suppose

Â |α〉 = α |α〉 and B̂ |α〉 = β |α〉 (6.72)

Operating on the left side of the first equation with B̂ and the left side of the second
equation with Â and subtracting we have

(
B̂ Â − Â B̂

) |α〉 = B̂α |α〉 − Âβ |α〉
= (αβ − βα) |α〉
= 0 (6.73)

Therefore,

[
Â, B̂

] = 0 (6.74)

Moreover, the converse is also true.

If two nondegenerate operators commute, they have a common set
of eigenvectors.

Proof

Let

Â |αi 〉 = αi |αi〉 (6.75)

and assume that the nondegenerate operators Â and B̂ commute. Now operate on
Equation 6.75 with B̂ and interchange the order of operation because Â and B̂
commute

Â
{

B̂ |αi 〉
} = αi

{
B̂ |αi 〉

}
(6.76)
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which shows that
{

B̂ |αi 〉
}

is an eigenvector of the operator Â with eigenvalue αi .
But, it has been assumed that Â is nondegenerate. Therefore,

{
B̂ |αi 〉

}
cannot be

different from |αi 〉 except by a multiplicative constant.
Having proved that nondegenerate commuting operators have common eigenvec-

tors we now undertake the much more formidable task of proving it for degenerate
operators.

If any two operators commute, they have a common set of eigenvectors

Proof

Let

Ĝ |γi〉 = γ |γi〉 (6.77)

where γ is an n-fold degenerate eigenvalue of Ĝ. Assume that the operators Ĝ
and F̂ commute. Operate on Equation 6.77 with F̂ and taking advantage of the
commutation with Ĝ we have

Ĝ
{

F̂ |γi〉
} = γ

{
F̂ |γi〉

}
(6.78)

where γ is the same eigenvalue for all of the |γi〉. As above, it is clear that
{

F̂ |γi〉
}

is an eigenvector of Ĝ, although we must deal with the degeneracy now which we
do by expanding

{
F̂ |γi〉

}
on the complete set |γi 〉.

{
F̂ |γi 〉

} =
n∑

j=1

gi j

∣
∣γ j

〉
(6.79)

Now multiply by a constant ci and sum over all i and obtain

F̂
n∑

j=1

c j |γi 〉 =
n∑

i, j=1

gi jci

∣
∣γ j

〉

=
n∑

j=1

∣
∣γ j

〉
(

n∑

i=1

ci gi j

)

=
n∑

j=1

ϕg j

∣
∣γ j

〉
(6.80)

where we have made the substitution

n∑

i=1

ci gi j = ϕc j (6.81)

in the last line of Equation 6.80.
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To understand Equation 6.81 it is best to write out the first few terms. We have

g1 jc1 + g2 j c2 + ... + (
g j j − ϕ

)
c j + ... + gnj cn = 0 (6.82)

Several things are apparent. First, there are n such equations, one for each value
of j . Second, the term for which i = j has ϕ in the coefficient of c j . Finally, the
set of n simultaneous equations are homogeneous equations. That is, the right-hand
sides are all equal to zero. Such equations have a nontrivial solution only if the
determinant of the coefficients vanishes. The equation that results from setting this
determinant equal to zero is called the secular equation. This procedure occurs quite
often in quantum mechanics so it is worth noting the reason that the only nontrivial
solutions are the roots of the secular equation.

Recall Cramer’s rule for solving simultaneous equations. For simplicity use two
equations and two unknowns. Suppose we wish to solve

a1x + b1 y = c1

a2x + b2 y = c2 (6.83)

To apply Cramer’s rule we form the determinant of the coefficients

D =
∣∣
∣
∣
a1 b1

a2 b2

∣∣
∣
∣ (6.84)

Now, to solve for x , form Dx by inserting the right-hand sides into the x-positions
in D. That is,

Dx =
∣
∣∣
∣
c1 b1

c2 b2

∣
∣∣
∣ (6.85)

According to the rule, x is given by

x = Dx

D
(6.86)

If, however, both c1 and c2 are zero, then Dx ≡ 0 because one column of a determi-
nant consists of all zeros. Therefore, x must vanish unless D is also zero in which
case the quotient Dx/D is indeterminate and a nonzero solution for x (and y) is
possible. Of course, the extension to multi-dimensions is obvious. Nonetheless, the
secular equation is used countless times in quantum mechanics and, indeed, in all
branches of physics.

While the array of equations represented by Equation 6.82 has the c’s as the
unknowns, it is actually the n roots of ϕ that the secular equation will yield. Each
root, ϕ j , will have associated with it a solution c( j )

i . We may write a new vector
using these expansion coefficients:
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∣
∣ϕ j

〉 =
n∑

i=1

c( j )
i |γi〉 (6.87)

Thus, the
∣
∣ϕ j

〉
are eigenvectors of both Ĝ and F̂ and constitute a complete set of

simultaneous eigenvectors of these two operators.

6.3 The Postulates of Quantum Mechanics

6.3.1 Listing of the Postulates

Now that we have the mathematical tools to apply to an abstract formulation of
quantum physics we state six postulates to guide our study. We emphasize that
virtually every textbook contains a listing of postulates numbering about five, give
or take a few, depending upon author’s inclination for consolidation. We present
them in an order that is considered logical and conducive to understanding. For
convenience, we first list them and then discuss them separately.

Postulate I—The measurement postulate

All observable quantities such as position, momentum, and energy are represented
by linear operators. The only possible result of a measurement of an observable A
is one of the eigenvalues of the operator Â.

Postulate II—The Hermitian postulate

The operator that represents any observable quantity in quantum mechanics must be
a Hermitian operator. Thus, the observable quantity A corresponds to the operator
Â = Â†. A may be a scalar or vector quantity in which case the corresponding
operators are scalar or vector operators, respectively. Â may also contain the time.

Postulate III—The state vector postulate

The state of any physical system is specified by a state vector which we designate by
the ket |�〉. We use the capital Greek letter to conform with our previous notation
where the capital represented the time-dependent wave function; |�〉 also contains
variables other than time. This ket contains all the information that it is possible to
extract about the system. For convenience we assume, because it is always possible
to do so for bound states, that |�〉 is normalized. If |�〉 does not contain the time, it
is designated |ψ〉.

Postulate IV—The expansion postulate

It is assumed that the state vector |ψ〉 at a given time may be expressed as a linear
combination of the eigenvectors of Â; this expansion is referred to as a coherent
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superposition of (eigen)states. This postulate implies that the set of eigenvectors of
Â form a basis set for the vector space of interest. The term “vector space of interest”
refers to the vector space that is spanned by the set of eigenvectors since the only
possible results of a measurement are their eigenvalues (Postulate I). Note that this
circumvents any detailed discussion of the completeness of the eigenvectors since
Postulate I defines the vector space of interest. Therefore, no further discussion of
completeness is required.

If |ψ〉 is normalized so that 〈ψ |ψ〉 = 1, then the absolute squares of the expan-
sion coefficients represent the probabilities of measuring the eigenvalues associated
with each particular eigenvector or component of the state vector. This is often re-
ferred to as the Born interpretation in honor of Max Born who was awarded the
Nobel Prize in Physics 1954 “for his fundamental research in quantum mechanics,
especially for his statistical interpretation of the wavefunction.”

Postulate V—The uncertainty postulate

If two different observables A and B are measured, the results will, in general, de-
pend upon the order in which the measurements are made. This interference between
successive measurements manifests itself mathematically as the noncommutativity
of the operators Â and B̂. This is another statement of the Heisenberg uncertainty
principle which was discussed qualitatively in Section 1.2.3. The quantitative state-
ment of the restrictions on the uncertainties in Â and B̂ is given below.

Postulate VI—The time evolution postulate

The time evolution of a system is dictated by the TDSE which we may write in
terms of the state vector as

i�
�

�t
|�〉 = Ĥ |�〉 (6.88)

where Ĥ is the Hamiltonian operator first introduced in Equations 2.17 and 2.25 for
one-dimensional problems. As noted there, it represents the TME in the usual case
for which the potential energy is independent of time. Even if Ĥ contains the time,
Equation 6.88 still determines the time evolution of the system. (In this textbook Ĥ
will rarely contain the time.)

6.3.2 Discussion of the Postulates

Postulate I—The measurement postulate

The significance of this postulate belies its brevity. This significance will also be
considered in the discussion of Postulate IV—the expansion postulate. For now it is
sufficient to note that we have already encountered an example of an eigenvalue
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equation that leads to the possible energies of a system, the TISE. Because the
Hamiltonian is the energy operator, the TISE is the energy eigenvalue equation.

Postulate II—The Hermitian postulate

It is absurd to imagine that a measurement of a legitimate observable quantity would
yield anything but a real number. Therefore, because of Postulate I and because
Hermitian operators must have only real eigenvalues (see Section 6.2.1), it is natural
that observables are represented by Hermitian operators.

Postulate III—The state vector postulate

Clearly the state vector concept is a generalization of the wave function that was
encountered earlier in this book. The reason that the concept must be generalized
is that there are some observables for which it is impossible to write a function as
was done in the problems solved previously. The most often encountered observable
for which a function cannot be written is the “spin” which represents the magnetic
moment of a particle.

Postulate IV—The expansion postulate

If 〈ψ |ψ〉 = 1 and if |ψ〉 is expressed as a linear combination of the eigenvectors
|αi 〉 of the operator Â so that

|ψ〉 =
N∑

i=1

αi |αi 〉 (6.89)

where the αi are, in general, complex numbers, then the probability of measuring
the j th eigenvalue of Â (as set forth in Postulate I) is the absolute square of the
expansion coefficient α j which may be determined by application of the appropriate
projection operator

α j |α j〉 = P̂j |ψ〉
= (∣∣α j

〉 〈
α j |

) |ψ 〉
(6.90)

Therefore,

α j = 〈
α j |ψ

〉
(6.91)

and the expansion of the state vector |ψ〉 in Equation 6.89 may be written as in
Equation 6.57 as

|ψ〉 =
N∑

i=1

|αi 〉 〈αi |ψ〉 (6.92)
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Now, the probability of measuring the j th eigenvalue ℘ j is simply the square of
the expansion coefficient

℘ j = ∣
∣α j

∣
∣2 (6.93)

which is also the probability of finding the system in the j th state unless a degen-
eracy exists in which case the probability of measuring the degenerate eigenvalue is
simply the sum of the probabilities of finding the system in each of the degenerate
eigenstates. Note that the measurement actually changes the quantum mechanical
system by forcing it into one of the eigenstates of Â. This is referred to as “collaps-
ing” the state vector since the act of measurement has converted the superposition
of states in Equation 6.89 into a single state, one of the complete set of |αi 〉.

Notice that it is necessary to take the absolute value of the expansion coefficient
α j because α j is a complex number and probabilities must be real fractions. More-
over, because any complex number may be written

α j j = eiϕ
∣
∣α j j

∣
∣ (6.94)

where ϕ is the phase that |ψ〉, as given in Equation 6.89, is said to represent a
coherent state.

Introductory quantum physics courses such as the one to which this book is di-
rected concentrate on solutions of the eigenvalue problem, in particular the TISE.
This postulate makes it is clear, however, that quantum mechanical systems need not
reside in an eigenstate. Indeed, it is rare that they are in an eigenstate. Rather, such
systems are generally in a superposition of states, a superposition that is represented
mathematically by Equation 6.89. What does this mean physically? Does it mean
that the atoms “flit” between the different states |αi〉 and the result of a measurement
depends upon which state the atom occupied at the instant the measurement was
made? This is one point of view. Another point of view is to imagine that rather
than a single system, there are a large number of systems (atoms in the present
example). Each atom is in an eigenstate, but not all atoms are in the same eigen-
state. The result of a large number of measurements divided by the square of the
number of measurements leads to precisely the square of the coefficients as given in
Equation 6.89. Thus, given this ensemble of systems, the probability of measuring
a particular state is given by Equation 6.93. Both of these points of view are useful
to conceptualize a superposition of states, but, in reality, neither makes obvious the
interference effects that can occur.

This postulate is the heart and soul of modern quantum physics. It provides a
prescription by which the quantum mechanical probabilities may be determined. In
addition, it implies that the set of eigenvectors of any operator corresponding to an
observable quantity is a complete set upon which any acceptable state vector may
be expanded.

We can revisit the concept of expectation value that was introduced in Section
3.1.1. If we wish to find the expectation value of the observable A, we merely sum
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the products of the probabilities of measuring a given eigenvalue and the eigen-
value. Thus,

〈A〉 =
N∑

i=1

αi℘i

=
N∑

i=1

αi |〈αi |ψ〉|2

=
N∑

i=1

〈ψ |αi 〉 〈αi | αi |ψ〉

=
N∑

i=1

〈ψ |αi 〉 〈αi | Â |ψ〉

= 〈�|
(

N∑

i=1

|αi 〉 〈αi |
)

Â |ψ〉

= 〈ψ| Â |ψ〉 (6.95)

Equation 6.95 is the Dirac notation equivalent to the expectation value in Equation
3.12. Of course, Equation 6.95 is much more general inasmuch as it pertains to
any observable quantity. Notice that in Equation 3.12 the operator, x2, was “sand-
wiched” between ψ∗ (x) and ψ (x). These integrals are frequently written this way
by analogy with Equation 6.95. Such integrals are often referred to as sandwich
integrals.

Because there are as many “components” of |ψ〉 as there are eigenvectors of Â, a
column matrix that represents |ψ〉 must have as many rows as there are eigenvectors.
This could be an infinite number. For example, both the infinite square well and
the harmonic oscillator have an infinite number of eigenstates. Therefore, a general
expansion of the wave vector (wave function) in terms of either of these complete
sets would require provision to include an infinite number of basis states. This would
require N → ∞ in the summation in Equation 6.89. This is certainly not a new
concept since any such expansion on the eigenstates of the infinite square well is
simply a Fourier series.

Postulate V—The uncertainty postulate

Although this postulate follows formally from Postulate II, it has been elevated
to postulate status because it is crucial to the physical interpretation of quan-
tum mechanics and, in particular, the differences between quantum and classical
physics. The Gedanken experiment that was employed in Section 1.2.3 to derive the
inequality

�x�px ≥ �/2 (6.96)
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can, with the aid of the mathematical formalism introduced in this chapter, be gen-
eralized to apply to any two observable quantities that are represented by noncom-
muting Hermitian operators. The uncertainty of an observable quantity A is denoted
by �A and is defined as

�A =
√〈

Â2
〉 − 〈

Â
〉2

(6.97)

Note that the first term on the right-hand side
〈
Â2

〉 = 〈�| Â Â |�〉. Using this defi-
nition, the general statement of the uncertainty principle will now be proved.

The general uncertainty principle:
Given two observables A and B that are represented by Hermitian operators Â

and B̂ , then the product of the uncertainties in measurements of A and B is subject
to the inequality

(�A)2 (�B)2 ≥ −1

4

〈[
Â, B̂

]〉2
(6.98)

Proof:
Define the operators

Q̂ = Â − 〈
Â
〉

R̂ = B̂ − 〈
B̂
〉

(6.99)

Now define yet another new operator Ẑ as

Ẑ = Q̂ + iλR̂ (6.100)

where λ is a real number. Note that while Q̂ and R̂ are Hermitian, Ẑ is not.
Now examine the function

f (λ) = 〈�| Ẑ † Ẑ |�〉
≥ 0 (6.101)

This function has been chosen because it is manifestly positive and permits intro-
duction of an inequality.

Our goal now is to write f (λ) in terms of the original operators Â and B̂ and find
the value of λ that makes it a minimum. Thus,

Ẑ † Ẑ = (
Q̂ + iλR̂

) (
Q̂ − iλR̂

)

= Q̂2 + λ2 R̂2 + iλ
[
Q̂, R̂

]
(6.102)
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so that

f (λ) = 〈�| Q̂2 |�〉 + λ2 〈�| R̂2 |�〉 + iλ 〈�| [Q̂, R̂
] |�〉 (6.103)

Also

〈�| Q̂2 |�〉 = 〈�| (Â − 〈
Â
〉) (

Â − 〈
Â
〉) |�〉

= 〈�| Â2 |�〉 − 2
〈
Â
〉 〈�| Â |�〉 + 〈

Â
〉2 〈� |�〉

= 〈
Â2

〉 − 〈
Â
〉2

= (�A)2 (6.104)

Of course, we also have 〈�| R̂2 |�〉 = (�B)2.
We must also evaluate the commutator in f (λ). We have

[
Q̂, R̂

] = [(
Â − 〈

Â
〉)

,
(
B̂ − 〈

B̂
〉)]

= [
Â, B̂

]
(6.105)

Note that the last three terms in Equation 6.105 vanish because the expectation val-
ues are merely numbers.

We may now write f (λ) in terms of the original operators Â and B̂. We have

f (λ) = (�A)2 + λ2 (�B)2 + iλ 〈�| [ Â, B̂
] |�〉 (6.106)

To minimize f (λ) we set d f/dλ equal to zero and obtain λ0, the value of λ that
minimizes f (λ):

λ0 = − i

2

〈�| [Â, B̂
] |�〉

(�B)2

= − i

2

〈[
Â, B̂

]〉

(�B)2 (6.107)

Inserting this value into Equation 6.106 and taking note of the inequality we obtain

(�A)2 − 1

4

〈[
Â, B̂

]〉2

(�B)4 (�B)2 + i

(

− i

2

〈[
Â, B̂

]〉

(�B)2

)
〈[

Â, B̂
]〉 ≥ 0

(�A)2 + 1

4

〈[
Â, B̂

]〉2

(�B)2 ≥ 0 (6.108)

or

(�A)2 (�B)2 ≥ −1

4

〈[
Â, B̂

]〉2
(6.109)
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which is the generalized uncertainty relation, Equation 6.98.
It is a simple matter to retrieve the uncertainty relation between �x and �px ,

Equation 1.49, from Equations 6.98 and 6.39. We have

(�x)2 (�px)2 ≥ −1

4
〈[x, p̂x]〉2

≥ −1

4
(i�)2

≥ �
2

4
(6.110)

which leads directly to Equation 1.49.

Postulate VI—The time evolution postulate

Equation 6.88 is the TDSE in Dirac notation. We have already seen in Section 2.6
how, using separation of variables, the solution of the TDSE reduces to an exponen-
tial time factor multiplied by the solutions of the TISE provided the Hamiltonian
operator does not contain the time. This is the usual case, so we limit our discussion
to time-independent-Hamiltonians. In the notation of this chapter the TISE is

Ĥ |ψ〉 = E |ψ〉 (6.111)

where, as above, |ψ〉 is the state vector at a particular time so it is time-independent.
Now, how about the rest of the TDSE? To examine this we introduce the time

evolution operator Û (t, t0), an operator that is defined such that when it operates on
the state vector as it exists at a given time t0 it converts it into the state vector at the
time t . Thus, the action of the time evolution operator is given by

|� (t)〉 = Û (t, t0) |� (t0)〉 (6.112)

where, for emphasis, we have noted that |�〉 ≡ |� (t)〉. The almost universal sym-
bol for the time evolution operator is Û (t, t0) because (as will be shown below) it is
a unitary operator. In our notation, |� (t0)〉 could appear as |ψ〉, but we would have
to, in some way, specify the time at which |ψ〉 is evaluated. This could be done with
a following subscript such as |ψ〉t0 , but we choose the notation shown in Equation
6.112 for (it is hoped) clarity.

If we now insert |� (t)〉 as given by Equation 6.112 into the TDSE, Equation
6.88, we obtain

i�
�

�t
Û (t, t0) |� (t0)〉 = Ĥ Û (t, t0) |� (t0)〉 (6.113)

where we have used the fact that Ĥ and Û (t, t0) obviously commute when, as we
are assuming, Ĥ is time-independent. Using Equation 6.112, Equation 6.113 may
be written
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i�
�

�t
|� (t)〉 = Ĥ |� (t)〉 (6.114)

which is readily solved for |� (t)〉:

|� (t)〉 = e−i Ĥ (t−t0)/� |� (t0)〉 (6.115)

Comparing this result with Equation 6.112 we make the identification

Û (t, t0) = e−i Ĥ (t−t0)/� (6.116)

where the operation of the exponential operator is given by the series representation
as described in Section 6.1.3. Thus,

e−i Ĥ (t−t0)/� = 1 +
[
i Ĥ (t − t0) /�

]

1!
+

[
i Ĥ (t − t0) /�

]2

2!
+ · · · (6.117)

From Equation 6.117 it is clear that, because Ĥ is Hermitian, e−i Ĥ (t−t0) is also
Hermitian. Moreover, it is indeed unitary because Û (t, t0)† = Û (t, t0)−1 as seen
from

Û (t, t0) Û (t, t0)† = e−i Ĥ (t−t0)/�ei Ĥ (t−t0)/�

= Î (6.118)

The operator Û (t, t0) given in Equation 6.116 is called the time evolution oper-
ator, the time development operator, or the propagator. To show why it is so named
we operate on the expansion of |� (t0)〉 as given by Equation 6.89 with the time
evolution operator recalling that the |αi (t0)〉 are eigenvectors of Ĥ with eigenvalues
Ei . We obtain

Û (t, t0) |� (t0)〉 =
N∑

i=1

aiÛ (t, t0) |αi (t0)〉

=
N∑

i=1

ai

{

Î +
[−i Ĥ (t − t0) /�

]

1!
+ ...

}

|αi (t0)〉

=
N∑

i=1

ai

{
1 + [−i Ei (t − t0) /�]

1!
+ ...

}
|αi (t0)〉

=
N∑

i=1

ai e
−i Ei (t−t0)/� |αi (t0)〉 (6.119)

where we have explicitly shown that the basis vectors are evaluated at t = t0. The
correspondence between Equation 6.119 and Equation 2.32 is obvious.
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6.3.3 Further Consequences of the Postulates

The Ehrenfest Theorem

In Section 4.1 we derived two equations of motion for the expectation values of
the position and momentum and referred to them as the Ehrenfest equations. These
equations permitted a connection to be made between classical and quantum me-
chanical variables. These Ehrenfest equations are special cases of what is usually
referred to as Ehrenfest’s theorem which applies to the time derivative of the ex-
pectation of any observable A. As in Section 4.1 we use the TDSE and its complex
conjugate to eliminate partial derivatives of |�〉 and 〈�| with respect to time from
the total time derivative of the expectation value of an arbitrary Hermitian opera-
tor Â:

d
〈
Â
〉

dt
= d 〈�| Â |�〉

dt

= 〈�| Â
� |�〉

�t
+ � 〈�|

�t
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�t
|�〉

= 1
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〈
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�t

〉

= i

�
〈�| [Ĥ , Â

] |�〉 +
〈

� Â

�t

〉

(6.120)

Equation 6.120 is Ehrenfest’s theorem, although when Â = x̂ and Â = p̂ the
resulting relations are often referred to as Ehrenfest’s theorems. Usually the operator
Â does not contain the time explicitly so the last term in Equation 6.120 vanishes, a
condition we assume. Therefore, the Ehrenfest theorem takes the form

d
〈
Â
〉

dt
= i

�
〈�| [Ĥ , Â

] |�〉 (6.121)

This theorem makes it clear that the expectation value of any operator that com-
mutes with the Hamiltonian is a constant of the motion, that is, its time derivative
vanishes. Therefore, it is the expectation value of an observable that is conserved in
quantum physics, not the observable itself. Moreover, the expectation value of the
Hamiltonian is always a constant of the motion. This is the quantum mechanical
statement of energy conservation.

Suppose Â is a time-independent Hermitian operator and that |�〉 in Equation
6.121 is a stationary state. For consistency with the notation of this chapter we
therefore let |�〉 → |α〉, an eigenvector of the Hamiltonian with eigenvalue α.
Under these conditions Equation 6.121 becomes
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d
〈
Â
〉

dt
= i

�
〈α| [Ĥ , Â

] |α〉

= i

�
〈α| Ĥ Â |α〉 − i

�
〈α| ÂĤ |α〉

= iα

�

{〈α| Â |α〉 − 〈α| Â |α〉}

= 0 (6.122)

Thus, if Â is time-independent, then the time derivative of its expectation value on
a stationary state vanishes.

Using Equation 6.120 it is a relatively simple matter to derive the first and second
Ehrenfest equations of Section 4.1. The generalized form of these equations is

d 〈r〉
dt

= 〈 p̂〉
m

d 〈 p̂〉
dt

= − 〈∇U (r)〉 (6.123)

The Virial Theorem

The virial theorem in classical mechanics was developed at the end of the nineteenth
century by Clausius. For a single particle, the time rate of change of the quantity
p • r was determined. The key step was to show that for bounded motion (not
necessarily periodic motion) the average value of this time derivative vanishes. He
thus obtained a relationship between the average value of the kinetic energy T and
the average value of the gradient of the potential energy, the force

2 〈T 〉 = −1

2
〈∇U · r〉 (6.124)

He named the right-hand side of Equation 6.124 the virial.
The quantum mechanical derivation follows the same approach, but, because av-

erage values are involved, it is convenient to begin with Equation 6.121 and let
Â → p̂ • r = p̂x x + p̂y y + p̂zz. We have

d 〈 p̂ · r〉
dt

= i

�
〈�| [Ĥ , p̂ · r

] |�〉 (6.125)
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To evaluate the expression on the right-hand side we require the following
commutators:

[
Ĥ , p̂x x

] = [
Ĥ , p̂x

]
x − p̂x

[
x, Ĥ

]

[
Ĥ , p̂x

] = �

i

[{
p̂ · p̂
2m

+ U (x, y, z)

}
,

�

�x

]

= −�

i

�U (x, y, z)

�x
[
Ĥ , x

] = �

i

[{
p̂ · p̂
2m

+ Û (x, y, z)

}
, x

]

=
(

�

i

)
p̂x

m
(6.126)

where, again, we have used the commutation relations
[
xi , p̂ j

] = i�δi j . Inserting
these identities into Equation 6.125 we have

d 〈 p̂ · r〉
dt

=
〈
−�U (x, y, z)

�x
x̂ + ... − p̂x

(
− p̂x

m

)
− ...

〉

= − 〈∇U (r) · r〉 +
〈

p̂2

m

〉

= − 〈∇U (r) · r〉 + 2
〈
T̂
〉

(6.127)

Now, if the state of the system over which the operator p̂·r is averaged is a stationary
state, then the time derivative in Equation 6.127 vanishes and

2
〈
T̂
〉 = 〈∇U (r) · r〉 (6.128)

which is the quantum mechanical analog of the classical virial theorem, Equation
6.124. An important special case of the virial theorem is for a spherically symmetric
potential U (r ) ∝ rk . In this case we find that

2
〈
T̂
〉 =

〈
r

dU (r )

dr

〉

= k 〈U (r )〉 (6.129)

6.4 Relation Between the State Vector and the Wave Function

In this chapter we have been dealing with the abstract kets that are state vectors or
eigenvectors of an operator. We wish to relate the kets that represent state vectors
to the wave functions of the Schrödinger picture. Since, previously, we dealt exclu-
sively with wave functions in coordinate space (rather than momentum space) we
will limit our discussion to the relation between the state vector |ψ〉 and the wave
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function ψ (x). To cast |ψ〉 into the coordinate representation we must expand it on
the complete set of eigenvectors of the position operator x̂ which we designate with
a hat to distinguish it from its eigenvalue. Writing the eigenvalue equation for this
operator we have

x̂ |x〉 = x |x〉 (6.130)

where x and |x〉 are the eigenvalue and eigenvector, respectively. Because, however,
we are dealing with the position operator, the eigenvalues and eigenvectors are con-
tinuous rather than the discrete sets that we have encountered previously. To expand
the state vector |ψ〉 on the complete set of eigenvectors |x〉 we must use integrals
instead of summations. Thus, Equation 6.58 adapted to this case becomes

|ψ〉 =
∫

dx |x〉 〈x | ψ〉 (6.131)

If we now assume that |ψ〉 is normalized and take the inner product of each side of
Equation 6.131 with 〈ψ| we have

1 =
∫

dx 〈ψ |x〉 〈x | ψ〉

=
∫

dx |〈x |ψ〉|2 (6.132)

Comparing Equation 6.132 to the equation that defines normalization of the wave
function

1 =
∫

dx |ψ (x)|2 (6.133)

it is clear that

ψ (x) = 〈x |ψ〉 (6.134)

In this book we will make a distinction between the state vector |ψ〉 and the cor-
responding wave function ψ (x) [or φ (p)] by employing the symbol =̂, which, as
noted in Section 5.6.1, stands for “corresponds to.” Thus, we write

ψ (x) =̂ |ψ〉 (6.135)

We may formalize the concept of parity of eigenfunctions that has been discussed
in connection with several of the one-dimensional potentials for which the TISE was
solved. To do this we introduce the parity operator. Generalizing to three dimensions
and designating wave functions by ψ (r) and φ (r) the parity operator ℘̂ is defined as

℘̂ψ (r) = ψ (−r) (6.136)



202 6 The Mechanics of Quantum Mechanics

It is easily shown that ℘̂ has only two (real) eigenvalues, ±1. That is, if ℘̂ψ (r) =
λψ (r),

℘̂2ψ (r) = ℘̂ψ (−r) = ψ (r)

= λ℘̂ψ (−r) = λ2ψ (r) (6.137)

so λ = ±1. Thus, the eigenfunctions of ℘̂ are either even or odd.
The real eigenvalues suggest that ℘̂ is Hermitian, but this can be proved. Using

bra and ket notation we have

〈φ (r)| (℘̂ |ψ (r)〉) = ± 〈φ (r)| ψ (r)〉 (6.138)

while

(〈φ (r)| ℘̂†) |ψ (r)〉 = ± 〈φ (r)| ψ (r)〉 (6.139)

which shows that ℘̂ = ℘̂†.
If the parity operator commutes with the Hamiltonian, then the energy eigen-

functions have definite parity, that is, they are also eigenfunctions of ℘̂. We al-
ready know that this occurs in one-dimension if the potential is even (see Section
2.9).

6.5 The Heisenberg Picture

We have seen that the time evolution operator converts a state vector at a given time,
|� (t = t0)〉 = |�〉 , into the state vector at the time t , |� (t)〉. The state vector is
often referred to as the state ket and it must be distinguished from the eigenvectors
(eigenkets) which, according to Postulate IV, may serve as a basis set upon which to
expand the state vector. To compute the time dependence of the expectation value
of an operator Â, we must use time-dependent state vectors |� (t)〉. Thus,

〈
Â (t)

〉 = 〈� (t)| Â |� (t)〉 (6.140)

Replacing |� (t)〉 (and its complex conjugate 〈� (t)|) using Equation 6.112 we have

〈
Â (t)

〉 = 〈� (t0)| Û † (t, t0) ÂÛ (t, t0) |� (t0)〉 (6.141)

Now, suppose that in Equation 6.141 we group the operators on the right-hand
side. In essence, we have converted the time-independent operator Â into a time-
dependent operator Â (t) according to the prescription
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Â (t) = Û † (t, t0) ÂÛ (t, t0)

= ei Ĥ (t−t0)/� Âe−i Ĥ (t−t0)/� (6.142)

where the absence of a noted time dependence associated with Â implies its time
independence. Thus, there are two ways of representing the time-dependent expec-
tation value of a quantum mechanical observable, one using time-dependent state
vectors and time-independent operators and the other using time-independent state
vectors with time-dependent operators. So far in this book we have used time-
dependent state vectors and time-independent operators. This formulation of quan-
tum mechanics is known as the Schrödinger picture. The alternative formulation in
which the state vectors remain fixed in time and the operators move is known as the
Heisenberg picture. The Schrödinger picture is the most frequently used formulation
of quantum physics, but the Heisenberg picture is equivalent.

In the Heisenberg picture it is the time dependence of the observables, operators,
that describes the physical system. State vectors are of little consequence since they
are evaluated at a fixed time. Of course, the possible results of a measurement, the
eigenvalues, must be the same in both pictures, but the eigenvectors change with
time in the Heisenberg picture. This may be shown by beginning with the eigenvalue
equation for an operator Â in the Schrödinger picture. The corresponding Heisen-
berg picture operator is Â (t). Denoting the eigenkets of Â in the Schrödinger picture
by |αi 〉, the eigenvalue equation in the Schrödinger picture at a fixed time, t = 0 for
simplicity, is

Â |αi 〉 = αi |αi 〉 (6.143)

Letting Û (t, t0 = 0) = Û , we now operate on Equation 6.143 with Û † and insert
ÛÛ † ≡ Î in front of the ket |αi 〉 on the left-hand side to obtain

Û † Â
(
ÛÛ †) |αi 〉 = αi Û

† |αi 〉
(
Û † ÂÛ

) (
Û † |αi 〉

) = αi
(
Û † |αi 〉

)

Â (t)
(
Û † |αi 〉

) = αi
(
Û † |αi 〉

)
(6.144)

The last equation is clearly the eigenvalue equation for the operator Â (t) with eigen-
vectors Û † |αi 〉. The eigenvalues αi are the same as those in the Schrödinger picture
which is consistent with Postulate I because the possible results of a measurement of
the observable A cannot depend upon the representation (picture). The eigenvectors
in Equation 6.144 are, however, time-dependent. Thus, while the eigenvectors of
the operator Â in the Schrödinger picture are the time-independent kets |αi 〉, in
the Heisenberg picture the eigenvectors are the time-dependent kets Û |αi 〉. In the
Schrödinger picture the state vectors move while those in the Heisenberg represen-
tation are stationary. Thus, we must make a distinction between the state vector and
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Table 6.1 Contrast between the Schrödinger and Heisenberg pictures. The time dependences are
denoted by “fixed” for time-independent and “moving” for time-dependent

Entity Significance Schrödinger Heisenberg

operator observable Â fixed Â (t) moving
state vector system state |� (t)〉 moving |�〉 fixed
eigenvectors basis vectors |αi 〉 fixed Û † |αi 〉 moving

the eigenvectors. The time dependences of these quantities in each of the pictures
are summarized in Table 6.1.

In the Schrödinger picture the time evolution of the quantum mechanical system
is dictated by the TDSE, Equation 6.88. This is the equation of motion of the time-
dependent state vector |�〉. In the Heisenberg picture we require an equation of
motion for the time-dependent operators Â (t). To obtain this equation of motion we
simply take the total time derivative of Equation 6.142. For simplicity, we assume
the usual case in which the operator Â (t) has no explicit time dependence so that
� Â (t) /�t ≡ 0. Also, because we assume that the Hamiltonian operator does not
contain the time explicitly it is not necessary to make any distinction between the
Schrödinger and Heisenberg versions of this operator because Û ĤÛ † = Ĥ which
is true because Ĥ commutes with itself. We have

d Â (t)

dt
= i Ĥ

�

[
ei Ĥ (t−t0)/� Âe−i Ĥ (t−t0)/�

]

−
[
ei Ĥ (t−t0)/� Âe−i Ĥ (t−t0)/�

] i Ĥ

�

= i

�

(
Ĥ Â (t) − Â (t) Ĥ

)

= i

�

[
Ĥ , Â (t)

]
(6.145)

Equation 6.145 is the Heisenberg equation of motion from which we see immedi-
ately that if Â (t) commutes with the Hamiltonian, then it is a constant of the motion
because its time derivative vanishes. In this case Ĥ and Â (t) can have simultaneous
eigenvectors, the physical consequence of which is that these two observables, en-
ergy and A, may be measured simultaneously. That is, the measurement of one does
not interfere with the measurement of the other. Moreover, if we take Â (t) = Ĥ ,
it is seen immediately that the (total) time derivative of the Hamiltonian vanishes,
thus confirming energy conservation.

From the Heisenberg equation of motion, Equation 6.145, we can immediately
derive the Ehrenfest theorem, Equation 6.121 (we again assume that the operator
Â (t) does not contain any explicit time dependence). Since the Heisenberg state
vectors are fixed in time we simply take the expectation value of Equation 6.145
with the Heisenberg state vector |�〉 and its complex conjugate. The left-hand side
of Equation 6.145,

〈
d Â (t) /dt

〉
, is simply
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〈
d Â (t)

dt

〉

= d
〈
Â (t)

〉

dt
(6.146)

Next we determine the right-hand side, the expectation value of the commutator in
the Schrödinger picture:

i

�

〈[
Ĥ , Â (t)

]〉 = i

�
〈�| [Ĥ , Â (t)

] |�〉

= i

�
〈�| [Ĥ , Û † ÂÛ

] |�〉

= i

�
〈�| [ĤÛ † ÂÛ − Û † ÂÛ Ĥ

] |�〉

= i

�
〈�| [Û †Û ĤÛ † ÂÛ − Û † ÂÛ Ĥ Û †Û

] |�〉

= i

�

(〈�| Û †) [Û ĤÛ † Â − ÂÛ ĤÛ †] (Û |�〉)

= i

�
〈� (t)| [Ĥ Â − ÂĤ

] |� (t)〉

= i

�
〈� (t)| [Ĥ , Â

] |� (t)〉 (6.147)

which, when equated to the result from Equation 6.146, is Equation 6.121, the
Ehrenfest theorem.

As stated above, most problems in quantum physics are attacked using the
Schrödinger picture. Why then even bother with the Heisenberg picture? Of course,
there is the aesthetic beauty attendant to proving that the two pictures are equiva-
lent. Another reason is that the Heisenberg picture makes the connection between
classical and quantum physics clearer than does the Schrödinger picture. After
all, wave functions and state vectors have no classical analog. On the other hand,
the observables in classical physics are usually time-dependent quantities so the
Heisenberg equation of motion for an observable (Hermitian operator) is indeed
analogous. Moreover, there is a close connection between this equation and Hamil-
ton’s equations of classical motion as well as a relationship between the Poisson
brackets of classical physics and the commutator of quantum physics. We will not
pursue these correspondences further in this book, but clearly Bohr’s correspon-
dence principle is at work here. Let us examine the time evolution of the posi-
tion and momentum operators for a particle of mass m under the influence of
an arbitrary one-dimensional potential U (x). The Hamiltonian in the Heisenberg
picture is

Ĥ = p̂x (t)2

2m
+ U {x̂ (t)} (6.148)
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where we have placed a hat over x to emphasize its operator status. To use the
Heisenberg picture we must compute the commutators

[
Ĥ , x̂ (t)

]
and

[
Ĥ , p̂x (t)

]

and insert them into Equation 6.145. An important point in this calculation is to
note that the commutators in the Heisenberg picture have exactly the same form as
in the Schrödinger picture (see Problem 7). We may therefore use the relations listed
as Equations 6.42 and 6.43 for this computation. Thus

[

x̂ (t) ,
p̂x (t)2

2m

]

= i�

2m

�
{

p̂x (t)2}

�x

= i�
p̂x (t)

m
(6.149)

and

[ p̂x (t) , U {x̂ (t)}] = −i�
�U {x̂ (t)}

� px (t)
(6.150)

The Heisenberg equations of motion are then

dx̂ (t)

dt
= p̂x (t)

m
(6.151)

and

d p̂x (t)

dt
= −�U {x̂ (t)}

� px (t)
(6.152)

These are the familiar relations of nonrelativistic classical physics, the momentum
is mass times velocity, and the time rate of change of the momentum is the force
(Newton’s second law).

The harmonic oscillator in the Heisenberg picture

We can illustrate the use of the Heisenberg picture by returning to an old friend,
the harmonic oscillator. We will obtain the time dependences of the quantum me-
chanical operators x̂ (t) and p̂x (t) using this picture. We begin by applying Equation
6.152 to the potential energy function U {x̂ (t)} = 1

2 mω2 x̂ (t)2. Of course, Equation
6.151 does not depend upon the potential energy. For simplicity of notation we
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eliminate the subscript on the momentum since this is a one-dimensional problem.
The two equations of motion are therefore

dx̂ (t)

dt
= p̂ (t)

m
(6.153)

and

d p̂ (t)

dt
= −mω2 x̂ (t) (6.154)

Uncoupling these two first-order differential equations we obtain two second-order
equations,

d2 x̂ (t)

dt2
= −ω2 x̂ (t) (6.155)

and

d2 p̂ (t)

dt2
= −ω2 p̂ (t) (6.156)

the solutions to which are

x̂ (t) = x̂ (0) cos ωt + p̂ (0)

mω
sin ωt (6.157)

and

p̂ (t) = −mωx̂ (0) sin ωt + p̂ (0) cos ωt (6.158)

where the constants of integration have been evaluated at t = 0, that is, x̂ (0) =
x̂ (t = 0) and p̂ (0) = p̂ (t = 0).

We see then that the Heisenberg operators oscillate exactly as the classical
quantities x (t) and p (t). In this context, however, they are not classical quanti-
ties, they are quantum mechanical operators, Heisenberg operators. In contrast, the
operators x̂ (t = 0) and p̂ (t = 0) obtained from the boundary conditions are sta-
tionary operators. They are the Schrödinger operators. Moreover, the commutator
[x̂ (t) , p̂ (t)] = i� and it is independent of time (see Problem 11).

6.6 Spreading of Wave Packets

6.6.1 Spreading in the Heisenberg Picture

Because the Heisenberg operators are time-dependent, they are ideally suited for
reexamining the spreading of wave packets as in Section 4.5. We examine Case I
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from that section, the case of a Gaussian wave packet subject to no external forces,
a free particle. Recall that in this case we began with a minimum uncertainty wave
packet and found that it spreads in time. We can employ Equation 6.109 with A →
x (t) and B → x̂ (0) (which was called x0 in Section 4.5). We therefore require the
commutator [x̂ (t) , x̂ (0)]. Before evaluating this commutator we must first find the
equations of motion for a free particle in the Heisenberg picture.

Using Equations 6.151 and 6.152 we find that

dx̂ (t)

dt
= p̂ (t)

m
and

d p̂ (t)

dt
= 0 (6.159)

which lead to

x̂ (t) = x̂ (0) + p̂ (0)

m
t and p̂ (t) = p̂ (0) (6.160)

The commutator [x̂ (t) , x̂ (0)] is easily found to be

[x̂ (t) , x̂ (0)] =
[{

x̂ (0) + p̂ (0)

m
t

}
, x̂ (0)

]

= [ p̂x (0) , x̂ (0)]
t

m

= − i�

m
t (6.161)

We can use this result in Equation 6.109 to obtain the standard deviation, the uncer-
tainty, as a function of time �x (t). Let us clarify the meaning of the quantity �A in
the present context. It is the standard deviation of the wave packet as a function of
time beyond the initial standard deviation which at t = 0 is �x (0) = �x0. There-
fore, we will call the uncertainty in position that corresponds to �A in Equation
6.109 �x ′ (t) with the understanding that the �x (t) of Equation 4.74 is given by

�x (t)2 = �x ′ (t)2 + �x2
0 (6.162)

Note that it is the variances, the squares of the standard deviations, that add, not the
standard deviations themselves. We have then

{
�x ′ (t)

}2 {�x (0)}2 ≥ −1

4

〈
− i�

m
t

〉2

≥
(

�

2m

)2

t2 (6.163)
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and

{
�x ′ (t)

}2 {�x (0)}2 ≥ −1

4

〈
− i�

m
t

〉2

�x ′ (t)2 ≥ 1

�x (0)2

(
�

2m

)2

t2 (6.164)

At t = 0 we had a minimum uncertainty wave packet so that �x ′ (t = 0) = 0.
Therefore, we must use the equal sign in Equation 6.164. Inserting this into Equation
6.162 we have

�x (t)2 = 1

�x (0)2

(
�

2m

)2

t2 + �x (0)2 (6.165)

= �x (0)2

{

1 + 1

�x (0)4

(
�

2m

)2

t2

}

(6.166)

from which we obtain

�x (t) = �x0

√

1 +
(

�

2m�x2
0

)2

t2 (6.167)

which is indeed the same as Equation 4.74. As noted in Section 4.5, this time depen-
dence of the uncertainty shows that a Gaussian wave packet subjected to no forces
will rapidly expand in time.

When studying Case III, the case of a Gaussian wave packet subjected to a har-
monic oscillator force, it was shown that the wave packet oscillates, but does not
change shape. Thus, there should be no time dependence of the uncertainty prod-
uct �x (t) �p (t). We can verify this by finding the uncertainty product using the
Heisenberg equations of motion, Equations 6.157 and 6.158.

First, the packet used in Case III, the wave function of which at t = 0, was given
by Equation 4.95, which we reproduce here, is

� (x, 0) =
√

α

π1/4
e−α2(x−x0 )2/2 (6.168)

has initial momentum zero and initial displacement x0. Therefore, the expectation
values of momentum and position at t = 0 are given by

〈x̂ (0)〉 = x0 and 〈 p̂ (0)〉 = 0 (6.169)

The uncertainties are then

�x̂ (t)2 = 〈
x̂ (t)2〉 − 〈x̂ (t)〉2 and � p̂ (t)2 = 〈

p̂ (t)2〉 − 〈 p̂ (t)〉2 (6.170)
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where, from Equation 6.158,

〈 p̂ (t)〉 = −mω 〈x̂ (0)〉 sin ωt (6.171)

and, from Equation 6.157,

〈x̂ (t)〉 = 〈x̂ (0)〉 cos ωt = x0 cos ωt (6.172)

Also,

�x̂ (0)2 = 〈
x̂ (0)2

〉 − x2
0 and � p̂ (0)2 = 〈

p̂ (0)2
〉

(6.173)

Next we compute
〈
p̂ (t)2〉:

〈
p̂ (t)2

〉 = 〈
p̂ (0)2

〉
cos2 ωt + m2ω2

〈
x̂ (0)2

〉

− mω sin ωt cos ωt 〈 p̂ (0) x̂ (0) + x̂ (0) p̂ (0)〉
= 〈

p̂ (0)2〉 cos2 ωt + m2ω2 〈x̂ (0)2〉

− mω sin ωt cos ωt 〈2x̂ (0) p̂ (0) − i�〉 (6.174)

where we have used the commutator [x̂ (0) , p̂ (0)] = i�.
Now, it can be shown that 〈2x̂ (0) p̂ (0) − i�〉 = 0 (see Problem 12) so that

� p̂ (t)2 = 〈
p̂ (0)2〉 cos2 ωt + m2ω2 〈x̂ (0)2〉 sin2 ωt − m2ω2 〈x̂ (0)〉2 sin2 ωt (6.175)

which may be written in terms of the uncertainties

� p̂ (t)2 = � p̂ (0)2 cos2 ωt + {〈
x̂ (0)2〉 − 〈x̂ (0)〉2}m2ω2 sin2 ωt

= � p̂ (0)2 cos2 ωt + �x̂ (0)2 m2ω2 sin2 ωt (6.176)

Because, however, the wave packet had minimum uncertainty at t = 0 we must have

�x̂ (0)2 � p̂ (0)2 = �
2

4
(6.177)

which we may use to eliminate � p̂ (0) from Equation 6.176 leading to

� p̂ (t)2 = �
2

4�x̂ (0)2
cos2 ωt + �x̂ (0)2 m2ω2 sin2 ωt (6.178)

Now, it is easily shown that (see Problem 14)

�x̂ (0)2 = 1

2α2
(6.179)
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so that (using α2 = mω/�)

� p̂ (t)2 = �
2

4

(
2α2

)
cos2 ωt +

(
1

2α2

)
m2ω2 sin2 ωt

= �
2α2

2
(6.180)

Returning now to �x (t) we have

�x̂ (t)2 = 〈
x̂ (t)2

〉 − 〈x̂ (t)〉2

= 〈
x̂ (0)2〉 cos2 ωt +

〈
p̂ (0)2〉

m2ω2
sin2 ωt − 〈x̂ (0)〉2 cos2 ωt

= {〈
x̂ (0)2

〉 − 〈x̂ (0)〉2
}

cos2 ωt +
(

�
2α2

2

)
1

�2α4
sin2 ωt

= �x̂ (0)2 cos2 ωt + 1

2α2
sin2 ωt

= 1

2α2
(6.181)

where we have again used the fact that 〈2x̂ (0) p̂ (0) − i�〉 = 0 and used Equation
6.179. Combining Equations 6.180 and 6.181 we can write the time dependence of
the uncertainty product �x̂ (t) � p̂ (t). We have

�x̂ (t) � p̂ (t) = �

2
(6.182)

which is independent of time.
These results show that not only is the uncertainty product constant in time (see

Problem 11), but so too are the individual uncertainties. That is, neither �x̂ (t) nor
� p̂ (t) contains the time. This means that the spread in both position and momentum
remain constant for a Gaussian packet subject to a harmonic force. Of course, we
have already deduced this in Section 4.5 (see Equation 4.106), but the use of the
Heisenberg picture presents a more nearly classical approach.

6.6.2 Spreading in the Schrödinger Picture

Because the time evolution operator converts a wave function at a fixed time to its
time-dependent form, the new wave function is necessarily a representation in the
Schrödinger picture. As an exercise in the use of the time evolution operator, in this
section we will use it to derive the probability densities for the free particle wave
packet and the wave packet under the influence of a constant force, Cases I and II
in Section 4.5. Calculation of the time evolution operator for a harmonic oscillator
potential is beyond the intended scope of this book so we defer reexamination of
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Case III until Section 7.2 when we will have the tools to circumvent the use of this
operator.

The Free Particle

It was shown in Section 6.3.2, Postulate VI that the state ket |� (x, t)〉 may be ob-
tained by applying the time evolution operator, e−i Ĥ (t−t0)/� (see Equation 6.116) to
the state ket at a fixed time |� (x, t0)〉. Therefore, if we consider the free particle
Gaussian wave packet (Case I of Section 4.5.1) we may apply the time evolution
operator to the wave function at t = 0 and compare the result with that obtained in
Section 4.5.1. In terms of wave functions

� (x, t) = 〈x |� (x, t)〉
= e−i p̂2t/(2m�)� (x, 0) (6.183)

The first-order of business is to convert the initial momentum wave function
� (p, 0) of Equation 4.66 to the coordinate space wave function � (x, 0). This can
be done by taking the Fourier transform. The present calculation will be simplified
by using the wave function in the form of the Fourier transformed wave functions
given in Equations 4.60 and 4.61. Moreover, it was assumed in Section 4.5.1 that
the initial state has p (0) = p0 and x (0) = 0, but the calculation can be further
simplified by assuming that both p (0) and x (0) vanish. Comparison with the pre-
vious results will not suffer from this simplification. The initial wave function in
coordinate space is therefore

� (x, 0) = 1

π1/4

(
1

21/4
√

�x0

)
e−x2/4�x2

0 (6.184)

The second thing that we must do is to determine the action of the time evolu-
tion operator Û (t, 0) on � (x, 0). Letting p → (�/ i ) �/�x to convert Û (t, 0) to
coordinate space representation, this operator is

Û (t, 0) = e−i p̂2t/(2m�)

= exp

(
i�t

2m

�2

�x2

)
(6.185)

which is difficult to apply to an arbitrary wave function. Because, however, the initial
wave packet has Gaussian form, it has been shown that the action of Û (t, 0) can be
deduced using an ingenious mathematical trick [1]. Letting �x2

0 = z to simplify
Equation 6.184, it can be verified that

�2

�x2

[
1√
z

e−x2/4z

]
= �

�z

[
1√
z

e−x2/4z

]
(6.186)
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Expressing � (x, 0) in terms of z and �x0 we have

� (x, 0) =
√

�x0

(2π)1/4

1√
z

e−x2/4z (6.187)

Now, using the identity given in Equation 6.186 we are in a position to apply the
time evolution operator to � (x, 0) :

Û (t, 0) � (x, 0) =
√

�x0

(2π)1/4 exp

(
i�t

2m

�2

�x2

)[
1√
z

e−x2/4z

]

=
√

�x0

(2π)1/4

[
exp

(
i�t

2m

�

�z

)][
1√
z

e−x2/4z

]
(6.188)

Comparing the last line of Equation 6.188 with the translation operator as given
in Equation L.11 we see that i�t/ (2m) = x0, the distance by which the translation
is made. We see then that the action of the free particle time development operator,
Equation 6.185, operating on an arbitrary function f (x) is

Û (t, 0) f (x) = e−i p̂2t/(2m�) f (x)

= exp

[(
− i�t

2m

)
�

�x

]
f (x)

= f

(
x + i�t

2m

)
(6.189)

Letting z return to �x2
0 we see that � (x, t) is found by letting z → �x2

0 + i�t/ (2m)
after applying the translation operator. We have

� (x, t) =
√

�x0

(2π)1/4

1
√

�x2
0 + i�t

2m

exp

⎡

⎢
⎢
⎣− x2

4

(
�x2

0 + i�t

2m

)

⎤

⎥
⎥
⎦

= 1

(2π)1/4 √
�x0

1
√

1 + i�t

2m�x2
0

exp

⎡

⎢
⎢
⎣− x2

4

(
�x2

0 + i�t

2m

)

⎤

⎥
⎥
⎦ (6.190)

Setting �x0 = 1/
(√

2β
)

in Equation 6.190 and p0 = 0 in Equation 4.68 makes it

clear that the present treatment is consistent with our earlier formulation.
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Constant Field

In Section 4.5.2, Case II, a wave packet under the influence of a constant field, we
derived the probability density and the spreading of the packet in momentum space.
In this section we will treat the same problem, but we will use the time evolution
operator and derive the probability density in coordinate space. For simplicity, we
begin with the initial wave function given in Equation 6.184. We will follow the
treatment of Robinett [2].

The Hamiltonian is

Ĥ = p̂2

2m
− Fx (6.191)

so the time evolution operator is

Û (t, 0) = exp

[
−i

(
p̂2

2m
− Fx

)(
t

�

)]
(6.192)

Because p̂ and x are operators we cannot naively apply the usual rules of algebra to
this exponential expression. Rather, we must use the BCH formula of Appendix L
in the form of Equation L.1 and L.2:

eÂeB̂ = eĈ (6.193)

where

Ĉ = Â + B̂ + 1

2

[
Â, B̂

] + 1

12

{[[
Â, B̂

]
, B̂

] + [
Â,

[
Â, B̂

]]} + · · · (6.194)

Notice that when one of the commutators vanishes, all subsequent commutators
vanish. In the special case in which

[
Â, B̂

] = 0 the usual rules of exponents apply.
Unfortunately, in the present case

[
Â, B̂

] �= 0 so we must use Equation 6.194.
Letting

Â = −i
t Fx

�
and B̂ = −i

Ĥ t

�
= −i

t

�

(
p̂2

2m
− Fx

)
(6.195)

so that

[
Â, B̂

] = −i
Ft2

m�
p̂ and

[[
Â, B̂

]
, B̂

] = −i
F2t3

m�
= [

Â,
[
Â, B̂

]]
(6.196)

Because
[[

Â, B̂
]
, B̂

]
∝ Î , the remaining commutators vanish. Therefore,

Ĉ = −i
p̂2t

2m�
− i

Ft2

2m�
p̂ − 1

6

(
i

F2t3

m�

)
(6.197)
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To find the time development operator for a wave packet subjected to a constant
force we multiply Equation 6.193 on the left by e− Â to obtain

e−i Ĥ t/� = eB̂

= e− ÂeĈ

= ei Ftx/� exp

[
−i

p̂2t

2m�
− i

Ft2

2m�
p̂ − 1

6

(
i

F2t3

m�

)]

= exp

[
i

Ft

�

(
x − Ft2

6m

)]
· exp

[
−i

Ft2

2m�
p̂

]
· exp

[
−i

p̂2t

2m�

]
(6.198)

An operator ( p̂ in this case) commutes with any function of that operator, so the
exponential containing p̂ may be written as a simple product.

Now, this time evolution operator looks somewhat formidable, but we have al-
ready done most of the work required to apply it. The exponential containing p̂2 is
simply the free particle time evolution operator, Equation 6.189. As shown above,
it causes a free particle to spread in time. This spreading is effected by making the
conversion �x2

0 → �x2
0 + i�t/ (2m) in Equation 6.184. Moreover, the exponential

that contains the first power of the momentum is also a translation operator (see
above and Appendix L). This operator causes the conversion x → x − Ft2/ (2m�).
The effect of the time development operator on the initial wave function, Equation
6.184, results in Equation 6.190 so we have

� (x, t) = exp

[
i

Ft

�

(
x − Ft2

6m

)]
· exp

[
−i

Ft2

2m�
p̂

]

× 1

(2π)1/4 √
�x0

1
√

1 + i�t

2m�x2
0

exp

⎡

⎢⎢
⎣− x2

4

(
�x2

0 + i�t

2m

)

⎤

⎥⎥
⎦

= exp

[
i

Ft

�

(
x − Ft2

6m

)]
1

(2π)1/4 √
�x0

1
√

1 + i�t

2m�x2
0

× exp

⎡

⎢
⎢
⎢
⎣

−

(
x − Ft2

2m�

)2

4�x2
0

(
1 + i�t

2m�x2
0

)

⎤

⎥
⎥
⎥
⎦

(6.199)

Notice that because x and p̂ do not commute, the exponential operator in Equation
6.198 remains to the left of the exponential operators containing p̂. As a conse-
quence, the x in that operator does not get shifted by the other operators.
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Squaring Equation 6.199, the probability density is

|� (x, t)|2 = 1√
2π�x0

1
√

1 +
(

t

t0

)2
exp

⎡

⎢
⎢
⎢
⎢
⎣

−

(
x − Ft2

2m�

)2

2�x2
0

(

1 +
(

t

t0

)2
)

⎤

⎥
⎥
⎥
⎥
⎦

= 1√
2π�x (t)

exp

⎡

⎢
⎢⎢
⎣

−

(
x − Ft2

2m�

)2

2�x (t)2

⎤

⎥
⎥⎥
⎦

(6.200)

where, as in Section 4.5,

t0 = 2m

�
�x2

0 and �x (t) = �x0

√

1 +
(

t

t0

)2

(6.201)

Clearly Equation 6.201 is identical with the result obtained previously using Fourier
transforms, Equation 4.94.

6.7 Retrospective

While a great deal of time and effort has been spent in this chapter on the prop-
erties of operators, especially Hermitian operators, the most important point for
understanding quantum physics is the introduction of the postulates and their con-
sequences. Although the discussion of the postulates may seem rather abstract and,
in some cases, off the point of the chapter, the introduction of quantum mechanical
concepts within the framework of abstract vector spaces makes it possible to reex-
amine problems treated in earlier chapters of this book with new insight. Moreover,
once having mastered the formulation of quantum mechanics within the framework
of vector spaces, many problems become simpler to solve, a good example being
the harmonic oscillator as formulated in the next chapter of this book.

While the Schrödinger picture is the most often used in quantum mechanical
calculations at the level of this book, the Heisenberg picture provides a clearer link
between classical and quantum physics. This is because the time-dependent opera-
tors (the observables) of the Heisenberg picture are closely related to their classical
analogs, while the wave functions of the Schrödinger picture have no classical coun-
terpart. The equivalence of the two pictures should make the results obtained using
the Schrödinger picture more credible to the student, especially the first time around
the quantum mechanical block.
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Problems

1. Show that the unit vectors 1/
√

2 (ı̂ + ĵ ) ; 1/
√

2 (ı̂ − ĵ ) ; k̂ given in Equation
6.3 constitute an orthonormal basis set.

2. Show that
[
Â, B̂−1

] = −B̂−1
[
Â, B̂

]
B̂−1. Begin with

[
Â, B̂ B̂−1

] = [
Â, Î

] = 0.
3. Show that the product of two Hermitian operators Â and B̂ is non-Hermitian

unless
[
Â, B̂

] = 0.
4. Show that the expectation value of a Hermitian operator is real.
5. Show that the projection operator is Hermitian.
6. For the time evolution operator e−i Ĥ t/�

(a) Show that the eigenvectors are the same as those of the Hamiltonian.
(b) What are the eigenvalues of e−i Ĥ t/�?
(c) Are the eigenvalues of e−i Ĥ t/� necessarily real? If not, why not?

7. Show that if the Schrödinger operators Â and B̂ obey
[
Â, B̂

] = Ĉ , then the
Heisenberg operators Â (t) and B̂ (t) obey

[
Â (t) , B̂ (t)

] = Ĉ (t).
8. Show that the eigenvectors of the Hamiltonian are also eigenvectors of the time

evolution operator e−i Ĥ t/�. What are the eigenvalues?
9. Verify Equation 6.157 for the time dependence of the x̂ (t) for the harmonic

oscillator using the fundamental definition of a Heisenberg operator in terms
of the time evolution operator and the equivalent Schrödinger operator. That is,
show that

x̂ (t) = ei Ĥ t/� x̂ (t = 0) e−i Ĥ t/�

= x̂ (t = 0) cos ωt + p̂x (t = 0)

mω
sin ωt

The Baker–Campbell–Hausdorff lemma, which will be needed, is

eiλĈ Âe−iλĈ = Â + iλ
[
Ĉ, Â

] + i 2λ2

2!

[
Ĉ,

[
Ĉ, Â

]] + · · ·

10. Using [x, p̂x] = i� Î and mathematical induction show that

[
x, p̂n

x

] = i�n p̂n−1
x

11. Show that the commutator [x̂ (t) , p̂ (t)] = i� for the harmonic oscillator.
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12. Show that the term 〈2x̂ (0) p̂ (0) − i�〉 in Equation 6.174 vanishes for the wave
packet � (x, 0) = (√

α/π1/4
)

e−α2(x−x0 )2/2.
13. Assuming that the potential energy is a function of position only, evaluate the

commutators
[
Ĥ , x

]
and

[
Ĥ , p̂

]
. Use one-dimension.

14. Show that for the wave packet � (x, 0) = (√
α/π1/4

)
e−α2(x−x0 )2/2 the uncer-

tainty in position is given by �x (0)2 = 1/2α2 and thus that it is independent
of the initial displacement x0.

15. A Hamiltonian Ĥ (x, y) is the sum Ĥ (x, y) = Ĥx (x) + Ĥy (y). Show that
the eigenfunctions of Ĥ (x, y) are products of the eigenfunctions of Ĥx (x) and
Ĥy (y) and the energy eigenvalues are the sums of the eigenvalues of Ĥx (x)
and Ĥy (y). Assume that you know the eigenfunctions and energy eigenvalues
of Ĥx (x) and Ĥy (y). That is, assume that you know

Ĥx (x) ϕ (x) = Exϕ (x) and Ĥy (y) η (y) = Eyη (y)

so you must show that the eigenfunctions of Ĥ (x, y) are ψ (x, y) = ϕ (x) η (y)
and their eigenvalues are E = Ex + Ey. Clearly this pattern will hold for
any number of variables for which the Hamiltonian can be written as a sum of
Hamiltonians, each consisting of a single variable.

16. Derive the Ehrenfest equations, Equations 4.7 and 4.10, using the generalized
Ehrenfest theorem, Equation 6.120.

17. A Gaussian wave packet with initial displacement x0 and initial momentum p0

is subjected is the linear potential

U (x) = −Fx ; − ∞ < x < ∞

where F is a constant force. Find the time dependence of the operators x and
p̂ in the Heisenberg representation.

18. Verify the identity in Equation 6.186.
19. Show that the identities given in Equation 6.196 are correct. That is, show that

[
Â, B̂

] = −i
Ft2

m�
p̂ and

[[
Â, B̂

]
, B̂

] = i
F2t3

m�
= [

Â,
[
Â, B̂

]]

20. Show that application of the time evolution operator for a wave packet under the
influence of a constant force produces the same momentum space probability
density for the initial packet given by Equation 4.77 as that obtained in Section
4.5, Equation 4.85. [Hint: Reverse the roles of the operators Â and B̂ from that
used to derive the probability density in coordinate space in Section 6.6.2.



Chapter 7
Harmonic Oscillator Solution Using
Operator Methods

We have already discussed the quantum mechanical harmonic oscillator several
times in this book including Sections 3.1.2 and 6.5. In this chapter we will examine
it yet again, this time using operator formalism, a method that is sometimes charac-
terized as algebraic. We will show that the energy eigenvalues are obtainable without
actually solving a differential equation, using only the Hamiltonian operator and the
commutation relations between x̂ and p̂. This powerful method of solution, due to
Dirac, has consequences far beyond an exercise in elementary quantum physics. The
operators are used in many problems in physics.

7.1 The Algebraic Method

7.1.1 The Schrödinger Picture

We define a new operator in terms of the position and momentum operators x̂ and
p̂. In this section we will be using the Schrödinger picture so the operators are
time-independent. Because we are using operator methods, we retain the hat on
the position operator. For simplicity we again drop the subscript on the momentum
operator inasmuch as this is a one-dimensional problem. The new operator and its
Hermitian conjugate are

â =
√

mω

2�

(
x̂ + i

mω
p̂

)
= 1√

2

(
αx̂ + i

1

α�
p̂

)
(7.1)

â† =
√

mω

2�

(
x̂ − i

mω
p̂

)
= 1√

2

(
αx̂ − i

1

α�
p̂

)
(7.2)

where α = √
mω/� as in Equation 3.25. Notice that these operators are not Hermi-

tian operators. They therefore need not have real eigenvalues and do not qualify as
observables. In the form written in Equations 7.1 and 7.2 â and â† are dimensionless.
To exploit these new operators to solve the TISE we must do some preliminary work
to derive relations between them and other quantum mechanical operators.

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 219
DOI: 10.1007/978-0-387-77652-1 7, C© Springer Science+Business Media, LLC 2008
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We first show that
[
â, â†] = 1 by invoking the [x̂, p̂] = i�:

[
â, â†] = 1

2

[(
αx̂ + i

1

α�
p̂

)
,

(
αx̂ − i

1

α�
p̂

)]

= 1

2

{(
− i

�

)
[x̂, p̂] +

(
i

�

)
[ p̂, x̂]

}

= −i

2�
{2 [x̂, p̂]}

= 1 (7.3)

Next we express the Hamiltonian in terms of a and â† by solving Equations 7.1 and
7.2 for x̂ and p̂. We obtain

x̂ =
√

�

2mω

(
â + â†) = 1√

2α

(
â + â†) (7.4)

and

p̂ = −i

√
mω�

2

(
â − â†) = −i

α�√
2

(
â − â†) (7.5)

The Hamiltonian then has the simple form

Ĥ = p̂2

2m
+ 1

2
mω2 x̂2

= −�ω

4

(
â − â†)2 + �ω

4

(
â + â†)2

= �ω

4

{− (
ââ − ââ† − â†â + â†â†) + (

ââ + ââ† + â†â + â†â†)}

= �ω

2

(
â†â + ââ†) (7.6)

We can put this in a slightly different form by adding and subtracting â†â in the
parentheses in this last equation and taking advantage of the commutation relation
derived above and

[
â, â†] = 1. We obtain

Ĥ = �ω

(
â†â + 1

2

)
(7.7)

In this form the Hamiltonian is the sum of two terms, one the operator â†â and
the other the constant �ω/2. The solution of the eigenvalue problem then becomes
one of solving the eigenvalue equation for the operator â†â and adding the constant
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term to �ω times their eigenvalues to find the energies. Note that the operator â†â
is Hermitian as it must be to be a term in the Hamiltonian. It therefore qualifies as
an observable. Moreover, because it obviously commutes with the Hamiltonian, a
measurement of this observable can be made simultaneously with a measurement of
the energy, and these two operators can have simultaneous eigenvectors.

It is often convenient to express â and â† in terms of dimensionless operators. To
do this we simply rescale x̂ and p̂. Using Equations 7.1 and 7.2 as a guide we let

x̂ = 1

α
X̂ and p̂ = α�P̂ (7.8)

so that

â = 1√
2

(
X̂ + i P̂

)
(7.9)

and

â† = 1√
2

(
X̂ − i P̂

)
(7.10)

This choice of scaling constants also preserves the “equality” of �X̂ and �P̂ as
discussed in Section 4.5. Notice that X̂ is equivalent to the reduced coordinate ξ =
αx of Section 3.1.2.

Now, what is the observable â†â? Being blessed with knowledge of the answer
we will designate this operator with the symbol N̂ so that

N̂ = â†â (7.11)

and we seek to solve the eigenvalue equation

N̂ |n〉 = n |n〉 (7.12)

where n and |n〉 are the eigenvalues and eigenvectors of N̂ (as well as Ĥ because
N̂ and Ĥ commute). We may write the energy eigenvalue equation in terms of the
eigenvectors and eigenvalues of N̂ :

Ĥ |n〉 = �ω

(
N̂ + 1

2

)
|n〉

= �ω

(
n + 1

2

)
|n〉 (7.13)

bearing in mind that we are pretending that we do not yet know the nature of the
eigenvalue n. One thing we know, however, is that n is unitless because â and â† are
dimensionless.
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We now undertake the crucial task of identifying the nature of the observable N̂
by examining the properties of the eigenvalue n. We will require the commutation
relations

[
N̂ , â

] = −â (7.14)

and

[
N̂ , â†] = â† (7.15)

which are easy to prove (see Problem 2). To determine the nature of n, we begin by
operating on the vector â |n〉 with N̂ , use Equation 7.14, regroup the operators, and
use the commutator in Equation 7.3. We obtain

N̂ â |n〉 = (−â + â N̂
) |n〉

N̂ {â |n〉} = (−â + ân) |n〉
= (n − 1) {â |n〉} (7.16)

Equation 7.16 shows two important characteristics of the eigenvalues and eigen-
functions of N̂ . First, the quantity {â |n〉} is also an eigenvector of N̂ and, second,
its eigenfunction is (n − 1). We have therefore deduced a relationship between â |n〉
and |n − 1〉, in particular

â |n〉 = c1 |n − 1〉 (7.17)

where c1 is a constant. In a similar manner we operate on â† |n〉 with N̂ and employ
the commutation relation in Equation 7.15 to obtain (see Problem 3)

â† |n〉 = c2 |n + 1〉 (7.18)

We must now evaluate the constants c1 and c2. To do this we use the fact that
these eigenvectors must be normalized. Thus,

1 = 〈n − 1 |n − 1〉
= 1

|c1|2
〈n| â†â |n〉

= 1

|c1|2
〈n| N̂ |n〉

= n

|c1|2
(7.19)

It is conventional to choose c1 to be real in which case c1 = √
n and the effect of â

operating on |n〉 is given by
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â |n〉 = √
n |n − 1〉 (7.20)

In an analogous manner (see Problem 4) we find that

â† |n〉 = √
n + 1 |n + 1〉 (7.21)

Equations 7.17 and 7.18 show that the effect of â or â† on one of the simultaneous
eigenvectors of Ĥ and N̂ is to lower it or raise it (respectively) to the next eigen-
vector. Equations 7.20 and 7.21 specify the “length” of the vectors that result from
the action of each of these operators. The operators â and â† are known as ladder
operators, raising and lowering operators, or creation and annihilation operators.

Now, what about the nature of n itself? Because the absolute square of â |n〉 must
be positive we know that

〈n| â†â |n〉 = 〈n| N̂ |n〉
= n ≥ 0 (7.22)

Moreover, n cannot be negative so it must be impossible to lower an eigenvector to
make its eigenvalue negative. The only way this is possible is if the n are positive
integers. Now, clearly, there must be a minimum value of n, call it nmin, to avoid
negative values. Lowering the eigenket that has this minimum value, call it |nmin〉,
must obliterate it. That is,

â |nmin〉 = 0 (7.23)

Operating on Equation 7.23 with â† leads to

â†â |nmin〉 = N̂ |nmin〉
= 0 (7.24)

which shows that the minimum eigenvalue of N̂ must be zero, nmin = 0. Thus, n
can be any positive integer or zero. For this reason N̂ is called the number operator.
These restrictions on the eigenvalue n together with Equation 7.13 make it clear that
we have recovered the same equation for the energy eigenvalues as we derived by
solving the TISE in Section 3.1.2. That is, from Equation 7.13, the energy eigenval-
ues are given by

En =
(

n + 1

2

)
�ω n = 0, 1, 2, . . . (7.25)

We can also obtain the eigenfunctions given in Equation 3.45 using operator
techniques. If we can find the eigenvector corresponding to the lowest eigenvalue,
we can simply operate on it with the raising operator â† until we have reached the
desired eigenvector. Obviously this is an inferior method to simply looking up the
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wave function, but it shows that any wave function can be obtained once one of them
is known. To obtain the lowest eigenfunction we begin by lowering it out of exis-
tence, that is, employing Equation 7.23. To convert eigenkets into eigenfunctions
we make use of Equation 6.134 so the ground state eigenfunction ψ0 (x) is 〈X |0〉.
Writing Equation 7.23 in the coordinate representation we have

âψ0 (x) = 0

=
√

mω

2�

(
x + i

mω
p̂

)
ψ0 (x)

=
√

mω

2�

(
x + �

mω

d

dx

)
ψ0 (x) (7.26)

which is a linear first-order differential equation for ψ0 (x). This equation is separa-
ble and yields the normalized solution

ψ0 (x) =
(

α2

π

)1/4

e−α2 x2/2 (7.27)

where α = √
mω/�. It must be remembered that an arbitrary harmonic oscillator

state vector (wave function) is time-dependent. The time dependence is obtained
by operating on |ψ〉 with the time evolution operator. This has the same effect as
multiplying each eigenvector in the expansion of the state vector by the appropriate
exponential containing the eigenvalue. In terms of the eigenkets |n〉, an arbitrary
state ket is

|�〉 =
∞∑

i=0

ai e
−i Ei /� |i〉 (7.28)

A summary of the relations pertaining to the algebraic solution of the harmonic
oscillator is given in Table 7.1.

7.1.2 Matrix Elements

It is useful to know the matrix elements of the ladder operators because powers of
x̂ and p̂ may be written in terms of them (see Table 7.1). From Equations 7.20 and
7.21 it is clear that

〈m| â |n〉 = √
nδm,n−1 (7.29)

and

〈m| â† |n〉 = √
n + 1δm,n+1 (7.30)



7.1 The Algebraic Method 225

Table 7.1 Relations involving the raising and lowering operators, â† and â, of the harmonic
oscillator

x̂ = 1

α
X̂

p̂ = α�P̂

â = 1√
2

(
α x̂ + i

1

α�
p̂

)
= 1√

2

(
X̂ + i P̂

)

â† = 1√
2

(
α x̂ − i

1

α�
p̂

)
= 1√

2

(
X̂ − i P̂

)

x̂ = 1√
2α

(
â + â†)

p̂ = −i
α�√
2α

(
â − â†)

X̂ =
1√
2

(
â + â†)

P̂ = −i√
2

(
â − â†)

N̂ = â†â

Ĥ = �ω

(
â†â + 1

2

)
= �ω

(
N̂ + 1

2

)

[
â, â†] = 1[
N̂ , â

] = −â =⇒ [
Ĥ , â

] = −�ωâ[
N̂ , â†] = â† =⇒ [

Ĥ , â†] = �ωâ†

â |n〉 = √
n |n − 1〉

â† |n〉 = √
n + 1 |n + 1〉

Because we already know x̂ and p̂ in terms of the ladder operators, Equations 7.4
and 7.5, we can easily find the matrix elements 〈m| x̂ |n〉 and 〈m| p̂ |n〉:

〈m| x̂ |n〉 = 1√
2α

〈m| (â + â†) |n〉

= 1√
2α

(√
nδm,n−1 + √

n + 1δm,n+1

)
(7.31)

and

〈m| p̂ |n〉 = −i
α�√

2
〈m| (â − â†) |n〉

= −i
α�√

2

(√
nδm,n−1 − √

n + 1δm,n+1

)
(7.32)

We can calculate the matrix elements of higher powers of x̂ by repetitive application
of the ladder operators (see Problem 7). There is, however, another method which,
while offering no particular advantage for low powers of x̂ , is more convenient for
higher powers. We illustrate this method by evaluating a low power, 〈m| x̂2 |n〉. We
write
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〈m| x̂2 |n〉 = 〈m| x̂ x̂ |n〉

=
∞∑

k=0

〈m| x̂ |k〉 〈k| x̂ |n〉 (7.33)

where the last step was effected using the identity operator (see Equation 6.58).
Inserting the matrix elements from Equation 7.31 we have

〈m| x̂2 |n〉 = 1

2α2

∞∑

k=0

[(√
kδm,k−1 + √

k + 1δm,k+1

)

×
(√

nδk,n−1 + √
n + 1δk,n+1

)]
(7.34)

or

〈m| x̂2 |n〉 = 1

2α2

∞∑

k=0

[√
knδm,k−1δk,n−1 +

√
k (n + 1)δm,k−1δk,n+1

+
√

n (k + 1)δm,k+1δk,n−1

+
√

(n + 1) (k + 1)δm,k+1δk,n+1

]
(7.35)

To simplify this expression we must combine the Kronecker deltas, a process that
we illustrate by considering the first term on the right-hand side of Equation 7.35.
The only term of this summation that survives is the one for which m = k − 1 and
for which n = k + 1 so that m = n − 2. Then

∞∑

k=0

√
knδm,k−1δk,n−1 =

√
n (m + 1)δm+1,n−1

=
√

n (n − 1)δm,n−2 (7.36)

where, for the sake of tidiness, we have made the first index on the Kronecker delta
m. The remaining terms are treated the same way and we arrive at

〈m| x̂2 |n〉 = 1

2α2

[√
n (n − 1)δm,n−2

+ (2n + 1) δm,n +
√

(n + 1) (n + 2)δm,n+2

]
(7.37)

Similarly, we can obtain
(
x̂3

)
mn

= 〈m| x̂3 |n〉. After some labor we arrive at
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〈m| x̂3 |n〉 = 1

2
√

2α3

[√
(n + 1) (n + 2) (n + 3)δm,n+3

+3
√

(n + 1)3δm,n+1 + 3
√

n3δm,n−1

+
√

n (n − 1) (n − 2)δm,n−3

]
(7.38)

Comparing the two odd powers of x̂ with the even powers, we see that δm,n occurs
only in

(
x̂2
)

mn
. This term is missing from the odd powers. This is understandable

in terms of the actual eigenfunctions which, recall, have definite parity. Therefore,
if m = n, the diagonal matrix elements must vanish for the odd powers of x̂ while
they are present in the even powers.

7.1.3 The Heisenberg Picture

We have already worked out the details of the solution to the harmonic oscillator in
the Heisenberg representation in Section 6.5. In that section we obtained the time
dependences of the observables x̂ (t) and p̂ (t). We now show that these solutions
can be obtained using the ladder operators.

Although they are not themselves observables because they are not Hermitian,
we may insert â and â† into the Heisenberg equation of motion, Equation 6.145,
to convert them to Heisenberg operators. Of course, we could also apply the uni-
tary transformation using the evolution operator. Using the equation of motion
we have

dâ (t)

dt
= i

�

[
Ĥ , â (t)

]
(7.39)

and

dâ† (t)

dt
= i

�

[
Ĥ , â† (t)

]
(7.40)

From Problem 1 we know that

[
Ĥ , â (t)

] = −�ωâ (t) and
[
Ĥ , â† (t)

] = �ωâ† (t) (7.41)

because commutation relations between Schrödinger operators and Heisenberg op-
erators are invariant (see Problem 7, Chapter 6). We thus have a differential equation
for each operator:

dâ (t)

dt
= −iωâ (t) (7.42)
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and

dâ† (t)

dt
= iωâ† (t) (7.43)

the solutions to which are

â (t) = â (0) e−iωt

â† (t) = â† (0) eiωt (7.44)

Using Equations 7.4 and 7.5 we have

{
x̂ (t) + i

mω
p̂ (t)

}
=

{
x̂ (0) + i

mω
p̂ (0)

}
e−iωt

{
x̂ (t) − i

mω
p̂ (t)

}
=

{
x̂ (0) − i

mω
p̂ (0)

}
eiωt (7.45)

Adding these two equations yields x̂ (t) and p̂ (t), respectively:

x̂ (t) = x̂ (0)

{
e−iωt + eiωt

2

}
+ 1

mω
p̂ (0)

{
e−iωt − eiωt

2i

}

= x̂ (0) cos ωt + 1

mω
p̂ (0) sin ωt

= x̂ (0) cos ωt + 1

α2�
p̂ (0) sin ωt (7.46)

and

p̂ (t) = p̂ (0) cos ωt − mωx̂ (0) sin ωt

= p̂ (0) cos ωt − α�x̂ (0) sin ωt (7.47)

Thus, the equations of motion for the position and momentum operators that we
have derived are identical with those already obtained, Equations 6.157 and 6.158.

We have seen that the commutation rules for Heisenberg operators are the same
as those for Schrödinger operators (Problem 7, Chapter 6). How about commutators
involving Heisenberg operators at different times? To investigate this we examine
the commutator [x̂ (t) , p̂ (0)] for the harmonic oscillator. Using Equation 7.46 we
have

[x̂ (t) , p̂ (0)] =
[{

x̂ (0) cos ωt − 1

α2�
p̂ (0) sin ωt

}
, p̂ (0)

]

= [x̂ (0) , p̂ (0)] cos ωt

= i� cos ωt (7.48)
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For the harmonic oscillator we also have (see Problem 6).

[ p̂ (t) , p̂ (0)] = −imω� sin ωt

[x̂ (t) , x̂ (0)] = − i�

mω
sin ωt (7.49)

7.2 Coherent States of the Harmonic Oscillator

After deducing his now-famous equation, Schrödinger searched for a way to relate
quantum mechanical parameters to classical physics. In particular, he was looking
for a way to quantum mechanically represent the motion of a classical particle. In
1926 he was led to what we may refer to as the Schrödinger coherent state [1]. He
found that certain linear combinations of harmonic oscillator eigenfunctions pro-
duced Gaussian wave packets that did not spread in time. Moreover, he also noted
that if the uncertainties in position and time were equal, as discussed in Section
4.5, the resulting packet would be as close a representation of a classical particle as
could be obtained within the bounds of the uncertainty principle.

We have seen in Sections 4.5 and 6.6.1 the uncertainty product for a Gaussian
wave packet has the minimum value �/2. The ground state of the harmonic oscilla-
tor, being a Gaussian form, has minimum uncertainties

�x = 1√
2α

and �p = �α√
2

(7.50)

and these uncertainties are equal. Although the ground state of the harmonic oscil-
lator has these magical properties, we cannot relate it to a moving classical particle
because it represents a stationary state. We can, however, translate the ground state
Gaussian shape to some other equilibrium position, say x0, and release the particle
(for simplicity with zero momentum). Clearly the wave packet will have the same
properties as the ground state wave function, but, because this displaced Gaussian is
not an eigenstate, it will move in time. This is the displaced ground state discussed
in Section 4.5. It is the best that we can do to quantum mechanically simulate the
motion of a classical particle because the uncertainties in position and momentum
remain minimized and equal. We can, in fact, define this Schrödinger coherent state
as one for which the uncertainty product �x�p is minimized and for which the
individual uncertainties are equal. Note that it is possible to retain the minimum
uncertainty product without the condition that the uncertainties are equal. In such a
case we have a “squeezed state,” a subject of contemporary research.

We have already constructed the Schrödinger coherent state in Section 4.5.3. It
is precisely Case III, the Gaussian wave packet under the influence of a harmonic
oscillator potential. The initial wave function is given by Equation 4.95 and the
time-dependent probability by Equation 4.107. The probability distribution showed
clearly that the packet oscillates with the same frequency as the classical oscillator.
Moreover, it does not spread in time.
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To construct these coherent states we take a clue from Equation 7.23 which ex-
hibits the property of the annihilation operator, that, when it operates on the ground
state of the harmonic oscillator, it obliterates it. This equation may be viewed as an
eigenvalue equation, a particularly simple one, but an eigenvalue equation nonethe-
less. That is,

â |0〉 = 0 · |0〉 (7.51)

Thus, |0〉, which has Gaussian shape in both coordinate and momentum spaces, is an
eigenvector of the lowering operator with eigenvalue zero. This suggests that other
eigenvectors of â might have similar properties. Indeed they do, but these eigenstates
are not eigenstates of the Hamiltonian and the number operator. In general, letting
|z〉 represent an eigenvector of â, we have

â |z〉 =
(

α√
2
ζ

)
|z〉 (7.52)

where the eigenvalue ζ need not be real because â is not Hermitian. The factor
α/

√
2 has been inserted to make the result dimensionally appealing when compared

with Equation 4.107.
To investigate the nature of these eigenvalues we solve Equation 7.52 in coordi-

nate space. In this case 〈x | z〉 = � (x, 0) and we have the differential equation

√
1

2

[
αx + i

1

α�

(
�

i

d

dx

)]
� (x, 0) = α√

2
ζ� (x, 0) (7.53)

the solution to which is

� (x, 0) = Me−α2(x−ζ )2/2 (7.54)

where M is the normalization constant. Recalling that the eigenvalue ζ may be a
complex number, we let ζ = Re ζ + i Im ζ and normalize. Equation 7.54 is

� (x, 0) = M exp

[
−α2

2
(x − Re ζ − i Im ζ )2

]

= M exp

{
−α2

2

[
(x − Re ζ )2 − (Im ζ )2]

}
· exp

[
iα2 (x − Re ζ ) · Im ζ

]

(7.55)



7.2 Coherent States of the Harmonic Oscillator 231

Then

1 =
∫ ∞

−∞
�∗ (x, 0) � (x, 0) dx

= |M|2
∫ ∞

−∞
exp

{−α2
[
(x − Re ζ )2 − (Im ζ )2

]}
dx

= |M|2 exp
[
α2 (Im ζ )2

]
√

π

α
(7.56)

so that

M =
√

α

π1/4
exp

[
−α2

2
(Im ζ )2

]
(7.57)

The eigenfunction represented by Equation 7.54 makes it clear that the eigen-
vectors of the lowering operator lead to nonstationary states that are nonetheless
Gaussian wave packets centered at x = Re ζ at t = 0. Moreover, the uncertainty
product �x�p is minimized and the individual uncertainties are equal. They are
not eigenstates of the Hamiltonian and the number operator, but they may be ex-
panded in terms of their eigenstates. These displaced ground states are indeed the
Schrödinger coherent states.

To write the eigenket of â in terms of the harmonic oscillator eigenkets |n〉 we
write the usual expansion on the complete set

|z〉 =
∞∑

n=0

bn |n〉 (7.58)

Applying the annihilation operator to Equation 7.58, using Equation 7.52 and Equa-
tion 7.20, we have

α√
2
ζ |z〉 =

∞∑

n=0

bnâ |n〉

=
∞∑

n=1

bn
√

n |n − 1〉 (7.59)

We now replace |z〉 with the expansion of Equation 7.58, but change the index on
the summation on the right-hand side by letting n → (n + 1) which makes the two
summations have compatible ranges, namely, 0 → ∞.

α√
2
ζ

∞∑

n=0

bn |n〉 =
∞∑

n=0

bn+1

√
n + 1 |n〉 (7.60)
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Because the summations are identical, the coefficients of |n〉 must be identical and
we obtain the recursion relation

α√
2
ζbn = bn+1

√
n + 1 ⇒ bn+1 = α√

2

ζ√
n + 1

bn (7.61)

Applying this recursion relation n times to the first expansion coefficient b0 we have

b1 =
(

α√
2

)(
ζ√
1

b0

)

b2 =
(

α√
2

)
ζ√
2

b1 =
(

α√
2

)2 (
ζ 2

√
1 · 2

b0

)

...

bn =
(

α√
2

)n (
ζ n

√
n!

)
b0 (7.62)

which we can now insert in Equation 7.58 to obtain

|z〉 = b0

∞∑

n=0

(
α√
2

)n
ζ n

√
n!

|n〉 (7.63)

To find b0 we normalize |z〉 . Taking advantage of the orthonormality of the |n〉 we
have

〈z |z〉 = |b0|2
∞∑

n=0

(
α2

2

)n
(ζ ∗)n ζ n

n!

= |b0|2
∞∑

n=0

(
α2 |ζ |2

2

)n
1

n!
(7.64)

The summation is the Taylor series for eα2|ζ |2/2 so b0 is given by

b0 = e−α2|ζ |2/4 (7.65)

and

bn =
(

α√
2

)n
ζ n

√
n!

e−α2 |ζ |2/4 (7.66)

The coherent state, Equation 7.58, is therefore

|z〉 = e−α2|ζ |2/4
∞∑

n=0

(
α√
2

)n

ζ n 1√
n!

|n〉 (7.67)
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which may be shown to be an eigenvector of â with eigenvalue
(
αζ/

√
2
)

(see Prob-

lem 12).
We may now put in the time dependence by applying the time evolution operator

to |z〉 which has the effect of multiplying each term in the expansion of Equation
7.67 by exp [−i (n + 1/2) ωt]. Thus, the coherent state including the time depen-
dence is

|z (t)〉 = e−α2|ζ |2/4e−iωt/2
∞∑

n=0

(
α√
2

)n (
ζ e−iωt

)n 1√
n!

|n〉 (7.68)

It is seen that, to obtain the time dependence of the Schrödinger coherent state,
it is only necessary to make the substitution ζ → ζ e−iωt in Equation 7.67 and
multiply the entire expression by the phase factor representing the zero point energy
of the oscillator, e−iωt/2. Notice that, as remarked in Section 4.5, this is only possible
because the energy levels of the harmonic oscillator are equally spaced.

We know that initially the wave packet was a minimum uncertainty packet.
That is,

�x�p = �

2
(7.69)

so we can examine the time evolution of the individual uncertainties by finding the
uncertainties for t = 0 and then make the substitution ζ → ζ e−iωt in � (x, 0).
We begin by calculating �p and leave the determination of �x as an exercise (see
Problem 15).

The expectation values of p̂ and p̂2 are conveniently calculated using the ladder
operators, Equation 7.52, and p̂ in the form given in Equation 7.5. We have

〈 p̂〉 =
(

−i
α�√

2

)
〈z| (â − â†) |z〉

=
(

−i
α�√

2

)
(〈z| (â |z〉 − 〈z| â†) |z〉)

=
(

−i
α�√

2

)(
α√
2

)
(
ζ − ζ ∗)

=
(

−i
α2

�

2

)
2i Im ζ

= α2
� Im ζ (7.70)

where the second inner product was performed using the complex conjugate of
Equation 7.52. We also require

〈
p̂2
〉

which may be calculated in an analogous
manner:
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〈
p̂2
〉 =

(
−i

α�√
2

)2

〈z| (â − â†) (â − â†) |z〉

= −
(

α�√
2

)2

〈z|
[
â2 − ââ† − â†â − (

â†)2
]
|z〉 (7.71)

We know that the inner product 〈z| â†â |z〉 = ζ ∗ζα2/2, but how about 〈z| ââ† |z〉?
We can easily evaluate this using the commutation relation given in Equation 7.3.
Replacing the operator ââ† with

(
1 + â†â

)
leads to

〈
p̂2〉 = −

(
α�√

2

)2

〈z|
[
â2 − 1 − 2â†â − (

â†)2
]
|z〉

= −
(

α�√
2

)2 (
ζ 2 − 2ζ ∗ζ + ζ ∗2

)(
α√
2

)2

+
(

α�√
2

)2

= −
(

α4
�

2

4

)
(2i Im ζ )2 + α2

�
2

2

= α4
�

2 (Im ζ )2 + α2
�

2

2
(7.72)

Therefore,

(�p)2 = 〈
p̂2
〉 − 〈 p̂〉2

= α4
�

2 (Im ζ )2 + α2
�

2

2
− (

α2
� Im ζ

)2

= α2
�

2

2
(7.73)

Notice that it is not possible to make the substitution ζ → ζ e−iωt in the expres-
sion for (�p)2, Equation 7.73, in order to determine its time dependence since it is
independent of ζ and therefore independent of time.

In a similar manner we find (see Problem 16)

〈x̂〉 = Re ζ and
〈
x̂2〉 = (Re ζ )2 + 1

2α2
(7.74)

so that

(�x)2 = 1

2α2
(7.75)

which is also independent of time. The uncertainty product is therefore given at all
times by that of the minimum uncertainty wave packet
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(�x)2 (�p)2 = �
2

4
(7.76)

Comparison of the values obtained for the expectation values 〈x̂〉 and 〈 p̂〉, Equa-
tions 7.70 and 7.74, leads to a physical interpretation of the complex eigenvalue(
α/

√
2
)

ζ . From Equations 4.58 and 4.59 for a Gaussian wave packet with initial

displacement x0 and initial momentum p0, we know that 〈x̂〉 = x0 and 〈 p̂〉 = p0

(see Problem 4 of Chapter 4). We are therefore led to write

ζ = Re ζ + i Im ζ

= 〈x̂〉 + i
〈 p̂〉
α2�

= x0 + i
p0

α2�
(7.77)

so that

Re ζ = x0 and Im ζ = p0

α2�
(7.78)

Inserting ζ in this form into Equation 7.55 we may write � (x, 0) in the form

� (x, 0) = M exp

{
−α2

2

[
(x − x0)2 −

( p0

α2�

)2
]}

· exp
[
iα2 (x − x0) · p0

α2�

]

(7.79)
where, using Equations 7.57 and 7.78, the normalization constant is

M =
√

α

π1/4
exp

[
−1

2

p0
2

α2�

]
(7.80)

It was remarked in Section 6.6.2 that we would reexamine the time develop-
ment of a Gaussian packet under the influence of a harmonic oscillator potential,
an exercise that will now be undertaken. We wish to find the time-dependent wave
function � (x, t) so we may compare |� (x, t)|2 with the corresponding probability
density of Case III of Section 4.5 Equation 4.107 to verify that the wave packet of
Section 4.5 is indeed a Schrödinger coherent state. To obtain the time dependence
of a coherent state it is natural to begin by applying the time evolution operator,
Equation 6.115, so that in the current notation

� (x, t) = e−i Ĥ t/�� (x, 0) (7.81)

As noted in Section 6.6.2, however, this is a nontrivial exercise because the Hamil-
tonian consists of two noncommuting terms (see the BCH formula in Appendix L).
We can circumvent the necessity of using the time evolution operator because we
found that |z〉 could be converted to |z (t)〉 by making the substitution ζ → ζ e−iωt
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and multiplying the entire expression by e−iωt/2 (see Equation 7.68). We therefore
take that approach here to effect the conversion � (x, 0) → � (x, t). Making the
substitution ζ → (Re ζ + i Im ζ ) e−iωt in Equation 7.79 and substituting for the
real and imaginary parts of ζ using Equation 7.78 we have

� (x, t) = Ne−iωt/2 exp

{
−α2

2

[(
x − x0e−iωt

)2 −
( p0

α2�
e−iωt

)2
]}

× exp
[
−2i

(
x − x0e−iωt

) p0

α2�
e−iωt

]
(7.82)

Adapting Equation 7.82 to the conditions of Case III of Section 4.5, namely, initial
momentum p0 = 0, we have

� (x, t) =
√

α

π1/4
exp

{[
−α2

2
(x − x0 cos ωt)2

]}

× exp [−i (x − x0 cos ωt) x0 sin ωt] (7.83)

and the probability distribution is

|� (x, t)|2 = α√
π

exp
[−α2 (x − x0 cos ωt)2

]
(7.84)

We see that, indeed, we have reproduced the probability distribution of Equation
4.107 so that the Schrödinger coherent state of this section is identical with the
Gaussian wave packet under the influence of a harmonic oscillator potential.

7.3 Retrospective

The algebraic method of solving the harmonic oscillator problem is a concise and
elegant method of obtaining the energy eigenvalues and eigenfunctions. It provides
a method of solving quantum mechanical problems using the commutator rules that
are a unique feature of quantum physics. Because the harmonic oscillator is the
starting point for the quantal description of a great many physical problems, for
example, molecular vibrations and nuclear structure, the formulation in terms of
the ladder operators is invaluable. Moreover, ladder operators of other operators are
employed throughout quantum physics.

7.4 Reference

1. E. Schrödinger, Naturwissenschaften, 28, 664-666 (1926). The English translation of this paper
is contained in E. Schrödinger, Collected Papers on Wave Mechanics (Chelsea Publishing Co.,
New York, 3rd ed., 1982), pp. 41–44.



Problems 237

Problems

1. Show that
[
Ĥ , â

] = −�ωâ and
[
Ĥ , â†] = �ωâ†.

2. Prove Equations 7.14 and 7.15. That is, prove
[
N̂ , â

] = −â and
[
N̂ , â†] = â†.

3. Show that â† |n〉 = c2 |n + 1〉.
4. Beginning with â† |n〉 = c2 |n + 1〉 , show that â† |n〉 = √

n + 1 |n + 1〉.
5. The state vector at t = 0 for a particle subject to a harmonic oscillator potential

is given by

|� (x, 0)〉 = 1√
3

|1〉 +
√

2

3
|2〉

where the |n〉 are eigenvectors of the Hamiltonian and the number operator.

(a) Find the state vector as a function of time |� (x, t)〉.
(b) Find the expectation value of the energy as a function of time.
(c) Find the expectation value of the position as a function of time.

6. Show that for the harmonic oscillator [ p̂ (t) , p̂ (0)] = −imω� sin ωt and

[x̂ (t) , x̂ (0)] = − i�

mω
sin ωt .

7. Show that

〈m| x̂2 |n〉 = 1

2α2

[√
n (n − 1)δm,n−2

+ (2n + 1) δm,n +
√

(n + 1) (n + 2)δm,n+2

]

by writing x in terms of the ladder operators and operating on |n〉.
8. Obtain the matrix element 〈m| x̂ |n〉, Equation 7.31, by direct integration using

the wave functions given in Equation 3.49.
9. Obtain the matrix element 〈m| x̂2 |n〉 in terms of the quantum number m by

applying the same technique to Equation 7.37 as that employed to obtain Equa-
tion 7.35 . Of course, the answer will be the same as that in Problem 7, but
show that the δ-functions at each end interchange. [Hint: Make sure that the
second index in all the δ-functions is n.]

10. Obtain the matrix element 〈m| x̂3 |n〉 Equation 7.38:

〈m| x̂3 |n〉 = 1

2
√

2α3

[√
(n + 1) (n + 2) (n + 3)δm,n+3

+3
√

(n + 1)3δm,n+1 + 3
√

n3δm,n−1

+
√

n (n − 1) (n − 2)δm,n−3

]
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11. Find the expectation value of x̂4 for arbitrary state of the harmonic oscillator.
12. Show that the time-dependent Schrödinger coherent state in the form given in

Equation 7.68

|z (t)〉 = e−α2|z|2/4e−iωt/2
∞∑

n=0

(
αze−iωt

√
2

)n
1√
n!

|n〉

is an eigenstate of the annihilation operator â with eigenvalue
(
αze−iωt /

√
2
)

which shows that |z (t)〉 remains an eigenvector of â for all time.
13. Show that the wave function at t = 0 for Case III in Chapter 4, Equation 4.95,

is an eigenstate of the annihilation operator with eigenvalue αx0/
√

2.
14. Show that the Schrödinger coherent state

|z〉 = e−|z|2/2
∞∑

n=0

zn

√
n!

|n〉

can be written in the form

|z〉 = e−|z|2/2ezâ† |0〉

15. Show that (�x)2 = 1/2α2 for the Schrödinger coherent state of Equation 7.67.
16. Show that �x is independent of time using Equations 7.44.
17. A particle of mass m is in the ground state of a harmonic oscillator potential

U (x) = (1/2) mω2. At t = 0 the force center is suddenly shifted to a point
along the x-axis x = x0. The shift is so sudden that the wave function does not
change.

(a) Show that the state of the system after the shift is a Schrödinger coherent
state.

(b) If the energy is measured immediately after the change, what values of the
energy can be measured and with what probabilities?



Chapter 8
Quantum Mechanics in Three
Dimensions—Angular Momentum

It is now time to attack problems in three dimensions. This is not merely a threefold
extension of one-dimensional problems because we must now deal with angular
momentum. In classical physics angular momentum is usually designated L and
defined as

L = r × p (8.1)

In quantum physics the term angular momentum has a much more general mean-
ing. The most common perception of angular momentum is that of the momentum
associated with some angular motion. In quantum physics, however, an angular mo-
mentum is defined as any operator Ĵ that represents a vector observable and for
which the components obey the commutation rule

[
Ĵi , Ĵ j

] = i� Ĵkεi jk (8.2)

where any of the i , j , and k represent x , y, and z. The quantity εi jk is known as
the Levi-Cevita symbol. If the indexes i , j and k are in cyclic order (for example
jki ), εi jk = +1. If they are out of order (such as k ji ), then εi jk = −1. If any two
indexes are the same, εi jk = 0. Any operator that obeys the commutation rule given
in Equation 8.2 is called a generalized angular momentum.

The quantum mechanical angular momentum that corresponds to the classical
angular momentum of Equation 8.1, which we will refer to as orbital angular mo-
mentum and designate the corresponding operator as L̂ is a special case of the more
general entity as defined by Equation 8.2. It is unfortunate that physicists often use
the term angular momentum without specifying which angular momentum it is to
which they refer. To the beginner, angular momentum usually means L. There are,
however, other angular momenta, and these angular momenta may have nothing at
all to do with r× p. Indeed, an angular momentum may be a very abstract observable
quantity. This is an important concept in quantum physics so we will delve into it in
some detail.

Let us first examine the special case for which Ĵ = L̂ because we know the
form of the operators r̂ and p̂ so we can show that the components of L̂ obey the
commutation rule given in Equation 8.2. Note that, having completed our study

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 239
DOI: 10.1007/978-0-387-77652-1 8, C© Springer Science+Business Media, LLC 2008
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of the formal aspects of quantum mechanics, we revert to the unhatted coordinate
operators. We must be careful with the ordering of the operators r and p̂ in the
cross product. The easiest way to do this is to remember that we are dealing with
r × p̂, and not p̂ × r . Therefore, the components of r always come first. Using the
determinant to evaluate the cross product we have

L̂ = r × p̂

=
∣
∣
∣
∣
∣∣

ı̂ ĵ k̂
x y z
p̂x p̂y p̂z

∣
∣
∣
∣
∣∣

= (
y p̂z − z p̂y

)
ı̂ + (z p̂x − x p̂z) ĵ + (

x p̂y − y p̂x
)

k̂ (8.3)

Notice that the coordinate operator is always first in each of the six terms in Equation
8.3. Using the coordinates of angular momentum in this equation we have

[
L̂ x , L̂ y

] = [(
y p̂z − z p̂y

)
, (z p̂x − x p̂z)

]

= [y p̂z, z p̂x] − [y p̂z, x p̂z] − [
z p̂y, z p̂x

] + [
z p̂y, x p̂z

]
(8.4)

To evaluate this commutator it is necessary to use commutator identities of the type
given in Appendix K. Noting that only two of the commutators in Equation 8.4 are
nonvanishing and applying the identity given in Equation K.5 we have

[
L̂ x , L̂ y

] = y [ p̂z, z] p̂x + x [z, p̂z] p̂y

= y (−i�) p̂x + x (i�) p̂y

= i�
(
x p̂y − y p̂x

)

= i�L̂z (8.5)

Cyclic permutation of the components reveals that, indeed, orbital angular momen-
tum qualifies as an angular momentum.

8.1 Commutation Relations

Returning now to a discussion of generalized angular momenta, we saw in Chapter
6 that, for operators corresponding to observable quantities, a nonvanishing com-
mutator indicates that the two operators represent observable quantities that are in-
compatible. That is, they cannot be measured simultaneously because the operators
cannot have simultaneous eigenvectors. Thus, it is clear from Equation 8.2 that only
one component of an angular momentum may be specified. Measurement of another
component disturbs the measurement of the first. Traditionally, the component that
is chosen to be the known component is the z-component. But, how about the mag-
nitude of the angular momentum? Can it be determined if we know the value of Ĵz?
To make this determination we must examine the commutation relation between Ĵz
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and the magnitude of the angular momentum, subject to the commutation relation
of Equation 8.2. It is easiest to work with the square of the magnitude Ĵ 2 which is,
necessarily, a scalar operator ( Ĵ 2 = Ĵ • Ĵ ). Thus,

[
Ĵ 2, Ĵz

] = [
Ĵ 2

x , Ĵz
] + [

Ĵ 2
y , Ĵz

] + [
Ĵ 2

z , Ĵz
]

(8.6)

where the last term clearly vanishes. Using the identity Equation K.4 we find that

[
Ĵ 2

x , Ĵz
] = [

Ĵx , Ĵz
]

Ĵx + Ĵx
[
Ĵx , Ĵz

]

= −i�
(
Ĵy Ĵx + Ĵx Ĵy

)
(8.7)

and

[
Ĵ 2

y , Ĵz
] = +i�

(
Ĵx Ĵy + Ĵy Ĵx

)
(8.8)

so that

[
Ĵ 2, Ĵz

] = 0 (8.9)

It is clear from the equivalence of the components that

[
Ĵ 2, Ĵi

] = 0 where i = x, y or z (8.10)

Therefore, the magnitude of the angular momentum can be specified together with
any of the components of Ĵ . Because, however, the components do not commute,
only one of them can be specified, customarily chosen to be Ĵz .

8.2 Angular Momentum Ladder Operators

8.2.1 Definitions and Commutation Relations

Angular momentum ladder operators are a very important class of operators. They
are very similar to the harmonic oscillator ladder operators introduced in Chapter 7.
As for the harmonic oscillator, they are also referred to as ladder operators or raising
and lowering operators. Another term for them is shift operators. For a generalized
angular momentum the angular momentum ladder operators are defined as

Ĵ± = Ĵx ± i Ĵy (8.11)

Clearly

Ĵ± = Ĵ †
∓ (8.12)



242 8 Quantum Mechanics in Three Dimensions—Angular Momentum

Table 8.1 Angular momentum commutation relations
[
Ĵi , Ĵ j

] = i�Ĵkεi jk

[
Ĵ 2, Ĵi

] = 0 i = x, y, or z
[
Ĵ+, Ĵ−

] = 2�Ĵz

[
Ĵ±, Ĵz

] = ∓�Ĵ±
[
Ĵ±, Ĵ 2

] = 0

The commutation relations with other angular momentum operators are useful.
For example,

[
Ĵ+, Ĵ−

] = −i
[
Ĵx, Ĵy

] + i
[
Ĵy, Ĵx

]

= −i
(
i� Ĵz

) + i
(−i� Ĵz

)

= 2� Ĵz (8.13)

where we have used the fundamental definition of an angular momentum, Equa-
tion 8.2.

Other commutation relations can be easily derived. For example (see Problem 2),

[
Ĵ±, Ĵz

] = ∓� Ĵ± (8.14)

and

[
Ĵ±, Ĵ 2] = 0 (8.15)

A few of the angular momentum commutation relations including some with the
ladder operators are summarized in Table 8.1.

8.2.2 Angular Momentum Eigenvalues

We can, with the aid of the ladder operators, find the eigenvalues of the general-
ized angular momentum operators Ĵ 2 and Ĵz . Because Ĵ 2 commutes with its com-
ponents, we know that Ĵ 2 and any one of its components can have simultaneous
eigenvalues.

We assume that the eigenstates are denoted by two quantum numbers, j and m,
where j is associated with Ĵ 2 and m with Ĵz . The eigenvectors are represented by
the ket | jm〉 so the eigenvalue equation for Ĵz may be written

Ĵz | jm〉 = m� | jm〉 (8.16)

where the � has been inserted for convenience, because we have the luxury of know-
ing the answer. The only thing we know about m is that it is a real number (because
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Ĵz is a Hermitian operator). The ket | jm〉 must also be an eigenket of the total
angular momentum operator Ĵ 2 because

[
Ĵ 2, Ĵz

] = 0. We therefore write

Ĵ 2 | jm〉 = �
2 f ( j, m) | jm〉 (8.17)

where f ( j, m) is presumed to be a function of the quantum number m and some
other quantum number j that is unique to the total angular momentum. We have
inserted �

2 in the eigenvalue, again for convenience. This eigenvalue must also be
real, but it must also be positive because Ĵ 2 represents the square of the angular
momentum. Moreover, the expectation value of the difference between Ĵ 2 and Ĵ 2

z
may be written

〈(
Ĵ 2 − Ĵ 2

z

)〉 = 〈 jm| ( Ĵ 2 − Ĵ 2
z

) | jm〉
= �

2 [ f ( j, m) − m2] (8.18)

Because f ( j, m) is manifestly positive we have obtained a relationship between
f ( j, m) and m2:

f ( j, m) ≥ m2 (8.19)

Now we operate on the eigenvalue equation, Equation 8.17, with Ĵ±:

Ĵ± Ĵ 2 | jm〉 = �
2 f ( j, m) Ĵ± | jm〉 (8.20)

Noting that the Ĵ± commutes with Ĵ 2 we rewrite Equation 8.20 in the form

Ĵ 2 { Ĵ± | jm〉} = �
2 f ( j, m)

{
Ĵ± | jm〉} (8.21)

which makes it clear that the kets
{

Ĵ± | jm〉} are eigenkets of Ĵ 2. Moreover, the{
Ĵ± | jm〉} have the same eigenvalue as Ĵ 2, �

2 f ( j, m). Therefore, since Ĵ 2 repre-
sents the magnitude of the angular momentum, the

{
Ĵ± | jm〉} eigenkets have the

same magnitude as | jm〉.
To examine further the effects of Ĵ± on | jm〉 we could try the same approach

using Ĵz . This is not fruitful, however, because Ĵz and Ĵ± do not commute. Instead,
we apply Ĵz to the eigenket of Ĵ 2,

{
Ĵ± | jm〉}. Using the commutation relations of

Table 8.1 we have

Ĵz
{

Ĵ± | jm〉} = [
Ĵz Ĵ± + (

Ĵ± Ĵz − Ĵ± Ĵz
)] | jm〉

= ([
Ĵz, Ĵ±

] + Ĵ± Ĵz
) | jm〉

= (±� Ĵ± + Ĵ±m�
) | jm〉

= � (m ± 1 )
{

Ĵ± | jm〉} (8.22)
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Thus,
{

Ĵ± | jm〉} is an eigenvector of Ĵz . From Equation 8.22 it is seen that the action
of Ĵ± on | jm〉 is to raise/lower the quantum number m by unity so we have

Ĵ± | jm〉 = �C±
jm | j (m ± 1)〉 (8.23)

where C±
jm is a constant.

Inasmuch as the Ĵ± change only m, and because f ( j, m) ≥ m2, these operators
cannot be applied indefinitely. That is, there must be maximum and minimum values
of m so we must have

Ĵ+ | jmmax〉 = 0 (8.24)

and

Ĵ− | j min〉 = 0 (8.25)

Applying Ĵ− to Equation 8.24 we obtain

0 = (
Ĵ− Ĵ+

) | jmmax〉
= (

Ĵx − i Ĵy
) (

Ĵx + i Ĵy
) | jmmax〉

= (
Ĵ 2

x + Ĵ 2
y + i Ĵx Ĵy − i Ĵy Ĵx

) | jmmax〉
= (

Ĵ 2
x + Ĵ 2

y + i
[
Ĵx, Ĵy

]) | jmmax〉
= (

Ĵ 2
x + Ĵ 2

y − � Ĵz
) | jmmax〉

= (
Ĵ 2 − Ĵ 2

z − � Ĵz
) | jmmax〉 (8.26)

Therefore,

Ĵ 2 | jmmax〉 = (
Ĵ 2

z + � Ĵz
) | jmmax〉

= {
m2

max�
2 + � (mmax�)

} | jmmax〉
= mmax (mmax + 1) �

2 | jmmax〉 (8.27)

Comparing this last relation with Equation 8.17 we see that

f ( j, mmax) = mmax (mmax + 1) (8.28)

Equation 8.28 makes it clear that the magnitude of the angular momentum is deter-
mined by the maximum value of m because f ( j, m) is the eigenvalue of Ĵ 2. We
may therefore rename mmax = j and Equation 8.28 becomes

Ĵ 2 | jm〉 = j ( j + 1) �
2 | jm〉 (8.29)
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We still know nothing about j and m (other than the fact that they are real). We
do not know if they are integers or fractions. Indeed, we do not even know if they are
continuously distributed. Furthermore, we do not know the limits on them, although
we know that they cannot go on forever. Before obtaining such information about
j and m, we must evaluate the constants C±

jm in Equation 8.23. To do this we find

the matrix element 〈 jm| ( Ĵ− Ĵ+
) | jm〉 in two different ways and equate the results.

Using the form of Ĵ− Ĵ+ derived in Equation 8.26 we have

〈 jm| ( Ĵ− Ĵ+
) | jm〉 = 〈 jm| ( Ĵ 2 − Ĵ 2

z − � Ĵz
) | jm〉

= �
2 [ j ( j + 1) − m2 − m

]
(8.30)

= �
2 [ j ( j + 1) − m (m + 1)] (8.31)

Now, operating on Ĵ+ | jm〉 as given in Equation 8.23 with Ĵ−

〈 jm| ( Ĵ− Ĵ+
) | jm〉 = 〈 jm| Ĵ−�C+

jm | j (m + 1)〉
= �C+

jm 〈 jm|�C−
j (m+1) | jm〉

= �
2C+

jmC−
j (m+1) (8.32)

The successive operations with Ĵ− Ĵ+ were carried out to the right so that neither of
the constants has been complex conjugated. Comparing Equations 8.31 and 8.32 we
have

C+
jmC−

j (m+1) = j ( j + 1) − m (m + 1) (8.33)

Now to find the relationship between C+
jm and C−

j (m+1) we find the matrix element

〈 jm| Ĵ− | j (m + 1)〉 which, using Equation 8.12, is

〈 jm| Ĵ− | j (m + 1)〉 = 〈 j (m + 1)| Ĵ+ | jm〉∗ (8.34)

Performing the operations on each side of Equation 8.34 by operating to the right
we have

C−
j (m+1) =

(
C+

jm

)∗
(8.35)

so that Equation 8.33 becomes

∣
∣
∣C+

jm

∣
∣
∣
2

= j ( j + 1) − m (m + 1) (8.36)



246 8 Quantum Mechanics in Three Dimensions—Angular Momentum

The constant C+
jm is, by convention, chosen to be real and positive so that

C+
jm =

√
j ( j + 1) − m (m + 1)

=
√

( j − m) ( j + m + 1) (8.37)

Letting m → m − 1 in Equation 8.35 we find that C−
jm = C+

j (m−1) so that

C−
jm =

√
j ( j + 1) − m (m − 1)

=
√

( j + m) ( j − m + 1) (8.38)

Putting these values into Equation 8.23 we see that we have determined the detailed
action of the ladder operators on the simultaneous eigenkets of Ĵ 2 and Ĵz . We have

Ĵ+ | jm〉 = �

√
j ( j + 1) − m (m + 1) | j (m + 1)〉

= �

√
( j − m) ( j + m + 1) | j (m + 1)〉 (8.39)

and

Ĵ− | jm〉 = �

√
j ( j + 1) − m (m − 1) | j (m − 1)〉

= �

√
( j + m) ( j − m + 1) | j (m − 1)〉 (8.40)

Now that we know the actions of Ĵ+ and Ĵ− on | jm〉, we can pursue further the
restrictions of j and m. Application of Ĵ− to the eigenstate having the lowest value
of m, | jmmin〉, must obliterate this eigenstate. Using Equation 8.40 with m = mmin

and taking the inner product with 〈 j (mmin − 1)| which, for this purpose, we pretend
exists, we have

〈 j (mmin − 1)| Ĵ− | jmmin〉 = 0 (8.41)

We can, however, operate to the left with Ĵ− so that its action is that of Ĵ+ (see
Equation 8.39) and obtain

�

√
j ( j + 1) − mmin (mmin − 1) 〈 jmmin | jmmin〉 = 0 (8.42)

from which we find a relation between j and mmin, specifically, mmin = − j . We
already know that mmax = j so that

− j ≤ m ≤ j (8.43)

The inequality in Equation 8.43 leads to a very important conclusion. Careful in-
spection of this relation between j and m shows that there are only two ways it can
be valid, j must be either an integer or a half-integer.
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8.3 Vector Operators

There is a broad class of operators in quantum mechanics that are referred to as vec-
tor operators or class T operators. They are defined by their commutation properties
with any angular momentum operator Ĵ . An operator T̂ is a vector operator if its
Cartesian components obey the commutation rule

[
Ĵi , T̂ j

] = i�T̂kεi jk (8.44)

Comparison of this definition with Equation 8.2 shows immediately that Ĵ is itself is
a vector operator. Moreover, r and p̂ are also vector operators. Additionally, linear
combinations of vector operators are vector operators, so the ladder operators are
vector operators.

We may also define ladder operators corresponding to any vector operator. The
raising operator is defined by

T̂+ = T̂x + i T̂y (8.45)

from which we have the relations (see Problem 7)

[
Ĵz, T̂+

] = �T̂+
[
Ĵ+, T̂z

] = −�T̂+
[
Ĵ 2, T̂+

] = 2�
(
T̂+ Ĵz − T̂z Ĵ+

) + 2�
2T̂+ (8.46)

Now let us examine the action of T̂+ on an angular momentum eigenstate for which
m = j , a ket | j j〉. The eigenvalue equation is

Ĵ 2 | j j〉 = j ( j + 1) �
2 | j j〉 (8.47)

Multiplying on the left by T̂+ we have

T̂+ Ĵ 2 | j j〉 = j ( j + 1) �
2T̂+ | j j〉 (8.48)

We may also evaluate T̂+ Ĵ 2 | j j〉 using the last commutation rule in Equation 8.46.
We operate on the eigenvalue equation, Equation 8.47, with

[
Ĵ 2, T̂+

]
recalling that

Ĵ+ | j j〉 = 0 (8.49)

and arrive at

T̂+ Ĵ 2 | j j〉 = {
Ĵ 2T̂+ − 2�

(
T̂+ Ĵz − T̂z Ĵ+

) − 2�
2T̂+

} | j j〉
= Ĵ 2T̂+ | j j〉 − 2�T̂+ Ĵz | j j〉 − 2�

2T̂+ | j j〉
= Ĵ 2T̂+ | j j〉 − 2� j T̂+ | j j〉 − 2�

2T̂+ | j j〉 (8.50)
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Equating the results in Equations 8.50 and 8.48 we find that

(
Ĵ 2 − 2�

2 j − 2�
2) {T̂+ | j j〉} = j ( j + 1) �

2 {T̂+ | j j〉} (8.51)

or

Ĵ 2 {T̂+ | j j〉} = [
j ( j + 1) �

2 + 2�
2 j + 2�

2] {T̂+ | j j〉}

= (
j 2 + 3 j + 2

)
�

2 {T̂+ | j j〉}

= ( j + 1) ( j + 2) �
2
{
T̂+ | j j〉} (8.52)

which shows that the action of T̂+ on | j j〉 is to convert it into a constant times
|( j + 1) ( j + 1)〉. That is,

T̂+ | j j〉 = CT̂ |( j + 1) ( j + 1)〉 (8.53)

where CT̂ is a constant that depends upon the particular vector operator. In short,
T̂+ is a raising operator for any angular momentum eigenfunction for which m = j .

Is this result consistent with Equation 8.49? As noted above, any angular momen-
tum vector qualifies as a vector operator so the angular momentum ladder operator
should obey Equation 8.53 with T̂+ → Ĵ+. We have already deduced the action of
Ĵ+ on an arbitrary ket | jm〉. The result is given in Equation 8.39 from which we
deduce that

Ĵ+ | j j〉 = C Ĵ |( j + 1) ( j + 1)〉
= �

√
( j − j ) ( j + j + 1) |( j + 1) ( j + 1)〉

= 0 · |( j + 1) ( j + 1)〉 (8.54)

In other words, for T̂+ = Ĵ+ the constant CĴ ≡ 0 so Equation 8.53 is satisfied.
Using the first of Equations 8.46 we can investigate the z-component of the an-

gular momentum of the eigenket
{
T̂+ | j j〉}. We have

Ĵz
{
T̂+ | j j〉} = (

T̂+ Ĵz + �T̂+
) | j j〉

= ( j + 1) �
{
T̂+ | j j〉} (8.55)

so
{
T̂+ | j j〉} is an eigenket of Ĵz with eigenvalue ( j + 1). It is seen, then, that the

operator T̂+ is indeed a ladder operator inasmuch as it raises the eigenkets of Ĵ 2 and
Ĵz by one unit of angular momentum.

It is easily shown that
[

Ĵ , T̂ 2
] = 0 (see Problem 8). Hence, T̂ 2 commutes with

each component of Ĵ as well as Ĵ 2. Therefore, operation on | j j〉 with T̂ 2 has no
effect on this state.
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Table 8.2 Some useful commutation relations of vector operators with angular momentum
[
Ĵi , T̂j

] = i�T̂kεi jk
[
T̂±, Ĵz

] = ∓�T̂±
[
T̂±, Ĵx

] = ±�T̂z
[
T̂±, Ĵy

] = i�T̂z
[
T̂±, Ĵ±

] = 0
[
T̂±, Ĵ∓

] = ±2�T̂z
[
T̂z, Ĵ±

] = ±�T̂±
[

Ĵ,
(
T̂ 1 • T̂ 2

)] = 0 =⇒ [
Ĵ ,T̂ 2

] = 0
[
Ĵ 2,

[
Ĵ 2, T̂

]] = 2�
2
(
Ĵ 2T̂ + T̂ Ĵ 2

) − 4�
2 Ĵ

(
Ĵ • T̂

)

Ĵ 2 {T̂ 2 | j j〉} = T̂ 2 Ĵ 2 | j j〉
= j ( j + 1) �

2 {T̂ 2 | j j〉} (8.56)

which shows that
{
T̂ 2 | j j〉} remains an eigenket of Ĵ 2 with the same eigenvalue,

j ( j + 1). A similar conclusion holds for Ĵz . Note, however, if there are other quan-
tum numbers besides j and m, that T̂ 2 might have an effect on them. For conve-
nience, Table 8.2 is a listing of some useful commutation relations involving vector
and angular momentum operators.

8.4 Orbital Angular Momentum Eigenfunctions—Spherical
Harmonics

When the angular momentum is the orbital angular momentum the eigenvalues have
very nearly their classical meaning. Moreover, we can readily find the eigenfunc-
tions in coordinate space. For orbital angular momentum it is customary to designate
the total angular momentum quantum number by �. Thus, in the equations that have
been derived we will let j → �. We will retain the quantum number m for the
z-component of angular momentum, although when there is more than one angular
momentum to consider, their z-component quantum numbers will be differentiated
by an appropriate subscript. In the case of orbital angular momentum we use m�. It
will not, however, be necessary to use the subscript in this section.

Because we can write the components of the operator L̂ = r̂× p̂ in coordinate
space, we can find explicit eigenfunctions of L̂z and L̂2 in terms of these coordinates.
We therefore seek these functions, and their relation to the eigenvalues. We begin
with the ladder operators L̂± in coordinate space. We then use a technique similar to
that employed in Section 7.1.1 to obtain the ground state of the harmonic oscillator.
In particular, given the known limits on m, −� ≤ m ≤ �, we know that applying
the raising operator to the ket |��〉 will obliterate it. Because we will have an ex-
pression for L̂+ in coordinate space, we will have a partial differential equation for
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the eigenfunction Y�� (θ, φ) = 〈r |��〉 which is referred to as the “top of the ladder”
eigenfunction. It is best to work in spherical coordinates for reasons that will become
apparent in the next chapter. The symbol Y�m (θ, φ) is the universal symbol for these
functions. They are called spherical harmonics. Successive application of L̂− to the
top of the ladder spherical harmonic, |��〉, produces all eigenfunctions for a given �.
We can then use the same technique on kets of the form |(� − m) (� − m)〉 to obtain
the eigenfunctions for all values of the quantum numbers � and m.

To work in spherical coordinates it is necessary to convert the Cartesian compo-
nents of L̂ into spherical coordinates. To obtain the functional forms of L̂ x , L̂ y and
L̂z , we must convert the derivatives and coordinates in the Cartesian forms of these
operators to spherical coordinates. A relatively simple way to obtain the relationship
between the derivatives is to compare the coordinates of the known expressions for
the operator ∇ in each coordinate system after casting both expressions in terms of
the Cartesian unit vectors. We begin by writing the equations of the transformation
from Cartesian to spherical coordinates. These can be obtained analytically or they
can be obtained graphically from Fig. 8.1.

The transformation equations are

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ (8.57)

and the operator ∇ in each of these coordinate systems is

∇ = ı̂
�

�x
+ ĵ

�

�y
+ k̂

�

�z
Cartesian (8.58)

∇ = âr
�

�r
+ âθ

1

r

�

�θ
+ âφ

1

r sin θ

�

�φ
Spherical (8.59)

where âr , âθ , and âφ are the unit vectors in spherical coordinates. In terms of the
Cartesian unit vectors the spherical coordinate unit vectors are

Fig. 8.1 Relationship
between Cartesian
coordinates and spherical
coordinates
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âr = sin θ cos φ ı̂ + sin θ sin φĵ + cos θ k̂

âθ = cos θ cos φ ı̂ + cos θ sin φĵ − sin θ k̂

âφ = − sin φ ı̂ + cos φĵ (8.60)

Now replace âr , âθ , and âφ in Equation 8.59 with the expressions for the unit vectors
in Equation 8.60 to obtain

∇ =
(

sin θ cos φ ı̂ + sin θ sin φĵ + cos θ k̂
) �

�r

+
(

cos θ cos φ ı̂ + cos θ sin φĵ − sin θ k̂
) 1

r

�

�θ

+ (− sin φ ı̂ + cos φĵ )
1

r sin θ

�

�φ
(8.61)

Comparing the ı̂, ĵ , and k̂ components in Equations 8.58 and 8.61 we may write
immediately

�

�x
= sin θ cos φ

�

�r
+ cos θ cos φ

1

r

�

�θ
− sin φ

r sin θ

�

�φ

�

�y
= sin θ sin φ

�

�r
+ cos θ sin φ

1

r

�

�θ
+ cos φ

r sin θ

�

�φ

�

�z
= cos θ

�

�r
− sin θ

1

r

�

�θ
(8.62)

Now we write the Cartesian components of L̂ in coordinate space letting p̂i →
�

i

�

�xi
using the determinant method. As discussed in connection with Equation 8.3,

when using the determinant to find the components of L̂ in coordinate space, the lin-
ear momentum operator is always the second operator. Its components are therefore
the entries in the third row of the determinant:

L̂ = r × p̂

=
(

�

i

)
∣
∣
∣
∣
∣
∣∣
∣

ı̂ ĵ k̂
x y z
�

�x

�

�y

�

�z

∣
∣
∣
∣
∣
∣∣
∣

=
(

�

i

)(
y

�

�z
− z

�

�y

)
ı̂

+
(

�

i

)(
z

�

�x
− x

�

�z

)
ĵ

+
(

�

i

)(
x

�

�y
− y

�

�x

)
k̂ (8.63)
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The hats have been omitted from the coordinate operators because we are working
in coordinate space and because it avoids confusion with the unit vectors. Inserting
Equations 8.57 and 8.62 into each component in Equation 8.63 we obtain the desired
result:

L̂ x = −�

i

(
sin φ

�

�θ
+ cot θ cos φ

�

�φ

)

L̂ y = �

i

(
cos φ

�

�θ
− cot θ sin φ

�

�φ

)

L̂z = �

i

�

�φ
(8.64)

Combining L̂ x and L̂ y and using the exponential form of the sines and cosines
we arrive at the ladder operators in spherical coordinates:

L̂+ = �eiφ

(
�

�θ
+ i cot θ

�

�φ

)

L̂− = −�e−iφ

(
�

�θ
− i cot θ

�

�φ

)
(8.65)

Note that L̂− is not simply the complex conjugate of L̂+ The Hermitian conjugate
and the complex conjugate are the same only when all operators are Hermitian. The
equation we must solve to obtain the top of the ladder eigenfunction Y�� (θ, φ) is
then

L̂+ |��〉 = 0

eiφ

(
�

�θ
+ i cot θ

�

�φ

)
Y�� (θ, φ) = 0 (8.66)

To solve this equation we use separation of variables with the substitution

Y�� (θ, φ) = � (θ ) � (φ) (8.67)

which yields

tan θ

� (θ )

d� (θ )

dθ
= −i

1

�

d� (�)

dφ
(8.68)

The derivatives in Equation 8.68 are now total derivatives of � (θ ) and � (φ). Inas-
much as the left side of Equation 8.68 contains only θ and the right side only φ,
each side must be equal to a constant, the same constant which we call κ . We have

� (φ) = −K eiκφ (8.69)
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where K is a constant of integration. The solution to the θ part of the equation is

� (θ ) = K ′ sinκ θ (8.70)

which may be checked by substitution (see Problem 10). Finally then

Y�� (θ, φ) = K ′′eiκφ sinκ θ (8.71)

We still do not know anything about the constant κ , the separation constant. To
find κ in terms of known quantities we invoke the necessity that |��〉 is an eigenvec-
tor of L̂z . The eigenvalue equation is

L̂zY�� (θ, φ) = ��Y�� (θ, φ) (8.72)

which may also be written in terms of the solution of Equation 8.71 as

L̂zY�� (θ, φ) = �

i

�

�φ
Y�� (θ, φ)

= �

i

�

�φ

(
K ′′eiκφ sinκ θ

)

= �

i
(iκ) Y�� (θ, φ) (8.73)

Comparing Equations 8.73 with Equation 8.71 we see that κ = �. Thus, Y�� (θ, φ) is

Y�� (θ, φ) = K ′′ei�φ sin� θ (8.74)

A similar calculation starting at the bottom of the ladder yields

Y� −� (θ, φ) = K ′′e−i�φ sin� θ (8.75)

In principle, we are able to obtain all of the remaining eigenfunctions and eigen-
values by applying L̂− to Y�� (θ, φ) as many times as needed [or by applying L̂+
to Y�−� (θ, φ)]. There are, however, restrictions on the quantum numbers � and m
that are not present for generalized angular momenta. These restrictions are the
result of L̂ being a specific operator that represents the orbital angular momentum.
We learn more about the quantum number m by solving the z-component eigen-
value equation for any value of m using the specific form of L̂z . From Equation
8.16 with Ĵz → L̂z , letting Y (θ, φ) = � (θ ) � (φ) and substituting for L̂ z from
Equation 8.64.

�

i

�

�φ
� (θ ) � (φ) = m�� (θ ) � (φ) (8.76)

The solution of this equation is



254 8 Quantum Mechanics in Three Dimensions—Angular Momentum

� (φ) = Neimφ (8.77)

where N is a constant. Comparing this expression for � (φ) with Y�� (θ, φ), Equation
8.74, we see that the � quantum number is associated with only the θ coordinate.
We may therefore also write the eigenfunction Y�m (θ, φ) as

Y�m (θ, φ) = Neimφ� (θ ) (8.78)

So far so good, but the values of the quantum numbers � and m are limited to
integers. Half-integers, allowed for generalized angular momenta, are prohibited.
To see this examine first the φ part of the eigenfunction. It is often remarked that a
physically acceptable wave function must be single valued. That is, if we increase
(or decrease) φ by 2π , we should get the same wave function. This is only true if
m, and therefore �, is an integer. There are, however, instances in which the wave
function need not be single valued, but this is not one of them because the single-
valuedness of the wave function is actually only valid if the wave function is a
function of space coordinates only [1]. Therefore, the conclusion that m and � must
be integers for orbital angular momentum is indeed correct. Note, however, that the
probability density, the absolute square of the wave function, must always be single
valued.

There are other methods of proving that � and m must be integral for orbital
angular momentum [2]. One relatively simple method is to examine the eigenfunc-
tion with respect to a reflection through the xy-plane. Because this reflection has no
effect on the φ part of Y�m (θ, φ) we need only examine the θ part. This reflection
is effected by making the substitution θ → π − θ , equivalent to letting x → x ,
y → y, and z → −z. First, consider the symmetry of the top and bottom of the
ladder states. The transformation θ → π−θ on sin θ produces no change. Thus, the
top and bottom states are even with respect to this reflection. We must now examine
the effects of this reflection on the raising and lowering operations. Applying these
operators to an arbitrary Y�m (θ, φ) we have

L̂±Y�m (θ, φ) = �

√
j ( j + 1) − m (m ± 1)Y� m±1 (θ, φ)

= �e±iφ

(
�

�θ
± i cot θ

�

�φ

)
[
Neimφ� (θ )

]

= �e±iφ Neimφ

[
d� (θ )

dθ
∓ m cot θ� (θ )

]

= Nei(m±1)φ

[
d

dθ
∓ m cot θ

]
� (θ ) (8.79)

Now, the differentiation operation changes this symmetry of � (θ ) with respect to
the x-y plane because of the minus sign in the transformation θ → π − θ . Because
cot θ is odd under this reflection, the effect of the ladder operators is to change the
symmetry of the state upon which they operate. Thus, the θ part of orbital angular
momentum states alternate in reflection symmetry with the end states being even.
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There must therefore be an odd number of states between the top and bottom. This
condition is possible only if 2� + 1 is odd so � must be zero or an integer. Also,
it can easily be shown that raising Y 1

2 − 1
2

(θ, φ) as given by Equation 8.75 does not
produce Y 1

2
1
2

(θ, φ) as given by Equation 8.74 (see Problem 11). The fact that the
orbital angular momentum can be zero is in contrast to the Bohr model where the
minimum value of the angular momentum was found to be � (see Section 1.2.1)

Because of their importance, we will examine the spherical harmonics in some
detail. These functions are simultaneous eigenfunctions of the commuting operators
L̂z and L̂2. We will see in the next chapter that for central potentials, U (r) = U (r ),
the spherical harmonics are always the angular portion of the energy eigenfunc-
tions. Therefore, to solve central potential problems it is only necessary to solve
the radial part of the three-dimensional TISE to obtain the complete eigenfunctions.
The spherical harmonics are products of eimφ and the associated Legendre functions
designated Pm

� (cos θ ) which, in retrospect, are the functions � (θ ). The Pm
� (μ) are

given by

Pm
� (μ) = (1 − μ)m/2

2��!

d�+m

dμ�+m

(
μ2 − 1

)�
(8.80)

Ordinary Legendre polynomials may be obtained using the Legendre polynomial
generating function g (t, μ):

g (t, μ) = (
1 − 2μt + t2

)−1/2

=
∞∑

�=0

P� (μ) t� |t| < 1 (8.81)

or they may be obtained from the relation

P� (μ) = 1

2��!

d�

dμ�

(
μ2 − 1

)�
(8.82)

Substitution of Equation 8.82 into Equation 8.80 shows that the associated Legendre
functions may also be written

Pm
� (μ) = (1 − μ)m/2 dm

dμm
P� (μ) (8.83)

Clearly P0
� (μ) = P� (μ). The associated Legendre functions are orthogonal as given

by the orthogonality integral:

∫ π

0
dθ sin θ Pm

� (cos θ ) Pm
�′ (cos θ ) =

(
2

2� + 1

)
· (� + m)!

(� − m)!
δ��′ (8.84)
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While the entire set of (unnormalized) spherical harmonics can be generated by
successive applications of L̂± to Y�∓� (θ, φ), in practice, tables of spherical harmon-
ics are used. These tables include the proper normalization. Spherical harmonics are
orthogonal. The orthogonality and normalization relation is

∫ 2π

0
dφ

∫ π

0
dθ sin θY�m (θ, φ) [Y�′m′ (θ, φ)]∗ = δmm′δ��′ (8.85)

In addition to orthogonality there are several other relations involving the spherical
harmonics, a few of which are listed in Table 8.3.

There is yet another way to generate the spherical harmonics. We can make use
of the properties of vector operators discussed in Section 8.3. Noting that

r = rx ı̂ + ry ĵ + rz k̂

= x ı̂ + yĵ + z k̂ (8.86)

is a vector operator we may form

r+ = x + iy (8.87)

The discussion in Section 8.3 assures us that application of r̂+ to Y�� (θ, φ) will raise
both indexes (see the discussion leading up to Equation 8.53). In equation form

(x + iy) Y�� (θ, φ) = Cr̂ Y�+1 �+1 (θ, φ) (8.88)

where Cr̂ may be a function of r . Subsequent application of L̂− to Y�+1 �+1 (θ, φ)
generates all of the spherical harmonics having angular momentum quantum num-
ber (� + 1).

In the remainder of this book we will make extensive use of the normalized spher-
ical harmonics. To facilitate this use Table 8.4 is a listing of the normalized spherical
harmonics up to � = 2. For convenience, they are displayed in both spherical and
Cartesian coordinates. An important property of the spherical harmonics is that the

Table 8.3 Some spherical harmonic relations

Y�m (θ, φ) = (−)m
[
Y� −m (θ, φ)

]∗

cos θY�m (θ, φ) =
√

(� + m + 1) (� − m + 1)

(2� + 1) (2� + 3)
Y�+1 m (θ, φ)

+
√

(� + m) (� − m)

(2� + 1) (2� − 1)
Y�−1 m (θ, φ)

sin θe±iφY�m (θ, φ) = ∓
√

(� ± m + 1) (� ± m + 2)

(2� + 1) (2� + 3)
Y�+1 m±1 (θ, φ)

±
√

(� ∓ m) (� ∓ m − 1)

(2� + 1) (2� − 1)
Y�−1 m±1 (θ, φ)
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Table 8.4 Some spherical harmonics in spherical and Cartesian coordinates

Y�m (θ, φ) Spherical Cartesian

Y00 (θ, φ)

√
1

4π

√
1

4π

Y10 (θ, φ)

√
3

4π
cos θ

√
3

4π

( z

r

)

Y1 ±1 (θ, φ) ∓
√

3

8π
sin θe±iφ ∓

√
3

8π

(
x ± iy

r

)

Y20 (θ, φ)

√
5

16π

(
3 cos2 θ − 1

)
√

5

16π

(
3z2 − r2

r2

)

Y2 ±1 (θ, φ) ∓
√

15

8π
cos θ sin θe±iφ ∓

√
15

8π

[
(x ± iy) z

r2

]

Y2 ±2 (θ, φ)

√
15

32π
sin2 θe±2iφ

√
15

32π

(
x ± iy

r

)2

value of � determines the parity, odd � means that Y�m (θ, φ) is an odd function. This
may be seen in Table 8.4.

8.4.1 The Addition Theorem for Spherical Harmonics

The addition theorem for spherical harmonics is useful when two directions are
specified as indicated by the spherical coordinates (θ1, φ1) and (θ2, φ2). Figure 8.2
shows the geometry. The angle between the two directions as specified by the vec-
tors r1 and r2 is γ .

The theorem gives the Legendre polynomial for the angle γ in terms of the spher-
ical harmonics for each of the directions. Specifically,

Fig. 8.2 Coordinates for the
addition theorem for
spherical harmonics. The
angle between the two
specified directions in space
is γ
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P� (cos γ ) = 4π

2� + 1

�∑

m=−�

Y�m (θ1, φ1) Y ∗
�m (θ2, φ2) (8.89)

Unsöld’s theorem

The addition theorem for spherical harmonics can be used to prove another useful
theorem, Unsöld’s theorem. Referring to Fig. 8.2, let θ1 = θ2 = θ and φ1 = φ2 = φ,
in which case the angle γ = 0. According to the addition theorem,

P� (1) = 4π

2� + 1

�∑

m=−�

Y�m (θ, φ) Y ∗
�m (θ, φ) (8.90)

But, the function P� (1) = 1 for any value of � [3] so

�∑

m=−�

|Y�m (θ, φ)|2 = 2� + 1

4π
(8.91)

Now, if a system is in an eigenstate of L̂2, but not L̂z , then the wave function may
be written

ψ� (θ, φ) =
�∑

m=−�

amY�m (θ, φ) (8.92)

If the m-states are equally populated, then ψ� (θ, φ) is an equal admixture of all of
the m-states. Because there are 2� + 1 m-states this expansion coefficient must be

am =
√

1

2� + 1
(8.93)

In this circumstance Unsöld’s theorem assures us that the resulting probability den-
sity is independent of θ and φ and is therefore spherically symmetric. That is, be-
cause of orthogonality of the spherical harmonics, the probability density is

|ψ� (θ, φ)|2 =
(

1√
2� + 1

)2 �∑

m=−�

|Y�m (θ, φ)|2

= 1

4π
(8.94)

The factor 1/ (4π) appears because the probability density integrated over all angles
is unity. The important point is that the probability density is independent of θ and
φ. This theorem has important consequences in atomic physics.
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The function 1/ |r1 − r2|
Although slightly off the immediate subject of spherical harmonics, it is worthwhile
at this point to examine the function 1/ |r1 − r2| (see Fig. 8.2) because it has many
physical applications. Using the law of cosines we can write this function in terms
of the angle γ as

1

|r1 − r2| = (
r2

1 + r2
2 − 2r1r2 cos γ

)−1/2
(8.95)

For convenience, r1 is often placed along the z-axis so γ becomes the spherical
coordinate θ . Now, suppose that r2 > r1. Factoring 1/r2 out of the parentheses in
Equation 8.95 we obtain

1

|r1 − r2| = 1

r2

[

1 +
(

r1

r2

)2

− 2

(
r1

r2

)
cos γ

]−1/2

(8.96)

Letting cos γ = μ and the ratio r1/r2 = t , we see that Equation 8.96 contains the
generating function for P� (μ), Equation 8.81, so we may write

1

|r1 − r2| = 1

r2

∞∑

�=0

P� (μ)

(
r1

r2

)�

(8.97)

If, instead of r2 > r1, we had r1 > r2, then the subscripts in Equation 8.97 would
be reversed. This representation of the function 1/ |r1 − r2| in terms of Legendre
polynomials is usually displayed as

1

|r1 − r2| = 1

r>

∞∑

�=0

P� (μ)

(
r<

r>

)�

(8.98)

where r> and r< designate the larger and smaller, respectively, of r1 and r2.

8.4.2 Parity

The parity of the spherical harmonics was discussed in connection with the determi-
nation that the quantum numbers � and m are integers. We can, however, examine
parity in more detail by employing the parity operator ℘̂ to determine how the spher-
ical harmonics behave under a parity inversion. Figure 8.3 illustrates the inversion
caused by the action of the parity operator.

For simplicity we examine a point in the first octant as represented by the tip
of the vector r . The transformation r → −r places the vector in the eighth octant.
Figure 8.3 shows that the coordinates undergo the transformations
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Fig. 8.3 Spherical
coordinates under parity
inversion

r → r θ → π − θ φ → φ + π (8.99)

Therefore,

℘̂Y�m (θ, φ) = ℘̂
[
eimφ Pm

� (cos θ )
]

= eimφeimπ Pm
� [cos (π − θ )]

= eimφ (−)m Pm
� (− cos θ ) (8.100)

From the properties of associated Legendre functions [3] we find that

Pm
� (− cos θ ) = (−)�+m Pm

� (cos θ ) (8.101)

so that

℘̂Y�m (θ, φ) = (−)�+2m
[
eimφ Pm

� (cos θ )
]

= (−)� Y�m (θ, φ) (8.102)

Therefore, from Equation 8.102 it is clear that the Y�m (θ, φ) do indeed have definite
parity, the same as the parity of �.

8.4.3 The Rigid Rotor

Imagine a quantum mechanical system consisting of a point mass μ attached to a
rigid massless stick of length a that is pivoted at one end. This system is the rigid
rotor. (We use μ for the mass to avoid confusion with the L̂ z quantum number.) The
mass can rotate on the sphere defined by r = a, but, if a and μ are of microscopic
dimensions, then this system is subject to the laws of quantum physics and the
available energy states and eigenvalues must be obtained by solving the TISE. The
Hamiltonian is the TME which, for this system, is purely kinetic energy. There is no
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potential energy. For a rotating body the kinetic energy is simply the square of the
orbital angular momentum divided by twice the moment of inertia I = μa2. This is
the rotational analog of the translational energy being equal to 1

2 mv2. Replacing the
square of the angular momentum with the operator equivalent, the Hamiltonian is

Ĥ = L̂2

2I
(8.103)

We need not go any further to solve the TISE. We have already solved it. The eigen-
functions of this Hamiltonian are the spherical harmonics. Moreover, the energy
eigenvalues can be immediately written. They are

E� = � (� + 1) �
2

2μa2
(8.104)

The first thing we notice about this expression for the energy is that it is inde-
pendent of the quantum number m. This is a degeneracy that occurs because the
kinetic energy is independent of the direction in which the mass rotates. We also
notice that the more massive the rotor, the smaller the separation between adjacent
energy eigenvalues. Now we might ask if this can represent any physical system.
The answer is a resounding yes. For example, the rigid rotor is a first approximation
to a rotating diatomic molecule. We can estimate typical energy level spacings of
diatomic molecule rotational levels. The energy separation between adjacent levels
is

�E�,�−1 = �
2

2μa2
[� (� + 1) − � (� − 1)]

= ��
2

μa2
(8.105)

Taking the Bohr radius as a typical internuclear separation �E�−1,� may be written
in terms of the ground state energy of the hydrogen atom E1 ∼ 10eV as

�E�−1,� = 2�

(
me

μ

)
E1 (8.106)

Thus, typical rotational level spacings in a diatomic molecule are roughly (me/μ)
E1 ∼ 10−3 E1 for hydrogen molecules which may be compared with vibrational
spacing which are proportional to

√
me/μE1 ∼ (1/40) E1, Equation 5.43. Transi-

tions between rotational levels are therefore usually in the far infrared or microwave
regions of the spectrum. Indeed, operation of a microwave oven depends upon a
rotational transition of the water molecule at 2.45GHz or ∼ 10 cm.
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8.5 Another Form of Angular Momentum—Spin

In contrast to orbital angular momentum, spin angular momentum is an angular
momentum that cannot be described in terms of spatial coordinates. It represents the
intrinsic magnetic moment of the electron. That is, it represents a magnetic moment
that the electron possesses even if it were completely isolated in space. The electron
is a bar magnet! This revolutionary notion was proposed by S. Goudsmit and G. E.
Uhlenbeck in 1925 who, inexplicably, never won the Nobel Prize. Ironically, how-
ever, their discovery of spin was confirmed by Wolfgang Pauli’s exclusion principle
(to be discussed in Section 8.6.2) for which Pauli was awarded the 1945 Nobel Prize
“for the discovery of the Exclusion Principle, also called the Pauli Principle.”

We saw in Section 1.2.1 that an orbiting electron constitutes an electric current
and therefore produces a magnetic field. Thus, the orbital motion of the electron
in the Bohr model demands that the hydrogen atom behave as a bar magnet with
magnetic moment designated μ�. This is not the same bar magnet as that associated
with spin. As shown in Section 1.2.1, the Bohr magneton μB is simply μ� when the
electron is in the ground state of a hydrogen atom (see Equation 1.44). Calculation
of the Bohr magneton is based solely on the orbital motion of the electron about
the nucleus. The fact that an electron has an intrinsic magnetic moment, the spin,
means that in the Bohr model there is an electrically charged bar magnet revolving
about the nucleus. Therefore, the total magnetic moment of the hydrogen atom is the
vector sum of the orbital magnetic moment μ� and the spin magnetic moment μS.

Magnetic moments, being observable quantities, are represented in quantum me-
chanics by Hermitian operators. The operator that represents the orbital magnetic
moment, μ�, is referred to as the orbital magnetic moment and is designated by the
symbol μ̂�. It is given by

μ̂� = − g�μB

�
L̂ (8.107)

where g� is called the orbital g-factor. As it happens, g� = 1, but it is included in
the definition of μ� because the g-factors of other magnetic moments differ from
unity. Equation 8.107 illustrates the direct relationship between the orbital magnetic
moment and the orbital angular momentum.

To explain the occurrence of two spectral lines where only a single line was
expected, Goudsmit and Uhlenbeck introduced the concept of the intrinsic magnetic
moment. These line doublets were assumed to arise because one (or both) of the
atomic energy levels involved in the transition that produced the radiation was split
into two closely spaced energy levels. The splitting was postulated to arise from
the interaction of the intrinsic magnetic moment of the electron with the magnetic
field, Borbit, produced by the orbital magnetic moment of the electron. Of course, in
the electron’s frame of reference it is the nucleus that is rotating and produces the
magnetic field that is experienced by the electron spin. We will, however, continue
to refer to the orbital magnetic moment of the electron as given in Equation 8.107.
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Fig. 8.4 Schematic
representation of the intrinsic
magnetic moment of the
electron as represented by a
bar magnet oriented in
opposite directions with
respect to the magnetic field
Borbit produced by the orbital
motion

Figure 8.4 is a simplified illustration of the energy difference between the two
states that arise from the different orientations of the spin magnetic moment with re-
spect to the magnetic field that originates from the orbital motion Borbit. In Fig. 8.4a
the spin magnetic moment, represented by the bar magnet, is aligned in the general
direction of Borbit and is thus a state of lower energy than the depiction in Fig. 8.4b
where the bar magnet is in the opposite direction.

The Lyman series of hydrogen, which, in emission, comprises all transitions to
the ground state, affords an uncomplicated emission system that will aid in under-
standing the consequences of spin. The orbital angular momentum of the electron in
the ground state is zero so that, according to Equation 8.107, there will be no B-field
from the orbital motion. On the other hand, many of the excited states of hydrogen
have nonzero orbital angular momenta that do indeed produce B-fields. The effects
of spin on the ground state and the first excited state of hydrogen are illustrated in
Fig. 8.5. The ground state is not split because there is no B-field arising from orbital
angular momentum. The n = 2 state is, however, split by a very small amount
compared with the separation between the Bohr energies. This splitting is due to the
interaction of the intrinsic magnetic moment of the electron with the B-field that
results from the orbital motion of the electron. It is referred to as fine structure and,
as will be seen in Section 13.1.1, it depends upon the square of α, the fine structure
constant. This effect manifests itself as a splitting of the Lα line into two lines of
nearly equal wavelengths.

Fig. 8.5 Schematic energy
level diagram of the n = 1
and n = 2 levels of hydrogen
showing the splitting of the
n = 2 level due to the
interaction of the intrinsic
magnetic moment of the
electron with the B-field
caused by the orbital motion
of the electron, Borbit. The Lα

doublet with wavelengths
near 121.5 nm are shown
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To treat spin within the framework of quantum physics it is assumed, by analogy
with Equation 8.107, that this magnetic moment μS is proportional to an angular
momentum Ŝ so

μ̂S = − geμB

�
Ŝ (8.108)

where ge is the electron spin g-factor. For an electron it is found that ge = 2 as will
be discussed below. The quantum numbers associated with the angular momentum
operator Ŝ are

j → s = 1

2

m → ms = ±1

2
(8.109)

so the magnitude of the total spin angular momentum is always
√

s (s + 1)� =√
3/4� and there are only two possible z-components, “spin up” and “spin down.”

Because it is found that the components of Ŝ commute according to the rule given
in Equation 8.2:

[
Ŝi , Ŝ j

] = i�Ŝkεi jk (8.110)

Ŝ qualifies as an angular momentum! Never mind that we cannot visualize some
rotational motion that corresponds to this observable. The electron spin manifests
itself as an intrinsic magnetic moment (see Equation 8.108) that is proportional to Ŝ.

Before proceeding with the mathematical details of this new angular momentum,
we digress to discuss the origin of the term spin. After all, we have stated that in
nonrelativistic quantum mechanics particles are point objects, they have no finite
extent. How then does a point spin? Of course, it doesn’t, but the pioneers of quan-
tum mechanics, Goudsmit and Uhlenbeck in this case, visualized the effects that
they were attempting to describe. They imagined that the electron is a spherical shell
having total charge e uniformly smeared over its surface, reminiscent of the model
used to derive the classical radius of the electron in Section 1.2.5. This spinning
sphere creates a magnetic moment identical with that of a bar magnet. Is this model
consistent with the classical radius of the electron? No—as can be seen by equating
the angular momentum of the spinning sphere to �/2. Solving for the speed of a
point on the sphere leads to a speed that is roughly one hundred times the speed
of light (see Problem 15). Thus, the manipulations that were performed in Section
1.2.5 that led to the expression for the classical radius of the electron, Equation 1.59,
are suspect. Nevertheless, the concept of the classical radius of the electron remains
in the physics jargon. It is the eigenvalues of the spin angular momentum that are
correct as verified by observation.
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Magnetic moments are, in many applications, specified in terms of their gyro-
magnetic ratios which are defined as the ratio of the magnetic dipole moment to the
angular momentum. For example, for an electron

μ̂S = γe Ŝ (8.111)

so, comparing with Equation 8.108, we have

γe = geμB

�

= gee

2me
(8.112)

with analogous expressions for any other magnetic moment.
Because we now have two angular momenta, orbital and spin, there is yet a third,

the total angular momentum, which is traditionally designated by the operator Ĵ
with associated quantum number j . Now, however, we must modify our designation
of the z-component of the angular momentum because we have z-components as-
sociated with three different angular momenta. In our discussion of orbital angular
momentum we used the symbol m for this quantum number. It is now necessary to
attach a subscript to clarify which z-component is meant. Table 8.5 is a listing of the
quantum number designations for the different angular momenta.

For spin there is only one value of the total spin quantum number, s = 1
2 . If we

designate the (simultaneous) eigenkets of Ŝ2 and Ŝz by |χsms〉, we have

Ŝ2 |χsms〉 = s (s + 1) �
2 |χsms〉

= 3

4
�

2 |χsms〉 (8.113)

and

Ŝz

∣
∣χsms

〉 = ms� |χsms〉
= ±1

2
� |χsms〉 (8.114)

Because there is only one value of the quantum number s, it is useful to use a simpler
designation for the two possible eigenkets. The notation is not, however, universal.
Some of the common designations are

Table 8.5 Angular momentum quantum numbers

Ang. Momentum z-component

Total j m j

Orbital � m�

Spin s ms



266 8 Quantum Mechanics in Three Dimensions—Angular Momentum

∣∣
∣
∣χs = 1

2
; ms = 1

2

〉
= |α〉 = |↑〉 = |+〉 =

∣∣
∣
∣
1

2

〉
= α = spin up

∣
∣
∣∣χs = 1

2
; ms = −1

2

〉
= |β〉 = |↓〉 = |−〉 =

∣
∣
∣∣−

1

2

〉
= β = spin down (8.115)

In this section we elect to use |α〉 and |β〉 for the eigenkets of Ŝ2 and Ŝz ; later in
this book when two electrons are involved, we will use 1

2 and − 1
2 inside the kets to

specify spin up and spin down.
Now, |α〉 and |β〉 must be orthogonal because Ŝz is Hermitian (it corresponds to

an observable). We assume that they are also normalized so

〈α |α〉 = 〈β |β〉 = 1

〈α |β〉 = 0 (8.116)

Note that the spin angular momentum is not included in the TDSE so it must be
added to the coordinate space or momentum space wave functions “by hand.”

8.5.1 Matrix Representation of the Spin Operators and Eigenkets

Because there are only two possible values of ms , we can represent the unit vec-
tors in spin space, |α〉 and |β〉, by two-component column matrices called spinors.
That is,

|α〉 =
(

1
0

)
and |β〉 =

(
0
1

)
(8.117)

The operators Ŝ2 and Ŝz must be represented by diagonal 2 × 2 matrices because
|α〉 and |β〉 are their eigenkets. To comply with the eigenvalue Equations 8.113 and
8.114 we must have

Ŝ2 = 3

4
�

2

(
1 0
0 1

)
and Ŝz = 1

2
�

(
1 0
0 −1

)
(8.118)

To find the matrix representation of the operators Ŝx and Ŝy we first examine
the effects of the spin ladder operators on the eigenkets |α〉 and |β〉. Then, using
these results, we determine the effect of operating on |α〉 and |β〉 with Ŝx and Ŝy

because

Ŝx = 1

2

(
Ŝ+ + Ŝ−

)
and Ŝy = 1

2i

(
Ŝ+ − Ŝ−

)
(8.119)
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For example,

Ŝ− |α〉 = �

√
(s + ms) (s − ms + 1) |β〉

= �

√(
1

2
+ 1

2

)
|β〉

= � |β〉 (8.120)

and

Ŝ+ |β〉 = � |α〉 (8.121)

so that

Ŝx |α〉 = 1

2

(
Ŝ+ |α〉 + Ŝ− |α〉)

= 1

2
(0 + � |β〉)

= 1

2
� |β〉 (8.122)

For convenience, the actions of the three components of the spin operator as well as
the actions of the ladder operators on |α〉 and |β〉 are tabulated in Table 8.6.

Now we can find the matrix representations of Ŝx and Ŝy . Let us look at the Ŝy

matrix in detail. We have the relation

Ŝy |α〉 = i

2
� |β〉 (8.123)

which, when written in matrix notation, is

((
Sy
)

11

(
Sy
)

12(
Sy
)

21

(
Sy
)

22

)(
1
0

)
= i

2
�

(
0
1

)
(8.124)

Table 8.6 The actions of the components of the spin operator and of the ladder operators on |α〉
and |β〉, the eigenkets of Ŝz and Ŝ2

Ŝx |α〉 = 1

2
� |β〉 Ŝx |β〉 = 1

2
� |α〉

Ŝy |α〉 = i

2
� |β〉 Ŝy |β〉 = − i

2
� |α〉

Ŝz |α〉 = 1

2
� |α〉 Ŝz |β〉 = −1

2
� |β〉

Ŝ+ |α〉 = 0 Ŝ+ |β〉 = � |α〉
Ŝ− |α〉 = � |β〉 Ŝ− |β〉 = 0
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Multiplying the matrices and equation elements on each side of the equation
we find

(
Sy
)

11 = 0 and
(
Sy
)

21 = i

2
� (8.125)

Using

Ŝy |β〉 = − i

2
� |α〉 (8.126)

we obtain the remaining matrix elements

(
Sy

)
12 = − i

2
� and

(
Sy
)

22 = 0 (8.127)

so the matrix that represents Ŝy is

Ŝy = 1

2
�

(
0 −i
i 0

)
(8.128)

Using the same technique we find that

Ŝx = 1

2
�

(
0 1
1 0

)
(8.129)

From the matrices that represent Ŝx and Ŝy , we find that the matrices that represent
the spin ladder operators Ŝ± are

Ŝ+ = �

(
0 1
0 0

)
and Ŝ− = �

(
0 0
1 0

)
(8.130)

We now have the matrix representations for all three of the components of the
spin angular momentum operator Ŝ and the spin ladder operators. To simplify com-
putations, an operator σ̂ is defined that avoids the necessity of continually writing
the 1

2 � in these spin operators:

σ̂ = 2

�
Ŝ (8.131)

The components of σ̂ are called the Pauli spin matrices and are given by

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
(8.132)
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and the corresponding ladder operators are

σ̂+ = 2

(
0 1
0 0

)
; σ̂− = 2

(
0 0
1 0

)
(8.133)

Note the difference of a factor of 2 between the conventional spin ladder operators,
Equation 8.130, and the Pauli ladder operators, Equation 8.133. Although the entries
are essentially the same as those of Table 8.6, we present in Table 8.7 the effects of
operation with the Pauli matrices.

We are now in a position to find the eigenkets of Ŝx and Ŝy in terms of |α〉 and
|β〉. The eigenvalue equation for the operator σ̂x in matrix form is

(
0 1
1 0

)(
a
b

)
= λ

(
a
b

)
(8.134)

where λ represents the eigenvalues of σ̂x . We can simplify things because we know
that, except for the fact that we have chosen Ŝz to be the component that commutes
with Ŝ2, Ŝx and Ŝy are no different than Ŝz . Therefore, the eigenvalues of Ŝx and
Ŝy are the same as those of Ŝz so that in Equation 8.134 λ = ±1. Multiplying the
matrices on the left side of this equation and equating matrix elements on each side
of it we have

b = ±a and a = ±b (8.135)

Thus, the matrix elements of the eigenkets either have the same sign or the opposite
sign. The eigenkets are to be normalized so the one corresponding to the positive
eigenvalue must be

|α〉x = 1√
2

(
1
1

)

= 1√
2

|α〉 + 1√
2

|β〉 (8.136)

Table 8.7 The actions of the Pauli spin matrices on the spin up and spin down eigenvectors

σ̂x |α〉 = |β〉 σ̂x |β〉 = |α〉
σ̂y |α〉 = i |β〉 σ̂y |β〉 = −i |α〉
σ̂z |α〉 = |α〉 σ̂z |β〉 = − |β〉
σ̂+ |α〉 = 0 σ̂+ |β〉 = 2 |α〉
σ̂− |α〉 = 2 |β〉 σ̂− |β〉 = 0
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and that do the negative eigenvalue is

|β〉x = 1√
2

(
1

−1

)

= 1√
2

|α〉 − 1√
2

|β〉 (8.137)

The subscripts on the kets in Equations 8.136 and 8.137 indicate that they corre-
spond to spin up and spin down with respect to Ŝx . Because we have chosen Ŝz to
commute with Ŝ2 we omit any subscript from the eigenkets of Ŝz . The eigenkets of
Ŝy can be obtained in an analogous manner. The result is

|α〉y = 1√
2

(
1
i

)

= 1√
2

|α〉 + i√
2

|β〉 (8.138)

and

|β〉y = 1√
2

(
1
−i

)

= 1√
2

|α〉 − i√
2

|β〉 (8.139)

We have thus found the eigenkets of the operators Ŝx and Ŝy in terms of the eigenkets
of Ŝz . This is a sensible procedure since, being eigenkets of a Hermitian operator,
|α〉 and |β〉 form a complete set.

8.5.2 The Stern–Gerlach Experiment

The discussion of spin may seem very abstract, but it has important consequences
in quantum physics. In a famous experiment performed in 1922, O. Stern and
W. Gerlach observed directly the effects of quantized angular momentum. Their
experiment, the apparatus for which is shown schematically in Fig. 8.6, was based
on the fact that a nonuniform magnetic field applied to a bar magnet produces a net
force on the bar magnet. To see this we write the potential energy U of a magnetic
dipole moment μ in a magnetic field B

U = −μ · B (8.140)

If μ is constant and B is inhomogeneous, there will be a force on the magnetic
dipole. The force on the dipole in the z-direction is
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Fig. 8.6 Schematic diagram
of the Stern–Gerlach
apparatus. The (uncharged)
particles in the beam are
assumed to have magnetic
moments that are randomly
oriented in space. The
magnetic moment of one of
these atoms is represented by
the bar magnet

Fz = − (∇U )z

= μz
d Bz (z)

dz
(8.141)

The beam of electrically neutral atoms with randomly oriented angular momenta,
an unpolarized beam, enters an inhomogeneous magnetic field and is, according
to Equation 8.141, deflected. Particles emerging from the inhomogeneous field are
detected on the photographic plate. If the magnitudes of the z-components of the
magnetic moments of the atoms in the beam vary continuously, then the pattern on
the photographic plate should be a continuous smear between the extreme values.
On the other hand, if the magnetic moments are quantized, then a number of distinct
lines should be observed corresponding to the discrete values of the z-components
of the angular momentum. The number of lines will be the same as the number of
possible z-components of the magnetic moment. For example, if the total angular
momentum of the particle is 2, then there will be five z-components, −2, −1, 0,
1, 2, and five lines should appear on the screen. Obviously, if the total angular
momentum quantum number is an integer, there will always be an odd number of
z-components and therefore lines. On the other hand, if the total angular momentum
is half-integral, then there will be an even number of lines.

Stern and Gerlach performed the experiment with Ag atoms and observed two
well-defined lines. We now know that in the ground state the total orbital angular
momentum of Ag atoms is zero, but the total spin angular momentum is 1

2 . Without
the existence of half-integral spin the observation of any even number of lines cannot
be explained. It was Goudsmit and Uhlenbeck who postulated the existence of spin
angular momentum that adequately explained the Stern–Gerlach result. Clearly this
experiment can be performed with any atom (or molecule). It can be performed
with electrons provided an electric field is imposed on the apparatus to oppose the
Lorentz force that will deflect the electrons, irrespective of the magnetic deflec-
tion due to the intrinsic magnetic moment. For the present purpose it is simplest
to imagine the Stern–Gerlach (SG) experiment as being performed with uncharged
electrons. That is, we simply ignore the charge on the electron and treat only its
magnetic moment. Identical results would be obtained using any atom for which
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the total orbital angular momentum is zero and the total spin angular momentum is
one-half, for example hydrogen atoms in the ground state.

The z-component of the magnetic moment is

μz = −msgeμB (8.142)

which we may insert in Equation 8.141 and the resulting equation solved for ge.
The variation of the B-field with z is an experimentally known parameter so, in this
way, ge can be measured. The result is that ge = 2. It should be noted, however,
that when relativistic effects are taken into account it is predicted that ge = 2.0023
which is consistent with QED. The deviation from ge = 2 is one of the triumphs of
QED. For our purposes, however, we will assume ge = 2.

Let us now examine, mathematically, the effects of sending the electron beam
through one or more SG apparatuses. Suppose we pass an unpolarized beam of
electrons through an SG apparatus with magnetic field in the z-direction, an SGz
apparatus. The normalized ket that represents the spin of this unpolarized state is

|χ〉 = 1√
2

|α〉 + 1√
2

|β〉 (8.143)

The experimental result is that, for unpolarized electrons the SGz apparatus splits
the beam into two equal beams, spin up (ms = 1

2 ) and spin down (ms = − 1
2 ). If

now, only one of the beams emerging from the SGz apparatus, say the spin up beam,
is passed through another SGz apparatus we get only a single beam, spin up. This is
illustrated in Fig. 8.7.

Mathematically, the succession of SG apparatuses illustrated in Fig. 8.7 is equiv-
alent to operating twice in succession with the operator Ŝz , first on the unpolarized
beam and then on the spin up (in the z-direction) beam. That is,

Ŝz |χ〉 =
(

�

2

)(
1√
2

|α〉 − 1√
2

|β〉
)

Ŝz |α〉 =
(

�

2

)
1√
2

|α〉 (8.144)

Fig. 8.7 Illustration of the results of an unpolarized beam passing through an SGz apparatus fol-
lowed by passing the spin up output beam of the first SGz apparatus through a second one. It is
imagined that the electrons are uncharged for this Gedanken experiment
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Fig. 8.8 The results of an unpolarized beam passing through an SGz apparatus followed by passing
the spin up output beam of the first SGz apparatus through an SGx apparatus. As in Fig. 8.7, it is
imagined that the electrons are uncharged for this Gedanken experiment

Suppose now that we replace the second SGz apparatus in Fig. 8.7 with an SGx
apparatus, an apparatus with the magnetic field in the x-direction. This is equivalent
to operating on |α〉 with Ŝx . Solving Equations 8.136 and 8.137 for |α〉 in terms of
|α〉x and |β〉x we see that

Ŝx |α〉 = Ŝx

(
1√
2

|α〉x + 1√
2

|β〉x

)

=
(

�

2

)(
1√
2

|α〉x − 1√
2

|β〉x

)
(8.145)

from which it is clear that the SGx apparatus sorts the |α〉 beam into two equal
beams, spin up and down in the x-direction, |α〉x and |β〉x as shown in
Fig. 8.8.

We can continue this process, each time operating with the appropriate spin
component on the chosen beam. For example, we might pass the |β〉x beam that
is the output of the SGx apparatus in Fig. 8.8 through a second SGz apparatus, thus
requiring operation on |β〉x with Ŝz (see Problem 19).

8.6 Addition of Angular Momenta

We have studied two different types of angular momenta, orbital and spin. We can
see in the simple diagram of Fig. 8.5 that the splitting of the n = 2 level of hydrogen
is due to the interaction of these two angular momenta. Since it is possible to have
more than one angular momentum in a given system, it is important to understand
how to add these vector operators. Our discussion will be general so, rather than
work with L̂ and Ŝ, we will consider the addition, or “coupling,” of two generalized
angular momenta, Ĵ1 and Ĵ2.

There will be quantum numbers associated with each of these angular momenta,(
j1, m j1

)
and

(
j2, m j2

)
. In classical physics it is the total angular momentum that

is conserved, not necessarily the individual angular momenta. Therefore, we must
examine the total angular momentum Ĵ = Ĵ1 + Ĵ2 and determine what operators,
or combination of operators, lead to a set of quantum numbers that may be used to
characterize the system. Such sets of quantum numbers are usually referred to as
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“good” quantum numbers. For example, in our study of orbital angular momentum
we found that the quantum numbers � and m� determined the eigenvalues and the
eigenfunctions of the commuting operators L̂2 and L̂z . Thus, for a system having
only orbital angular momentum, � and m� are good quantum numbers. As might
be expected, if a set of quantum numbers does not characterize a system, these are
bad quantum numbers. We will find that there are two sets of mutually commuting
operators that produce good quantum numbers. Part of our art in performing quan-
tum mechanical calculations is to determine which set will make the calculations
the simplest and the most revealing.

We have introduced the total angular momentum operator Ĵ = Ĵ1 + Ĵ2, but
we do not know whether it qualifies as an angular momentum. To qualify, it must
satisfy the commutation rules given in Equation 8.2. It can be shown that Ĵ is in-
deed an angular momentum so we designate the quantum numbers of Ĵ 2 and Ĵz

as
(

j, m j
)

(see Problem 20). Now we must ask which of the quantum numbers
that we have delineated

(
j1, m j1, j2, m j2, j, m j

)
are required to fully describe a

system. This is tantamount to asking which sets of operators are commuting sets
because the quantum numbers of commuting sets of operators are good quantum
numbers. Clearly the operators

(
Ĵ 2

1 , Ĵ1z, Ĵ 2
2 , Ĵ2z

)
constitute a mutually commuting

set because the commuting pairs
(

Ĵ 2
1 , Ĵ1z

)
and

(
Ĵ 2

2 , Ĵ2z
)

operate on different co-
ordinates. Thus, each set of quantum numbers is good and we may characterize
simultaneous eigenkets of these four operators by their respective quantum num-
bers. This set of simultaneously commuting operators constitutes what is commonly
referred to as the uncoupled representation. The eigenkets of these operators are
designated

∣
∣ j1, m j1; j2, m j2

〉
(8.146)

and are collectively referred to as the uncoupled set.
Now we turn our attention to the total angular momentum to determine the

quantum numbers that constitute the other set, the coupled set. The operators(
Ĵ 2, Ĵ 2

1 , Ĵ 2
2 , Ĵz

)
are mutually commuting. For example,

[
Ĵ 2

1 , Ĵz
] = [

Ĵ 2
1 ,

(
Ĵ1z + Ĵ2z

)]

= 0 (8.147)

Therefore, describing a system in terms of the eigenkets of these mutually commut-
ing operators is called the coupled representation, an eigenket of which is written

∣
∣ j1, j2; j, m j

〉
(8.148)

Before proceeding let us inquire into the usefulness of these two sets of eigen-
kets. Because both the coupled and uncoupled sets constitute complete sets, any
arbitrary ket may be written as a linear combination of either set. If the linear
combination is say the uncoupled set, we obtain information about the individual
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angular momenta, but none about the total angular momentum. Remember that the
square of the expansion coefficient of a given basis ket represents the probability of
measuring simultaneously the parameters specified by the quantum numbers of this
eigenket. Expanding the wave function on the coupled set gives information about
the magnitudes of the individual and total angular momenta and the z-component
of the total angular momentum. Can we also obtain information on the individual
z-components from the coupled set? To answer this question we must investigate the
commutators of Ĵ1z and Ĵ2z with the set of operators that specify the coupled set,
namely,

(
Ĵ 2, Ĵ 2

1 , Ĵ 2
2 , Ĵz

)
. If we find one commutator that does not vanish, then m j1

and m j2 are not good quantum numbers in the coupled representation. Evaluating
the commutator

[
Ĵ1z, Ĵ 2

]
we have

[
Ĵ1z, Ĵ 2] = [

Ĵ1z,
(
Ĵ 2

x + Ĵ 2
y + Ĵ 2

z

)]

= [
Ĵ1z, Ĵ 2

x

] + [
Ĵ1z, Ĵ 2

y

] + [
Ĵ1z, Ĵ 2

z

]

=
[

Ĵ1z,
(

Ĵ1x + Ĵ2x
)2
]

+
[

Ĵ1z,
(
Ĵ1y + Ĵ2y

)2
]

+ 0

= [
Ĵ1z,

(
Ĵ 2

1x + 2 Ĵ1x Ĵ2x
)] + [

Ĵ1z,
(

Ĵ 2
1y + 2 Ĵ1y Ĵ2y

)]

= [
Ĵ1z,

(
Ĵ 2

1x + Ĵ 2
1y

)] + 2
[
Ĵ1z, Ĵ1x

]
Ĵ2x + 2

[
Ĵ1z, Ĵ1y

]
Ĵ2y

= [
Ĵ1z,

(
Ĵ 2

1 − Ĵ 2
1z

)] + 2i�
(
Ĵ1y Ĵ2x − Ĵ1x Ĵ2y

)

�= 0 (8.149)

Inasmuch as
[
Ĵ1z, Ĵ 2

] �= 0 and, obviously,
[
Ĵ2z, Ĵ 2

] �= 0 the z-components of the
individual angular momenta cannot be specified using the coupled representation.

The next thing we must do is to determine the relationship between the quantum
numbers in the two representations. We already know the relationships between the
uncoupled quantum numbers:

− j1 ≤ m j1 ≤ j1 and − j2 ≤ m j2 ≤ j2 (8.150)

Operating on an uncoupled ket with Ĵz we find the relationship between m j , m j1,
and m j2:

Ĵz

∣
∣ j1, m j1; , j2, m j2

〉 = (
Ĵ1z + Ĵ2z

) ∣∣ j1, m j1; , j2, m j2
〉

= (
m j1 + m j2

)
�
∣
∣ j1, m j1; , j2, m j2

〉
(8.151)

Also, however,

Ĵz

∣
∣ j1, m j1; , j2, m j2

〉 = m j �
∣
∣ j1, m j1; , j2, m j2

〉
(8.152)

so, comparing Equation 8.152 with Equation 8.151, we find that

m j = m j1 + m j2 (8.153)
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Additionally,

(
m j

)
max = (

m j1
)

max + (
m j2

)
max

= j1 + j2
= j (8.154)

so that m j takes on the values ( j1 + j2) ≥ m j ≥ − ( j1 + j2).
We must also be sure that there are an equal number of states in each represen-

tation. This can be somewhat confusing because there are multiple ways to obtain
a given quantum number. For example, the quantum number

(
m j

)
max = j1 + j2 is

unique, but m j = j1 + j2 − 1 is not because it can be formed by adding j1 to j2 − 1
or j2 to j1 − 1. The total number of states N in the coupled representation is clearly
the product of the number of states possible for each value of j which corresponds
to the total number of m-states for a given j , namely, (2 j + 1). Therefore,

N = (2 j1 + 1) · (2 j2 + 1) (8.155)

and we should get the same total using the uncoupled representation. To facilitate
this computation we present in Table 8.8 the total number of states for each possible
value of j . It is assumed that j1 > j2.

To find N we simply add the number of states that are listed in the last column
of the table. We have, again assuming that j1 > j2,

N = {2 ( j1 + j2) + 1} + {2 ( j1 + j2 − 1) + 1} + ... + {2 ( j1 − j2) + 1}

=
2 j2∑

n=0

{2 ( j1 + j2 − n) + 1}

= 2 j1

2 j2∑

n=0

1 + 2 j2

2 j2∑

n=0

1 − 2
2 j2∑

n=0

n +
2 j2∑

n=0

1 (8.156)

The validity of the limits of the summation in Equation 8.156 can be checked by
noting that there are (2 j2 + 1) terms in the sum ranging from ( j1 + j2) to ( j1 − j2).

Table 8.8 Uncoupled quantum numbers and numbers of states for two angular momenta

j m j Number of states

j1 + j2 ( j1 + j2) , ( j1 + j2 − 1) , ... 2 ( j1 + j2) + 1
...,− ( j1 − j2 + 1) ,− ( j1 − j2)

j1 + j2 − 1 ( j1 + j2 − 1) , ( j1 + j2 − 2) , ... 2 ( j1 + j2 − 1) + 1
. . . − ( j1 − j2 + 2) ,− ( j1 − j2 + 1)

...
...

...
j1 − j2 ( j1 − j2) , ( j1 − j2 − 1) , ... 2 ( j1 − j2) + 1

. . . − ( j1 − j2 + 1) ,− ( j1 − j2)
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To evaluate the third term in this summation we use the well-known summation
of successive integers known as “Gauss’ trick” which Carl Friedrich Gauss as a
schoolchild is purported to have invented as a time saver when a teacher gave his
class the wearisome task of adding the first one hundred numbers. Gauss noted that
by combining them in pairs, 0 + 100, 1 + 99, . . . , 49 + 51, he had 50 pairs, each
of which added to 100 with a single 50 left over. Thus, the answer to the teacher’s
posed question was almost immediately given by Gauss, 5050. This trick, in more
sophisticated mathematical language (see Appendix I.3), is written (try it!)

M∑

n=0

n = M (M + 1)

2
(8.157)

Now, back to the summation in Equation 8.156:

N = 2 j1

2 j2∑

n=0

1 + 2 j2

2 j2∑

n=0

1 − 2
2 j2∑

n=0

n +
2 j2∑

n=0

1

= 2 j1 (2 j2 + 1) + 2 j2 (2 j2 + 1) − 2
2 j2 (2 j2 + 1)

2
+ (2 j2 + 1)

= (2 j2 + 1) (2 j1 + 2 j2 − 2 j2 + 1)

= (2 j1 + 1) · (2 j2 + 1) (8.158)

This is the same as the number of states in the uncoupled representation.

8.6.1 Examples of Angular Momentum Coupling

Example: j1 = 1; j2 = 1/2

Consider a Bohr atom in the n = 2 state, Fig. 8.5 with � = 1 and spin angular mo-
mentum s = 1/2. There are a total of N = 6 states. In the uncoupled representation
the kets are, with j1 = � and j2 = s = 1/2,

∣
∣ j1, m j1; j2, m j2

〉 = |�, m�; s, ms〉
= ∣∣1, m�; 1

2 , ms
〉

(8.159)

while the kets in the coupled representation are

∣
∣ j1, j2; j, m j

〉 = ∣
∣�, s; j, m j

〉

= ∣
∣1, 1

2 ; j, m j
〉

(8.160)

In this discussion we have elected to designate ms by the actual value of the quantum
number, 1/2 and −1/2, rather than using a code such as the α and β notation used
in Section 8.5.
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Now, each representation comprises a complete set of kets upon which any ar-
bitrary ket may be expanded. It is, however, possible to expand a ket in one repre-
sentation on the set of kets in the other representation so it is possible to express,
for example, an uncoupled ket in terms of the coupled kets. In general, such an
expansion will consist of more than a single ket, although there are cases in which
there is a one-to-one correlation between the coupled and uncoupled kets.

Table 8.9 is a listing of the six possible states in each representation. The listing
in the right-hand column shows the uncoupled kets that correlate with the coupled
ket in the left-hand column. For example, the coupled ket with

(
j = 3/2, m j = 1/2

)

must contain the uncoupled kets having (m� = 1, ms = −1/2) and (m� = 0, ms =
+1/2) because both of these uncoupled kets correspond to m j = m� + ms = 1/2.
On the other hand, the coupled ket with

(
j = 3/2, m j = 3/2

)
is identical with the

uncoupled ket having (m� = 1, ms = 1/2) because this is the only combination of
m� and ms that can combine to give m j = 3/2. This is called a top of the ladder
state. Obviously the ket having

(
j = 3/2, m j = −3/2

)
is a bottom of the ladder

state. Note that the right-hand column, although it contains ten entries, has only six
different states.

Because we know that the coupled ket |1, 1/2; 3/2, 1/2〉 is a linear combination
of two uncoupled kets we write, using subscripts c for coupled and u for uncoupled
on the kets for clarity,

∣∣1, 1
2 ; 3

2 , 1
2

〉
c
= C1

∣∣1, 0; 1
2 , 1

2

〉
u
+ C2

∣∣1, 1; 1
2 ,− 1

2

〉
u

(8.161)

The constants C1 and C2 in Equation 8.161 are called Clebsch–Gordan coefficients.
Of course, the particular values of C1 and C2 pertain only to the case j1 = 1, j2 = 1

2 .
Of what use is the fact that a ket in one representation may be expressed in terms

Table 8.9 Coupled and uncoupled states for an electron with orbital angular momentum 1. The
left-hand column is a listing of the possible coupled states. The right-hand column contains the un-
coupled states that correlate with the adjacent coupled states. Therefore, in the right-hand column,
some uncoupled states are listed more than once

Coupled
∣
∣1, 1

2 ; j, m j
〉

Uncoupled
∣
∣1, m�; 1

2 , ms
〉

∣
∣1, 1

2 ; 3
2 , 3

2

〉 ∣
∣1, 1; 1

2 , 1
2

〉

∣
∣1, 1

2 ; 3
2 , 1

2

〉 ∣
∣1, 1; 1

2 ,− 1
2

〉

∣∣1, 0; 1
2 , 1

2

〉

∣∣1, 1
2 ; 3

2 ,− 1
2

〉 ∣∣1,−1; 1
2 , 1

2

〉

∣∣1, 0; 1
2 ,− 1

2

〉

∣∣1, 1
2 ; 3

2 ,− 3
2

〉 ∣∣1,−1; 1
2 ,− 1

2

〉

∣
∣1, 1

2 ; 1
2 , 1

2

〉 ∣
∣1, 0; 1

2 , 1
2

〉

∣
∣1, 1; 1

2 ,− 1
2

〉

∣∣1, 1
2 ; 1

2 ,− 1
2

〉 ∣∣1,−1; 1
2 , 1

2

〉

∣∣1, 0; 1
2 ,− 1

2

〉
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of the other representation? Suppose we know that an electron in an atom is char-
acterized by the total quantum numbers

(
j = 3/2, m j = 1/2

)
so that it is in an

eigenstate represented by the ket
∣∣1, 1

2 ; 3
2 , 1

2

〉
c

in Equation 8.161 and we wish to
determine the probability that a measurement of the z-components of the individual
angular momenta will yield (m� = 0, ms = +1/2). If we knew the value of C1 in
Equation 8.161, we would have the answer. Assuming that the wave function in this
equation is normalized the answer is |C1|2.

In practice, tables of Clebsch–Gordan coefficients are used when it is necessary
to express a ket in one representation in terms of the other, especially for cases
that are more complicated than the one for which (� = 1, s = 1/2). The Clebsch–
Gordan coefficients that are the entries in the tables are calculated making use of the
one-to-one correlation of the extreme states in each representation. For example, to
find C1 and C2 in Equation 8.161 we make use of top of the ladder state

∣
∣1, 1

2 ; 3
2 , 3

2

〉
c
= ∣

∣1, 1; 1
2 , 1

2

〉
u

(8.162)

and operate on both sides with the lowering operator. Using Equation 8.40 we have

Ĵ−
∣
∣1, 1

2 ; 3
2 , 3

2

〉
c

= (
L̂− + Ŝ−

) ∣∣1, 1; 1
2 , 1

2

〉
u√

3
∣
∣1, 1

2 ; 3
2 , 1

2

〉
c

= L̂−
∣
∣1, 1; 1

2 , 1
2

〉
u
+ Ŝ−

∣
∣1, 1; 1

2 , 1
2

〉
u

=
√

2
∣
∣1, 0; 1

2 , 1
2

〉
u
+ ∣

∣1, 1; 1
2 ,− 1

2

〉
u

(8.163)

We see then that C1 = √
2/3 and C2 = 1/

√
3 so

∣
∣1, 1

2 ; 3
2 , 1

2

〉
c
=

√
2

3

∣
∣1, 0; 1

2 , 1
2

〉
u
+ 1√

3

∣
∣1, 1; 1

2 ,− 1
2

〉
u

(8.164)

and we have calculated the Clebsch–Gordan coefficients for this case. To complete
the task of calculating all coefficients for this case we judiciously apply the ladder
operators. By judiciously it is meant, for example, we could obtain

∣
∣1, 1

2 ; 3
2 , 1

2

〉
c

by
lowering the ket we just found in Equation 8.164, but this would be more work than
simply raising the bottom of the ladder kets,

∣∣1, 1
2 ; 3

2 ,− 3
2

〉
c

= ∣∣1,−1; 1
2 ,− 1

2

〉
u
. The

results of these calculations are summarized in Table 8.10.
To recover Equation 8.164 from the table we read down the fourth column which

represents the coupled ket
∣
∣1, 1

2 ; 3
2 , 1

2

〉
c
; the rows having nonzero entries are the coef-

ficients of uncoupled kets that are designated by the entries in the first two columns.
It is seen that these entries match Equation 8.164. The final two columns, those
representing the j = 1/2 states, may be generated to within a phase eiδ by invoking
normality and orthogonality with the j = 3/2 states. Since, however, it is the squares
of the expansion coefficients that represent probabilities, the relative phase is of no
consequence. The phases (signs) in all tables in this book conform with those given
in most references.
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Table 8.10 Clebsch–Gordan coefficients for j1 = � = 1 and j2 = 1/2

j1 = 1; j2 = 1/2 j = 3/2 j = 1/2

m� ms 3/2 1/2 −1/2 −3/2 1/2 −1/2
1 1/2 1
1 −1/2

√
1/3

√
2/3

0 1/2
√

2/3 −√
1/3

0 −1/2
√

2/3
√

1/3
−1 1/2

√
1/3 −√

2/3
−1 −1/2 1

Table 8.10 can be generalized for any value of j1, integral or half-integral, with
j2 = s = 1/2. Table 8.11 is a more commonly seen compilatin of Clebsch–Gordan
coefficients. To recover Equation 8.164 from this table we let j1 = 1 and m j = 1/2
in the row that represents j1 + 1/2. Note that values of m j1 are not explicitly used
in this table; they are determined by the choice of m j and ms . For example, the
uncoupled ket |1, 0; 1/2, 1/2〉u has m j1 = m j − ms = 1/2 − 1/2 = 0.

Example: j1 = 1/2 ; j2 = 1/2

Table 8.11 can be specialized for the case of two spin- 1
2 particles. This is of great

importance in both atomic and nuclear physics. In this case, we change the notation
for the coupled state quantum numbers to conform to commonly used notation. The
total angular momentum j and its z-component m j are designated by S and M ,
respectively. Using this notation we can convert Table 8.11 to this notation for two
spin- 1

2 particles. The result is Table 8.12.
There are only two possible values of the total spin, S = 0, 1. For S = 0 there

is only one possible z-component, M = 0. For S = 1, however, there are three
possible z-components, M = 0,±1. For this reason, when the two spins are aligned
resulting in S = 1, this state (actually, three states) is referred to as the triplet state.
Similarly, S = 0 is the singlet state. The coupled kets may be written in terms of the

Table 8.11 Clebsch–Gordan coefficients for any value of j1 and j2 = 1/2

j ms = 1/2 ms = −1/2

j1 + 1/2
√(

j1 + 1/2 + m j

)
/ (2 j1 + 1)

√(
j1 + 1/2 − m j

)
/ (2 j1 + 1)

j1 − 1/2 −
√(

j1 + 1/2 − m j
)
/ (2 j1 + 1)

√(
j1 + 1/2 + m j

)
/ (2 j1 + 1)

Table 8.12 Clebsch–Gordan coefficients for two spin-1/2 particles

S ms2 = 1/2 ms2 = −1/2

1
√

(1 + M) /2
√

(1 − M) /2

0 −1/
√

2 1/
√

2
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uncoupled kets with the aid of Table 8.12. Using the notation |SM〉 for coupled kets
and |ms1ms2〉 for the uncoupled we have

|11〉 = ∣∣ 1
2 , 1

2

〉

|10〉 = 1√
2

∣
∣− 1

2 , 1
2

〉 + 1√
2

∣
∣ 1

2 ,− 1
2

〉

|1 − 1〉 = ∣
∣− 1

2 ,− 1
2

〉

|00〉 = − 1√
2

∣∣− 1
2 , 1

2

〉 + 1√
2

∣∣ 1
2 ,− 1

2

〉
(8.165)

In writing the kets |SM〉 and |ms1ms2〉 we have not included the individual spin
angular momenta s1 and s2, because they are common to every such ket. To obtain
the triplet states in Equations 8.165 we use the first row of Table 8.12, changing the
value of M each time. Bear in mind that the value of M together with the value of
ms2 determines the value of ms1, that is, ms1 = M − ms2. Note that these four kets
form an orthonormal set. The singlet state is specified by the second row of Table
8.12. For future reference we point out that the triplet states are symmetric under an
interchange of particles, while the singlet state is antisymmetric. For example, upon
interchange of particles |00〉 → − |00〉.

Application: Coupling of proton and electron spins in a hydrogen atom

The importance of choosing the most convenient coupling scheme can be illus-
trated by considering the interaction between the magnetic moments of the proton
and the electron in a hydrogen atom. For simplicity we consider only the ground
state, n = 1, for which there is no orbital angular momentum and therefore no
B-field due to the orbital motion of the electron. There are, however, two other
B-fields, one due to the intrinsic magnetic moment of the electron and the other
the intrinsic magnetic moment of the proton. We may regard the energy of inter-
action as that due to one of the magnetic moments in the B-field of the other.
From Electricity and Magnetism, however, we know that the interaction of two
magnetic dipoles is proportional to the dot product of their dipole moments. The
intrinsic magnetic moment of the electron is given in Equation 8.108 and may be
written

μ̂S = − ge

�
μB Ŝ

= − ge

�

(
e�

2me

)
Ŝ (8.166)

The magnetic moment of the proton μ̂p will have an analogous form,



282 8 Quantum Mechanics in Three Dimensions—Angular Momentum

μ̂p = − gp

�
μB Ŝ

= − ge

�

(
e�

2m p

)
Ŝ (8.167)

Because the mass of the proton, m p = 1836me, we see that, all other factors
being equal, μ̂p should be ∼ 2000 times smaller than μ̂S. In fact, it is only
about 650 times smaller because the gp = 5.585. Nonetheless, this energy is
referred to as hyperfine splitting. It is of great importance in modern physics
research, especially radio astronomy. For our current purpose we may simply
write the interaction Hamiltonian for the hyperfine interaction in terms of the
spins as

ĤH F = 2κ

�2
Ŝ1·Ŝ2 (8.168)

where Ŝ1 and Ŝ2 represent the spins of the electron and proton and the constant has
been judiciously chosen. Additionally, it is known that the constant κ > 0. It doesn’t
matter which spin operator corresponds to a particular particle since interchange
of them does not change the Hamiltonian. In general, Equation 8.168 represents
only a portion of the dipole–dipole interaction. There is yet another term in the
Hamiltonian, but for � = 0 this term makes no contribution. The portion of the
Hamiltonian given in Equation 8.168 is referred to as the contact term [5] because
it only contributes at the origin when the electron and the proton are “in contact”
(� = 0).

Our goal is to calculate the energy eigenvalues (and eigenkets) of ĤH F . This will
yield the hyperfine splitting of the ground state of hydrogen. We can use either the
coupled or the uncoupled representation. Before choosing between the two repre-
sentations, we rewrite ĤH F in terms of the total spin operator Ŝ = Ŝ1 + Ŝ2. Noting
that

Ŝ2 =
(

Ŝ1 + Ŝ2

)
·
(

Ŝ1 + Ŝ2

)

= Ŝ2
1 + 2Ŝ1 ·Ŝ2 +Ŝ2

2 (8.169)

we can solve for Ŝ1·Ŝ2 so that

ĤH F = κ

�2

(
Ŝ2 − Ŝ2

1 − Ŝ2
2

)
(8.170)

Because Equation 8.170 contains only the squares of the total and the individual
angular momenta, it is clear that the coupled set designated |SM〉 as in Section 8.6
are the eigenkets of ĤH F . Moreover, there is no operator in ĤH F that will produce
the quantum number M , so the triplet states |1M〉 all have the same energy. The
energies are trivially obtained by applying ĤH F to the coupled kets. For the triplet
we have
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ĤH F |1M〉 = κ

�2

(
Ŝ2 − Ŝ2

1 − Ŝ2
2

) |1M〉
= κ [1 (1 + 1) − 1/2 (1/2 + 1) − 1/2 (1/2 + 1)] |1M〉
= κ

2
|1M〉 (8.171)

while for the singlet we have

ĤH F |00〉 = κ

�2

(
Ŝ2 − Ŝ2

1 − Ŝ2
2

) |00〉
= κ [0 − 1/2 (1/2 + 1) − 1/2 (1/2 + 1)] |00〉
= −3

2
κ |00〉 (8.172)

Thus, the interaction between the electron and proton spins splits the energy of the
n = 1 state of the hydrogen atom, the singlet decreasing the energy and the triplet
increasing it. The total splitting is 2κ which is shown in Fig. 8.9.

The value of κ has been found to be 5.9 × 10−6eV, a very tiny fraction of the
energy difference between the ground state and the first excited state, ∼ 10 eV. Us-
ing the formula given in Equation 1.10 we can calculate the wavelength of radiation
given off in a transition between these two levels:

λH F = 1240

5.9 × 10−6
nm

= 21cm (8.173)

This wavelength is in the radio region of the electromagnetic spectrum. Observation
of the 21-cm line by radio astronomy has provided a means of detecting interstellar
hydrogen by detecting a wavelength other than a visible Balmer line. Moreover, it
also permitted verification of the redshift measurements made in the visible region
of the spectrum.

We can also obtain the energy eigenvalues of ĤH F using the uncoupled represen-
tation, but it is a bit more complicated. To illustrate the wisdom of using the most
convenient basis set for a particular problem we will work out the details of the

Fig. 8.9 Hyperfine splitting
of the ground state of the
hydrogen atom
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calculation using the “wrong” basis set, the uncoupled set. To do so we first convert
the eigenkets to this representation which is easily done using Table 8.12. Following
Equations 8.165 in Section 8.6 we have

|11〉 = ∣
∣ 1

2 , 1
2

〉

|10〉 = 1√
2

(∣∣− 1
2 , 1

2

〉 + ∣∣ 1
2 ,− 1

2

〉)

|1 − 1〉 = ∣∣− 1
2 ,− 1

2

〉

|00〉 = − 1√
2

(∣∣− 1
2 , 1

2

〉 − ∣
∣ 1

2 ,− 1
2

〉)
(8.174)

Now we must write ĤH F in terms of operators that will operate on the uncoupled
kets. To do this we must cast Ŝ1·Ŝ2 into a form that contains operators that, when
operating on the uncoupled kets, yield known results. Using Equation 8.119 which
gives Ŝx and Ŝy in terms of the ladder operators we have

ĤH F = 2κ

�2

(
Ŝ1x Ŝ2x + Ŝ1y Ŝ2y + Ŝ1z Ŝ2z

)

= κ

2�2

[(
Ŝ1+ + Ŝ1−

) (
Ŝ2+ + Ŝ2−

) − (
Ŝ1+ − Ŝ1−

) (
Ŝ2+ − Ŝ2−

)]

+ 2κ

�2
Ŝ1z Ŝ2z

= κ

�2

(
Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+

) + 2κ

�2
Ŝ1z Ŝ2z (8.175)

This form is suitable because the uncoupled kets are eigenkets of Ŝ1z and Ŝ2z and
because we know the actions of the ladder operators on the uncoupled kets (see
Table 8.6). It simplifies matters to write ĤH F in terms of the Pauli spin matrices
(see Section 8.5.1). We have

ĤH F = κ

�2

(
Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+

) + 2κ

�2
Ŝ1z Ŝ2z

= κ

[(
1

4

)
(σ̂1+σ̂2− + σ̂1−σ̂2+) + 2

(
1

4

)
σ̂1z σ̂2z

]

= κ

2

{
1

2

[
(σ̂1+σ̂2− + σ̂1−σ̂2+)

] + σ̂1z σ̂2z

}
(8.176)

Applying ĤH F to each of the uncoupled kets in Equation 8.174 produces the same
eigenvalues that we obtained for the coupled kets. For example, with the aid of Table
8.7 we evaluate ĤH F |10〉. We obtain
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2

κ
ĤH F |1 0〉 = 1

2

[
(σ̂1+σ̂2− + σ̂1−σ̂2+)

]
{

1√
2

(∣∣− 1
2 , 1

2

〉 + ∣
∣ 1

2 ,− 1
2

〉)
}

+ σ̂1z σ̂2z

{
1√
2

(∣∣− 1
2 , 1

2

〉 + ∣
∣ 1

2 ,− 1
2

〉)
}

= 1

2

1√
2

[
4
∣
∣ 1

2 ,− 1
2

〉 + 4
∣
∣− 1

2 , 1
2

〉]

+ 1√
2

[
(−1)

∣∣− 1
2 , 1

2

〉 + (−1)
∣∣− 1

2 , 1
2

〉]

= 2
1√
2

[∣∣ 1
2 ,− 1

2

〉 + ∣
∣− 1

2 , 1
2

〉]

− 1√
2

[∣∣ 1
2 ,− 1

2

〉 + ∣
∣− 1

2 , 1
2

〉]

= 1√
2

[∣∣ 1
2 ,− 1

2

〉 + ∣
∣− 1

2 , 1
2

〉]

= |1 0〉 (8.177)

so, indeed, the eigenvalue of |1 0〉 is κ/2. Of course, application of ĤH F as given
in Equation 8.176 to the remaining three coupled kets produces the other two triplet
eigenvalues, κ/2, κ/2 and the singlet eigenvalue −3κ/2. The problem can also be
formulated in matrix notation (see Problem 22) .

Evidently, the singlet state, in which the spins are antiparallel, carries a lower
energy. In this state the magnetic moments are aligned. This is perhaps contrary to
what one might think because the lower energy state of two magnets corresponds
to antialignment of the magnetic moments. The lowest energy state of hydrogen
has zero orbital angular momentum and the electron has some probability of being
within the nucleus. This means that the magnetic interaction is dominated by the
“contact term.” If the magnetic dipole is represented by an infinitesimal current
loop, the contact term is due to the field within the loop, where it is in the same
direction as the magnetic moment, the opposite direction of the field at all other
points in the plane perpendicular to magnetic moment. This term has the opposite
sign of the analogous term in the electric dipole interaction [5] and results in the
lower energy of the aligned magnetic dipoles.

8.6.2 Spin and Identical Particles

In quantum physics particles of the same type are indistinguishable. For example,
all electrons are the same and they cannot be tagged. One is the same as another
and, indeed, they are indistinguishable. They are referred to as identical particles.
Electrons are not the only particles that exhibit this indistinguishability. Protons,
neutrons, and the other more exotic elementary particles are identical. Evidently
nature made them so.
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The key characteristic of identical particles is that interchange of them cannot be
detected by a measurement. Therefore, indistinguishability demands that the prob-
ability distributions be unchanged upon interchange of the particles. Interchange
can be effected by exchanging the coordinates of the particles, spatial and spin. This
requirement imposes a symmetry on the state vectors that may be described in terms
of an operator P̂i j , the particle exchange operator. When operating on a state vector,
this operator exchanges all coordinates of the i th and j th particles. For simplicity we
consider two identical noninteracting particles. A ket that specifies the two-particle
state may be written

|a b〉 = |a〉1 |b〉2 (8.178)

where in the composite ket on the left, a and b designate the state of each particle and
their position in the ket specifies the particle under the assumption that they can be
tagged. In the product of individual particle kets on the right-hand side of Equation
8.178 a and b still designate the state, but the particular particle is designated by the
subscript. Therefore, in Equation 8.178 particle #1 is in state a and particle #2 is in
state b. It is important to remember that the state designations a and b include all
coordinates, space and spin. If we now operate on this state vector with the exchange
operator, we have

P̂12 |a b〉 = |b a〉
= |b〉1 |a〉2 (8.179)

Having defined the action of the operator we must now investigate the nature of
the acceptable state vectors. That is, while the ket |a b〉 specifies the state of a
two-particle system, we have no assurance that this represents an acceptable state.
Clearly the ket in Equation 8.178 is not acceptable because exchanging the particles
leads to a different state. So, what is an acceptable state? Let us designate an accept-
able state by |ψ〉. The particles are indistinguishable so operating on |ψ〉 with the
exchange operator cannot change the physical result. Therefore, the action of P̂12

on |ψ〉 can only multiply it by a phase factor eiζ , leaving 〈ψ |ψ〉 invariant. We have

P̂12 |ψ〉 = eiζ |ψ〉 (8.180)

which is an eigenvalue equation for the particle exchange operator with eigenvalue
eiζ . Operating a second time with P̂12 must return the original state vector so that

(
P̂12

)2 |ψ〉 = (
eiζ

)2 |ψ〉
= |ψ〉 (8.181)

and the eigenvalue eiζ = ±1. Therefore, |ψ〉 is an eigenket of P̂12 with eigenvalues
±1. To find |ψ〉 in terms of the basis kets |a b〉 and |b a〉 we must solve the eigen-
value equation to find the expansion coefficients of |a b〉 and |b a〉. This is equivalent
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to diagonalizing the matrix representing the operator P̂12 using the basis set |a b〉 and
|b a〉. We already know the eigenvalues are ±1, but we insert the eigenvalues as λ

so we can find it later:

( 〈a b| P̂12 |a b〉 〈a b| P̂12 |b a〉
〈b a| P̂12 |a b〉 〈b a| P̂12 |b a〉

)(
c1

c2

)
= λ

(
1 0
0 1

)(
c1

c2

)
(8.182)

In Equation 8.182 the column matrix represents the ket

|ψ〉 = c1 |a b〉 + c2 |b a〉 (8.183)

and the unit matrix has been inserted for clarity. The basis vectors are orthonormal
so the diagonal elements of P̂12 vanish and the off-diagonal elements are each equal
to unity. Transposing everything to the left-hand side we have

(−λ 1
1 −λ

)(
c1

c2

)
= 0 (8.184)

which represents two simultaneous equations for c1 and c2. Solution of the sec-
ular equation (see Section 6.2.2) yields λ = ±1 which we already knew. (It is
comforting to know that our method recovers the eigenvalues that we already de-
duced because it gives us confidence that the eigenvectors we seek will be cor-
rect.)

Inserting first λ = +1 in Equation 8.184 and multiplying the matrices we obtain
c1 = c2. When we insert λ = −1 we arrive at c1 = −c2 so we have two acceptable
eigenstates of the exchange operator. Normalized, they are

|ψ〉s = 1√
2

(|a b〉 + |b a〉)

= 1√
2

(|a〉1 |b〉2 + |b〉1 |a〉2) (8.185)

for λ = +1

|ψ〉a = 1√
2

(|a b〉 − |b a〉)

= 1√
2

(|a〉1 |b〉2 − |b〉1 |a〉2) (8.186)

for λ = −1.
The subscript designations “s” and “a” denote symmetric and antisymmetric

eigenkets since the action of the exchange operator is to convert each into either
itself (symmetric) or minus itself (antisymmetric). Neither of these exchanges pro-
duces a different probability distribution so they are acceptable states for identical
particles. Note the contrast between these kets and that in Equation 8.178.
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The above deductions about the nature of the acceptable state vectors may be
stated in a slightly different way. Clearly the Hamiltonian that describes identical
particles must be invariant under particle interchange. Thus, the Hamiltonian com-
mutes with the exchange operator and the acceptable eigenstates are represented
by kets that are simultaneous eigenkets of both operators. For example, while |a b〉
may be an eigenket of the Hamiltonian, it clearly is not an eigenket of the exchange
operator. The defining relation for P̂12, Equation 8.179 assures us of this. On the
other hand, |ψ〉s and |ψ〉a in Equations 8.185 and 8.186 are eigenkets of both P̂12

and Ĥ .
Particles fall into one of two types, fermions and bosons. Fermions have half-

integral spin and are characterized by antisymmetric state vectors while bosons
have integral spin (including zero) and are described by symmetric state vectors.
Examples of fermions are electrons, protons and neutrons. Examples of bosons
are photons and some of the exotic elementary particles. Composite particles are
also subject to symmetry restrictions. For example, the nucleus of heavy hydrogen,
known as a deuteron (see Section 9.4), consists of a proton and a neutron, both
fermions. These half-integral spins, however, add in this case making the spin of the
deuteron +1. It is therefore a boson. The nuclei of ordinary helium, α particles, are
also bosons, but the isotope of helium having only one neutron in the nucleus is a
fermion.

Let us examine the situation if both particles are placed in the same state so
that |a b〉 → |a a〉. Clearly |a a〉 is an eigenket of the Hamiltonian, but, while
|ψ〉s → √

2 |a a〉, |ψ〉a ≡ 0. This is the Pauli exclusion principle which may be
stated:

Two identical fermions may not occupy the same quantum state.

Again, it must be emphasized that a complete description of the quantum state
includes spatial and spin coordinates. More fundamentally, however, the Pauli
principle is

Systems of identical fermions are described by antisymmetric state vectors.

Interestingly, Pauli formulated this principle in 1925 in terms of quantum numbers
of individual electrons in atoms.

No two electrons can have the same set of quantum numbers.

This formulation predated the discovery of electron spin and, indeed, even the for-
mulation of the TDSE. Pauli invented a quantum number that could take on one of
two values that, in fact, fulfilled the function of ms = ± 1

2 .
Suppose now that there are more than two identical particles in the system. For N

identical fermions an antisymmetric state vector can be constructed using the Slater
determinant
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|ψ〉a = 1√
N!

∣∣
∣
∣
∣
∣∣
∣
∣
∣

|a〉1 |b〉1 · · ·
|a〉2 |b〉2

...
...

. . .
...

|a〉N |b〉N · · · . . .

∣∣
∣
∣
∣
∣∣
∣
∣
∣

(8.187)

where we use the individual ket notation of Equation 8.178 so that, for example,
|c〉3 represents particle #3 in quantum state c. As we will see in the example below,
the Slater determinant guarantees a function that is antisymmetric under particle
exchange, but this function may not be an acceptable wave function (see the exam-
ple below). Expansion of the Slater determinant using only plus signs leads to an
antisymmetric state vector.

Example: Two noninteracting fermions

In this example we examine the effects of properly symmetrizing the wave function
on a simple system, two noninteracting fermions. Although the particles do not in-
teract with each other, they are both subject to the same potential energy. We will
determine the state vectors and energies for the ground state and the first excited
state. Because the particles do not interact, the Hamiltonian is the sum of two indi-
vidual Hamiltonians, one for each particle. The state vectors may therefore be kets
of the form |q ms〉i |p ms〉 j , where i, j stand for the number of the particle, 1 or 2,
and q and p represent all spatial quantum numbers. Of course, i �= j . The quantum
numbers (q, p) and ms represent the spatial and spin quantum states, respectively.
The eigenkets are products of the individual eigenkets and the total energy is the
sum of the energy eigenvalues of each of the particles. Additionally, because the
energy does not depend upon the spin we may write |n ms〉i = |n〉i |ms〉i . In this
section, for each particle, we let ms = + 1

2 = α or ms = − 1
2 = β. Clearly the

lowest energy state will be that for which each particle has the ground state energy
E1. Thus, the total ground state energy is 2E1. We can use the Slater determinant to
find the ground state eigenket. Denoting the spatial quantum numbers, q and p, by
integers 0, 1, 2 . . . the state kets |a〉i and |b〉i are

|a〉i =̂ |1〉i |α〉i

|b〉i =̂ |1〉i |β〉i (8.188)

These are the only choices for the ground state. The Slater determinant for the
ground state |ψ〉0 is
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|ψ〉0 = 1√
2

( |1〉1 |α〉1 |1〉1 |β〉1
|1〉2 |α〉2 |1〉2 |β〉2

)

= 1√
2

(|1〉1 |α〉1 |1〉2 |β〉2 − |1〉2 |α〉2 |1〉1 |β〉1

)

= 1√
2

{|1〉1 |1〉2}
{|α〉1 |β〉2 − |α〉2 |β〉1

}
(8.189)

which is an acceptable eigenket because it is a product of space and spin kets, one of
which (spin) is antisymmetric and the other (space) is symmetric. Therefore, their
product is antisymmetric. In the language of Section 8.6.1, this is a singlet spin state.
Clearly S = 0 and, consequently, M = 0.

The first excited state comprises states in which one electron is in the spatial
state q = 1 and the other p = 2. Thus, the energy of the first excited state is
E1 + E2. In this case ms can take on either value α or β. There are, therefore, four
possible individual electron states, but they must occur in pairs because the only
combinations of states that can occur for the first excited states are states for which
one spatial quantum number is 1 while the other is 2. Writing these out explicitly
we let

|a〉i =̂ |1〉i |α〉i ; |b〉i =̂ |2〉i |α〉i

|c〉i =̂ |1〉i |β〉i ; |d〉i =̂ |2〉i |β〉i (8.190)

Such states are referred to as spin orbitals because the spatial part of atomic wave
functions are called orbitals. Only four pairs of these spin orbitals lead to the energy
of the first excited state. They may be designated

|a〉i |b〉 j δi j ; |a〉i |d〉 j δi j ; |c〉i |b〉 j δi j ; |c〉i |d〉 j δi j i, j = 1, 2 (8.191)

In this case we have four different 2×2 Slater determinants because the first excited
state is four-fold degenerate, there are four ways of forming the energy E1 + E2.
Inserting each of these pairs of states into the Slater determinant produces four de-
generate state vectors. They are

|ψ〉1ab = 1√
2

|α〉1 |α〉2 {|1〉1 |2〉2 − |1〉2 |2〉1} (8.192)

|D〉1ad = 1√
2

(|1〉1 |α〉1 |2〉2 |β〉2 − |1〉2 |α〉2 |2〉1 |β〉1

)
(8.193)

|D〉1cb = 1√
2

(|1〉1 |β〉1 |2〉2 |α〉2 − |1〉2 |β〉2 |2〉1 |α〉1

)
(8.194)

|ψ〉1cd = 1√
2

|β〉1 |β〉2 {|1〉1 |2〉2 − |1〉2 |2〉1} (8.195)
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Now, we must ask if these kets are acceptable eigenkets? The answer is that two of
them, |ψ〉1ab and |ψ〉1cd , are acceptable and two of them, |D〉1ad and |D〉1cb, are not.
Equations 8.192 and 8.195 clearly represent the triplet M = ±1 states (see Section
8.6.1). There is, however, (almost always) another requirement that must be met for
a ket to be an acceptable eigenket. The Hamiltonian is of the form

Ĥ = Ĥspace + Ĥspin (8.196)

so that, writing the particle interchange operator as the product of two operators,

P̂12 = P̂ (space)
12 P̂ (spin)

12 (8.197)

it is clear that each of these operators must have eigenvalues ±1, and that the par-
ticular eigenvalue of one determines the eigenvalue of the other. For example, if
an exchange of spatial coordinates indicates an antisymmetric spatial part of the
wave function, then the spin part of the wave function must be symmetric. Thus,
symmetric spin and spatial kets are allowed, but not in the same eigenket. This
infers that the acceptable kets must be products in the form |space〉 × |spin〉. This
is also clear from the separability of the Hamiltonian as given in Equation 8.196.

It is seen that |D〉1ad and |D〉1cb do not qualify as acceptable eigenkets because
they are not expressible as products of space and spin kets [4]. On the other hand,
|ψ〉1ab and |ψ〉1cd are in product form and do qualify. To obtain acceptable eigen-
kets from |D〉1ad and |D〉1cb we must take linear combinations of them since linear
combinations of symmetric or antisymmetric functions retain their symmetry under
particle exchange. It is clear that the coefficients of |D〉1ad and |D〉1cb in the lin-
ear combinations must have the same magnitude to put them in proper form. We
therefore deduce that

|ψ〉1± = 1√
2

|D〉1ad ± |D〉1cb

= 1√
2

{|1〉1 |2〉2 ∓ |1〉2 |2〉1}
{|α〉1 |β〉2 ± |α〉2 |β〉1

}
(8.198)

Notice that the upper sign in Equation 8.198 must correspond to M = 0 of the triplet
state, because it corresponds to a symmetric spin state, S = 1 (see Equations 8.165).
We have therefore deduced the correct eigenkets for two noninteracting fermions
and found that the spin parts of them are the same as those obtained by the addition
of two spin- 1

2 angular momenta as in Section 8.6.1. These properly symmetrized
eigenkets are listed in Table 8.13. It is interesting that the symmetry requirements
imposed by the indistinguishability criterion leads to differences in the the average
values of their separations. Despite the fact that the Hamiltonian does not contain the
spin explicitly, it is found that the expectation value of the interparticle separation
is greater for the triplet state than it is for the singlet state (see Problem 24). This
effect has important consequences on the ordering of quantum mechanical states as
will be seen in Section 13.3.2.
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Table 8.13 The singlet and triplet states for two non-interacting fermions

Singlet
1√
2

{|1〉1 |2〉2 + |1〉2 |2〉1}
{|α〉1 |β〉2 − |α〉2 |β〉1

}

Triplets
1√
2

{|1〉1 |2〉2 − |1〉2 |2〉1} |α〉1 |α〉2

1√
2

{|1〉1 |2〉2 − |1〉2 |2〉1}
{|α〉1 |β〉2 + |α〉2 |β〉1

}

1√
2

{|1〉1 |2〉2 − |1〉2 |2〉1} |β〉1 |β〉2

8.7 The Vector Model of Angular Momentum

It has been emphasized that any vector operator having components that obey the
commutation rules given in Equation 8.2 qualifies as an angular momentum even
if it cannot be envisioned as such in the traditional sense. In the case in which an
angular momentum operator does represent a quantity that has more than abstract
meaning, we can construct a vector model to represent it. This vector model is par-
ticularly useful for understanding orbital angular momentum and for envisioning the
coupling of two such angular momenta.

Figure 8.10 illustrates the vector model for a total angular momentum quantum
number j = 2 and all of the (2 j + 1) possible z-components. The magnitude of
the total angular momentum is

√
j ( j + 1)�, while the maximum value that the∣

∣m j

∣
∣ can have is j . Therefore, the total angular momentum and its z-component

can never be aligned (there is that pesky uncertainty principle again). The angular
momentum vector will be oriented such that its z-component is the eigenvalue of Ĵz ,
m j�. But nothing can be known about the x- and y-components. Therefore, all we
know about the position of the total angular momentum vector is that it lies some-
where on a right circular cone, the altitude of which is known, m j �, with slant height√

j ( j + 1)�. It is a common misconception that the total angular momentum vector
rotates, thus sweeping out the cone. This is not true! The total angular momentum
vector lies somewhere on the cone, but the uncertainty principle, as embodied in the

Fig. 8.10 Vector model of
angular momentum for
j = 2. Note that the plane in
which the angular momentum
vector lies when m j = 0 is
the xy-plane
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Fig. 8.11 Vector model of
angular momentum for
j = 3/2. Notice that the total
angular momentum vector
cannot lie in the xy-plane

commutation properties of the components of angular momentum, prohibits precise
knowledge of its position.

The vector model for a half-integral total angular momentum is slightly dif-
ferent from that for an integral total angular momentum because there is no zero
z-component. That is, m j �= 0 for total spin that is half-integral. Fig. 8.11 illustrates
this for j = 3/2.

The vector model of angular momentum is also useful when visualizing the
coupling of angular momenta. Figure 8.12 illustrates the uncoupled representation
showing how two different orientations of the individual angular momenta J1 and
J2 can add vectorially to give different total angular momenta J . The fact that dif-
ferent orientations of J1 and J2 produce different total angular momentum vectors
illustrates that in the uncoupled representation, knowledge of total angular momen-
tum is not possible.

Figure 8.13 illustrates the coupled representation. It shows two different indi-
vidual angular momenta J1 and J2 that add to produce the same total angular
momentum J . Because, in this representation, the z-components of the individual
angular momenta, m j1 and m j2, are not known, the z-component of total angular
momentum m j is known.

Fig. 8.12 Illustration of the
uncoupled representation.
Two different possible
orientations of the individual
angular momenta J 1 and J 2

that lead to different total
angular momentum vectors J

Fig. 8.13 Illustration of the
coupled representation. Two
different individual angular
momenta J 1 and J2 that
produce the same total
angular momentum vectors J
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8.8 Retrospective

While this chapter dealt in detail with angular momentum operator manipulation,
perhaps the most important general concept for a beginning student of quantum
mechanics is that angular momentum does not necessarily mean angular momen-
tum as it was defined in classical mechanics. An angular momentum operator (an
observable), as defined in quantum physics, obeys a very stringent criterion, namely
that the commutator of its components obey Equation 8.2. Thus, except for orbital
angular momentum, most angular momentum operators do not have any classical
analogs. It is proper to refer to such an operator as an angular momentum.
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Problems

1. Find
[
Ĵx Ĵy, Ĵz

]
.

2. Show that
[
Ĵ±, Ĵz

] = ∓� Ĵ±.
3. Show that Ĵ+ Ĵ− = Ĵ 2 − Ĵ 2

z + � Ĵz .
4. Show that Ĵ × Ĵ = i� Ĵ . Classically, this is nonsense, but because of the

commutation rules for angular momentum, it is perfectly reasonable quantum
mechanically.

5. Find
〈
Ĵx
〉

and
〈
Ĵ 2

x

〉
for eigenstates of Ĵ 2 and Ĵz .

6. Find the uncertainties � Ĵx , � Ĵy , and � Ĵz for eigenstates of Ĵ 2 and Ĵz . and
verify that they are consistent with the basic commutation rule of angular mo-
mentum,

[
Ĵi , Ĵ j

] = i� Ĵkεi jk , and the uncertainty principle as given in Equation
6.109. You may use the results of Problem 5.

7. Verify the identities given in Equations 8.46.
8. Show that

[
Ĵ, T̂ 2

] = 0. Working it out for one component is sufficient.
9. Show that the unit vector in the r -direction in spherical coordinates may be

written in terms of the spherical harmonics as

âr =
√

4π

3

[−ı̂ + i ĵ√
2

Y11 (θ, φ) + ı̂ + i ĵ√
2

Y1−1 (θ, φ) + k̂Y10 (θ, φ)

]
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10. Show that � (θ ) = K ′ sinκ θ is a solution to

tan θ

� (θ )

d� (θ )

dθ
= κ

11. Show that using Equations 8.74 and 8.75 for the top and bottom of the lad-
der orbital angular momentum states and applying L̂+ to Y 1

2 − 1
2

(θ, φ) does not
produce the known top state Y 1

2
1
2

(θ, φ).
12. Use the operator r̂+ = x + iy to find the spherical harmonic Y1 1 (θ, φ). Do not

normalize.
13. Verify Unsöld’s theorem for � = 0 and � = 1.
14. A system is in a state such that the normalized angular part of the wave function

is given by

ψ�m (θ, φ) =
√

1

14

√
1

4π

[

1 + 2
√

3 cos θ + 3

√
5

4

(
3 cos2 θ − 1

)
]

(a) If a measurement is made of the total angular momentum, what are the pos-
sible values that could be measured and with what probability of each?

(b) If a measurement is made of the z-component of the angular momentum,
what are the possible values that could be measured and with what proba-
bility of each?

(c) What are the expectation values of L̂z and L̂2? Are the answers sensible?

15. For a spinning shell with radius equal to the classical radius of the electron
Re ≈ α2a0, equate the angular momentum Iω to 1

2 � to show that the speed of
a point on the rim would be about one hundred times the speed of light.

16. If the |β〉x beam in Fig. 8.8 is passed through a second SGz apparatus, what is
the result? What percentage of the original unpolarized beam will be the spin
up output of the second SGz apparatus?

apparatus which is 1
2 of the input of the first SGz apparatus. Therefore, the |β〉x

output beam is 1/8 of the intensity of the original unpolarized beam.
17. Find the matrices that are analogous to the electron spin matrices in Section

8.5.1 for the case of � = 1. That is, choose
[
L̂z, L̂2

] = 0 and find the matri-
ces that represent all components of angular momentum, the ladder operators
and L̂2.

Partial answer:

L̂ x = �√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

18. A system has total angular momentum � = 1.
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(a) If a measurement of L̂ x is made, what are the possible values that might be
measured?

(b) Find the eigenkets of L̂ x .
(c) If a system is in the eigenstate |1 − 1〉, what are the probabilities of measur-

ing each of the permitted values of L̂ x ?

19. Suppose the |β〉x beam that is the output of the SGx apparatus in Fig. 8.8 is
passed through an SGz apparatus. How many beams will emerge from the SGz
apparatus and with what relative intensities? Demonstrate mathematically.

20. Show that the total angular momentum operator Ĵ = Ĵ1+ Ĵ2 qualifies as a true
angular momentum because its components obey the defining commutation
rule,

[
Ĵi , Ĵ j

] = i� Ĵkεi jk .
21. Use the result given in Equation 8.175 to show that the eigenvalue of the triplet

and singlet coupled kets are −3κ/2 and κ/2 respectively.
22. Solve the eigenvalue problem to find the hyperfine energies using matrices. Use

the uncoupled representation! Begin by writing the matrix that represents ĤH F

using the basis set |s1s2〉, that is,

∣
∣
∣
∣
1

2
,

1

2

〉
,

∣
∣
∣
∣
1

2
,−1

2

〉
,

∣
∣
∣
∣−

1

2
,

1

2

〉
,

∣
∣
∣
∣−

1

2
,−1

2

〉

so the matrix is

ĤH F = 2κ

�2

⎛

⎜⎜
⎜
⎝

1
2

1
2
Ĥ 1

2
1
2

1
2

1
2
Ĥ 1

2 − 1
2

1
2

1
2
Ĥ− 1

2
1
2

1
2

1
2
Ĥ− 1

2 − 1
2

1
2 − 1

2
Ĥ 1

2
1
2

1
2 − 1

2
Ĥ 1

2 − 1
2

1
2 − 1

2
Ĥ− 1

2
1
2

1
2 − 1

2
Ĥ− 1

2 − 1
2

− 1
2

1
2
Ĥ 1

2
1
2 − 1

2
1
2
Ĥ 1

2 − 1
2 − 1

2
1
2
Ĥ− 1

2
1
2 − 1

2
1
2
Ĥ− 1

2 − 1
2

− 1
2 − 1

2
Ĥ 1

2
1
2 − 1

2 − 1
2
Ĥ 1

2 − 1
2 − 1

2 − 1
2
Ĥ− 1

2
1
2 − 1

2 − 1
2
Ĥ− 1

2 − 1
2

⎞

⎟⎟
⎟
⎠

23. Apply ĤF S to the top and bottom of the ladder triplet states to obtain the eigen-
values κ/2 for the hyperfine energy.

24. Assuming that the potential to which the two noninteracting fermions in Ex-
ample 8.6.2 are subjected is a one-dimensional harmonic oscillator, show that
for the first excited state, the expectation value of the interelectron distance is
greater for the triplet than the singlet. It is easier to work with the squares of
the difference (x2 − x1).



Chapter 9
Central Potentials

In general, the potential energy depends upon all three space coordinates, however
we will consider cases for which the potential depends only upon the distance from
some force center and not upon the direction. These are called central potentials.
Mathematically we may define a central potential in terms of spherical coordinates
U (r, θ, φ) = U (r ). It is obvious that spherical coordinates are ideal for describing
such potentials. We note that central potentials have a built-in symmetry. Because
the magnitude of the potential energy is independent of the direction, rotation of the
coordinate system cannot change the physics. Therefore, the energy cannot depend
upon any quantum number that establishes a direction in space.

The Hamiltonian is, as always, written as the sum of kinetic and potential ener-
gies. We ignore time-dependent Hamiltonians. Therefore, for a particle of mass m
subject to a central potential U (r ) the Hamiltonian is

Ĥ = p̂2

2m
+ U (r ) (9.1)

We will follow custom and use the symbol m to designate the mass and also the
quantum number associated with the z-component of angular momentum.

Now, just because U (r ) does not contain θ or φ does not mean that the kinetic
energy term p̂2/2m does not contain these coordinates. Indeed, because this is a
three-dimensional problem p̂ is a vector operator that, in Cartesian coordinates, is

p̂ = �

i

(
ı̂

�

�x
+ ĵ

�

�y
+ k̂

�

�z

)
(9.2)

so the first term in Equation 9.1 is, in Cartesian coordinates,

p̂2

2m
= − �

2

2m

(
�2

�x2
+ �2

�y2
+ �2

�z2

)

= − �
2

2m
∇2 (9.3)

The Hamiltonian for a central potential in coordinate space is therefore

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 297
DOI: 10.1007/978-0-387-77652-1 9, C© Springer Science+Business Media, LLC 2008
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Ĥ = − �
2

2m
∇2 + U (r ) (9.4)

We can write ∇2 in any coordinate system we please, but U (r ) is most conveniently
written in spherical coordinates, so we concentrate on that system.

Let us now examine the orbital angular momentum operator L̂2 in spherical
coordinates. One way to do this is to express ∇2 in terms of its Cartesian com-
ponents and then substitute Equations 8.64. A somewhat simpler method is to
take advantage of the angular momentum ladder operators using the identity (see
Problem 1)

L̂2 = L̂± L̂∓ + L̂2
z ∓ �L̂z (9.5)

Using Equations 8.65 for L̂± in spherical coordinates and letting L̂2 operate on some
arbitrary function f = f (θ, φ), it can be shown (see Problem 3) that

L̂2 f (θ, φ) = −�
2

[
1

sin θ

�

�θ

(
sin θ

�

�θ

)
+ 1

sin2 θ

�2

�φ2

]
f (θ, φ) (9.6)

Now, ∇2 f in spherical coordinates is given by

∇2 = 1

r2

�

�r

(
r2 �

�r

)
+ 1

r2

[
1

sin θ

�

�θ

(
sin θ

�

�θ

)
+ 1

sin2 θ

�2

�φ2

]

= 1

r2

�

�r

(
r2 �

�r

)
− L̂2

r2�2
(9.7)

from which we see that the Hamiltonian for a central potential may be expressed in
terms of the angular momentum as

Ĥ = −
(

�
2

2m

)
1

r2

�

�r

(
r2 �

�r

)
+ L̂2

2mr2
+ U (r ) (9.8)

9.1 Separation of the Schrödinger Equation

Using the Hamiltonian given in Equation 9.8 we may write the TISE for any central
potential as

Ĥ (r, θ, φ) ψ (r, θ, φ) =
[

− �
2

2mr2

�

�r

(
r2 �

�r

)
+ L̂2

2mr2
+ U (r )

]

ψ (r, θ, φ) (9.9)

Because the operator L̂2 does not contain the spherical coordinate r , it is clear that
L̂2 commutes with the Hamiltonian. Moreover, L̂z also commutes with Ĥ . There-
fore, the eigenfunctions ψ (r, θ, φ) must be simultaneous eigenfunctions of L̂2 and
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L̂z . From Section 8.4 we already know that simultaneous eigenfunctions of L̂2 and
L̂z are the spherical harmonics Y�m (θ, φ), so it is reasonable to try to solve the TISE
for an arbitrary central potential by separation of variables. Therefore, we write

ψ (r, θ, φ) = R (r ) Y�m (θ, φ) (9.10)

which, when inserted in the TISE using the Hamiltonian in the form of Equation
9.9, yields

{

− �
2

2m

1

r2

�

�r

(
r2 �

�r

)
+ L̂2

2mr2
+ U (r )

}

R (r ) Y�m (θ, φ)

= E R (r ) Y�m (θ, φ) (9.11)

Carrying out the differentiations leads to

Y�m (θ, φ)

[
− �

2

2mr2

�

�r

(
r2 �

�r

)
+ U (r )

]
R (r )

+ R (r )
L̂2Y�m (θ, φ)

2mr2
= E R (r ) Y�m (θ, φ) (9.12)

Dividing both sides of Equation 9.12 by R (r ) Y�m (θ, φ), multiplying by 2mr2, and
rearranging leads to

2mr2

R (r )

[
− �

2

2mr2

d

dr

(
r2 d

dr

)
+ U (r )

]
R (r ) − 2mr2 E

= − 1

Y�m (θ, φ)
L̂2Y�m (θ, φ) (9.13)

where the partial derivatives with respect to r have been replaced by total deriva-
tives. The left-hand side of Equation 9.13 is a function of r only, while the right-hand
side is a function of θ and φ. Each side must therefore be equal to a constant, the
same constant. The angular equation is, however, the eigenvalue equation for L̂2.
Moreover, we know the eigenvalues of the Y�m (θ, φ) are � (� + 1) �

2 so we know
the separation constant. The general equation for R (r ) is therefore

2mr2

R (r )

[
− �

2

2mr2

d

dr

(
r2 d

dr

)
+ U (r )

]
R (r ) − 2mr2 E = −� (� + 1) �

2 (9.14)

or, rearranging to cast it as an eigenvalue equation,

[
− �

2

2mr2

d

dr

(
r2 d

dr

)
+ � (� + 1) �

2

2mr2
+ U (r )

]
R (r ) = E R (r ) (9.15)
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We see that the technique of separation of variables works again, in this case
using spherical coordinates. When it does work, the equation on which it worked
is said to be separable in the coordinate system. The energy eigenvalues are de-
termined by the radial TISE, Equation 9.15, so it is clear that, in addition to an
energy quantum number that will evolve from solution of this equation (usually
designated n), the energy will also depend upon the angular momentum quan-
tum number � because it appears in the radial equation. There are, however, po-
tential functions for which the energy eigenvalues are independent of �. Because
of this independence on � the energy eigenvalues for such potentials will have a
degree of degeneracy beyond that associated with any spherically symmetric po-
tential. This feature of central potentials will be discussed in more detail in Sec-
tion 9.1.2.

As discussed above, it is clear from Equation 9.8 that L̂2 commutes with the
Hamiltonian for any central potential as do all the components of the orbital an-
gular momentum because they individually commute with L̂2 (see Equation 8.10).
Because the operators representing the components of angular momentum contain
only angular coordinates they also commute with the first term of Ĥ , the one con-
taining only the coordinate r . Inasmuch as L̂z is chosen as the component of angular
momentum that has simultaneous eigenfunctions we conclude that Ĥ , L̂2, and L̂z

constitute a set of mutually commuting operators. They therefore have simultaneous
eigenfunctions, the spherical harmonics. Note that the radial part of the eigenfunc-
tions are trivially eigenfunctions of L̂2 and L̂z because these operators do not contain
any radial coordinates. Thus, whenever the TISE is solved for a central potential us-
ing spherical coordinates the set of mutually commuting operators employed is Ĥ ,

L̂2, and L̂z . Moreover, the spherical harmonics, Y�m (θ, φ), are always the angular
part of the eigenfunction in spherical coordinates.

9.1.1 The Effective Potential

It is seen that there is a great simplification in central force problems because we
already know the angular parts of the eigenfunctions for any central potential, the
spherical harmonics. Thus, to solve a central potential problem in its entirety we
need only solve the radial TISE equation, Equation 9.15, to obtain the rest of the
eigenfunction R (r ).

It is often convenient to make the same substitution that is made in classical
mechanics to make this differential equation more tractable. In particular, if we let

u (r ) = r R (r ) (9.16)

Equation 9.15 becomes

− �
2

2m

d2u (r )

dr2
+

{
� (� + 1) �

2

2mr2
+ U (r )

}
u (r ) = Eu (r ) (9.17)
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With the one-dimensional potential energy replaced by the term in curly brackets,
Equation 9.17 has the same form as the one-dimensional TISE. For this reason it is
sometimes convenient to solve for the radial part of the eigenfunction R (r ) by first
solving Equation 9.17 for u (r ). The term in brackets is called the effective potential
Uef f (r ). That is,

Uef f (r, �) = � (� + 1) �
2

2mr2
+ U (r ) (9.18)

The effective potential contains the effects of orbital angular momentum, the cen-
trifugal potential � (� + 1) �

2/2mr2 as noted earlier in Section 5.6.6. It is traditional
to omit the � as a reminder that the effective potential depends on both r and � so it
is most often seen as Uef f (r ).

The independent variable r in Equation 9.17 is restricted to positive values, which
is equivalent to a one-dimensional potential with an infinitely hard wall at x ≤ 0.
There are, however, significant differences between Uef f (r ) and a one-dimensional
potential that are caused by the centrifugal term. Figure 9.1 illustrates the effects of
the centrifugal term. It shows graphs of the Morse potential for four different values
of the orbital angular momentum quantum number �. The behavior of the Morse
potential is typical of the substantial modification of U (r ) that transforms it into
Uef f (r ) for � �= 0.

The centrifugal term is positive definite so the effect of adding it to U (r ) is to
raise the potential energy, ultimately making it positive as is apparent in Fig. 9.1 for
� = 4 and � = 6. Clearly there will be different sets of eigenvalues and eigenfunc-
tions for each value of �. We will, later in this chapter, find the eigenvalues for the

Fig. 9.1 The effective potential Uef f (r) of the Morse potential for four different values of the
orbital angular momentum quantum number �
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three-dimensional Morse potential for an arbitrary angular momentum and contrast
them to those found in Section 5.4 which are relevant for � = 0.

While the Morse potential was used to illustrate the dramatic differences between
U (r ) and Uef f (r ), it should be recalled that the Morse potential represents the po-
tential energy for a diatomic molecule. As such, the potential is that experienced by
a particle having the reduced mass of the atom–atom system. Thus, while most of
the potential energy functions examined in this book are, implicitly, if not explicitly,
those to which an electron is subjected, the Morse potential is not. To emphasize
this distinction, symbols other than � are usually used to designate the angular mo-
mentum of the reduced mass particle.

9.1.2 Degeneracy

When the rigid rotor was examined in Section 8.4.3 it was found that there was an
energy degeneracy because the energy eigenvalues did not depend upon the quantum
number m. Actually, all central potentials exhibit a similar degeneracy. We have
seen that the TISE is separable in spherical coordinates for any central potential
and that the angular part of the eigenfunction is always the spherical harmonics
Y�m (θ, φ). It is, therefore, the radial equation that determines the energy. Solution
of the radial equation will provide another quantum number that may be regarded
as the energy quantum number or the radial quantum number in the same way that
� designates the total angular momentum and m the z-component of the angular
momentum.

Examination of the radial equation, either Equation 9.15 or 9.17, reveals that,
while the radial eigenfunction does not depend upon the quantum number m, it
does, in general, depend upon �. Therefore, the energy eigenvalue will, in general,
depend upon the energy quantum number, usually designated n, and �. Because it is
independent of m, all m-states will be degenerate except the ones for which � = 0.
The degree of degeneracy is simply the number of states that correspond to the same
eigenvalue. For any value of � there are (2� + 1) values of m (see Section 8.7) so
the solution of the TISE for any central potential exhibits (at least) a (2� + 1)-fold
degeneracy. Of course, there are other observables that can be degenerate, but we
will concentrate our attention on energy degeneracies.

What is the source of this (2� + 1)-fold degeneracy? Degeneracies always result
from symmetries in the problem. In this case it is the spherical symmetry of a central
potential. That is why the degeneracy exists for any central potential. Such potentials
are invariant under rotations. This means that you can rotate the axes about the
origin in any way you please and the potential at a given point in space remains
the same. It is clear then that the energy cannot depend upon the orientation of
the angular momentum vector. Therefore, the energy must also be invariant with
respect to rotations. The symmetry responsible for this degeneracy is referred to
as a spatial symmetry. Symmetries in quantum mechanical problems are always
related to conserved quantities in classical mechanics. The (2� + 1)-fold degeneracy



9.1 Separation of the Schrödinger Equation 303

is related to the fact that, classically, angular momentum is conserved for any central
potential. This conservation law is responsible for the fact that Keplerian orbits are
always in a plane. It also accounts for Kepler’s second law, the law of equal areas,
which does not depend upon the gravitational potential. It pertains to any central
potential.

There are other degeneracies that can exist for central potential problems. In
such cases there exists a symmetry beyond the spatial symmetry that accounts for
the universal (2� + 1)-fold degeneracy for central potentials. Frequently the extra
symmetry is difficult to envision (although some physicists claim that they can vi-
sualize them). The most notable example of such a supersymmetry is that of the
hydrogen atom to be discussed in detail in the next chapter. Recalling that the
Bohr energy, Equation 1.36, depends upon only a single quantum number n, we
see that it must be independent of � (as well as m) and therefore it has a higher
degree of degeneracy than the required (2� + 1). Recall that the Bohr energies
are the same as the eigenvalues obtained by solving the TISE (see Section 1.2.1).
Another problem that has a similarly higher symmetry than the spatial symmetry
is the three-dimensional isotropic harmonic oscillator to be treated later in this
chapter.

Degeneracies beyond the (2� + 1)-fold degeneracy are often referred to as
“accidental” degeneracies. Is is clear now that there is nothing accidental about
them. They result from higher symmetries. Nonetheless, we will conform with tra-
dition and refer to them as accidental degeneracies. Although group theory can be
invoked to better understand them, it is not required to accept their existence.

As noted above, the symmetries that are responsible for degeneracies always cor-
respond to some classically conserved quantity. The quantum mechanical analog of
a conserved quantity, one that remains constant in time, is an operator that commutes
with the Hamiltonian. This may be seen by examining the Heisenberg equation of
motion, Equation 6.145:

d Â (t)

dt
= i

�

[
Ĥ , Â (t)

]

= 0 (9.19)

We will see that the accidental degeneracy of the hydrogen atom is due to a rather
obscure classically conserved vector, the Lenz vector.

One final point about accidental degeneracies is worth noting. When they occur,
the TISE is separable in at least one other coordinate system. Therefore, for a central
potential that has supersymmetry, there is at least one other coordinate system, in
addition to spherical coordinates, in which the TISE can be separated. The sets of
eigenfunctions obtained using each of these coordinate systems are complete, so
any eigenfunction in one coordinate system may be written as a linear combination
of the eigenfunctions in the other system.
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9.1.3 Behavior of the Wave Function for Small and Large
Values of r

It is helpful to know the behavior of the wave function at the extreme values of
r . Our interest will focus on bound states although near the origin this restriction
is unnecessary. To obtain the general form on the wave function near r = 0, we
examine the radial TISE, Equation 9.17. If the r -dependence of U (r ) is not stronger
than 1/r2, then, near the origin, the centrifugal term dominates so that as r → 0 the
radial equation behaves as

− d2u (r )

dr2
+ � (� + 1)

r2
u (r ) = 0 (9.20)

We try a solution u (r ) = r s which leads to

s (s − 1) = � (� + 1) (9.21)

the solutions of which are s = −� and s = (� + 1). From these solutions we might
infer that near the origin u (r ) may be of the form r �+1 and r−�. In the vicinity of the
origin, however, r−� is unacceptable because it blows up, so we conclude as r → 0

u (r ) ∼ r �+1 and R (r ) ∼ r � (near r = 0) (9.22)

Turning our attention to the behavior for large r we see that, assuming U (r ) can
support bound states, Equation 9.17 becomes

d2u (r )

dr2
− κ2u (r ) = 0 (9.23)

where κ =
√

−2m E/�2. For bound states E < 0 so the solutions are e±κr where κ

is a real number. Of course, the positive exponential is prohibited because it blows
up at infinity so we have

u (r ) → e−κr =⇒ R (r ) → e−κr

r
(as r → ∞) (9.24)

For continuum states, that is, positive energy states E > 0, κ is imaginary so we let
κ → k and the solutions are

u (r ) → e±ikr =⇒ R (r ) → e±ikr

r
(as r → ∞) (9.25)

Notice that neither sign in the exponentials can be discarded on physical grounds
since neither diverges for large r .



9.2 The Free Particle in Three Dimensions 305

9.2 The Free Particle in Three Dimensions

In three dimensions the free particle exhibits features not available in one-dimension.
In particular, in three dimensions, the particle can have angular momentum. There-
fore, the effective potential reduces to the centrifugal term and the TISE for R (r )
for all values of r is

[
− �

2

2mr2

d

dr

(
r2 d

dr

)
+ � (� + 1) �

2

2mr2

]
R (r ) = E R (r ) (9.26)

or

[
d2

dr2
+ 2

r

d

dr
− � (� + 1)

r2
+ k2

]
R (r ) = 0 (9.27)

where

k =
√

2m E

�2
(9.28)

In solving the radial TISE it is often convenient to rescale the length which, in this
problem, we accomplish with the substitution ρ = kr . With this rescaling the TISE
becomes

{
d2

dρ2
+ 2

ρ

d

dρ
+

[
1 − � (� + 1)

ρ2

]}
R (ρ) = 0 (9.29)

While formidable looking, Equation 9.29 is a well-known differential equation, the
spherical Bessel equation. The solutions of the spherical Bessel equation are special
functions, spherical Bessel functions j� (ρ) and spherical Neumann functions n� (ρ).
There are also linear combinations of j� (ρ) and n� (ρ) called Hankel functions that
will be useful, but for now we concentrate on spherical Bessel and Neumann func-
tions. This group of functions is known collectively as spherical Bessel functions
even though one of them, j� (ρ), is itself called a spherical Bessel function. Table 9.1
contains the first few spherical Bessel and Neumann functions. The group of spher-
ical Bessel functions are related to (cylindrical) Bessel functions of half-integral
order, but this is of little concern here. In general, the solution to Equation 9.29 is a
linear combination of j� (ρ) and n� (ρ) so

Table 9.1 The first three spherical Bessel and Neumann functions

� j� (x) n� (x)

0
sin x

x
− cos x

x

1
sin x

x2
− cos x

x
− cos x

x2
− sin x

x

2

(
3

x3
− 1

x

)
sin x − 3

x2
cos x −

(
3

x3
− 1

x

)
cos x − 3

x2
sin x
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Fig. 9.2 Three spherical Bessel functions showing how the higher angular momentum states are
prevented from coming near the origin

R (r ) = A j� (kr ) + Bn� (kr ) (9.30)

Figures 9.2 and 9.3 are plots of three spherical Bessel and Neumann functions
for � = 0, 3 and 6. In both graphs it is seen that the higher the state of angular
momentum the farther away from the origin are these functions. The divergence of
the Neumann functions at the origin is also evident. It is also evident that j� (0) = 0
for � �= 0.

It is clear that if the region of interest includes the origin, the wave function
cannot contain n� (kr ) because it diverges. If, however, the origin is not included,
then both functions must be included, subject to the wave function having the correct
asymptotic behavior. For such a free particle this behavior must be characterized by
a wave function that is a linear combination of eikr/r and e−ikr /r as discussed
in Section 9.1.3. We must, therefore, examine the asymptotic behavior of j� (kr )
and n� (kr ). Table 9.2 is a listing of the asymptotic forms of the spherical Bessel
functions, as well as their behavior near the origin.

Fig. 9.3 Three spherical
Neumann functions showing
that they diverge at the origin
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Table 9.2 Limiting forms of the spherical Besel and Neumann functions

limit j� (x) n� (x)

x → ∞ 1

x
sin

(
x − �

π

2

)
− 1

x
cos

(
x − �

π

2

)

x → 0
x�

1 · 3 · 5 · · · (2� + 1)

1 · 3 · 5 · · · (2� − 1)

x�+1

The behavior of n� (x) near the origin shown in Table 9.2 emphasizes the irregu-
larity of this function near the origin, and clearly shows that if the region of interest
contains the origin the Neumann function cannot be included. Let us suppose that
there is a hard sphere at r = a so the particle cannot be found at r < a. The potential
is therefore

U (r ) = ∞ r < a

= 0 r > a (9.31)

The Neumann function cannot now be precluded from the solution. Therefore,
u (r ) is of the form given in Equation 9.30. Additionally, there is no reason to
exclude j� (ρ). On the other hand, we must make sure that the solution exhibits
the correct asymptotic behavior. It is clear from Table 9.2 that neither j� (ρ) nor
n� (ρ) behaves properly as r → ∞. It is, however, possible to construct a linear
combination of them that does give the correct behavior. In particular, we can write

j� (ρ) ± in� (ρ) → 1

ρ

[
sin

(
ρ − �

π

2

)
∓ i cos

(
ρ − �

π

2

)]

= ∓ i

ρ

[
cos

(
ρ − �

π

2

)
± i sin

(
ρ − �

π

2

)]

= ∓ i

ρ
e±iρ · e−�π/2 (9.32)

which does indeed have the correct asymptotic form. The positive exponential rep-
resents an outgoing spherical wave while the negative exponential represents an
incoming spherical wave.

As noted above, the linear combinations of j� (ρ) and n� (ρ) also have names,
spherical Hankel functions, h� (ρ). There are two different forms of h� (ρ) which are
designated h(1)

� (ρ) and h(2)
� (ρ), and referred to as spherical Hankel functions of the

first and second kind, respectively. The asymptotic forms of these spherical Hankel
functions are precisely the linear combinations of j� (ρ) and n� (ρ) in Equation 9.32
which we rewrite for convenience
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lim
ρ→∞h(1)

� (ρ) = − i

ρ
eiρ · e−�π/2

lim
ρ→∞h(2)

� (ρ) = i

ρ
e−iρ · e−�π/2 (9.33)

The kinetic energy of a free particle, E , is always greater than the potential energy
(zero) so that k, as given in Equation 9.28, is always positive and the wave function,
the Hankel function, oscillates.

9.3 The Infinite Spherical Square Well

The first central potential that we will examine is the three-dimensional analog of
the one-dimensional a-box. The potential energy function is

U (r ) = 0 r < a

= ∞ r > a (9.34)

Thus, we have a spherical cavity with impenetrable walls. The particle cannot get
out and the particle’s motion inside the cavity is rigorously restricted to the region
r < a. For this problem, the radial TISE inside the well is identical with Equation
9.26. Because the origin is included, the spherical Neumann functions are excluded
and the solution for r < a is

R(1)
� (r ) = C j� (kr ) r < a

R(2)
� (r ) = 0 r < a (9.35)

The bound state energies are defined by the condition that R (r ) must vanish both
at the origin and at the wall of the sphere, and are determined from the condition
j� (ka) = 0. Evidently we require the zeros of the spherical Bessel functions, a
listing of which for 0 ≤ � ≤ 4 is contained in Table 9.3. The quantum number n
designates the order of the zero. For example, the first zero of � = 3 occurs when the
argument is 6.99 (see Fig. 9.2). Because j� (kr ) undulates about the abscissa forever,

Table 9.3 Zeros of spherical Bessel functions j� (kr) for � = 0 − 4 not including j� (0) for which
all spherical Bessel functions vanish except j0 (kr)

n � = 0 � = 1 � = 2 � = 3 � = 4

1 3.14 4.49 5.76 6.99 8.18
2 6.28 7.73 9.10 10.42 11.71
3 9.42 10.94 12.32 13.70 15.04
4 12.57 14.01 15.52 16.93 18.30
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Fig. 9.4 The lowest four
energies En� for a particle
enclosed in an infinite
spherical well for � = 0 − 4.
The units of energy are
�

2/
(
2ma2

)

there are an infinite number of zeros. Therefore, there are an infinite number of
energy levels that can fit into this spherical well for each value of the orbital angular
momentum.

To determine the energies, which will be characterized by quantum numbers n
and �, we set

kn�a = ςn� (9.36)

where ςn� is the nth zero of the �th spherical Bessel function. After substituting for
k from Equation 9.28 we have

En� =
(

�
2

2ma2

)
[ςn�]2 (9.37)

Figure 9.4 shows the energy levels for each of the five values of � listed in Table 9.3
in units of �

2/
(
2ma2

)
. The lowest level in each column corresponds to n = 1, the

second level in each column to n = 2, and so on.

9.4 The Finite Spherical Square Well

The potential energy function in this case is

U (r ) = −U0 r < a

= 0 r > a (9.38)
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The transition from the infinite well to the finite well requires the same technique
as was applied in the one-dimensional case. It is, however, a bit more complicated
because of the presence of angular momentum. The TISE for r < a is

[
d2

dr2
+ 2

r

d

dr
− � (� + 1)

r2
− 2m

�2
U0

]
R (r ) = E R (r ) (9.39)

or

[
d2

dr2
+ 2

r

d

dr
− � (� + 1)

r2
− 2m

�2
(E + U0)

]
R (r ) = 0

[
d2

dr2
+ 2

r

d

dr
− � (� + 1)

r2
+ k2

]
R (r ) = 0 (9.40)

where

k =
√

2m (E + U0)

�2
(9.41)

Note that, for bound states, −U0 < E < 0, so k, as defined in Equation 9.41, is real.
Now, Equation 9.40 is identical to Equation 9.27, so inside the well we have the
same solution as that in Section 9.3. That is, R (r ) consists only of j� (kr ) because
n� (kr ) blows up at the origin. Therefore, in terms of the coordinate r , the wave
function for r < a is

R� (r ) = C1 j� (kr ) ; r < a (9.42)

where C1 is a constant.
Because the potential energy is zero for r > a, the TISE outside the well is the

same as the suitably modified TISE of a free particle. The suitable modification is
associated with the fact that the character of the wave function for r > a must be
exponentially decreasing because E < 0. Thus, using the same notation as that in
Section 5.3 we have

κ =
√

2m (−E)

�2
(9.43)

where κ is real because E < 0. The outcome of this is that we must let k → iκ so
that ρ → iκr for r > a.

For r > a we already know that the solution is a linear combination of h(1)
� (ρ)

and h(2)
� (ρ). Making the substitution k → iκ in the asymptotic forms of the Hankel

functions, Equations 9.33, we have
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lim
ρ→∞h(1)

� (iκr ) = − 1

κr
e−κr · e−�π/2

lim
ρ→∞h(2)

� (iκr ) = 1

κr
eκr · e−�π/2 (9.44)

This is a bound state problem, so we know immediately that the spherical Hankel
function of the second kind must be excluded from the solution and we have

R� (r ) = C2h(1)
� (iκr ) ; a < r (9.45)

It is comforting that the asymptotic form of h(1)
� (iκr ) conforms with the known

asymptotic form of the wave function, Equation 9.24 for bound states.
In contrast to the infinite well, we cannot require that R (ka) vanish. Instead,

we must demand continuity of R (kr ) and its derivative at this boundary which we
accomplish using the logarithmic derivative (see Section 5.3). From Equations 9.42
and 9.45 we have

[
1

j� (ka)

] [
d j� (kr )

dr

]

r=a

=
[

1

h(1)
� (iκa)

][
dh(1)

� (iκr )

dr

]

r=a

(9.46)

This equation will, in general, lead to a transcendental equation, the solutions of
which give the quantized energies in an analogous manner to the transcendental
equations that were encountered in the case of the one-dimensional finite well of
Section 5.3. The choice of mass m and the range of the force a determines the
energies and their spacing. As discussed in Section 3.1.1, if m = me and a ≈ a0,
the level spacing is the order of that of atomic energy levels, that is, ∼ eV. On the
other hand, if the mass is that of a nucleon, m ≈ 2000me, and the range that of
nuclear forces, a ≈ 10−5a0, then the energies will be the order of MeV.

Application: The deuteron

We may use the finite square well to approximate the potential energy that binds
a neutron and a proton to form a deuteron. The force that binds these two par-
ticles is the strong, or nuclear, force which acts over only a very short range,
∼ 10−15m = 1fm. The unit of length used in nuclear physics is the fm, the femtome-
ter often called the Fermi in recognition of the many contributions of Enrico Fermi
to nuclear physics for which he received the Nobel Prize in Physics in 1938 “for his
demonstrations of the existence of new radioactive elements produced by neutron
irradiation, and for his related discovery of nuclear reactions brought about by slow
neutrons”. Fortunately, there is enough known experimentally about the deuteron to
permit the square well potential to give a reasonable approximation to reality. For
example, we know that there is only one bound state of a deuteron and we know
that it is very weakly bound, only about 2.2MeV, small by nuclear standards. The
binding energy is easily calculated using the parameters in Table 9.4 in which the
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Table 9.4 Masses and magnetic moments of the indicated particles

Mass (MeV) μ j (μN )

Proton 938.78899 2.79
Neutron 939.571448 −1.91
Deuteron 1876.126013 0.86

mass of each of the three particles is given in MeV and the magnetic moments
μ j [ j = n(neutron), p(proton), d(deuteron)] are in units of the nuclear magneton
μN . By analogy with the Bohr magneton, Equation 1.44, μN is defined as

μN = e�

2m p
(9.47)

where m p is the mass of the proton.
The binding energy of the proton to the neutron in the deuteron, Ed , is simply

the difference of their individual rest masses. Therefore,

Ed = m pc2 + mnc2 − mdc2

= 2.2MeV (9.48)

where m p, mn, and md are the masses of the proton, neutron and deuteron respec-
tively.

We can infer the nature of the ground state by examining the magnetic moments
in Table 9.4. Before doing so let us note a couple of interesting points about these
values, although these particular points are not germane to the problem at hand.
First, the magnetic moment of the proton is not μN , it is nearly three times larger.
Second, the magnetic moment of the neutron, despite the fact that it is uncharged,
is not zero. It is negative and therefore opposite to the neutron spin angular mo-
mentum. The seemingly anomalous magnetic moments of the proton and neutron
strongly indicate that they are not point particles, and that they have structure. This
is in contrast to the electron for which the magnetic moment of the electron is very
nearly one Bohr magneton.

Returning to the problem at hand, we deduce the orbital angular momentum of
the neutron and proton in the deuteron ground state by comparing their magnetic
moments with that of the deuteron. Using vectors for rigor,

μd = μp + μn + μ� (9.49)

where μ� represents the magnetic moment arising from orbital motion. From
Table 9.4 we see that the algebraic sum of μp and μn essentially accounts for the
magnetic moment of the deuteron. We therefore conclude that μ� ≈ 0. This is very
good news because it means that the ground state is one for which � = 0, so the
radial TISE does not contain a centrifugal term. There is more. From the magnetic
moments we also know that the ground state is a triplet spin state because μd is the
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Fig. 9.5 Schematic diagram
of the three-dimensional
square well for the deuteron.
The single bound state is
shown to be very near to the
continuum of energy states
for which E > 0. It is
therefore very weakly bound

algebraic sum of μp and μn . Recall that the spin angular momentum and the mag-
netic moment of the neutron are in opposite directions, so the proton and neutron
spins are parallel, a triplet. As in the discussion of magnetic moments above, this
information is not needed in the calculation.

Because we already know the bound state energy, our goal is to work the problem
in reverse from our usual procedure. Figure 9.5 illustrates the approximation to the
potential with the lone bound state shown very close to U (r ) = 0.

We seek to determine the depth of the well U0. Actually, we can only determine
the product U0a2, the strength of the well, but the nuclear force that glues the neutron
to the proton is known to be of very short range ∼ 10−6nm = 1 fm. With � = 0,
Equation 9.17 becomes

d2u (r )

dr2
+ 2μ

�2
(U0 − E) u (r ) = 0 r < a

d2u (r )

dr2
− 2μ

�2
Eu (r ) = 0 r > a (9.50)

where μ is the reduced mass of the neutron and proton (not the magnetic moment),
roughly 1

2 m p. Bearing in mind that for a bound state E < 0, we make the usual
substitutions

k =
√

2μ (U0 − E)

�2

κ =
√

2μ (−E)

�2
(9.51)
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and obtain

d2u (r )

dr2
+ k2u (r ) = 0 r < a

d2u (r )

dr2
− κ2 Eu (r ) = 0 r > a (9.52)

which are identical with Equations 5.23 for the one-dimensional finite well. We
can, therefore, use the same technique that was employed to solve the resulting
transcendental equation in Section 5.3 with one important difference. We need not
concern ourselves with the even solutions because they do not vanish at the origin.
Thus, the three-dimensional problem is equivalent to a one-dimensional square well
of the form (see Problem 5).

U (r ) = ∞ r < 0

= −U0 0 < r < a

= 0 r > a (9.53)

As a consequence, we can use the same substitutions and graphs as those used
to solve the transcendental equation for the odd wave functions in one-dimension.
Letting

η = ka; ς = κa (9.54)

so that

η2 + ς2 = 2μ
(
U0a2

)

�2

= ρ2 (9.55)

and we arrive at the same equation for the energy as Equation 5.36:

ς = −η cot η (9.56)

Now, we could solve the transcendental equation, but we are, after all, making
an extreme approximation by assuming that the attractive nuclear force that binds
the proton and neutron is a spherical square well. Because we know that the binding
energy is very weak, we expect that the energy of the ground state is only slightly
negative. Under this assumption, and within the spirit of the square well approxi-
mation (another spherical horse), we may assume the extreme case as illustrated in
Fig. 9.6, where ρ = π/2. Because ς = 0 when −η cot η = π/2 there will be no
intersection for ρ2 < π2/4, and there will be no bound states.
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Fig. 9.6 Graphical solution
of Equations 9.55 and 9.56.
The value of ρ2 was chosen
so that it intersects the
abscissa at π/2, the lower
limit of ρ for the existence of
a bound state

We may therefore calculate an upper limit on U0a2, the strength of the well, by
setting

ρ2 = 2μ
(
U0a2

)

�2
= π2

4
(9.57)

Solving for U0a2 we obtain

U0a2 = π2

4

(�c)2

m pc2
(9.58)

where we have substituted μ = m p/2 and multiplied top and bottom by c2

to facilitate using the energy equivalent. Inserting m pc2
≈ 939MeV and �c =

197.33MeV·F we find

U0a2
≈ 100MeV · fm2 (9.59)

Note that for a bound state to actually exist there must be an intersection of the two
curves in Fig. 9.6 so that, in reality, the strength of the well is less than 100MeV·fm2.
Nonetheless, in the spirit of the square well approximation, this upper limit permits
reasonable estimates of U0 and a.

The nuclear force has a very short range, ∼ 1 − 2 fm. If we choose a ∼ 1.6 fm,
the required well depth for a bound state of −2.2MeV is ∼ 40MeV. An exact cal-
culation shows it to be closer to 50MeV, but, because of the approximations made,
the discrepancy is not unreasonable. Figure 9.7 is a graph of |u (r )|2 = |r R (r )|2
for the single bound state of the deuteron using the square well approximation and
a = 1.6 fm. Note that plotting |u (r )|2 does indeed give the proper probability
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Fig. 9.7 The radial
probability density of the
bound state of the deuteron in
the approximation that the
potential is a finite square
well

density because the factor r2 in the the volume element in spherical coordinates
is automatically included.

The wave function used in graphing the probability in Fig. 9.7 was calculated
using a = 1.4fm. U0 was adjusted to give the correct binding energy, 2.22MeV, and
found to be 48MeV, in good agreement with the above calculation. Because the
bound state is so close to the top of the well, it is not surprising that the proton and
neutron have very high probability of being found far beyond the limits of the well.

9.5 The Isotropic Harmonic Oscillator

In Section 3.1.2 we studied the one-dimensional harmonic oscillator in detail. Here
we will examine the three-dimensional analog of that problem. The major differ-
ence is that in three dimensions the orbital angular momentum must be included.
To be very general we might write the potential energy function in Cartesian
coordinates as

U (x, y.z) = 1

2
kx x2 + 1

2
ky y2 + 1

2
kzz2 (9.60)

where the spring constants in x , y, and z are different, but this would not be a central
force potential because we cannot write the potential as U (r ). If, however, all the
spring constants are the same, that is,

kx = ky = kz = k (9.61)
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the potential may indeed be written

U (r ) = 1

2
kr2

= 1

2
μω2r2 (9.62)

where in this discussion we use μ for the mass to avoid confusion with the spher-
ical coordinate quantum number m. In this case the harmonic oscillator potential
is said to be isotropic because it is the same in all directions in space. We imagine
a particle of mass μ attached to the end of a spring that is fixed at the origin. The
particle is free to vibrate and rotate in the same manner in all directions. Because the
potential is central we know immediately that, in spherical coordinates, the angular
eigenfunctions are the spherical harmonics. We must solve the radial equation to
obtain R (r ) and the energy eigenvalues. Before doing so, however, we notice that
the TISE can be (easily) solved in Cartesian coordinates. Recalling our discussion
of degeneracy, Section 9.1.2, we therefore expect to find an accidental degeneracy
because we know that the TISE for central potential U (r ) = 1

2 kr2 can be separated
in spherical coordinates.

9.5.1 Cartesian Coordinates

The Hamiltonian in Cartesian coordinates is

Ĥ (x, y, z) = p2
x

2μ
+ p2

y

2μ
+ p2

z

2μ
+ 1

2
μω2x2 + 1

2
μω2 y2 + 1

2
μω2z2

=
(

p2
x

2μ
+ 1

2
μω2x2

)
+

(
p2

y

2μ
+ 1

2
μω2 y2

)

+
(

p2
z

2μ
+ 1

2
μω2z2

)

= Ĥx (x) + Ĥy (y) + Ĥz (z) (9.63)

Because the Hamiltonian can be written as the sum of three Hamiltonians, each
of which contains only a single coordinate, we know immediately that the eigen-
functions are the products of the individual eigenfunctions and the eigenvalues are
the sums (Problem 15, Chapter 6). Notice that the TISE can be separated in Carte-
sian coordinates even if the potential is not isotropic. We are interested only in the
isotropic case so, using Equation 3.49, the eigenfunctions are

ψnx nynz (x, y, z) = 1
√

2nnx !ny!nz!
e−α2(x2+y2+z2)/2 Hnx (x) Hny (y) Hnz (z)

= 1
√

2nnx !ny!nz!
e−α2r2/2 Hnx (x) Hny (y) Hnz (z) (9.64)
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where the Hni (xi ) are Hermite polynomials and, as usual,

α =
√

μω

�
(9.65)

In Cartesian coordinates, then, the three mutually commuting operators that are
employed are the individual Hamiltonians Ĥx (x), Ĥy (y), and Ĥz (z) and their si-
multaneous eigenfunctions are the ψnx nynz (x, y, z). The energy eigenvalues are

Enx nynz =
(

nx + 1

2

)
�ω +

(
ny + 1

2

)
�ω +

(
nz + 1

2

)
�ω

= (
nx + ny + nz + 3/2

)
�ω

= (n + 3/2) �ω (9.66)

where

n = nx + ny + nz (9.67)

It is clear from Equation 9.66 that there is a degeneracy for all energy levels except
for the ground state for which n = 0. Note that the zero point energy for the isotropic
oscillator is (3/2) �ω, (1/2) �ω for each coordinate.

The degeneracy gn for a given energy level is the number of combinations of the(
nx , ny, nz

)
that can form the energy quantum number n. If we fix nx , there will be

(n − nx + 1) possible combinations of
(
ny, nz

)
that, together with nx , ““will add up

to n. Therefore, if we sum (n − nx + 1) from nx = 0 to nx = n we will obtain gn.
For a given n we have

gn =
n∑

nx =0

(n − nx + 1)

= n
n∑

nx =0

1 −
n∑

nx =0

nx +
n∑

nx =0

1

= n (n + 1) − n (n + 1)

2
+ (n + 1)

= (n + 1)
[
n − n

2
+ 1

]

= (n + 1) (n + 2)

2
(9.68)

where we used Gauss’ trick, Equation 8.157, to evaluate the summation of nx .
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9.5.2 Spherical Coordinates

The TISE

The mutually commuting operators that are used to effect this solution are the
Hamiltonian Ĥ , L̂2, and L̂z . The eigenfunctions of the last two operators are the
spherical harmonics which contain the information on the angular momentum states.
Notice that solving the TISE in Cartesian coordinates did not provide any angular
momentum information. This is because L̂2 and L̂z are not included in the mutually
commuting operators that are used in the Cartesian coordinate separation.

Of course, the energies and their degeneracies are independent of the coordinate
system, but the radial eigenfunctions will be different from the Cartesian coordinate
eigenfunctions, Equation 9.66. Using the radial TISE for u (r ), Equation 9.17, we
have

d2u (r )

dr2
− 2μ

�2

{
� (� + 1) �

2

2μr2
+ 1

2
μω2r2

}
u (r ) = −2μ

�2
Eu (r )

[
d2

dr2
− � (� + 1)

r2
− α4r2 + ε

]
u (r ) = 0 (9.69)

where, as before, α = √
μω/� and we have scaled the energy with the substitution

ε = 2μE

�2
(9.70)

From the solution to the isotropic oscillator in Cartesian coordinates, Equation 9.64,
we know that, asymptotically, the wave function approaches e−α2r2/2. Moreover, we
also know that near the origin u (r ) ∼ r �+1 (see Section 9.1.3). Therefore, using an
approach similar to that applied to the differential equation for the one-dimensional
oscillator, we write

u (r ) = r �+1 e−α2r2/2 f (r ) (9.71)

It is f (r ) that we will eventually replace by a power series, but, in contrast to the
one-dimensional case, there is an additional factor, r �+1, in our trial solution because
of the known behavior of u (r ) near the origin. Therefore, we must recognize that
there will be some differences between the one-dimensional solution in Cartesian
coordinates and the solution of the radial TISE in spherical coordinates. For this
reason we will work out the three-dimensional solution in detail. It is also good
practice for the important problem of the hydrogen atom that we will attack in the
next chapter.

Equation 9.71 must be substituted in Equation 9.69 to obtain a differential equa-
tion for f (r ). The algebra is tedious, but may be simplified by first letting

F (r ) = r �+1 f (r ) (9.72)
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so that

u (r ) = e−α2r2/2 F (r ) (9.73)

with the stipulation that

lim
r→∞r �+1 f (r ) < eα2r2/2 (9.74)

We already know that this restriction on F (r ) will not be met if the series repre-
senting it is permitted to be an infinite series. We know this because in Section 9.5.1
we used the solution to the one-dimensional harmonic oscillator which contains the
condition that the series must terminate. This termination led to energy quantization
and, because the energy cannot be different, we must obtain the spherical coordinate
solution using the same physics.

Substituting Equation 9.73 into Equation 9.69 we obtain

d2 F

dr2
− 2α2r

d F

dr
+

[
ε − α2 − � (� + 1)

r2

]
F = 0 (9.75)

and substituting Equation 9.72 into Equation 9.75 we arrive at

d2 f

dr2
+ 2

[
(� + 1)

r
− α2r

]
d f

dr
− [

α2 (2� + 3) − ε
]

f = 0 (9.76)

We attempt a series solution for f (r ) writing

f (r ) =
∞∑

p=0

apr p (9.77)

We must, however, stipulate that a0 �= 0 because, if it were, it would cause the
leading term in f (r ) to be r1, thus violating the known r dependence near the origin,
Equation 9.22. Substituting Equation 9.77 into Equation 9.76 we have

∞∑

p=2

p (p − 1) apr p−2 + 2

[
(� + 1)

r
− α2r

] ∞∑

p=1

papr p−1

− [
α2 (2� + 3) − ε

] ∞∑

p=0

apr p = 0 (9.78)
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or

∞∑

p=2

p (p − 1) apr p−2 + 2 (� + 1)
∞∑

p=1

papr p−2

− 2α2
∞∑

p=1

ap pr p − [
α2 (2� + 3) − ε

] ∞∑

p=0

apr p = 0 (9.79)

Our goal is to convert Equation 9.79 to the form

∞∑

p=0

h
(

p, ap, �
)

r p = 0 (9.80)

so that we may use the linear independence of the powers of r to set the function
h
(

p, ap, �
) = 0 which, at least in the one-dimensional case, led to a recursion

relation for the expansion coefficients, the ap. Thus, we must change the indexes so
all summations begin at p = 0 and all four terms contain r p.

Let us examine each of the four summations in Equation 9.79. The first is easily
converted to the desired form by making the substitution p → p + 2 and the last
requires no action. Clearly the second summation in Equation 9.79 requires p →
p + 2 to make the power of r correct, but then the summation begins with p = −1.
Writing out the second summation after making the substitution p → p + 2 and
isolating the first term in the summation, the p = −1 term, we have

∞∑

p=−1

(p + 2) ap+2r p = (1) a1r−1 +
∞∑

p=0

(p + 2) ap+2r p (9.81)

The presence of any powers of r less than unity is prohibited by the known behavior
of u (r ) near the origin, Equation 9.22. This behavior is already built into our trial
u (r ), Equation 9.71, by the inclusion of the factor r �+1. Therefore, we must demand
that a1 ≡ 0 and the second summation in Equation 9.79 therefore becomes

∞∑

p=1

papr p−2 →
∞∑

p=0

(p + 2) ap+2r p (9.82)

The third summation is easily converted to begin at p = 0 because pr p vanishes
for p = 0. Therefore, beginning this summation at p = 0 merely adds a zero to the
summation.

Equation 9.79 can now be written with the summation covering the range
0 → ∞. We have
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∞∑

p=0

{
[(p + 2) (p + 1) + 2 (� + 1) (p + 2)] ap+2

− [
2α2 p + ε − α2 (2� + 3)

]
ap

}
r p = 0 (9.83)

so, setting the coefficient of r p equal to zero, we obtain the desired recursion
relation,

ap+2 = α2 (2 p + 2� + 3) − ε

(p + 2) (p + 2� + 3)
ap (9.84)

Before analyzing the form of this relation let us note that, together with our deduc-
tion that a1 = 0, it demands that all odd expansion coefficients vanish. Therefore,
the power series f (r ) has even parity and the parity of the radial wave function is
the parity of the quantity (� + 1).

Energy eigenvalues

To obtain the energy eigenvalues we proceed as in the one-dimensional harmonic
oscillator. We have the series solution, but we know that if the series is permitted to
be an infinite series, the wave function will not be normalizable. Although we have
already treated this problem in one-dimension, we examine the recursion relation
for the three-dimensional problem, Equation 9.84. Taking the ratio of successive
terms we have

lim
p→∞

ap+2

ap
= 2 pα2

p2

= α2

(p/2)
(9.85)

From our experience with the one-dimensional harmonic oscillator in Section 3.1.2,
we conjecture that the p in the denominator indicates that the ap will contain
p! in the denominator which suggests an exponential function. Because there are
no odd terms in f (r ), it is likely that the series will involve e(Kr)2

where K is
a real constant because the ratio of successive terms is positive. We therefore
compare our asymptotic form of the expansion coefficient with those of such a
series.

e(Kr)2 = 1 + (Kr )2

1!
+ (Kr )4

2!
+ ...

=
∞∑

k=0

(Kr )2k

k!
(9.86)
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The ratio of successive terms in the series representation of eK 2r2
is therefore

lim
k→∞

K 2(k+1)/ (k + 1)!

K 2k/k!
= lim

k→∞
K 2

k + 1

= K 2

k
(9.87)

Comparing Equation 9.87 with Equation 9.85, we identify K with α and k with
p/2. Because the k can be any integer or zero and the index p can only be an
even integer, the correlation is perfect. We conclude that the series part of our so-
lution approaches eα2r2

asymptotically which overpowers the e−α2r2/2 in Equation
9.71, thus forcing u (r ) to diverge. To prevent this catastrophe we terminate the
numerator of the recursion relation, Equation 9.84, after some value of p = p f and
obtain

α2
(
2 p f + 2� + 3

) − ε = 0 (9.88)

After substituting for α and ε using Equations 9.65 and 9.70 we arrive at an expres-
sion for the quantized energies.

E p f ,� = �ω
(

p f + � + 3/2
)

(9.89)

Now p f must be an even integer or zero and we already know that � can be any
integer or zero. Therefore, the sum

(
p f + �

)
can take on any integral value or zero

so we designate it by n. That is,

n = p f + � (9.90)

Finally, our expression for the energy is

En = �ω (n + 3/2) (9.91)

which is identical to the energy obtained using Cartesian coordinates, Equation 9.66.
Note that, while it appears that the quantum number � determines the energy, this is
not so because p f changes to make n a constant for a given set of the allowed values
of �.

Degeneracy

It is again clear that the system has a greater degree of degeneracy than that of a
central potential because the energy eigenvalues do not depend upon the quantum
number �. Therefore, for a given value of n there will be 1

2 (n + 1) (n + 2) states
having the same energy. Let us compute the degeneracy using spherical coordinate
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quantum numbers and compare the result with that obtained using Cartesian coor-
dinates (it had better be the same).

First, for a given value of n, the maximum allowable value of � is n (see Equation
9.90). Also, p f must be an even integer, so odd n implies odd � and even n implies
even �. Therefore, for a given value of n, about half of the possible values of � are
excluded. Because each state that is designated by � is (2� + 1)-fold degenerate we
can sum these degeneracies over the allowed values of �. We consider odd and even
values of n separately.

For even n there are (n/2) + 1 possible values of p f because p f ≤ n and it is
even. (The +1 accounts for p = 0.) According to Equation 9.90 for each value
of p f there are n − p f possible values of �. We may therefore sum the available
m-states over all possible values of p f and, to simplify the notation, we now let
p f → p. Using

(2� + 1) = 2 (n − p) + 1 (9.92)

and Gauss’ trick, Equation 8.157, we have

geven
n =

n/2∑

p/2=0

[2 (n − p) + 1]

= (2n + 1)
n/2∑

p/2=0

1 − 2
n/2∑

p/2=0

p

= (2n + 1)
(n

2
+ 1

)
− 2

(n

2

) (n

2
+ 1

)

= 1

2
(n + 1) (n + 2) (9.93)

which is indeed the same as Equation 9.68. If n is odd, there will be (n + 1) /2
possible values of p ranging from p = 0 to (n − 1) /2 so, using the same approach,

godd
n =

(n−1)/2∑

p/2=0

[2 (n − p) + 1]

= (2n + 1)
(n−1)/2∑

p/2=0

1 − 2
(n−1)/2∑

p/2=0

p

= (2n + 1)

[
(n − 1)

2
+ 1

]
− 2

(
n − 1

2

)(
n − 1

2
+ 1

)

= 1

2
(n + 1) (n + 2) (9.94)

we again get the correct degeneracy.
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Relationship between n and �

Because p f is even, we know, from Equation 9.90, that n and � must have the same
parity. From this same equation we also know that the maximum value of � (for a
given n) is n. To understand better the nature of the relationship between n and �

we examine Fig. 9.8, which shows the effective potential for the isotropic harmonic
oscillator. As was seen for the Morse potential, Fig. 9.1, increasing the angular mo-
mentum increases both the minimum value of the effective potential Uef f (r ) and r0,
the position of this minimum.

Because the minimum in Uef f (r, � = 0) is at r = 0, the graphs of Uef f (r ) versus
r are qualitatively different from those shown in Fig. 9.1. The quantities r0 and
Uef f (r0, �) are easily found to be

r0 =
[
� (� + 1) �

2

μ2ω2

]1/4

(9.95)

and

Uef f (r0) =
√

� (� + 1)�ω (9.96)

(see Problem 8). Table 9.5 is a listing of the values of Uef f (r0) for each value of �

up to � = 6 in Equation 9.96 as well as the energy eigenvalues En in units of �ω.
We see that this table is consistent with our deduction that � ≤ n because the mini-
mum in the effective potential must always be lower than that of an allowed energy
level.

Fig. 9.8 The effective potential Uef f (r) of the isotropic harmonic oscillator potential for four
different values of the orbital angular momentum quantum number �.
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Table 9.5 Energies for n = 0 − 6 for the isotropic harmonic oscillator and the positions of the
minima in Uef f (r) for � = 0 − 6

n En (�ω) � Uef f (r0) (�ω)

0 1.5 0 0
1 2.5 1 1.41
2 3.5 2 2.45
3 4.5 3 3.46
4 5.5 4 4.47
5 6.5 5 5.48
6 7.5 6 6.48

The relationship between En and Uef f (r0) is illustrated graphically in Fig. 9.9
for even �. The ordinate is energy in units of �ω and the abscissa is r in units of
α−1 = √

�/ (μω). When the value of Uef f (r0) for a given value of � exceeds the
energy of a level En, then that value of � is inconsistent with En . Using the example
of � = 6 as above, we see that all levels below n = 4 are excluded. Therefore, n = 4
is incompatible with � = 6 and we see that the maximum value of � for n = 4 is
� = 4. Note that � = 5 is excluded because n and � must have the same parity. Of
course, we would reach the same conclusion had we used odd values of � for our
example.

It is interesting that the zero point energy for � = 0 is (3/2) �ω while that for
higher values of the angular momentum is lower. In fact, the zero point energy is
always slightly greater than �ω as may be seen from Table 9.5. The reason for the

Fig. 9.9 The effective potential Uef f (r) of the isotropic harmonic oscillator potential for four
different even values of the orbital angular momentum quantum number �. Also shown are the
energy eigenvalues for the first five levels of even n
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difference in the zero point energies is that for � = 0, all of the energy is radial in
the three degrees of freedom, while, for nonzero �, there must be rotational energy
as well. The amount of rotational energy is just Uef f (r0) as given by Equation 9.96
so the zero point energy is the difference between the lowest energy state for a given
value of �, that is, n = � (see Fig. 9.9) and Uef f (r0). This difference is

En − Uef f (r0)
∣∣
�=n

=
(

n + 3

2

)
�ω −

√
n (n + 1)�ω

=
(

n + 3

2

)
�ω − (n + 1)

√
n

(n + 1)
�ω

=
(

n + 3

2

)
�ω − (n + 1)

√
1

1 + 1/n
�ω

≈

(
n + 3

2

)
�ω − (n + 1)

(
1 − 1

2n

)
�ω

≈

(
1 + 1

2n

)
�ω (9.97)

It is seen that this energy difference is always greater than �ω and it approaches this
value as n → ∞.

Energy eigenfunctions: associated Laguerre polynomials

To obtain the remaining portion of the radial wave function it is necessary to solve
the differential equation for the series f (r ), Equation 9.76. Fortunately this equa-
tion can be put in the form of a differential equation having known solutions, the
associated Laguerre polynomials. To convert Equation 9.76 to the standard form
of the equation for which these special functions are the solutions, we make the
substitution

z = α2r2 (9.98)

which leads to

{
z

d2

dz2
+

[(
� + 1

2

)
+ (1 − z)

]
d

dz
+

[
(n − �)

2

]}
f (z) = 0 (9.99)
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This equation is of the form

{
z

d2

dz2
+ [q + (1 − z)]

d

dz
+ p

}
Lq

p (z) = 0 (9.100)

where Lq
ν (z) are associated Laguerre polynomials [2]. These functions are defined

in terms of the ordinary Laguerre polynomials Lν (z). Comparing Equation 9.100
with Equation 9.99 we see that the functions f (z) are the associated Laguerre poly-

nomials L
�+ 1

2
(n−�)/2 (z) with

p = (n − �) /2 and q =
(

� + 1

2

)
(9.101)

The lower index is always an integer because n and � must have the same parity,
but the upper index is always half-integral. There is, however, no prohibition on
half-integral upper indexes in the definition of the associated Laguerre polynomials.

It is important to bear in mind when working with Laguerre polynomials and
associated Laguerre polynomials that there is not unanimity in the definitions of
these special functions. One difference originates from two different definitions of
the ordinary Laguerre polynomial from which the associated Laguerre polynomials
are derived. In this book we adopt the conventions of Reference [1]. We begin by
specifying that the ordinary Laguerre polynomials Lν (z) are polynomials of degree
ν and are defined by the Rodrigues formula

Lν (z) = ez

ν!

dν

dzν

(
zνe−z

)
(9.102)

The other common definition of the ordinary Laguerre polynomial is identical, but
ν! is omitted.

The associated Laguerre polynomial is often defined [1] as

Lq
ν (z) = (−)q dq

dzq
Lν+q (z) (9.103)

This definition, however, restricts the upper index to be an integer which is not
the case here. We therefore use the Rodriques formula for the associated Laguerre
polynomial

Lq
ν (z) = ezz−q

ν!

dν

dzν

(
zν+q e−z

)
(9.104)

This definition includes the possibility of nonintegal upper indexes, but it reduces to
Equation 9.103 when q is an integer [2].
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The different definitions of the ordinary Laguerre polynomial are relatively easy
to handle because they differ by only a constant multiplicative factor. There is,
however, further confusion because there are, at least, two different definitions of
the associated Laguerre polynomial. Both definitions occur in the literature so we
will obtain the relationship between them. Assuming the same definition for the
ordinary polynomial Lν (z) as that in Equation 9.102, the alternative definition of
the associated Laguerre polynomial to that of Equation 9.103 is

Lq
μ (z) = dq

dzq
Lμ (z) (9.105)

where we have designated by Lq
μ (z) the associated Laguerre polynomial as defined

in Equation 9.105 to distinguish it from Lq
ν (z) as defined in Equation 9.103. Letting

μ = ν + q to eliminate μ from Equation 9.105 and multiplying both sides of this
equation by (−)q makes the right-hand sides of Equations 9.103 and 9.105 identical.
Therefore, the relation between the two definitions is

Lq
ν (z) = (−)q Lq

ν+q (z) (9.106)

We will continue to use Lq
ν (z) as defined in Equation 9.104 and follow the conven-

tion of Reference [1].
Table 9.6 lists a few of the ordinary Laguerre polynomials. Because much of

the confusion in the different definitions of these polynomials is the factorial in
Equation 9.102 , this factor is shown explicitly in Table 9.6.

Table 9.7 contains a few of the associated Laguerre polynomials. Only functions
having half-integral upper indexes, those pertinent to the isotropic harmonic oscilla-
tor, are included. These functions are adjacent the state for which they are part of the
eigenfunction, as designated by the quantum numbers n and �. In the next chapter
we will encounter associated Laguerre polynomials again, but this time both indexes
will be integers.

The complete radial energy eigenfunctions for the isotropic oscillator in spherical
coordinates are

Rn� (r ) = Nr �e−α2r2/2 L
�+ 1

2
(n−�)/2

(
α2r2) (9.107)

Table 9.6 The first seven Laguerre polynomials Lν (z)

ν!Lq
ν (z)

0!L0 (z) = 1
1!L1 (z) = −z + 1
2!L2 (z) = z2 − 4z + 2
3!L3 (z) = −z3 + 9z2 − 18z + 6
4!L4 (z) = z4 − 16z3 + 72z2 − 96z + 24
5!L5 (z) = −z5 + 25z4 − 200z3 + 600z2 − 600z + 120
6!L6 (z) = z6 − 36z5 + 450z4 − 2400z3 + 5400z2 − 4320z + 720
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Table 9.7 The associated Laguerre polynomials for the indicated quantum numbers of the isotropic
harmonic oscillator

n � L
�+ 1

2
(n−�)/2 (z)

0 0 L1/2
0 (z) = 1

1 1 L3/2
0 (z) = 1

2 0 L1/2
1 (z) = −z + 3

2
2 L5/2

0 (z) = 1

3 1 L3/2
1 (z) = −z + 5

2
3 L7/2

0 (z) = 1

4 0 L1/2
2 (z) = 1

2
z2 − 5

2
z + 15

8

2 L5/2
1 (z) = −z + 7

2
4 L9/2

0 (z) = 1

where the indexes on the associated Laguerre polynomial are in accord with Equa-
tions 9.101. To find N we use the orthogonality integral of the associated Laguerre
polynomials. These functions are orthogonal over the interval (0,∞) if a weighting
factor is inserted into the integral. The orthogonality integral is

∫ ∞

0

[
e−z zq

]
Lq

ν′ (z) Lq
ν (z) dz =

[
� (ν + q + 1)

]

� (ν + 1)
δνν′ (9.108)

where the weighting function is in square brackets; � (ν + q + 1) and � (ν + 1) are
�-functions (see Appendix G). Taking the absolute square of ψ (r, θ, φ) in Equation
9.107 and using the integral in Equation 9.108 leads to the value of the normalization
constant N . Using q = (

� + 1
2

)
and ν = (n − �) /2 we obtain (see Problem 10)

|N |2 = 2α2�+3 � [(n − �) /2 + 1]

� [(n + �) /2 + 3/2]
(9.109)

To clarify the nature of the radial eigenfunctions we show graphs of Rn� (r ) and
the radial probability density r2 |Rn� (r )|2 = |u (r )|2 in Fig. 9.10 for n = 2 and both
permitted values of �, 0 and 2. In accord with the behavior of the eigenfunctions
discussed in Section 9.1.3, R20 (r ) is finite at the origin, but R22 (r ) vanishes at the
origin. In contrast, both radial probability densities vanish at the origin because of
the factor r2. Thus, the probability of actually finding the particle in an arbitrarily
small volume �V about the origin is

probability = |Rn� (0)|2 �V (9.110)
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Fig. 9.10 (a) Graphs of the radial eigenfunctions R20 (r) and R22 (r). (b) Graphs of the radial prob-
ability distributions |r R20 (r)|2 and |r R22 (r)|2. The abscissas on both graphs are in units of 1/α

which vanishes for any nonzero value of �. As noted previously, in all central force
problems, the � = 0 state penetrates the force center. An easy way to rationalize this
is that, classically, the orbital angular momentum is given by L = r × p so zero
angular momentum with nonzero linear momentum implies that r = 0.

The radial eigenfunctions shown in Fig. 9.10 exemplify the character of the radial
isotropic harmonic oscillator wave functions. The structure of the eigenfunctions,
and hence the probability distributions, becomes more complex as the difference
between n and � increases. This is because the number of nodes of the associated
Laguerre polynomial is equal to the order of the polynomial, the lower index. There-
fore, when � = 0 the number of nodes in the radial wave function is the maximum
value. When � �= 0 there is an additional node at the origin due to the r � factor in
the radial wave function (see Equation 9.107), but, for the sake of uniformity, we
consider the number of nodes to be those in the range 0 < r < ∞. That is, we
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include neither the node at the origin nor the node at infinity. Of course, the radial
distribution function |r Rn� (0)|2 always vanishes at the origin.

For reference, Table 9.8 is a listing of the lowest energy eigenfunctions of the
isotropic oscillator. Figure 9.11 shows probability densities for eigenstates of the
isotropic harmonic oscillator in the range n = 0 − 4. Each depiction of the des-
ignated state is a slice through the y − z plane. The states are designated (n, �, m)
with the angular momentum quantum number � denoted by the universally used
spectroscopic designations.

For historical reasons, in this scheme the � quantum number is represented by
the lowercase letters with � = 0, 1, 2, 3, . . . corresponding to s, p, d , f , g,. . .,
respectively. Following f the sequence is alphabetical as shown in Table 9.9. While
the correlation between � and the letter designations is not obvious, nor is it even
logical, it has been in use since the early days of atomic spectroscopy when the
nature of the states was unknown. The last column lists the original meanings of the
letter designations. These designations described the primary characteristic of each
of the lines that were observed in atomic spectra (see Section 1.1.3). Despite the fact
that these designations were invented for atomic spectroscopy, they transcend that
field and apply to any orbital angular momentum.

Ladder operators

Because the one-dimensional harmonic oscillator eigenfunctions can be readily ob-
tained by multiple application of the raising operator â† to the ground state eigen-
function, it is natural to consider that possibility for the three-dimensional case.
In Cartesian coordinates such a procedure is an extension of the one-dimensional
procedure. In three dimensions we merely define raising operators corresponding
to each of the coordinates. We may define a vector operator â† in terms of these
coordinate raising operators as

â† = â†
x ı̂ + â†

y ĵ + â†
z k̂ (9.111)

Note that the operator â† is distinguished from the one-dimensional raising operator,
now designated â†

x , by boldface to designate its vector status.

Table 9.8 Complete eigenfunctions for the isotropic harmonic oscillator in spherical coordinates

(n � m) ψn�m (r, θ, φ) Energy (�ω)

(0 0 0) 2
α3/2

π1/4
e−α2r2/2Y00 (θ, φ)

3

2

(1 1 m)

√
8

3
· α5/2

π1/4
re−α2r2/2Y1m (θ, φ)

5

2

(2 0 0)
√

6 · α3/2

π1/4

(
1 − 2

3
α2r2

)
e−α2r2/2Y00 (θ, φ)

7

2

(2 2 m)
4√
15

· α7/2

π1/4
r2e−α2r2/2Y2m (θ, φ)

7

2
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Fig. 9.11 Probability densities for eigenstates of the isotropic harmonic oscillator. The pictures are
a slice through the y − z plane and symmetric about the z-axis which is vertical and in the plane
of the paper. The scale is proportional to n2

Table 9.9 Correlation between the letter designations and the orbital angular momentum quantum
number

� designation meaning

0 s sharp
1 p principal
2 d diffuse
3 f fundamental
4 g alphabetical
5 h alphabetical
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Now, â† is indeed a vector operator since it is a linear combination of r and p̂,
both of which are vector operators. We may therefore construct the operator [3]

â†
+ = â†

x + i â†
y (9.112)

as in Section 8.3. From that discussion we know that if â†
+ is applied to any of the

eigenkets of the isotropic oscillator for which m = �, it will raise both of these
quantum numbers. That is,

â†
+ |��〉 = Câ |(� + 1) (� + 1)〉 (9.113)

To investigate the effect of â†
+ on the remaining quantum number n we evaluate[

Ĥ , â†
+
]

using Table 7.1 and find

[
Ĥ , â†

+
]

= [
Ĥ , â†

x

] + i
[
Ĥ,â†

y

]

= �ωâ†
+ (9.114)

Thus,

�ωâ†
+ |n��〉 = Ĥ â†

+ |n��〉 − â†
+ Ĥ |n��〉 (9.115)

or

Ĥ
{

â†
+ |n��〉

}
= �ωâ†

+ |n��〉 + â†
+

(
n + 3

2

)
�ω |n��〉

=
[

(n + 1) + 3

2

] {
â†

+ |n��〉
}

(9.116)

Therefore,
{

â†
+ |n��〉

}
is an eigenket of the Hamiltonian with eigenvalue [(n + 1) +

3/2]. In other words, in addition to raising the angular momentum quantum num-
bers by unity, â†

+ also raises n by unity, and hence the energy, by one quantum. We
have then

â†
+ |n��〉 = Câ |(n + 1) (� + 1) (� + 1)〉 (9.117)

so that, starting with |n��〉 = |000〉, the ket representing the ground state of the
isotropic harmonic oscillator, we can generate all eigenkets having n = � = m.
Beginning with the eigenfunction corresponding to the ground state is not terribly
presumptuous because, from the Cartesian coordinate solution, it is easily obtain-
able. Ignoring the normalization which can be calculated at any time, we apply â†

+
to |000〉 a total of p times:
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(
â†

+
)p |000〉 ∝ |ppp〉 (9.118)

Now, consider the effect of the operator
(

â†
)2

on an arbitrary eigenket |n�m〉
where we have retained the boldface to distinguish â† from the one dimensional
raising operator. Because

[
L̂,

(
â†
)2

]
= 0 (9.119)

(See Table 8.2) application of the operator
(

â†
)2

to an arbitrary eigenket leaves

the angular momentum quantum numbers untouched, but raises the energy by two
quanta, that is, n → (n + 2) so

(
â†
)2 |n�m〉 ∝ |(n + 2) � m〉 (9.120)

Thus, successive application of
(

â†
)2

provides a means of changing only the quan-

tum number n. It remains then to apply a†+ and L̂− a suitable number of times to
reach the desired |n�m〉 as shown below.

To convert |000〉 to |n�m〉 we begin by applying the operator
(

â†
)2

to |000〉 the

appropriate number of times, (n − � ) /2, which leads to

[(
â†
)2

](n−�)/2

|000〉 ∝ |(n − � ) 0 0〉 (9.121)

We are assured that (n − � ) /2 is an integer because n and � must have the same
parity. Because application of â†

+ raises all three quantum numbers by unity, we see
that � applications of it will produce |n��〉

(
â†

+
)�

{[(
â†
)2

](n−�)/2

|000〉
}

∝ |n � �〉 (9.122)

To lower m to the desired value we simply apply L̂− to Equation 9.122 (� − m)
times so a general eigenket may be obtained from the prescription

L̂�−m
−

(
â†

+
)�

[(
â†
)2

](n−�)/2

|000〉 ∝ |n � �m〉 (9.123)
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Application: The shell model of the nucleus

In Section 9.4 we used the finite square well to estimate the parameters of the
deuteron, a nucleus consisting of a single proton and a single neutron. In the same
spirit, we may use the isotropic harmonic oscillator as an approximation of the
true internuclear potential of more complicated nuclei. Nuclei are composed of
positively charged protons, charge +e, and neutral neutrons, collectively known as
nucleons. The number of protons is the atomic number Z , while the number of neu-
trons is indicated by N . The total number of nucleons, protons plus neutrons, is the
mass number A = Z + N . In nuclear physics, a given nucleus is often designated by
the symbol AX, where X represents the chemical symbol of the element. Of course,
this designation assumes that knowledge of the chemical symbol implies knowledge
of Z so, for those of us who do not readily know or remember the number of protons
in, for example, the nucleus of tellurium (Te), nuclei are often designated A

Z X, for
example 126

52 Te.
As noted in Section 9.4, the force that binds nucleons in the nucleus is called the

strong force or the nuclear force; it is of very short range, ∼1 fm. It is 137 (yes, 1/α)
times stronger than the electromagnetic force. Moreover, the strong force is always
attractive. It was discovered empirically that if Z or N is one of the numbers

2, 8, 20, 28, 50, 82, 126

then the nucleus is particularly stable. These numbers are called “magic numbers.”
What is more, if a nucleus is such that Z and N are magic numbers, then the nucleus
is said to be “doubly magic” and the nucleus is even more stable than if it had a
single magic number. Examples of doubly magic nuclei are 4

2He (also known as an
α-particle) and 208

82 Pb.
Now, what is meant by nuclear stability? If a nucleus is particularly stable, then

the energy required to remove one nucleon, the separation energy, is high. The
separation energy is analogous to the ionization potential in atoms, Section 1.2.1,
the energy required to liberate an electron from an atom. Thus, if we were to plot
the ground state energies of the nuclei, we expect there to be groupings of nuclei
as suggested in Fig. 9.12. In this figure the hypothetical levels are arranged so that
the nucleus having atomic number Z is farther away from that having Z + 1 than
from the nucleus having Z − 1 so the nucleus having atomic number Z is, in this
fictitious example, magic. The occurrence of magic numbers suggests a filling of
“shells” by the nucleons. The shells are presumed to be filled by the nucleons, but,
because protons and neutrons are fermions, no two protons and no two neutrons
can have the same set of quantum numbers in accord with the Pauli principle (see
Section 8.6.2). The highest ground state of a given shell is far removed from the
lowest ground state of the next shell as illustrated in Fig. 9.12.

In an effort to explain the apparent shell structure of nuclei, the isotropic har-
monic oscillator potential was used to simulate the potential to which each nucleon
is subjected as a result of all the other nucleons. For this reason the shell model of
the nucleus is sometimes referred to as the single particle model. To investigate the
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Fig. 9.12 Schematic diagram of the ground state energies of hypothetical nuclei, each represented
by its atomic number. As illustrated, the nucleus having atomic number Z has a magic number

relationship to the magic numbers, we make a table of the number of states that can
have given values of n and �, bearing in mind that there is another factor of two
that must be considered because each nucleon can have “spin up” or “spin down.”
Thus, we require twice the degeneracy of the isotropic oscillator, Equation 9.94, or
(n + 1) (n + 2). Table 9.10 contains a listing of the possible states for each value
of n. Also included in the table is the total number of states up to, and including,
n (last column). It can be seen that the states up to n = 2 reproduce the first three
magic numbers. The proton and the neutron each have a set of such states available
to them so that, either or both can occupy a completed shell.

This would be the end of the story if all magic numbers were reproduced by
simply considering the degeneracy of the oscillator. Is the partial agreement we
have seen fortuitous or are there other factors to consider? In 1949 Maria Goeppert-
Mayer and, independently, J. Hans D. Jensen included an interaction between the
spin angular momentum and the motion of each of the nucleons to refine the shell
structure of the basic shell model described above. For this work they were awarded
the Nobel Prize in Physics in 1963 the citation for which reads “for their discoveries
concerning nuclear shell structure”. The interaction they included is referred to as
spin–orbit coupling. To remove the degeneracy for a given n in the basic model a
more complete Hamiltonian must be employed. This is referred to as “breaking the

Table 9.10 Number of states N (including spin) for each isotropic harmonic oscillator state n�

together with the cumulative number of states NT

n � N NT

0 0 2 2
1 1 6 8
2 0, 2 12 20
3 1, 3 20 40
4 0, 2, 4 30 70
5 1, 3, 5 42 112
6 0, 2, 4, 6 56 168
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degeneracy.” Although all levels having the same value of n have the same energy,
these levels are “split” by terms added to the Hamiltonian. These terms lead to an
additional angular momentum quantum number j = � ± 1

2 for each nucleon which
has, as usual, 2 j +1 values of m j , the quantum number designating the z-component
of j . In most cases, terms added to the Hamiltonian make it impossible to solve the
TISE exactly, so approximation methods must be employed. This is a subject which
will be covered later in this book (see Chapters 12 and 13, specifically Section 13.2),
but for now we simply illustrate the result of the Mayer and Jensen treatments.

First, we alter our notation so it conforms with the commonly used designations
of nuclear states. The angular momentum quantum number � is represented by the
letter designations listed in Table 9.9. Nuclear states are also assigned a number that
corresponds to the order of appearance of a particular value of �. Thus, for example,
a 1d nuclear state is the first state having � = 2. Of course, this must correspond to
n = 2, which is the lowest quantum number n for which � can be 2. A following
subscript j is appended to the state designation, but this is simply the j = � ± 1

2 .
As an aid in correlating the quantum numbers that arise from the spherical coor-
dinate separation of the TISE with the common nuclear physics state designations,
Table 9.11 contains the first few states in each notation.

Figure 9.13 shows the first four degenerate isotropic oscillator levels on the left.
The isotropic oscillator potential is an approximation to the actual potential, so it
likely overestimates the degeneracy. Therefore, in the center of the diagram are
the levels for a central potential based on interpolation between a spherical square
well and the isotropic oscillator. These levels need not concern us. The key point
is that the inclusion of strong spin–orbit coupling, as shown on the right side of
the diagram, “explains” the magic numbers. Also shown on the right side are the
total number of states up to and including the one designated. As was seen above,
breaking of the degeneracy of the levels is not necessary to explain the nuclear shell
structure until the n = 3 level. According to the figure, spin–orbit coupling lowers
one of the 1 f states, the one for which the spin and orbital angular momentum
are in the same direction (subscript 7/2), to such a degree that this level is isolated
from the other n = 3 states as well as the n = 2 states. The isolated 1 f7/2 state
thus constitutes a shell that accounts for the magic number 28 because there are
2 (7/2) + 1 = 8 states included in the 1 f7/2 state. Notice that the total number of
n = 3 states is 8 + 6 + 4 + 2 = 20 which is indeed (n + 1) (n + 2), consistent

Table 9.11 Correlation between the quantum numbers arising from solving the TISE in spheri-
cal coordinates for the isotropic oscillator and the common designation of states used in nuclear
physics

n� Nuclear physics

0s 1s
1p 1p
2s 2s
2d 1d
3p 2p
3 f 1 f
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Fig. 9.13 Schematic diagram showing the degenerate isotropic oscillator levels up to n = 3.
These degenerate levels are then split by the spin-orbit coupling. This scheme rationalizes the shell
structure of the nucleus. The resulting shells are separated by heavy dashed lines. The diagram is
not to scale

with the known degeneracy of this level. In Chapter 13 we will examine the effects
of spin–orbit coupling in atomic systems. Incidentally, the fact that the spin–orbit
coupling is “strong” is evidenced by the fact that the level shifts due to it are of
the order of the separations between the unshifted levels. This is in contrast to the
atomic case where the spin–orbit interaction is a small fraction of the gross energy
separation.

9.6 The Morse Potential in Three Dimensions

In Section 5.4 we solved the TISE for the Morse potential [4], a potential energy
function that has been widely used to describe diatomic molecules. The solution
was predicated on our assumption that the molecule was not rotating, so we could
treat the problem in one–dimension. If now we allow for rotation, we must add the
centrifugal term to the potential to form the effective potential

Uef f (r ) = De
[
e−2α(r−re ) − 2e−α(r−re )

] + j ( j + 1) �
2

2μr2
(9.124)
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where, as in Section 5.4, r is the internuclear separation; De and α are constants
that are peculiar to each diatomic molecule as is re, the equilibrium internuclear
separation when the molecule is not rotating. The reduced mass of the two nuclei is
μ and the quantum number � has been replaced by j , the customary designation for
the quantum number associated with molecular rotation.

The solution in Section 5.4 is identical to the solution of the radial solution to
the TISE using the effective potential of Equation 9.124 for j = 0. To consider
nonzero values of j , we could make the simple approximation that the internuclear
separation re does not change appreciably, even for excited rotational levels. This
is the rigid rotor approximation discussed in Section 8.4.3. In this approximation
we simply replace the coordinate r by the constant re in the centrifugal term. This
amounts to adding a constant energy to the Hamiltonian, but the eigenfunctions do
not change. For our purpose the rigid rotor approximation is too much of a simplifi-
cation because it uncouples the vibrational and rotational motions. We wish to find
the changes in the energy eigenvalues of Section 5.4 due to the interaction between
the vibrational and rotational degrees of freedom.

Morse, in his original paper [4], and later Pekeris [5], showed how to obtain an
improved approximation to the energy of a rotating molecule subjected to a Morse
potential. In what follows we arrive at the same answer, but using a modification
of their method [6]. The effect of the centrifugal term on a bound state potential
such as the rotationless Morse potential is to increase the equilibrium position and
to raise the minimum as shown in Fig. 9.1. Figure 9.14 is a similar illustration, but
the notation has been adapted to conform with that of the present section. In terms
of diatomic molecules, for j �= 0 the internuclear separation has been stretched by
the rotation. Moreover, the position of the minimum, De for j �= 0, has been raised.

Our approach to approximating the energy of rotation on the molecule is to find
the new equilibrium position r ( j )

e , and the new minimum energy D( j )
e . We then

use these parameters to construct a new Morse potential as though it represented

Fig. 9.14 The effective potential for the Morse potential showing the effects of rotation
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a different rotationless molecule. The new potential contains the effects of rotation
through r ( j )

e and D( j )
e .

Differentiating Equation 9.124 and setting it equal to zero to find r ( j )
e leads to a

transcendental equation. It is necessary, therefore, to make approximations to obtain
a closed form for r ( j )

e (and hence D( j )
e ). Of course, a computer solution can always

be obtained, but even an approximate analytic solution can provide more insight into
the nature of the problem. We begin by letting

x = r − re

re
(9.125)

which is the fraction by which the original equilibrium internuclear separation is
stretched. The amount of stretching is small, that is, x is small. The problem now
reduces to finding xe, the value of x corresponding to r = r ( j )

e . The effective poten-
tial, Equation 9.124, in terms of x is

Uef f (x) = De
[
e−2αre x − 2e−αre x

] + B
1

(1 + x)2 (9.126)

where B is the rigid rotor energy given by

B = j ( j + 1) �
2

2μr2
e

(9.127)

Differentiating, we have

dUef f (x)

dx
= (−2αDe)

[
e−2αre x − e−αre x

] − 2B
1

(1 + x)3 (9.128)

which may be expanded in a Taylor series to

dUef f (x)

dx
= (−2αre De)

[
− (αrex) + 3

2
(αrex)2

]
−2B+6Bx−12Bx2 · · · (9.129)

Setting this derivative equal to zero and dropping terms higher than the first power
in x leads to

x ( j )
e �

(
1

αre

)2 ( B

De

)
(9.130)

where x ( j )
e is the value of x at r = r ( j )

e . Notice that x ( j )
e is, as required, dimen-

sionless and that it is small because the rotational energy is much smaller than the
rotationless minimum in the Morse curve De. Thus,

r ( j )
e = re

(
1 + x ( j )

e

)

= re

(
1 + B

α2r2
e De

)
(9.131)
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To find D( j )
e we evaluate

Uef f
(
r = r ( j )

e

) = De
[
e−2αre xe − 2e−αre xe

] + B
1

(1 + xe)2
(9.132)

which, as was done for the derivative, we expand. Retaining terms up to the second
power of xe we have

− D( j )
e = Uef f

(
r = r ( j )

e

)

� De
[−1 + (αrexe)2] + B

(
1 − 2xe + 3x2

e

)

= −De + B

[
1 − 1

α2r2
e

(
R

De

)]
(9.133)

Thus, the minimum value of the Morse curve for j �= 0 has been raised by an
amount B

(
1 − B/α2r2

e De
)

and the position of the minimum in this curve has been
shifted by

[
B/

(
α2r2

e De
)]

re. We may therefore approximate the effective potential
by simply making the substitutions

re → r ( j )
e and De → D( j )

e (9.134)

in the (rotationless) Morse function given by Equation 9.124. The energy eigenval-
ues, including rotational energy, can be calculated to this level of approximation by
making the substitution De → D( j )

e into the expression for the rotationless eigenval-
ues, Equation 5.67. As noted above, this approximation includes the effects of rota-
tion because D( j )

e contains these effects. In terms of the frequency of the harmonic
oscillator, which is the first approximation to the Morse potential, Equation 5.45,

ω0 =
√

2De

μ
α (9.135)

the total energy, including rotation and vibration, is

Enj = −De +
(

n + 1

2

)
�ω0

[
1 − 1

4De

(
n + 1

2

)
�ω0

]

−
[

j ( j + 1) �
2

4μr2
e De

](
n + 1

2

)
�ω0

+ j ( j + 1) �
2

2μr2
e

[
1 − �

2 j ( j + 1)

μ2r4
e ω2

0

]
(9.136)

Care should be taken in comparing this expression to that in the original paper
by Morse because the customary symbol for frequency in radians/second, ω, is used
to denote the frequency in cycles/second in the original paper. The first two terms in
Equation 9.136 are identical to the energy eigenvalue deduced for the rotationless
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Fig. 9.15 Morse curves for j = 0 (for reference) and j = 16 (heavy lines). The curve marked
approximation was constructed using r ( j=16)

e and D( j=16)
e as parameters for a “rotationless” Morse

function

Morse oscillator (see Equation 5.67). Therefore, these terms reflect only the effects
of vibration. The last term contains only the quantum number j so, clearly, it arises
from rotation. The only quantum number contained in the term on the third line
is j , suggesting that this term is due to rotation only. Indeed, the first factor con-
taining j is merely B , the rigid rotor energy. This term cannot include the effects
of vibration. The term proportional to [ j ( j + 1)]2 might be regarded as a purely
rotational term. This is not so because the vibrational motion is hiding in ω2

0. The
most interesting term is the cross term, the term on the second line. This term is
proportional to the product

(
n + 1

2

)
j ( j + 1) so it clearly represents the coupling

between the vibrational and rotational degrees of freedom. Moreover, it contains
rotational parameters (μr2

e ) and vibrational parameters (μω0).
Finally, we examine graphically the approximations in which the original equilib-

rium internuclear separation and the dissociation energy are replaced by their values
obtained from the effective potential, that is, the values for which re → r ( j )

e and
De → D( j )

e . Figure 9.15 shows these curves. An unusually high value was chosen
for j in order to emphasize the difference between the actual effective potential and
the approximate one since for low values, where the approximation is most valid,
the curves are virtually indistinguishable.

9.7 Retrospective

For central potentials, separation of the TISE in spherical coordinates is possible
because Ĥ , L̂2, and L̂z form a mutually commuting set. Because they commute with
the Hamiltonian, the magnitude of the angular momentum and its z-component are
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constants of the motion (see Equation 6.145) along with the TME. Indeed, this is
also the case in classical mechanics where, for any central potential, angular mo-
mentum is conserved. In general, classical constants of the motion correspond to
quantum mechanical operators that commute with Ĥ . When a fourth commuting
operator exists for a given potential energy function, the TISE can be separated in
two coordinate systems, spherical and one other.
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Problems

1. Prove the identity given in Equation 9.5 that was used to deduce the correlation
between L̂2 and ∇2. That is, show that Ĵ± Ĵ∓ = Ĵ 2 − Ĵ 2

z ± � Ĵz .
2. Show that

1

sin θ

�

�θ

(
sin θ

� f

�θ

)
= cot θ

� f

�θ
+ �2 f

�θ2

3. Use the identity in Problem 1 together with Equations 8.64, 8.65 and the result
in Problem 2 to show that

L̂2 = −�
2

[
1

sin θ

�

�θ

(
sin θ

�

�θ

)
+ 1

sin2 θ

�2

�φ2

]

4. A particle of mass m is subject to an unknown central potential U (r ) that van-
ishes as r → ∞. One (unnormalized) eigenfunction in the usual spherical
coordinates is ψ (r, θ, φ) = e−βrr3/2 cos θ where β is a real positive constant.
Atomic units are recommended for convenience.

(a) Does this state have definite angular momentum? If so, why and what is the
total angular momentum and the z-component of the angular momentum of
this state?

(b) What is the energy eigenvalue of this state? Is the state bound or free?
[Hint: Because lim

r→∞U (r ) = 0 all the energy at r = ∞ is kinetic energy.]

(c) What is the potential energy?
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5. An impenetrable sphere of radius a is at the center of a spherical cavity of
radius b > a. The walls of the cavity are also impenetrable. A particle of mass
m is confined in the space between the inner sphere and the cavity wall. Find
the eigenfunctions and the energy eigenvalues for � = 0.

6. For the deuteron, assume that the radius of the spherical square well a = 1.5
fm, the well depth is U0 = 40MeV, and the deuteron binding energy is E =
−2MeV.

(a) Show that k ≈

√
2μU0/�2 and that the ratio κ2/k2

≈ 0.05.
(b) Show that κa ≈ 0.23.
(c) Using these approximations find the probability that the fraction of the time

that the neutron and the proton spend outside r = a the range of the nuclear
force. What does this suggest about the deuteron?

7. A particle of mass m is trapped in a cube of side L that has impenetrable walls,
a three-dimensional L-box.

(a) Find the energy eigenfunctions in Cartesian coordinates.
(b) Find the energy eigenvalues. How does the ground state energy compare

with that of the one-dimensional L-box?
(c) What are the degeneracies of the first three energy levels?

8. Show that r0 and Uef f (�) as given in Equations 9.95 and 9.96 are correct.
9. Consider the isotropic harmonic oscillator to be a one-dimensional problem

with potential given by the effective potential.

(a) By expanding the effective potential as a Taylor series about the position
of the minimum r0 show that the frequency of oscillation in the harmonic
approximation is 2ω when � �= 0.

(b) Show that the energy levels in this approximation depend upon both n and
� and are given by En� = [

(2n + 1) + √
� (� + 1)

]
�ω.

10. For the isotropic harmonic oscillator:

(a) Derive the normalization constant for the eigenfunctions, Equation 9.109.
(b) Show that this normalization constant gives the correct value for ψ200

(r, θ, φ).

11. For the isotropic harmonic oscillator show the following:

(a) r R00 (r ) =
√

3

2

1

α
R11 (r )

(b) r R11 (r ) = 1

α

[√
3

2
R00 (r ) − R20 (r )

]

(c) r R11 (r ) = 1

α

√
5

2
R22 (r )



346 9 Central Potentials

12. Show that for an isotropic harmonic oscillator

〈n�m| z |000〉 = 1√
2α

δn1δ�1δm0

One of the results of Problem 11 should be helpful.
13. Calculate the energy eigenvalues for the nth state of the isotropic oscillator

using the virial theorem and known expectation values. The result of Problem
7 will be helpful.

14. Prove the commutator relation of Equation 9.119.
15. A collection of isotropic oscillators having the same natural frequency ω is in

a superposition of states at t = 0 that is given by

|ψ (r, t = 0)〉 =
∑

k

ak |n�m〉

where k stands for all combinations of isotropic oscillator quantum numbers
(n�m). Find |ψ (r, t)〉 the state vector as a function of time.



Chapter 10
The Hydrogen Atom

Although the Bohr model of the atom correctly produced the energy levels of
hydrogen, there are many discrepancies. For example, there is no provision in the
Bohr model for zero orbital angular momentum. Fortunately, the TISE can be solved
exactly for the Coulomb potential that binds the electron and the proton. While
this is yet another example of a central potential, it is so important that it merits a
separate chapter. The Coulomb potential is, however, not just another central poten-
tial. Like the isotropic harmonic oscillator discussed in Section 9.5, it exhibits an
accidental degeneracy. That is, it is degenerate beyond the 2� + 1-fold degeneracy
associated with any central potential, as discussed in Section 9.1.2. Consequently,
the TISE can also be separated in parabolic coordinates. We will, however, study
only the spherical coordinate solution. The angular portions of the wave functions
are, of course, the spherical harmonics, so our task is to solve the radial equation.
We will obtain the solution for the “one-electron atom,” an atom having Z protons
in the nucleus, but only a single electron so that Z = 1 corresponds to a hydrogen
atom. Nonetheless, we will continue to refer to it as the hydrogen atom even though
Z will appear in many of the formulas.

10.1 The Radial Equation—Energy Eigenvalues

The Coulomb potential for the one-electron atom is

U (r ) = − Ze2

4πε0
· 1

r

= −Z (α�c) · 1

r
(10.1)

where α is the fine structure constant, Equation 1.35, and c is the speed of light. As
we have seen in Chapter 9, the effects of the centrifugal term are very important, so
it is imperative that we examine the effective potential

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 347
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Uef f (r ) = −Z [(αc) �] · 1

r
+ � (� + 1) �

2

2mer2

= − Z

r
+ � (� + 1)

2r2
(a.u.) (10.2)

We will use the symbol me for the reduced mass of the electron–proton system
because they are virtually the same due to the three-order-of-magnitude difference
between the proton and electron masses. This approximation is even better if Z > 1.
Also, in addition to the usual SI units, we will use atomic units (a.u.) as described
in Section 1.3.

The form of the effective potential is similar to that already encountered for the
Morse potential, but there are differences, so it is worth examining the hydrogen
atom effective potential carefully. Figure 10.1 shows the effective potential for � =
0 − 4. The graph is plotted in a.u., so the abscissa has units of Bohr radii while each
division on the ordinate is 0.1 a.u. (of energy)≈ 2.72 eV.

As with the effective potential for a Morse function, increasing angular momen-
tum raises the minimum of the well while moving the coordinate of the minimum to
larger values of r . A major difference between these two effective potentials is that
the Coulomb potential that binds the electron and the proton(s) becomes infinitely
negative at r = 0 for � = 0. Thus, a particle in a bound state that is supported by the
� = 0 Coulomb potential can pass through the origin and must have zero angular
momentum. Indeed, because the radial wave function depends upon r � for small r
(see Section 9.1.3) the wave function can be finite at r = 0. Classically, the particle

Fig. 10.1 The effective potential for the hydrogen atom for the lowest four values of orbital angular
momentum. The horizontal dashed lines are the Bohr energies of the lowest four levels
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can (actually “must”) pass through the origin because the angularmomentum is zero.
Notice that each Bohr energy is precluded from having � = n so that 0 ≤ � ≤ n −1.

Figure 10.2 is similar to Fig. 10.1, but the vertical scale has been expanded
to show more detail. In this figure we can easily see that the effective potential
for � = 3 does indeed have a minimum (at r = 12 a.u., see Problem 2). Note
that the effective potential for � = 0 has no minimum—it is a pure Coulomb
potential.

To solve the radial equation, we begin with the usual substitution u (r ) = r R (r )
and the radial equation for u (r ) in SI units, Equation 9.17, is

− �
2

2me

d2u (r )

dr2
+

{
− Ze2

4πε0
· 1

r
+ � (� + 1) �

2

2mer2

}
u (r ) = Eu (r ) (10.3)

Remembering that we seek the bound state energies, E will be a negative number,
so we simplify Equation 10.3 with the substitution

r =
√

− �
2

8me E
ρ (10.4)

which amounts to rescaling r and converting it to a dimensionless quantity. This
substitution yields

Fig. 10.2 The effective potential for a hydrogen atom as in Fig. 10.1, but the vertical scale has
been expanded to show detail such as the minimum in Uef f (r) for � = 3
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d2u (ρ)

dρ2
+

{
Ze2

4πε0�

(
− me

2E

) 1
2 · 1

ρ
− � (� + 1) �

2

ρ2
− 1

4

}
u (ρ) = 0 (10.5)

Equation 10.5 is further simplified with the substitution

λ = Ze2

4πε0�

(
− me

2E

) 1
2

= Zα

(
−mec2

2E

) 1
2

(10.6)

with which we arrive at

d2u (ρ)

dρ2
+

{
λ

ρ
− � (� + 1)

ρ2
− 1

4

}
u (ρ) = 0 (10.7)

Notice that the energy eigenvalues are concealed in λ.
Let us reiterate a few points that have been made previously. There is nothing

in what we have done (yet) that imposes any condition that will force the energy
eigenvalues to be quantized. Indeed, although we will not treat the problem here,
if we permit positive values of E , these positive energy eigenvalues will not be
quantized. Of course, positive energies correspond to unbound states so the kinetic
energy of the electron can be anything it pleases. We will see that in order to bind
the electron to the nucleus only very specific energies (which we know are the Bohr
energies, Equation 1.33) are permitted.

Now let us solve Equation 10.7. We know from Section 9.1.3 that if the potential
energy does not decrease faster than 1/r2 as r → 0, then, near the origin,

u (r ) ∼ r �+1 and R (r ) ∼ r � (10.8)

The Coulomb potential fits this condition, so, indeed, Equation 10.8 must repre-
sent the behavior of these functions near the origin. Moreover, as ρ → ∞ Equa-
tion 10.7 is

d2u (ρ)

dρ2
− 1

4
u (ρ) = 0 (10.9)

the solutions of which are

u (ρ) ∝ e±ρ/2 (10.10)

The eigenfunctions must be square integrable (see Section 2.9), so we dismiss the
increasing exponential because these bound state wave functions cannot diverge at
infinity. Using these extreme forms of the function u (r ) to guide our choice of a
possible solution we write



10.1 The Radial Equation—Energy Eigenvalues 351

u (ρ) = ρ�+1 f (ρ) e−ρ/2 (10.11)

where f (ρ) represents the portion of the eigenfunction between ρ ≈ 0 and
ρ → ∞. We now employ the same technique used in the solutions of the TISE
for the harmonic oscillator and Morse potentials and expand f (ρ) in a power series

f (ρ) =
∞∑

j=0

a jρ
j (10.12)

subject to the condition

lim
ρ→∞ρ�+1 f (ρ) < eρ/2 (10.13)

Substituting into Equation 10.7 we obtain

∞∑

j=0

{
[ j ( j + 1) + 2 (� + 1) ( j + 1)] a j+1 + (λ − � − 1 − j ) a j

}
ρ j (10.14)

By now the procedure is familiar. We take advantage of the linear independence of
the powers of ρ and force the coefficient of each power of ρ to vanish, thus obtaining
a recursion relation between successive coefficients:

a j+1 = ( j + � + 1 − λ)

( j + 1) ( j + 2� + 2)
a j (10.15)

Being seasoned veterans of solving the TISE we know that we had better check
convergence before proceeding. From our experience with the harmonic oscillator
and the Morse potentials, we suspect that we are going to have to terminate the series
to impose physics on the mathematical solution of Equation 10.7. In other words,
past experience suggests that the infinite series represented by the recursion relation
in Equation 10.15 will cause the wave function to diverge so its termination will be
required. Taking the limit, which is the same if the ρ�+1 is included, we have

lim
j→∞

a j+1

a j
= 1

j
(10.16)

This limit is the same limit as that for the function eρ (see Problem 9 of Chapter 5)
so, for large ρ, the series that represents f (ρ) behaves as eρ . The condition set forth
in Equation 10.13 is therefore not met, so we terminate the series. The only way that
it can terminate is if λ in the numerator of Equation 10.15 is an integer, which we
designate by n (good choice). We have then
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λ = n

= Zα

(
−mec2

2E

) 1
2

(10.17)

and, solving for n, the principal quantum number, yields the energy which we now
specify with a subscript:

En = −Z 2 (mec2) α2 · 1

2n2

= −
(

Z 2e2

4πε0

)
1

2n2a0
(10.18)

This is precisely the Bohr energy that was derived in Section 1.2.1. Recall that
writing the Bohr energy in terms of the fine structure constant is particularly con-
venient because the rest energy of the electron is well known to physics students,
0.511 MeV, so, with Z = 1, E1 = −13.6 eV. Additionally, because the quantity
αc ≡ 1 in atomic units, the Bohr energy is

En = −Z
1

2n2
(a.u.) (10.19)

Setting

n = j + � + 1 (10.20)

in Equation 10.15 is equivalent to terminating the series given in Equation 10.12
after j terms. This provides a relationship between n and � because the minimum
value that j can have is zero. Therefore,

� ≤ n − 1 (10.21)

as was seen from examination of Fig. 10.1. The value of j that signifies the number
of terms in the series after which the series is terminated is usually designated nr

and referred to as the radial quantum number so that

n = nr + � + 1 (10.22)

10.2 Degeneracy of the Energy Eigenvalues

Noting that the energy eigenvalues for the hydrogen atom are independent of the
quantum number �, we see immediately that there is an accidental degeneracy. This
is similar to the extra degree of degeneracy encountered with the isotropic harmonic
oscillator (see Section 9.5.2). To find the degree of this degeneracy gH we must sum
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the �-states for a given principal quantum number n over all possible values of m,
the quantum number associated with the z-component of angular momentum:

gH =
∑

all �

m

=
n−1∑

�=0

(2� + 1)

= 2 (n − 1)
(n

2

)
+ n

= n2 (10.23)

where we have used Gauss’ trick introduced in Section 8.6. Note that the degeneracy
of the hydrogen atom is actually 2n2 because, in each state, the electron may have
spin up or spin down. Because the TDSE, being a nonrelativistic equation, does not
contain the spin, it must be put in “by hand” which accounts for the additional factor
of 2 in the degeneracy.

The independence of the energy on � as well as the restriction on the values of �,
Equation 10.21, are illustrated in Figs. 10.1 and 10.2. For example, it can be seen that
the energy E3 can be associated with any of the effective potentials corresponding
to � = 0, 1, or 2, but it falls below the minimum of the effective potential for � = 3.
Therefore, the n = 3 state cannot have � = 3. This is a specific example of the
restriction on the �-values deduced in Section 10.1.

Because degeneracies are associated with classically conserved quantities, the
operators that correspond to these classically conserved quantities commute with
the Hamiltonian. Thus, in addition to the angular momentum there must be another
classically conserved quantity that commutes with Ĥ . This constant of the motion is
the Lenz vector which will be discussed in the next chapter. For now it is sufficient
to know that the Lenz vector A points along the major axis of the closed elliptical
orbit that results from the bound state solution of the Kepler problem, the potential
for which is

Uclassical (r ) = −k

r
(10.24)

where k is a constant. In the Kepler problem, Uclassical (r ) is the gravitational po-
tential, which has the same r -dependence as the Coulomb potential. The fact that
A is a constant of the motion assures us that the major axis remains fixed in space
and the elliptical orbit does not precess. (The celebrated precession of the perihe-
lion of the orbit of the planet Mercury is due to effects other than the gravitational
potential.) Fixed orbits occur classically for only two central potentials, the grav-
itation/Coulomb potential and the isotropic harmonic oscillator potential (which is
related to the accidental degeneracy in the oscillator). Fixed orbits are thus related to
the classical degeneracy that correlates to the quantum mechanical degeneracy. The
energy eigenvalues of both the hydrogen atom and isotropic oscillator systems are
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independent of the angular momentum, just as in their classical analogs. The inde-
pendence of the energy on the angular momentum in the classical Kepler problem
manifests itself as an independence of the energy on the length of the semiminor
axis b which depends upon the angular momentum [1]. The classical energy de-
pends only upon the semimajor axis a which does not depend upon the angular
momentum. Thus, there are an infinite number of elliptical orbits, all having the
same semimajor axis, but each having a different value of b (and, hence, angular
momentum). The classical energy is given by

E = − k

2a
(10.25)

As discussed in Section 9.1.2, when accidental degeneracies occur, the TISE can
be separated in more than one coordinate system. For hydrogen this additional sys-
tem is parabolic coordinates. For the isotropic oscillator it is Cartesian coordinates.

10.3 The Radial Equation—Energy Eigenfunctions

Although we have determined the energy eigenvalues and their degeneracies, we
have yet to actually solve the radial TISE for the energy eigenfunctions. The general
form of these eigenfunctions is given by Equation 10.11, but we must find f (ρ). To
this end we insert u (ρ) from Equation 10.11 into Equation 10.7 with λ = n. This
leads to a differential equation for f (ρ):

ρ
d2 f (ρ)

dρ2
+ [2 (� + 1) − ρ]

d f (ρ)

dρ
+ (n − 1 − �) f (ρ) = 0 (10.26)

Equation 10.26 is of the same form as Equation 9.100 provided

q = 2� + 1 and p = n − � − 1 (10.27)

Therefore,

f (ρ) = L2�+1
n−�−1 (ρ) (10.28)

the associated Laguerre polynomial. The radial wave function is therefore

R (ρ) = Nρ�e−ρ/2 L2�+1
n−�−1 (ρ) (10.29)

where ρ = 2Zr/ (na0) (see Problem 1) and N is the normalization factor.
The associated Laguerre polynomials were discussed in Section 9.5.2. In that

case our interest was on half-integer upper indexes. For hydrogen, both indexes are
integers. Table 10.1 lists a few associated Laguerre polynomials for low-lying states.

Table 10.2 contains some relations involving these polynomials including the
general formulas for those having lower indexes 0–2.
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Table 10.1 The associated Laguerre polynomials for n and �

n � L2�+1
n−�−1 (ρ)

1 0 1!L1
0 = 1

2 0 2!L1
1 = 4 − 2ρ

1 3!L3
0 = 6

3 0 3!L1
2 = 3ρ2 − 18ρ + 18

1 4!L3
1 = 96 − 24ρ

2 5!L5
0 = 120

Table 10.2 Some special properites of associated Laguerre polynomials having integer indexes

L0
ν (ρ) = Lν (ρ)

Lq
0 (z) = 1

Lq
1 (ρ) = −ρ + q + 1

Lq
2 (ρ) = ρ2

2
− (q + 2) ρ + (q + 1) (q + 2)

2
∫ ∞

0

[
e−zρq

]
Lq

ν (ρ) Lq
ν′ (ρ) dρ = [(ν + q)!]

ν!
δνν′

ρLq
ν (ρ) = (2ν + q + 1) Lq

ν (ρ) − (ν + 1) Lq
ν+1 (ρ) − (ν + q) Lq

ν−1 (ρ)

To find the normalization constant N in Equation 10.29, we use the normalization
condition for Rn� (r ). That is,

∫ ∞

0
|Rn� (r )|2 r2dr = 1 (10.30)

After substituting the energy En from Equation 10.18 it can be shown (see Prob-
lem 1) that

ρ = 2Z

n

(
r

a0

)
(10.31)

so, isolating the desired constant N , we have

|N |−2 =
(na0

2Z

)3
∫ ∞

0
ρ2�e−ρ

[
L2�+1

n−�−1 (ρ)
]2 (

ρ2dρ
)

=
(na0

2Z

)3
∫ ∞

0
ρ2�+1e−ρ

[
ρL2�+1

n−�−1 (ρ)
] [

L2�+1
n−�−1 (ρ)

]
dρ

=
(na0

2Z

)3
∫ ∞

0
ρq e−ρ

[
ρLq

ν (ρ)
]

Lq
ν (ρ) dρ (10.32)

where q = (2� + 1) and ν = (n − � − 1). The orthogonality relation is given in
Table 10.2, but, unfortunately, it differs from Equation 10.32 which has an extra ρ.
There are, however, a number of recurrence relations for the associated Laguerre
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polynomials, one of which is extremely helpful here. The one we require is listed
in Table 10.2, last line. When substituted in Equation 10.32 we obtain two extra
integrals, both of which vanish because of orthogonality. The remaining integral is
of the form of the orthogonality integral, Equation 9.108, and is reprised in Table
10.2, second line from the bottom. This procedure leads to

|N |−2 =
(

2Z

na0

)3

(2ν + q + 1)
[(ν + q)!]

ν!

=
(

2Z

na0

)3

2n
[(n + �)!]

(n − � − 1)!
(10.33)

so that

N =
√

1

2n

(
2Z

na0

)3 (n − � − 1)!

(n + �)!
(10.34)

and the normalized radial wave function is

Rn� (r ) =
[

1

2n

(
2Z

na0

)3 (n − � − 1)!

(n + �)!

]1/2 (
2Zr

na0

)�

e−Zr/na0 L2�+1
n−�−1

(
2Zr

na0

)

(10.35)

Note that in some books the factor (n + �)! in the denominator of the radical in
Equation 10.34 is cubed. If so, this indicates that the alternative definition of the
ordinary Laguerre polynomials, as discussed in Section 9.5.2, has been used. That
is, the factorial in the denominator of Equation 9.102 has been omitted. Moreover,
when the “other” convention on associated Laguerre polynomials is employed, it
changes the lower index. Rather than (n − � − 1) it is (n + �). This difference pro-
vides a convenient way of determining which definition is being used in a particular
reference. The first few radial eigenfunctions are tabulated in Table 10.3 using the
convention adopted in this book. They are listed in a way such that the exponent is
kept intact in the polynomials.

The radial wave functions Rn� (r ), and the probability distributions, the radial
distribution functions |R (r )|2 r2dr , are shown in Fig. 10.3 for all states having
n = 1 − 3. These graphs illustrate many of the general features of Rn� (r ) and
|R (r )|2 r2dr . Comparing all of the radial wave functions for which � = 0 with those
for which � �= 0 we see that the Rn0 (r ) are the only ones for which the magnitude of
R (r ) at the origin is nonzero. This is required, inasmuch as the wave function must
behave as r � near the origin.

Let us examine the number of nodes, points at which the function crosses the
abscissa, in these functions. When counting nodes, we ignore those at r = 0 and
r = ∞. For example, in Fig. 10.3 it is seen that for n = 3, � = 2 there are
no nodes. One attraction of using the definition of associated Laguerre polyno-
mials employed here is that the lower index, (n − � − 1), is the number of nodes.
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Table 10.3 A few radial hydrogen atom eigenfunctions

R10 (r) = 2

(
Z

a0

)3/2

e−Zr/a0

R20 (r) = 2

(
Z

2a0

)3/2 (
1 − Zr

2a0

)
e−Zr/2a0

R21 (r) = 2√
3

(
Z

2a0

)3/2 ( Zr

2a0

)
e−Zr/2a0

R30 (r) = 2

(
Z

3a0

)3/2
[

1 − 2

(
Zr

3a0

)
+ 2

3

(
Zr

3a0

)2
]

e−Zr/2a0

R31 (r) = 4
√

2

3

(
Z

3a0

)3/2 ( Zr

3a0

)[
1 − 1

2

(
Zr

3a0

)]
e−Zr/3a0

R32 (r) = 2

3

√
2

5

(
Z

3a0

)3/2 ( Zr

3a0

)2

e−Zr/3a0

According to the definition of the radial quantum number nr (see Equation 10.22),
the lower index on the associated Laguerre is nr . Thus, nr represents the number
of nodes in the radial wave function. It is seen that when � has its maximum value,
(n − 1), the radial wave function is nodeless. In such cases the maximum in the
radial distribution function rmax occurs at precisely the Bohr radius for that value of
n, that is, rmax = n2a0, which is the most probable value of r at which the electron

Fig. 10.3 The radial
eigenfunctions Rn� (r) (thin
line) and the radial
distribution functions
|r Rn� (r)|2 (heavy line) for all
states of hydrogen for
n = 1 − 3. The ordinate
scales have been adjusted to
best display the graphs, but
the abscissa scales are all in
a.u., that is, Bohr radii a0.
Note the different horizontal
scales for each column
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will be found (see Problem 7). The fact that the most probable distance from the
nucleus at which the electron will be found coincides with the Bohr radius for that
particular value of n, shows how insightful the Bohr model was, especially since
neither the TDSE nor the Heisenberg uncertainty principle had yet been formulated.
Of course, the uncertainty principle prohibits the well-defined orbits of the Bohr
model, but if one envisions a smearing of these Bohr orbits into a probability
distribution, it is not difficult to imagine that the result would be similar to those
predicted by the solution of the radial TISE. Despite the imprecise language, states
for which � = n − 1 are often referred to as circular states by analogy with the
classical Kepler problem. When the angular momentum has its maximum value (for
a given energy) the ellipse is one of zero eccentricity, a circle (see, for example,
Reference [1]).

It should be clear that the Bohr model of the atom, although not consistent with
wave mechanics, is valuable because the orders of magnitude it predicts are correct
and because physical quantities such as the most probable value of r scale in accord
with it. In a sense, the atomic system of units is based on the parameters of the Bohr
model. Recall that the unit of length in a.u. is the Bohr radius. Thus, the scales of
the abscissas in Fig. 10.3 are a.u.

We may contrast rmax with the average or expectation value 〈r〉 which is de-
fined by

〈
r s
〉 ≡

∫ ∞

0
r s

[|Rn� (r )|2 r2] dr (10.36)

with s = 1. The calculation yields

〈r〉 = 3

2
n2a0 − � (� + 1)

2
a0 (10.37)

which shows that, for � = 0, 〈r〉 > rmax, as expected from the shape of the radial
distribution functions (see Fig. 10.3). Notice that 〈r〉 decreases with increasing an-
gular momentum. This may be understood by again appealing to the classical Kepler
problem discussed in Section 10.2. A given energy, E , is independent of the value of
the semiminor axis b and depends only upon the value of the semimajor axis a. The
force center is at one focus of the ellipse and is thus the origin of polar coordinates.
For low angular momentum, L, the apogee is larger than for higher values of L
as depicted in Fig. 10.4. Thus, the average value of the distance from the origin is
greater at low angular momenta.

The expectation values of many integral powers of r , including negative powers,
are important for calculations and estimations of atomic effects. Although integrals
of the type in Equation 10.36 are required, we can use a recursion relation between
them known as Kramer’s relation. If s is an integer such that s >−2� − 1, Kramer’s
relation is:
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Fig. 10.4 Elliptical orbits
having the same semi-major
axis, but different semi-minor
axes as characterized by their
respective angular momenta,
L1 and L2. The foci of the
two ellipses coincide at the
origin of coordinates

(s + 1)

n2

〈
r s
〉 − (2s + 1) a0

〈
r s−1〉 + s

4
a2

0

[
(2� + 1)2 − s2] 〈r s−2〉 = 0 (10.38)

The proof is not difficult, but it is somewhat lengthy (see Problem 9).
Kramer’s relation makes it unnecessary to evaluate any integrals. For example,

if we take s = 0, then it follows immediately from Equation 10.38 that
〈
r−1

〉 =
1/

(
n2a0

)
because

〈
r0
〉 ≡ 1. To obtain 〈r〉 we choose s = 1 in Equation 10.38 we

have

2

n2
〈r〉 − 3a0

〈
r0〉 + 1

4
a2

0

[
(2� + 1)2 − 1

] 〈
r−1〉 = 0 (10.39)

Inserting the known value of
〈
r−1

〉
and

〈
r0
〉 = 1, 〈r〉 follows (see Problem 10). Table

10.4 is a listing of some useful expressions for expectation values of powers of r for
one-electron atoms.

Table 10.4 Expectation values of rs for one-electron atoms

〈
r2
〉 =

(a0

Z

)2
{

n2

2

[
5n2 + 1 − 3� (� + 1)

]}

〈r〉 =
(a0

Z

){
1

2

[
3n2 − � (� + 1)

]}

〈
r−1

〉 = 1

(a0/Z )

(
1

n2

)

〈
r−2

〉 = 1

(a0/Z )2

{
1

n3 (� + 1/2)

}

〈
r−3

〉 = 1

(a0/Z )3

{
1

n3�
(
� + 1

2

)
(� + 1)

}

〈
r−4

〉 = 1

(a0/Z )4

(
1

2

){ [
3n2 − � (� + 1)

]

n5�
(
� − 1

2

) (
� + 1

2

)
(� + 1) (� + 3/2)

}
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Fig. 10.5 Probability densities for eigenstates of hydrogen. The pictures are a slice through the
y − z plane and symmetric about the z-axis which is vertical and in the plane of the paper. The
scale is proportional to n2
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10.4 The Complete Energy Eigenfunctions

The complete eigenfunctions for the hydrogen atom in spherical coordinates are
given by

ψn�m (r, θ, φ) = Y�m (θ, φ) Rn� (r ) (10.40)

The spin of the electron does not appear in the TISE and thus the effects of spin must
be inserted “by hand.” The complete set of quantum numbers is then (n � m� s ms),
where we now use subscripts to differentiate between the quantum numbers repre-
senting the z-components of orbital and spin angular momenta. Clearly this set of
quantum numbers represents the uncoupled set of energy eigenfunctions. We can
also imagine using the coupled basis set in which the quantum numbers would be(
n j m j � s

)
. These produce eigenfunctions in which neither of the z-components of

angular momentum are specified. By giving up these z-components we are rewarded
with knowledge of the value of the total angular momentum and its z-component, j
and m j .

Because we already know that the angular portions of the one-electron wave
functions are the spherical harmonics, we tabulate the first few complete one-
electron atom eigenfunctions in Table 10.5. The spectroscopic notation introduced
in Section 9.5.2 that is used to designate the orbital angular momentum quantum
number is indicated. States of hydrogen are often designated by the principal quan-
tum number n followed by this letter denoting the angular momentum. This des-
ignation ignores spin, which, when included, is attached as a following subscript,
j = � ± 1

2 .

Table 10.5 The first few complete wave functions for one-electron atoms

n � m ψn�m (r, θ, φ)

1 0 (s) 0
1√
π

(
Z

a0

)3/2

e−Zr/a0

2 0 (s) 0
1

2
√

2π

(
Z

a0

)3/2 (
1 − Zr

2a0

)
e−Zr/2a0

2 1 (p) 1 − 1

4
√

π

(
Z

a0

)3/2 ( Zr

2a0

)
e−Zr/2a0 sin θeiφ

2 1 (p) 0
1

2
√

2π

(
Z

a0

)3/2 ( Zr

2a0

)
e−Zr/2a0 cos θ

2 1 (p) −1
1

4
√

π

(
Z

a0

)3/2 ( Zr

2a0

)
e−Zr/2a0 sin θe−iφ
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10.5 Retrospective

The hydrogen atom is the paradigm for all atoms so a complete understanding of
the solution to the TISE is required for further study of atomic physics. The mathe-
matical details of the solution are both important and interesting and the accidental
degeneracy of the states of atomic hydrogen illustrates the special nature of the
Coulomb potential, the extra symmetry beyond the spatial symmetry associated with
any central potential. This additional symmetry, which manifests itself classically as
an additional constant of the motion, provides another operator that commutes with
the Hamiltonian, a commuting operator in addition to L̂2 and L̂z . Because only
three commuting operators are required to effect a separation of the TISE, the ad-
ditional commuting operator makes it possible to separate the TISE in a coordinate
system other than spherical coordinates, parabolic coordinates. The result of this
dual separation is that there are two different sets of eigenfunctions, each of which
is a complete set. Thus, an eigenfunction in one set can be expressed as a linear
combination of eigenfunctions of the other set, making the degeneracy transparent.

10.6 References

1. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems (Harcourt Brace
Jovanovich, New York, 1995).

Problems

1. Show that the substitution r =
√

−�2/ (8m E)ρ is equivalent to scaling r and
converting it to a dimensionless quantity. That is, show that ρ = 2Zr/ (na0).

2. Show that the minimum in the effective potential for a one-electron atom occurs
at rmin = � (� + 1) /Z a.u.

3. Find the boundaries of the classically allowed region for the electron in a hy-
drogen atom for any value of angular momentum �. Use atomic units.

4. Find δrc = (rc)max − (rc)min, the width of the classically allowed region for a
hydrogen atom, as a function of n and �. For which values of � will δrc be a
minimum and a maximum for a given value of n? Use atomic units, but convert
the answers back to SI units.

5. Use the orthogonality relation for associated Laguerre polynomials to deter-
mine

〈
r−1

〉
for a one-electron atom.

6. What is the probability of finding the electron in a ground state hydrogen atom
in the classically forbidden region? Atomic units will be helpful.

7. Show that the maximum in the radial distribution function for a circular orbit
of a hydrogen atom occurs for rmax = n2a0.

8. Find 〈x〉n�m for the hydrogen atom. Based on the answer for 〈x〉 what are 〈y〉
and 〈z〉? If you insist on working out the integrals for 〈y〉 and 〈z〉, a glance at
Table 8.3 will be helpful.
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9. Prove Kramer’s relation for expectation values

(s + 1)

n2

〈
r s
〉 − (2s + 1) a0

〈
r s−1〉 + s

4
a2

0

[
(2� + 1)2 − s2] 〈r s−2〉 = 0

To do this first convert the radial equation, Equation 10.3, to the form

d2u (r )

dr2
+

[
2

ra0
− � (� + 1)

r2
− 1

a2
0n2

]
u (r ) = 0

Then multiply through by u (r ) r sdr and integrate from 0 → ∞ using integra-
tion by parts. Your result should have all expectation values except one pesky
integral,

∫ ∞
0 r s

[
u′ (r )

]2
dr , where the prime signifies differentiation with re-

spect to r . To eliminate this integral multiply the TISE through by u′ (r ) r s+1dr
and integrate from 0 → ∞. Again there will be all expectation values except
for the same annoying integral. This integral is not so annoying at this point
because you can equate the two expressions for it and obtain Kramer’s relation.
The integration by parts that is required will be facilitated by using the relations

u′ (r ) u (r ) = 1
2

[
u2 (r )

]′
and u′ (r ) u′′ (r ) = 1

2

{[
u′ (r )

]2
}′

.

10. Evaluate 〈r〉 using Kramer’s relation with s = 1 and show that the answer is
that given in Table 10.4.

11. For what values of � will 〈r〉 and �r have their maximum and minimum values?
Are the conclusions consistent with Fig. 10.3?

12. Evaluate 〈r〉 and �r for the two extremes of angular momentum, � = 0 and
� = n − 1, and relate them.

13. Calculate the energy eigenvalues for the nth state of the hydrogen atom us-
ing the virial theorem and known expectation values. Atomic units are recom-
mended.

14. The triton is a nucleus of heavy hydrogen 3
1H (see Section 9.5.2). It is radioac-

tive with one of the decay products being the nucleus 3
2He. An atom consisting

of a triton with a bound electron, which is called tritium, can therefore decay
to a singly ionized atom 3

2He+ provided the triton retains the electron after
the radioactive decay. If the tritium is initially in the ground state, what is the
probability that the 3

2He+ decay product is also in the ground state? Atomic
units are recommended.

15. Alkali atoms, those in the first column of the periodic table, have a single elec-
tron outside a spherically symmetric core of electrons and therefore behave
much as hydrogen atoms. The effects of core penetration by the outer electron
may be approximated by a potential U (r ) which is given in a.u. by

U (r ) = −1

r
− b

r2
; b/r << 1

Solve the radial part of the TISE by combining b/r2 with the centrifugal term
and show that the energy eigenvalues may be written as the Bohr energy plus
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a correction term that depends upon both both n and �. The energy in a.u. is
approximately

En� ≈ − 1

2n2
− b

n3
(
� + 1

2

)

16. A hydrogen atom is in a superposition of states at t = 0 that is given by

|ψ (r, t = 0)〉 =
∑

k

ak |n�m〉

where k stands for all combinations of hydrogen atom quantum numbers (n�m).
Find |ψ (r, t)〉 the state vector as a function of time.

17. The state vector for a hydrogen atom at t = 0 is given by

|ψ (r, t = 0)〉 = 1√
3

|100〉 + 1√
6

|210〉 + 1√
2

|320〉

(a) Find |ψ (r, t)〉 the state vector as a function of time.
(b) Find the expectation values 〈E〉, 〈L̂2

〉
, and

〈
L̂z

〉
as functions of time.

(c) Why are these expectation values independent of time?



Chapter 11
Angular Momentum—Encore

In our discussion of the accidental degeneracy of the hydrogen atom in Section 10.2
it was noted that this degeneracy is the consequence of an additional symmetry of the
system, a symmetry beyond that associated with a central potential. This additional
symmetry manifests itself classically as an additional constant of the motion and
quantum mechanically as another operator that commutes with the Hamiltonian.
In this chapter we will discuss the properties of this operator and its effect on the
energy eigenfunctions of the TISE. We will also discuss its relationship to angular
momentum. First, however, we will synopsize the classical Kepler problem.

11.1 The Classical Kepler Problem

The mathematical description of planetary orbits is called the Kepler problem be-
cause it was Kepler who deduced, purely empirically, that the planets travel around
the sun in elliptical orbits. Newton solved the problem mathematically by ignoring
the other planets so his solution of the two-body problem is analogous to that of the
classical hydrogen atom. When a particle is subject to a central force its motion is
confined to a plane because the angular momentum L is conserved. Moreover, if the
particle is bound, this planar motion is confined between two values of r . The motion
is not necessarily periodic inasmuch as it may never retrace itself. If, however, the
force is an attractive inverse square force, a 1/r potential, then the bound motion
is periodic and the particle executes a closed elliptical orbit. The uniqueness of a
classical Keplerian orbit is illustrated in Fig. 11.1.

In Fig. 11.1(a), the potential is an attractive 1/r potential while in Fig. 11.1(b)
a small non-Keplerian term has been added to the 1/r potential. The effect of the
added term is to cause a precession of the ellipse so that, except in special circum-
stances, the particle trajectory never retraces itself. Thus, if the plot of the precessing
ellipses were permitted to run for a very long time, the annular region between the
minimum and maximum distances from the force center would be completely black.

An additional constant of the motion is responsible for the special properties of
the Kepler problem. This constant is a vector that goes by a variety of names [1][2].
For simplicity, we refer to it as the Lenz vector. Consider first a general central

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 365
DOI: 10.1007/978-0-387-77652-1 11, C© Springer Science+Business Media, LLC 2008
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Fig. 11.1 (a) A fixed
elliptical orbit resulting from
a Kepler potential. The vector
A is the Lenz vector. (b)
Trajectory of a particle under
the influence of a nearly
Keplerian potential. The
ellipse precesses and, in
general, never retraces itself

potential U (r ) such that the force is f (r ) âr where âr = r/r is the unit direction
in the r direction[3]. Newton’s second law may be written in terms of the linear
momentum p:

ṗ = f (r ) âr (11.1)

Taking the cross product ṗ × L where L = r×m ṙ we have

ṗ × L = m f (r )
[ r

r
× (r × ṙ)

]

= m f (r ) r2

[
ṙ r
r2

− ṙ
r

]
(11.2)

where we have used the vector identity for the triple cross product as well as the
relation

ṙ • r = 1

2

d

dt
(r • r) = ṙr (11.3)

to arrive at Equation 11.2. Because we are dealing with a central force, L is a con-
stant so we may rewrite Equation 11.2 as

d

dt
( p × L) = −m f (r ) r2 d âr

dt
(11.4)

Inserting Coulomb’s law into Equation 11.4 we find that the additional constant of
the motion, the Lenz vector A, is:

A =
[

( p × L) −
(

me2

4πε0

)
âr

]

= p × L − âr a.u. (11.5)

As defined in Equation 11.5, the vector A lies in the plane of the orbit and points
along the major axis of the ellipse toward the perigee. Because it is in the plane of
the orbit, it is perpendicular to the angular momentum so that
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A • L = 0 (11.6)

For the Kepler potential the time rate of change of the Lenz vector Ȧ = 0 (see
Problem 1) and it is a constant of the motion. The effect of the small non-Keplerian
term is to rotate the Lenz vector, thus producing the precession. In the case of the
precession of the orbit of the planet Mercury, the precession is due in large part to
the effects of other planets, but this accounts for only a portion of the observed rate
of precession. The remainder is a relativistic effect that adds additional powers of
(1/r ) to the potential.

11.2 The Quantum Mechanical Kepler Problem

Frequently, when solving a problem in quantum physics the Hermitian operators
look the same as their classical counterparts. For example, the Hamiltonian is simply
p̂2/2m+U (r ). If the classical quantity is a vector, however, often there is a problem
in that the corresponding operator is not Hermitian. Such is the case with the Lenz
vector. If the defining quantities are simply made into operators, the resulting op-
erator Â is not Hermitian. The formulation was rescued by Pauli who showed how
to convert the classical Lenz vector into a Hermitian operator by symmetrizing it to
produce

Â = 1

2

(
p̂ × L̂ − L̂ × p̂

) − âr (11.7)

Atomic units are used to simplify the calculations. Note that, because they are opera-

tors p̂× L̂ �= −L̂ × p̂. It is outside our interest to prove that
[

Â, Ĥ
]

= 0 or many of

the other properties of the Lenz vector, but there are discussions of this elsewhere[4].
Table 11.1 is a listing of some important commutation relations involving the Lenz
vector operator; εi jk is the Levi-Cevita symbol. The second relation is the quantum
mechanical equivalent of the classical perpendicularity of A and L, Equation 11.6.
The third shows that Â is not an angular momentum, but the fourth shows that it
does fit the definition of a vector operator, Equation 8.44.

Table 11.1 Some useful relations involving the Lenz vector operator Â in atomic units

1.
[

Ĥ , Â
]

= 0

2. Â • L̂ = 0
3.

[
Âi , Â j

] = −2i L̂k Ĥεi jk

4.
[
L̂ i , Â j

] = i Âkεi jk

5. Â2 = 2
(
L̂2 + 1

)
Ĥ + 1

6. Âz = −1

2

(
L̂− Â+ + Â− L̂+

) − Âz L̂ z
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Now, incredible as it may seem, it is possible to obtain the Bohr energy without
actually solving the TISE. Pauli did this using operator methods one year before
Schr’́odinger’s paper describing the TDSE was published. To obtain the Bohr ener-
gies we take advantage of our knowledge of (and our proficiency with) generalized
angular momentum (see Chapter 8). Although the third relation in Table 11.1 clearly
shows that Â is not an angular momentum, it is possible to construct linear com-
binations of Â and L̂ that are angular momentum operators. First we define a new
operator

Â =
√

−2Ĥ Â
′

(11.8)

This is a peculiar-looking operator, the use of which is not obvious, but if we re-
strict the functions upon which it operates to energy eigenfunctions of the hydrogen
atom, then we can replace the Hamiltonian under the radical with the Bohr energy
which, recall, we are attempting to derive. With this restriction the new operator Â

′

is simply a scaled Lenz vector

Â
′ =

√

− 1

2E
Â (11.9)

In terms of Â
′
relations 3 and 4 in Table 11.1 are

[
Â′

i , Â′
j

] = i L̂kεi jk
[
L̂i , Â′

j

] = i Â′
kεi jk (11.10)

We now define two new vector operators

Î = 1

2

(
L̂ + Â

′)

K̂ = 1

2

(
L̂ − Â

′)
(11.11)

and evaluate the commutators of these operators with each other and with the Hamil-
tonian. Using the relations in Table 11.1 and Equation 11.11, we can evaluate the
commutators of Î and K̂ with each other and with the Hamiltonian (see Problem 2).
We have

[
Î, Ĥ

] = 0 = [
K̂ , Ĥ

] = [
Î, K̂

]
(11.12)
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Moreover,

[
Îi , Î j

] = i Îkεi jk
[
K̂i , K̂ j

] = i K̂ jεi jk (11.13)

from which it is clear that Î and K̂ are angular momenta (see Problem 3). Because Î
and K̂ are angular momenta, we immediately know the eigenvalues of their squares.
That is,

Î 2 |i〉 = i (i + 1) |i〉 and K̂ 2 |k〉 = k (k + 1) |k〉 (11.14)

where |i〉 and |k〉 are eigenkets of Î 2 and K̂ 2, respectively. The quantum numbers i
and k must assume the values

i, k = 0, 1/2, 1, 3/2, 2, 5/2, 3, ... (11.15)

Because Î and K̂ commute with each other and the Hamiltonian, Î 2 and K̂ 2 must
commute with each other and the Hamiltonian (see Problem 4). Therefore, we know
that we can find a set of eigenfunctions that are simultaneously eigenfunctions of Î 2,
K̂ 2, and Ĥ . We designate the eigenkets by

|i, mi ; k, mk〉 (11.16)

where mi and mk are the eigenvalues of Îz and K̂z , respectively. Again because they
are angular momenta, we know the action of the ladder operators I± = Ix ± i Iy

and K± = Kx ± i Ky on the eigenfunctions. They will raise and lower mi and mk

without affecting i and k. Squaring Î and using the fact that Â
′•L̂ = 0 we obtain

Î 2 = 1

4

(
L̂2 + Å′2

)

= K̂ 2 (11.17)

from which we deduce that the quantum numbers are equal, i = k (see Equation
11.14).

It is helpful to cast the Hamiltonian in terms of the scaled Lenz vector and the an-
gular momentum operator. Inserting the definition of Â

′
, Equation 11.8 into relation

4 in Table 11.1 we obtain

− 2Ĥ Â′2 = 2
(
L̂2 + 1

)
Ĥ + 1 (11.18)

which may be rearranged using Equation 11.17 and the fact that
[
Ĥ , L̂2

] = 0 =[
Ĥ , K̂ 2

]
to obtain
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1 + 2Ĥ
(

Â′2 + L̂2) + 2Ĥ = 0

1 + 2
(
4K̂ 2 + 1

)
Ĥ = 0 (11.19)

Now we operate on a ket |�〉 that is presumed to be one of the simultaneous eigen-
kets of Ĥ and K̂ 2 (because

[
Ĥ , K̂ 2

] = 0):

[
1 + 2

(
4K̂ 2 + 1

)
Ĥ
] |�〉 = 0 (11.20)

Carrying out the operations we obtain

1 + 2 [4k (k + 1) + 1] E = 0 (11.21)

or, solving for E ,

E = −1

2
· 1

(2k + 1)2 (11.22)

But, k must be zero, an integer, or a half-integer so the quantity (2k + 1) represents
the set of integers beginning with unity. Naturally we designate this integer by n and
obtain the Bohr energy for the hydrogen atom in atomic units.

It is remarkable that, using only the properties of generalized angular momenta,
one can deduce the energy eigenvalues for the hydrogen atom. Note that the nature
of the eigenket |�〉 is still unknown. In fact, in this derivation, a coordinate sys-
tem was not even specified so 〈r |�〉 is an eigenfunction in coordinate space while
〈 p |�〉 is an eigenfunction in momentum space.

We can do more using only operators and angular momentum. By adding the
definitions of Î and K̂ , Equations 11.11, we find that

L̂ = Î + K̂ (11.23)

From the restrictions on the quantum numbers i and k, the quantum number � is
limited to

� = (i + k) , (i + k − 1) , (i + k − 2) , ..., |i − k| (11.24)

Recall that L̂ is surely an angular momentum so � ≥ 0. Moreover, as we have seen
i = k and n = (2k + 1) which leads to

�max = (2k) , (2k − 1) , (2k − 2) , ..., 0

= (n − 1) , (n − 2) , ..., 0 (11.25)

which are precisely the limitations imposed on � that were obtained by solving the
TISE.
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We can even obtain the degree of degeneracy using these operators. Because
Î and K̂ are angular momenta, their z-components Îz and K̂z commute with the
Hamiltonian. Consequently, the eigenkets of these operators are also simultaneous
eigenkets of Ĥ , Î 2, and K̂ 2. We know that each state that is characterized by the
quantum numbers i and k has (2i + 1) · (2k + 1) substates, the z-components of Î
and K̂ . The degeneracy is therefore

gH = (2i + 1) · (2k + 1) (11.26)

But i = k and n = (2k + 1) so, as was found in spherical coordinates, the degree of
degeneracy is n2 (excluding spin).

11.3 The Action of Â+

Because we know that Â is a vector operator, we know that Â+ = Âx + i Ây is a
ladder operator (see Section 8.3) and that

Â+ |n��〉 = C Â |n (� + 1) (� + 1)〉 (11.27)

where |n�m〉 is an eigenket of the hydrogen atom in spherical coordinates. Of
course, in addition to being an energy eigenket, it is also an eigenket of L̂2 and L̂z . It
is not, however, an eigenket of Â or any of its components because these operators
are not part of the mutually commuting set that is used to solve the problem in
spherical coordinates. On the other hand, separation of the TISE in parabolic coor-
dinates produces a different set of eigenfunctions which, in effect, are the result of
using the mutually commuting set of operators Ĥ , L̂z , and Âz . Thus, when solving
the hydrogen atom problem in parabolic coordinates the good quantum numbers
are n and m as in spherical coordinates, but the other quantum number is reflective
of the eigenvalues of Âz; � is no longer a good quantum number. The fact that
there are four mutually commuting operators for this problem is at the root of the
accidental degeneracy and the concomitant separability of the TISE in more than
one coordinate system.

In addition to Â+, there are other combinations of the components of Â that
produce useful relations when acting on the spherical coordinate eigenkets of the
hydrogen atom. The ability of the L̂± to change only the m quantum number when
operating on a general spherical eigenket |n�m〉 is a consequence of the spherical
symmetry of any central potential. Changing m merely changes the z-component of
the orbital angular momentum, leaving the total angular momentum and the energy
unaffected. The spherical symmetry is associated with the total angular momentum
without regard to the direction of it (as is indicated by the value of m). The compo-
nents of Â acting on a spherical eigenket of hydrogen can produce additional useful
relations. For reference, Table 11.2 contains a listing of the actions of Âz and Â+ on
spherical hydrogen eigenkets |n�m〉 and |n��〉. The fact that Âz |n�m〉 yields a linear
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Table 11.2 The action of Â± and Âz on the indicated spherical eigenkets |n�m〉

Â± |n�m〉 = ∓ 1

n

√[
n2 − (� + 1)2] (� ± m + 1) (� ± m + 2)

(2� + 1) (2� + 3)
|n (� + 1) (m ± 1)〉

± 1

n

√(
n2 − �2

)
(� ∓ m) (� ∓ m − 1)

(2� − 1) (2� + 1)
|n (� − 1) (m ± 1)〉

Â± |n��〉 = − 1

n

√
2 (� + 1)

(2� + 3)

[
n2 − (� + 1)2] |n (� + 1) (� + 1)〉

Âz |n�m〉 = 1

n

√[
n2 − (� + 1)2

]
(� + m + 1) (� − m + 1)

(2� + 1) (2� + 3)
|n (� + 1) m〉

+ 1

n

√(
n2 − �2

)
(� + m) (� − m)

(2� − 1) (2� + 1)
|n (� − 1) m〉

Âz |n��〉 = 1

n

√[
n2 − (� + 1)2

]

(2� + 3)
|n (� + 1) �〉

combination of two different eigenkets clearly shows that the spherical eigenkets are
not eigenkets of Âz .

11.4 Retrospective

Aside from the interesting aspects of the classical Kepler problem, the discussion
in this chapter was intended to illustrate, with a concrete example, the concept of a
generalized angular momentum. Recall that an operator is an angular momentum if
its components obey the commutation rules given in Equation 8.2. There need not be
any correlation between the operator and the classical definition of angular momen-
tum. Indeed, spin is such an angular momentum, but its name suggests rotational
angular motion in the classical sense. Such a visualization is preposterous for a
point particle. The operators Î and K̂ introduced in this chapter, while qualifying as
quantum mechanical angular momenta, have no classical counterparts, preposterous
or otherwise.

11.5 References

1. H. Goldstein, “Prehistory of the “Runge–Lenz” vector,” Am. J. Phys., 43, 737–738 (1975).
2. H. Goldstein, “More on the prehistory of the Laplace or Runge–Lenz vector,” Am. J. Phys., 44,

1123–1124 (1976).
3. H. Goldstein, Classical Mechanics (Addison–Wesley, Reading, MA, 2nd ed., 1980).
4. C. E. Burkhardt and J. J. Leventhal, Topics in Atomic Physics (Springer, New York, 2005).

Problems

1. Starting with Equation 11.4 derive an expression for d A/d t for a hydrogen
atom.
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2. Show that the operators Î and K̂ commute with the Hamiltonian and with each
other.

3. Show that Î and K̂ are angular momenta.
4. Show that the commutator

[
Ĥ , Î

] = 0 = [
Ĥ , K̂

]

assures us that

[
Ĥ , Î 2] = 0 = [

Ĥ , K̂ 2]



Chapter 12
Time-Independent Approximation Methods

To this point we have, with two exceptions, dealt with potential energy functions for
which the TISE could be solved exactly. The WKB method of approximation was
introduced in Section 5.6 in the natural progression of studying one-dimensional
problems. Later, in Section 9.6, we reexamined diatomic molecules for which the
Morse potential is a good approximation to the potential energy between the two nu-
clei. This time, however, we permitted the molecule to rotate as well as vibrate and
this additional degree of freedom rendered the TISE unsolvable. For this problem
it was possible to make some approximations concerning the relative magnitudes
of the molecular parameters, thus enabling us to obtain an approximation to the
vibrational-rotational energy levels. In this chapter we will develop more general
methods for dealing with potentials for which the TISE cannot be solved exactly.
Our goal is to obtain methods of approximating the energy eigenvalues and eigen-
functions. Because we are not concerned with the time development of any system,
these approximation methods are termed time-independent.

In the first approximation method that we will study, perturbation theory, it is
assumed that the true Hamiltonian that describes the system differs only slightly
from another Hamiltonian for which the TISE can be solved exactly. In the second
method that we will study, the variational technique, we will obtain only the energy
eigenvalue, usually of the ground state, and seek no information about the energy
eigenfunction. As we shall see, using this method we must guess the form of the
energy eigenfunction to obtain the desired energy eigenvalue. The better the guess,
the more accurate the energy that we obtain.

12.1 Perturbation Theory

12.1.1 Nondegenerate Perturbation Theory

We assume that the true Hamiltonian for the system is given by

Ĥ = Ĥ0 + λĤ1 (12.1)

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 375
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where Ĥ0 is referred to as the unperturbed Hamiltonian and Ĥ1 the perturbing
Hamiltonian. The parameter λ has been inserted to facilitate keeping track of the
level of approximation. It is assumed that the eigenkets and energy eigenvalues of
Ĥ0 are known, and that to each eigenket there is one energy eigenvalue. All energy
eigenvalues are assumed different so that, indeed, we are dealing with the nonde-
generate case. The eigenkets and energy eigenvalues are designated

∣
∣ψ (0)

n

〉
and E (0)

n ,
respectively, so that

Ĥ0

∣
∣ψ (0)

n

〉 = E (0)
n

∣
∣ψ (0)

n

〉
(12.2)

The
∣∣ψ (0)

n

〉
are assumed to constitute an orthonormal set. The eigenkets of Ĥ are

designated |ψn〉 and we assume that we can write them to as great an accuracy as
we please as follows:

|ψn〉 =
∑

k

λk
∣
∣ψ (k)

n

〉

= λ0
∣∣ψ (0)

n

〉 + λ
∣∣ψ (1)

n

〉 + λ2
∣∣ψ (2)

n

〉 + . . . (12.3)

where the superscript designates the level of approximation. Therefore, for the ze-
roth level the “correction” is merely the eigenket of Ĥ0, which we assume we al-
ready know. The energy eigenvalues of Ĥ , En, are written in an analogous way:

En =
∑

k

λk E (k)
n (12.4)

= E (0)
n + λE (1)

n + λ2 E (2)
n + . . . (12.5)

Therefore, the true TISE is

Ĥ |ψn〉 = En |ψn〉 (12.6)

Note that the kets
∣
∣
∣ψ ( j )

n

〉
and energies E ( j )

n are the j th correction terms, not the

corrected kets and energy eigenvalues. These corrected quantities are obtained by

adding as many
∣∣
∣ψ ( j )

n

〉
and E ( j )

n to
∣
∣ψ (0)

n

〉
and E (0)

n as is required for the degree of

accuracy desired.
To determine the corrections to

∣
∣ψ (0)

n

〉
and E (0)

n we write the TISE, Equation 12.6,
in terms of Equations 12.1, 12.3, and 12.4:

(
Ĥ0 + λĤ1

)∑

k

λk
∣
∣ψ (k)

n

〉 =
⎛

⎝
∑

j

λ j E ( j )
n

⎞

⎠
(
∑

k

λk
∣
∣ψ (k)

n

〉
)

(12.7)

where the two summations on the right-hand side are independent. Recall that λ is
an arbitrary parameter that was inserted to keep track of the level of approximation.
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Therefore, if, after multiplying the terms, we collect terms according to powers of
λ, we will have an equation that has the form

c0λ
0 + c1λ

1 + c2λ
2 + . . . = 0 (12.8)

Because λ is arbitrary, the coefficients of each power of λ must vanish. This leads to

λ0 : Ĥ0

∣
∣ψ (0)

n

〉 = E (0)
n

∣
∣ψ (0)

n

〉

λ1 : Ĥ0

∣
∣ψ (1)

n

〉 + Ĥ1

∣
∣ψ (0)

n

〉 = E (0)
n

∣
∣ψ (1)

n

〉 + E (1)
n

∣
∣ψ (0)

n

〉

λ2 : Ĥ0

∣
∣ψ (2)

n

〉 + Ĥ1

∣
∣ψ (1)

n

〉 = E (0)
n

∣
∣ψ (2)

n

〉 + E (1)
n

∣
∣ψ (1)

n

〉 + E (2)
n

∣
∣ψ (0)

n

〉
(12.9)

which are the zeroth-, first-, and second-order corrections.
Now, how do we use these equations? To get the first-order correction to the

energy we take the inner product of the second equation with the bra
〈
ψ

(0)
k

∣
∣
∣ and

obtain
〈
ψ

(0)
k

∣
∣
∣ Ĥ0

∣
∣
∣ψ (1)

n

〉
+

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉
= E (0)

n

〈
ψ

(0)
k

∣
∣
∣ψ (1)

n

〉
+ E (1)

n

〈
ψ

(0)
k

∣
∣
∣ψ (0)

n

〉
(12.10)

or, using orthonormality of the zeroth-order kets and the complex conjugate of Equa-
tion 12.2 we have

(
E (0)

k − E (0)
n

) 〈
ψ

(0)
k

∣
∣
∣ψ (1)

n

〉
+

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉
= E (1)

n δkn (12.11)

Thus, if k = n, we immediately obtain the first-order correction to the energy of the
nth state. It is

E (1)
n = 〈

ψ (0)
n

∣
∣ Ĥ1

∣
∣ψ (0)

n

〉
(12.12)

so the rule is

The first-order correction to the energy is the expectation value

of the perturbing Hamiltonian on the unperturbed state.

To obtain the first-order correction to the eigenket we return to Equation 12.10
and examine the case for which k �= n. We expand

∣
∣ψ (1)

n

〉
on the complete set of∣

∣ψ (0)
n

〉
which is easily done using the projection operator, Equation 6.61a, and the

identity operator, Equation 6.58:

∣
∣ψ (1)

n

〉 =
∑

k

(∣∣
∣ψ (0)

k

〉 〈
ψ

(0)
k

∣
∣
∣
) ∣
∣
∣ψ (1)

n

〉

=
∑

k

〈
ψ

(0)
k

∣∣
∣ψ (1)

n

〉 ∣∣
∣ψ (0)

k

〉
(12.13)
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Then, for k �= n Equation 12.10 becomes

(
E (0)

k − E (0)
n

) 〈
ψ

(0)
k

∣
∣
∣ψ (1)

n

〉
+

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉
= 0 (12.14)

because only the term in the summation that survives the inner product with
〈
ψ

(0)
k

∣∣
∣

is the kth. The expansion coefficient for the kth term in the expansion of
∣
∣ψ (1)

n

〉
is

therefore given by

〈
ψ

(0)
k

∣
∣∣ψ (1)

n

〉
=

〈
ψ

(0)
k

∣
∣∣ Ĥ1

∣
∣∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

) (12.15)

Splitting off the k = n term in Equation 12.13 we have

∣
∣ψ (1)

n

〉 = cn

∣
∣ψ (0)

n

〉 +
∑

k �=n

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
∣
∣
∣ψ (0)

k

〉
(12.16)

where we have let

cn = 〈
ψ (0)

n

∣∣ψ (1)
n

〉
(12.17)

We now have all the expansion coefficients in Equation 12.13 except cn. To find
this coefficient we use the normalization of the eigenkets of Ĥ , the |ψn〉 . Using
Equation 12.3 we have

〈ψn |ψn〉 = 1

= (〈
ψ (0)

n

∣
∣ + λ

〈
ψ (1)

n

∣
∣ + λ2 〈ψ (2)

n

∣
∣ + . . .

)

× (∣∣ψ (0)
n

〉 + λ
∣
∣ψ (1)

n

〉 + λ2
∣
∣ψ (2)

n

〉 + . . .
)

= 1 + λ
(〈
ψ (1)

n

∣
∣ ψ (0)

n

〉 + 〈
ψ (0)

n

∣
∣ ψ (1)

n

〉) + λ2 (〈ψ (0)
n

∣
∣ ψ (2)

n

〉
. . .

)

= 1 + λ
(
c∗

n + cn
) + λ2 (〈ψ (0)

n

∣
∣ ψ (2)

n

〉
. . .

)
(12.18)

Because λ is arbitrary, the coefficients of each power of λ must vanish. For the first
power we have

c∗
n + cn = 2 Re (cn)

= 0 (12.19)

which means that cn is an imaginary number which we write as cn = ic, where c is
real. Splitting off the term for which k = n, the first-order correction to the energy
eigenket is
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∣∣ψ (1)
n

〉 = λic
∣∣ψ (0)

n

〉 + λ
∑

k �=n

〈
ψ

(0)
k

∣∣
∣ Ĥ1

∣∣
∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
∣∣
∣ψ (0)

k

〉
(12.20)

and the eigenket of Ĥ correct to first-order is

|ψn〉 = ∣
∣ψ (0)

n

〉 + ∣
∣ψ (1)

n

〉

|ψn〉 = (1 + icλ)
∣
∣ψ (0)

n

〉 + λ
∑

k �=n

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
∣
∣
∣ψ (0)

k

〉

≈ eicλ
∣
∣ψ (0)

n

〉 + λ
∑

k �=n

〈
ψ

(0)
k

∣
∣∣ Ĥ1

∣
∣∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
∣
∣
∣ψ (0)

k

〉
(12.21)

It is seen, then, that the only effect of cn is to change the phase of the unperturbed
ket

∣
∣ψ (0)

n

〉
in the expansion of |ψn〉. Unless c vanishes, the perturbed ket will not

reduce to the unperturbed ket in the event that Ĥ1 = 0. We must therefore choose
c = 0 and we have

cn = ic

= i
〈
ψ (0)

n

∣
∣ψ (1)

n

〉

= 0 (12.22)

so the corrected ket is

|ψn〉 = ∣
∣ψ (0)

n

〉 +
∑

k �=n

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
∣∣
∣ψ (0)

k

〉
(12.23)

where we have let λ = 1 since it is no longer needed and the first-order correction
is given by

∣
∣ψ (1)

n

〉 =
∑

k �=n

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
∣
∣
∣ψ (0)

k

〉
(12.24)

Finally, we will obtain the second-order correction to the energy E (2)
n . This cor-

rection is important because often the first-order correction vanishes. This hap-
pens in one-dimensional problems if the unperturbed potential is an even function
and the perturbation is odd. In this case the unperturbed energy eigenfunctions
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corresponding to
∣
∣ψ (0)

n

〉
have definite parity, so the integral that leads to E (1)

n in
Equation 12.12 vanishes.

As we might anticipate, to obtain E (2)
n , we must use the coefficient of λ2. Tak-

ing the inner product of this coefficient (given in Equation 12.9) with
〈
ψ (0)

n

∣
∣ we

have

〈
ψ (0)

n

∣
∣ Ĥ0

∣
∣ψ (2)

n

〉 + 〈
ψ (0)

n

∣
∣ Ĥ1

∣
∣ψ (1)

n

〉 = E (0)
n

〈
ψ (0)

n

∣
∣ψ (2)

n

〉

+E (1)
n

〈
ψ (0)

n

∣
∣ψ (1)

n

〉 + E (2)
n

= 0 (12.25)

or

〈
ψ (0)

n

∣
∣ Ĥ1

∣
∣ψ (1)

n

〉 = E (1)
n

〈
ψ (0)

n

∣
∣ψ (1)

n

〉 + E (2)
n (12.26)

Solving for E (2)
n and substituting Equation 12.24 for

∣
∣ψ (1)

n

〉
we have

E (2)
n = 〈

ψ (0)
n

∣
∣ Ĥ1

∣
∣ψ (1)

n

〉 − E (1)
n

〈
ψ (0)

n

∣
∣ψ (1)

n

〉

=
∑

k �=n

〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉

(
E (0)

n − E (0)
k

)
〈
ψ

(0)
n

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

k

〉

=
∑

k �=n

∣
∣
∣
〈
ψ

(0)
k

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

n

〉∣∣
∣
2

(
E (0)

n − E (0)
k

) (12.27)

The last term in the first equation of Equation 12.27 vanishes because the k = n is
excluded from the summation.

Equation 12.27 is the important result of second-order perturbation theory. The
term in the numerator is the matrix element of the perturbing Hamiltonian on the
set of unperturbed wave functions. If these matrix elements are of roughly the same
magnitude, it is seen that the biggest contribution to E (2)

n is from those states that
are nearest to the level of interest, the one designated by n, because the denominator
is small. These nearby levels are called the perturbing levels. If the major perturb-
ing levels are above the state n, then the denominator is negative and E (2)

n lowers
the unperturbed energy. The opposite is true if the perturbing levels lie above the
unperturbed level. This is the origin of the expression that the levels repel.

Example: Charged harmonic oscillator in a constant electric field

Imagine an electron at the end of a one-dimensional (quantum mechanical) spring.
In the absence of any fields, the unperturbed Hamiltonian Ĥ0 is that of the harmonic
oscillator and the unperturbed eigenkets are, as usual, designated |n〉 with energy
eigenvalues En = (

n + 1
2

)
�ω. If, however, a constant electric field F is applied,
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we can treat the potential energy associated with this field as the perturbation. Thus,
we have

Ĥ1 = eFx (12.28)

and we seek the first- and second-order corrections to the energy as well as the
first-order correction to the unperturbed kets. While this problem illustrates many
of the features of both first- and second-order nondegenerate perturbation theory,
the TISE can be solved exactly for the Hamiltonian Ĥ = Ĥ0 + Ĥ1 (see Problem 1).
Nonetheless, in this section we treat it by perturbation theory.

The first-order correction vanishes. This is easily seen by noting that the eigen-
functions must have definite parity and the perturbation is an odd power of x .
Therefore,

〈n| Ĥ1 |n〉 = 0 (12.29)

Before going on to the second-order correction, let us examine the expectation value
from a different viewpoint. We know from Section 7.1.2 that the diagonal matrix
elements for odd powers of x vanish. This is easily seen because, from Equation
7.4, we know that we may write x in terms of the ladder operators

x̂ = 1√
2α

(
â + â†) with α =

√
mω

�
(12.30)

so

〈n| Ĥ1 |n〉 = eF√
2α

〈n| (â + â†) |n〉

= eF√
2α

(〈n| â |n〉 + 〈n| â† |n〉)

= 0 (12.31)

Now, to proceed to second-order perturbation theory, we must evaluate the matrix
elements eF 〈m| x |n〉 which we accomplish using the ladder operators. The matrix
element 〈m| x |n〉 is given in Equation 7.31:

〈m| Ĥ1 |n〉 = eF 〈m| x |n〉
= eF√

2α

(√
nδm,n−1 + √

n + 1δm,n+1

)
(12.32)
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so that only two terms survive the summation. We have

E (2)
n =

∑

m �=n

∣
∣〈m| Ĥ1 |n〉∣∣2
(

E (0)
n − E (0)

m

)

=
(

eF√
2α

)2 [ n

(En − En−1)
+ n + 1

(En − En+1)

]

= e2 F2

2

(
�

mω

)[
n

�ω
+ n + 1

−�ω

]

= − e2 F2

2mω2
(12.33)

12.1.2 Degenerate Perturbation Theory

Examination of Equations 12.24 and 12.27 reveals a serious problem if an unper-
turbed level is degenerate. That is, suppose an unperturbed eigenvalue, E (0)

m , corre-

sponds to two (or more) unperturbed kets
∣
∣ψ (0)

m

〉
and

∣
∣
∣ψ (0)

m′

〉
. Then, when the sum-

mations in these equations are executed the denominator of one term vanishes. The
underlying reason for this is that the eigenfunctions corresponding to a degenerate
level are not unique as discussed in Section 6.2.1. To handle this situation we assume
that, although some set of unperturbed kets are degenerate, the eigenkets of the
true Hamiltonian, Ĥ0 + λĤ1, are nondegenerate. The jargon that accompanies this
condition is that “the perturbation removes the degeneracy,” although in many cases
the perturbation only partially removes the degeneracy. Figure 12.1 illustrates the
contrast between the nondegenerate and degenerate cases. For the nondegenerate
case each unperturbed state evolves into another nondegenerate state, but for the
degenerate case the group of degenerate states on the left is split into a group of
nondegenerate states. In the illustration the degenerate state is fivefold degenerate
and one of those states is not shifted by application of the perturbation.

Recalling that any linear combination of the degenerate eigenkets is also an
eigenket, we must construct a linear combination of the degenerate kets of Ĥ0 that
are also eigenkets of Ĥ1. That is, we seek a particular linear combination of the q

degenerate kets
∣∣
∣ψ (0)

j

〉

Fig. 12.1 Illustration of the
effects of a perturbation on
(a) a nondegenerate level and
(b) a degenerate level
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∣
∣
∣φ(0)

i

〉
=

q∑

j=1

ci j

∣
∣
∣ψ (0)

j

〉
(12.34)

to serve as our unperturbed ket such that

Ĥ1

∣
∣
∣φ(0)

i

〉
= E (1)

i

∣
∣
∣φ(0)

i

〉
(12.35)

Because it is always possible to construct an orthonormal set (see Section 6.2.1,

Theorem 6.2.1), we assume that the set of
∣
∣
∣ψ (0)

j

〉
, which are not unique, are indeed

orthonormal. Let us carefully examine the symbols in Equation 12.34. This state

is q-fold degenerate, so there are q different linear combinations
∣
∣∣φ(0)

i

〉
, one corre-

sponding to each degenerate state. All, however, have the same energy eigenvalue,

E (0)
q . The kets

∣∣
∣φ(0)

i

〉
are sometimes referred to as the select linear combination of

degenerate unperturbed kets and we have used the symbol φ to distinguish the select

kets from the kets
∣
∣
∣ψ (0)

j

〉
that are not eigenkets of Ĥ1.

To determine the select linear combinations we substitute
∣
∣
∣φ(0)

i

〉
for

∣
∣ψ (0)

n

〉
,

Equation 12.34, into the second of Equations 12.9, the coefficient of λ1:

Ĥ0

∣
∣∣ψ (1)

i

〉
+ Ĥ1

∣
∣∣φ(0)

i

〉
= E (0)

i

∣
∣∣ψ (1)

i

〉
+ E (1)

i

∣
∣∣φ(0)

i

〉
(12.36)

Because the eigenkets that have been corrected to first-order are nondegenerate we

may expand the
∣∣
∣ψ (1)

i

〉
on the original unperturbed set

∣∣
∣ψ (0)

j

〉
:

∣
∣
∣ψ (1)

i

〉
=

∞∑

j=1

ai j

∣
∣
∣ψ (0)

j

〉
(12.37)

where we assume that in the summation the first q terms, j = 1 → q , are the

degenerate eigenkets
∣
∣∣ψ (0)

j

〉
. Inserting this expansion into Equation 12.36 we obtain

∞∑

j=1

ai j E (0)
j

∣∣
∣ψ (0)

j

〉
+ Ĥ1

q∑

j=1

ci j

∣∣
∣ψ (0)

j

〉
= E (0)

i

∞∑

j=1

ai j

∣∣
∣ψ (0)

j

〉
+ E (1)

i

q∑

j=1

ci j

∣∣
∣ψ (0)

j

〉
(12.38)

For the j = 1 → q terms of the expansions E (0)
j = E (0)

i = E (0)
q so Equation 12.38

becomes

∞∑

j>q

ai j E (0)
j

∣
∣
∣ψ (0)

j

〉
+ Ĥ1

q∑

j=1

ci j

∣
∣
∣ψ (0)

j

〉
= E (0)

q

∞∑

j>q

ai j

∣
∣
∣ψ (0)

j

〉
+ E (1)

i

q∑

j=1

ci j

∣
∣
∣ψ (0)

j

〉
(12.39)
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because the first q terms in the first summation on each side of the equation cancel.

Multiplying on the left by an unperturbed degenerate bra
〈
ψ

(0)
k

∣
∣
∣, that is, a bra for

which k ≤ q , we have

q∑

j=1

ci j

〈
ψ

(0)
k

∣
∣∣ Ĥ1

∣
∣∣ψ (0)

j

〉
= E (1)

i cik k < q (12.40)

Equation 12.40 may be written in matrix notation. The degenerate eigenkets∣
∣∣ψ (0)

i

〉
are not eigenkets of Ĥ1 so the matrix of the perturbing Hamiltonian is not

diagonal on this basis set (see Section 6.1.3). It is, however, diagonal on the
∣
∣
∣φ(0)

j

〉

basis. This makes clear the reason for constructing the select set
∣
∣
∣φ(0)

i

〉
. Note that

the matrix representing the unperturbed Hamiltonian, Ĥ0, is diagonal on both basis
sets. To clarify the nature of the matrices we illustrate schematically the q×q matrix
representation of the complete Hamiltonian, Ĥ = Ĥ0 + Ĥ1, on each of these basis

sets. On the
∣
∣
∣ψ (0)

i

〉
set we have

Ĥ = Ĥ0 + Ĥ1
⎛

⎜
⎜
⎝

E (0)
q 0 0 0
0 E (0)

q 0 0
0 0 E (0)

q 0
0 0 0 . . .

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

(
Ĥ1

)
11

(
Ĥ1

)
12

(
Ĥ1

)
13 . . .(

Ĥ1
)

21

(
Ĥ1

)
22

(
Ĥ1

)
23 . . .(

Ĥ1
)

31

(
Ĥ1

)
32

(
Ĥ1

)
33 . . .

. . . . . . . . . . . .

⎞

⎟
⎟
⎠ (12.41)

where
(
Ĥ1

)
i j

=
〈
ψ

(0)
i

∣
∣
∣ Ĥ1

∣
∣
∣ψ (0)

j

〉
. This matrix representation of Ĥ1 is not, in general,

diagonal, so it is not useful for determination of the first-order corrections to the
energy, the E (1)

i . If, however, some of the off-diagonal matrix elements (i �= j )
vanish, then the corresponding diagonal elements are the first-order correction to the
eigenvalues as for nondegenerate perturbations. Thus, if part of a matrix is diagonal,
we need diagonalize only the submatrix that is not.

To diagonalize the matrix we must use the select set, the
∣
∣
∣φ(0)

j

〉
, as the basis set

and the matrix representation of Ĥ is
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〈
φ

(0)
k

∣∣
∣ Ĥ

∣∣
∣φ(1)

i

〉
=

〈
φ

(0)
k

∣∣
∣ Ĥ0

∣∣
∣φ(1)

i

〉
+

〈
φ

(0)
k

∣∣
∣ Ĥ1

∣∣
∣φ(1)

i

〉

=

⎛

⎜
⎜
⎝

E (0)
q 0 0 0
0 E (0)

q 0 0
0 0 E (0)

q 0
0 0 0 . . .

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

E (1)
1 0 0 0
0 E (1)

2 0 0
0 0 E (1)

3 0
0 0 0 . . .

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

E (0)
q + E (1)

1 0 0 0
0 E (0)

q + E (1)
3 0 0

0 0 E (0)
q + E (1)

3 0
0 0 0 . . .

⎞

⎟
⎟
⎟
⎠

(12.42)

where
(
Ĥ1

)
i j

=
〈
φ

(0)
i

∣
∣
∣ Ĥ1

∣
∣
∣φ(0)

j

〉
. It should now be clear why most degenerate pertur-

bation problems are solved by using matrices to represent the Hamiltonians and the
eigenkets. An example will serve to illustrate the method.

Example: A perturbed isotropic oscillator

Cartesian coordinates

We examine the effects of a perturbation Ĥ1 = εxy on the first excited state of an
isotropic harmonic oscillator. The form of Ĥ1 suggests that we work in Cartesian
coordinates, but this is not actually necessary. In Cartesian coordinates the unper-
turbed Hamiltonian is Ĥ0 = 1

2 mω2
(
x2 + y2 + z2

)
. Recall from the discussion of

this oscillator in Section 9.5 that the ground state is nondegenerate, but that the first
excited state, the state having quantum number n = 1, is threefold degenerate. We
seek the first-order correction to the unperturbed energy

E (0)
1 = 5

2
�ω (12.43)

Clearly E (0)
1 is formed from the quantum numbers

(
nx , ny, nz

)
using the com-

binations (1, 0, 0), (0, 1, 0), or (0, 0, 1). We can therefore immediately write the
matrix representation for Ĥ0 using the corresponding kets, which we designate as∣
∣nx ny nz

〉
, as a basis set. Of course, in this representation Ĥ0 is diagonal:

Ĥ0 = 5

2
�ω

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (12.44)
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Now we must find the Ĥ1 using the same basis set so its matrix is given by

Ĥ1 = ε

⎛

⎝
〈1 0 0| xy |1 0 0〉 〈1 0 0| xy |0 1 0〉 〈1 0 0| xy |0 0 1〉
〈0 1 0| xy |1 0 0〉 〈0 1 0| xy |0 1 0〉 〈0 1 0| xy |0 0 1〉
〈0 0 1| xy |1 0 0〉 〈0 0 1| xy |0 1 0〉 〈0 0 1| xy |0 0 1〉

⎞

⎠ (12.45)

To find the entries in this matrix we use the matrix elements determined in Section
7.1.2. From Equation 7.31 we have

〈
mx m y mz

∣
∣ Ĥ1

∣
∣nx ny nz

〉 = ε
〈
mx m y mz

∣
∣ xy

∣
∣nx ny nz

〉

= ε

2α2

(√
nxδmx ,nx −1 +

√
nx + 1δmx ,nx +1

)

×
(√

nyδmy ,ny−1 + √
ny + 1δmy ,ny+1

)
(12.46)

and we see immediately that, because none of the Kronecker deltas have the same
indexes, all diagonal elements of the perturbation matrix vanish. This is the same as
noting that x is an odd function so all diagonal elements of Ĥ1 vanish. They also
vanish because y is an odd function. Also, again because of the Kronecker deltas,
any matrix elements for which the value of nx and ny is the same, vanish. That is,
〈0 0 1| xy |1 0 0〉 = 〈1 0 0| xy |0 0 1〉 = 0 and 〈0 1 0| xy |1 0 0〉 = 〈0 1 0| xy |1 0 0〉 =
0. Thus, the only nonzero matix elements are 〈1 0 0| xy |0 1 0〉 = 〈0 1 0| xy |1 0 0〉,
those for which nx and ny differ by unity, and we have

〈0 0 1| xy |0 1 0〉 = ε

2α2
(1 + 0) × (0 + 1)

= ε

2α2
(12.47)

Therefore, the matrix representation of Ĥ1 on the
∣
∣nx ny nz

〉
basis set is

Ĥ1 = ε

2α2

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ (12.48)

Because the only off-diagonal elements occur between state |0 0 1〉 and |0 1 0〉 only
the upper left 2×2 submatrix need be diagonalized as discussed above. We therefore
diagonalize the matrix

(
0 1
1 0

)
(12.49)

to find the corrections to the unperturbed energies, as well as the select linear com-
bination of unperturbed kets. Performing all the steps we have
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ε

2α2

(
0 1
1 0

)(
a
b

)
= E (1)

1

(
a
b

)
(12.50)

or

⎛

⎝
−E (1)

1

ε

2α2
ε

2α2
−E (1)

1

⎞

⎠
(

a
b

)
= 0 (12.51)

This equation represents two homogeneous linear equations with the variables a and
b. A nontrivial solution will exist if the determinant of coefficients vanishes. Note
that this will not (yet) determine the select kets. Rather, we will obtain the allowable
values of E (1)

1 from which we will be able to determine the select kets. Setting the
determinant equal to zero we obtain the secular equation

[
E (1)

1

]2
−

( ε

2α2

)2
= 0 (12.52)

from which it is clear that the eigenvalues of Ĥ1, which are also the corrections to
the unperturbed energy, are

E (1)
1± = ± ε

2α2

= ± ε�

2mω
(12.53)

and the corrected energy is

E1± = 5

2
�ω ± ε�

2mω
(12.54)

It is clear from this equation that, indeed, application of the perturbation has
split the degenerate levels (1, 0, 0) and (0, 1, 0) and thus removed the n = 1
degeneracy.

The kets that represent these split states are the select kets which may be found
by inserting the two values of E (1)

1± into Equation 12.50 and solving for a and b.

Using the 3 × 3 matrix, we have

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠

⎛

⎝
a
b
c

⎞

⎠ = ±
⎛

⎝
a
b
c

⎞

⎠ (12.55)

so that

b = ±a; c = 0 (12.56)
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In terms of the unperturbed kets the normalized select kets are therefore

1√
2

⎛

⎝
1

±1
0

⎞

⎠ = 1√
2

⎛

⎝
1
0
0

⎞

⎠ ± 1√
2

⎛

⎝
0
1
0

⎞

⎠ (12.57)

or, designating the select kets a |+〉 and |−〉,

|±〉 = 1√
2

|1 0 0〉 ± 1√
2

|0 1 0〉 (12.58)

Of course, the unperturbed ket |0 0 1〉 is unaffected by the perturbation, so the
eigenvalue of this ket is not shifted. The levels and the kets are shown in
Fig. 12.2.

Spherical coordinates

Working this problem in spherical coordinates is a bit more involved, but not much.
Doing so provides practice in solving degenerate perturbation problems so we work
out the details. The eigenfunctions and their eigenvalues in spherical coordinates are
already known (see Section 9.5.2). For the first excited state the quantum numbers
are n = 1, � = 1, m = 0,±1 so, as for Cartesian coordinates, this state is threefold
degenerate. In spherical coordinates the perturbing Hamiltonian is

Ĥ1 = εr2 sin2 θ cos φ sin φ (12.59)

and, from Table 9.8, the three unperturbed eigenfunctions are

ψ11m (r, θ, φ) =
√

8

3
· α5/2

π1/4
re−α2r2/2Y1m (θ, φ) (12.60)

Fig. 12.2 The effects of the
perturbation Ĥ1 = εxy on the
n = 1 states of an isotropic
oscillator
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Because the three spherical eigenfunctions all have the same values of n and �, we
designate the corresponding kets by only their values of m. The matrix representing
the unperturbed Hamiltonian is the diagonal matrix displayed in Equation 12.44. We
must now find the matrix representation of Ĥ1 in the representation of the spherical
basis. We are free to choose the order of the matrix elements, so we elect to use

Ĥ1 = ε

⎛

⎝
〈−1| Ĥ1 |−1〉 〈−1| Ĥ1 | 0〉 〈−1| Ĥ1 | 1〉
〈0| Ĥ1 |−1〉 〈0| Ĥ1 |0〉 〈0| Ĥ1 |1〉
〈1| Ĥ1 |−1〉 〈1| Ĥ1 |0〉 〈1| Ĥ1 |1〉

⎞

⎠ (12.61)

Three integrals are required to compute each matrix element. These φ-integrals have
the form

Iφ
(
m, m ′) =

∫ 2π

0

(
eimφ

)∗
eim′φ cos φ sin φdφ (12.62)

If m = m ′, this integral vanishes, so all diagonal elements of the matrix in Equation
12.61 are zero. Moreover, if either m or m

′
is zero, then the integral also vanishes.

Thus, the only nonvanishing matrix elements are 〈1| Ĥ1 |−1〉 and 〈−1| Ĥ1 | 1〉. Be-
cause 〈1| Ĥ1 |−1〉 = 〈−1| Ĥ1 | 1〉∗ it is necessary to evaluate only one integral. We
obtain (see Problem 10)

〈1| Ĥ1 |−1〉 = − iε

2α2
(12.63)

so the matrix that we must diagonalize is

Ĥ1 = iε

2α2

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ (12.64)

Clearly we could have arranged the order of the kets to obtain a matrix of the form
of that in Equation 12.48 so that a 2 × 2 submatrix was obvious. Nonetheless, the
secular equation is

∣
∣
∣
∣∣
∣
∣
∣
∣

−E (1)
1 0

iε

2α2

0 −E (1)
1 0

− iε

2α2
0 −E (1)

1

∣
∣
∣
∣∣
∣
∣
∣
∣

= 0 (12.65)

or

[
−E (1)

1

]3
+

(
iε

2α2

)[
−

(
E (1)

1

iε

2α2

)]
= 0 (12.66)



390 12 Time-Independent Approximation Methods

from which we find

E (1)
1 = 0,±

( ε

2α2

)

= 0,±
(

ε�

2mω

)
(12.67)

which agrees with the result obtained using Cartesian coordinates, Equation 12.53.

12.2 The Variational Method

As noted, this method provides only the energy eigenvalue, but we can obtain
these energies to any precision that we desire. We assume that we know the true
Hamiltonian and pretend that we can solve the problem which may be written
symbolically as

Ĥ |φn〉 = En |φn〉 (12.68)

where the |φn〉 eigenkets form a complete orthonormal set. The En are the cor-
responding energy eigenvalues; we seek E0. The only thing we actually know in
Equation 12.68 is the Hamiltonian.

We now assume some arbitrary normalized wave function that we refer to as a
trial wave function |ψ〉 and expand it on the complete, but unknown, set of orthonor-
mal eigenkets |φn〉:

|ψ〉 =
∞∑

n=0

cn |φn〉 (12.69)

Of course, it is sensible to begin with a trial function that matches the boundary
conditions. For example, if we we attempting to find the ground state energy of a
hydrogen atom, it would not be wise to choose a trial wave function that vanishes at
r = 0 (see Fig. 10.3).

Now we write an expression for the expectation value of the energy in the state
represented by |ψ〉:

〈E〉 = 〈ψ| Ĥ |ψ〉

=
∞∑

n=0

|cn|2 〈φn| Ĥ |φn〉

=
∞∑

n=0

|cn|2 En (12.70)
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The ground state energy, E0, is lower in magnitude than any of the other eigenvalues
so, if we let En = E0 in Equation 12.70, we obtain an inequality

〈E〉 ≥ E0

∞∑

n=0

|cn|2

≥ E0 (12.71)

where, because |ψ〉 is normalized, the summation in Equation 12.71 is unity. If the
trial wave function is not normalized, we merely divide by 〈ψ |ψ〉 and we have

〈E〉 = 〈ψ| Ĥ |ψ〉
〈ψ |ψ〉

=
∫

ψ∗ (r) Ĥψ (r) dV
∫

ψ∗ (r) ψ (r) dV

≥ E0 (12.72)

Now, let us examine the ramifications of Equation 12.71. If we are working in
coordinate space, this inequality is

〈E〉 =
∫

ψ∗ (r) Ĥψ (r) dV

≥ E0 (12.73)

so we can take any trial wave function, compute the integral in Equation 12.73, and
be assured that the result will be greater than the true ground state energy. To make
our result more precise we can insert parameters in the wave function and minimize
〈E〉 with respect to these parameters. No matter how many parameters we include in
our trial wave function we are assured that 〈E〉 will be greater than the true ground
state energy. Thus, it can be seen that if many parameters are chosen, using modern
computers it is possible to evaluate the expectation value and minimize 〈E〉, thus
obtaining the ground state to virtually any accuracy we please.

Example: Ground state energy of a one-dimensional harmonic oscillator

Let us assume that we do not know either the ground state eigenfunction or the
ground state energy of a one-dimensional harmonic oscillator, E0 = 1

2 �ω. To
approximate the ground state energy we guess at a trial wave function. We can,
however, make an educated guess. For example, we know that the potential energy
is given by Equation 3.22, which is an even function of x . Therefore, the ground
state eigenfunction must be an even function. We choose one of the form
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ψ (x) = 1

β2 + x2
(12.74)

where β is a parameter that we can vary to minimize 〈E〉. This trial wave function is
not normalized so we will have to use Equation 12.72. We expect that both integrals
in Equation 12.72 will depend upon β. Using Equation H.8 we have

〈ψ |ψ〉 =
∫ ∞

−∞

1
(
β2 + x2

)2 dx

= π

2β3
(12.75)

and

〈ψ| Ĥ |ψ〉 =
∫ ∞

−∞

1
(
β2 + x2

)
(

− �
2

2m

d2

dx2
+ 1

2
mω2

)
1

(
β2 + x2

)dx (12.76)

Using the integrals given in Equations H.8, H.9, and H.10,

〈ψ| Ĥ |ψ〉 = π�
2

8mβ5
+ πmω2

4β
(12.77)

so that

〈E〉 = �
2

4mβ2
+ mω2

2
β2 (12.78)

We wish to minimize this expression with respect to β to obtain β0, the value of β

that minimizes 〈E〉. Therefore,

d 〈E〉
dβ

= 0

= − �
2

2mβ3
0

+ mω2β0 (12.79)

so that

β2
0 = �√

2mω
(12.80)
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Fig. 12.3 The trial wave function and true eigenfunction for the ground state of the harmonic
oscillator plotted on the same graph as the potential energy function. These wave functions are
plotted at the energies to which they correspond

which, when inserted in Equation 12.78, leads to

〈E〉 = 1√
2

�ω (12.81)

This approximation is clearly not very close to the correct value, 1
2 �ω, since it is in

error by roughly forty percent.
Figure 12.3 shows the true eigenfunction and the trial wave function. The zero

of the trial wave function is the calculated approximate energy 〈E〉 (see Equation
12.81). Despite the fact that the calculated energy is not a very close approxima-
tion to the actual energy, this simple example illustrates the power of the method
because, as seen in Fig. 12.3, the trial wave function is not a very good likeness of
the true ground state wave function. In principle, we could include a large number
of adjustable parameters in our trial wave function, minimizing 〈E〉 with respect
to each of them. As a consequence, with the availability of modern computers it is
possible to obtain an approximation to virtually any energy with unlimited precision.

Problems

1. A particle of mass m is trapped in a one-dimensional harmonic oscillator po-
tential with a constant electric field F superimposed.

(a) Show that the TISE can be solved exactly.
(b) Compare the answer with that obtained in the example in Section 12.1.1.

What can be said about the perturbation corrections higher than second-
order?
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2. A δ-function spike in the potential energy, U0δ (x), is inserted in an a-box at
x = 0. Find the first-order correction to the energy of the nth state. Why is
there no first-order correction for even quantum numbers n?

3. An electron is confined to an L-box with a superimposed electric field that
is associated with the potential energy U (x) = eFx . The field is such that
eF L << E (0)

1 , the unperturbed ground state energy.

(a) Find the first-order correction to the ground state energy of the L-box.
(b) Find the first-order correction to the ground state eigenfunction of the

L-box. Evaluate only the first term in the summation. Why is this term
the leading term?

4. A particle of mass m is confined to an L-box, the parameters of which are such
that mc2 >> E (0)

n for low values of n.

(a) Find E (1)
n the first-order correction to the energy due to the relativistic ki-

netic energy of the particle. Write E (1)
n in terms of E (0)

n , the nonrelativistic
energy for an L-box. [Note that the total relativistic energy of a particle of
mass m is given by E2 = p̂2c2 + m2c4.]

(b) For a particle-in-a-box the usual nonrelativistic energy eigenfunctions are
also eigenfunctions of the relativistic Hamiltonian. Find the exact relativis-
tic energy and show that for mc2 >> E (0)

n the solution reduces to the
perturbation theory result.

5. Treat the rotationless Morse oscillator, Equation 5.44, using perturbation the-
ory and obtain the first nonvanishing correction to the nth state of a one-
dimensional harmonic oscillator due to the first anharmonic term. Use β in
place of α in the Morse potential to avoid confusion with α2 = mω/�. The
matrix element given in Equation 7.38 may be helpful.

6. Suppose the square of the natural frequency of a harmonic oscillator is written
as the sum of two squared frequencies so that ω2 → ω2 +ω2

1 where ω2
1 << ω2.

(a) Calculate the energy shifts using perturbation theory with Ĥ1 = 1
2 mω2

1
through second-order.

(b) Compare the perturbation result with the exact energies.

7. Find the first-order correction to the energy of a particle in the ground state
of a quartic oscillator having potential energy U (x) = Cx4 (C is a positive
constant) using a harmonic oscillator as the unperturbed system. [Hint: Add
and subtract 1

2 mω2x2 to the Hamiltonian.]
8. A matrix that has been constructed on an orthonormal basis set and represents

the Hamiltonian of a particular system is given by

Ĥ =
⎛

⎝
1 ε 0
ε 2 0
0 0 3 − ε

⎞

⎠
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(a) Write this matrix as the sum of two matrices Ĥ = Ĥ0 + Ĥ1 for the purpose
of applying perturbation theory to approximate the eigenvalues of Ĥ .

(b) Find the eigenvalues to second-order.
(c) Solve the problem exactly and compare with the perturbation theory result.

9. Show that the first-order corrections to the energy of the isotropic oscillator due
to the perturbation Ĥ1 = εxy, Equation 12.53, do indeed have units of energy.

10. Verify the matrix element 〈1| Ĥ1 |−1〉 = −iε/
(
2α2

)
(see Equation 12.63)

where Ĥ1 = εr2 sin2 θ cos φ sin φ.
11. An electron trapped in an isotropic harmonic oscillator potential has applied to

it an electric field F = F k̂. Use perturbation theory to find the first nonvanish-
ing correction to the ground state energy:

(a) in Cartesian coordinates
(b) in spherical coordinates

12. Suppose the matrix representing the Hamiltonian Ĥ in Problem 8 is modified
so the middle entry is unity:

Ĥ =
⎛

⎝
1 ε 0
ε 1 0
0 0 6

⎞

⎠

(a) Find the select basis set and show that these select eigenvectors diagonalize
Ĥ .

(b) Show that the select set diagonalizes Ĥ and therefore show that the eigen-
values are (1 ± ε) and 6.

(c) Show that Ĥ operating on the select eigenvectors produces the eigenvalues.
(d) Solve the problem exactly and compare with the perturbation theory result.

13. A particle of mass m is trapped in a quartic oscillator having potential energy
U (x) = Cx4 where C is a positive constant.

(a) Using the variational technique estimate the ground state energy using the
trial wave function ψ (x) = Ae−β2 x2/2 where A = constant. Use β as the
adjustable parameter.

(b) Compare the variational technique answer with the perturbation result
found in Problem 7.

14. Use the trial wave function ψ (x) = Ae−β2 x2
to estimate the ground state energy

of a harmonic oscillator and show that the value of β that minimizes 〈ψ| Ĥ |ψ〉
is α/

√
2 where α = √

mω/�.
15. Using the variational technique, estimate the ground state energy of a particle

of mass m trapped in a half harmonic oscillator (see Problem 19 of Chapter 3):

U (x) = 1

2
mω2x2 x > 0

= ∞ x ≤ 0
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using the trial wave function with β as a parameter:

ψ (x) = Axe−βx x > 0 ; A = constant

= 0 x ≤ 0

Compare the answer with the exact answer. Why was the trial wave function
chosen to vanish at x = 0?

16. A particle of mass m is trapped in a linear potential

U (x) = eFx x > 0

= ∞ x ≤ 0

(a) Using the variational technique estimate the ground state energy using the
trial wave function ψ (x) = Axe−βx ; A = constant.

(b) Show that the energy calculated using the variational principle is greater
than the exact energy calculated in Section 5.5.



Chapter 13
Applications of Time-Independent
Approximation Methods

The examples of the approximation methods discussed in Chapter 12 were chosen
primarily to illustrate the methods, and not necessarily for their relevance to physical
problems. In this chapter we will concentrate on application of these methods to real
problems. We begin with the hydrogen atom. When relativistic effects are included
in the Hamiltonian, the accidental degeneracy is broken, so we will examine these
effects. We will then study the helium atom as an example of atoms having more
than one electron. Because the three body problem cannot be solved exactly the
approximation methods used to understand the helium atom serve as a paradigm for
all multielectron atoms.

13.1 Hydrogen Atoms

13.1.1 Breaking the Degeneracy—Fine Structure

The first corrections to the Bohr energy are called fine structure. They are all rel-
ativistic in nature. To understand the magnitudes of the corrections that relativistic
effects make to the degenerate Bohr energies, we write this energy in terms of the
fine structure constant α, Equation 1.36:

E (0)
n = −1

2
α2

(
mec2

)

n2
(13.1)

where, for consistency with the notation of Chapter 12, we have designated the
Bohr energy as E (0)

n . This energy is proportional to the rest energy of the electron
multiplied by α2. We will see that the next level of correction is proportional to the
rest energy times α4. Therefore, the fine structure corrections to the Bohr energy
E (1)

n = EF S are such that

EF S ∝ α2 E (0)
n (13.2)

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 397
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It is because α4
≈ 5 × 10−5 · α2 that these corrections are known as fine structure.

To obtain the fine structure corrections rigorously, the Dirac equation, an inherently
relativistic equation, must be solved. Because it is a relativistic equation, the Dirac
equation supersedes the Schrödinger equation.

We have already studied hyperfine structure as an example of angular momentum
coupling in Section 8.6.1 where, in the notation of that section, we found that the
energy splitting due to the magnetic interaction between the proton and the electron
on the n = 1 state is 2κ = EH F (see Fig. 8.9). It can be shown that the magnitude
of this splitting is given by

EH F = 4

3

[
me

m p
gp

] [
α2ge

(
1

2
α2mec2

)]

∝ me

m p
EF S (13.3)

where gp = 5.586 is the proton spin g-factor and me/m p is the ratio of the electron
to proton mass. Since this ratio is ∼ 1/2000 it is clear that the hyperfine splitting is
more than three orders of magnitude smaller than the fine structure splitting.

There is yet another shift in energy, this one roughly proportional to α3 times
the Bohr energy. This energy shift cannot be derived from even the Dirac equa-
tion. Rather, it is a consequence of quantum electrodynamics (QED). When this
shift, known as the Lamb shift, was measured, it validated QED and represents a
triumph for that theory for which W. E. Lamb, Jr. shared the 1955 Nobel prize
with Polykarp Kusch. The citation for Lamb’s portion of the prize reads: “for
his discoveries concerning the fine structure of the hydrogen spectrum.” Kusch’s
award was for his precision measurements of magnetic moments. The citation for
Kusch’s portion of the prize reads: “for his precision determination of the magnetic
moment of the electron.” We will, however, concentrate our efforts on fine struc-
ture.

The exact energy eigenvalues obtained from the Dirac equation for the Coulomb
potential, when expanded, yield the Bohr energy and the fine structure corrections
as well as higher order corrections. These higher order corrections are of little con-
sequence because they are smaller than the Lamb Shift, which is not part of the
solution of the Dirac equation. An alternative method of examining the hydrogen
atom is to first expand the Dirac Hamiltonian. This procedure permits identification
of the physical origin of the individual terms and, thus, provides insight into the
physical basis for these corrections. We will see, however, that in one case the source
of the terms is vague at best.

Expanding the Dirac Hamiltonian and retaining terms up to α4 leads to

ĤDirac = mec2 +
[

p̂2

2me
−

(
e2

4πε0

)
1

r

]
+ ĤT + ĤSO + ĤD (13.4)

where
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ĤT = − p̂4

8m3
ec2

(13.5)

ĤSO =
(

e2

4πε0

)(
1

2m2
ec2

)
1

r3
L̂ • Ŝ (13.6)

ĤD =
(

e2

4πε0

)
�

2π

2m2
ec2

δ (r) (13.7)

Each of the Hamiltonians, ĤT , ĤSO, and ĤD, produces a correction to the Bohr en-
ergy that is of the order α2 E (0)

n so their sum constitutes the fine structure Hamiltonian
ĤF S. We will evaluate the corrections due to each of these perturbing Hamiltonians,
and then add the results to obtain the complete fine structure correction. Notice that
the leading term in the expansion of ĤDirac, Equation 13.4, is the rest energy of the
electron, a constant. This is not a very mathematically interesting Hamiltonian, but,
quite naturally, it leads to the correct rest mass. This term is proportional to α0.
The term in brackets is the familiar unperturbed nonrelativistic Schrödinger Hamil-
tonian Ĥ0, the energy eigenvalues of which are the Bohr energies E (0)

n ∝ α2mec2.
The sources of the first two of the remaining three terms, ĤT and ĤSO , are easily
understood. The first term, ĤT , corresponds to the correction to the unperturbed
energy resulting from proper inclusion of the relativistic velocity of the electron.
The second, ĤSO , represents the interaction between the spin and orbital magnetic
moments. The last term is the Darwin correction, named for Charles Galton Darwin,
grandson of the famous biologist. Physical interpretation of the origin of the Darwin
term is of dubious value. It is said to originate from a “shaking motion” of the
electron that smears its probability distribution. As a consequence of the δ-function,
it affects only � = 0 states (s-states) because all other angular momentum states
vanish at the origin. Despite the vagueness of the meaning of this term, it represents
a real effect. Each of the three Hamiltonians ĤT , ĤSO , and ĤD is proportional to
α4 and they are therefore treated as the perturbation Hamiltonians for determination
of the fine structure. Often the expansion of the Dirac Hamiltonian assumes that
the unperturbed energy is the leading term, so the perturbing Hamiltonians are said
to be proportional to α2 rather than α4. We will attempt to express the energies in
a way that clearly shows the relationship between the energy corrections and the
unperturbed energy.

Relativistic motion of the electron

We consider first the relativistic motion of the electron. Although the highest elec-
tronic velocity as estimated from the Bohr model of the atom, Equation 1.41, is
more than two orders of magnitude smaller than the speed of light, relativistic ef-
fects must be considered to accurately assess the fine structure. That is, inclusion
of relativity in describing the electronic velocity leads to a correction to E (0)

n that
is proportional to α2. The effect is identical with that encountered in Problem 4,
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Chapter 12 for an L-box, but not quite as simple. The relativistic kinetic energy
operator T̂rel is

T̂rel =
√

p̂2c2 + (
mec2

)2 − mec2

= mec2

(
1 + p̂2

m2
ec2

)1/2

− mec2

= p̂2

2me
− p̂4

8m3
ec2

. . . (13.8)

The first term in Equation 13.8 is simply the nonrelativistic kinetic energy that is part
of the Schrödinger Hamiltonian, but the second is the first-order correction due to
relativistic motion of the electron ĤT which we treat as the perturbing Hamiltonian.
Both terms are present in the Dirac Hamiltonian given in Equation 13.4. Retaining
the first two terms in the expansion of T̂rel in Equation 13.8, we may express T̂rel in
terms of the nonrelativistic kinetic energy, T̂0 = p̂2/ (2me):

T̂rel = T̂0

(
1 − T̂0

1

2mec2

)
(13.9)

so that we may write

ĤT = − T̂ 2
0

2mec2
(13.10)

and the first-order correction to the Bohr energy due to the relativistic motion of the
electron is

E (1)
T (n�m) = 〈n�m| ĤT |n�m〉

= 〈
ĤT

〉
n�m

(13.11)

Before evaluating the first-order correction to the energy that is caused by ĤT , we
may estimate its value relative to the unperturbed energy. For the Coulomb potential,
the virial theorem in the form given in Equation 6.129 is applicable and we have

2
〈
T̂0
〉 = − 〈U〉

= − [
E (0)

n − 〈
T̂0
〉]

(13.12)

or

〈
T̂0
〉 = −E (0)

n (13.13)

so that we may estimate the magnitude of the correction term, the second term on
the right-hand side of Equation 13.9, by taking the ratio
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∣∣
∣
∣
∣

〈
ĤT

〉

〈
Ĥ0

〉

∣∣
∣
∣
∣

=
(
T̂ 2

0 /2mec2
)

E (0)
n

∝ α2/n2 (13.14)

which is the criterion for the correction to be a fine structure correction.
To evaluate this correction we write this expectation value in Equation 13.11 in

the form

E (1)
T (n�m) = − 1

2mec2

〈
T̂ 2

0

〉
n�m

= − 1

2mec2
〈n�m| [Ĥ0 − 〈U〉] [Ĥ0 − 〈U〉] |n�m〉

= − 1

2mec2
〈n�m|

[
E (0)

n + (�cα)
1

r

] [
E (0)

n + (�cα)
1

r

]
|n�m〉

= − 1

2mec2

[
(
E (0)

n

)2 + 2E (0)
n (�cα)

〈
1

r

〉

n�m

+ (�cα)2

〈
1

r2

〉

n�m

]

= − 1

2mec2

{(
1

2

mec2α2

n2

)2

+ 2

(
−1

2

mec2α2

n2

)
(�cα)

(mecα

n2�

)

+ (�cα)2
(mecα

�

)2
[

2

n3 (2� + 1)

]}

=
(

−mec2α2

2n2

)
α2

n2

[
n

(� + 1/2)
− 3

4

]

= E (0)
n

α2

n2

[
n

(� + 1/2)
− 3

4

]
(13.15)

where we have used the expectation values from Table 10.4 and a0 = �/mecα from
Table 1.1. Because the factor n/

(
� + 1

2

)
> 1 for a one-electron atom and E (0)

n < 0,
it is clear that the effect of ĤT is always to lower the energy. We must, however,
bear in mind that this is only a portion of the fine structure correction.

Spin–orbit coupling

In the discussion of the Bohr magneton in Section 1.2.1, the magnitude of the mag-
netic moment μ that is a consequence of the electronic orbital motion was derived.
Of course, this orbital magnetic moment has associated with it a magnetic field B ,
a field that mimics that of a bar magnet. As we saw in Section 8.5, the electron,
by virtue of its spin, possesses an intrinsic magnetic moment and, therefore, it too
behaves as a bar magnet. The spin–orbit Hamiltonian may be envisioned as the
energy of orientation of this intrinsic magnetic moment in the field produced by the
orbital motion of the electron so
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ĤSO = −μ̂S • Borbital (13.16)

where μ̂S is the spin magnetic moment given by Equation 8.108 and B is the mag-
netic field produced by the orbiting electron. Of course, assuming that the orbiting
electron is a bar magnet in the field of the spinning electron will produce the same
effect.

A simple way of looking at this is to imagine being on the electron and see-
ing the orbiting proton. In this frame of reference it is the motion of the proton
that produces the B-field in which the electron spin magnetic moment resides.
We will calculate this B-field from this point of view, but we will find that the
answer is incorrect by a factor of 1

2 . This factor is known as the Thomas pre-
cession factor. It corrects the naive assumption that the electron is traveling with
constant velocity. Because the electron is accelerating, the rest frame of the elec-
tron is not an inertial frame. Proper consideration of the relativistic problem led
Llewellyn Thomas to the now-famous correction. We will simply insert it. Note,
however, that ĤSO as obtained from the Dirac equation (see Equation 13.6) is
correct.

For this not so rigorous calculation we assume that the B-field is that of the
circling proton having speed v, so that we require the field at the center of a plane
circular loop of radius r . From elementary electromagnetic theory,

Borbital = μ0i

2r

= i

ε0c22r
(13.17)

where the magnetic permeability of free space, μ0, has been eliminated in favor
of electric permittivity of free space ε0 using μ0ε0 = 1/c2. The “current” i is
given by

i = ev

2πr
(13.18)

so we have

Borbital =
(

1

4πε0

)
e

c2r2
· (mevr )

mer

=
(

1

4πε0

)
e

mec2r3
L̂ (13.19)

which was written in a way that is meant to emphasize that B is proportional to
the electronic angular momentum L = mevr , which, as usual, is replaced by its
quantum mechanical operator L̂. The direction of B is specified by the direction of
the angular momentum. Inserting μ̂S from Equations 1.44 and 8.108 into Equation
13.16 we have
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ĤSO =
(

1

4πε0

)
gee2

2m2
ec2r3

(
L̂ • Ŝ

)
(13.20)

Inserting the Thomas factor, which is equivalent to dividing Equation 13.20 by 2,
cancels ge = 2 in the numerator so we obtain

ĤSO =
(

1

4πε0

)
e2

2m2
ec2r3

(
L̂ • Ŝ

)
(13.21)

A more general and electrodynamically rigorous derivation of ĤSO than is re-
quired here shows that the 1/r3 in Equation 13.21 actually results from a term
involving the potential energy. We may therefore write

ĤSO = 1

2m2
ec2

[
1

r

dU (r )

dr

] (
L̂ • Ŝ

)
(13.22)

for any central potential. It is customary to represent the coefficient of L̂ • Ŝ by
ξ (r ) so that

ĤSO = ξ (r )
(

L̂ • Ŝ
)

(13.23)

where

ξ (r ) = 1

2m2
ec2

[
1

r

dU (r )

dr

]
(13.24)

Before proceeding, let us estimate the magnitude of this correction in a manner
similar to that employed to obtain Equation 13.14 by noting that the magnitudes of
the orbital and spin angular momenta are roughly � while r ∼ a0, the Bohr radius.
Making these substitutions we find that (see Problem 1)

∣
∣
∣
∣∣

〈
ĤSO

〉

〈
Ĥ0

〉

∣
∣
∣
∣∣

∼ α2 (13.25)

so the spin–orbit correction does indeed qualify as a fine structure correction. It
is interesting to note that the order of magnitude for the ratio of energies given in
Equation 13.25 is almost trivially derived using atomic units (see Problem 1).

The first-order spin–orbit correction to the Bohr energy is

E (1)
SO = 〈

ĤSO
〉

(13.26)

but we have not specified the quantum numbers in Equation 13.26 because the
appropriate ones are yet to be determined. To evaluate

〈
ĤSO

〉
n�m�

we must evalu-

ate
〈
1/r3

〉
n�m�

, which requires only the radial part of the wave function. Note that
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the quantum number that represents the z-component of orbital angular momentum
has been designated m� to distinguish it from the analogous spin quantum number
ms because spin will be an important part of this calculation. There is no other
r -dependence in ĤSO so we can use the

〈
1/r3

〉
n�m�

, as listed in Table 10.4. There
is, however, a problem if we attempt to use these uncoupled kets, |n � m� ms〉, in

the computation of
〈
L̂ • Ŝ

〉
= 〈

L̂ x Ŝx
〉 + 〈

L̂ y Ŝy
〉 + 〈

L̂z Ŝz
〉

because m� and ms are not

good quantum numbers with respect to the operator L̂ • Ŝ. That is, neither L̂z nor Ŝz

commute with L̂ • Ŝ (see Problem 3). Thus, these uncoupled kets are not eigenkets
of ĤSO , so we must diagonalize this perturbation. Fortunately, we have already done
this because the uncoupled kets,

∣∣n j m j � s
〉
, are the select eigenkets of ĤSO because

Ĵ 2 and Ĵz commute with this perturbing Hamiltonian (see Problem 4). Therefore,
we may use the coupled kets,

∣
∣n j m j � s

〉
, for which both Ĥ0 and ĤSO are diagonal.

Incidentally, the eigenkets of Ĥ0 and ĤT are the same, so ĤT was already diagonal
in the basis set of Ĥ0 eigenkets and we could use either set of kets. Note that the
only quantum numbers that appear in Equation 13.15 are n and �, both of which are
good in either representation.

To use the coupled set we must express L̂ • Ŝ in terms of the mutually commut-
ing operators, in particular Ĵ 2, L̂2, and Ŝ2. The first of these is

Ĵ 2 =
(

L̂ + Ŝ
)

•
(

L̂ + Ŝ
)

(13.27)

so the cross term provides the necessary relationship

L̂ • Ŝ = 1

2

(
Ĵ 2 − L̂2 − Ŝ2

)
(13.28)

Therefore, the expectation value is

〈
L̂ • Ŝ

〉
= 〈

n j m j � s
∣
∣ ( Ĵ 2 − L̂2 − Ŝ2

) ∣∣n j m j � s
〉

= 1

2
[ j ( j + 1) − � (� + 1) − 3/4] �

2 (13.29)

Inserting Equation 13.29 into Equation 13.26 we obtain the spin–orbit correction

which we now designate
(

E (1)
SO

)

n j�
:

(
E (1)

SO

)

n j�
= 1

2m2
ec2

[(
e2

4πε0

) 〈
1

r3

〉] 〈
L̂ • Ŝ

〉

= 1

2m2
ec2

(
e2

4πε0

)
1

a3
0

{
[ j ( j + 1) − � (� + 1) − 3/4]

2n3�
(
� + 1

2

)
(� + 1)

�
2

}

= − 1

2n
α2 E (0)

n

[ j ( j + 1) − � (� + 1) − 3/4]
[
�
(
� + 1

2

)
(� + 1)

] (13.30)
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For hydrogen j can take on only two values, �± 1
2 , so we may express the spin–orbit

correction in terms of � for each of these values of j . We have

(
E (1)

SO

)

n j=�+ 1
2

= − 1

2n
α2 E (0)

n

1
[(

� + 1
2

)
(� + 1)

] (13.31)

(
E (1)

SO

)

n j=�− 1
2

= 1

2n
α2 E (0)

n

1
[
�
(
� + 1

2

)] (13.32)

The Darwin term

The spin–orbit coupling Hamiltonian was found to be proportional to L̂ • Ŝ so it

follows that for s-states, � = 0 states,
(

E (1)
SO

)

n j0
= 0. To examine the validity of this

statement we return to Equation 13.30. Noting that for � = 0, j = s so that
(

E (1)
SO

)

j�
is proportional to zero divided by zero. We conclude therefore that Equation 13.30
is not valid for � = 0. The culprit in making Equation 13.30 indeterminate is

〈
1/r3

〉

because it provides the zero in the denominator. There is nothing wrong with the
expression for

〈
1/r3

〉
! The problem is that the spin–orbit term that was derived

using magnetic moments is incomplete when compared with the terms arising from
the Dirac equation. If the Dirac equation is carried out to the next level of expansion,
there appears a term that “softens” the divergence of 1/r3 at the origin [1]. Thus,
in place of

〈
1/r3

〉
there is a function that is finite at the origin that makes the spin–

orbit correction zero for � = 0. For our purpose Equation 13.30 is valid for all
� �= 0.

While the spin–orbit term vanishes for s-states, the Darwin term is valid only for
s-states because of the δ-function. Therefore, the uncoupled kets |n 0 0〉 are eigen-
kets of ĤD and

E (1)
D =

(
e2

4πε0

)
�

2π

2m2
ec2

〈n 0 0| δ (r ) |n 0 0〉 (13.33)

where the argument of the δ-function has been changed to spherical coordinate r be-
cause there is no angular dependence of the eigenfunctions for s-states. To evaluate
the integral that is the expectation value of the δ-function we use the sifting property
of the δ-function. Using Equation 10.40 and knowledge that Y00 (θ, φ) = 1/

√
4π

we write

〈n 0 0| δ (r ) |n 0 0〉 = |ψn00 (r, θ, φ)|2

= 1

4π
|Rn0 (0)|2 (13.34)

From Equation 10.35 we have
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Rn0 (r ) =
[

1

2n

(
2

na0

)3 (n − 1)!

n!

]1/2

L1
n−1 (0)

=
[

1

2n2

(
2

na0

)3
]1/2

L1
n−1 (0) (13.35)

Fortunately, there is a general expression [2] for Lq
p (0):

Lq
p (0) = (p + q)!

p!q!
=⇒ L1

n−1 (0) = n!

(n − 1)!
= n (13.36)

so that we have

(
E (1)

D

)

n
=

(
e2

4πε0

)
�

2π

2m2
ec2

1

4π

[
1

2n2

(
2

na0

)3
]
(
n2

)

=
(

e2

4πε0

)
�

2

2m2
ec2

(
1

na0

)3

=
(

�

a0mec

)2 [( e2

4πε0

)
1

2n2a0

](
1

n

)

= −α2

n
E (0)

n (13.37)

Because
(

E (1)
D

)

n
is proportional to α2 E (0)

n , it qualifies as a fine structure correction.

Although they are valid for mutually exclusive values of �, we nevertheless com-
pare the Darwin correction with that obtained for the spin–orbit interaction. We take

the limit of
(

E (1)
SO

)

j=�+ 1
2

, Equation 13.31, as � → 0. According to the discussion

above, however, this is not really legitimate because Equation 13.31 is not valid as
� → 0. Nonetheless, we will take this limit. Note that there is no point in evaluating(

E (1)
SO

)

j=�− 1
2

as � → 0 because j < 0 is forbidden. We have

lim
�→0

(
E (1)

SO

)

j=�+ 1
2

= − 1

2n
α2 E (0)

n lim
�→0

1
[(

� + 1
2

)
(� + 1)

]

= − 1

n
α2 E (0)

n

= E (1)
D (13.38)

and we see that, indeed, our effort was worth it. The Darwin result, Equation 13.37,

follows if the limit � → 0 is taken in the expression for the
(

E (1)
SO

)

j=�+ 1
2

. This
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means that we can use the formula for the
(
� + 1

2

)
spin–orbit energy for all values

of �. While this seems to be an accident, it is not, as will be discussed below.

The total fine structure correction

Adding the relativistic correction, Equation 13.15, to the spin–orbit correction,

Equation 13.32, gives the total fine structure correction,
(

E (1)
F S

)
, which is valid for

all values of �:

(
E (1)

F S

)

j=�+ 1
2

= α2

n2
E (0)

n

[
n

(� + 1)
− 3

4

]
(13.39)

(
E (1)

F S

)

j=�− 1
2

= α2

n2
E (0)

n

[
n

�
− 3

4

]
(13.40)

The quantities in the square brackets in Equations 13.39 and 13.40 cannot be neg-
ative because n ≥ � + 1. Therefore, because E (0)

n is manifestly negative, the fine
structure correction always lowers the Bohr energy as is illustrated in Fig. 13.1,
which shows the fine structure corrections to the first two Bohr levels of hydrogen.
Conventional coupled ket notation is used to label the states. That is, a given state is
denoted as n� j , where the orbital angular momentum � is designated by lowercase
letters according to the scheme in Table 9.9.

The units of energy used in Fig. 13.1 are GHz (gigahertz). These units are derived
from the Planck relation E = hν ≈

(
4.14 × 10−15 eVs

)
ν. Therefore, 1 eV =

2.42 ×105 GHz and the separation between the fine structure levels of the hydrogen
atom is roughly 0.5 × 10−5 eV. Because α2

≈ 5 × 10−5, we see that this separation
is indeed of order α2 E (0)

n . Notice that the n = 1 level is lowered more than the

Fig. 13.1 The fine structure
splittings of the n = 1 and
n = 2 levels of hydrogen
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n = 2 levels because of the n-dependence of the fine structure correction as shown
in Equations 13.39 and 13.40.

The fine structure correction can be stated in terms of the quantum number j .
Interestingly, as is obvious from Equations 13.39 and 13.40, when � = j ∓ 1

2 is
inserted for each value of � it is found that a single expression represents the total
fine structure correction. We obtain

(
E (1)

F S

)

j
= α2

n2
E (0)

n

[
n

j + 1
2

− 3

4

]

(13.41)

The inclusion of the fine structure Hamiltonian ĤF S in the TISE breaks the ac-
cidental degeneracy that is present in the solution of the nonrelativistic Schrödinger
hydrogen Hamiltonian—almost. Notice in Fig. 13.1 that the 2s 1

2
and the 2 p 1

2
states

are degenerate, even after the fine structure correction has been applied. It is not
even broken by the Dirac Hamiltonian. It is left for QED to resolve this degeneracy
which, when split, is the Lamb shift. Fig. 13.2 shows the fine structure levels of
n = 2, together with the Lamb shift corrections. Notice that the Lamb shift in hy-
drogen, at its largest, is about an order of magnitude smaller than the fine structure
corrections.

Fine structure and the Dirac equation

As discussed above, the Dirac equation can be solved exactly for the Coulomb
potential. The method of solution employs boundary conditions and the restriction
that a bound state wave function must be localized. Electron spin is an inherently

Fig. 13.2 Energy level
diagram of the n = 2 states of
hydrogen showing the fine
structure splitting and the
Lamb shift
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relativistic attribute, so the Dirac equation necessarily includes these effects. It is
therefore expected (actually, “demanded” is a better word) that the quantized hydro-
gen energies that arise from solution of the Dirac equation will contain terms that
originate from electron spin. The exact expression for the Dirac equation energy
eigenvalues is

Enj = mec2

√√
√
√1 + (Zα)2

[
n − (

j + 1
2

)] +
√(

j + 1
2

)2 − (Zα)2

(13.42)

where we have set α → Zα to show the effects of the nuclear charge on the one-
electron energy. Expanding this exact expression for the energy (with z = 1) we
obtain

Enj = mec2 + E (0)
n + α2

n2
E (0)

n

[
n

j + 1
2

− 3

4

]

+ . . . (13.43)

The third term in Equation 13.43 is the same as the fine structure correction of
Equation 13.41.

Because the Dirac Hamiltonian was not expanded to find the exact energy eigen-
values, it is not possible to identify the origins of the individual terms as being
from the relativistic kinetic energy, spin–orbit, or Darwin corrections. The energy
eigenvalues that arise from the exact solution of the Dirac equation are relativistic in
nature and individual physical interactions cannot be recovered. It is for this reason
that the spin–orbit term reduces to the Darwin term in the limit; they have the same
source—relativity. As discussed above, the eigenvalues of hydrogen obtained from
the exact solution to the Dirac equation do not include the Lamb shift or the effects
of hyperfine structure. Both of these energy corrections are larger than α4 E (0)

n , so
computation of the remaining terms in any expansion of Equation 13.42 is of little
value.

13.2 Spin–Orbit Coupling and the Shell Model of the Nucleus

Spin–orbit interactions are not restricted to electrons in atoms. Indeed, as was noted
in Section 9.5.2, spin–orbit interactions are responsible for the spacing of the nu-
clear levels that causes the magic numbers to occur. It was shown that breaking
of the degeneracy is not required to explain the nuclear shell structure until the
n = 3 level, but after n = 3 the level spacing must be adjusted to account for the
observed magic numbers. Although the spin–orbit coupling in the case of nucle-
ons is strong, we can use the formalism developed above to better understand its
effects.
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The potential to which each nucleon is subjected, including spin–orbit coupling,
may be written

U ′ (r) = U (r ) + ξ (r )
(
�̂ • ŝ

)
(13.44)

where U (r ) is often approximated by the isotropic oscillator potential, but for our
purpose we assume that the levels resulting from it are as shown in the middle
of Fig. 9.13. Lowercase letters are used to designate the orbital and spin angular
momentum operators in the spin–orbit term. As was seen in the case of spin–orbit
coupling for the hydrogen atom, the eigenkets of the spin–orbit Hamiltonian must
be the coupled kets for which j = � ± 1

2 . In other words the select set of eigenkets
are the coupled kets which we designate

∣∣ j m j � s
〉
. Also, experimentally, it is found

that ξ (r ) is attractive and may be considered constant, so we write, for convenience,
ξ (r ) = −2β/�

2 where β is a positive constant. (Nuclear physicists often use α

instead of β, but α is tired so we use β instead.)
By analogy with Equation 13.29, we know that the unperturbed energies, the

energy excluding spin–orbit coupling, are split by the spin–orbit interaction accord-
ing to

E (1)
SO ( j, �) = β

(
j ( j + 1) − � (� + 1) − 3

4

)
(13.45)

or

E (1)
SO

(
j = � + 1

2

)
= −β� (13.46)

E (1)
SO

(
j = � − 1

2

)
= β (� + 1) (13.47)

from which it is seen that the energy is lower when the orbital and spin angular
momenta are parallel, j = � + 1

2 . Of course, the m-degeneracy is not broken.
Nonetheless, the energy separation between states having the same values of j and
� is

�ESO ( j, �) = β (2� + 1) (13.48)

from which we see that the splitting increases with increasing �. Thus, the lowest
level of a high orbital angular momentum group of states can be depressed in a way
that it joins a group of states of lower values of � and principal quantum number
n. This is illustrated in Fig. 9.13 and again in Fig. 13.3, which extends to higher
levels than Fig. 9.13 in order to show the large splitting of the higher orbital angular
momentum levels.
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Fig. 13.3 Schematic diagram
showing the groupings of
states that lead to the magic
numbers. The shells are
delineated by heavy dashed
lines

It can be seen that, indeed, spin–orbit coupling lowers 1g9/2 and 1h11/2 from
the degenerate 1g and 1h states to the extent that each joins a lower manifold of
states, thus producing the magic numbers 50 and 82. The dashed lines in the fig-
ure denote the magic numbers that result from this regrouping of the states. Notice
that there are 32 substates associated with the 5 states that lie between 50 and 82
nucleons. Above the 1h11/2 state there is a wide gap before the next grouping of
states. In this way the groupings of states can be understood and the magic numbers
follow.

13.3 Helium Atoms

13.3.1 The Ground State

Helium atoms have two protons and two neutrons in the nucleus and two electrons
surrounding the nucleus. To study the helium atom we assume that the nucleus is
an entity of its own (actually, in the parlance of nuclear physics, it is an α-particle)
and we treat the electrons as identical particles (see Section 8.6.2). Setting the origin
of coordinates at the nucleus, we designate the vectors to the electrons as shown in
Fig. 13.4.

The Hamiltonian is

Ĥ = p̂2
1

2me
+ p̂2

2

2me
−

(
1

4πε0

)
Ze2

r1
−

(
1

4πε0

)
Ze2

r2
+ e2

|r1 − r2| (13.49)

where Z = 2 and p̂i is the momentum of the i th electron. The negative terms are the
potential energy of the nucleus and each electron and the remaining term represents
the interelectron repulsion. It is convenient to solve the problem in atomic units (see



412 13 Applications of Time-Independent Approximation Methods

Fig. 13.4 Coordinates used
in the helium atom
calculations

Section 1.3) in which the Hamiltonian is

Ĥ = p̂2
1

2
+ p̂2

2

2
− Z

r1
− Z

r2
+ 1

|r1 − r2| (13.50)

The Hamiltonian may also be written as

Ĥ = Ĥ01 + Ĥ02 + Ĥ1

= Ĥ0 + Ĥ1 (13.51)

where

Ĥ0i = p̂2
i

2
− Z

ri
and Ĥ1 = 1

|r1 − r2| = 1

r12
(13.52)

Because the unperturbed Hamiltonians, Ĥ01 and Ĥ02, contain only coordinates of
a single electron, the eigenfunctions of the unperturbed Hamiltonian Ĥ0 are prod-
ucts of one-electron eigenfunctions. For helium Z = 2, but we retain Z in the
Hamiltonian for convenience.

Because Ĥ0 contains no interaction between the individual electrons, it represents
a Hamiltonian of two isolated electrons, each under the influence of the same nu-
cleus. In the unperturbed state, each electron behaves as if it were the electron in the
ground state of a helium ion (a helium nucleus and one electron) provided they have
opposite spins. We can therefore immediately write the unperturbed ket that repre-
sents the spatial part of the ground state. It is the product of the one-electron ground
state eigenkets of Ĥ01 and Ĥ02 with Z = 2. Moreover, the unperturbed eigenvalues
are the sums of the ground state eigenvalues of these two operators which are simply
Z 2 times the ground state Bohr energy. In this unperturbed state, the quantum num-
bers for each electron will be (n1�1m�1ms1) = (100α) and (n2�2m�2ms2) = (100β),
so we designate the unperturbed spatial kets and their eigenvalues as

|1s1s〉space = |100〉1 |100〉2 and E (0)
1 = E (0)

11 + E (0)
11 (13.53)
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where the ket on the left represents
∣
∣n� n′�′〉 with the unprimed quantum numbers

representing electron 1 (by virtue of being in the first position), and the primed
quantum numbers, particle 2.

Let us examine the magnitude of the unperturbed energy and the significance of
this energy. In atomic units the Bohr energy for a one-electron atom is

E (0)
n = − Z 2

2n2
(13.54)

so the unperturbed energy for the ground state of the helium atom is twice this with
Z = 2 and n = 1. Thus, the unperturbed ground state energy of a helium atom is
E (0)

1 = −Z 2 = −4 a.u. This is a large (negative) energy, −108.8 eV. It is twice
the ionization potential of two He+ ions, one to remove each electron. It is known
from experiments that the total energy of the ground state helium atom is actually
−2.90 a.u.= −78.9eV. Thus, the correction that we seek from perturbation theory is
∼ 30 eV! This can hardly be considered to be a “small” perturbation. Nonetheless,
as will be seen below, perturbation theory provides a reasonable approximation to
reality. Before performing this perturbation theory calculation we must return to the
task of determining the total eigenket.

The spatial part of the ket in Equation 13.53 is clearly symmetric under particle
interchange. The example in Section 8.6.2 is identical to the problem of the helium
atom inasmuch as we didn’t specify a particular potential in the example, only a
two-electron system. Whatever the potential, it will determine the spatial part of the
eigenkets, but the spin parts will be identical to those in the example. Therefore,
we can immediately write the spin part of the ket. It must be a singlet state, the
antisymmetric state, so the complete ground state ket is

|1s1s〉 = |1s1s〉space |spin〉

= |100〉1 |100〉2

{
1√
2

(|α〉1 |β〉2 − |β〉1 |α〉2

)
}

= |100〉1 |100〉2

{
1√
2

(|αβ〉 − |βα〉)
}

(13.55)

In the last line of Equation 13.55 we have reverted to the notation that the first
position in the spin kets refers to particle 1 and the second to particle 2.

We have gone as far as we can go without using the actual wave functions. Our
goal is to now compute E (1)

1 , the first order correction to E (0)
1 . This requires evalua-

tion of the integral

E (1)
1 =2 〈100|1 〈100|

(
1

r12

)
|100〉1 |100〉2 (13.56)

Because the perturbing Hamiltonian does not contain spin, normalization of the
spin part of the eigenket leads to unity, and is omitted from Equation 13.56. The
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perturbation 1/r12 is spatial in nature so E (1)
1 must be evaluated in coordinate space.

Thus, in coordinate space, Equation 13.56 is

E (1)
1 =

∫
d3r1d3r2ψ

∗ (r1) ψ∗ (r2)

(
1

r12

)
ψ (r1) ψ (r2) (13.57)

where the d3r i are the volume elements in each of the coordinates r1 and r2, and the
ψ (r i ) are the eigenfunctions for each coordinate. Notice that we can use ψ to repre-
sent both electronic wave functions inasmuch as they are in the same (unperturbed)
state.

The integrals in Equation 13.57 permit a physical interpretation of the interaction.
Each of the functions ψ∗ (r i ) ψ (r i ) is the probability density of finding electron i
in a volume surrounding r i . Because the electronic charge is unity in atomic units,
these probability densities also the charge densities due to each electron. Therefore,
E (1)

1 is simply the electrostatic interaction energy of two overlapping charge densi-
ties. It is denoted by J1s1s , where the subscripts indicate the quantum state of each
electron in the unperturbed state, in this case both are in their ground states. The
integral Jn�n′�′ is called the Coulomb integral

The ground state eigenfunction for the one-electron atom is, in atomic units (see
Table 10.3),

ψ100 (r, θ, φ) = 2Z 3/2e−Zr Y00 (θ, φ) (13.58)

so the integral that must be evaluated is

J1s1s = 24 Z 6

(√
4π

)4

∫
e−2Z(r1+r2)

(
1

r12

)

× (
r2

1 sin θ1dθ1dr1
) (

4πr2
2 sin θ2dθ2dr2

)

= Z 6

π2

∫
e−2Z(r1+r2)

(
1

r12

)

× (
r2

1 sin θ1dr1dθ1dφ1
) (

r2
2 sin θ2dr2dθ2dφ2

)
(13.59)

where it is understood that the volume integral extends over all space. Note that the(
1/

√
4π

)
is Y00 (θ, φ). This appears to be a formidable integral, but, with the aid of

the mathematics developed in Section 8.4.1, it simplifies considerably. The function
1/ |r1 − r2| can be written in terms of Legendre polynomials, Equation 8.98:
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1

r12
= 1

r>

∞∑

�=0

P� (cos γ )

(
r<

r>

)�

= 4π

2� + 1

(
1

r>

) ∞∑

�=0

�∑

m=−�

Y�m (θ1, φ1) Y ∗
�m (θ2, φ2)

(
r<

r>

)�

(13.60)

where we have replaced P� (cos γ ) using the addition theorem for spherical har-
monics, Equation 8.89. At first glance this does not seem to be a simplification, but,
noticing that the only angular dependence other than that from 1/r12 in Equation
13.59 is contained in the volume element, we see that the only part of the angular
integral that survives the summation is the term for which � = 0 and m = 0 because
Y00 (θ, φ) = 1/

√
4π , a constant. Thus, using the normalization integral for spherical

harmonics, Equation 8.85, we have

∫ 2π

0
dφi

∫ θ

0
dθ sin θi

{√
4πY00 (θi , φi )

}
[Y�m (θi , φi )]∗ =

√
4π (13.61)

for each of the angular integrations. Notice that the quantity in curly brackets in
Equation 13.61 is unity. Putting this back into Equation 13.59 and performing the
integration we have

J1s1s = (4π)2 Z 6

π2

∫
e−2Z(r1+r2) r2

1 dr1r2
2 dr2

= 16Z 6
∫ ∞

0

[∫ r1

0
e−2Z(r1+r2)r2

2 dr2 +
∫ ∞

r1

e−2Z(r1+r2)r2
2 dr2

]
r2

1 dr1

= 5

8
Z (13.62)

As expected this correction to the ground state energy is positive reflecting the
interelectron repulsion. For the helium atom, for which Z = 2, the correction is
∼34 eV, surprisingly close to the needed correction of 30 eV. The final result of the
perturbation theory treatment is that the total energy of a helium atom in the ground
state is −22 + 5/4 = −2.75 = −74.8 eV, still about five percent too low.

From perturbation theory, we conclude that the total energy of the two-electron
atom in a.u. is

E P
1 (Z ) = −Z 2 + 5

8
Z (13.63)

This expression is good for any two-electron atom having Z protons in the nucleus.
Equation 13.63 shows that the effect of interelectron repulsion on the total energy
decreases with increasing atomic number because the unperturbed energy decreases
as Z 2, while the perturbation correction increases only as Z . The reason for this is
that each electron is screened from “seeing” the full Z = 2 charge on the nucleus by
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the other electron. This suggests that we consider an effective charge of the nucleus
to be smaller than Z due to this screening. This concept suggests that we might
be able to obtain a better approximation to the total energy using the variational
method with a trial wave function (see Section 12.2) that includes an adjustable
parameter that represents the screened nuclear charge. For simplicity, we choose
the one-electron wave function, the radial part of which is given in Equation 13.58,
but with Z replaced by an adjustable parameter ζ that will be used to minimize
the expectation value of the energy. We expect the optimum value of ζ for helium
to be somewhat less than 2. The calculation is relatively straightforward, except
that it will contain both ζ and Z so we must make sure to keep them straight. The
reason that Z is still in the problem is that the Hamiltonian is still that of Equation
13.50 because there really are Z protons in the nucleus. The screened nuclear charge
concept enters only in the trial wave function which we write as 〈r1, r2| ψt 〉 (see
Section 6.4):

〈r1, r2| ψt 〉 = [
2ζ 3/2e−ζ r1 Y00 (θ1, φ1)

] [
2ζ 3/2e−ζ r2 Y00 (θ2, φ2)

]
(13.64)

In accord with Equation 12.72 we must minimize the expectation value of the entire
Hamiltonian with respect to the adjustable parameter. We do not have to worry about
normalization because the wave function in Equation 13.58 is already normalized.
Using the notation of Equation 13.51 we have

〈
Ĥ
〉 = 〈ψt | Ĥ |ψt 〉

= 〈ψt | Ĥ0 |ψt 〉 + 〈ψt | Ĥ1 |ψt 〉 (13.65)

The second term has already been evaluated. It is J1s1s as given in Equation 13.62,
but we must make the substitution Z → ζ because Ĥ1 does not contain the nuclear
charge, screened or otherwise. The origin of the Z in the expression for J1s1s is the
wave function, which we are changing for this variational calculation by substituting
ζ for Z . In the first integral, however, the trial wave functions that contain ζ are not
eigenfunctions of Ĥ0 because Ĥ0 contains Z not ζ . To compensate for this we add
and subtract the potential energy term using ζ to make part of the integrand an
operator for which |ψt 〉 is an eigenket:

〈
Ĥ
〉 = 〈ψt | p̂2

1

2
+ p̂2

2

2
− Z

r1
− Z

r2
|ψt 〉 + 〈ψt | Ĥ1 |ψt 〉

= 〈ψt | p̂2
1

2
+ p̂2

2

2
− ζ

r1
− ζ

r2
|ψt 〉

+ 〈ψt |
[

(ζ − Z )

r1
+ (ζ − Z )

r2

]
|ψt 〉 + 5

8
ζ

= 2E (0)
1 + (ζ − Z )

[〈
1

r1

〉
+

〈
1

r2

〉]
+ 5

8
ζ (13.66)
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The expectation values are simply the expectation value of 1/r (see Table 10.4) with
Z → ζ . Therefore

〈
Ĥ
〉 = −2

ζ 2

2
+ 2 (ζ − Z ) ζ + 5

8
ζ (13.67)

Treating ζ as an adjustable parameter we set d
〈
Ĥ
〉
/dζ = 0 to find ζ0, the value of

ζ that minimizes
〈
Ĥ
〉
. This yields

ζ0 = Z − 5

16
(13.68)

which, as expected, is less than Z (see Problem 7). Inserting ζ0 into Equation 13.67,
we find that the total energy of the ground state obtained using the variational treat-
ment is

E V
1 (Z ) = −

(
Z − 5

16

)2

(13.69)

For helium this leads to a total energy of −2.85 a.u. = −77.4 eV, much closer to the
actual value of 78.9 eV than that obtained from perturbation theory (see Problem 8).
It is, however, not difficult to envision a computer program written to incorporate a
trial wave function with many variable parameters. We need not even concern our-
selves with the physical significance of these parameters as we did in the calculation
above. The variational principle assures us that we will never obtain an energy lower
than the true ground state energy so we can, in principle, obtain the energy to any
desired accuracy.

13.3.2 Excited States

The first unperturbed excited state of the helium atom above the ground state is
obtained by assuming that one electron is in the ground state of the He+ ion, n = 1,
and the other is in the first excited state n = 2. The unperturbed energy is therefore

Ens,n� = − Z 2

2
− Z 2

8

= −5

8
Z 2 = −68 eV for Z = 2 (13.70)

We know from the discussion of identical particles in Section 8.6.2 that the ac-
ceptable eigenkets must be antisymmetric under particle exchange and they must
be products of spin and space kets. The structure of the eigenkets is identical with
those deduced in the example of two noninteracting fermions discussed in Section
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8.6.2. Using the results of that example we can immediately write the acceptable
eigenkets for the first excited state of helium. To make the conversion we use the
notation

|1〉 → |1s〉 ; |2〉 → |2�〉 (13.71)

for the spatial kets. The perturbing Hamiltonian Ĥ1 is given by Equation 13.52
which does not contain φ (see Equation 8.98). Therefore, Ĥ1 commutes with L̂z .
This means that the energy cannot contain the quantum number m� so, for simplicity,
it has been omitted from the kets as was done for |1s〉; thus, |2�m�〉 → |2�〉. Any
integrals that are required may, for convenience, be evaluated for m = 0. For the spin
kets we employ the standard notation |S M〉, where, in this case, S = 0 (singlet) or
1 (triplet). The kets from Table 8.13 transformed to the notation of this section are
shown in Table 13.1.

The spatial kets in Table 13.1 diagonalize the permutation operator P̂12. There
are, however, only two spatial kets, one symmetric and the other antisymmetric.
Because the total ket must be antisymmetric, the spin kets are chosen accordingly.
The symmetric and antisymmetric spatial parts of the eigenkets are

|ψ〉± → 1√
2

{|1s〉1 |2�〉2 ± |1s〉2 |2�〉1} (13.72)

Now, there are eight of the simple product kets of the type |1s〉i |2�〉 j , where i, j = 1
or 2, with i �= j . All eight are also eigenkets of Ĥ0. As such, they are acceptable
eigenkets of the unperturbed Hamiltonian. They are not, however, eigenkets of P̂12,

Table 13.1 Singlet and triplet states of Table 8.13 converted to the notation of the current section

Singlet

1√
2

{|1〉1 |2〉2 + |1〉2 |2〉1}
{|α〉1 |β〉2 − |α〉2 |β〉1

}

→ 1√
2

{|1s〉1 |2�〉2 + |1s〉2 |2�〉1} |00〉
Triplets

1√
2

{|1〉1 |2〉2 − |1〉2 |2〉1} |α〉1 |α〉2

→ 1√
2

{|1s〉1 |2�〉2 − |1s〉2 |2�〉1} |11〉
1√
2

{|1〉1 |2〉2 − |1〉2 |2〉1}
{|α〉1 |β〉2 + |α〉2 |β〉1

}

→ 1√
2

{|1s〉1 |2�〉2 − |1s〉2 |2�〉1} |10〉
1√
2

{|1〉1 |2〉2 − |1〉2 |2〉1} |β〉1 |β〉2

→ 1√
2

{|1s〉1 |2�〉2 − |1s〉2 |2�〉1} |1 − 1〉
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a fact that renders them unacceptable as kets for the two-electron system. The de-
generacy of these kets suggests that the properly symmetrized kets constitute the
select set. We must, however, examine the matrix that represents Ĥ1 to verify this
assertion.

Using the properly symmetrized kets as a basis set for matrix representation of
Ĥ1 we have

Ĥ1 =
(

+ 〈ψ| Ĥ1 |ψ〉+ + 〈ψ| Ĥ1 |ψ〉−
− 〈ψ| Ĥ1 |ψ〉+ − 〈ψ| Ĥ1 |ψ〉−

)
(13.73)

Computation of the matrix elements (see Problem 9) shows that the off-diagonal
elements vanish, so, indeed, the symmetrized kets are the select kets. The diagonal
elements of Ĥ1 are

(
Ĥ1

)
±± =2 〈2�|1 〈1s|

(
1

r12

)
|1s〉1 |2�〉 ±2 〈2�|1 〈1s|

(
1

r12

)
|2�〉1 |1s〉2

= J1s2� ± K1s2� (13.74)

where J1s2� is the Coulomb integral for these two electrons (see Section 13.3.1):

J1s2� =2 〈2�|1 〈1s|
(

1

r12

)
|1s〉1 |2�〉2 (13.75)

and K1s2�, called the exchange integral, is

K1s2� =2 〈2�|1 〈1s|
(

1

r12

)
|2�〉1 |1s〉2 (13.76)

Because all off-diagonal elements vanish, Ĥ1 was already diagonal in the properly
symmetrized spatial eigenkets, so degenerate perturbation theory is not required.

This is another way of seeing that Ĥ1 and P̂12 commute and have simultaneous
eigenkets. Since Ĥ1 is diagonal, the diagonal elements are the eigenvalues and the
properly symmetrized kets are the eigenkets. That is, both Ĥ0 and Ĥ1 are diagonal in
the representation of this select set of kets. It is seen that the use of nondegenerate
perturbation theory, in which the energy corrections are the expectation values of
the perturbing Hamiltonian using unperturbed kets, is equivalent to computing the
diagonal elements of Ĥ1. Thus, the correction to the unperturbed energy, Equation
13.70, is

E (1)
2� = J1s2� ± K1s2� (13.77)

where the upper sign gives the eigenvalues of the symmetric spatial kets (singlet spin
state) and the lower sign the eigenvalue of the antisymmetric spatial kets (triplet spin
states).
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As was the case for the ground state, the Coulomb integrals J1s2�, each of which
is a double integral, represent the electrostatic interaction energy of the two over-
lapping charge densities. The integrals K1s2� are, however, a different matter. They
too are double integrals, each of which involves both spatial kets, but each state
refers to a different electron. They, therefore, represent the overlap of the two states
for a single electron. It is as if the electrons are indeed changing their designations,
1 � 2, each “flitting” between the two states, as described in the discussion of Pos-
tulate IV in Section 6.3.2. This is the reason that the integrals Kn�n′�′ are referred to
as exchange integrals. This term arises only because of the symmetrization require-
ment, the foundation of which is the demand of particle indistinguishability. The
existence of the exchange integrals illustrates the interference effects alluded to in
Section 6.3.2 because they raise and lower the electrostatic interaction energy. Note
that for the ground state there is no exchange integral because both electrons occupy
the same unperturbed spatial state and the properly symmetrized unperturbed spatial
kets are the simple product |1s〉1 |1s〉2, which is symmetric.

The eigen functions in coordinate space are given by 〈r1, r2 |ψ±〉. If we let
r1 → r2 to determine the probability of finding both electrons at the same point in
space, we see that the antisymmetric spatial state |ψ−〉 vanishes so, in this respect,
the electrons avoid each other in an antisymmetric spatial state creating a hole in the
probability density known as a Fermi hole. On the other hand, the symmetric state
exhibits no such behavior. The symmetric space state favors a buildup of probability
as r1 → r2, as if there was an attraction between the two electrons. This attrac-
tion creates a Fermi heap. The “force” that creates these heaps and holes is known
as the exchange force, but it is not a force in the traditional sense. The exchange
force is due to the exchange symmetry restrictions placed on the wave function by
the necessity of forcing the particles to be mathematically indistinguishable. The
effect would exist even if the electrons carried no charge, provided that they remain
fermions.

To calculate the correction to the unperturbed energy, Equation 13.77, we must
evaluate the integrals J1s2� and K1s2�. The calculation utilizes the Legendre expan-
sion of Equation 8.98 as was done for the ground state so there is nothing new from
a pedagogical point of view. We therefore list the results in Table 13.2. Because the
value of the exchange integral is always less than that of the Coulomb integral, the
correction, as expected, raises the energy for all four states. Both the Coulomb and
the exchange integrals are positive, and J > K , so the unperturbed energy is raised
by the combination of the interelectron repulsion, J , and the exchange energy, K .

Table 13.2 Calculated values of the energy corrections due to the Coulomb and exchange integrals
for helium

a.u. eV (Z = 2)

J1s2s (17/81) Z 11.4
K1s2s (729/16) Z 1.2
J1s2 p (59/243) Z 13.2
K1s2 p (112/6561) Z 0.9
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Table 13.3 Calculated and actual energies of the first excited electron configuration of helium

State Calculated (eV) Actual (eV)

2p 1 P −53.9 −57.8
2p 3 P −55.7 −58.1
2s 1 S −55.4 −58.4
2s 3 S −57.8 −59.2

Fig. 13.5 Energy level
diagram of the n = 2 states of
helium comparing the
perturbation theory results
with the actual energies

Before continuing, let us pause to give these states their proper names. The
naming scheme is that commonly used in atomic spectroscopy. For helium, the
states (also referred to as terms) are designated (1s) (n�) 2S+1 L where (1s) (n�) is
known as the electron configuration. As we have seen, this indicates the unperturbed
one-electron states. The individual terms (n�) in the electron configuration are called
subshells or orbitals. Often, the state designation for electrons in the lowest orbitals
is omitted. The remaining symbols, L and S, are the total orbital angular momentum
of all electrons and the total spin of all electrons, respectively. The quantity 2S + 1
is known as the multiplicity of the state for reasons that will become apparent in the
next section. The values of L and S are determined by vector addition. In the case of
helium, the total angular momentum is simply the angular momentum of the excited
electron because that of the other electron is zero. As we have seen, the value of S
can be either 0 or 1, reflecting the possibility of singlet or triplet spin states. Finally,
we note that electron configurations for helium of the type (n�)

(
n′�′) where both

n, n′ �= 1 are possible, but these states have energy higher than the ionization poten-
tial. They are referred to as autoionizing states, but we will not consider them here.

Although the perturbation calculation includes the correct features, in particular
the Coulomb and exchange integrals, it does not give the correct ordering of the
states. Table 13.3 lists the observed and calculated energies and Fig. 13.5 shows
them graphically.

First, we notice that the calculated energies are uniformly higher than the ob-
served energies. Also, the calculated energy of the 2s 1S is higher than the calculated
energy of 2 p 3 P . This is contrary to the observed ordering of the levels, as shown
in . Within the spirit of the approximation this is not a serious discrepancy.
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13.4 Multielectron Atoms

The helium atom serves as a prototype for the study of the multielectron atoms that
comprise the remainder of the periodic table. The model that is used for the zeroth-
order description of these atoms is the same as that used in the perturbation theory
treatment of the helium atom. That is, the eigenkets are treated as properly sym-
metrized products of one-electron kets, each of which is referred to as an orbital or
a subshell. For this reason this model is often called the independent electron model.
The electron configuration introduced in Section 13.3.2 for two electrons is extended
to include all Z electrons. For example, the electron configuration for the ground
state of the lithium atom is (1s)2 (2s)1. The superscripts represent the number of
electrons having the particular designation so the (1s)2 means that there are two elec-
trons in the 1s orbital. This is frequently (and incorrectly) read “1s squared.” Often,
if there is only a single electron in a particular orbital the superscript is omitted.

By virtue of having two electrons in the 1s orbital, this orbital is full. Therefore,
because the total orbital and spin angular momenta are both zero, the (1s)2 is fre-
quently omitted from the configuration. The ground state of the lithium atom might
then be designated Li(2s). Taking a more complicated example, the electron config-
uration of the magnesium atom (Z = 12) is (1s)2 (2s)2 (2 p)6 (3s)2. The reason that
a p orbital accommodates at most six electrons is that there are only three possible
values of m� for � = 1, each of which can have spin up or spin down. Any orbital
that is full must have 2 (2� + 1) electrons, twice the number of possible values of
m�. Completely full orbitals always have the total orbital angular momentum L = 0
and the total spin S = 0.

Molecule formation depends upon two or more atoms sharing electrons in par-
tially filled orbitals. Therefore, atoms for which all orbitals are full are not reactive,
at least in their ground states. Thus, helium is the first of these inert gases (also
referred to as rare gases or noble gases). The next is neon with an electron config-
uration (1s)2 (2s)2 (2 p)6. Another scheme for shortening the electron configuration
designation is to use the inert gases. For example, the lithium electron configuration
could be designated [He]2s and that for magnesium [Ne](3s)2.

The independent electron eigenfunctions, the orbitals, form a complete set, so
they can serve as a basis set upon which any eigenfunction may be expanded. The
assumption that the true eigenket is only a single independent electron orbital breaks
down in varying degrees, depending upon the atom and the state. When the true
eigenfunction is adequately described by a single basis function, it is referred to as
a pure state. In many cases the true eigenfunction requires two or more independent
electron basis functions or electron configurations. When this occurs it is said that
these configurations interact and “configuration interaction” is present.

There is more than one way to designate a state of an atom. One way is by the
electron configuration, but this is only a first (or zeroth) approximation. Refine-
ment of the designation requires examination of the coupling between the different
electronic angular momenta. Before discussing this let us ask why the designation
of states is important. After all, they are just names. To answer this question we
recall that atoms emit and absorb radiation as discussed in Section 1.1.3. For sim-
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plicity, we illustrate using emission. We know photons are emitted in transitions
between two states. Transitions between some pairs of states are highly favored,
while transitions between other pairs rarely, if ever, occur. Transitions are therefore
described as being “allowed” or “forbidden.” There are rules that govern whether
a given transition is allowed or forbidden and these rules, known as selection rules,
are based on the names of the states. Forbidden transitions can be strictly forbidden
and never occur or merely forbidden, in which case transitions that do occur are
weak. A weak emission is one for which the upper state of the transition has a
very long lifetime. If we use a scheme for naming the states from which we can
accurately deduce whether transitions between two states should be strong, weak,
or not occur at all, then this scheme is useful. On the other hand, if there is no
correlation between the names of the states and the selection rules, then we may as
well call them Joe, Sam, and Pete. An example will clarify matters. One selection
rule is that transitions between states of different multiplicity do not occur or, if
they do occur, they are weak. In other words, an electron cannot change spin during
a transition so that �S �= 0 is forbidden. The ground state of helium is a (1s)2 1 S
and there are four (1s) (2�) states, 1S, 1 P , 3S, and 3 P , the lowest lying of which
is the 3 S (see Fig. 13.5). According to this rule, transitions between triplets and
singlets are forbidden and indeed, it is found that when they do occur they are weak.
The transition between (1s) (2s) 3S and (1s)2 1 S is so weak that the lifetime of the
(1s) (2s) 3 S state is the order of months. (Compare this to the nanosecond lifetimes
of states involved in allowed atomic transitions.) The prohibition on transitions
between singlet and triplet states led early investigators to think that there are two
kinds of helium, parahelium (singlets) and orthohelium (triplets), because helium
atoms seemed to have two distinct sets of emissions. In contrast to the (1s) (2s)
3S → (1s)2 1 S, we expect the (1s) (2 p) 1 P → (1s)2 1 S transition to be strong.
Indeed it is, especially since, in addition to obeying �S = 0, it obeys another of
the selection rules, namely, that �L = 0,±1. Thus, if a naming scheme is to be
useful, the designations of two states indicates whether transitions between them
are allowed, or, in spectroscopic parlance, if they combine.

Naming schemes are based on the method by which the different angular mo-
menta are coupled. They are therefore referred to as coupling schemes. The scheme
that describes light atoms is called Russell Saunders or LS-coupling. In Russell
Saunders coupling it is assumed that the orbital angular momentum of each electron
interacts strongly with the other electronic orbital angular momenta, and that there
is also a strong interaction between the electronic spin angular momenta. The vector
sum of the orbital angular momenta of all electrons is designated by L, and S is the
vector sum of all the spin angular momenta. The spin–orbit interaction between S
and L is weaker and treated as a perturbation as was done in Section 13.1.1 for
the single electron in a hydrogen atom. The vector sum of L and S is J which is
added to the state designation 2S+1 L J as a subscript. The good quantum numbers
are therefore presumed to be L, S, ML , MS , and J . A complete LS-coupling state
designation is therefore

(electron configuration) 2S+1 L J (13.78)
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where the electron configuration might be any of the types discussed in Section
13.3.2. Such designations are often called spectroscopic terms. For two electrons
outside completed orbitals, total orbital angular momentum can take on the values

L = |�1 + �2| , |�1 + �2 − 1| , . . . , |�1 − �2| (13.79)

while the total spin values are 0 and 1. Extension to more than two eligible electrons
is obvious.

The j j -coupling scheme is based on the opposite to the assumptions made in
the LS-coupling scheme. It is assumed that the orbital and spin angular momenta
of each electron interact strongly so the resulting total angular momenta of each
electron serve to designate the states. This scheme is valid for the heaviest of the
atoms. We shall not discuss it further since the LS-coupling scheme is, by far, the
most prevalent.

We can illustrate the way in which the different angular momenta combine in
LS-coupling by considering the carbon atom. The ground state of C has the electron
configuration (1s)2 (2s)2 (2 p)2; however, to avoid dealing with the Pauli principle,
we first consider an excited electron configuration, (1s)2 (2s)2 (2 p) (3 p). The total
orbital and spin angular momenta of the (1s)2 (2s)2 part of this configuration both
vanish so we need consider only the two p-electrons. Therefore, the possible values
of the total orbital angular momentum L are 0, 1, and 2 which correspond to S,
P , and D-states. It is important to note that this S-state refers to orbital angular
momentum and should not be confused with the total spin quantum number S.
Combining the two possible multiplicities with the three possible values of total
angular momentum we arrive at the possible states

1 S 1 P 1 D 3S 3 P 3 D (13.80)

The orbital and spin angular momenta can also combine vectorially to form the total
angular momentum J . For example, the 3 P state for which L = 1 and S = 1 can
have J = 0, 1, and 2. We may therefore list all of the states of this excited carbon
atom as

1S0
1 P1

1 D2
3S1

3 P0,1,2
3 D1,2,3 (13.81)

This enumeration of the possible states for the configuration (2p) (3 p), or, indeed,
for any configuration of the type (np)

(
n′ p

)
, makes it clear why the superscript is

referred to as the multiplicity. The number of J -substates associated with any term
2S+1 L is the multiplicity. Most of the time 2S +1 is the multiplicity. As is clear from
the 3S1 state, which has only one J -substate, this rule can be broken. It is broken
any time that S > L because, in this case, the number of J -substates is 2L + 1
rather than 2S + 1. A term such as 1 P is called a singlet P-state while 3 P is a triplet
P-state. Often, in conversation, even when S > L, the superscript is referred to as
singlet, triplet, doublet (S = 1

2 ), etc. For example, the 3S1 state may be referred to as
a triplet S-state even though there is only one J substate. In general, however, each
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LS combination designated 2S+1 L is called a multiplet, the multiplicity of which is
the total number of possible J -states.

Now, back to the ground state of C. While the states arising from the (2 p)2 con-
figuration might be thought to be identical to those arising from (2 p) (3 p), this is not
the case because of the Pauli exclusion principle. Care must be taken to make sure
that the electrons do not have the same sets of quantum numbers. This condition is
automatically fulfilled when the electrons occupy different orbitals. When electrons
occupy the same orbital they are referred to as equivalent electrons, otherwise they
are non-equivalent. In the present example it should be clear that the allowed states
for (2 p)2 should be a subset of the allowed states for the (2 p) (3 p) configuration.
There is a simple way to decide which of the allowed (2 p) (3 p) states are also al-
lowed for (2 p)2. For any two equivalent electrons the rule is

For two equivalent electrons the only allowed states

are those for which the sum (L + S) is even.

Unfortunately, there is no such rule that applies when there are more than two
equivalent electrons. The easiest way to find the allowed terms for more than two
equivalent electrons is to use a table of equivalent electrons [6]. Using the rule stated
above, the only possible states for the ground state electron configuration of C are
1S0, 1 D2, and 3 P0,1,2.

Because the total spin and the total orbital angular momenta vanish for closed
shells, the term symbol for an atom with a completely filled shell, a noble gas, is 1S0.
Suppose we take the term symbols that are possible for the ground state of C and
add four more 2 p electrons. This must result in a 1 S0 state. Thus, if we consider the
atom for which the ground state configuration is (1s)2 (2s)2 (2 p)4, the O atom, the
allowed states must be such that, when the angular momenta are added vectorially
to those of the ground state of C, the result is 1S0. To achieve this, the possible spins
and angular momenta of the O atom must be identical with those of the C atom.
Thus, we may treat the vacancies in an orbital, “holes,” as though they were actually
electrons to deduce the correct terms. Indeed, the possible states for the ground state
configurations of C and O are identical. This is a general rule for all orbitals.

For a given ground state electron configuration the states can be ordered with
respect to their energies using two empirically deduced, but quantum mechanically
sound, rules known as Hund’s rules. These rules apply to atoms for which LS-
coupling applies. For our purposes, we state Hund’s rules as follows.

Rule 1: For states composed of equivalent electrons,

the state of highest S lies lowest.

Rule 2: For a given S within the same configuration of equivalent

electrons, the state with the highest L lies lowest.

In practice, the rules apply to the ground state only because the electrons must be
in the same orbital, that is, equivalent electrons. Hund’s rules are, however, often
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applied to excited configurations with only modest success. Frequently the require-
ment that the electrons must be equivalent is omitted from the statement of Hund’s
rules. Since the rules have been found to work unequivocally for ground states
and only occasionally for excited configurations [3] we include the stipulation that
the electrons be equivalent. Also, the two rules above are often given as a single
rule [4].

We have already discussed the physical reason for the first of Hund’s rules, Fermi
holes and heaps (see Section 13.3.2). The root of the second rule also lies in the
relative values of the interelectron Coulomb repulsion. Imagine two electrons or-
biting the nucleus with nonzero total orbital angular momentum L, and individual
orbital angular momenta �1 and �2. To get a physical feeling for Rule #2 using this
Gedanken experiment it is best to envision both electrons having nonzero angular
momenta. When L has its lowest possible value, �2 − �1, the individual electronic
orbital angular momentum vectors are in opposite directions, indicative of electrons
revolving in the opposite sense to each other. They, therefore, pass each other and
r12 can be quite small, thereby raising the interelectron energy considerably. On the
other hand, when L has the highest possible value, �2 +�1, the electrons are rotating
in the same sense, more or less rigidly, thus keeping them apart and, consequently,
the interelectron repulsion is small. While these rules may seem to be based on
highly qualitative arguments, they actually work for a wide class of atoms.

Returning to the carbon atom, according to Hund’s rules, the 3 P term of the
ground state configuration of C lies lowest. Next lowest is the 1 D2 and the highest
energy state of the three is the 1S0 state. The 3 P has, however, three J -substates,
so it is necessary to determine the ordering of these sublevels. In LS-coupling the
energy associated with any of states 2S+1 L is determined by the individual angular
momenta, spin and orbital, and by the symmetry requirements. It is assumed that the
orbital angular momenta of the electrons interact strongly with each other, leading to
a grand L. Similarly, there is a strong interaction between the spin angular momenta
that leads to the total spin S. Thus, the energy of the states 2S+1 L is determined
by interelectron Coulomb repulsion and the symmetry requirements. The spin–orbit
coupling, L • S, further splits the levels according to their J -values and is the major
contributor to fine structure splitting in multielectron atoms.

As was the case for hydrogen, we treat the spin–orbit coupling term L • S as a
perturbation letting

Ĥ1 = A L̂ • Ŝ (13.82)

where A is a constant that depends upon L and S. In terms of the individual angular
momenta we have

L̂ • Ŝ = 1

2

(
Ĵ 2 − L̂ − Ŝ2) (13.83)

and, because L, S, and J are good quantum numbers in LS-coupling, the spin–orbit
energy correction is
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E (1) (J, L, S) = A

2
[J (J + 1) − L (L + 1) − S (S + 1)] (13.84)

Within a given multiplet, say 3 PJ , the values of L and S are the same so the differ-
ence in energy between successive J -levels, J and J − 1, is

E (1) (J ) − E (1) (J − 1) = A

2
[J (J + 1) − J (J − 1)]

= AJ (13.85)

Equation 13.85 is known as the Landé interval rule. It states that, for a given mul-
tiplet, the energy interval between two successive J -values is proportional to the
greater of the J ’s.

The Landé interval rule leads to a rule that gives the ordering of the J -states in
a given multiplet. This rule is often stated as one of Hund’s rules, but we separate it
from them. It is found empirically that when a particular atomic orbital is less than
half-full, the constant A is positive. Consequently, the lowest J -state has the lowest
energy. On the other hand, when the atomic orbital is more than half-full, it is found
that A is negative. The spin–orbit interaction is one between magnetic moments so
the reversal of sign for orbitals that are more than half-full can be envisioned as
the same spin–orbit interaction for the same number of holes as there are electrons
in the less-than-half-full orbital. It is reasonable to think of the holes as having
magnetic moments in the opposite direction to that of the electrons, thus reversing
the sign of A. Therefore, if an atomic orbital is more than half-full, the energies
of the J -states are reversed and the multiplet is said to be inverted. For inverted
multiplets the highest value of J lies lowest. The rule for ordering the substates in a
multiplet is therefore

For a given multiplicity and value of L, the state having
the lowest J lies lowest for subshells that are less than
half-full. If the subshell is more than half-full
the state having the highest value of J lies lowest.

It is interesting that for a level that is half-filled, the spin–orbit coupling is zero.
This can be seen by noting that a half-full orbital can be regarded as half-full or
half-empty. Thus, the spin–orbit coupling energy for half-full should be of opposite
sign to spin–orbit coupling for half empty. This can only be true if the spin–orbit
coupling is zero.

13.5 Retrospective

While the study of the hydrogen atom in Chapter 10 provided an elegant solution
to the TISE, this solution was, sadly, incomplete because the Schrödinger equation
does not contain relativistic effects such as spin. Indeed, the Dirac equation comes
closer to providing a complete solution, but it too is incomplete because it does not
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contain some important effects such as those of QED. It is, however, possible to
circumvent the Dirac equation by proper use of perturbation theory. Thus, the study
of perturbation theory in Chapter 12 is crucial to the study of quantum physics.
Moreover, approximation methods such as perturbation theory and the variational
technique are required to describe multielectron atoms because the three-body prob-
lem is not solvable. Therefore, a seemingly simple system like the helium atom
requires application of these approximation techniques.

Because the hydrogen atom contains only a single electron it is not necessary to
confront the concept of identical particles when studying it. The helium atom, how-
ever, requires proper attention to this very important quantum mechanical concept,
a concept that leads to an extra “force,” the exchange force, as manifested through
the exchange integral K . The effect of the exchange integral is to raise the Coulomb
energy by K for the singlet states and lower it by K for the triplet states as dictated
by Equation 13.77. Were it not for the quantum mechanical requirement of indis-
tinguishability, the corrected energy would be simply the unperturbed energy plus
the energy of the Coulomb integrals. The reason that the triplet states are lowered
in energy is because the triplet is characterized by a probability distribution that
represents a Fermi hole which keeps the electrons away from each other. Because
the interelectron repulsion depends upon 1/r12, the triplet state energy is lower than
the corresponding singlet, the probability density of which is that of a Fermi heap
for which the electrons are close to each other and, consequently, the interelectron
repulsive energy is higher than for the triplet.
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Problems

1. Show that the ratio
∣
∣〈ĤSO
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/
〈
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〉∣∣ ∼ α2 first using SI units and then using
atomic units.

2. Show that for the hydrogen atom the expectation value of the spin–orbit Hamil-
tonian, Equation 13.21, is given by
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3. Show that neither L̂z nor Ŝz commute with L̂ • Ŝ.
4. Show that Ĵ 2 and Ĵz commute with L̂ • Ŝ.
5. Assume that nucleons are bound by an isotropic oscillator potential U (r ) =

1
2 mω2r2.

(a) Use perturbation theory to solve for the energy level splitting by the spin–
orbit interaction.

(b) What is the splitting of s-states?

6. Solve for the hyperfine eigenvalues found in Section 8.6.1 and Problem 22 of
Chapter 8 using degenerate perturbation theory and compare with the exact
answers.

7. Show that minimization of
〈
Ĥ
〉

in Equation 13.67 leads to ζ0 = Z − 5/16, the
value of ζ that minimizes

〈
Ĥ
〉

which yields Equation 13.69 for the minimized
expectation value of the energy.

8. Using Equations 13.63 and 13.69 show that the energy obtained from the vari-
ational treatment is lower than that obtained from perturbation theory and is
therefore closer to reality. By how much lower is the energy obtained from the
variational treatment in eV?

9. Using the degenerate product kets |1s〉1 |2�〉2 and |1s〉2 |2�〉1 to represent the
1s2� electron configuration of helium, diagonalize Ĥ1 and obtain the correction
to the unperturbed energy and the select eigenkets that diagonalize Ĥ1.

10. Show that using the properly symmetrized eigenkets, the select eigenkets, for
the 1sn� excited states of helium, the perturbing Hamiltonian Ĥ1 = 1/r12 is
diagonal.

11. The ground state electron configuration of the boron atom is (1s)2 (2s)2 2 p.

(a) Using LS notation list all possible states in order of increasing energy.
(b) List all possible states of the first excited configuration of boron (1s)2 2s (2 p)2

using LS notation. Include all possible J -states.

12. One excited electron configuration of Ca atoms is [Ar](3d)2.

(a) What are the allowed LS terms?
(b) A particular multiplet of this configuration is observed to have the en-

ergy spacing between three adjacent J -levels, J , J ± 1 such that E (J ) −
E (J − 1) = E0 and E (J + 1)− E (J ) = (4/3) E0 where E0 is a constant.
What is the LS term designation of the multiplet for which the energy level
spacing is as given?



Chapter 14
Atoms in External Fields

We have seen that fine structure effects break the accidental degeneracy of the hy-
drogen atom. These effects, however, leave untouched the spatial degeneracy that is
due to the central potential. This degeneracy may be broken by spoiling the spherical
symmetry of the central potential. One way to do this is to impose an external field
on the atom, thus establishing a direction in space. Of course, either an electric field
or a magnetic field will do.

In 1896, at the suggestion of Hendrik Antoon Lorentz, under whom he had pre-
viously studied, Pieter Zeeman began experimental investigations of the effects of
magnetic fields on atomic spectra. This led to the discovery of the Zeeman effect. In
1902 Zeeman and Lorentz shared the Nobel Prize in Physics, the citation for which
reads, “in recognition of the extraordinary service they rendered by their researches
into the influence of magnetism upon radiation phenomena.”

The study of atoms in external magnetic fields predated the analogous study with
electric fields largely because high electrical fields cause electrical breakdown, thus
making the experiments more difficult. In 1913, however, Johannes Stark and, in-
dependently, Antonino Lo Surdo observed splittings of the hydrogen spectral lines
by an external electric field. Interestingly, only Stark received the Nobel Prize for
the work which was awarded in 1919. The citation reads: “for his discovery of the
Doppler effect in canal rays and the splitting of spectral lines in electric fields.” The
effect is commonly known as the Stark effect, but is often referred to as the Stark–Lo
Surdo effect.

14.1 Hydrogen Atoms in External Fields

14.1.1 Electric Fields—the Stark Effect

Quadratic Stark Effect—The Ground State

The energy of orientation of any charge distribution is the dot product of the electric
dipole moment (if it has one) and the field. Thus, we take the perturbing Hamilto-
nian, which we designate by Ĥ1 = ĤS, to be of the form

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 431
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ĤS = − p̂ • F (14.1)

where p̂ = er is the electric dipole moment and F is the applied electric field. We
choose the field to be constant and in the z-direction, F = F k̂, so that

ĤS = −eFz (14.2)

Electronic spin is not important here because spin is a magnetic quantity.
It is assumed that the perturbing Hamiltonian is small enough compared with Ĥ0

that we can employ perturbation theory. We therefore restrict our attention to weak
fields. What is a weak field? From a practical standpoint, it is a field that makes
the problem tractable so it may serve as a suitable example of perturbation theory.
For this purpose we restrict the field strength to being weak enough so the energy
splitting that it causes is much smaller than the spacing between adjacent n-levels,
�E (0)

n , but strong enough that this splitting is much greater than the fine structure
splitting for a given n, �EF S (n). We can then ignore fine structure and assume the
unperturbed energy to be the Bohr energy, E (0)

n . In terms of the Bohr energy

�E (0)
n >> eFz >> �EF S (n) (14.3)

We may assume that the dimension over which the field acts is roughly the size of
an atom in the nth state, ∼ n2a0. From Equation 13.41 and the Bohr energy, we
have, after rearranging the inequality in Equation 14.3,

α2

4

(
e

4πε0a2
0

)
1

n5
<< F <<

(
e

4πε0a2
0

)
1

n5
(14.4)

As displayed in Equation 14.4 the quantities in parentheses are the atomic unit of
electric field (see Table 1.2).

If the only energy eigenfunctions were those obtained by solving the TISE in
spherical coordinates, then the atom could not have a permanent electric dipole
moment in an eigenstate because of the symmetry of the probability distributions.
Recall from Section 8.4 that the spherical harmonics have definite parity and the
parity is determined solely by �. The parabolic coordinate eigenfunctions are an-
other matter. Many of these do lead to electronic probability densities for which
there is a permanent dipole moment because they produce asymmetric electronic
charge distributions. This can be understood by noting that any linear combination
of eigenfunctions that have the same eigenvalue is also an eigenfunction. Thus, we
may form an eigenfunction as a linear combination of spherical (or parabolic) eigen-
functions, and arrange the expansion coefficients to make the resulting electronic
probability distribution as asymmetric as we please. Because each set of eigenfunc-
tions is complete, any of the parabolic eigenfunctions can be expressed as a linear
combination of spherical eigenfunctions (and vise versa). The consequence of this
is that excited eigenstates of the hydrogen atom can, and do, have permanent elec-
tric dipole moments because of the accidental degeneracy. Being nondegenerate,
however, the ground state does not have a permanent dipole moment. This is
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reflected in the fact that the ground state eigenfunctions in spherical and parabolic
coordinates are identical. We first consider the ground state for which we need use
only nondegenerate perturbation theory.

The first-order correction to the ground state energy
(

E (1)
S

)

100
is

〈
ĤS

〉
100 = eF 〈100| z |100〉 (14.5)

which vanishes because it represents an integral with an odd integrand. We must
therefore proceed to second-order perturbation theory for which the energy correc-
tion to the ground state is

(
E (2)

S

)

100
= (eF)2

∑

n�m �=100

|〈100| z |n�m〉|2
E (0)

1 − E (0)
n

(14.6)

This sum can actually be evaluated exactly, but doing so is of limited pedagogical

value so we simply estimate it. We obtain an upper bound to
(

E (2)
S

)

100
by letting all

of the E (0)
n = E (0)

2 . We have then

(
E (2)

S

)

100
<

(eF)2

E (0)
1 − E (0)

2

∑

n�m �=100

|〈100| z |n�m〉|2 (14.7)

We can let the summation run over all n�m because the first term will vanish anyway.
The summation in Equation 14.7 can be evaluated by expanding it as

∑

n�m

|〈100| z |n�m〉|2 =
∑

n�m

〈100| z |n�m〉 〈n�m| z |100〉

= 〈100| z2 |100〉 (14.8)

Note the presence of the identity operator. Also, this is the expectation value of z2,
not z, so this integral does not vanish. Now, the ground state is spherically symmetric
so

〈
z2
〉 = (1/3)

〈
r2
〉
. Using Table 10.4 to evaluate

〈
r2
〉

for n = 1 we find

(
E (2)

S

)

100
< − (4πε0)

(
8

3

)
a3

0 F2 (14.9)

while the exact answer is

(
E (2)

S

)

100
= −9

4
(4πε0) a3

0 F2 (14.10)

In atomic units this is

(
E (2)

S

)

100
= −9

4
F2 (14.11)
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The important point about this expression is that it is proportional to the square
of the electric field. It is therefore referred to as the quadratic Stark effect. Why
is it proportional to the square of the electric field? The reason is that there is no
permanent electric dipole moment in the nondegenerate ground state. The probabil-
ity distribution for this state is spherically symmetric. The field, however, induces a
dipole moment. The propensity of a charge distribution to be polarized by a field is
called the dipole polarizability and, regrettably, is designated by the Greek letter α.
We use αd to avoid confusion with the fine structure constant. The induced dipole
moment pin is given by

pin = αd F =⇒ αd = dpin

d F
(14.12)

In general, the dipole moment is the change in energy E with respect to the field so

pin = −d E

d F
=⇒ αd = −d2 E

d F2
(14.13)

from which it is clear that for the ground state of hydrogen

αd = 9

2
(4πε0) a3

0

= 9

2
(a.u.) (14.14)

The Linear Stark effect—Excited States

We now turn our attention to the excited states, focusing on n = 2 because it min-
imizes the algebra. We have already solved a similar problem when we examined
the perturbed isotropic harmonic oscillator in Section 12.1.2. In the present case,
the n = 2 state of hydrogen is fourfold degenerate, not counting spin, which can
be ignored because spin is a magnetic property. The matrix that represents the un-
perturbed Hamiltonian, Ĥ0, is diagonal; the diagonal elements of which are all the
Bohr energy for n = 2, in perturbation theory terms E (0)

2 .
The perturbing Hamiltonian, Ĥ1, is not, however, diagonal, so we must find the

linear combinations of spherical eigenfunctions that diagonalize it. We represent
the unperturbed eigenstates in spherical coordinates for n = 2 by the kets |� m〉
where, because spin is not affected, we have dropped the subscript on the m quantum
number. We therefore write the matrix representing Ĥ1 as

Ĥ1 = eF

⎛

⎜
⎜
⎝

〈 00| z | 00〉 〈00| z |10〉 〈00| z |11〉 〈00| z |1 − 1〉
〈10| z |00〉 〈 10| z |10〉 〈10| z |11〉 〈10| z |1 − 1〉
〈11| z |00〉 〈11| z |010〉 〈11| z |11〉 〈11| z |1 − 1〉

〈1 − 1| z |00〉 〈1 − 1| z |10〉 〈1 − 1| z |11〉 〈1 − 1| z |1 − 1〉

⎞

⎟
⎟
⎠

(14.15)
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Symmetry considerations will eliminate most of these matrix elements. First, it is
clear that the diagonal elements vanish because Ĥ1 is an odd function. Second, again
because Ĥ1 is odd, and because � determines the parity of the spherical harmonics,
any matrix element for which both values of � are the same vanishes. Therefore,
the only possible nonzero matrix elements are those in the first column and the first
row. Finally, those matrix elements for which the quantum numbers m are different,
vanish because there will be a factor ei(m−m′)φ in the integral and z = r cos θ does
not contain φ. The factor ei(m−m′)φ , when integrated from 0 to 2π , vanishes.

We see that the only nonzero matrix elements are 〈1 0| z |0 0〉 = 〈0 0| z |1 0〉∗
so we need diagonalize only the 2 × 2 submatrix in the upper left-hand corner
of Equation 14.15. These matrix elements may be evaluated with the help of the
eigenfunctions listed in Table 10.5. We have

〈1 0| z |0 0〉 = eF
∫ ∞

0
R∗

21 (r ) R20 (r ) r3dr

×
∫ π

0
Y ∗

10 (θ, φ) cos θY10 (θ, φ) sin θdθ

∫ 2π

0
dφ

= eF
1

8a3
0

∫ ∞

0

(
r

a0

)(
1 − r

2a0

)
r3dr

∫ π

0
sin θ cos2 θdθ

= −3eFa0 (14.16)

The eigenvalue equation for the 2 × 2 submatrix is

(
0 −3eFa0

−3eFa0 0

)(
a
b

)
= E (1)

2

(
a
b

)
(14.17)

so the secular equation is

∣
∣∣
∣

−E (1)
2 −3eFa0

−3eFa0 −E (1)
2

∣
∣∣
∣ = 0 =⇒

[
E (1)

2

]2
− (3eFa0)2 = 0 (14.18)

and the energy splittings due to application of the field are

E (1)
2 = 0, 0,± 3eFa0 (14.19)

The unshifted values are associated with the |11〉 and |1 − 1〉 states which are part of
the select set. The |10〉 and |00〉 states are, however, destroyed by the perturbation,
although they reappear in linear combinations that constitute the select states. These
select states are (see Problem 1)

|ψ〉± = 1√
2

(|00〉 ∓ |10〉) (14.20)
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Fig. 14.1 Energy level
diagram showing the linear
Stark effect on the n = 2
states of hydrogen

Therefore, only part of the degeneracy is removed by application of the electric
field. The energy is split as shown in Fig. 14.1, which also shows the associated
select eigenkets. It is said that the perturbation mixes the |10〉 and |00〉 states.

Notice that the energy correction is proportional to the first power of the field, so
the Stark effect for excited states of hydrogen is the linear Stark effect in contrast to
the ground state which exhibits the quadratic Stark effect. We might say that in the
quadratic Stark effect one power of the field is required to induce the dipole while
the remaining power determines the energy of orientation of the dipole in the field.

Interestingly, the kets that are the eigenkets of the shifted energies are precisely
the kets that are obtained if the TISE is separated and solved in parabolic coordi-
nates. This is because the TISE for the hydrogen atom in a weak electric field is sep-
arable in parabolic coordinates, the eigenfunctions being the same as the parabolic
eigenfunctions obtained for F = 0. For this reason the parabolic eigenfunctions are
often referred to as Stark eigenfunctions.

14.1.2 Magnetic Fields—The Zeeman Effect

The energy of orientation of a magnetic dipole in a magnetic field is analogous to
that of an electric dipole in an electric field, Equation 14.1. Letting the magnetic
moment of the atom be

μ = μ� + μs (14.21)

the Hamiltonian for the Zeeman effect ĤB is

ĤB = − (
μ� + μs

) • B

=
(g�μB

�
L̂ + geμB

�
Ŝ
)

• B

= μB

�

(
L̂ + 2Ŝ

)
• B (14.22)

where the g-factors are g� = 1 and ge = 2 (see Section 8.5). The spin of the proton
has been ignored inasmuch as its magnetic moment is tiny compared with the orbital
and spin magnetic moments. For convenience, the direction of the external field is
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again chosen to be in the z-direction so that

ĤB = μB

�
B
(
L̂z + 2Ŝz

)
(14.23)

To treat the problem using perturbation theory, we must compare the magnitudes
of the various energies. The total Hamiltonian may be written in terms of the con-
stituent Hamiltonians:

Ĥ = ĤCoul + ĤF S + ĤB (14.24)

where ĤF S is the fine structure Hamiltonian and ĤCoul is the field-free Hamiltonian.
We need consider only the spin–orbit part of the fine structure Hamiltonian because
the spin–orbit energy is in competition with the energy associated with the exter-
nally applied magnetic field. The contribution to the fine structure of the relativistic
energy of the electron remains unchanged with application of the external field.

A weak external field is defined as one that causes splitting that is small com-
pared with the spin–orbit splitting. A strong external field leads to splitting that is
greater than the spin–orbit splitting. Therefore, for a weak field, ĤB is treated as the
perturbation while for strong fields ĤF S is the perturbation. In the absence of the
external field the magnitude of the spin–orbit portion of the fine structure splitting
is determined by the magnitude of the internal magnetic field, Borbital, as given in
Equation 13.19. We may therefore compare the magnitudes of the respective fields,
internal and external, to assess the two effects. In terms of the Bohr magneton (see
Equation 1.44) the internal field Borbital is

Borbital =
(

1

4πε0

)(
2

c2r3

)
μB� (14.25)

where we have replaced the angular momentum by ��. For n = 2 the internal field
is approximately Borbital ≈ 1T. We may therefore consider 1T as the dividing line
between weak and strong fields. In the vicinity of 1T the fine structure splittings and
the Zeeman effect splittings are comparable so that to properly use the weak field
approximation the external field should be substantially less than 1T. In fact, the
problem can be solved exactly for hydrogen [1, 2], thus eliminating the necessity
of defining a boundary between weak and strong fields. We will not, however, work
out the details of the exact case here. It is customary to use SI units when treating
the Zeeman effect, a convention we will follow.

Strong Fields

For the strong field case the unperturbed Hamiltonian is

Ĥ0 = ĤCoul + μB

�
B
(
L̂z + 2Ŝz

)
(14.26)
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Because L̂z and Ŝz commute with ĤCoul, the quantum numbers (�, m�, s, ms ) re-
main good quantum numbers. Therefore, the unperturbed eigenkets for the strong
field case are the uncoupled set

∣
∣n � m�; 1

2 ms
〉
. The coupled set

∣
∣n j m j � s

〉
are not

eigenkets of Ĥ0 because j and m j are not good quantum numbers. From Equation
14.26 it is clear that the unperturbed energy in the presence of a strong B-field,
E (0)

n (B), is

E (0)
n (B) = E (0)

n + μB B (m� + 2ms) (14.27)

which makes it clear that the degenerate Bohr energy E (0)
n is split by application

of the field. This is precisely what was expected because application of the field
destroys the spherical symmetry that is partially responsible for the field-free de-
generacy. Incidentally, Equation 14.27 also makes clear the reason that m� and
ms are referred to as magnetic quantum numbers. There does, however, remain
some degeneracy. States for which m� and ms are different, but for which the sum
(m� + 2ms) is the same, are degenerate.

To find the correction to the energy, Equation 14.27, we must find the expectation
value of the fine structure Hamiltonian in the presence of the externally applied
field. As noted above, the relativistic correction will be insensitive to this field, but
the spin–orbit term L̂ • Ŝ is indeed affected by its presence. We must therefore
reevaluate

〈
ĤSO

〉
as given in Equation 13.21. This expectation value can be put in

the form (see Problem 2, Chapter 13)

〈
ĤSO

〉 = − 1

n
α2 E (0)

n

{
1

[
�
(
� + 1

2

)
(� + 1)

]

} 〈
L̂ • Ŝ

〉

�2
(14.28)

The uncoupled kets are the unperturbed kets so we must use them to evaluate〈
L̂ • Ŝ

〉
. To do this we employ the identity (see Problem 2)

L̂ • Ŝ = L̂z Ŝz + 1

2

(
L̂+ Ŝ− + L̂− Ŝ+

)
(14.29)

Because of orthogonality, the expectation values involving the ladder operators van-

ish from
〈
L̂ • Ŝ

〉
and we have

〈
L̂ • Ŝ

〉
= m�ms�

2 (14.30)

Adding
〈
ĤSO

〉
to the relativistic energy, Equation 13.15, we obtain the fine struc-

ture correction in the presence of a strong external magnetic field B to be
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E (1)
F S = − 1

n
α2 E (0)

n

(
m�ms[

�
(
� + 1

2

)
(� + 1)

]

)

+ E (0)
n

α2

n2

[
n

(� + 1/2)
− 3

4

]

= −E (0)
n

(
α2

n

){
3

4n
−

[
� (� + 1) − m�ms

�
(
� + 1

2

)
(� + 1)

]}

(14.31)

Notice that this expression is indeterminate for � = 0 in which case it can be shown
that the term in square brackets is unity. Adding this energy to that in the second
term in Equation 14.27 gives the total Zeeman energy resulting from application of
the strong field EZ :

E (1)
Z = μB B (m� + 2ms) − E (0)

n

(
α2

n

){
3

4n
−

[
� (� + 1) − m�ms

�
(
� + 1

2

)
(� + 1)

]}

(14.32)

Weak Fields

In this case we take ĤB as the perturbing Hamiltonian so that

Ĥ0 = ĤCoul + ĤF S (14.33)

Therefore, the unperturbed eigenkets are the coupled kets so, to obtain the correction
to the unperturbed energy, we must evaluate the expectation value

〈
ĤB

〉
using these

kets. We can simplify this task slightly by eliminating L̂z from Equation 14.23 using
Ĵz = L̂z + Ŝz . We have

ĤB = μB

�
B
(

Ĵz + Ŝz
)

(14.34)

The coupled kets are eigenkets of Ĵz , but not of Ŝz . We are therefore left with the
task of evaluating

〈
Ŝz
〉 = 〈

n j m j � s
∣
∣ Ŝz

∣
∣n j m j � s

〉

=
〈(

� ± 1

2

)
m j

∣
∣∣
∣ Ŝz

∣
∣∣
∣

(
� ± 1

2

)
m j

〉
(14.35)

where the notation in the last line of Equation 14.35 has been truncated. Because
the coupled kets are not eigenkets of Ŝz we must write them as linear combinations
of the uncoupled kets which are indeed eigenkets of Ŝz . Of course, the expansion
coefficients in these linear combinations are the Clebsch–Gordan coefficients which
we may read from Table 14.1 which is a modified version of Table 8.11 is that has
been adapted to conform to the present notation.



440 14 Atoms in External Fields

Table 14.1 Clebsch–Gordan coefficients for j1 = � and j2 = 1/2

j ms = 1
2 ms = − 1

2

� + 1
2

√(
� + 1

2 + m j

)
/ (2� + 1)

√(
� + 1

2 − m j

)
/ (2� + 1)

� − 1
2 −

√(
� + 1

2 − m j

)
/ (2� + 1)

√(
� + 1

2 + m j

)
/ (2� + 1)

Designating the uncoupled kets as |� m� ms〉, where ms = α (spin up) or β (spin
down), the desired expansions are

∣
∣
∣∣

(
� + 1

2

)
m j

〉
=

√(
� + 1

2 + m j
)

(2� + 1)
|� m� α〉 +

√(
� + 1

2 − m j
)

(2� + 1)
|� m� β〉 (14.36)

and

∣
∣
∣
∣

(
� − 1

2

)
m j

〉
= −

√(
� − m j + 1

2

)

(2� + 1)
|� m� α〉 +

√(
� + m j + 1

2

)

(2� + 1)
|� m� β〉

(14.37)

Note that the value of m� is fixed for a given one of these expansion coefficients by
the value of m j = m� + ms . For example, in the coefficients of |� m� α〉 we must
have m� = m j − 1

2 , while the coefficients of |� m� β〉 must have m� = m j + 1
2 .

Using these expansions, the expectation value
〈
Ŝz
〉

is

〈
Ŝz
〉 = �

2

[(
� + 1

2 ± m j
)

(2� + 1)
−

(
� + 1

2 ∓ m j
)

(2� + 1)

]

= ± m j�

(2� + 1)
(14.38)

The first-order correction to the energy in the weak field case is thus

E (1)
B = 〈

ĤB
〉

= μB Bm j

[
1 ± 1

(2� + 1)

]
; j = � ± 1

2
(14.39)

The quantity in brackets in Equation 14.39 is called the Landé g-factor. For sim-
plicity, it is usually expressed in terms of j and � because it can be represented as a
single expression. That is, for either value j = �± 1

2 it can be shown that the Landé
g-factor is (see Problem 4)

g ( j, �) =
[

1 + j ( j + 1) − � (� + 1) + 3/4

2 j ( j + 1)

]
(14.40)
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so the energy due to the field E (1)
B is simply

E (1)
B = μB Bm j g ( j, �) (14.41)

Under our definition of weak field, the fine structure is unaffected, so the total cor-
rection due to application of the B-field is E (1)

B . Adding the fine structure correction
to E (1)

B we obtain the total energy, not including the Bohr energy:

E (1)
F S + E (1)

B = α2

n2
E (0)

n

[
n

j + 1
2

− 3

4

]

+ μB Bm j g ( j, �) ; j = � ± 1

2
(14.42)

To illustrate the breaking of the degeneracy that is caused by application of an
external magnetic field we examine the fine structure levels of the n = 2 state of
hydrogen (see Figs. 13.1 and 13.2). While the fine structure correction removes
some of the degeneracy, it does not remove the degeneracy between the 2s1/2 and
the 2 p1/2 states. It is left to the Lamb shift to do this. Table 14.2 contains a listing
of the g-factors for the n = 2 states of hydrogen. Also included in the table are
the values of E (1)

B , in units of μB B , for each of the n = 2 substates. Now, the
Bohr magneton, μB = 9.274 × 10−24J/T = 1.39 × 104MHz/T (see Table C.1), so
that an external field of 1T leads to a Zeeman splitting comparable with that of the
2 p3/2−2 p1/2/2s1/2 fine structure splitting (see Fig. 13.1). Thus, as suggested above,
a field substantially below 1T safely coincides with our definition of a weak field
since it leads to Zeeman splittings that are smaller than the fine structure splittings.
On the other hand, for simplicity, we would like our hypothetically applied external
field to produce a splitting that is sufficiently large compared with the Lamb shift
(1057 MHz) and the hyperfine splitting (177 MHz for n = 2 [1]) that we need not
concern ourselves with these effects. Thus, we assume that the applied field is in the
approximate range 0.2T < B < 0.8T.

Using the entries in Table 14.2 we can construct a schematic energy level diagram
for the n = 2 state of hydrogen. Figure 14.2 shows the n = 2 level together with
the fine structure splitting (see Fig. 13.1), their combination being the unperturbed
energy for the weak field case. This figure has been constructed with the assumption
that the external magnetic field is sufficiently weak so that, indeed, the Zeeman
splitting is smaller than the fine structure splitting. It is seen that application of the
field completely removes the degeneracy that persisted even when fine structure is
included. The four 2 p3/2 states are now separated. Note that, because the g-factors

Table 14.2 Landé g-factors for the fine structure states of the n = 2 level of hydrogen

State � m j g ( j, �) E (1)
B (μB B)

2s1/2 0 ±1/2 2 ±1
2p1/2 1 ±1/2 2/3 ±1/3
2p3/2 1 ±1/2 4/3 ±2
2p3/2 1 ±3/2 4/3 ±2/3
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Fig. 14.2 Energy splittings of
n = 2 states of the hydrogen
atom due to application of a
weak magnetic field B

for the 2s1/2 and the 2 p1/2 are different (see Table 14.2), application of the external
field causes different Zeeman splittings, thus breaking the degeneracy.

The unperturbed kets used in the perturbation theory treatment of the Zeeman
effect were different in the cases of strong and weak fields. For strong fields it was
necessary to use the uncoupled kets while for weak fields the coupled kets were
required. These kets are, however, identical at the top and bottom of the ladder. That
is, when m j = j the top of the ladder state designations are

∣∣ j m j = j ; s �
〉 =

∣
∣∣
∣� m� = �;

1

2
ms = 1

2

〉
(14.43)

because, to have m j = j , we must have m� = � and ms = + 1
2 . This is the only

way these combinations can be formed so the kets are identical. We see then that,
because the uncoupled ket is an eigenket of ĤB , Equation 14.23, the corresponding
coupled ket must also be an eigenket. In this case,

ĤB

∣
∣ j m j = j ; s �

〉 = μB B (� + 1)

∣
∣
∣
∣� m� = �;

1

2
ms = 1

2

〉
(14.44)

Since, however, j = � + 1
2 we may also write

ĤB

∣
∣
∣
∣� m� = �;

1

2
ms = 1

2

〉
= μB

�
B
[(

L̂z + Ŝz
) + Ŝz

]
∣
∣
∣
∣� m� = �;

1

2
ms = 1

2

〉

= μB B

(
j + 1

2

) ∣
∣
∣∣� m� = �;

1

2
ms = 1

2

〉
(14.45)

14.2 Multielectron Atoms in External Magnetic Fields

Although the Zeeman effect was observed in 1896 it was not completely understood
until 1926 when electron spin was postulated. In the intervening 30 years, attempts
to explain the effect met with only limited success. These attempts to explain the
Zeeman effect ignored the intrinsic magnetic moment of the electron because it had
not yet been discovered. Multielectron atoms were considered in the context of the
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Bohr model with quantized orbital angular momenta and energy levels that could
accommodate specific numbers of electrons. According to the model, each state
that is characterized by a total orbital angular momentum quantum number L splits,
upon immersion in an external magnetic field, into 2L + 1 magnetic substates, one
for each value of ML . Thus, the model ignored a substantial part of the total atomic
magnetic moment. It was successful only when the total spin was zero, as it is for
parahelium and the singlet states of other atoms. When S = 0 the Zeeman effect
is referred to as the normal Zeeman effect. Note that S = 0 is not a very common
occurrence. Nonetheless, this is the normal Zeeman effect because it is the only one
that could be understood for 30 years. This understanding was based on classical
physics. Experiments showed, however, that the most commonly observed effect
was the anomalous Zeeman effect which, as we will see, could be understood only
in terms of quantum physics using the concept of spin. Because hydrogen has only
a single electron the total spin is always 1

2 and the anomalous Zeeman effect is
observed.

To formulate the problem for multielectron atoms we take an approach similar
to that taken for hydrogen, but we must make some approximations that were not
required in that case. We treat the weak field case and assume that the unperturbed
Hamiltonian is the sum of the Coulomb Hamiltonian and the spin–orbit Hamilto-
nian:

Ĥ0 = ĤCoul + ξ (r ) L̂ • Ŝ (14.46)

so the unperturbed kets are the coupled kets. The perturbing Hamiltonian is then ĤB

as in Equation 14.34:

ĤB = μB

�

(
Ĵ + Ŝ

)
• B (14.47)

and, assuming that the applied field is in the z-direction, the correction to the energy
is

E (1)
B = 〈

ĤB
〉

= μB

�
B
(
MJ � + 〈

Ŝz
〉)

(14.48)

Unfortunately,
〈
Ŝz
〉

is not as readily evaluated as it was for the hydrogen atom
because for hydrogen s = 1

2 . We can, however, make a good approximation for the
weak field case. Figure 14.3 shows the relationship between the three angular mo-
menta and the applied field. The vectors S and L precess about J while J precesses
about B as shown in Fig. 14.3. If the field is weak, then the precession rate of J will
be slow and the average values of S and L in the direction of J provide the effective
magnetic moment.

The components of S and L that are perpendicular to J will average to zero so
the averaging is over only the components that are parallel to J . The component of
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Fig. 14.3 Diagram of the
relationship between the
various angular momenta

S in the direction of J , S‖, is the projection of S in the direction of J :

S‖ = (
S • â j

)
â j

=
[

S •
(

J√
J (J + 1)�

)](
J√

J (J + 1)�

)
(14.49)

where â j is the unit vector in the J -direction. (The denominator
√

J (J + 1)� is
simply the magnitude of the total angular momentum vector J .) To calculate E (1)

B

we require
〈
ĤB

〉
so, replacing Ŝ in Equation 14.47 with S‖, we have

〈
ĤB

〉 = μB

�

〈
Ĵ +

(
Ŝ • â j

)
â j

〉
• B

= μB

�

〈⎡

⎣ Ĵ +
(

Ŝ • Ĵ
)

J (J + 1) �2
Ĵ

⎤

⎦ • B

〉

= μB

�

〈⎡

⎣1 +
(

Ŝ • Ĵ
)

J (J + 1) �2

⎤

⎦
(

Ĵ • B
)
〉

(14.50)

Now, because the external field is in the z-direction, Ĵ • B = B Ĵz . Also, we may
evaluate Ŝ • Ĵ using the relationship between the three angular momenta:

L̂ • L̂ =
(

Ĵ − Ŝ
)

•
(

Ĵ − Ŝ
)

= Ĵ
2 + Ŝ

2 − 2Ŝ • Ĵ (14.51)

Therefore,

Ŝ • Ĵ=1

2

(
Ĵ

2 + Ŝ
2 − L̂

2
)

(14.52)
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so that

E (1)
B = μB

�

〈⎡

⎣1+
(

Ĵ
2 + Ŝ

2 − L̂
2
)

2J (J + 1) �2

⎤

⎦ B Ĵz

〉

(14.53)

The unperturbed kets are coupled kets so the quantum numbers corresponding to all
operators in the expectation value are easily evaluated. We have

E (1)
B = μB B MJ

[
1+ J (J + 1) + S (S + 1) − L (L + 1)

2J (J + 1)

]

= μB B MJ g (J, L, S) (14.54)

where

g (J, L, S) =
[

1+ J (J + 1) + S (S + 1) − L (L + 1)

2J (J + 1)

]
(14.55)

is the Landé g-factor, as in Equation 14.40. Indeed, g (J, L, S) for multielectron
atoms reduces to g ( j, �) for the hydrogen atom.

It is easily seen that the Landé g-factor is unity when S = 0, because in that case
J = L. Therefore, the normal Zeeman effect is observed. That is, the splittings for
levels of any value of L are the same, μB B , which is the criterion for the normal
Zeeman effect. Thus, the splitting of a singlet state such as those in parahelium
depend only upon the magnitude of the applied field as indicated on the left side of
Fig. 14.4 for L = 1 and L = 2.

Also shown in Fig. 14.4 are the level splittings resulting from the anomalous Zee-
man effect for the same values of L. It is seen that the splittings of the triplet states
are different from those of the singlet states and, indeed, different from each other.

Fig. 14.4 The normal
Zeeman effect for 1 P1 and
1 D2 states and the anomalous
Zeeman effect for 3 P1 and
3 D2 states
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14.3 Retrospective

Historically, the study of the behavior of atoms in external fields provided valu-
able insight into the nature of the subatomic world in which quantum physics rules.
Of particular importance was the notion that an electron has an intrinsic magnetic
moment, the spin. This innovative concept was a direct consequence of the failure
of classical physics to describe the anomalous Zeeman effect. Subsequently, it was
found that the electron is not alone in possessing an intrinsic magnetic moment.
A great many other particles, including the proton and neutron, have spin, so this
property of fundamental particles pervades quantum physics. Moreover, the differ-
ences between particles having half-integral spin and those having integral spin are
the basis for the distinction between fermions and bosons. It is probably safe to say
that without the data on the anomalous Zeeman effect the breakthrough in thinking
that led Goudsmit and Uhlenbeck to formulate the notion of spin would have been
delayed by many years.

From the standpoint of atomic physics, the Stark effect is of less importance
than the Zeeman effect. Unlike the Zeeman effect, however, it is not possible to
formulate the problem classically. (Recall that the normal Zeeman effect can be
understood using classical physics.) Because understanding of the Stark effect re-
quired the principles of quantum physics, its explanation ca. 1920 was a triumph for
this emerging scientific discipline.

14.4 References

1. C. E. Burkhardt and J. J. Leventhal, Topics in Atomic Physics (Springer, New York, 2005).
2. D. J. Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, Upper Saddle River, NJ,

2nd ed., 2004).

Problems

1. Show that the eigenkets for the n = 2 levels of hydrogen in a weak electric
field F are

|ψ±〉 = 1√
2

(|00〉 ∓ |10〉)

where the kets on the right are the spherical n = 2 kets designated |� m〉.
2. Show that L̂ • Ŝ = L̂z Ŝz + 1

2

(
L̂+ Ŝ− + L̂− Ŝ+

)
.

3. Find the Stark effect on the energy levels of a rigid rotor of radius a, mass μ,
and electrical charge q that is confined to the xy-plane if the constant electric
field F is in the x-direction.

4. Show that the Landé g-factor
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g =
[

1 ± 1

(2� + 1)

]
; j = � ± 1

2

can be written

g ( j, �) =
[

1 + j ( j + 1) − � (� + 1) + 3/4

2 j ( j + 1)

]

for both j = � ± 1
2 .

5. Show that for hydrogen the sums of the fine structure and Zeeman corrections
to the energy for strong and weak fields are the same for the top of the ladder
state and are given by

E (1)
F S + E (1)

B = α2

n2
E (0)

n

[
n

j + 1
2

− 3

4

]

+ μB B

(
j = 1

2

)

6. A constant magnetic field B = B k̂ is applied to a hydrogen atom and the
Zeeman effect on the hyperfine levels of the ground state is examined.

(a) Write the Hamiltonian that describes this Zeeman effect in terms of the
Pauli spin matrices and the Bohr magneton. Use the notation of Section
8.6.1.

(b) Ignoring the interaction of the proton spin magnetic moment with the ex-
ternal field, find the exact eigenvalues of this Hamiltonian. Do not find the
eigenkets. Why is it permissible to ignore the proton interaction with the
field? Make sure that the final answer is correct for B = 0.

7. Show that the Landé g-factor g (J, L, S) is unity for all singlet states and is 2
for all S-states.

8. Determine the weak field Zeeman splittings for 3S1, 3 P2, and 4 D5/2 states. Make
a diagram similar to those in Fig. 14.4 illustrating the relative magnitudes of the
splittings for these states.

9. Show that there is no weak field Zeeman effect for a 4 D1/2 state.



Chapter 15
Time-Dependent Perturbations

It was noted in Section 3.3 that, although the emphasis in introductory courses in
quantum physics is, necessarily, on stationary states and the solution of the TISE
for various potential energy functions, physical systems do not typically “live” in
stationary states. Generally, they are in a time-dependent superposition of states
that, as long as the potential energy is independent of time, can be determined by
applying the time evolution operator to the wave function at some specific time (see
the discussion of Postulate VI in Section 6.3.2).

Now, suppose at some time, say t = 0, a perturbation is applied to the system. We
wish to describe the reaction of the system to the perturbation. An example of such
a perturbation might be one such that at t = 0 a constant field, electric or magnetic,
is applied. Because the field is turned on at a particular time the perturbation is
time-dependent, so we expect the time dependence of the state vector to be altered.
To determine how the system evolves in time, we must solve the TDSE. Indeed, in a
limited number of cases, this is possible. When it is not possible to solve the problem
exactly we must find approximate solutions. One such approximation method is
time-dependent perturbation theory. We begin the discussion with the exact solution
to the TDSE and then elaborate on the approximations that can be made in given
physical situations.

15.1 Time Dependence of the State Vector

To this point we have dealt only with Hamiltonians that do not contain time. Be-
fore studying time-dependent perturbation theory we examine the time evolution
of a system when the Hamiltonian contains the time. To do this we assume that
the Hamiltonian Ĥ (r, t) can be separated into the sum of two terms, Ĥ0 a time-
independent Hamiltonian and Ŵ (t) which depends upon time, although it may
depend upon other observables as well. It is also assumed that Ŵ (t) is turned on
at t = 0. Thus,

Ĥ (r, t) = Ĥ0 (r) + λŴ (t) (15.1)

C.E. Burkhardt, J.J. Leventhal, Foundations of Quantum Physics, 449
DOI: 10.1007/978-0-387-77652-1 15, C© Springer Science+Business Media, LLC 2008
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where λ is a parameter that is used to keep track of the order of the approximation.
It may be set equal to unity at any time. As in time-independent perturbation theory,
we assume that the eigenkets and energy eigenvalues of Ĥ0 are known and that to
each eigenket there is one energy eigenvalue. These eigenkets and eigenvalues are
designated |ψn〉 and En , respectively. We do not require superscripts as in the case
of time-independent perturbation theory because we will use the |ψn〉 as a basis set
throughout. That is, the only possible final states will be one of the |ψn〉. It is the
probability of finding the system in one of these eigenstates that is affected by the
time-dependent perturbation. The TISE is

Ĥ0 |ψn〉 = En |ψn〉 (15.2)

and we seek the ket |� (r, t)〉 that is the superposition of the |ψn〉 states that result
from the perturbation Ŵ (t). This superposition may be written as a linear combina-
tion of the time-independent eigenkets with time-dependent expansion coefficients.
Thus,

|� (r, t)〉 =
∑

n

cn (t) |ψn〉 exp

(
−i

En

�
t

)
(15.3)

where the time dependence of the Hamiltonian has been accounted for by mak-
ing the expansion coefficients functions of time. Note that we cannot use the time
evolution operator because the Hamiltonian is not independent of time. Clearly the
probability of measuring the system to be in a given stationary state, say |ψm〉, is
|cm (t)|2, which is time-dependent.

The state vector, |� (r, t)〉, is determined by the TDSE

Ĥ (r, t) |� (r, t)〉 = i�
�

�t
|� (r, t)〉 (15.4)

Substituting Equations 15.1 and 15.3 into the TDSE we have

[
Ĥ0 (r) + λŴ (t)

]∑

n

cn (t) |ψn〉 exp

(
−i

En

�
t

)

= i�
�

�t

∑

n

cn (t) |ψn〉 exp

(
−i

En

�
t

)
(15.5)

Using Equation 15.2 and regrouping we have

λ
∑

n

cn (t) Ŵ (t) |ψn〉 exp

(
−i

En

�
t

)
= i�

∑

n

ċn (t) |ψn〉 exp

(
−i

En

�
t

)
(15.6)

where ċn (t) is the time derivative of cn . Taking the inner product with 〈ψk |, multi-
plying by exp (i Ekt/�) and solving for ċk (t) we have
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i�ċk (t) = λ
∑

n

Ŵkn exp (iωkn t) cn (t) (15.7)

where

ωkn = Ek − En

�
(15.8)

and

Ŵkn = 〈ψk | Ŵ (t) |ψn〉 (15.9)

Note that if there is no time-dependent perturbation, that is, Ŵ (t) = 0, then ċk (t) =
0 in Equation 15.7 and all of the expansion coefficients, the ck , are constants. In the
general case, however, the transition probability, the probability that the system will
be found in the kth state, is given by

Pk = |ck (t)|2 (15.10)

Equation 15.7 is a set of differential equations for each of the expansion coeffi-
cients ck (t). To better appreciate the structure of these differential equations we can
write them in matrix form:

i�

⎛

⎜⎜
⎜
⎝

ċ1

ċ2

ċ3
...

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

Ŵ11 Ŵ12eiω12t Ŵ13eiω13t · · ·
Ŵ21eiω21t Ŵ22 Ŵ23eiω23t · · ·
Ŵ31eiω31t Ŵ32eiω32t Ŵ33 · · ·

...
...

...
. . .

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

c1

c2

c3
...

⎞

⎟⎟
⎟
⎠

(15.11)

Notice that the matrix elements are not independent. The off-diagonal matrix ele-
ments are related because Ŵi j = Ŵ ∗

j i and ωi j = −ω j i .
We stress once more that Equations 15.11 are exact. The matrix form makes it

clear that there are, in principle, an infinite number of differential equations and that
each differential equation can have an infinite number of terms. For most cases it is
impossible to solve these equations exactly so approximations are required. We will
apply Equation 15.6 to several problems of interest after first attacking a problem
that can be solved exactly, the two-state problem. It should also be borne in mind
that the matrix representation for the total Hamiltonian, Ĥ (r, t) (see Equation 15.1),
is the same as that for Ŵ (t ) with the energy eigenvalues of Ĥ0 (r) subtracted from
each of the diagonal elements.
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15.2 Two-State Systems

Although a two-state system might at first seem to be a gross oversimplification,
it actually has many applications. Additionally, it can be solved exactly (or almost
exactly) in a few cases so it serves as a benchmark for comparison with solutions
obtained using approximation methods.

For two states |ψ1〉 and |ψ2〉, with energy eigenvalues E1 and E2, Equation 15.11
becomes

i�

(
ċ1

ċ2

)
=

(
Ŵ11 Ŵ12eiω12t

Ŵ21eiω21t Ŵ22

)(
c1

c2

)
(15.12)

For simplicity we assume that E2 > E1 and we let

ω0 = (E2 − E1) /� = ω21 = −ω12 (15.13)

the Bohr frequency. Equation 15.12 represents the two coupled differential equa-
tions

i�ċ1 (t) = Ŵ11c1 (t) + Ŵ12e−iω0 t c2 (t) (15.14)

and

i�ċ2 (t) = Ŵ21eiω0t c1 (t) + Ŵ22c2 (t) (15.15)

where we have explicitly shown the time dependence of the expansion coefficients,
c1 (t) and c2 (t). We assume that initially all systems are in the lower state so that

c1 (0) = 1 and c2 (0) = 0 (15.16)

Our task is to solve these simultaneous equations for particular time-dependent per-
turbations Ŵ (t), subject to the initial conditions given in Equation 15.16.

15.2.1 Harmonic Perturbation—Rotating Wave Approximation

An important case is that of a two-state system immersed in a sinusoidally varying
electromagnetic field, a harmonic perturbation, which we write in the form

Ŵ (t) = Ŵ cos (ωt)

= Ŵ

(
eiωt + e−iωt

2

)
(15.17)

where Ŵ is the time-independent operator amplitude of the sinusoidal perturbation
and ω is the frequency of the applied field, which is distinctly different from the
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natural frequency of the system ω0. Note that Ŵ may contain other observables as
long as there is no explicit dependence on time. Inserting this into Equations 15.14
and 15.15 and using Equation 15.13 we have

i�ċ1 (t) = Ŵ11

(
eiωt + e−iωt

2

)
c1 (t) + Ŵ12

(
eiωt + e−iωt

2

)
e−iω0t c2 (t)

i�ċ2 (t) = Ŵ21

(
eiωt + e−iωt

2

)
eiω0t c1 (t) + Ŵ22

(
eiωt + e−iωt

2

)
c2 (t) (15.18)

or

i�ċ1 (t) = Ŵ11

(
eiωt + e−iωt

2

)
c1 (t) + Ŵ12

(
ei(ω−ω0)t + e−i(ω+ω0)t

2

)
c2 (t)

i�ċ2 (t) = Ŵ †
12

(
ei(ω+ω0)t + e−i(ω−ω0)t

2

)
c1 (t) + Ŵ22

(
eiωt + e−iωt

2

)
c2 (t)

(15.19)

These formidable-looking differential equations can be simplified by making the
first approximation of this chapter. It is known as the rotating wave approximation
(RWA), and is based on the fact that terms involving the applied frequency ω, or the
sum (ω + ω0), will oscillate very rapidly compared with terms involving the differ-
ence of frequencies, (ω − ω0). For long times, these high-frequency oscillations will
average to zero and make no contribution to the expansion coefficients. Retaining
only the difference terms we have

ċ1 (t) =
(

ei(ω−ω0)t

2i�

)
Ŵ12c2 (t)

ċ2 (t) =
(

e−i(ω−ω0)t

2i�

)
Ŵ †

12c1 (t) (15.20)

The applied field can be represented by two phasors, each rotating in the opposite
sense (see Equation 15.17). The terms retained in Equations 15.20 correspond to
phase angle differences between the applied field and that of the two-state transition,
ω0t , when they are rotating in the same sense. The neglected terms correspond to
phasors that are rotating in opposite directions. The relationships between these
phasors are illustrated in Fig. 15.1.

We can solve these coupled differential equations by differentiating one of them,
say the second, with respect to time and eliminating ċ1 (t) in the first. Letting δ =
ω − ω0, the detuning from resonance of the applied frequency, we have for the
second of these equations

c̈2 (t) + iδċ2 (t) +
∣
∣Ŵ12

∣
∣2

4�2
c2 (t) = 0 (15.21)
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Fig. 15.1 Phasor diagram
depicting the rotating wave
approximation

Solving this differential equation by letting c1 (t) = emt we find that

m = − i

2
δ ± i

2

√

δ2 +
∣
∣Ŵ12

∣
∣2

�2
(15.22)

We now introduce the Rabi flopping frequency ωR which is defined as

ωR = 1

2

√

δ2 +
∣
∣Ŵ12

∣
∣2

�2
(15.23)

and named for Isidor Isaac Rabi who was awarded the Nobel Prize in Physics in
1944 “for his resonance method for recording the magnetic properties of atomic
nuclei”. The solution to Equation 15.21 is a linear combination of two solutions so
we have

c2 (t) = e−iδt/2
(

AeiωRt + Be−iωRt
)

(15.24)

where A and B are constants that can be evaluated using the initial conditions given
in Equation 15.16. The result is

c2 (t) = Ŵ21

2i�ωR
e−iδt/2 sin (ωRt) (15.25)

so the probability of a transition from the lower to the upper state is

P1→2 = |c2 (t)|2

=
∣
∣Ŵ21

∣
∣2

∣
∣Ŵ21

∣
∣2 + (�δ)2

sin2 (ωRt) (15.26)
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Fig. 15.2 Probabilities of
transitions for a two-state
system subjected to a
harmonic perturbation for
two sets of values of the
matrix element Ŵ12 and
detuning frequency δ. The
values of Ŵ12 and δ have
been adjusted to keep the
Rabi frequency ωR the same
in the two graphs

Using conservation of probability we also have

P2→1 = 1 − |c2 (t)|2

= cos2 (ωRt) +
(

δ

2ωR

)2

sin2 (ωRt) (15.27)

These equations show that the system oscillates, or “flops,” between the states with
frequency ωR . Figure 15.2 shows the P1→2 and P2→1 as functions of time for two
different values of the parameters, but with the same value of ωR .

For the resonant case, δ = 0, as is clear from Equation 15.26, the probability flops
between zero and unity. In the off-resonant case, however, the nonzero detuning
attenuates the amplitude of P1→2 so that the upper level is never fully populated.
Commensurately, the lower level is never depleted when δ �= 0.

15.2.2 Constant Perturbation Turned On at t = 0

A constant perturbation might not seem to be within the scope of this chapter, but
the fact that we are assuming that this perturbation is turned on at some time, t = 0,
does indeed qualify it as a time-dependent problem. Thus, the perturbation is a step
function.

Because the harmonic perturbation was taken to be in the form of a cosine, Equa-
tion 15.17, it is a simple matter to alter the treatment for a harmonic perturbation to
apply to a constant perturbation by properly letting ω = 0. We therefore take Ŵ (t)
to be independent of time, although it may contain other operators corresponding
to quantum mechanical observables. We begin by letting ω = 0 in the differential
equations for the harmonic perturbation before the RWA was applied, Equations
15.19:

i�ċ1 (t) = Ŵ11c1 (t) + Ŵ12e−iω0 t c2 (t)

i�ċ2 (t) = Ŵ †
12eiω0t c1 (t) + Ŵ22c2 (t) (15.28)
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The algebra required to solve these equations is tedious, so we merely outline the
solution which employs the method that is commonly used to solve normal mode
problems in classical mechanics [2]. We assume a solution of the form

c1 (t) = Ae−iωt and c2 (t) = Be−i(ω−ω0)t (15.29)

where A and B are constants to be determined, as is ω.
After substituting into Equations 15.28 we arrive at two simultaneous homoge-

neous equations for A and B . Because the equations are homogeneous, we solve the
secular equation and find two solutions for ω:

�ω± = 1

2
�γ + Ŵ11 ± �β (15.30)

where

�γ = Ŵ22 − Ŵ11 + �ω0 (15.31)

and

�β =
√(

�γ

2

)2

+ ∣∣Ŵ12

∣∣2 (15.32)

Using the solutions ω±, we obtain a relationship between the constants A and B ,
but there are now four such constants, one set of two constants for each sign. After
obtaining this relationship we can evaluate the constants by applying the boundary
conditions, Equation 15.16, and arrive at the probability for a transition from the
lower state to the upper state:

P1→2 =
∣
∣Ŵ12

∣
∣2

(
�γ

2

)2

+ ∣
∣Ŵ12

∣
∣2

sin2 βt (15.33)

and

P2→1 = 1 −
∣∣Ŵ12

∣∣2

(
�γ

2

)2

+ ∣
∣Ŵ12

∣
∣2

sin2 βt (15.34)

Equations 15.33 and 15.34 are exact. No approximations have been made. The
transition probability oscillates sinusoidally with frequency 2β. (The frequency is
2β rather than β because it depends upon the square of the sine.) The amplitude
of these oscillations is always less than unity except when the difference between
the diagonal matrix elements Ŵ11 − Ŵ22 = �ω0, the Bohr frequency (see Equation
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Fig. 15.3 Probabilities of
transitions for a two-state
system subjected to a
constant perturbation under
the assumption that

(�γ/2)2 = (2/3)
∣∣Ŵ12

∣∣2. The
units of the abscissa are the
frequency of the probabilities

15.31), thus making γ = 0. When this occurs �β → Ŵ12, so the oscillation fre-
quency is 2Ŵ12/�. Figure 15.3 is a plot of these probabilities for the case in which
the amplitude is taken to be 3/5.

15.3 Time-Dependent Perturbation Theory

We saw in the previous section that, using the exact equations for the expansion
coefficients, we could (almost) solve the two-state problem exactly. This is not the
usual case so it is necessary to formulate a method of approximation. This is time-
dependent perturbation theory. We begin with the Hamiltonian as given in Equation
15.1, and use the same designations for the eigenkets and the time-dependent wave
function as were used in Section 15.1 to arrive at Equation 15.7. Inasmuch as this
equation is exact, we may begin there.

We assume that the expansion coefficient, ck (t), can be expanded in powers of
some parameter λ:

ck (t) = λ0c(0)
k (t) + λ1c(1)

k (t) + λ2c(2)
k (t) + · · · (15.35)

Substituting Equation 15.35 into Equation 15.7 and equating coefficients of like
powers of λ leads to the solution for each of the orders of the expansion coefficient.
From the zeroth-order approximation

λ0 : ċ(0)
k (t) = 0 =⇒ c(0)

k = constant (15.36)

we see that, to this order, the expansion coefficients are time-independent. The first-
order approximation is the one that we will use. The coefficient of λ1 is



458 15 Time-Dependent Perturbations

λ1 : ċ(1)
k (t) = 1

i�

∑

n

Ŵkn exp (iωkn t) c(0)
n (15.37)

where ωkn = ωk − ωn . Equations 15.37 and 15.36 illustrate a common feature
of perturbation theory. Each approximation depends upon the next lower level of
approximation. Thus, Equation 15.36, the zeroth-order solution, which simply de-
pends upon the initial conditions, is used to determine the first-order solution. This
bootstrapping procedure continues through the higher orders of perturbation theory.

We assume that at t = 0, the system is in a particular one of the unperturbed
eigenstates, the eigenket of which we designate |ψi 〉. Therefore, ci (0) = 1 and all
the other expansion coefficients are zero at t = 0. From the zeroth-order approxi-
mation, Equation 15.36, we have, using the Kronecker delta,

c(0)
n = δni (15.38)

Inserting these values into the first-order approximation, Equation 15.37, we obtain

ċ(1)
k (t) = 1

i�

∑

n

Ŵkn exp (iωkn t) δni (15.39)

The only term in the summation that survives is the one for which n = i so we have

ċ(1)
k (t) = 1

i�
Ŵki exp (iωki t) (15.40)

For k = i , integration of Equation 15.40 is trivial. Assuming that the perturbation is
turned on at t = t0 we obtain

c(1)
i (t) = 1

i�

∫ t

t0

Ŵii
(
t ′) dt ′ (15.41)

where we have used the dummy variable of integration t ′. Inserting Equations 15.41
and 15.38 into Equation 15.35, setting λ = 1 and retaining only the first two terms
we have

ci (t) ≈ 1 + 1

i�

∫ t

t0

Ŵii
(
t ′) dt ′

≈ exp

[
1

i�

∫ t

t0

Ŵii
(
t ′) dt ′

]
(15.42)

Thus, to first-order, the population of the initially populated state |ci (t)|2 is unity.
The initially populated state is never depleted to this level of approximation.

If, however, k �= i , integration of Equation 15.40 yields
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c(1)
k (t) = 1

i�

∫ t

t0

Ŵki
(
t ′) eiωki t ′

dt ′ (15.43)

so that the probability of finding the system in the kth state is

P (1)
i→k =

∣
∣
∣c(1)

k (t)
∣
∣
∣
2

= 1

�2

∣
∣
∣
∣

∫ t

t0

Ŵki
(
t ′) eiωki t ′

dt ′
∣
∣
∣
∣

2

(15.44)

which is the fundamental result of first-order time-dependent perturbation theory.
The matrix element, Ŵki = 〈ψk | Ŵ (t) |ψi 〉, is called the matrix element connecting
the initial and final states. If it were zero, then the perturbation could not cause the
transition from the initial state to the final state. Note that, to first-order, c(1)

k (t) must
be small for k �= i because the initially populated state is not depleted.

The notion that the population of the initial state remains at unity while other
states acquire nonzero populations after t = 0 seems to defy conservation of prob-
ability. Indeed, it does violate this obvious conservation law! It is as if we are
manufacturing atoms. We started with all of them in the i th state, none of them leave
this state, yet other levels acquire atoms. The problem is the approximation. For
time-dependent perturbation theory to be efficacious, the transition probability for
the kth state must be small so that |ci (t)|2 = 1−|ck (t)|2 ≈ 1. Thus, the deviation of
|ci (t)|2 from unity is insignificant (compared with unity), but the small population
acquired by the kth level, which began with zero population, is significant (com-
pared with zero). The validity of the approximation depends upon the assumption
that the expansion coefficients will not deviate substantially from their initial values
as time advances. Thus, it is expected that the approximation will break down for
long times.

15.4 Two-state Systems Using Perturbation Theory

15.4.1 Harmonic Perturbation

When only two states are important, this simple system provides a convenient test of
perturbation theory. Because the RWA is a nearly exact treatment of the same prob-
lem this comparison is an aid in determining the limits of the perturbation treatment.
Using the same notation as in Section 15.2 and letting t0 = 0 we apply Equation
15.43 and obtain

c(1)
2 (t) = Ŵ21

2i�

∫ t

0

[
ei(ω+ω0)t ′ + e−i(ω−ω0)t ′]

dt ′

= Ŵ21

2i�

[
1 − ei(ω+ω0)t

(ω + ω0)
− 1 − e−i(ω−ω0)t

(ω − ω0)

]
(15.45)
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It is clear from Equation 15.45 that near resonance, ω ≈ ω0, the transition prob-
ability P1→2 = |c2 (t)|2 will depend predominantly upon the second term so the
perturbation theory result may be approximated as

P (1)
1→2 =

∣
∣
∣c(1)

2 (t)
∣
∣
∣
2

=
∣
∣Ŵ21

∣
∣2

�2
· 1

(ω − ω0)2

∣∣
∣
∣e

−i(ω−ω0)t/2

[
ei(ω−ω0)t/2 − e−i(ω−ω0)t/2

2i

]∣∣
∣
∣

2

=
∣∣Ŵ21

∣∣2

�2
· sin2 [(ω − ω0) t/2]

(ω − ω0)2
(15.46)

where the superscript has been inserted in the probability to distinguish it from
those calculated using methods other than perturbation theory. The probability of
the transition is highly dependent on the frequency of the applied field, ω, as may be
seen from the graph of Equation 15.46, Fig. 15.4. Clearly the probability decreases
strongly as ω deviates from resonance at ω0.

Now let us examine the time dependence of the probability for a fixed value of ω.
In particular, we wish to assess the time interval during which perturbation theory
is valid. There must be a lower limit on t . That is, there is a time interval after
t = 0 during which the perturbation theory treatment cannot be applied because
the sinusoidal perturbation must be permitted to act long enough for the system
to perceive it as being sinusoidal. In other words, the perturbation must have been
“on” long enough to wiggle so we must have t > 2π/ω. As discussed at the end of
Section 15.3, however, the perturbation theory result is only valid for “short” times.
Thus, there is some upper time limit after which we expect the perturbation theory
treatment to be invalid. To determine this upper time boundary we examine the limit
of Equation 15.46 as t → 0 by writing P1→2 in the form

Fig. 15.4 Graph of the
probability P1→2 as a
function of the frequency ω

of the applied field for a fixed
time t
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lim
t→0

P (1)
1→2 =

∣
∣Ŵ21

∣
∣2

�2
lim
t→0

{(
t

2

)2 sin2 [(ω − ω0) t/2]

[(ω − ω0) t/2]2

}

=
∣
∣Ŵ21

∣
∣2

4�2
t2 (15.47)

from which it is clear that we must impose the condition t2 < 4�
2/

∣
∣Ŵ21

∣
∣2 just to

conserve probability. That is, P (1)
1→2 cannot exceed unity. Because, however, P (1)

1→2
increases quadratically, it represents only the first term in a Taylor series expansion
of the RWA solution, Equation 15.26 (see Problem 2). Therefore, we must require
that

t <<

∣
∣Ŵ21

∣
∣

�
(15.48)

Figure 15.5 illustrates the time interval during which perturbation theory is valid.
The heavy lines are P1→2, as calculated from the RWA and from time-dependent
perturbation theory P (1)

1→2. Also shown superposed on these probabilities are the
oscillations of the applied field of frequency ω to illustrate that there is necessarily
a minimum value of the time during which the perturbation must act.

Reexamining Fig. 15.4 with knowledge of the limits of t for perturbation theory
to be applicable, we see that, within these limits, the probability of a transition in-
creases with increasing time. Moreover, because the value of the absolute maximum
is proportional to t2, while the first minima after the absolute maximum occur at
2π/t , the area under the central maximum increases at the first power in t .

Fig. 15.5 Illustration of the
range of time during which
perturbation theory, the curve
∼ t2, will be valid. The
high-frequency sinusoidal
variations represent the
applied field. The time scale
is in units of the period
associated with the Rabi
frequency
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15.4.2 Constant Perturbation Turned On at t = 0

To apply perturbation theory to the two-state problem with a constant perturbation
(actually, a step function), we return to Equation 15.45 for c(1)

2 (t). We cannot work

with the function
∣
∣∣c(1)

2 (t)
∣
∣∣
2

of Equation 15.46 because it was evaluated after the

approximation (ω + ω0) >> (ω − ω0) was made. Setting ω = 0 in Equation 15.45
we have

c(1)
2 (t, ω = 0) = Ŵ21

2i�

[
1 − eiω0t

ω0
+ 1 − eiω0t

ω0

]

= Ŵ21

2i (�ω0)

[
2
(
1 − eiω0t

)]

= 2Ŵ21

(�ω0)

[
e−iω0t/2

(
eiω0t/2 − e−iω0t/2

2i

)]
(15.49)

which leads to

P (1)
1→2 = 4

∣
∣Ŵ21

∣
∣2

(�ω0)2 sin2 (ω0t/2) (15.50)

We may compare this result with the exact answer, Equation 15.33, determined
in Section 15.2.2 where it was found that

P1→2 =
∣∣Ŵ12

∣∣2

(
�γ

2

)2

+ ∣
∣Ŵ12

∣
∣2

sin2 βt (15.51)

To cast the exact expression for the probability, Equation 15.51, into a form suitable
for comparison with the perturbation theory result, Equation 15.50, we must convert
the parameters in Equation 15.51 to conform with the restrictions on perturbation
theory. In particular, weak perturbations are demanded, so all matrix elements of Ŵ
must be assumed to be small. Therefore,

�γ = Ŵ22 − Ŵ11 + �ω0

≈ �ω0 (15.52)
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and

�β =
√(

�ω0

2

)2

+ ∣∣Ŵ12

∣∣2

≈

(
�ω0

2

)
(15.53)

Inserting these values into Equation 15.51 we have

P1→2 →
∣
∣Ŵ12

∣
∣2

(
�ω0

2

)2 sin2 (ω0t/2) → P (1)
1→2 (15.54)

That is, the converted exact result is identical to Equation 15.50. Graphs of Equation
15.54 are shown in Fig. 15.6. These curves are very similar to the curve shown
in Fig. 15.4 except that they are centered at ω0 = 0. Thus, the probability of a
transition is maximum when E1 ≈ E2, that is, when the energy states are degenerate.
Moreover, the probability becomes narrower for longer times, signifying that for
longer times the near degeneracy criterion is more stringent.

Comparing the transition probability due to a harmonic perturbation, Equation
15.46, with that resulting from a step perturbation, Equation 15.50, we see that
they have the same form, namely, sin2 x/x2. The difference is that the peak in the
transition probability for the harmonic perturbation occurs when the frequency of
the applied field is the same as the Bohr frequency, while the peak for the step

Fig. 15.6 Transition
probability in Equation 15.54
plotted versus ω0 at fixed
times t0 and 0.5t0
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perturbation occurs when the two states have the same energy. Both exhibit the
resonance phenomenon characteristic of quantum systems.

What is the meaning of the term “weak perturbation” in this case? The matrix
element Ŵ12 = 〈ψ1| Ŵ |ψ2〉 represents the coupling between the states. Because it
occurs in the numerator of the exact expression for the probability, Equation 15.51,
there can be no transition if this matrix element vanishes. Even if it is merely weak
the probability of transition is nonzero.

15.5 Extension to Multistate Systems

15.5.1 Harmonic Perturbation

If a system has many possible final states, the perturbation theory results can be
derived from consideration of the two-state results above. For a harmonic perturba-
tion, however, it is necessary to consider the possibility of transitions both up and
down from the initially populated state. Thus, either term in Equation 15.45 can
be important, but (usually) not both. For this case we will use notation that reflects
the multistate nature of the system, letting i designate the initial state and f the
final state. The expansion coefficients are then c(1)

i (t) and c(1)
f (t) and ω0 → ω f i .

Equation 15.45 becomes

c(1)
f (t) = Ŵ f i

2i�

[
1 − ei(ω f i +ω)t

(
ω f i + ω

) + 1 − ei(ω f i −ω)t

(
ω f i − ω

)

]

(15.55)

Recalling that �ω f i = E f − Ei , Equation 15.8, we see that if E f < Ei then
ω f i < 0 and the first term in Equation 15.55 dominates. We may therefore ignore
the second term. In this case the system is “stimulated” to undergo a transition from
the higher state of energy Ei to the lower state of energy E f . To conserve energy, a
quantum of energy, �ωi f , is emitted and the process is called stimulated emission.
The “se” in the word laser comes from this term. On the other hand, if E f > Ei , then
�ω f i > 0, and the system absorbs a quantum of energy �ω f i from the perturbing
field. This is absorption which, for symmetry, should perhaps be called “stimulated
absorption,” but, as will be seen below, this is not necessary. There is a third pro-
cess, this one called spontaneous emission, that can occur. When a system decays
from a higher state to a lower state, seemingly without an external perturbation, this
is spontaneous emission because, consistent with Bohr’s postulate II (see Section
1.2.1), energy in the amount of �ωi f is emitted. Because the analogous absorption
process, spontaneous absorption, is nonsense (even in quantum mechanics), stimu-
lated absorption is referred to only by its surname. Thus, absorption and spontaneous
emission are the processes responsible for absorption and emission spectroscopy
discussed in Section 1.1.3.

According to the above discussion, only one of the terms in the brackets in Equa-
tion 15.55 will dominate for a given frequency. We may therefore write the transition
probabilities for stimulated emission and absorption as
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P (1)
i→ f =

∣
∣Ŵ f i

∣
∣2

�2
· sin2 [(ω ± ω f i

)
t/2

]

(
ω ± ω f i

)2 (15.56)

Equation 15.56 represents the probability for stimulated emission (upper sign) for
which ω f i < 0 or absorption (lower sign) for which ω f i > 0. It is seen that the
maximum probability will occur when the applied frequency ω ≈ ±ω f i . Of course,
the value of Ŵ f i , the matrix element connecting the initial and final states, is also
crucial in determining the transition rate, d Pi→ f /dt . In particular, if this matrix
element always vanishes, then the transition is prohibited. We will derive selection
rules for transitions by deducing the conditions under which Ŵ f i ≡ 0.

15.5.2 Constant Perturbation Turned On at t = 0

Extension of the results for a constant perturbation are quite simple. Beginning with
Equation 15.49 rather than letting ω = 0 in Equation 15.56, we have

c(1)
f (t, ω = 0) = 2Ŵ f i(

�ωi f
)
[

e−iω f i t/2

(
eiω f i t/2 − e−iω f i t/2

2i

)]
(15.57)

from which we obtain

P (1)
i→ f = 4

∣∣Ŵ f i

∣∣2

�2
· sin2

(
ω f i t/2

)

ω2
f i

(15.58)

or, in terms of the energies,

P (1)
i→ f = 4

∣
∣Ŵ f i

∣
∣2 ·

sin2

[(
E f − Ei

)

2�
t

]

(
E f − Ei

)2 (15.59)

Therefore, the transition probability maximizes when the energy of the final state
E f ≈ Ei . This degeneracy condition becomes more stringent for longer times, as
discussed in conjunction with Fig. 15.6.

15.5.3 Transitions to a Continuum of States—The Golden Rule

We have focused most of our attention on two-state systems, but even in the ex-
tension to multistate systems, it was tacitly assumed that the states were discrete in
nature. Suppose, however, that the energy of the transition places the system in a
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Fig. 15.7 Illustration of
transition from an initial state
to a continuum of final states.
(a) Ionization of a discrete
state is effected by supplying
external energy in the amount
E f to a continuum of final
states (b) Energy is internally
converted from a bound state
embedded in a continuum of
states to one of the continuum
states (autoionization)

region where the states form a continuum. One example of such a system is an atom
that is ionized by, for example, a photon (a harmonic perturbation), as illustrated in
Fig. 15.7a. If the photon energy is greater than the ionization potential of the atom,
the atomic electron will be liberated, and the excess energy converted to kinetic
energy. Such final states are part of a continuum of states because there are no
restrictions on the TME associated with fitting de Broglie waves. The process is
called photoionization.

Another example of a process having a continuum of final states is one in which
there is a bound state embedded in a continuum of states. This configuration of states
can occur in atoms if the bound state energy is higher than the ionization potential.
Helium provides a simple example because there exist bound states in which both
electrons are in excited orbitals, for example, a 2s2 p configuration. The energies of
the states that arise from this configuration are around 60 eV, well in excess of the
24.6 eV ionization potential of helium. Thus, these discrete states, being degenerate
with continuum states, can convert the neutral, but highly excited atom into a He+

ion and a free electron, the kinetic energy of which is equal to the difference in
energy between the ionization potential and that of the doubly excited state. This
process is called autoionization and is illustrated in Fig. 15.7b.

Because these states are continuously distributed, they must be specified by a
density of states function, ρ f

(
E f

)
, the dimensions of which are number of (final)

states per energy interval d E f . Thus, ρ f
(
E f

)
d E f represents the number of final

states in the energy interval d E f . If we were computing the probability of a transi-
tion from a single initial state, i , to more than one discrete final state, say n possible
final states, then this probability would be

P (1)
i→Σ f = Pi→ f1 + Pi→ f2 + · · ·

=
n∑

j=1

Pi→ f j (15.60)

where Σ f in the subscript means any of the n possible (discrete) final states. If,
however, the final states are continuously distributed, then we must integrate over
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the final state distribution. Thus, applying Equation 15.56 to the case of a transition
from the initial state to any of a group of continuously distributed final states, each
having energy E ′

f , we find the probability of a transition to a group of final states in
the neighborhood of the state designated by the subscript f to be

P (1)
i→ f = 4

∫ ∞

−∞

∣
∣Ŵ f i

∣
∣2
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E ′
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]

(+Ei )2 ρ f
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f

)
d E ′

f
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�2
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∣
∣Ŵ f i

∣
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]
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ω′

f i − ω
)

(t/2)
]2 ρ f

(
E ′

f

)
d E ′

f (15.61)

where we have multiplied and divided by t2 to make the denominator the same as
the argument of the sine function.

To investigate the important region near E ′
f , we reexamine the curves in Fig. 15.6

because the plotted function is part of the integrand of Equation 15.61. For the
present purpose ω0 → ω f i − ω. After a long time (not too long because we are
using perturbation theory) the width of the central maximum peak is quite narrow.
We therefore assume that t is long enough so the width of the central maximum,
4π/t , is much smaller than the width of the density of states in the region E f − Ei .
We also assume that the matrix element connecting these states is slowly varying in
this vicinity. This leads to

P (1)
i→ f = t2

�2

∣
∣Ŵ f i

∣
∣2 ρ f

(
E f

) ∫ ∞
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)
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]
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f i

)
(t/2)

]2 d E ′
f (15.62)

Now, the remaining integral can be evaluated as t → ∞ for a fixed value of the

applied frequency. Letting x =
(
ω − ω′

f i

)
t/2 so that

d E ′
f = �d

(
ω − ω′

f i

)

= �
2

t
d
[(

ω − ω′
f i

)
(t/2)

]

= �
2

t
dx (15.63)

and, using

∫ ∞

−∞

sin2 x

x2
dx = π (15.64)
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we have

∫ ∞

−∞

sin2
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]
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(15.65)

which leads to

P (1)
i→ f = 2π t

�

∣
∣Ŵ f i

∣
∣2 ρ f

(
E f

)
(15.66)

Equation 15.66 is known as Fermi’s Golden Rule.
Our interest is in the transition rate (probability per unit time). Designating this

rate by wi f , differentiation of Equation 15.66 yields

wi f = d Pi→ f

dt
= 2π

�

∣
∣Ŵ f i

∣
∣2 ρ f

(
E f

)
(15.67)

The validity of Equation 15.67 depends upon two assumptions. First, we require the
time to be long enough so that � (4π/t) is small compared with the effective width

of ρ f

(
E ′

f ≈ E f

)
, see Equation 15.66. Thus, denoting this effective width as ��ω,

we may write

��ω >>
4π�

t
=⇒ 4π

�ω
<< t (15.68)

Second, because we are using perturbation theory we must require that the probabil-
ity of the transition is small, a condition that, according to Equation 15.62, depends
upon the ratio

t2
∣
∣Ŵ f i

∣
∣2

�2
<< 1 =⇒ t <<

�

Ŵ f i
(15.69)

We may therefore state the limits of validity on the time during which the Golden
Rule is applicable as

4π

�ω
<< t <<

�

Ŵ f i
(15.70)

15.6 Interactions of Atoms with Radiation

The importance of atomic (and molecular) spectroscopy to the development of quan-
tum physics cannot be overemphasized, nor can its continuing importance to modern
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technology. It is therefore important to understand the basic features of spectroscopy
using the tools at our disposal.

15.6.1 The Nature of Electromagnetic Transitions

Let us return to the question of why electrons that are bound to a nucleus, and are
therefore subject to some form of acceleration, do not radiate away their energy (see
Section 1.2.1). Assume an atom is in an eigenstate of a time-independent Hamilto-
nian. The energy eigenfunctions are products of the spatial eigenfunctions and the
exponential time factors, so the total wave function, including time, is given by

�q (r, t) = ψq (r) e−i Eq t/� (15.71)

where the subscript q refers to all spatial quantum numbers and Eq is the energy
eigenvalue corresponding to the eigenfunction ψq (r). The electronic charge density
ρ (r, t) associated with this atom is, in atomic units

ρ (r, t) = ∣∣�q (r, t)
∣∣2

= ∣∣ψq (r)
∣∣2 e−i Eq t/� · ei Eq t/�

= ∣∣ψq (r)
∣∣2 (15.72)

The charge density is independent of time! Such charge distributions do not
radiate energy. Now suppose that the atom is in a superposition of, for convenience,
two states �q (r, t) and �p (r, t), so the wave function is

� (r, t) = Aψq (r) e−i Eq t/� + Bψp (r) e−i E pt/� (15.73)

where A and B are in general complex constants but, for simplicity, we assume they
are real. The charge density ρ (r, t) associated with this non-stationary state is

ρ (r, t) = ∣
∣Aψq (r)

∣
∣2 + ∣

∣Bψp (r)
∣
∣2 + 2AB cos

[(
Eq − E p

)
t/�

]
(15.74)

Thus, unlike the stationary state case, the charge distribution for an atom in a super-
position of states is an oscillating function of time and, classically, such an oscillat-
ing distribution radiates electromagnetic energy. It radiates at the frequency of the
oscillations of the charge distribution. Incidentally, the Greek letter ρ is used repeat-
edly in physics, usually to represent a density of some kind. We have already used it
for density of states in Section 15.5.3 and are using it here, as is virtually universal,
as a charge density. Indeed, we will use it again, in another context, simply because
it is the commonly used symbol. It is anticipated that the reader can compensate for
the different uses of ρ.
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Let us assume that the atom is in the upper state q . Because it is a stationary
state the electronic charge distribution is static. Now apply a perturbation to this
atom, a perturbation that “connects” the state q to the lower state p. The pertur-
bation causes the system to be in a superposition of the two states the electronic
charge density of which oscillates as in Equation 15.74 and thus radiates. In fact, it
radiates at frequency ωqp = [(

Eq − E p
)
/�

]
which is precisely the Bohr frequency.

Thus, the name “stationary state” for the energy eigenstates is indeed an appropriate
designation.

15.6.2 The Transition Rate

We have seen in this chapter that the probability of a transition always depends upon

the square of the matrix element,
∣
∣Ŵ12

∣
∣2, connecting the states involved. We may

therefore begin our excursion into spectroscopy by examining the conditions under
which transitions cannot occur. This means that we wish to find the conditions under
which Ŵ12 ≡ 0. These conditions are referred to as selection rules. We will examine
them for the hydrogen atom, but, as will be discussed, with suitable modifications,
they apply to a wide class of atoms.

We begin by assuming that an atom is immersed in an electromagnetic field in the
form of a monochromatic plane wave of wavelength λ and frequency ω = 2πc/λ
. Such a wave is a transverse wave with electric and magnetic components given
by [1]

F (r, t) = ε̂F0 cos (k • r − ωt) (15.75)

and

B (r, t) = (k × ε̂) (F0/c) cos (k • r − ωt) (15.76)

where |k| = ω/c in the direction of propagation. The direction of polarization
is given by the unit polarization vector, ε̂. Again we use F to denote the electric
field to avoid confusion with energy. Because electromagnetic waves are transverse
waves, ε̂ is perpendicular to k. We make two approximations. First, we observe that
transitions between atomic states typically emit or absorb radiation of wavelength
the order of hundreds of nm. For example, the shortest of the Balmer lines (see
Section 1.1.3) is ∼ 365nm. The “size” of an atom is, however, ∼ a0 = 0.5nm. As
we have learned in this chapter, transitions can only occur when there is resonance or
near-resonance between the applied radiation and the Bohr frequency, so we ignore
spatial variations of the wave over the dimensions of the atom. This is called the
dipole approximation. If one considers the atom to be a distribution of electric and
magnetic multipoles, in the dipole approximation only the electric dipole moments
are retained.
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We can, however, simplify things further. Because we are retaining only the
dipole terms, we may estimate the ratio of the magnetic to the electric interaction
energies. From Section 14.1.1 we have

Eelectric = − p̂ • F

≈ (ea0) F0

= 1

α

(
e�

mec

)
F0 (15.77)

where p̂ = er is the electric dipole moment. From Section 14.1.2, Equation 14.22,
we may write

Emagnetic = −μ̂ • B

≈ μB B0

=
(

e�

2me

)(
F0

c

)
(15.78)

where μ̂ is the magnetic dipole moment, μB is the Bohr magneton, and, from
Equation 15.76, B0 ∼ F0/c. The ratio is therefore

Emagnetic

Eelectric
∼ α (15.79)

so the magnetic dipole energy is lower than the electric dipole energy by a factor of
137. We may therefore ignore the magnetic interaction and simply write the inter-
action Hamiltonian as

Ŵ f t = −er • ε̂F0 cos (ωt) (15.80)

For simplicity, in what follows we will obtain the transition rate for absorption,
so we will use the lower sign in Equation 15.56 which means that ω f i > 0. Inserting
Equation 15.80 into Equation 15.56 we have

P (1)
i→ f = e2 F2

0

∣
∣〈ψi | r • ε̂

∣
∣ψ f

〉∣∣2

�2
· sin2

[(
ω − ω f i

)
t/2

]

(
ω − ω f i

)2 (15.81)

Note that this expression for the probability pertains to a single frequency, ω, of the
applied field. The radiation is never of a single frequency, even if one imagines that it
is being provided by a laser beam. Even laser light is distributed over a (very small)
range of frequencies. To account for this distribution we must consider the density of
states of the radiation in much the same way that the density of continuum states was
treated in Section 15.5.3. In short, we must integrate over all frequencies using an
appropriate weighting function to account for the actual distribution of frequencies.
This distribution is called the spectral distribution function and is designated by
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ρ (ω) (there is that often used ρ again), such that
∫ ω2

ω1
ρ (ω) dω represents the energy

density between the frequencies ω1 and ω2. Notice that this energy density depends
upon the nature of the source of the external radiation. It might be blackbody radia-
tion, as was used in early experiments on absorption spectroscopy, or it might be a
very sharply peaked density function such as that of a laser beam.

Fortunately, the probability in Equation 15.81 already contains the energy den-
sity. As is known from electromagnetic theory, the energy density is ε0 F2

0 /2, which
we may identify with

∫ ω2

ω1
ρ (ω) dω, so we have

P (1)
i→ f = 2e2

∣
∣〈ψi | r • ε̂

∣
∣ψ f

〉∣∣2

ε0�
2

∫ ∞

0

sin2
[(

ω − ω f i
)

t/2
]

(
ω − ω f i

)2 ρ (ω) dω (15.82)

Although ρ (ω) can have any shape, the other term in the integrand is narrow and
peaked at ω f i . Therefore, we may let ω → ω f i in ρ (ω) and remove it from the
integral. Using Equation 15.64 we find

P (1)
i→ f = πe2

∣
∣〈ψi | r • ε̂

∣
∣ψ f

〉∣∣2

ε0�
2

ρ
(
ω f i

)
t (15.83)

To further simplify the calculation we will (temporarily) assume that the radiation
is polarized in the x-direction. In this case

〈ψi | r • ε̂
∣
∣ψ f

〉 = 〈ψi | x
∣
∣ψ f

〉
(15.84)

and Equation 15.83 becomes

P (1)
i→ f = πe2

∣
∣xi f

∣
∣2

ε0�
2

ρ
(
ω f i

)
t (15.85)

To generalize this result to the case in which the radiation is randomly polarized and
is incident on the atoms from all directions, we simply include contributions to the
probability from yi f and zi f , dividing by 3 because each direction of polarization
contributes 1/3 to the energy density. Taking the derivative we obtain the rate w

(1)
i→ f

w
(1)
i→ f = πe2

3ε0�
2

(∣
∣xi f

∣
∣2 + ∣

∣yi f

∣
∣2 + ∣

∣zi f

∣
∣2
)

ρ
(
ω f i

)
(15.86)

From Equation 15.86 we arrive at the sensible conclusion that the absorption rate is
proportional to the energy density of the incident radiation evaluated at the resonant
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frequency ω f i . As usual, the transition rate depends upon the square of the ma-
trix element connecting the initial and final states, in this case the electric dipole
operator er.

15.6.3 The Einstein Coefficients—Spontaneous Emission

So far, we have discussed only stimulated emission as a means for a system to
undergo a transition to a lower state. There is, however, another process that can
occur—spontaneous emission. Suppose an atom (the physical system) is in a given
eigenstate. Yes, we stated that systems do not generally live in eigenstates, but the
problem is easier to formulate this way. If there is no perturbation to cause these
transitions, then the atom would stay in the initial eigenstate forever. According to
QED, however, there is always an electromagnetic field present. While this subject
is beyond the scope of this book, it is not unreasonable to think of the modes of
oscillation of an electromagnetic wave as being described by a harmonic oscillator
potential. Indeed, this is QED! The fact that harmonic oscillators must have a zero
point energy to be consistent with the uncertainty principle leads to the concept
of a zero point field, even in field-free space. This provides the perturbation that is
required to cause the excited state to decay to a lower state, seemingly in the absence
of a perturbation. Such a transition is called spontaneous emission. It is spontaneous
emission that leads to the concept of a lifetime of a state. If undisturbed, an atom in
an excited state will ultimately decay.

Because spontaneous emission is a QED effect, its transition rate cannot be
derived using the nonrelativistic quantum physics discussed in this book. To the
rescue, though, was Einstein who showed the connection between the stimulated
emission and absorption rates, both of which can be obtained nonrelativistically,
and the spontaneous emission rate. The importance of this result leads us to present
it here.

Einstein assumed a two-level system as depicted in Fig. 15.8. The separation
between the two levels is �ω = (E2 − E1) /� and the numbers of atoms in each
state at a given time are designated N1 (t) and N2 (t). The degeneracies of the levels
are g1 and g2. The entire system is bathed in blackbody radiation. The three single
arrows represent spontaneous emission, stimulated emission, and absorption from

Fig. 15.8 Two-state energy
level diagram showing the
parameters used in Einstein’s
derivation
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left to right in the figure. The quantities A, B21, and B12 are known as the Einstein
coefficients. Beware! The units of A and the units of the B’s are different. This is
because the spontaneous emission rate, the Einstein A coefficient, must have units
of s−1 which means transitions per second. This rate is independent of the external
perturbation and does not depend upon the intensity of the external radiation. The
B’s, however, depend upon this intensity of the external radiation that is being ab-
sorbed, or that is causing the stimulated emission. Therefore, the rates for absorption
and stimulated emission are given by the product of B and the density of incident
radiation, Bρ (ω), the units of which are s−1. Einstein assumed this radiation to be
characterized by the Planck blackbody distribution so ρ (ω) is the Planck distribu-
tion.

Einstein simply added the rates of the three processes to determine the rate of
change of the number of atoms in a particular state. At equilibrium the total rate
must vanish because, although atoms are arriving and leaving each state, the total
population of each level remains constant. This is the meaning of “equilibrium.”
Therefore, at equilibrium

Ṅ1 (t) = N2 A + N2 B21ρ (ω) − N1 B12ρ (ω) = 0 (15.87)

where we have dropped the designation of the time dependence of the populations
N1 and N2 because at equilibrium they are constants. We now solve Equation 15.87
for ρ (ω) and find

ρ (ω) = A

(N1/N2) B12 − B21
(15.88)

The ratio of the populations, N1/N2, is given by the ratio of the degeneracies mul-
tiplied by the Boltzmann factor, exp (�ω/kT ) where k is the Boltzmann constant.
Therefore,

N1

N2
=

(
g1

g2

)
exp

(
�ω

kT

)
(15.89)

and we can replace the ratio N1/N2 in Equation 15.88 with Equation 15.89 to yield
an expression for ρ (ω) in terms of the properties of the system, the Einstein coef-
ficients, and the degeneracies of the levels. This expression must be the blackbody
distribution which is given by

ρ (ω) = �ω3

π2c3

1

exp

(
�ω

kT

)
− 1

(15.90)

so, comparing Equation 15.90 with Equation 15.88 we obtain the relationships
between the Einstein coefficients:
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B12 =
(

g1

g2

)
B21 (15.91)

and

A = �ω3

π2c3
B12 (15.92)

Equation 15.91 shows that calculation of one of the B-coefficients, perhaps us-
ing perturbation theory, leads to the remaining B-coefficient. Moreover, Equation
15.92 shows that the spontaneous emission rate can be calculated without employing
QED. Notice that A is proportional to ω3 times the B coefficient. This shows that,
other things being equal, higher frequency transitions are more likely than lower
frequency transitions. In terms of the Einstein coefficients, the transition rate for
absorption is given by

wi→ f = B12ρ
(
ω f i

)
(15.93)

where we have designated the initial state as 1 and the final state as 2. Additionally,
because the transitions occur at or near resonance ω ≈ ω f i , we have evaluated
the energy density at ω ≈ ω f i in Equation 15.93. Comparing this equation with
Equation 15.86 we find that

B12 = πe2

3ε0�
2

(∣∣xi f

∣∣2 + ∣∣yi f

∣∣2 + ∣∣zi f

∣∣2
)

(15.94)

which provides the link between quantum mechanical perturbation theory and the
thermodynamic argument of Einstein. From Equation 15.92 the spontaneous emis-
sion rate is therefore

A = e2ω3
f i

3πε0�c3

(∣
∣xi f

∣
∣2 + ∣

∣yi f

∣
∣2 + ∣

∣zi f

∣
∣2
)

= 4

3

ω3
f i

c3

(∣
∣xi f

∣
∣2 + ∣

∣yi f

∣
∣2 + ∣

∣zi f

∣
∣2
)

(a.u.) (15.95)

It must be remembered, however, that these expressions for the rates are subject to
the limitations of first-order time-dependent perturbation theory. In what follows we
will assume that these conditions have been met.

If, at some time t = 0, a collection of N0 atoms has been excited to a particular
state, how long will they stay there before spontaneously decaying? Assuming no
external radiation is present (other than the zero-point field energy), and that there
are only two states to consider, the rate of decay from the initial state i to the final
state f having lower energy is

d Ni (t)

dt
= −Ai f Ni (t) (15.96)
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where Ai f is the Einstein spontaneous decay coefficient for these two states. The
solution of Equation 15.96 yields the time-dependent population of the initial
state

Ni (t) = N0e−Ai f t (15.97)

so that we may identify the time required to deplete the population to N0/e as the
spontaneous decay lifetime τ . The lifetime is therefore the time required for the
initial population of excited atoms to be reduced by one e-fold. That is,

τ = 1

Ai f
(15.98)

where the units of A are transitions/s, while those of τ are s/transition. Note that
“transitions” is not officially a unit, but it is convenient to carry it for dimensional
analysis.

If there is more than one lower state to which an excited state can decay, then
Equation 15.96 would have additional terms on the right-hand side. For example, if
the upper state could decay to states j = 1, 2, . . . , then

d Ni (t)

dt
= −

⎛

⎝
∑

j

Ai j

⎞

⎠ Ni (t) (15.99)

in which case the lifetime is

τ =
⎛

⎝
∑

j

Ai j

⎞

⎠

−1

(15.100)

In other words, the initial state might have a low spontaneous decay coefficient to a
particular state, but a high one to another. Clearly the spontaneous decay rate out of
the initial state is the sum of the individual (state-to-state) coefficients.

15.6.4 Selection Rules

Selection rules are based on determination of what cannot happen rather than what
can happen. Thus, we wish to determine the conditions under which the transition
rates vanish so we know which transitions are forbidden, at least within the electric
dipole approximation. The key quantity to examine is the square of the matrix ele-

ment that connects the two states,
∣∣Ŵ f i

∣∣2 = ∣∣〈ψi | r
∣∣ψ f

〉∣∣2, as discussed in Section
15.6.1. The selection rules so derived pertain to absorption, stimulated emission,
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and spontaneous emission because all of these processes depend upon the square of
the matrix element connecting the states.

Because the electric dipole approximation ignores any magnetic interactions, we
can immediately deduce our first selection rule. For an electric dipole transition there
can be no change in the spin as was alluded to in Section 13.4. This is because spin
is a magnetic property of the electron so to alter it a magnetic interaction is required.
Thus, spin flips must occur via a magnetic interaction, the strongest of which is a
magnetic dipole interaction. The rule is stated �S = 0, where we have used a capital
letter to designate spin because the rule transcends one-electron atoms.

For states of hydrogen we take the final state to be represented by primed quan-
tum numbers. This matrix element is designated

rn′�′m′
n�m = 〈

n′�′m ′∣∣ r |n�m〉
= 〈

n′�′∣∣ r |n�〉 〈�′m ′∣∣ âr |�m〉
= Rn′�′

n�

〈
�′m ′∣∣ âr |�m〉 (15.101)

where âr is the unit vector in the r-direction. The radial part of this integral is

Rn′�′
n� = 〈

n′�′∣∣ r |n�〉 (15.102)

Because these radial integrals never vanish, there is no selection rule associated with
the principal quantum number. Therefore, the angular integrals determine the selec-
tion rules. For this reason other atoms are subject to the same selection rules as those
associated with the hydrogen atom. All that is required is that the atomic electrons
are subject to a central potential, or a nearly central potential, because we know
that the spherical harmonics are always the angular portion of the eigenfunctions
for central potentials. It should be stressed that, while the radial integrals are not
involved in determination of the selection rules, they must be evaluated when the
actual transition rates are calculated.

The eigenfunctions corresponding to the kets, |�m〉, in Equation 15.101 are the
spherical harmonics. In Section 8.4 it was seen that these functions have definite
parity, the parity of �. We must therefore insist that, for the integral to be nonzero,
the initial and final states have opposite parity because r̂ and its components are odd.
Thus, we obtain a second selection rule. Transitions only occur between states of
opposite parity. In spectroscopist jargon, “states of the same parity cannot combine.”
This is known as the Laporte rule.

To obtain the remaining selection rules, we must examine further the integrals,
which we do using the Cartesian components of r in their spherical coordinate rep-
resentation. This facilitates the computation because the quantum numbers, n�m, are
spherical coordinate quantum numbers. Beginning with the z-component we have

zn′�′m′
n�m = 〈

n′�′m ′∣∣ z |n�m〉
= Rn′�′

n�

〈
�′m ′∣∣ cos θ |�m〉 (15.103)
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The radial integral 〈n�| r
∣∣n′�′〉 = Rn′�′

n� is common to all three components. First,
we concentrate on the angular integrals. Because the angular portions of the eigen-
functions are spherical harmonics (see Section 8.4), it is possible to obtain a general
formula for the angular integrals in the matrix element. We consider an arbitrary
pair of states |n�m〉 = |n�〉 |�m〉 and

∣
∣n′�′m ′〉 = ∣

∣n′�′〉 ∣∣�′m ′〉. Using the second of
the relations in Table 8.3, we may write the angular integral in Equation 15.103 as

〈
�′m ′∣∣ cos θ |�m〉 =

√
(� + m + 1) (� − m + 1)

(2� + 1) (2� + 3)

〈
�′m ′ |(� + 1) m〉

+
√

(� + m) (� − m)

(2� + 1) (2� − 1)

〈
�′m ′ |(� − 1) m〉 (15.104)

From the orthogonality relation for spherical harmonics, Equation 8.85, it is clear
that

〈(� + 1) m| cos θ |�m〉 =
√

(� + m + 1) (� − m + 1)

(2� + 1) (2� + 3)
(15.105)

and

〈(� − 1) m| cos θ |�m〉 =
√

(� + m) (� − m)

(2� + 1) (2� − 1)
(15.106)

are the only nonzero matrix elements. Therefore,

zn′(�+1)m′
n�m =

√
(� + m + 1) (� − m + 1)

(2� + 1) (2� + 3)
Rn′(�+1)

n� (15.107)

zn′(�−1)m′
n�m =

√
(� + m) (� − m)

(2� + 1) (2� − 1)
Rn′(�−1)

n� (15.108)

Equations 15.107 and 15.108 establish additional selection rules. First, we see
that the orbital angular momentum quantum numbers must differ by ±1 in order
for the z-component of the matrix element to be nonzero. We therefore have the
selection rule

�� = � − �′ = ±1 (15.109)

which is consistent with the Laporte rule. Equations 15.107 and 15.108 also estab-
lish a portion of the selection rule on m. In particular, we see that the matrix element
of z vanishes unless �m = 0. The remaining selection rules on m come from the
other components of r .
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Rather than obtain the analogous relation for the other two matrix elements we
take advantage of the relationship between spherical and Cartesian coordinates. We

may write the square of the matrix element
∣
∣rn′�′m′

n�m

∣
∣2 in the form

�′∑
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(
1
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n�m
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∣
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2

∣
∣
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∣
2
+
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∣
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n�m

∣
∣
∣
2
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(15.110)

which permits us to exploit the relations

x + iy = r sin θeiφ and x − iy = r sin θe−iφ (15.111)

We use the third relation in Table 8.3 to complete our evaluation of
∣
∣rn′�′m′

n�m

∣
∣2. Be-

cause of orthogonality, the only matrix elements that survive the summation are

(x + iy)n′(�+1)(m+1)
n�m =

√
(� + m + 1) (� + m + 2)

(2� + 1) (2� + 3)
Rn′(�+1)

n� (15.112)

(x + iy)n′(�−1)(m+1)
n�m = −

√
(� − m − 1) (� − m)

(2� + 1) (2� − 1)
Rn′(�−1)

n� (15.113)

(x − iy)n′(�+1)(m−1)
n�m = −

√
(� − m + 1) (� − m + 2)

(2� + 1) (2� + 3)
Rn′(�+1)

n� (15.114)

(x − iy)n′(�−1)(m−1)
n�m =

√
(� + m − 1) (� + m)

(2� + 1) (2� − 1)
Rn′(�−1)

n� (15.115)

These relations confirm, but do not add to, the selection rule on �. They do, however,
provide the remaining selection rules on m since it is clear from them that m and
m ′ must differ by unity. Mathematically, this results from the e±iφ in the identity for
sin θe±iφ |�m〉 in Table 8.3. The selection rules for m are then

�m = m − m ′ = 0,±1 (15.116)

These three possible �m transitions correspond to emission or absorption of linearly
polarized (�m = 0) and circularly polarized light (�m = ±1).
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15.6.5 Transition Rates and Lifetimes

In practice, one often speaks of excited states in terms of the lifetimes, τ , rather
than transition probabilities, Ai f . As discussed in Section 15.6.3, calculation of the
lifetime of a state requires knowledge of each of the state-to-state Einstein coef-
ficients (see Equation 15.100). In this section we will examine emissions of the
Balmer series of hydrogen which, it may be recalled, terminate in n = 2 (see Section
1.1.3). The allowed electric dipole transitions are shown in Fig. 15.9. In accord with
the selection rules, there are three allowed transitions for each Balmer line because
the lower states are 2s and 2 p. The wavelengths of the components of Hα and Hβ

differ slightly due to fine structure corrections, but we will ignore these differences
here.

To calculate the lifetime of the n = 3 state of hydrogen, the three A coefficients
corresponding to the three Hα lines (see Fig. 15.9) are needed as well as A3p→1s

because 3 p → 1s is an escape route for atoms in the 3 p state. Actually, A3p→1s

is larger than any of the three spontaneous transition rates for Hα as a consequence
of the ω3 factor in Equation 15.95. We calculate A3d→2p and A4d→2p and compare
them. In principle, this means that we have two angular integrals and two radial
integrals to evaluate. It is, however, relatively simple to determine general formulas
for the angular integral so we present this derivation.

Consider first the transitions � → � + 1. Using Equations 15.107, 15.112, and

15.114, the general expression for
∣
∣
∣rn′(�+1)m′
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∣
∣
∣
2
, Equation 15.110, summed over all

possible m ′ states (in accord with the selection rule given in Equation 15.116) is
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(15.117)

Using an identical technique for � → � − 1 transitions we find (see Problem 6)

∣
∣
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∣
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∣
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=
(
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) ∣
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(15.118)
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Fig. 15.9 Schematic diagram
of the orbital angular
momentum states of the
n = 2, 3, and 4 states of
hydrogen showing the
electric dipole allowed
transitions that lead to Hα

(solid) and Hβ (dashed)

Equations 15.117 and 15.118 are noteworthy because they are independent of the
initial magnetic quantum number m.

We require the 3d → 2 p and 4d → 2 p matrix elements so the angular parts of
the required matrix elements for these transitions are the same. Note that we may use
either the uncoupled set |nlm�ms〉 or the coupled set

∣
∣nl jm j

〉
, because the integrals

do not include spin. It is, however, easier (by far) to use the uncoupled set. We are
therefore justified in simplifying the notation by letting m� = m and ignoring ms .

To calculate the transition rates we use atomic units so Ai f will have units of
(atomic units of time)−1, which can be converted to s−1 using Table 1.2. According
to Equation 15.95, A3d→2p in atomic units is given by

A3d→2p = 4

3

ω3
32

c3

∣
∣∣r2p

3d

∣
∣∣
2

(15.119)

The transition is � → �−1, so the square of the matrix element is given by Equation
15.118. For 3d → 2 p the square of the matrix element is

∣
∣
∣r2p

3d

∣
∣
∣
2

=
(

2

5

) ∣
∣
∣R2p

3d

∣
∣
∣
2

(15.120)

so we must calculate R2p
3d as given in Equation 15.102. Using the radial eigenfunc-

tions in Table 10.3 with Z = 1 for hydrogen and a0 = 1 to convert to atomic units
we have

R2p
3d =

∫ ∞

0
R21 (r ) R∗

32 (r ) r3dr

=
∫ ∞

0

[(
1

2
√

6

) (
re−r/2

)] [(
4

81
√

30

) (
r2e−r/3

)]
r3dr

= 26

15
√

5

(
6

5

)5

= 4.75 (15.121)
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where we used the definite integral given in Equation H.2. In atomic units ω32 =
(5/72) and c = 137. Because this transition is d → p we use Equation 15.118 in
Equation 15.119 and obtain

A3d→2p =
(

4

3

)(
1

1373

)(
5

72

)3 [(2

5

)
(4.75)2

]
a.u.

= 0.65 × 108s−1 (15.122)

For the 4d → 2 p transition

R2p
4d = 1.71 (15.123)

from which we determine (see Problem 8)

A4d→2p = 0.21 × 108s−1 (15.124)

Let us examine the two competing factors that determine the A coefficients for
the Balmer series (see Equation 15.119 and Problem 8). On the one hand, as the
principal quantum number of the upper state increases, ω3 increases, thus increasing
A. On the other hand, however, the overlap of Rnd (r ) with R2p (r ) decreases with
increasing n because the electron samples a wider region of space in the more highly
excited states. This is clear in Fig. 15.10 which contains plots of the relevant radial
functions and clearly shows that, because the 4d electron samples a wider region of
space than does the 3d electron, R2p

4d < R2p
3d . This is because the 2 p − 3d overlap

is greater than the 2 p − 4d overlap. Moreover, because R4d (r ) has a node, part of
the R2p

4d integrand is negative, further contributing to making R2p
4d < R2p

3d . Note that,

Fig. 15.10 The radial
hydrogen atom
eigenfunctions R21 (r),
R32 (r), and R42 (r)
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Fig. 15.11 The integrands,
R21 (r) R∗

32 (r) r3 and

R21 (r) R∗
42 (r) r3 of R2 p

3d

and R2 p
4d

because both the 2p and 3d states are states for which � = n − 1, their product
is manifestly positive. Thus, despite the larger ω for the transition from n = 4,
A4d→2p < A3d→2p, and this trend continues as n increases. These considerations
are illustrated in Fig. 15.11 which shows the plots of the integrands of R2p

4d and R2p
3d .

15.7 References

1. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, Upper Saddle River, NJ, 1999).
2. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems (Harcourt Brace

Jovanovich, New York, 1995).

Problems

1. Show that applying the boundary conditions given in Equation 15.16 to the
general solution of the differential equation given in Equation 15.24 leads to
Equation 15.25.

2. Show that the perturbation theory result for P (1)
1→2 as given in Equation 15.47

is the first term in the Taylor series expansion of the RWA solution, Equation
15.26.

3. An electron subject to a one-dimensional harmonic oscillator potential is in the
ground state. At a time t = −∞ a time-dependent electric field F (t) is turned
on. The field is constant in space and is given by
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F (t) = F0e−(t/τ )2

ı̂

where τ is a constant. Use first-order time-dependent perturbation theory to
find the probability that the electric field will cause the system to undergo a
transition to the first excited state after a long time, t = +∞.

4. A particle in a one-dimensional harmonic oscillator potential is in the ground
state. At t = 0 a perturbation

Ŵ (t) = Ax3e−t/τ

where A and τ are constants is applied. Use first-order time-dependent pertur-
bation theory to find the probability that the system will undergo a transition to
all excited states after a long time, t = +∞. What are the units of A? Do the
calculated probabilities have the correct units?

5. At t = 0 a collection of hydrogen atoms, all in the n = 1 state, is subjected to
a time-dependent electric field F (t) in the z-direction. The time dependence is
given by

F (t) = F0e−t/τ

where τ is a constant. Use first-order time-dependent perturbation theory to
find the probability that the electric field will cause the system to undergo a
transition to the n = 2 state after a long time, t = +∞.

6. Show that for hydrogen the matrix element
∣
∣〈n′ (� − 1) m ′∣∣ r |n�m〉∣∣2 =

∣
∣
∣rn′(�−1)m′

n�m

∣
∣
∣
2

(Equation 15.118) is given by

∣
∣
∣rn′(�−1)m′

n�m

∣
∣
∣
2

=
[

Rn′(�−1)
n�

]2
(

�

2� + 1

)

7. Show that for hydrogen A2p→1s ≈ 1.6 × 10−8 (a.u. of time)−1. What is the
lifetime of the 2 p state in seconds?

8. Verify that A4d→2p = 0.21 × 108s−1.
9. Show that for an isotropic oscillator the spontaneous decay rate from the

(n = 1, � = 1) state to the (n = 0, � = 0) state is

A1p→0s =
(

1

4πε0

)(
2

3

)
e2ω2

mc3

Show that the answer has the correct units.
10. Using a harmonic oscillator with charge e show that in the classical limit, the

Larmor formula, Equation 1.17, and the Einstein A coefficient, Equation 15.95,
agree. [Hint: Take the average of the classical power radiated during one cycle.]



Appendix A
Answers to Problems

Chapter 1

1. W = 2.28 eV, sodium
2. 253.1nm
3. (a) The Lyman and Balmer lines are:

(n → m) �En→m (eV) Designation λ (nm)

4 → 1 12.75 Lγ 97.3
3 → 1 9.06 Lβ 136.9
2 → 1 10.2 Lα 121.6

5 → 2 2.86 Hγ 433.6
4 → 2 2.55 Hβ 486.3
3 → 2 1.89 Hα 656.1

(b) Lyman 91.2 nm; Balmer 364.7 nm
4. a0μ = a0/180; αc; ≈ 2450 eV

7. (a) ≈ 1.2 × 10−15m
(b) 44 × 10−7nm (γ rays)

Chapter 2

1. (a) U (x) = �
2α4

2m
x2

(b) F = − (
�

2α4/m
)

x

(c) A =
√

α/
√

π

2. (a) P (x) dx = α√
π

e−α2 x2
dx

(b) 1

485
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4. (a) j (x, t) = �k

m
|A|2

(b) amplitude increases to
√

2A

5. (a) Acceptable
(b) Unacceptable
(c) Acceptable
(d) Acceptable
(c) Acceptable
(e) Unacceptable

6. (a)

� (x, 0) = 1

2
ψ1 (x) + 1√

3
ψ2 (x) +

√
5

12
ψ3 (x)

(b)

� (x, t) = 1

2
ψ1 (x) e−i E1t/� + 1√

3
ψ2 (x) e−i E2t/�

+
√

5

12
ψ3 (x) e−i E3t/�

(c)

〈E〉 = 1

4
E1 + 1

3
E2 + 5

12
E3

(d)

〈E〉 = 1

4
E1 + 1

3
E2 + 5

12
E3

7.

λI = h

�kI
= 2π

kI
= kI I ; λI I < λI because kI I > kI

Problem 7 of Chapter 2
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8. (a) E1 = − E0

12
; E2 = − E0

22
; E3 = − E0

32

(b)
2

9
;

1

9
;

6

9
for states 1, 2, and 3

(c) 〈E〉 = −0.32E0

(d) 3Q0

9. (a) Yes, it can support bound states having TME< 0.

Problem 9 of Chapter 2

(b) ψ2 (x)

(c) 1/2

(d) 3/2 a.u.

Chapter 3

2. A = √
2/L

3.
(

1/2
√

2
)

λc

6. (a) 〈E〉 = 3
π2

�
2

2mL2

(b) � (x, t) = 1√
3
ψ1 (x) e−ω1t +

√
2

3
ψ2 (x) e−ω2t

7. 〈E〉 = 42π2
�

2

2mL2
= E4
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8. (a) Pcl (x) �x = �x/L

(b)
〈
x2

〉
classical = L2/3 ;

〈
x2
〉
n

= L2

3

[
1 − 3

2 (nπ)2

]

9. �x0 = 1/
√

2α

10. (a) zero

(b)
〈
p̂2
〉 =

(
nπ�

L

)2

11. (�x)2 = L2

(
1

12
− 1

2π2n2

)

12. (a) ≈ 0.36

(b) 0.5

13. (a) K =
√

210

2a3/2

(b) Pn = 242 · 105

π6
· 1

n6
n even; P (n = 1) = 0; P (n = 2) = 0.983

(c) 1

(d) 〈E〉 = 42
(
22π2

) E2

14. (a) ≈ 0.36
(b) zero
(c) The initial wave functions in the two problems are different. There is no

symmetry in Problem 12 while the initial wave function in this problem is
symmetric.

16. �x�p = 1

2
�ω

17. Pout (n = 1) = 0.111

19. En = (
n + 1

2

)
�ω where n = 1, 3, 5, · · · and corresponding eigenfunctions

20. (a) En =
(

n + 1

2

)
�ω with ω =

√
2k

m

(b) ≈ 0.985
(c) zero
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22. (a) P = 2αβ

α2 + β2

23. (a) Eigenfunctions are the same with x → x + eF/
(
meω

2
)
. Eigenvalues are

En = (n + 1/2) �ω − eF/
(
meω

2
)

(b) P = exp

[
−1

2

e2 F2

me�ω3

]

Chapter 4

9. (a) � (x, 0) = K δ (x)
(b) Probability of measuring any odd state is zero. Normalization not recom-

mended because the probabilities of measuring any even state are all the
same.

(c) No odd states. No even eigenfunction should contribute more than another.

(d) � (x, t) =
∞

2

a

∑

n odd

e−i En t/� sin
(nπx

L

)

10. φn (p) =
√

1
2n n!

(
1

πα2�2

)1/4
Hn

(
1√

mω�
p
)

e−p2/(2α2
�

2)

Chapter 5

1. R = 1

1 +
(

�
2k

mU0

)2 ; T = 1

1 +
(

mU0

�2k

)2

2. E = −mU 2
0

2�2

3. (a)

Problem 3 (a) of Chapter 5
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(b) TE>U0 = 4E (E + U0)

4E (E + U0) + U 2
0 sin2

(
L

�

√
2m (E + U0)

)

5. The eigenfunctions are the odd eigenfunctions for the finite square well because
they are the ones with a node at x = 0 which is demanded by the infinity in the
potential.

7. E = −2mU 2
0 a2

�2

8. (a)
Pin

Pout
= e−2κa

sin2 ka

(
1 − sin 2ka

2ka

)
κa

e−2κa

(b) A state just above E = 0, a continuum state.

11. n + 1/2 = 20/
√

2 = 14.14

15. En =
(

n + 1

2

)
�ω

16. En = − m

2

(
n + 1

2

)2

�2

·
(

e2

4πε0

)2

17. T = exp

[

−
√

2m

E

K Z Z ′e2π

�

]

. As E increases the exponent decreases so T

increases.

18. T = exp

[

−4W 3/2
√

2m

3�eF

]

Chapter 6

6. (b) e−i En t/�

(c) No, because the operator e−i Ĥ t/� is not Hermitian.

13.
[
Ĥ , x

] = −i�
p̂

m
;
[
Ĥ , p̂

] = i�
dU (x)

dx

17. x (t) = F

2m
t2 + p0

m
t + x0; p̂ (t) = Ft + p0
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Chapter 7

5. (a) |� (x, t)〉 = 1√
3

|1〉 e−(3/2)iωt +
√

2

3
|2〉 e−(5/2)iωt

(b) 〈E〉 =
(

13

6
�ω

)

(c) 〈x̂ (t)〉 =
√

�

mω

√
2

3
2 cos ωt

11. 〈n| x̂4 |n〉 = 3

4α4

(
2n2 + 2n + 1

)

17. (b) PN =
[(

α√
2

x0

)N e−|α2 x2
0 |/2

√
N!

]2

Chapter 8

1.
[
Ĵ x Ĵ y, Ĵ z

] = i�
(

Ĵ
2
x − Ĵ

2
y

)

5.
〈
Ĵ x

〉 = 0;
〈
Ĵ

2
x

〉
= �

2

2

[
j ( j + 1) − m2

]

14. (a) 0,
√

2�,
√

6�

(b) zero

(c)
〈
L̂z

〉 = 0;
〈
L̂2

〉 = �
2

14
(8 + 54) ≈ 4.43�

2

16. 12.5%

17. L̂z = �

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠; L̂2 = 2�
2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠;

L̂+ = �

⎛

⎝
0

√
2 0

0 0
√

2
0 0 0

⎞

⎠; L̂− = �

⎛

⎝
0 0 0√
2 0 0

0
√

2 0

⎞

⎠;

L̂ y = i�√
2

⎛

⎝
0 −1 0
1 0 −1
0 1 0

⎞

⎠
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18. (a) �, 0,−�

(b) |↑〉x = 1

2

⎛

⎝
1√
2

1

⎞

⎠ ; |−→〉x = 1√
2

⎛

⎝
1
0

−1

⎞

⎠ ; |↓〉x = 1

2

⎛

⎝
1

−√
2

1

⎞

⎠

a. The probabilities of measuring �, 0,−� for L̂ x are then 1/4, 1/2, 1/4,
respectively.

19. Two beams of equal intensity

Chapter 9

4. (a) It does have definite angular momentum. � = 1 and m = 0.

(b) 1
2β2; bound

(c) U (r ) = −5β

2r
+ 7

8r2

5. En = n2π2
�

2

2m (b − a)2 ; ψn00 (r, θ, φ) = 1√
4π

√
2

(b − a)

(
1

r

)
sin

[
(r − a)

(b − a)
π

]

6. (c) ≈ 0.74

7. (a) ψ (x, y, z) =
(√

2

L

)3

sin
(nxπ

L
x
)

sin
(nyπ

L
y
)

sin
(nzπ

L
z
)

(b) Enx nynz = π2
�

2

2mL2

(
n2

x + n2
y + n2

z

)
. Three times larger.

(c) g1 = 1; g2 = 3; g3 = 6

15. |ψ (r, t)〉 = ∑

j
ake−i En t/� |n�m〉

Chapter 10

3. rc = n2

(

1 ±
√

1 − � (� + 1)

n2

)

4. (δrc)max = 2
(
n2a0

)
; (δrc)min = 2

(
n2a0

)
√

1

n
6. ≈ 0.24

8. 〈x〉n�m = 0 = 〈y〉n�m = 〈z〉n�m
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11. � = 0

12. For � = 0: 〈r〉 = 3

2

(
a0n2

)
; (�r ) = a0

2
n
√

n2 + 2

For � = n − 1: 〈r〉 = a0n

(
n + 1

2

)
; (�r ) = a0n

√
1

2

(
n + 1

2

)

14. ≈ 0.70

17. (a) |ψ (r, t)〉 = 1√
3

e−i E1t/� |100〉 + 1√
6

e−i E2t/� |210〉 + 1√
2

e−i E3t/� |320〉

(b) 〈E〉 = −
(
mc2

)
α2

2

(
89

144

)
;
〈
L̂2

〉 = 13

3
�

2 ;
〈
L̂z

〉 = 0

(c) As specified by Ehrenfest’s theorem (see Section 6.3.3), in particular Equa-
tion 6.120)

Chapter 11

1. Ȧ =
[

( p × L) −
(

me2

4πε0

)
r̂
]

Chapter 12

1. (a) En = (
n + 1

2

)
�ω − e2 F2

2mω2

(b) Second-order perturbation theory result is the same as the exact solution.

2. E (1)
nodd = 2

a
U0; E (1)

neven = 0

3. E (1)
nodd = 2

a
U0; E (1)

neven = 0. There is a node at the perturbation for n even.

(a) E (1)
1 = eF L

2

(b) ψ
(1)
1 (x) ≈

32

27π2

E (1)
1

E (0)
1

√
2

L
sin

(
2πx

L

)

(c) E (1)
n = 1

2mc2

(
E (0)

n

)2

(d) E (rel)
n = E (0)

n − 1

2

(
1

mc2

)
(
E (0)

n

)2 + · · ·
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4. E (2)
n = −

(
15

8

)(
1

4De

)
(�ω)2 [(n2 + n + 11/30

)]

(a) E (1)
1 = 1

2

(ω1

ω

)2
(

n + 1

2

)
�ω; E (2)

n = −1

8

ω4
1

ω4

(
n + 1

2

)
�ω

(b) The first three terms in the expansion of the exact result are E (0)
n , E (1)

1 , and
E (2)

n .

5. E (1)
0 = 1

4α2

(
3C

α2
− mω2

)

(a) Ĥ0 =
⎛

⎝
1 0 0
0 2 0
0 0 3

⎞

⎠; Ĥ1 =
⎛

⎝
0 ε 0
ε 0 0
0 0 −ε

⎞

⎠

(b) E (1)
1 = 0; E (1)

2 = 0; E (1)
3 = −ε; E (2)

1 = −ε2; E (2)
2 = ε2; E (2)

3 = 0

(c) The exact result reduces to the second-order perturbation theory result.

11. (a) E (2)
000 = −1

2

e2 F2

meω2

(b) E (2)
000 = −1

2

e2 F2

meω2

12. (a)
∣
∣1(s)

〉 = 1√
2

(∣∣1(0)
〉 + ∣

∣2(0)
〉)

;
∣
∣2(s)

〉 = 1√
2

(∣∣1(0)
〉 − ∣

∣2(0)
〉)

;
∣∣3(s)

〉 = ∣∣3(0)
〉

13. (a) Evariational = 3

8

(
6

C�
4

m2

)1/3

15. Evariational = √
3�ω

16. (a) Evariational = 35/3

24/3

(
e2 F2

�
2

2m

)1/3

Chapter 13

5. (a) E (1)
SO

(
j = � + 1

2

) = (�ω)2

4mc2

(
�

2

)
;

E (1)
SO

(
j = � − 1

2

) = − (�ω)2

4mc2

(
� + 1

2

)

(b) zero
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8. 2.6 eV

9. E (1)
1s2� = J1s2� ± K1s2�; |ψ±〉 = 1√

2
{|1s〉1 |n�〉2 ± |1s〉2 |2�〉1}

11. (a) 2 P1/2 and at higher energy 2 P3/2

(b) 2S1/2; 2 P2
3/2,1/2; D5/2,3/2

12. (a) 1S;1 D; 1G; 3 P; 3 F

(b) 3 F

Chapter 14

3. E (0)
m = (m�)2

2μa2
; E (2)

m = μq2a4 F2

�2

(
1

4m2 − 1

)

6. (a) Ĥ = μ̂S • B + μ̂p • B+2κ

�2
Ŝ1·Ŝ2

(b) E± = −κ

2
± (

κ2 + μB B
)1/2

; The proton magnetic moment is tiny com-

pared with that of the electron.

8.

Problem 8 of Chapter 14
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Chapter 15

3. P (1)
0→1 = (eF0)2

2m�ω
πe−ω2τ 2/2τ 2

4. Transitions to all states vanish except n = 1 and 3.

P (1)
0→1 = |A|2 9

8

�

m3ω3

1
(
ω2 + 1/τ 2

)

P (1)
0→3 = |A|2 3

4

�

m3ω3

1
(
9ω2 + 1/τ 2

)

5. P (1)
1→2 = e2 F2

0
�2

(
215

310
a2

0

)(
1

ω2
21 + 1/τ 2

)



Appendix B
Useful Constants

Table B.1 A few physical constants listed to a limited number of significant figures

Constant Symbol Value

speed of light c 3 × 108m/s
elementary charge e 1.6 × 10−19C
electronic mass me 9.1 × 10−31kg
Bohr magneton μB 9.27 × 10−24J/T
nuclear magneton μN 5.05 × 10−27J/T
fine structure constant α 1/137
Rydberg constant R∞ 1.09 × 107m−1

Bohr radius a0 0.053nm
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Appendix C
Energy Units

Because of the wide variation of the magnitudes of energies encountered in quantum
physics, energies are often specified in convenient units that are tailored to a given
physical problem. For example, while electron volts (eV) are convenient units for
dealing with electronic levels of atoms and molecules, they are not particularly
suited to describe fine structure intervals. Below is a table that gives the relationship
between the electron-volt and some commonly used units. Only a few significant
figures are included because the table is meant to demonstrate the orders of magni-
tude of these relationships.

Table C.1 The relationship between electron-volts and other commonly used units of energy

1eV = 1 × 10−6MeV 1MeV = 1 × 106eV
1eV = 1.6 × 10−19J 1J = 6.24 × 1018eV
1eV = 8065.6 cm−1 1 cm−1 = 1.24 × 10−4eV
1eV = 2.42 × 108MHz 1MHz = 4.12 × 10−9eV
1eV = 3.68 × 10−2 hartree 1 hartree = 27.21eV
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Appendix D
Useful Formulas

Table D.1 Some key formulas in SI units and atomic units

Quantity Symbol SI Units a.u.

Fine structure constant α

(
1

4πε0

)
e2

�c

1

c

Bohr energy En − 1
2

α2mec2

n2

−1

2n2

Bohr radius a0
1

α

(
�

mec

)
1

Compton wavelength—electron λc
�

mec
= αa0 ∼ 1

c

Classical radius—electron Re ∼α2a0 ∼
1

c2

Bohr magneton μB
e�

2me

1

2
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Appendix E
Greek Alphabet

Table E.1 The letters of the Greek alphabet. Where appropriate, their primary usage in this book
is indicated. U. C. refers to uppercase

L. C. U. C. Name Usage in this book

α A Alpha fine structure constant, harmonic oscillator,
spin up

β B Beta general parameter, spin down
γ � Gamma � function (U. C.),

square root of transmission coefficient T (U. C.)
δ � Delta Dirac δ-function,

small increment, difference (U. C.)
ε, ε E Epsilon unitless energy parameter, small quantity
ζ Z Zeta general parameter
η H Eta general parameter

θ , ϑ � Theta polar angle, function (U. C.)
ι I Iota —
κ K Kappa real exponent, hyperfine energy
λ 
 Lambda wavelength
μ M Mu general parameter, mass
ν N Nu frequency (radians/s)
ξ Ξ Xi unitless length harmonic oscillator
o O Omicron —
π � Pi —
ρ P Rho parameter, unitless length hydrogen
σ � Sigma Pauli matrices, summation
 T Tau increment of time
υ � Upsilon —
φ � Phi azimuthal angle, function (U. C.)
χ X Chi spin state
ψ � Psi wave function (L. C. and U. C.)
ω � Omega frequency (radians/s) (L. C.), Bohr frequency

ωnm = (En − Em ) /� (not just hydrogen)
� Digamma function
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Appendix F
Acronyms

Table F.1 Some acronyms used in this book

Acronym Meaning

RWA rotating wave approximation
TDSE time-dependent Schrödinger equation
TISE time-independent Schrödinger equation
TME total mechanical energy (the “energy”)
WKB Wentzel, Kramers, Brillouin approximation
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Appendix G
�-Functions

G.1 Integral �-Functions

� (n + 1) = n� (n) = n! n = 1, 2, 3, . . . (G.1)

� (1) = 1 (G.2)

� (2) = 1 (G.3)

� (3) = 2 (G.4)

� (4) = 3! = 6 (G.5)

� (5) = 4! = 24 (G.6)

G.2 Half-Integral �-Functions

� (m + 1) = 1 · 3 · 5 · · · (2m − 1)

2m

√
π m = 1, 2, 3, . . . (G.7)

� (1/2) = √
π (G.8)

� (3/2) =
√

π

2
(G.9)

� (5/2) = 3
√

π

4
(G.10)

� (7/2) = 15
√

π

8
(G.11)
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Appendix H
Useful Integrals

∫
x2e−ax dx = e−ax

−a

(
x2 + 2x

a
+ 2

a2

)
(H.1)

∫ ∞

0
xme−ax dx = � [(m + 1)]

am+1
= m!

am+1
(H.2)

∫ ∞

−∞
e−ax2

dx =
√

π

a
(H.3)

∫ ∞

−∞
e−(ax2+bx+c)dx =

√
π

a
e(b2−4ac)/4a (H.4)

∫ ∞

0
xme−ax2

dx = � [(m + 1) /2]

2a(m+1)/2
(H.5)

∫ 1

0

√
1

x
− 1dx = π

2
(H.6)

∫ √
a2 − x2dx = x

√
a2 − x2

2
+ a2

2
sin−1 x

a
(H.7)

∫
dx

(
x2 + a2

)2 dx = x

2a2
(
x2 + a2

) + 1

2a3
tan−1

( x

a

)
(H.8)
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510 Appendix H Useful Integrals

∫
dx

(
x2 + a2

)n dx = x

2 (n − 1) a2
(
x2 + a2

)n−1

+ 2n − 3

(2n − 2) a2

∫
dx

(
x2 + a2

)n−1 dx (H.9)

∫
xmdx

(
x2 + a2

)n dx =
∫

xm−2dx
(
x2 + a2

)n−1 dx

− a2
∫

xm−2dx
(
x2 + a2

)n dx (H.10)



Appendix I
Useful Series

I.1 Taylor Series

A Taylor series expansion of a function f (x) about a point x = a is

f (x) = f (a) + (x − a)

1!
f ′ (a) + (x − a)2

2!
f ′′ (a) + · · ·

=
∞∑

n=0

(x − a)n

n!
f (n) (a) (I.1)

where the primes signify differentiation with respect to x . Therefore, for example,
f ′′ (a) is the second derivative of the function f (x) with respect to x evaluated at
x = a.

There are at least four Taylor series that every physics student should have at
their command:

ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · (I.2)

sin x = x

1!
− x3

3!
+ x5

5!
− x7

7!
+ · · · (I.3)

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · (I.4)

ln (1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · (I.5)

I.2 Binomial Expansion

Binomial series are special cases of Taylor series for f (x) = (1 + x)m and a = 0.
The exponent m may be positive or negative and is not restricted to being an integer.
The general form of the binomial expansion is, in three equivalent forms,
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512 Appendix I Useful Series

(1 + x)m = 1 + mx + m (m − 1)

2!
x2 + m (m − 1) (m − 2)

3!
x3 + · · ·

=
∞∑

n=0

m!

n! (m − n)!
xn

=
∞∑

n=0

(
m

n

)
xn (I.6)

where

(
m

n

)
≡ m!

n! (m − n)!
(I.7)

is called the binomial coefficient. A few of the most common binomial expansions
are listed below:

(1 + x)−1 = 1 − x + x2 − x3 + · · · (I.8)

(1 + x)−2 = 1 − 2x + 3x2 − 4x3 + · · · (I.9)

(1 + x)1/2 = 1 + 1

2
x − 1

2 · 4
x2 + 1

2 · 4 · 6
x3 + · · · (I.10)

(1 + x)−1/2 = 1 − 1

2
x + 1 · 3

2 · 4
x2 − 1 · 3 · 5

2 · 4 · 6
x3 + · · · (I.11)

I.3 Gauss’ Trick

Because Gauss’ trick is useful in quantum physics, we show a simple method of
deriving an expression for the sum of the first M integers. We write this sum in two
different ways. First,

M∑

n=0

n = 1 + 2 + 3 + · · · + (M − 2) + (M − 1) + M (I.12)

and, second, by simply reversing the order of summation:

M∑

n=0

n = M + (M − 1) + (M − 2) + · · · + 3 + 2 + 1 (I.13)
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Now add these sums term by term and obtain

2
M∑

n=0

n = (M + 1) + (M − 1 + 2) + (M − 2 + 3) + · · · + (M + 1) (I.14)

Examination of Equation I.14 reveals that the right-hand side comprises (M + 1)

added to itself M times, the sum of which is M (M + 1). Solving for
M∑

n=0
n we obtain

Gauss’ trick, Equation 8.157:

M∑

n=0

n = M (M + 1)

2
(I.15)



Appendix J
Fourier Integrals

A function f (x) that is periodic on an interval −L ≤ x ≤ L can be expanded in a
Fourier series

f (x) =
∞∑

n=0

an cos
(nπx

L

)
+

∞∑

n=0

bn sin
(nπx

L

)
(J.1)

where an and bn are constants, but functions of n. This representation of f (x) can
be put in more concise form by substituting the Euler forms of the sine and cosine:

cos θ = eiθ + e−iθ

2
; sin θ = eiθ − e−iθ

2i
(J.2)

Combining the constants and renaming them Bn and Cn we have

f (x) =
∞∑

n=0

Bneinπ x/L +
∞∑

n=0

Cne−inπ x/L (J.3)

By extending the summation to n = −∞ we can write Equation J.3 as a single term

f (x) =
∞∑

n=−∞
Dneinπ x/L (J.4)

where Dn is the new constant.
The functions einπ x/L and eimπ x/L are orthogonal, but not orthonormal, as may

be seen from the integral

∫ L

−L
ei(n−m)π x/L dx = 2Lδnm (J.5)

where δnm is the Kronecker delta. By taking advantage of the orthogonality relation
we may determine the constant An if f (x) is known. Multiplying both sides of
Equation J.4 by e−imπ x/L and integrating over the interval we have
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Dm = 1

2L

∫ L

−L
f (x) e−imπ x/L dx (J.6)

Our goal is to extend the infinite series that represents a periodic function to an
expression that represents a nonperiodic function. In preparation for this extension
we make the substitution

kn = nπ

L
(J.7)

from which we see that

�k = π

L
�n (J.8)

If �n is the difference between successive integers, then it is unity so it may be
inserted in Equation J.4 without affecting the equation:

f (x) =
∞∑

n=−∞
Dneinπ x/L �n

=
∞∑

n=−∞
Dneinπ x/L

(
L

π

)
�k (J.9)

The conversion from periodic to nonperiodic function can be effected by letting
L → ∞, in which case k becomes a continuous variable, �k → dk, Dn → D (k),

and
∞∑

n=−∞
→ ∫ ∞

−∞. Also, to conform with the common notation of quantum physics

we make the change f (x) → ψ (x). With these substitutions Equation J.9 becomes

ψ (x) = L

π

∫ ∞

−∞
D (k) eikx dk (J.10)

Now we rescale D (k) according to

D (k) =
√

π

2

A (k)

L
(J.11)

and obtain

ψ (x) = 1√
2π

∫ ∞

−∞
A (k) eikx dk (J.12)

Now let us return to Equation J.6 for the Fourier coefficients using Equation J.11:

An = 1√
2π

∫ L

−L
ψ (x) e−ikn x/L dx (J.13)
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Again letting L → ∞ we have

A (k) = 1√
2π

∫ ∞

−∞
ψ (x) e−ikx/L dx (J.14)

In summary, the equations

ψ (x) = 1√
2π

∫ ∞

−∞
A (k) eikx dk (J.15)

A (k) = 1√
2π

∫ ∞

−∞
ψ (x) e−ikx/L dx (J.16)

are the Fourier transforms. That is, ψ (x) is the Fourier transform of A (k), and A (k)
is the Fourier transform of ψ (x). In quantum mechanics the variable x is space and
k is the wave number. Thus, the wave function in coordinate space is ψ (x) and the
wave function in k-space is A (k). Often it is desirable to have the wave function in
terms of the momentum p = �k. That is,

φ (p) ≡ 1√
�

A (k)

= 1√
2π�

∫ ∞

−∞
ψ (x) e−i px/�dx (J.17)



Appendix K
Commutator Identities

K.1 General Identities

[
Â, B̂

] ≡ ÂB̂ − B̂Â (K.1)
[
Â, Â

] = 0 (K.2)
[
Â, B̂Ĉ

] ≡ [
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
(K.3)

[
Â B̂, Ĉ

] ≡ [
Â, Ĉ

]
B̂ + Â

[
B̂, Ĉ

]
(K.4)

[
ÂB̂, Ĉ D̂

] ≡ [
Â, Ĉ

]
B̂ D̂ + Â

[
B̂, Ĉ

]
D̂

+Ĉ
[
Â, D̂

]
B̂ + Ĉ Â

[
B̂, D̂

]
(K.5)

K.2 Quantum Mechanical Identities

[x, p̂] = i� (K.6)
[
x, p̂n

x

] = i�n p̂n−1
x (K.7)

[
Ĵ i , Ĵ j

] = i�Ĵ kεi jk (K.8)
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Appendix L
Miscellaneous Operator Relations

L.1 Baker–Campbell–Hausdorff (BCH) Formula

Depending upon the reference source consulted, there are two formulas that are
referred to in the literature as the Baker–Campbell–Hausdorff formula, theorem, or
lemma. Both are used in this book, so we will discuss them in this appendix. The
proof of the first is somewhat involved and is of limited pedagogical value in a
course on quantum physics, so it will not be presented. The proof of the second is
considerably simpler and offers a good exercise in exponentiated operators, so we
give this proof below.

First, let us state the one that we will not prove. Given that Â, B̂, and Ĉ are
operators, then the product of two exponentiated operators is

e ÂeB̂ = eĈ (L.1)

where

Ĉ = Â + B̂ + 1

2

[
Â, B̂

] + 1

12

{[[
Â, B̂

]
, B̂

] + [
Â,

[
Â, B̂

]]} + · · · (L.2)

where we have truncated the series after the terms that are necessary for the work
described in this book.

For the second formula we assume two operators, Â and B̂ , that do not commute
and write

e Â B̂e− Â = Â + B̂ + [
Â, B̂

] + 1

2!

[
Â,

[
Â, B̂

]] + 1

3!

[
Â,

[
Â,

[
Â, B̂

]]] + · · · (L.3)

Proof:
Define the product on the left-hand side in terms of an arbitrary parameter λ.

f (λ) = eλ Â B̂e−λ Â (L.4)
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522 Appendix L Miscellaneous Operator Relations

Now we strive to write a Taylor expansion of f (λ) about λ = 0. To do so will
require the derivatives of f (λ), the first few of which we tabulate bearing in mind

that
[
Â, e±λ Â

]
= 0:

d f (λ)

dλ
= eλ Â

[
Â, B̂

]
e−λ Â

d2 f (λ)

dλ2
= eλ Â

[
Â,

[
Â, B̂

]]
e−λ Â

...
dn f (λ)

dλn
= eλ Â

[
Â, · · · [Â,

[
Â, B̂

]] · · · ] e−λ Â (L.5)

Using these derivatives to write the Taylor expansion we have

eλ Â B̂e−λ Â = Â+ B̂+[
Â, B̂

] λ

1!
+[

Â,
[
Â, B̂

]] λ2

2!
+[

Â,
[
Â,

[
Â, B̂

]]] λ3

3!
+· · · (L.6)

Because λ is arbitrary, we may set it equal to unity and obtain Equation L.3.

L.2 Translation Operator

We will derive the form of the translation operator, also known as the displacement
operator, or the propagator. This latter term is often used for a Green’s function, so it
is advisable to use one of the first two appellations. We begin by writing the Taylor
expansion for a function f (x) about the point x = a:

f (x) =
∞∑

n=0

dn f (x)

dxn

∣
∣∣
∣
x=a

(x − a)n

n!
(L.7)

Then, letting x → x + x0, and continuing to expand about x = a we have

f (x + x0) =
∞∑

n=0

dn f (x + x0)

d (x + x0)n

∣∣
∣
∣
(x+x0 )=a

[(x + x0) − a]n

n!

=
∞∑

n=0

dn f (x)

dxn

∣
∣
∣∣
x=a

[(x + x0) − a]n

n!
(L.8)

because

dn f (x + x0)

d (x + x0)n

∣
∣
∣∣
(x+x0 )=a

= dn f (x)

dxn

∣
∣
∣∣
x=a

(L.9)
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Now let a → x in Equation L.8 and obtain

f (x + x0) =
∞∑

n=0

[
xn

0

n!

dn

dxn

]
f (x)

=
[

1 + x1
0

1!

d

dx
+ x2

0

2!

d2

dx2
+ x3

0

3!

d3

dx3
+ · · ·

]
f (x) (L.10)

= exp

[
x0

d

dx

]
f (x) (L.11)

which shows that application of the operator, exp

[
x0

d

dx

]
, to an arbitrary function

f (x), effects a translation x → x + x0.
We can cast the translation operator in terms of the momentum operator using

Equation 2.28 to make the identification

d

dx
→ i p̂

�
(L.12)

we see that

f (x + x0) =
{ ∞∑

n=0

1

n!

(
x0

i p̂

�

)n
}

f (x)

= eipx0/� f (x) (L.13)

We can also derive the action of the translation operator by beginning with the
Fourier transforms, Equations 4.33 and 4.31. This will provide the action of the
translation operator on ψ (x) and φ (x). Multiplying Equations 4.33 by eipx0/� we
have

eipx0/�ψ (x) = 1√
2π�

∫ ∞

−∞
φ (p) eip(x+x0 )/�dp

= ψ (x + x0) (L.14)

Multiplying Equations 4.31 by eip0x/� we find that

eip0x/�φ (p) = 1√
2π�

∫ ∞

−∞
ψ (x) e−i( p+p0)x/�dx

= φ (p + p0) (L.15)



Index

A
a-box, 50
Airy function, 142
Alpha decay, 145
α particle, 163, 288
Angular momenta

addition of
coupling, 273, 277, 280, 281

Angular momentum, 239
Bohr atom, 12, 15, 16, 18
generalized, 239, 241, 368, 372
Lenz vector and Angular momentum

I , K , 369
orbital, 16, 239, 249, 253, 255, 261, 263,

271, 285, 298, 300, 305, 309, 310,
319, 331, 338, 347, 348, 354, 402,
404, 407, 410, 421, 423, 478

spin, 262, 264, 266, 268, 271, 313, 337,
338, 410

vector model, 292
Associated Laguerre polynomial, 327, 354
Associated Legendre function, 255, 260
Atomic spectroscopy, 5
Atomic units, 24, 367, 370, 403, 411, 433, 481

B
Baker–Campbell–Hausdorff formula, 217, 521
Balmer series, 6, 7, 16, 480, 482
Barrier

in a square well, 73
rectangular, 113
step, 121

Basis set, 77, 169, 170, 175, 183, 185, 190,
283, 386, 404, 419, 422

Basis set, coupled, 274, 361, 404
Basis set, uncoupled, 274
Bessel function

spherical, 305, 308

Bohr
atom, 10, 21, 347, 358
energy, 14, 19, 349, 368, 370, 407
frequency, 452, 456, 463, 470
magneton, 17, 262, 312, 441
radius, 13, 24, 132, 261, 357, 358, 403

Boltzmann factor, 474
Boson, 288, 446
Bound state, 35, 38, 42, 63, 68, 69, 73, 86, 123,

127, 140, 148, 310, 340, 348, 408
embedded in a continuum, 466

Bra, 172

C
Central potential, 297, 347, 353, 365, 403, 431,

477
Centrifugal potential, 301
Classical radius of the electron, 23
Classically forbidden region, 41

finite square well, 128
infinite one dimensional square well, 48, 51
infinite square well with a rectangular

barrier inside, 76
one dimensional harmonic oscillator, 56,

65, 69
potential barrier, 113
WKB approximation, 146

Clebsch–Gordan coefficients, 278, 439
Coherent state, 107, 192, 229, 238
Commutation relation, 178, 200, 219, 220,

240, 242, 249, 367
Commutator, 177, 186, 200, 205, 208, 214,

222, 228, 240, 275, 368
identities, 177, 240, 519

Completeness relation, 182
Compton

effect, 8
equation, 9
wavelength, 9, 21
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Configuration interaction, 422
Coordinate space, 79, 87, 93, 97, 98, 110, 111,

140, 200, 212, 218, 230, 249, 251,
266, 297, 370, 391, 414, 420, 517

Correction
first order, 377
first-order, 377, 379, 381, 384, 385, 400,

433, 440
second-order, 377, 379
secondorder, 381

Correspondence principle, 10, 13, 53, 58, 65,
68, 83, 108, 205

Coulomb integral
He, see Exchange integral

Coulomb potential, 347, 350, 362, 398, 408
Creation and annihilation operators, see Ladder

operators

D
D-line

sodium, 7
Darwin term, 399, 405
Davisson–Germer experiment, 7
de Broglie wavelength, 18, 30, 43, 49, 86, 116,

120, 130, 145
Degeneracy, 261, 300, 302, 419, 463, 465

accidental, 303, 317, 347, 352, 362, 365,
371, 397, 408, 432

classical, 365
hydrogen atom, 352
isotropic harmonic oscillator, 323, 337
removing, 382, 387, 397, 441

δ-function, 91, 110, 141, 165, 394, 399, 405
Determinant, 117, 240, 251, 288, 387
Deuteron, 288, 311, 315, 336, 345
Dipole moment

Electric dipole moment, 431, 470
Magnetic dipole moment, 17, 265, 270,

281, 471
Dirac

equation, 398, 402, 405, 408, 427
notation, 172

E
Eccentricity, 358
Effective potential, 300, 305, 325, 339, 347
Ehrenfest

equations, 83, 103, 109, 199, 218
theorem, 198, 205

Ehrenfest equations, 198
Eigenfunctions, 35

characteristics, 38
finite square well

one dimension, 124

harmonic oscillator, 63, 65, 223
hydrogen atom, 354, 361
infinite square well with a barrier, 73
linear potential, 142
momentum space, 89
Morse potential, 133
orbital angular momentum, 249

L̂2, 249
L̂ z , 249

rigid rotor, 261
square well

one-dimensional, 47
Eigenvalues

harmonic oscillator
isotropic, 322, 327

hydrogen atom, 347, 370
linear potential, 142
Morse potential, 133
orbital angular momentum, 249
rigid rotor, 261
WKB approximation, 155

Einstein
coefficients, 473, 480
photoelectric effect, 3
relation, 3

Electron configuration, 421–423
Electron diffraction experiments, 7
Elliptical orbits, 354, 365
Equivalent electrons, 425
Evolution operator, see Time evolution

operator
Exchange

force, 420, 428
integral, 420, see Coulomb integral, 428
operator, 286, 288
particle, 291, 417

F
Fermion, 288, 289, 336
Fine structure, 397, 407, 426, 437, 441, 480
Fine structure constant

α, 15
Fourier series, 87, 170, 193, 515
Fourier transform, 89, 94, 103, 105, 140, 141,

144, 212, 517
Franck-Hertz experiment, 3
Fraunhofer, 7
Free particle

one-dimension, 85
three-dimensions, 305

G
g-factor

electron spin, 264, 436
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Landé, 440
orbital, 262, 436
proton spin, 398

�-functions, 330
�-functions

half-integral, 507
integral, 507

Gauss’ trick, 277, 318, 324, 353, 512
Gedanken experiment, 27, 58, 193, 426
Generating function

Hermite polynomials, 64, 105
Legendre polynomials, 255, 259

Golden rule, 465
Good quantum number, 274, 371, 404, 423,

426, 438
Gyromagnetic ratio, 265

H
Hamiltonian, 34, 87, 96, 104, 179, 190, 196,

198, 202, 214
Harmonic oscillator, 56, 69, 93, 94, 96, 104,

132, 206, 219, 241, 249, 380, 391,
473

isotropic, 303, 316, 336, 352, 385, 434
accidental degeneracy, 317

Hartree, 25
Heisenberg

equation of motion, 204, 227, 303
picture, 202, 216, 218

harmonic oscillator, 206, 227
spreading of wave packets, 207

uncertainty principle, 19, 54, 89, 109, 190,
358

Helium atoms, 422
doubly excited states, 466
excited states, 417, 423
ground state, 411, 423
orthohelium

triplet, 423
parahelium

singlet, 423, 443, 445
scattering, 120

Hermite polynomial, 63, 105, 318
Hermitian operator, 180, 189, 191, 198, 216,

217, 243, 262, 270, 367
Horse, see Spherical horse
Hund’s rules, 425
Hydrogen atoms

accidental degeneracy, 352
classical Kepler problem, 358, 365
complete eigenfunctions, 361
energy eigenfunctions, 354
fine structure, 397, 407

Darwin term, 405
relativistic motion of the electron, 399
spin-orbit coupling, 401

Lamb shift, 408
lifetimes, 480
radial equation, 347
selection rules, 476
Stark effect, 431
Zeeman effect, 436

Hyperfine
interaction, 282
splittiing, 441
splitting, 282, 398

I
Identical particles, 285, 411, 428
Indistinguishability, 285, 291, 420, 428
Ionization potential, 15, 16, 336, 413, 421, 466

K
Kepler problem, 353, 358, 372

classical, 365
quantum mechanical, 367

Keplerian orbit, 303, 365
Ket, 172

L
L-box, 47
Ladder operators

angular momentum, 241, 242, 246, 247,
249, 252, 254, 266, 279, 284, 295,
298, 438

harmonic oscillator, 223, 224, 227, 236,
381

isotropic harmonic oscillator, 332
Lenz vector and Angular momentum, 369
Pauli, 269
vector operators, 247

Laguerre polynomial, 328
Lamb shift, 398, 408, 409, 441
Landé

g-factor, 445, 447
interval rule, 427

Laporte rule, 477, 478
Larmor formula, 11
Legendre polynomial, 255, 257, 259, 414
Lenz vector

classical, 353, 365
quantum mechanical, 367, 369

Levi–Cevita symbol, 239, 367
Lifetime, 423, 473, 476, 480
L S-coupling, 423
Lyman series, 6, 16, 263
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M
Magic numbers, 336, 338, 411
Magnetic quantum number, 438, 481
Matrix

elements, 174, 224, 380, 419, 451, 456
representation of a vector, 171
representation of an operator, 173
representation of spin operators and

eigenkets, 266
Momentum space, 89, 90, 94, 101, 109, 111,

140, 141, 144, 200, 218, 230, 266,
370

Morse potential
effective potential, 301
tunneling, 163
with vibration-rotation coupling, 339
without rotation, 130

Multiplet, 425, 427
Multiplicity, 421, 423, 424

N
Nobel Prize

Bohr, 12
Compton, 8
Davisson and Thomson, 8
de Broglie, 18
Dirac and Schrödinger, 29
Einstein, 1
Franck and Hertz, 4
Heisenberg, 19
Kusch and Lamb, 398
Lenard, 1
Lorentz and Zeeman, 431
Milliken, 1
Pauli, 262
Planck, 2
Stark, 431

Non-equivalent electrons, 425

O
Operator, 34, 45

Hermitian, 177
ladder

angular momentum, 241
harmonic oscillator, 223
isotropic harmonic oscillator, 332

momentum, 55, 78
projection, 182, 184, 217, 377
quantum mechanical, 173

P
Parity, 42, 43, 50, 51, 93, 124, 257, 259, 322,

325, 335, 380, 381, 432, 435, 477
operator, 201

Parseval’s theorem, 93
Particle-in-a-box, 47

energy eigenfunctions, 50
energy eigenvalues, 49
using to estimate energies, 55

Pauli
exclusion principle, 262, 288, 336, 424
ladder operators, 269
quantum mechanical Lenz vector, 367
spin matrices, 268, 284, 447

Perturbation theory
Golden Rule, 467
Stark effect

linear, 434
quadratic, 432

time dependent, 449, 457
multi-state systems, constant

perturbation, 465
multistate systems, harmonic

perturbation, 464
two-state systems, constant perturba-

tion, 462
two-state systems, harmonic

perturbation, 459
Zeeman effect, 436

Perturbation thoery
degenerate, 382
fine structure

hydrogen atoms, 399
relativistic correction in hydrogen

atoms, 400
spin-orbit coupling in hydrogen atoms,

404
helium atom

excited states, 419
ground state, 413

nondegenerate, 375
charged one dimensional harmonic

oscillator, 380
isotropic harmonic oscillator, 385

spin–orbit coupling in multielectron atoms,
423

Photoelectric effect, 1
Planck

constant, 2
relation, 2, 19, 30, 32, 88, 407

Postulates of quantum mechanics, 189
discussion, 190

Potential energy
central, 297

Coulomb potential, 347
harmonic oscillator, 316
Morse potential, 339
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square well, 309
square well, infinite, 308

Coulomb potential
Bohr model, 11

Darwin, 405
one-dimension

barrier, 113
harmonic oscillator, 56
linear, 139
Morse potential, 130
square well, 123
square well, infinite, 47
step, 121

one-dimesnion, 29, 40
spin–orbit, 402, 409
Stark effect, 432
Zeeman effect, 436

Precession
angular momentum, 443
orbital, 353, 365
Thomas, 402

Principal quantum number, 14, 15, 352, 353,
361, 410, 477, 482

Projection operator, see Operator, projection

R
Rabi flopping frequency, 454
Rigid rotor, 260, 302, 340, 446
Runge–Lenz vector, see Lenz vector
Russell Saunders coupling, 423

S
Schrödinger

coherent state, 107, 229, 238
equation, 29

general solution, 35
separation of, 33, 298

picture, 200, 211, 216
harmonic oscillator, 219

Secular equation, 188, 287, 387, 435, 456
Selection rules, 423, 465, 470, 476, 478, 480
Shell model of the nucleus, 336

spin–orbit coupling, 409
SI units, 24, 348, 349
Singlet, 280, 283, 290, 291, 296, 413, 419,

421, 423, 424, 428, 443, 445, 447
Spectroscopy

absorption, 7
emission, 5

Spherical harmonics, 249, 256, 258, 261, 294,
299, 300, 302, 317, 347, 361, 415,
432, 435, 477

addition theorem, 257
parity, 259

Spherical horse, 120, 130, 164, 314
Spin–orbit coupling

hydrogen atoms, 401
multielectron atoms, 426, 427
nuclear shell model, 338, 409

spinor, 266
Spontaneous emission, 464, 473
Square well

finite
one-dimension, 123
three-dimensions, 309

infinite
one-dimension, 47
one-dimension with barrier inside, 73
three-dimensions, 308

Stark effect
linear, 434
quadratic, 431

State vector, 170, 173, 237, 346, 364
collapsiing, 192
identical particles, 286
postulate, 189, 191
relation to wave function, 200
symmetry of, 286
time dependence, 449

Stimulated emission, 464, 473

T
Thomas precession, 402
Time evolution operator, 196, 202, 224, 233,

449
Transition

allowed, 423
Bohr theory, 12
electromagnetic, 139, 469
forbidden, 423, 476
hyperfine, 283
probability, 463, 464, 480
rate, 470
rotational, 261
to a continuum, 465

Triplet, 280, 282, 291, 296, 312, 418, 419, 421,
423, 424, 428, 445

Tunneling, 145, 158, 163

U
Uncertainty principle, 19, 28, 190, 194

angular momentum, 292
coherent state, 229
Compton wavelength, 21
free particle, 86
harmonic oscillator, 65, 67, 72, 95, 473
infinite square well, 49, 54

Unsöld’s theorem, 258
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V
Variational method, 390

helium, 416
Vector model of angular momentum, 292
Vector space, 169
Virial theorem, 199, 346, 363, 400

W
Wave function, 28, 29, 37, 58

collapse of, 36, 173
finite square well, 124
free particle, 85
in WKB approximation

bound states, 145
tunneling, 158

potential barrier, 114
potential step, 122
relation to state vector, 200
time dependent, 449, 469
trial, 391

Wave packet, 83, 86

Gaussian
free particle, 98
motion of, 96
subjected to a constant force, 101
subjected to a harmonic oscillator

potential, 104
WKB approximation, 145

bound states, 148
tunneling, 158

Z
Zeeman effect

hydrogen
strong field, 437
weak field, 439

multielectron atoms, 442
Zero point energy, 473

harmonic oscillator, 62, 68, 233
isotropic oscillator, 318, 326
particle-in-a-box, 78
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