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PREFACE

Many changes have occurred over the editions of this text but we have

retained its essence throughout. Quantum mechanics is filled with abstract

material that is both conceptually demanding and mathematically challen-

ging: we try, wherever possible, to provide interpretations and visualizations

alongside mathematical presentations.

One major change since the third edition has been our response to concerns

about the mathematical complexity of the material. We have not sacrificed

the mathematical rigour of the previous edition but we have tried in

numerous ways to make the mathematics more accessible. We have intro-

duced short commentaries into the text to remind the reader of the mathe-

matical fundamentals useful in derivations. We have included more worked

examples to provide the reader with further opportunities to see formulae in

action. We have added new problems for each chapter. We have expanded the

discussion on numerous occasions within the body of the text to provide

further clarification for or insight into mathematical results. We have set aside

Proofs and Illustrations (brief examples) from the main body of the text so

that readers may find key results more readily. Where the depth of pre-

sentation started to seem too great in our judgement, we have sent material to

the back of the chapter in the form of an Appendix or to the back of the book

as a Further information section. Numerous equations are tabbed with www
to signify that on the Website to accompany the text [www.oup.com/uk/

booksites/chemistry/] there are opportunities to explore the equations by

substituting numerical values for variables.

We have added new material to a number of chapters, most notably the

chapter on electronic structure techniques (Chapter 9) and the chapter on

scattering theory (Chapter 14). These two chapters present material that is at

the forefront of modern molecular quantum mechanics; significant advances

have occurred in these two fields in the past decade and we have tried to

capture their essence. Both chapters present topics where comprehension

could be readily washed away by a deluge of algebra; therefore, we con-

centrate on the highlights and provide interpretations and visualizations

wherever possible.

There are many organizational changes in the text, including the layout of

chapters and the choice of words. As was the case for the third edition, the

present edition is a rewrite of its predecessor. In the rewriting, we have aimed

for clarity and precision.

We have a deep sense of appreciation for many people who assisted us in

this endeavour. We also wish to thank the numerous reviewers of the text-

book at various stages of its development. In particular, we would like to

thank

Charles Trapp, University of Louisville, USA

Ronald Duchovic, Indiana Purdue Fort Wayne, USA



Karl Jalkanen, Technical University of Denmark, Denmark

Mark Child, University of Oxford, UK

Ian Mills, University of Reading, UK

David Clary, University of Oxford, UK

Stephan Sauer, University of Copenhagen, Denmark

Temer Ahmadi, Villanova University, USA

Lutz Hecht, University of Glasgow, UK

Scott Kirby, University of Missouri-Rolla, USA

All these colleagues have made valuable suggestions about the content and

organization of the book as well as pointing out errors best spotted in private.

Many individuals (too numerous to name here) have offered advice over the

years and we value and appreciate all their insights and advice. As always, our

publishers have been very helpful and understanding.

PWA, Oxford

RSF, Indiana University Purdue University Fort Wayne

June 2004
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There are two approaches to quantum mechanics. One is to follow the

historical development of the theory from the first indications that the

whole fabric of classical mechanics and electrodynamics should be held

in doubt to the resolution of the problem in the work of Planck, Einstein,

Heisenberg, Schrödinger, and Dirac. The other is to stand back at a point

late in the development of the theory and to see its underlying theore-

tical structure. The first is interesting and compelling because the theory

is seen gradually emerging from confusion and dilemma. We see experi-

ment and intuition jointly determining the form of the theory and, above

all, we come to appreciate the need for a new theory of matter. The second,

more formal approach is exciting and compelling in a different sense: there is

logic and elegance in a scheme that starts from only a few postulates, yet

reveals as their implications are unfolded, a rich, experimentally verifiable

structure.

This book takes that latter route through the subject. However, to set the

scene we shall take a few moments to review the steps that led to the revo-

lutions of the early twentieth century, when some of the most fundamental

concepts of the nature of matter and its behaviour were overthrown and

replaced by a puzzling but powerful new description.

0.1 Black-body radiation

In retrospect—and as will become clear—we can now see that theoretical

physics hovered on the edge of formulating a quantum mechanical descrip-

tion of matter as it was developed during the nineteenth century. However, it

was a series of experimental observations that motivated the revolution. Of

these observations, the most important historically was the study of black-

body radiation, the radiation in thermal equilibrium with a body that absorbs

and emits without favouring particular frequencies. A pinhole in an otherwise

sealed container is a good approximation (Fig. 0.1).

Two characteristics of the radiation had been identified by the end of the

century and summarized in two laws. According to the Stefan–Boltzmann

law, the excitance, M, the power emitted divided by the area of the emitting

region, is proportional to the fourth power of the temperature:

M ¼ sT4 ð0:1Þ
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The Stefan–Boltzmann constant, s, is independent of the material from which

the body is composed, and its modern value is 56.7 nW m�2 K�4. So, a region

of area 1 cm2 of a black body at 1000 K radiates about 6 W if all frequencies

are taken into account. Not all frequencies (or wavelengths, with l¼ c/n),
though, are equally represented in the radiation, and the observed peak moves

to shorter wavelengths as the temperature is raised. According to Wien’s

displacement law,

lmaxT ¼ constant ð0:2Þ

with the constant equal to 2.9 mm K.

One of the most challenging problems in physics at the end of the nine-

teenth century was to explain these two laws. Lord Rayleigh, with minor help

from James Jeans,1 brought his formidable experience of classical physics to

bear on the problem, and formulated the theoretical Rayleigh–Jeans law for

the energy density e(l), the energy divided by the volume, in the wavelength

range l to lþ dl:

deðlÞ ¼ rðlÞ dl rðlÞ ¼ 8pkT

l4
ð0:3Þ

where k is Boltzmann’s constant (k¼ 1.381 � 10�23 J K�1). This formula

summarizes the failure of classical physics. It suggests that regardless of

the temperature, there should be an infinite energy density at very short

wavelengths. This absurd result was termed by Ehrenfest the ultraviolet

catastrophe.

At this point, Planck made his historic contribution. His suggestion was

equivalent to proposing that an oscillation of the electromagnetic field of

frequency n could be excited only in steps of energy of magnitude hn, where

h is a new fundamental constant of nature now known as Planck’s constant.

According to this quantization of energy, the supposition that energy can be

transferred only in discrete amounts, the oscillator can have the energies 0,

hn, 2hn, . . . , and no other energy. Classical physics allowed a continuous

variation in energy, so even a very high frequency oscillator could be excited

with a very small energy: that was the root of the ultraviolet catastrophe.

Quantum theory is characterized by discreteness in energies (and, as we shall

see, of certain other properties), and the need for a minimum excitation

energy effectively switches off oscillators of very high frequency, and hence

eliminates the ultraviolet catastrophe.

When Planck implemented his suggestion, he derived what is now called

the Planck distribution for the energy density of a black-body radiator:

rðlÞ ¼ 8phc

l5

e�hc=lkT

1� e�hc=lkT
ð0:4Þ

This expression, which is plotted in Fig. 0.2, avoids the ultraviolet cata-

strophe, and fits the observed energy distribution extraordinarily well if we

take h¼6.626� 10�34 J s. Just as the Rayleigh–Jeans law epitomizes the

failure of classical physics, the Planck distribution epitomizes the inception of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. ‘It seems to me,’ said Jeans, ‘that Lord Rayleigh has introduced an unnecessary factor 8 by

counting negative as well as positive values of his integers.’ (Phil. Mag., 91, 10 (1905).)
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Fig. 0.2 The Planck distribution.

Pinhole

Detected
radiation

Container
at a temperature T

Fig. 0.1 A black-body emitter can be

simulated by a heated container with
a pinhole in the wall. The

electromagnetic radiation is reflected

many times inside the container and
reaches thermal equilibrium with the

walls.
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quantum theory. It began the new century as well as a new era, for it was

published in 1900.

0.2 Heat capacities

In 1819, science had a deceptive simplicity. Dulong and Petit, for example,

were able to propose their law that ‘the atoms of all simple bodies have

exactly the same heat capacity’ of about 25 J K�1 mol�1 (in modern units).

Dulong and Petit’s rather primitive observations, though, were done at room

temperature, and it was unfortunate for them and for classical physics when

measurements were extended to lower temperatures and to a wider range of

materials. It was found that all elements had heat capacities lower than

predicted by Dulong and Petit’s law and that the values tended towards zero

as T ! 0.

Dulong and Petit’s law was easy to explain in terms of classical physics by

assuming that each atom acts as a classical oscillator in three dimensions. The

calculation predicted that the molar isochoric (constant volume) heat capa-

city, CV,m, of a monatomic solid should be equal to 3R¼24.94 J K�1 mol�1,

where R is the gas constant (R¼NAk, with NA Avogadro’s constant). That

the heat capacities were smaller than predicted was a serious embarrassment.

Einstein recognized the similarity between this problem and black-body

radiation, for if each atomic oscillator required a certain minimum energy

before it would actively oscillate and hence contribute to the heat capacity,

then at low temperatures some would be inactive and the heat capacity would

be smaller than expected. He applied Planck’s suggestion for electromagnetic

oscillators to the material, atomic oscillators of the solid, and deduced the

following expression:

CV;mðTÞ ¼ 3RfEðTÞ fEðTÞ ¼
yE

T
	 eyE=2T

1� eyE=T

� �2

ð0:5aÞ

where the Einstein temperature, yE, is related to the frequency of atomic

oscillators by yE¼hn/k. The function CV,m(T)/R is plotted in Fig. 0.3, and

closely reproduces the experimental curve. In fact, the fit is not particularly

good at very low temperatures, but that can be traced to Einstein’s

assumption that all the atoms oscillated with the same frequency. When this

restriction was removed by Debye, he obtained

CV;mðTÞ ¼ 3RfDðTÞ fDðTÞ ¼ 3
T

yD

� �3Z yD=T

0

x4ex

ðex � 1Þ2
dx ð0:5bÞ

where the Debye temperature, yD, is related to the maximum frequency of the

oscillations that can be supported by the solid. This expression gives a very

good fit with observation.

The importance of Einstein’s contribution is that it complemented

Planck’s. Planck had shown that the energy of radiation is quantized;

3

2

1

0

Einstein

Debye

0 0.5 1 1.5 2
T /�

C
V

,m
/R

Fig. 0.3 The Einstein and Debye

molar heat capacities. The

symbol y denotes the Einstein

and Debye temperatures,
respectively. Close to T¼0 the

Debye heat capacity is

proportional to T3.
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Einstein showed that matter is quantized too. Quantization appears to be

universal. Neither was able to justify the form that quantization took (with

oscillators excitable in steps of hn), but that is a problem we shall solve later

in the text.

0.3 The photoelectric and Compton effects

In those enormously productive months of 1905–6, when Einstein formu-

lated not only his theory of heat capacities but also the special theory

of relativity, he found time to make another fundamental contribution

to modern physics. His achievement was to relate Planck’s quantum

hypothesis to the phenomenon of the photoelectric effect, the emission of

electrons from metals when they are exposed to ultraviolet radiation. The

puzzling features of the effect were that the emission was instantaneous when

the radiation was applied however low its intensity, but there was no emis-

sion, whatever the intensity of the radiation, unless its frequency exceeded a

threshold value typical of each element. It was also known that the kinetic

energy of the ejected electrons varied linearly with the frequency of the

incident radiation.

Einstein pointed out that all the observations fell into place if the elec-

tromagnetic field was quantized, and that it consisted of bundles of energy

of magnitude hn. These bundles were later named photons by G.N. Lewis,

and we shall use that term from now on. Einstein viewed the photoelectric

effect as the outcome of a collision between an incoming projectile, a

photon of energy hn, and an electron buried in the metal. This picture

accounts for the instantaneous character of the effect, because even one

photon can participate in one collision. It also accounted for the frequency

threshold, because a minimum energy (which is normally denoted F and

called the ‘work function’ for the metal, the analogue of the ionization

energy of an atom) must be supplied in a collision before photoejection can

occur; hence, only radiation for which hn>F can be successful. The linear

dependence of the kinetic energy, EK, of the photoelectron on the frequency

of the radiation is a simple consequence of the conservation of energy,

which implies that

EK ¼ hn� F ð0:6Þ

If photons do have a particle-like character, then they should possess a

linear momentum, p. The relativistic expression relating a particle’s energy to

its mass and momentum is

E2 ¼ m2c4 þ p2c2 ð0:7Þ

where c is the speed of light. In the case of a photon, E¼ hn and m¼ 0, so

p ¼ hn
c
¼ h

l
ð0:8Þ
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This linear momentum should be detectable if radiation falls on an electron,

for a partial transfer of momentum during the collision should appear as a

change in wavelength of the photons. In 1923, A.H. Compton performed the

experiment with X-rays scattered from the electrons in a graphite target, and

found the results fitted the following formula for the shift in wavelength,

dl¼ lf� li, when the radiation was scattered through an angle y:

dl ¼ 2lC sin2 1
2 y ð0:9Þ

where lC¼ h/mec is called the Compton wavelength of the electron

(lC¼2.426 pm). This formula is derived on the supposition that a photon

does indeed have a linear momentum h/l and that the scattering event is like a

collision between two particles. There seems little doubt, therefore, that

electromagnetic radiation has properties that classically would have been

characteristic of particles.

The photon hypothesis seems to be a denial of the extensive accumulation

of data that apparently provided unequivocal support for the view that

electromagnetic radiation is wave-like. By following the implications of

experiments and quantum concepts, we have accounted quantitatively for

observations for which classical physics could not supply even a qualitative

explanation.

0.4 Atomic spectra

There was yet another body of data that classical physics could not elucidate

before the introduction of quantum theory. This puzzle was the observation

that the radiation emitted by atoms was not continuous but consisted of

discrete frequencies, or spectral lines. The spectrum of atomic hydrogen had a

very simple appearance, and by 1885 J. Balmer had already noticed that their

wavenumbers, ~nn, where ~nn¼ n/c, fitted the expression

~nn ¼ RH
1

22
� 1

n2

� �
ð0:10Þ

where RH has come to be known as the Rydberg constant for hydrogen

(RH¼ 1.097�105 cm�1) and n¼3, 4, . . . . Rydberg’s name is commemorated

because he generalized this expression to accommodate all the transitions in

atomic hydrogen. Even more generally, the Ritz combination principle states

that the frequency of any spectral line could be expressed as the difference

between two quantities, or terms:

~nn ¼ T1 � T2 ð0:11Þ

This expression strongly suggests that the energy levels of atoms are confined

to discrete values, because a transition from one term of energy hcT1 to

another of energy hcT2 can be expected to release a photon of energy hc~nn, or

hn, equal to the difference in energy between the two terms: this argument
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leads directly to the expression for the wavenumber of the spectroscopic

transitions.

But why should the energy of an atom be confined to discrete values? In

classical physics, all energies are permissible. The first attempt to weld

together Planck’s quantization hypothesis and a mechanical model of an atom

was made by Niels Bohr in 1913. By arbitrarily assuming that the angular

momentum of an electron around a central nucleus (the picture of an atom

that had emerged from Rutherford’s experiments in 1910) was confined to

certain values, he was able to deduce the following expression for the per-

mitted energy levels of an electron in a hydrogen atom:

En ¼ �
me4

8h2e2
0

	 1

n2
n ¼ 1, 2, . . . ð0:12Þ

where 1/m¼1/meþ 1/mp and e0 is the vacuum permittivity, a fundamental

constant. This formula marked the first appearance in quantum mechanics of

a quantum number, n, which identifies the state of the system and is used to

calculate its energy. Equation 0.12 is consistent with Balmer’s formula and

accounted with high precision for all the transitions of hydrogen that were

then known.

Bohr’s achievement was the union of theories of radiation and models of

mechanics. However, it was an arbitrary union, and we now know that it is

conceptually untenable (for instance, it is based on the view that an electron

travels in a circular path around the nucleus). Nevertheless, the fact that he

was able to account quantitatively for the appearance of the spectrum of

hydrogen indicated that quantum mechanics was central to any description of

atomic phenomena and properties.

0.5 The duality of matter

The grand synthesis of these ideas and the demonstration of the deep links

that exist between electromagnetic radiation and matter began with Louis de

Broglie, who proposed on the basis of relativistic considerations that with any

moving body there is ‘associated a wave’, and that the momentum of the body

and the wavelength are related by the de Broglie relation:

l ¼ h

p
ð0:13Þ

We have seen this formula already (eqn 0.8), in connection with the prop-

erties of photons. De Broglie proposed that it is universally applicable.

The significance of the de Broglie relation is that it summarizes a fusion

of opposites: the momentum is a property of particles; the wavelength is

a property of waves. This duality, the possession of properties that in classical

physics are characteristic of both particles and waves, is a persistent theme

in the interpretation of quantum mechanics. It is probably best to regard

the terms ‘wave’ and ‘particle’ as remnants of a language based on a false
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(classical) model of the universe, and the term ‘duality’ as a late attempt to

bring the language into line with a current (quantum mechanical) model.

The experimental results that confirmed de Broglie’s conjecture are the

observation of the diffraction of electrons by the ranks of atoms in a metal

crystal acting as a diffraction grating. Davisson and Germer, who performed

this experiment in 1925 using a crystal of nickel, found that the diffraction

pattern was consistent with the electrons having a wavelength given by

the de Broglie relation. Shortly afterwards, G.P. Thomson also succeeded

in demonstrating the diffraction of electrons by thin films of celluloid

and gold.2

If electrons—if all particles—have wave-like character, then we should

expect there to be observational consequences. In particular, just as a wave of

definite wavelength cannot be localized at a point, we should not expect

an electron in a state of definite linear momentum (and hence wavelength) to

be localized at a single point. It was pursuit of this idea that led Werner

Heisenberg to his celebrated uncertainty principle, that it is impossible to

specify the location and linear momentum of a particle simultaneously with

arbitrary precision. In other words, information about location is at the

expense of information about momentum, and vice versa. This com-

plementarity of certain pairs of observables, the mutual exclusion of the

specification of one property by the specification of another, is also a major

theme of quantum mechanics, and almost an icon of the difference between it

and classical mechanics, in which the specification of exact trajectories was a

central theme.

The consummation of all this faltering progress came in 1926 when Werner

Heisenberg and Erwin Schrödinger formulated their seemingly different but

equally successful versions of quantum mechanics. These days, we step

between the two formalisms as the fancy takes us, for they are mathematically

equivalent, and each one has particular advantages in different types of cal-

culation. Although Heisenberg’s formulation preceded Schrödinger’s by a few

months, it seemed more abstract and was expressed in the then unfamiliar

vocabulary of matrices. Still today it is more suited for the more formal

manipulations and deductions of the theory, and in the following pages we

shall employ it in that manner. Schrödinger’s formulation, which was in terms

of functions and differential equations, was more familiar in style but still

equally revolutionary in implication. It is more suited to elementary mani-

pulations and to the calculation of numerical results, and we shall employ it in

that manner.

‘Experiments’, said Planck, ‘are the only means of knowledge at our

disposal. The rest is poetry, imagination.’ It is time for that imagination

to unfold.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. It has been pointed out by M. Jammer that J.J. Thomson was awarded the Nobel Prize for

showing that the electron is a particle, and G.P. Thomson, his son, was awarded the Prize for

showing that the electron is a wave. (See The conceptual development of quantum mechanics,

McGraw-Hill, New York (1966), p. 254.)
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P R O B L E M S

0.1 Calculate the size of the quanta involved in the
excitation of (a) an electronic motion of period 1.0 fs,
(b) a molecular vibration of period 10 fs, and (c) a pendulum
of period 1.0 s.

0.2 Find the wavelength corresponding to the maximum in
the Planck distribution for a given temperature, and show
that the expression reduces to the Wien displacement law at
short wavelengths. Determine an expression for the constant
in the law in terms of fundamental constants. (This constant
is called the second radiation constant, c2.)

0.3 Use the Planck distribution to confirm the
Stefan–Boltzmann law and to derive an expression for
the Stefan–Boltzmann constant s.

0.4 The peak in the Sun’s emitted energy occurs at about
480 nm. Estimate the temperature of its surface on the basis
of it being regarded as a black-body emitter.

0.5 Derive the Einstein formula for the heat capacity of a
collection of harmonic oscillators. To do so, use the
quantum mechanical result that the energy of a harmonic
oscillator of force constant k and mass m is one of the values
(vþ 1

2)hv, with v¼ (1/2p)(k/m)1/2 and v¼ 0, 1, 2, . . . . Hint.
Calculate the mean energy, E, of a collection of oscillators
by substituting these energies into the Boltzmann
distribution, and then evaluate C¼ dE/dT.

0.6 Find the (a) low temperature, (b) high temperature
forms of the Einstein heat capacity function.

0.7 Show that the Debye expression for the heat capacity is
proportional to T3 as T! 0.

0.8 Estimate the molar heat capacities of metallic sodium
(yD¼ 150 K) and diamond (yD¼ 1860 K) at room
temperature (300 K).

0.9 Calculate the molar entropy of an Einstein solid at
T¼ yE. Hint. The entropy is S ¼

R T
0 ðCV=TÞdT. Evaluate the

integral numerically.

0.10 How many photons would be emitted per second by a
sodium lamp rated at 100 W which radiated all its energy
with 100 per cent efficiency as yellow light of wavelength
589 nm?

0.11 Calculate the speed of an electron emitted from a clean
potassium surface (F¼ 2.3 eV) by light of wavelength (a)
300 nm, (b) 600 nm.

0.12 When light of wavelength 195 nm strikes a certain metal
surface, electrons are ejected with a speed of 1.23� 106 m s�1.
Calculate the speed of electrons ejected from the same metal
surface by light of wavelength 255 nm.

0.13 At what wavelength of incident radiation do the
relativistic and non-relativistic expressions for the ejection
of electrons from potassium differ by 10 per cent? That is,
find l such that the non-relativistic and relativistic linear
momenta of the photoelectron differ by 10 per cent. Use
F¼ 2.3 eV.

0.14 Deduce eqn 0.9 for the Compton effect on the basis of
the conservation of energy and linear momentum. Hint. Use
the relativistic expressions. Initially the electron is at rest
with energy mec

2. When it is travelling with momentum p its
energy is ðp2c2 þm2

e c4Þ1/2. The photon, with initial
momentum h/li and energy hni, strikes the stationary
electron, is deflected through an angle y, and emerges with
momentum h/lf and energy hnf. The electron is initially
stationary (p¼ 0) but moves off with an angle y 0 to the
incident photon. Conserve energy and both components of
linear momentum. Eliminate y 0, then p, and so arrive at an
expression for dl.

0.15 The first few lines of the visible (Balmer) series in the
spectrum of atomic hydrogen lie at l/nm¼ 656.46, 486.27,
434.17, 410.29, . . . . Find a value of RH, the Rydberg
constant for hydrogen. The ionization energy, I, is the
minimum energy required to remove the electron. Find it
from the data and express its value in electron volts. How is
I related to RH? Hint. The ionization limit corresponds to
n!1 for the final state of the electron.

0.16 Calculate the de Broglie wavelength of (a) a mass of
1.0 g travelling at 1.0 cm s�1, (b) the same at 95 per cent of
the speed of light, (c) a hydrogen atom at room temperature
(300 K); estimate the mean speed from the equipartition
principle, which implies that the mean kinetic energy of an
atom is equal to 3

2kT, where k is Boltzmann’s constant, (d)
an electron accelerated from rest through a potential
difference of (i) 1.0 V, (ii) 10 kV. Hint. For the momentum
in (b) use p¼mv/(l� v2/c2)1/2 and for the speed in (d) use
1
2mev

2¼ eV, where V is the potential difference.

0.17 Derive eqn 0.12 for the permitted energy levels for the
electron in a hydrogen atom. To do so, use the following
(incorrect) postulates of Bohr: (a) the electron moves in a
circular orbit of radius r around the nucleus and (b) the
angular momentum of the electron is an integral multiple of
�h, that is mevr ¼ n�h. Hint. Mechanical stability of the
orbital motion requires that the Coulombic force of
attraction between the electron and nucleus equals the
centrifugal force due to the circular motion. The energy of
the electron is the sum of the kinetic energy and potential
(Coulombic) energy. For simplicity, use me rather than the
reduced mass m.
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The whole of quantum mechanics can be expressed in terms of a small set

of postulates. When their consequences are developed, they embrace the

behaviour of all known forms of matter, including the molecules, atoms, and

electrons that will be at the centre of our attention in this book. This chapter

introduces the postulates and illustrates how they are used. The remaining

chapters build on them, and show how to apply them to problems of chemical

interest, such as atomic and molecular structure and the properties of mole-

cules. We assume that you have already met the concepts of ‘hamiltonian’ and

‘wavefunction’ in an elementary introduction, and have seen the Schrödinger

equation written in the form

Hc ¼ Ec

This chapter establishes the full significance of this equation, and provides

a foundation for its application in the following chapters.

Operators in quantum mechanics

An observable is any dynamical variable that can be measured. The principal

mathematical difference between classical mechanics and quantum mechan-

ics is that whereas in the former physical observables are represented by

functions (such as position as a function of time), in quantum mechanics they

are represented by mathematical operators. An operator is a symbol for an

instruction to carry out some action, an operation, on a function. In most of

the examples we shall meet, the action will be nothing more complicated than

multiplication or differentiation. Thus, one typical operation might be

multiplication by x, which is represented by the operator x� . Another

operation might be differentiation with respect to x, represented by the

operator d/dx. We shall represent operators by the symbol O (omega) in

general, but use A, B, . . . when we want to refer to a series of operators.

We shall not in general distinguish between the observable and the operator

that represents that observable; so the position of a particle along the x-axis

will be denoted x and the corresponding operator will also be denoted x (with

multiplication implied). We shall always make it clear whether we are

referring to the observable or the operator.

We shall need a number of concepts related to operators and functions

on which they operate, and this first section introduces some of the more

important features.

The foundations of quantum
mechanics

Operators in quantum mechanics

1.1 Linear operators

1.2 Eigenfunctions and eigenvalues

1.3 Representations

1.4 Commutation and

non-commutation

1.5 The construction of operators

1.6 Integrals over operators

1.7 Dirac bracket notation

1.8 Hermitian operators

The postulates of quantum

mechanics

1.9 States and wavefunctions

1.10 The fundamental prescription

1.11 The outcome of measurements

1.12 The interpretation of the

wavefunction

1.13 The equation for the

wavefunction

1.14 The separation of the Schrödinger

equation

The specification and evolution of

states

1.15 Simultaneous observables

1.16 The uncertainty principle

1.17 Consequences of the uncertainty

principle

1.18 The uncertainty in energy and

time

1.19 Time-evolution and conservation

laws

Matrices in quantum mechanics

1.20 Matrix elements

1.21 The diagonalization of the

hamiltonian

The plausibility of the Schrödinger

equation

1.22 The propagation of light

1.23 The propagation of particles

1.24 The transition to quantum

mechanics
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1.1 Linear operators

The operators we shall meet in quantum mechanics are all linear. A linear

operator is one for which

Oðaf þ bgÞ ¼ aOf þ bOg ð1:1Þ
where a and b are constants and f and g are functions. Multiplication is a

linear operation; so is differentiation and integration. An example of a non-

linear operation is that of taking the logarithm of a function, because it is not

true, for example, that log 2x¼ 2 log x for all x.

1.2 Eigenfunctions and eigenvalues

In general, when an operator operates on a function, the outcome is another

function. Differentiation of sin x, for instance, gives cos x. However, in

certain cases, the outcome of an operation is the same function multiplied by

a constant. Functions of this kind are called ‘eigenfunctions’ of the operator.

More formally, a function f (which may be complex) is an eigenfunction of an

operator O if it satisfies an equation of the form

Of ¼ of ð1:2Þ
where o is a constant. Such an equation is called an eigenvalue equation. The

function eax is an eigenfunction of the operator d/dx because (d/dx)eax¼ aeax,

which is a constant (a) multiplying the original function. In contrast, eax2
is

not an eigenfunction of d/dx, because (d/dx)eax2 ¼ 2axeax2
, which is a con-

stant (2a) times a different function of x (the function xeax2
). The constant o

in an eigenvalue equation is called the eigenvalue of the operator O.

Example 1.1 Determining if a function is an eigenfunction

Is the function cos(3xþ 5) an eigenfunction of the operator d2/dx2 and, if so,

what is the corresponding eigenvalue?

Method. Perform the indicated operation on the given function and see if

the function satisfies an eigenvalue equation. Use (d/dx)sin ax¼ a cos ax and

(d/dx)cos ax¼�a sin ax.

Answer. The operator operating on the function yields

d2

dx2
cosð3xþ 5Þ ¼ d

dx
�3 sinð3xþ 5Þð Þ ¼ �9 cosð3xþ 5Þ

and we see that the original function reappears multiplied by the eigen-

value �9.

Self-test 1.1. Is the function e3xþ 5 an eigenfunction of the operator d2/dx2

and, if so, what is the corresponding eigenvalue?

[Yes; 9]

An important point is that a general function can be expanded in terms of

all the eigenfunctions of an operator, a so-called complete set of functions.
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That is, if fn is an eigenfunction of an operator O with eigenvalue on (so Ofn¼
on fn), then1 a general function g can be expressed as the linear combination

g ¼
X

n

cnfn ð1:3Þ

where the cn are coefficients and the sum is over a complete set of functions.

For instance, the straight line g¼ ax can be recreated over a certain range by

superimposing an infinite number of sine functions, each of which is an

eigenfunction of the operator d2/dx2. Alternatively, the same function may be

constructed from an infinite number of exponential functions, which are

eigenfunctions of d/dx. The advantage of expressing a general function as a

linear combination of a set of eigenfunctions is that it allows us to deduce the

effect of an operator on a function that is not one of its own eigenfunctions.

Thus, the effect of O on g in eqn 1.3, using the property of linearity, is simply

Og ¼ O
X

n

cnfn ¼
X

n

cnOfn ¼
X

n

cnonfn

A special case of these linear combinations is when we have a set of

degenerate eigenfunctions, a set of functions with the same eigenvalue. Thus,

suppose that f1, f2, . . . , fk are all eigenfunctions of the operator O, and that

they all correspond to the same eigenvalue o:

Ofn ¼ ofn with n ¼ 1, 2, . . . , k ð1:4Þ
Then it is quite easy to show that any linear combination of the functions fn
is also an eigenfunction of O with the same eigenvalue o. The proof is as

follows. For an arbitrary linear combination g of the degenerate set of

functions, we can write

Og ¼ O
Xk

n¼1

cnfn ¼
Xk

n¼1

cnOfn ¼
Xk

n¼1

cnofn ¼ o
Xk

n¼1

cnfn ¼ og

This expression has the form of an eigenvalue equation (Og¼og).

Example 1.2 Demonstrating that a linear combination of degenerate

eigenfunctions is also an eigenfunction

Show that any linear combination of the complex functions e2ix and e�2ix is an

eigenfunction of the operator d2/dx2, where i¼ (�1)1/2.

Method. Consider an arbitrary linear combination ae2ixþ be�2ix and see if the

function satisfies an eigenvalue equation.

Answer. First we demonstrate that e2ix and e�2ix are degenerate eigenfunctions.

d2

dx2
e�2ix ¼ d

dx
ð�2ie�2ixÞ ¼ �4e�2ix

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. See P.M. Morse and H. Feschbach, Methods of theoretical physics, McGraw-Hill, New York

(1953).
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where we have used i2¼�1. Both functions correspond to the same eigen-

value, �4. Then we operate on a linear combination of the functions.

d2

dx2
ðae2ix þ be�2ixÞ ¼ �4ðae2ix þ be�2ixÞ

The linear combination satisfies the eigenvalue equation and has the same

eigenvalue (�4) as do the two complex functions.

Self-test 1.2. Show that any linear combination of the functions sin(3x) and

cos(3x) is an eigenfunction of the operator d2/dx2.

[Eigenvalue is �9]

A further technical point is that from n basis functions it is possible to con-

struct n linearly independent combinations. A set of functions g1, g2, . . . , gn is

said to be linearly independent if we cannot find a set of constants c1, c2, . . . ,

cn (other than the trivial set c1¼ c2¼ 	 	 	 ¼0) for whichX
i

cigi ¼ 0

A set of functions that is not linearly independent is said to be linearly

dependent. From a set of n linearly independent functions, it is possible to

construct an infinite number of sets of linearly independent combinations,

but each set can have no more than n members. For example, from three

2p-orbitals of an atom it is possible to form any number of sets of linearly

independent combinations, but each set has no more than three members.

1.3 Representations

The remaining work of this section is to put forward some explicit forms of

the operators we shall meet. Much of quantum mechanics can be developed in

terms of an abstract set of operators, as we shall see later. However, it is often

fruitful to adopt an explicit form for particular operators and to express them

in terms of the mathematical operations of multiplication, differentiation,

and so on. Different choices of the operators that correspond to a particular

observable give rise to the different representations of quantum mechanics,

because the explicit forms of the operators represent the abstract structure of

the theory in terms of actual manipulations.

One of the most common representations is the position representation,

in which the position operator is represented by multiplication by x (or

whatever coordinate is specified) and the linear momentum parallel to x is

represented by differentiation with respect to x. Explicitly:

Position representation: x! x� px !
�h

i

q
qx

ð1:5Þ

where �h ¼ h=2p. Why the linear momentum should be represented in pre-

cisely this manner will be explained in the following section. For the time

being, it may be taken to be a basic postulate of quantum mechanics.

An alternative choice of operators is the momentum representation, in

which the linear momentum parallel to x is represented by the operation of
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multiplication by px and the position operator is represented by differentia-

tion with respect to px. Explicitly:

Momentum representation: x! � �h

i

q
qpx

px ! px� ð1:6Þ

There are other representations. We shall normally use the position repres-

entation when the adoption of a representation is appropriate, but we shall

also see that many of the calculations in quantum mechanics can be done

independently of a representation.

1.4 Commutation and non-commutation

An important feature of operators is that in general the outcome of successive

operations (A followed by B, which is denoted BA, or B followed by A,

denoted AB) depends on the order in which the operations are carried out.

That is, in general BA 6¼AB. We say that, in general, operators do not

commute. For example, consider the operators x and px and a specific

function x2. In the position representation, (xpx)x2¼x(2�h/i)x¼ (2�h/i)x2,

whereas (pxx)x2¼ pxx3¼ (3�h/i)x2. The operators x and px do not commute.

The quantity AB�BA is called the commutator of A and B and is denoted

[A, B]:

½A, B ¼ AB� BA ð1:7Þ

It is instructive to evaluate the commutator of the position and linear

momentum operators in the two representations shown above; the procedure

is illustrated in the following example.

Example 1.3 The evaluation of a commutator

Evaluate the commutator [x,px] in the position representation.

Method. To evaluate the commutator [A,B] we need to remember that the

operators operate on some function, which we shall write f. So, evaluate [A,B]f

for an arbitrary function f, and then cancel f at the end of the calculation.

Answer. Substitution of the explicit expressions for the operators into [x,px]

proceeds as follows:

½x, pxf ¼ ðxpx � pxxÞf ¼ x� �h

i

qf

qx
� �h

i

qðxf Þ
qx

¼ x� �h

i

qf

qx
� �h

i
f � x� �h

i

qf

qx
¼ i�hf

where we have used (1/i)¼�i. This derivation is true for any function f,

so in terms of the operators themselves,

½x, px ¼ i�h

The right-hand side should be interpreted as the operator ‘multiply by the

constant i�h’.

Self-test 1.3. Evaluate the same commutator in the momentum representation.

[Same]
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1.5 The construction of operators

Operators for other observables of interest can be constructed from the ope-

rators for position and momentum. For example, the kinetic energy operator

T can be constructed by noting that kinetic energy is related to linear

momentum by T¼ p2/2m where m is the mass of the particle. It follows that

in one dimension and in the position representation

T ¼ p2
x

2m
¼ 1

2m

�h

i

d

dx

� �2

¼ � �h

2m

d2

dx2
ð1:8Þ

In three dimensions the operator in the position representation is

T ¼ � �h2

2m

q2

qx2
þ q2

qy2
þ q2

qz2

( )
¼ � �h2

2m
r2 ð1:9Þ

The operator r2, which is read ‘del squared’ and called the laplacian, is the

sum of the three second derivatives.

The operator for potential energy of a particle in one dimension, V(x), is

multiplication by the function V(x) in the position representation. The same is

true of the potential energy operator in three dimensions. For example, in the

position representation the operator for the Coulomb potential energy of an

electron (charge �e) in the field of a nucleus of atomic number Z is the

multiplicative operator

V ¼ � Ze2

4pe0r
� ð1:10Þ

where r is the distance from the nucleus to the electron. It is usual to omit the

multiplication sign from multiplicative operators, but it should not be for-

gotten that such expressions are multiplications.

The operator for the total energy of a system is called the hamiltonian

operator and is denoted H:

H ¼ T þ V ð1:11Þ

The name commemorates W.R. Hamilton’s contribution to the formulation

of classical mechanics in terms of what became known as a hamiltonian

function. To write the explicit form of this operator we simply substitute the

appropriate expressions for the kinetic and potential energy operators in the

chosen representation. For example, the hamiltonian for a particle of mass m

moving in one dimension is

H ¼ � �h2

2m

d2

dx2
þ VðxÞ ð1:12Þ

where V(x) is the operator for the potential energy. Similarly, the hamiltonian

operator for an electron of mass me in a hydrogen atom is

H ¼ � �h2

2me
r2 � e2

4pe0r
ð1:13Þ

Although eqn 1.9 has explicitly

used Cartesian coordinates, the

relation between the kinetic energy

operator and the laplacian is true

in any coordinate system; for

example, spherical polar

coordinates.
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The general prescription for constructing operators in the position repres-

entation should be clear from these examples. In short:

1. Write the classical expression for the observable in terms of position

coordinates and the linear momentum.

2. Replace x by multiplication by x, and replace px by (�h/i)q/qx (and likewise

for the other coordinates).

1.6 Integrals over operators

When we want to make contact between a calculation done using operators

and the actual outcome of an experiment, we need to evaluate certain

integrals. These integrals all have the form

I ¼
Z

f �mOfn dt ð1:14Þ

where f �m is the complex conjugate of fm. In this integral dt is the volume

element. In one dimension, dt can be identified as dx; in three dimensions it is

dxdydz. The integral is taken over the entire space available to the system,

which is typically from x¼�1 to x¼ þ1 (and similarly for the other

coordinates). A glance at the later pages of this book will show that many

molecular properties are expressed as combinations of integrals of this form

(often in a notation which will be explained later). Certain special cases of this

type of integral have special names, and we shall introduce them here.

When the operator O in eqn 1.14 is simply multiplication by 1, the integral

is called an overlap integral and commonly denoted S:

S ¼
Z

f �mfn dt ð1:15Þ

It is helpful to regard S as a measure of the similarity of two functions: when

S¼0, the functions are classified as orthogonal, rather like two perpendicular

vectors. When S is close to 1, the two functions are almost identical. The

recognition of mutually orthogonal functions often helps to reduce the

amount of calculation considerably, and rules will emerge in later sections

and chapters.

The normalization integral is the special case of eqn 1.15 for m¼n.

A function fm is said to be normalized (strictly, normalized to 1) ifZ
f �mfm dt ¼ 1 ð1:16Þ

It is almost always easy to ensure that a function is normalized by multiplying

it by an appropriate numerical factor, which is called a normalization factor,

typically denoted N and taken to be real so that N� ¼N. The procedure is

illustrated in the following example.

Example 1.4 How to normalize a function

A certain function f is sin(px/L) between x¼ 0 and x¼L and is zero elsewhere.

Find the normalized form of the function.

The complex conjugate of

a complex number z¼ aþ ib

is z� ¼ a� ib. Complex

conjugation amounts to

everywhere replacing i by � i.

The square modulus jzj2 is given by

zz� ¼ a2þ b2 since jij2¼ 1.
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Method. We need to find the (real) factor N such that N sin(px/L) is norm-

alized to 1. To find N we substitute this expression into eqn 1.16, evaluate the

integral, and select N to ensure normalization. Note that ‘all space’ extends

from x¼ 0 to x¼L.

Answer. The necessary integration is
Z

f �f dt ¼
Z L

0

N2 sin2ðpx=LÞdx ¼ 1
2LN2

where we have used
R

sin2ax dx¼ (x/2)(sin 2ax)/4aþ constant. For this

integral to be equal to 1, we require N¼ (2/L)1/2. The normalized function is

therefore

f ¼ 2

L

� �1=2

sinðpx=LÞ

Comment. We shall see later that this function describes the distribution of a

particle in a square well, and we shall need its normalized form there.

Self-test 1.4. Normalize the function f¼ eif, where f ranges from 0 to 2p.

[N¼ 1/(2p)1/2]

A set of functions fn that are (a) normalized and (b) mutually orthogonal

are said to satisfy the orthonormality condition:Z
f �mfn dt ¼ dmn ð1:17Þ

In this expression, dmn denotes the Kronecker delta, which is 1 when m¼n

and 0 otherwise.

1.7 Dirac bracket notation

With eqn 1.14 we are on the edge of getting lost in a complicated notation. The

appearance of many quantum mechanical expressions is greatly simplified by

adopting the Dirac bracket notation in which integrals are written as follows:

hmjOjni ¼
Z

f �mOfn dt ð1:18Þ

The symbol jni is called a ket, and denotes the state described by the function

fn. Similarly, the symbol hnj is called a bra, and denotes the complex conjugate

of the function, f �n . When a bra and ket are strung together with an operator

between them, as in the bracket hmjOjni, the integral in eqn 1.18 is to be

understood. When the operator is simply multiplication by 1, the 1 is omitted

and we use the convention

hmjni ¼
Z

f �mfn dt ð1:19Þ

This notation is very elegant. For example, the normalization integral

becomes hnjni¼1 and the orthogonality condition becomes hmjni¼0

for m 6¼n. The combined orthonormality condition (eqn 1.17) is then

hmjni ¼ dmn ð1:20Þ
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A final point is that, as can readily be deduced from the definition of a Dirac

bracket,

hmjni ¼ hnjmi�

1.8 Hermitian operators

An operator is hermitian if it satisfies the following relation:Z
f �mOfn dt ¼

�Z
f �nOfmdt

	�
ð1:21aÞ

for any two functions fm and fn. An alternative version of this definition isZ
f �mOfn dt ¼

Z
ðOfmÞ�fn dt ð1:21bÞ

This expression is obtained by taking the complex conjugate of each term on

the right-hand side of eqn 1.21a. In terms of the Dirac notation, the definition

of hermiticity is

hmjOjni ¼ hnjOjmi� ð1:22Þ

Example 1.5 How to confirm the hermiticity of operators

Show that the position and momentum operators in the position representa-

tion are hermitian.

Method. We need to show that the operators satisfy eqn 1.21a. In some cases

(the position operator, for instance), the hermiticity is obvious as soon as the

integral is written down. When a differential operator is used, it may be

necessary to use integration by parts at some stage in the argument to transfer

the differentiation from one function to another:Z
u dv ¼ uv�

Z
v du

Answer. That the position operator is hermitian is obvious from inspection:Z
f �mxfn dt ¼

Z
fnxf �m dt ¼

Z
f �n xfm dt

� 	�

We have used the facts that (f�)� ¼ f and x is real. The demonstration of the

hermiticity of px, a differential operator in the position representation,

involves an integration by parts:

Z
f �mpxfn dx ¼

Z
f �m

�h

i

d

dx
fn dx ¼ �h

i

Z
f �m dfn

¼ �h

i

�
f �mfn �

Z
fndf �m

	




x¼1

x¼�1

¼ �h

i
f �mfnjx¼1x¼�1 �

Z 1
�1

fn
d

dx
f �m dx

� 	
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The first term on the right is zero (because when jxj is infinite, a normalizable

function must be vanishingly small; see Section 1.12). Therefore,

Z
f �mpxfn dx ¼ � �h

i

Z
fn

d

dx
f �m dx

¼
Z

f �n
�h

i

d

dx
fm dx

� 	�
¼

Z
f �n pxfm dx

� 	�

Hence, the operator is hermitian.

Self-test 1.5. Show that the two operators are hermitian in the momentum

representation.

As we shall now see, the property of hermiticity has far-reaching impli-

cations. First, we shall establish the following property:

Property 1. The eigenvalues of hermitian operators are real.

Proof 1.1 The reality of eigenvalues

Consider the eigenvalue equation

Ojoi ¼ ojoi

The ket joi denotes an eigenstate of the operator O in the sense that the

corresponding function fo is an eigenfunction of the operator O and we are

labelling the eigenstates with the eigenvalue o of the operator O. It is often

convenient to use the eigenvalues as labels in this way. Multiplication from the

left by hoj results in the equation

hojOjoi ¼ ohojoi ¼ o

taking joi to be normalized. Now take the complex conjugate of both sides:

hojOjoi� ¼ o�

However, by hermiticity, hojOjoi� ¼ hojOjoi. Therefore, it follows that

o¼o�, which implies that the eigenvalue o is real.

The second property we shall prove is as follows:

Property 2. Eigenfunctions corresponding to different eigenvalues of an

hermitian operator are orthogonal.

That is, if we have two eigenfunctions of an hermitian operator O with

eigenvalues o and o 0, with o 6¼o 0, then hojo 0i ¼ 0. For example, it follows at

once that all the eigenfunctions of a harmonic oscillator (Section 2.16) are

mutually orthogonal, for as we shall see each one corresponds to a different

energy (the eigenvalue of the hamiltonian, an hermitian operator).
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Proof 1.2 The orthogonality of eigenstates

Suppose we have two eigenstates joi and jo 0i that satisfy the following

relations:

Ojoi ¼ ojoi and Ojo0i ¼ o0jo0i
Then multiplication of the first relation by ho 0j and the second by hoj gives

ho0jOjoi ¼ oho0joi and hojOjo0i ¼ o0hojo0i
Now take the complex conjugate of the second relation and subtract it from

the first while using Property 1 (o 0� ¼o 0):

ho0jOjoi � hojOjo0i� ¼ oho0joi � o0hojo0i�

Because O is hermitian, the left-hand side of this expression is zero; so (noting

that o 0 is real and using hojo 0i� ¼ ho 0joi as explained earlier) we arrive at

ðo� o0Þho0joi ¼ 0

However, because the two eigenvalues are different, the only way of satisfying

this relation is for ho 0joi¼ 0, as was to be proved.

The postulates of quantum mechanics

Now we turn to an application of the preceding material, and move into the

foundations of quantum mechanics. The postulates we use as a basis for

quantum mechanics are by no means the most subtle that have been devised,

but they are strong enough for what we have to do.

1.9 States and wavefunctions

The first postulate concerns the information we can know about a state:

Postulate 1. The state of a system is fully described by a function C(r1,

r2, . . . , t).

In this statement, r1, r2, . . . are the spatial coordinates of particles 1, 2, . . .

that constitute the system and t is the time. The function C (uppercase psi)

plays a central role in quantum mechanics, and is called the wavefunction of

the system (more specifically, the time-dependent wavefunction). When we

are not interested in how the system changes in time we shall denote the

wavefunction by a lowercase psi as c(r1, r2, . . . ) and refer to it as the time-

independent wavefunction. The state of the system may also depend on some

internal variable of the particles (their spin states); we ignore that for now

and return to it later. By ‘describe’ we mean that the wavefunction

contains information about all the properties of the system that are open to

experimental determination.

We shall see that the wavefunction of a system will be specified by a set of

labels called quantum numbers, and may then be written ca,b, . . . , where

a, b, . . . are the quantum numbers. The values of these quantum numbers

specify the wavefunction and thus allow the values of various physical
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observables to be calculated. It is often convenient to refer to the state of

the system without referring to the corresponding wavefunction; the state is

specified by listing the values of the quantum numbers that define it.

1.10 The fundamental prescription

The next postulate concerns the selection of operators:

Postulate 2. Observables are represented by hermitian operators chosen to

satisfy the commutation relations

½q, pq0  ¼ i�hdqq0 ½q, q0 ¼ 0 ½pq, pq0  ¼ 0

where q and q 0 each denote one of the coordinates x, y, z and pq and pq 0 the

corresponding linear momenta.

The requirement that the operators are hermitian ensures that the observables

have real values (see below). Each commutation relation is a basic, unpro-

vable, and underivable postulate. Postulate 2 is the basis of the selection of

the form of the operators in the position and momentum representations for

all observables that depend on the position and the momentum.2 Thus, if we

define the position representation as the representation in which the position

operator is multiplication by the position coordinate, then as we saw in

Example 1.3, it follows that the momentum operator must involve differ-

entiation with respect to x, as specified earlier. Similarly, if the momentum

representation is defined as the representation in which the linear momentum

is represented by multiplication, then the form of the position operator is

fixed as a derivative with respect to the linear momentum. The coordinates

x, y, and z commute with each other as do the linear momenta px, py, and pz.

1.11 The outcome of measurements

The next postulate brings together the wavefunction and the operators and

establishes the link between formal calculations and experimental observations:

Postulate 3. When a system is described by a wavefunction c, the mean

value of the observable O in a series of measurements is equal to the expec-

tation value of the corresponding operator.

The expectation value of an operator O for an arbitrary state c is denoted hOi
and defined as

hOi ¼
R
c�Oc dtR
c�cdt

¼ hcjOjcihcjci ð1:23Þ

If the wavefunction is chosen to be normalized to 1, then the expectation

value is simply

hOi ¼
Z

c�Oc dt ¼ hcjOjci ð1:24Þ

Unless we state otherwise, from now on we shall assume that the wave-

function is normalized to 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. This prescription excludes intrinsic observables, such as spin (Section 4.8).
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The meaning of Postulate 3 can be unravelled as follows. First, suppose

that c is an eigenfunction of O with eigenvalue o; then

hOi ¼
Z

c�Oc dt ¼
Z

c�oc dt ¼ o
Z

c�c dt ¼ o ð1:25Þ

That is, a series of experiments on identical systems to determine O will give

the average value o (a real quantity, because O is hermitian). Now suppose

that although the system is in an eigenstate of the hamiltonian it is not in an

eigenstate of O. In this case the wavefunction can be expressed as a linear

combination of eigenfunctions of O:

c ¼
X

n

cncn where Ocn ¼ oncn

In this case, the expectation value is

hOi ¼
Z X

m

cmcm

 !�
O
X

n

cncn

 !
dt ¼

X
m, n

c�mcn

Z
c�mOcn dt

¼
X
m,n

c�mcnon

Z
c�mcn dt

Because the eigenfunctions form an orthonormal set, the integral in the last

expression is zero if n 6¼m, is 1 if n¼m, and the double sum reduces to a

single sum:

hOi ¼
X

n

c�ncnon

Z
c�ncn dt ¼

X
n

c�ncnon ¼
X

n

cnj j2on ð1:26Þ

That is, the expectation value is a weighted sum of the eigenvalues of O,

the contribution of a particular eigenvalue to the sum being determined by the

square modulus of the corresponding coefficient in the expansion of the

wavefunction.

We can now interpret the difference between eqns 1.25 and 1.26 in the

form of a subsidiary postulate:

Postulate 30. When c is an eigenfunction of the operator O, the determina-

tion of the property O always yields one result, namely the corresponding

eigenvalue o. The expectation value will simply be the eigenvalue o. When c
is not an eigenfunction of O, a single measurement of the property yields

a single outcome which is one of the eigenvalues of O, and the probability that

a particular eigenvalue on is measured is equal to jcnj2, where cn is the

coefficient of the eigenfunction cn in the expansion of the wavefunction.

One measurement can give only one result: a pointer can indicate only one

value on a dial at any instant. A series of determinations can lead to a series of

results with some mean value. The subsidiary postulate asserts that a mea-

surement of the observable O always results in the pointer indicating one of

the eigenvalues of the corresponding operator. If the function that describes

the state of the system is an eigenfunction of O, then every pointer reading is

precisely o and the mean value is also o. If the system has been prepared in a

state that is not an eigenfunction of O, then different measurements give

different values, but every individual measurement is one of the eigenvalues of
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O, and the probability that a particular outcome on is obtained is determined

by the value of jcnj2. In this case, the mean value of all the observations is the

weighted average of the eigenvalues. Note that in either case, the hermiticity

of the operator guarantees that the observables will be real.

Example 1.6 How to use Postulate 3 0.

An operator A has eigenfunctions f1, f2, . . . , fn with corresponding eigenvalues

a1, a2, . . . , an. The state of a system is described by a normalized wavefunction

c given by

c ¼ 1
2 f1 � 3

8

 �1=2
f2 þ 3

8 i
 �1=2

f3

What will be the outcome of measuring the observable A?

Method. First, we need to determine if c is an eigenfunction of the operator A.

If it is, then we shall obtain the same eigenvalue of A in every measurement.

If it is not, we shall obtain different values in a series of different measure-

ments. In the latter case, if we have an expression for c in terms of the

eigenfunctions of A, then we can determine what different values are possible,

the probabilities of obtaining them, and the average value from a large series

of measurements.

Answer. To test whether c is an eigenfunction of the operator A we proceed as

follows:

Ac ¼ A 1
2 f1 � 3

8

 �1=2
f2 þ 3

8 i
 �1=2

f3

h i

¼ 1
2a1f1 � 3

8

 �1=2
a2f2 þ 3

8 i
 �1=2

a3f3 6¼ constant� c

Therefore, c is not an eigenfunction of A. However, because c is a linear

combination of f1, f2, and f3 we will obtain, in different measurements,

the values a1, a2, and a3 (the eigenvalues of the eigenfunctions of A that

contribute to c). The probabilities of obtaining a1, a2, and a3 are, respectively,
1
4,

3
8, and 3

8. The average value, given by eqn 1.26, is

hAi ¼ 1
4 a1 þ 3

8 a2 þ 3
8 a3

Comment. The normalization of c is reflected in the fact that the probabilities

sum to 1. Because the eigenfunctions f4, f5, . . . do not contribute here to c,

there is zero probability of finding a4, a5, . . . .

Self-test 1.6. Repeat the problem using c ¼ 1
3 f2 þ ð79Þ

1=2f4� 1
3 if5:

[hAi ¼ 1
9 a2 þ 7

9 a4 þ 1
9 a5

1.12 The interpretation of the wavefunction

The next postulate concerns the interpretation of the wavefunction itself, and

is commonly called the Born interpretation:

Postulate 4. The probability that a particle will be found in the volume

element dt at the point r is proportional to jc(r)j2dt.
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As we have already remarked, in one dimension the volume element is dx.

In three dimensions the volume element is dxdydz. It follows from this

interpretation that jc(r)j2 is a probability density, in the sense that it

yields a probability when multiplied by the volume dt of an infinitesimal

region. The wavefunction itself is a probability amplitude, and has no direct

physical meaning. Note that whereas the probability density is real and non-

negative, the wavefunction may be complex and negative. It is usually con-

venient to use a normalized wavefunction; then the Born interpretation

becomes an equality rather than a proportionality. The implication of the

Born interpretation is that the wavefunction should be square-integrable;

that isZ
jcj2 dt <1

because there must be a finite probability of finding the particle somewhere in

the whole of space (and that probability is 1 for a normalized wavefunction).

This postulate in turn implies that c!0 as x!�1, for otherwise the inte-

gral of jcj2 would be infinite. We shall make frequent use of this implication

throughout the text.

1.13 The equation for the wavefunction

The final postulate concerns the dynamical evolution of the wavefunction

with time:

Postulate 5. The wavefunction C(r1, r2, . . . , t) evolves in time according

to the equation

i�h
qC
q t
¼ HC ð1:27Þ

This partial differential equation is the celebrated Schrödinger equation

introduced by Erwin Schrödinger in 1926. At this stage, we are treating the

equation as an unmotivated postulate. However, in Section 1.24 we shall

advance arguments in support of its plausibility. The operator H in the

Schrödinger equation is the hamiltonian operator for the system, the operator

corresponding to the total energy. For example, by using the expression

in eqn 1.12, we obtain the time-dependent Schrödinger equation in one

dimension (x) with a time-independent potential energy for a single particle:

i�h
qC
q t
¼ � �h2

2m

q2C
qx2
þ VðxÞC ð1:28Þ

We shall have a great deal to say about the Schrödinger equation and its

solutions in the rest of the text.

1.14 The separation of the Schrödinger equation

The Schrödinger equation can often be separated into equations for the time

and space variation of the wavefunction. The separation is possible when the

potential energy is independent of time.

1.14 THE SEPARATION OF THE SCHRÖDINGER EQUATION j 23



In one dimension the equation has the form

HC ¼ � �h2

2m

q2C
qx2
þ VðxÞC ¼ i�h

qC
qt

Equations of this form can be solved by the technique of separation of

variables, in which a trial solution takes the form

Cðx, tÞ ¼ cðxÞyðtÞ

When this substitution is made, we obtain

� �h2

2m
y

d2c
dx2
þ VðxÞcy ¼ i �hc

dy
dt

Division of both sides of this equation by cy gives

� �h2

2m

1

c
d2c
dx2
þ VðxÞ ¼ i �h

1

y
dy
dt

Only the left-hand side of this equation is a function of x, so when x changes,

only the left-hand side can change. But as the left-hand side is equal to the

right-hand side, and the latter does not change, the left-hand side must be

equal to a constant. Because the dimensions of the constant are those of an

energy (the same as those of V), we shall write it E. It follows that the time-

dependent equation separates into the following two differential equations:

� �h2

2m

d2c
dx2
þ VðxÞc ¼ Ec ð1:29aÞ

i�h
dy
dt
¼ Ey ð1:29bÞ

The second of these equations has the solution

y / e�iEt=�h ð1:30Þ

Therefore, the complete wavefunction (C¼cy) has the form

Cðx, tÞ ¼ cðxÞe�iEt=�h ð1:31Þ

The constant of proportionality in eqn 1.30 has been absorbed into the

normalization constant for c. The time-independent wavefunction satisfies

eqn 1.29a, which may be written in the form

Hc ¼ Ec

This expression is the time-independent Schrödinger equation, on which

much of the following development will be based.

This analysis stimulates several remarks. First, eqn 1.29a has the form of a

standing-wave equation. Therefore, so long as we are interested only in the

spatial dependence of the wavefunction, it is legitimate to regard the time-

independent Schrödinger equation as a wave equation. Second, when the

potential energy of the system does not depend on the time, and the system

is in a state of energy E, it is a very simple matter to construct the time-

dependent wavefunction from the time-independent wavefunction simply by
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multiplying the latter by e�iEt/�h. The time dependence of such a wavefunction

is simply a modulation of its phase, because we can write

e�iEt=�h ¼ cosðEt=�hÞ � i sinðEt=�hÞ
It follows that the time-dependent factor oscillates periodically from 1 to �i

to �1 to i and back to 1 with a frequency E/h and period h/E. This behaviour

is depicted in Fig. 1.1. Therefore, to imagine the time-variation of a wave-

function of a definite energy, think of it as flickering from positive through

imaginary to negative amplitudes with a frequency proportional to the energy.

Although the phase of a wavefunction C with definite energy E oscillates in

time, the product C�C (or jCj2) remains constant:

C�C ¼ ðc�eiEt=�hÞðce�iEt=�hÞ ¼ c�c

States of this kind are called stationary states. From what we have seen so far,

it follows that systems with a specific, precise energy and in which the

potential energy does not vary with time are in stationary states. Although

their wavefunctions flicker from one phase to another in repetitive manner,

the value of C�C remains constant in time.

The specification and evolution of states

Let us suppose for the moment that the state of a system can be specified as

ja,b, . . . i, where each of the eigenvalues a, b, . . . corresponds to the operators

representing different observables A, B, . . . of the system. If the system is in

the state ja,b, . . . i, then when we measure the property A we shall get exactly

a as an outcome, and likewise for the other properties. But can a state be

specified arbitrarily fully? That is, can it be simultaneously an eigenstate of all

possible observables A, B, . . . without restriction? With this question we are

moving into the domain of the uncertainty principle.

1.15 Simultaneous observables

As a first step, we establish the conditions under which two observables may

be specified simultaneously with arbitrary precision. That is, we establish the

conditions for a state jci corresponding to the wavefunction c to be simul-

taneously an eigenstate of two operators A and B. In fact, we shall prove the

following:

Property 3. If two observables are to have simultaneously precisely defined

values, then their corresponding operators must commute.

That is, AB must equal BA, or equivalently, [A,B]¼0.

Proof 1.3 Simultaneous eigenstates

Assume that jci is an eigenstate of both operators: Ajci¼ ajci and

Bjci¼ bjci. That being so, we can write the following chain of relations:

ABjci ¼ Abjci ¼ bAjci ¼ bajci ¼ abjci ¼ aBjci ¼ Bajci ¼ BAjci

We have used Euler’s relation,

eix ¼ cos x þ i sin x

as well as sin(�x)¼ � sin(x) and

cos(�x)¼ cos(x).

Re �

Im �

x

Fig. 1.1 A wavefunction

corresponding to an energy E rotates

in the complex plane from real to
imaginary and back to real at a

circular frequency E/�h.
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Therefore, if jci is an eigenstate of both A and B, and if the same is true for all

functions c of a complete set, then it is certainly necessary that [A,B]¼ 0.

However, does the condition [A,B]¼ 0 actually guarantee that A and B have

simultaneous eigenvalues? In other words, if Ajci¼ ajci and [A,B]¼ 0, can

we be confident that jci is also an eigenstate of B? We confirm this as follows.

Because Ajci¼ ajci, we can write

BAjci ¼ Bajci ¼ aBjci

Because A and B commute, the first term on the left is equal to ABjci.
Therefore, this relation has the form

AðBjciÞ ¼ aðBjciÞ

However, on comparison of this eigenvalue equation with Ajci¼ ajci, we can

conclude that Bjci/ jci, or Bjci¼ bjci, where b is a coefficient of pro-

portionality. That is, jci is an eigenstate of B, as was to be proved.

It follows from this discussion that we are now in a position to determine

which observables may be specified simultaneously. All we need do is to

inspect the commutator [A,B]: if it is zero, then A and B may be specified

simultaneously.

Example 1.7 How to decide whether observables may be specified

simultaneously

What restrictions are there on the simultaneous specification of the position

and the linear momentum of a particle?

Method. To answer this question we have to determine whether the position

coordinates can be specified simultaneously, whether the momentum com-

ponents can be specified simultaneously, and whether the position and

momentum can be specified simultaneously. The answer is found by examin-

ing the commutators (Section 1.10; Postulate 2) of the corresponding

operators.

Answer. All three position operators x, y, and z commute with one another, so

there is no constraint on the complete specification of position. The same is

true of the three operators for the components of linear momentum. So all

three components can be determined simultaneously. However, x and px do

not commute, so these two observables cannot be specified simultaneously,

and likewise for (y,py) and (z,pz). The consequent pattern of permitted

simultaneous specifications is illustrated in Fig. 1.2.

Self-test 1.7. Can the kinetic energy and the linear momentum be specified

simultaneously?

[Yes]

Pairs of observables that cannot be determined simultaneously are said to

be complementary. Thus, position along the x-axis and linear momentum

pz

x

y

px

z

py

Fig. 1.2 A summary of the position

and momentum observables that can
be specified simultaneously with

arbitrary precision (joined by solid

lines) and those that cannot (joined
by dotted lines).
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parallel to that axis are complementary observables. Classical physics made

the mistake of presuming that there was no restriction on the simultaneous

determination of observables, that there was no complementarity. Quantum

mechanics forces us to choose a selection of all possible observables if we seek

to specify a state fully.

1.16 The uncertainty principle

Although we cannot specify the eigenvalues of two non-commuting operators

simultaneously, it is possible to give up precision in the specification of one

property in order to acquire greater precision in the specification of a com-

plementary property. For example, if we know the location of a particle to

within a range Dx, then we can specify the linear momentum parallel to x to

within a range Dpx subject to the constraint

DxDpx � 1
2 �h ð1:32Þ

Thus, as Dx increases (an increased uncertainty in x), the uncertainty in px can

decrease, and vice versa. This relation between the uncertainties in the spe-

cification of two complementary observables is a special case of the uncer-

tainty principle proposed by Werner Heisenberg in 1927. A very general form

of the uncertainty principle was developed by H.P. Robertson in 1929 for two

observables A and B:

DADB � 1
2 jh½A, Bij ð1:33Þ

where the root mean square deviation of A is defined as

DA ¼ hA2i � hAi2
n o1=2

ð1:34Þ

This is an exact and precise form of the uncertainty principle: the precise form

of the ‘uncertainties’ DA and DB are given (they are root mean square

deviations) and the right-hand side of eqn 1.33 gives a precise lower bound on

the value of the product of uncertainties.

Proof 1.4 The uncertainty principle

Suppose that the observables A and B obey the commutation relation

[A,B]¼ iC. (The imaginary i is included for future convenience. For A¼ x and

B¼ px it follows from the fundamental commutation relation that C¼ �h.) We

shall suppose that the system is prepared in a normalized but otherwise

arbitrary state jci, which is not necessarily an eigenstate of either operator A

or B. The mean values of the observables A and B are expressed by the

expectation values

hAi ¼ hcjAjci and hBi ¼ hcjBjci

The operators for the spread of individual determinations of A and B around

their mean values are

dA ¼ A� hAi and dB ¼ B� hBi
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It is easy to verify that the commutation relation for these deviation operators is

dA, dB½  ¼ A� hAi, B� hBi½  ¼ A, B½  ¼ iC

because the expectation values hAi and hBi are simple numbers and commute

with operators.

Now consider the properties of the following integral, where a is a real but

otherwise arbitrary number:

I ¼
Z
j adA� idBð Þcj2 dt

The integral I is clearly non-negative as the integrand is positive everywhere.

This integral can be developed as follows:

I ¼
Z
fða dA� idBÞcg�fða dA� idBÞcgdt

¼
Z

c�ðadAþ idBÞðadA� idBÞc dt

In the second step we have used the hermitian character of the two operators

(as expressed in eqn 1.21b). At this point it is convenient to recognize that the

final expression is an expectation value, and to write it in the form

I ¼ hðadAþ idBÞðadA� idBÞi
This expression expands to

I ¼ a2hðdAÞ2i þ hðdBÞ2i � iahdAdB� dBdAi ¼ a2hðdAÞ2i þ hðdBÞ2i þ ahCi
In the second step we have recognized the presence of the commutator. The

integral is still non-negative, even though that is no longer obvious. At this

point we recognize that I has the general form of a quadratic expression in a,

and so express it as a square:

I ¼
�
ðdAÞ2

�
aþ hCi

2
�
ðdAÞ2

�
 !2

þ
�
ðdBÞ2

�
� hCi2

4
�
ðdAÞ2

�
(We have ‘completed the square’ for the first term.) This expression is still non-

negative whatever the value of a, and remains non-negative even if we choose

a value for a that corresponds to the minimum value of I. That value of a is the

value that ensures that the first term on the right is zero (because that term

always supplies a positive contribution to I). Therefore, with that choice of a,

we obtain

I ¼
�
ðdBÞ2

�
� hCi2

4
�
ðdAÞ2

� � 0

The inequality rearranges to�
ðdAÞ2

�
hðdBÞ2

�
� 1

4 hCi
2

The expectation values on the left can be put into a simpler form by writing

them as follows:

�
ðdAÞ2

�
¼ hðA� hAiÞ2i
¼ hA2 � 2AhAi þ hAi2i ¼ hA2i � 2hAihAi þ hAi2

¼ hA2i � hAi2
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We see that h(dA)2i is the mean square deviation of A from its mean value

(and likewise for B).

Then the inequality becomes

DADB � 1
2 jhCij

Then, because [A, B]¼ iC, we obtain the final form of the uncertainty principle

in eqn 1.33.

1.17 Consequences of the uncertainty principle

The first point to note is that the uncertainty principle is consistent with

Property 3, for if A and B commute, then C is zero and there is no constraint

on the uncertainties: there is no inconsistency in having both DA¼0 and

DB¼0. On the other hand, when A and B do not commute, the values of DA

and DB are related. For instance, while it may be possible to prepare a system

in a state in which DA¼0, the uncertainty then implies that DB must be

infinite in order to ensure that DADB is not less than 1
2jh[A,B]ij. In the par-

ticular case of the simultaneous specification of x and px, as we have seen, [x,

px]¼ i�h, so the lower bound on the simultaneous specification of these two

complementary observables is 1
2�h.

Example 1.8 How to calculate the joint uncertainty in two observables

A particle was prepared in a state with wavefunction c¼N exp(� x2/2G),

where N¼ (1/pG)1/4. Evaluate Dx and Dpx, and confirm that the uncertainty

principle is satisfied.

Method. We must evaluate the expectation values hxi, hx2i, hpxi, and hpx
2i by

integration and then combine their values to obtain Dx and Dpx. There are two

short cuts. For hxi, we note that c is symmetrical around x¼ 0, and so hxi¼ 0.

The value of hpxi can be obtained by noting that px is an imaginary hermitian

operator and c is real. Because hermiticity implies that hpxi� ¼ hpxi whereas

the imaginary character of px implies that hpxi� ¼�hpxi, we can conclude that

hpxi¼ 0. For the remaining integrals we useZ 1
�1

e�ax2

dx ¼ p
a

� �1=2
and

Z 1
�1

x2e�ax2

dx ¼ 1

2a

p
a

� �1=2

Answer. The following integrals are obtained:

hx2i ¼ N2

Z 1
�1

x2e�x2=G dx ¼ 1

2
G

hp2
xi ¼ N2

Z 1
�1

e�x2=2G ��h2 d2

dx2

 !
e�x2=2G dx

¼ �h2N2 1

G

Z 1
�1

e�x2=G dx� 1

G2

Z 1
�1

x2e�x2=G dx

� 	
¼ �h2

2G
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It follows that (because hxi¼ 0 and hpxi¼ 0)

DxDpx ¼ hx2i1=2hp2
xi

1=2 ¼ 1
2 �h

Comment. In this example, DxDpx has its minimum permitted value. This is a

special feature of ‘gaussian’ wavefunctions, wavefunctions of the form

exp(�ax2). A gaussian wavefunction is encountered in the ground state of a

harmonic oscillator (see Section 2.16).

Self-test 1.8. Calculate the value of DxDpx for a wavefunction that is zero

everywhere except in a region of space of length L, where it has the form

(2/L)1/2 sin(px/L).

[(�h/2(3)1/2)(p2 �6)1/2]

The uncertainty principle in the form given in eqn 1.33 can be applied to all

pairs of complementary observables. We shall see additional examples in later

chapters.

1.18 The uncertainty in energy and time

Finally, it is appropriate at this point to make a few remarks about the

so-called energy–time uncertainty relation, which is often expressed in the

form DEDt� �h and interpreted as implying a complementarity between

energy and time. As we have seen, for this relation to be a true uncertainty

relation, it would be necessary for there to be a non-zero commutator for

energy and time. However, although the energy operator is well defined (it is

the hamiltonian for the system), there is no operator for time in quantum

mechanics. Time is a parameter, not an observable. Therefore, strictly

speaking, there is no uncertainty relation between energy and time. In

Section 6.18 we shall see the true significance of the energy–time ‘uncertainty

principle’ is that it is a relation between the uncertainty in the energy of

a system that has a finite lifetime t (tau), and is of the form dE� �h/2t.

1.19 Time-evolution and conservation laws

As well as determining which operators are complementary, the commutator

of two operators also plays a role in determining the time-evolution of

systems and in particular the time-evolution of the expectation values of

observables. The precise relation for operators that do not have an intrinsic

dependence on the time (in the sense that qO/qt¼0) is

dhOi
dt
¼ i

�h
h½H,Oi ð1:35Þ

We see that if the operator for the observable commutes with the hamil-

tonian, then the expectation value of the operator does not change with time.

An observable that commutes with the hamiltonian for the system, and which

therefore has an expectation value that does not change with time, is called

a constant of the motion, and its expectation value is said to be conserved.
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Proof 1.5 Time evolution

Differentiation of hOi with respect to time gives

dhOi
dt
¼ d

dt
hCjOjCi ¼

Z
qC�

qt

� �
OC dtþ

Z
C�O

qC
qt

� �
dt

because only the state C (not the operator O) depends on the time. The

Schrödinger equation lets us writeZ
C�O

qC
qt

� �
dt ¼

Z
C�O

1

i�h

� �
HCdt ¼ 1

i�h

Z
C�OHC dt

Z
qC�

qt

� �
OC dt ¼ �

Z
1

i�h

� �
ðHCÞ�OC dt ¼ � 1

i�h

� �Z
C�HOC dt

In the second line we have used the hermiticity of the hamiltonian (in the form

of eqn 1.21b). It then follows, by combining these two expressions, that

dhOi
dt
¼ � 1

i�h

� �
ðhHOi � hOHiÞ ¼ i

�h
h½H,Oi

as was to be proved.

As an important example, consider the rate of change of the expectation

value of the linear momentum of a particle in a one-dimensional system. The

commutator of H and px is

½H, px ¼ � �h2

2m

d2

dx2
þ V,

�h

i

d

dx

" #
¼ �h

i
V,

d

dx

� �

because the derivatives commute. The remaining commutator can be evalu-

ated by remembering that there is an unwritten function on the right on

which the operators operate, and writing

½H, pxc ¼
�h

i
V

dc
dx
� dðVcÞ

dx

� 	
¼ �h

i
V

dc
dx
� V

dc
dx
� dV

dx
c

� 	

¼ � �h

i

dV

dx
c

This relation is true for all functions c; therefore the commutator itself is

½H, px ¼ �
�h

i

dV

dx
ð1:36Þ

It follows that the linear momentum is a constant of the motion if the

potential energy does not vary with position, that is when dV/dx¼0. Speci-

fically, we can conclude that the rate of change of the expectation value of

linear momentum is

d

dt
hpxi ¼

i

�h
h½H, pxi ¼ �

dV

dx

� �
ð1:37Þ
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Then, because the negative slope of the potential energy is by definition the

force that is acting (F¼�dV/dx), the rate of change of the expectation value

of linear momentum is given by

d

dt
hpxi ¼ hFi ð1:38Þ

That is, the rate of change of the expectation value of the linear momentum is
equal to the expectation value of the force. It is also quite easy to prove in the

same way that

d

dt
hxi ¼ hpxi

m
ð1:39Þ

which shows that the rate of change of the mean position can be identified

with the mean velocity along the x-axis. These two relations jointly constitute

Ehrenfest’s theorem. Ehrenfest’s theorem clarifies the relation between clas-

sical and quantum mechanics: classical mechanics deals with average values

(expectation values); quantum mechanics deals with the underlying details.

Matrices in quantum mechanics

As we have seen, the fundamental commutation relation of quantum

mechanics, [x,px]¼ i�h, implies that x and px are to be treated as operators.

However, there is an alternative interpretation: that x and px should be

represented by matrices, for matrix multiplication is also non-commutative.

We shall introduce this approach here as it introduces a language that is

widely used throughout quantum mechanics even though matrices are not

being used explicitly.

1.20 Matrix elements

A matrix, M, is an array of numbers (which may be complex), called matrix

elements. Each element is specified by quoting the row (r) and column (c) that

it occupies, and denoting the matrix element as Mrc. The rules of matrix

algebra are set out in Further information 23. For our present purposes it is

sufficient to emphasize the rule of matrix multiplication: the product of two

matrices M and N is another matrix P¼MN with elements given by the rule

Prc ¼
X

s

MrsNsc ð1:40Þ

The order of matrix multiplication is important, and it is essential to note that

MN is not necessarily equal to NM. Hence, MN�NM is not in general zero.

Heisenberg formulated his version of quantum mechanics, which is called

matrix mechanics, by representing position and linear momentum by the

matrices x and px, and requiring that xpx� pxx¼ i�h1 where 1 is the unit

matrix, a square matrix with all diagonal elements (those for which r¼ c)

equal to 1 and all others 0.
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Throughout this chapter we have encountered quantities of the form

hmjOjni. These quantities are commonly abbreviated as Omn, which imme-

diately suggests that they are elements of a matrix. For this reason, the Dirac

bracket hmjOjni is often called a matrix element of the operator O. A diagonal

matrix element Onn is then a bracket of the form hnjOjni with the bra and the

ket referring to the same state. We shall often encounter sums over products

of Dirac brackets that have the formX
s

hrjAjsihsjBjci

If the brackets that appear in this expression are interpreted as matrix elements,

then we see that it has the form of a matrix multiplication, and we may writeX
s

hrjAjsihsjBjci ¼
X

s

ArsBsc ¼ ðABÞrc ¼ hrjABjci ð1:41Þ

That is, the sum is equal to the single matrix element (bracket) of the product

of operators AB. Comparison of the first and last terms in this line of equa-

tions also allows us to write the symbolic relationX
s

jsihsj ¼ 1 ð1:42Þ

This completeness relation is exceptionally useful for developing quantum

mechanical equations. It is often used in reverse: the matrix element hrjABjci
can always be split into a sum of two factors by regarding it as hrjA1Bjci and

then replacing the 1 by a sum over a complete set of states of the form in

eqn 1.42.

Example 1.9 How to make use of the completeness relation

Use the completeness relation to prove that the eigenvalues of the square of an

hermitian operator are non-negative.

Method. We have to prove, for O2joi¼ojoi, that o� 0 if O is hermitian.

If both sides of the eigenvalue equation are multiplied by hoj, converting it to

hojO2joi¼o, we see that the proof requires us to show that the expectation

value on the left is non-negative. As it has the form hojOOjoi, it suggests that

the completeness relation might provide a way forward. The hermiticity of O
implies that it will be appropriate to use the property hmjOjni¼ hnjOjmi� at

some stage in the argument.

Answer. The diagonal matrix element hojO2joi can be developed as follows:

hojO2joi ¼ hojOOjoi ¼
X

s

hojOjsihsjOjoi

¼
X

s

hojOjsihojOjsi� ¼
X

s

jhojOjsij2 � 0

The final inequality follows from the fact that all the terms in the sum are

non-negative.

Self-test 1.9. Show that if (Of )� ¼�Of �, then hOi¼ 0 for any real function f.
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The origin of the completeness relation, which is also known as the closure

relation, can be demonstrated by the following argument. Suppose we have

a complete set of orthonormal states jsii. Then, by definition of complete,

we can expand an arbitrary state jci as a linear combination:

jci ¼
X

i

cijsii

Multiplication from the left by the bra hsjj and use of the orthonormality of

the complete basis set gives cj¼hsjjci. Thus

jci ¼
X

i

hsijcijsii ¼
X

i

jsiihsijci

which immediately implies the completeness relation.

1.21 The diagonalization of the hamiltonian

The time-independent form of the Schrödinger equation, Hc¼Ec, can be

given a matrix interpretation. First, we express jci as a linear combination of

a complete set of states jni:

Hjci ¼ H
X

n

cnjni ¼
X

n

cnHjni

Ejci ¼ E
X

n

cnjni

These two lines are equal to one another. Next, multiply the right-hand sides

of the above two equations from the left by an arbitrary bra hmj and use the

orthonormality of the states to obtain

X
n

cnhmjHjni ¼ E
X

n

cnhmjni ¼ Ecm

In matrix notation this equation is

X
n

Hmncn ¼ Ecm ð1:43Þ

Now suppose that we can find the set of states such that Hmn¼0 unless m¼n;

that is, when using this set, the hamiltonian has a diagonal matrix. Then this

expression becomes

Hmmcm ¼ Ecm ð1:44Þ

and the energy E is seen to be the diagonal element of the hamiltonian matrix.

In other words, solving the Schrödinger equation is equivalent to diag-

onalizing the hamiltonian matrix (see Further information 23). This is yet

another link between the Schrödinger and Heisenberg formulations of

quantum mechanics. Indeed, it was reported that when Heisenberg was

looking for ways of diagonalizing his matrices, the mathematician David

Hilbert suggested to him that he should look for the corresponding differ-

ential equation instead. Had he done so, Schrödinger’s wave mechanics

would have been Heisenberg’s too.
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Example 1.10 How to diagonalize a simple hamiltonian

In a system that consists of only two orthonormal states j1i and j2i (such

as electron spin in a magnetic field, when the electron spin can be in one of

two orientations), the hamiltonian has the following matrix elements:

H11¼h1jHj1i¼ a, H22¼h2jHj2i¼ b, H12¼ d, H21¼ d�. For notational sim-

plicity, we shall suppose that d is real, so d� ¼ d. Find the energy levels and the

eigenstates of the system.

Method. The energy levels are the eigenvalues of the hamiltonian matrix.

We use the procedure explained in Further information 23 to find the eigen-

values and eigenstates. We describe the procedure here briefly, specifically

for the two-state system. One eigenstate is jji¼ c1j1iþ c2j2i and the other is

jki¼ d1j1iþ d2j2i. Beginning twice with Hjji¼Ejji and multiplying one on

the left by h1j and the second on the left by h2j, we obtain two equations which

in matrix form are

H11 � E H12

H21 H22 � E

� �
c1

c2

� �
¼ 0

There is a (non-trivial, c1 and c2 non-zero) solution to this matrix equation

only if the determinant of the matrix on the left-hand side vanishes. A similar

argument develops if we begin with Hjki¼Ejki. The two energy eigenvalues

are determined from the secular determinant jH�E1j ¼ 0 and the two energy

eigenvalues, denoted E�, are the diagonal elements of the matrix E. To find the

eigenstates, we form the matrix T composed of the two column vectors of the

eigenstates:

T ¼ c1 d1

c2 d2

� �

The matrix T satisfies the equation HT¼TE. The best procedure is to choose

the coefficients c1, c2, d1, and d2 so that the eigenstates are given by jji¼
j1i cos zþ j2i sin z and jki¼�j1i sin zþ j2i cos z, where z is a parameter, for

this parametrization ensures that the two eigenstates are orthonormal for all

values of z. After solving the secular determinant equation for the eigenvalues,

we form T�1HT, equate it to the matrix E, and then solve for z.

Answer. Because the states j1i and j2i are orthonormal, the secular deter-

minant is

detjH � E1j ¼ a� E d
d b� E










 ¼ ða� EÞðb� EÞ � d2 ¼ 0

This quadratic equation for E has the roots

E� ¼ 1
2 ðaþ bÞ � 1

2 fða� bÞ2 þ 4d2g1=2 ¼ 1
2 ðaþ bÞ � D

where D¼ 1
2 {(a� b)2þ 4d2}1/2. These are the eigenvalues, and hence they are

the energy levels. We next form the transformation matrix and its reciprocal:

T ¼ cos z � sin z
sin z cos z

� �
T �1 ¼ cos z sin z

� sin z cos z

� �
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Then construct the following matrix equation:

Eþ 0

0 E�

� �
¼T�1HT¼

cosz sinz

�sinz cosz

� �
a d

d b

� �
cosz �sinz

sinz cosz

� �

¼ a cos2zþb sin2zþ2d cosz sinz dðcos2z�sin2zÞþðb�aÞcosz sinz

dðcos2z�sin2zÞþðb�aÞcosz sinz b cos2zþa sin2z�2d cosz sinz

 !

Consequently, by equating matching off-diagonal elements, we obtain

dðcos2 z� sin2 zÞ þ ðb� aÞ cos z sin z ¼ 0

which solves to

z ¼ � 1
2 arctan

2d

b� a

� �

Comment. The two-level system occurs widely in quantum mechanics, and we

shall return to it in Chapter 6. The parametrization of the states in terms of the

angle z is a very useful device, and we shall encounter it again.

The plausibility of the Schrödinger equation

The Schrödinger equation is properly regarded as a postulate of quantum

mechanics, and hence we should not ask for a deeper justification. However,

it is often more satisfying to set postulates in the framework of the familiar.

In this section we shall see that the Schrödinger equation is a plausible

description of the behaviour of matter by going back to the formulation of

classical mechanics devised by W.R. Hamilton in the nineteenth century.

We shall concentrate on the qualitative aspects of the approach: the calcu-

lations supporting these remarks will be found in Further information 1.

1.22 The propagation of light

In geometrical optics, light travels in straight lines in a uniform medium, and

we know that the physical nature of light is a wave motion. In classical

mechanics particles travel in straight lines unless a force is present. Moreover,

we know from the experiments performed at the end of the nineteenth

century and the start of the twentieth century that particles have a wave

character. There are clearly deep analogies here. We shall therefore first

establish how, in optics, wave motion can result in straight-line motion, and

then argue by analogy about the wave nature of particles.

The basic rule governing light propagation in geometrical optics is Fermat’s

principle of least time. A simple form of the principle is that the path taken by

a ray of light through a medium is such that its time of passage is a minimum.

As an illustration, consider the relation between the angles of incidence and

reflection for light falling on a mirror (Fig. 1.3). The briefest path between

source, mirror, and observer is clearly the one corresponding to equal angles

of incidence and reflection. In the case of refraction, it is necessary to take into

P1 P2

� �

Fig. 1.3 When light reflects from a
surface, the angle of reflection is

equal to the angle of incidence.
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account the different speeds of propagation in the two media. In Fig. 1.4,

the geometrically straight path is not necessarily the briefest, because the light

travels relatively slowly through the denser medium. The briefest path is in

fact easily shown to be the one in which the angles of incidence yi and

refraction yr are related by Snell’s law, that sin yr/sin yi¼n1/n2. (The refractive

indexes n1 and n2 enter because the speed of light in a medium of refractive

index n is c/n, where c is the speed of light in a vacuum.)

How can the wave nature of light account for this behaviour? Consider the

case illustrated in Fig. 1.5, where we are interested in the propagation of light

between two fixed points P1 and P2. A wave of electromagnetic radiation

travelling along some general path A arrives at P2 with a particular phase that

depends on its path length. A wave travelling along a neighbouring path A 0

travels a different distance and arrives with a different phase. Path A has very

many neighbouring paths, and there is destructive interference between the

waves. Hence, an observer concludes that the light does not travel along a

path like A. The same argument applies to every path between the two points,

with one exception: the straight line path B. The neighbours of B do not

interfere destructively with B itself, and it survives. The mathematical reason

for this exceptional behaviour can be seen as follows.

The amplitude of a wave at some point x can be written ae2pix/l, where l is

the wavelength. It follows that the amplitude at P1 is ae2pix1/l and that at P2

it is ae2pix2/l. The two amplitudes are therefore related as follows:

CðP2Þ ¼ ae2pix2=l ¼ e2piðx2�x1Þ=le2pix1=l ¼ e2piðx2�x1Þ=lCðP1Þ
This relation between the two amplitudes can be written more simply as

CðP2Þ ¼ eifCðP1Þ withf ¼ 2pðx2 � x1Þ=l ð1:45Þ
The function f is the phase length of the straight-line path. The relative

phases at P2 and P1 for waves that travel by curved paths are related by an

expression of the same kind, but with the phase length determined by the

length, L, of the path:

f ¼ 2pL

l
ð1:46Þ

Now we consider how the path length varies with the distortion of the path

from a straight line. If we distort the path from B to A in Fig. 1.5, f changes as

depicted in Fig. 1.6. Obviously, f goes through a minimum at B. Now we

arrive at the crux of the argument. Consider the phase length of the paths in

the vicinity of A. The phase length of A 0 is related to the phase length at A by

the following Taylor expansion:

fðA0Þ ¼ fðAÞ þ df
ds

� �
A

dsþ 1
2

d2f
ds2

 !
A

ds2 þ 	 	 	 ð1:47Þ

where ds is a measure of the distortion of the path. This expression should be

compared with the similar expression for the path lengths of B and its neighbours:

fðB0Þ ¼ fðBÞ þ df
ds

� �
B

dsþ 1
2

d2f
ds2

 !
B

ds2 þ 	 	 	

¼ fðBÞ þ 1
2

d2f
ds2

 !
B

ds2 þ 	 	 	 ð1:48Þ

A

A�

B

B�

P1

P2

P2

P1

(a)

(b)

Fig. 1.5 (a) A curved path through a
uniform medium has neighbours

with significantly different phases at

the destination point, and there is
destructive interference between

them. (b) A straight path between

two points has neighbours with

almost the same phase, and these
paths do not interfere destructively.

P1

P2

�i

�r

Fig. 1.4 When light is refracted at the

interface of two transparent media,

the angle of refraction, yr, and the
angle of incidence, yi, are related by

Snell’s law.
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The term in ds is zero because the first derivative is zero at the minimum of the

curve. In other words, to first order in the displacement, straight line paths

have neighbours with the same phase length. On the other hand, curved paths

have neighbours with different phase lengths. This difference is the reason

why straight line propagation survives whereas curved paths do not: the latter

have annihilating neighbours.

Two further points now need to be made. When the medium is not

uniform, the wavelength of a wave varies with position. Because l¼ v/n, and

v, the speed of propagation, is equal to c/n, where the refractive index n varies

with position, a more general form of the phase length is

f ¼ 2p
Z P2

P1

dx

lðxÞ ¼
2pn
c

Z P2

P1

nðxÞ dx ð1:49Þ

The same argument applies, but because of the dependence of the refractive

index on position, a curved or kinked path may turn out to correspond to
the minimum phase length, and therefore have, to first order at least, no

destructive neighbours. Hence, the path adopted by the light will be curved or

kinked. The focusing caused by a lens is a manifestation of this effect.

The second point concerns the stringency of the conclusion that the

minimum-phase-length paths have non-destructive neighbours. Because the

wavelength of the radiation occurs in the denominator of the expression

defining the phase length, waves of short wavelength will have larger phase

lengths for a given path than radiation of long wavelength. The variation of

phase length with wavelength is indicated in Fig. 1.7. It should be clear that

neighbours annihilate themselves much more strongly when the light has a

short wavelength than when it is long. Therefore, the rule that light (or any

other form of wave motion) propagates itself in straight lines becomes more

stringent as its wavelength shortens. Sound waves travel only in approxi-

mately straight lines; light waves travel in almost exactly straight lines.

Geometrical optics is the limit of infinitely short wavelengths, where the

annihilation by neighbours is so effective that the light appears to travel in

perfectly straight lines.

1.23 The propagation of particles

The path taken by a particle in classical mechanics is determined by Newton’s

laws. However, it turns out that these laws are equivalent to Hamilton’s

principle, which states that particles adopt paths between two given points

such that the action S associated with the path is a minimum. There is clearly

a striking analogy between Fermat’s principle of least time and Hamilton’s

principle of least action.

The formal definition of action is given in Further information 1, where it is

seen to be an integral taken along the path of the particle, just like the phase

length in optics. When we turn to the question of why particles adopt the path

of least action, we can hardly avoid the conclusion that the reason must be the

same as why light adopts the path of least phase length. But to apply that

argument to particles, we have to suppose that particles have an associated

wave character. You can see that this attempt to ‘explain’ classical mechanics
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Fig. 1.7 The variation of phase length

with wavelength. Interference

between neighbours is most acute for
short wavelengths. The geometrical

limit corresponds to zero wavelength,

where even infinitesimal neighbours

interfere destructively and
completely.
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Fig. 1.6 The variation of phase length

with displacement from a straight

line path. The phase length at
A 0 differs from that at

A by a first-order term; the phase

lengths at B and B 0 differ only
to second order in the displacement.
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leads almost unavoidably to the heart of quantum mechanics and the duality

of matter. We have the experimental evidence to encourage us to pursue the

analogy; Hamilton did not.

1.24 The transition to quantum mechanics

The hypothesis we now make is that a particle is described by some kind of

amplitude C, and that amplitudes at different points are related by an

expression of the form C(P2)¼ eifC(P1). By analogy with optics, we say that

the wave is propagated along the path that makes f a minimum. But we also

know that in the classical limit, the particle propagates along a path that

corresponds to least action. As f is dimensionless (because it appears as an

exponent), the constant of proportionality between f and S must have the

dimensions of 1/action. Furthermore, we have seen that geometrical optics,

the classical form of optics, corresponds to the limit of short wavelengths and

very large phase lengths. In classical mechanics, particles travel along ‘geo-

metrical’ trajectories, corresponding to large f. Hence, the constant with the

dimensions of action must be very small. The natural quantity to introduce is

Planck’s constant, or some small multiple of it. It turns out that agreement

with experiment (that is, the correct form of the Schrödinger equation) is

obtained if we use �h; we therefore conclude that we should write f¼ S/�h.

You should notice the relation between this approach and Heisenberg’s. In

his, a 0 was replaced by �h (in the commutator [x,px]), and classical mechanics

‘evolved’ into quantum mechanics. In the approach we are presenting here,

a 0 has also been replaced by �h, for had we wanted precise geometrical

trajectories, then we would have divided S by 0.

We have arrived at the stage where the amplitude associated with a particle

is described by a relation of the form

CðP2Þ ¼ eiS=�hCðP1Þ ð1:50Þ

where S is the action associated with the path from P1 (at x1, t1) to P2 (at x2, t2).

This expression lets us develop an equation of motion, because we can

differentiate C with respect to the time t2:

qCðP2Þ
qt2

� �
¼ i

�h

qS

qt2

� �
eiS=�hCðP1Þ ¼

i

�h

qS

qt2

� �
CðP2Þ

One of the results derived in Further information 1 is that the rate of change

of the action is equal to �E, where E is the total energy, TþV:

qS

qt

� �
¼ �E ð1:51Þ

Therefore, the equation of motion at all points of a trajectory is

qC
qt

� �
¼ � i

�h
EC

The final step involves replacing E by its corresponding operator H, which

then results in the time-dependent Schrödinger equation, eqn 1.27.
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There are a few points that are worth noting about this justification.

First, we have argued by analogy with classical optics, and have sought to

formulate equations that are consistent with classical mechanics. It should

therefore not be surprising that the approach might not generate some purely

quantum mechanical properties. Indeed, we shall see later that the property of

electron spin has been missed, for despite its evocative name, spin has no

classical counterpart. A related point is that the derivation has been entirely

non-relativistic: at no point have we tried to ensure that space and time are

treated on an equal footing. The alignment of relativity and quantum

mechanics was achieved by P.A.M. Dirac, who found a way of treating space

and time symmetrically, and in the process accounted for the existence of

electron spin. Finally, it should be noted that the time-dependent Schrödinger

equation is not a wave equation. A wave equation has a second derivative

with respect to time, whereas the Schrödinger equation has a first derivative.

We have to conclude that the time-dependent Schrödinger equation is

therefore a kind of diffusion equation, an equation of the form

qf

qt
¼ Dr2f ð1:52Þ

where f is a probability density and D is a diffusion coefficient. There is

perhaps an intuitive satisfaction in the notion that the solutions of the basic

equation of quantum mechanics evolve by some kind of diffusion.

P R O B L E M S

1.1 Which of the following operations are linear and
which are non-linear: (a) integration, (b) extraction of
a square root, (c) translation (replacement of x by xþ a,
where a is a constant), (d) inversion (replacement of x
by �x)?

1.2 Find the operator for position x if the operator for
momentum p is taken to be (�h/2m)1/2(AþB), with [A,B]¼ 1
and all other commutators zero.

1.3 Which of the following functions are eigenfunctions of
(a) d/dx, (b) d2/dx2: (i) eax, (ii) eax2

, (iii) x, (iv) x2,
(v) axþ b, (vi) sin x?

1.4 Construct quantum mechanical operators in the
position representation for the following observables:
(a) kinetic energy in one and in three dimensions, (b) the
inverse separation, 1/x, (c) electric dipole moment,
(d) z-component of angular momentum, (e) the mean square
deviations of the position and momentum of
a particle from the mean values.

1.5 Repeat Problem 1.4, but find operators in the
momentum representation. Hint. The observable 1/x should
be regarded as x�1; hence the operator required is the
inverse of the operator for x.

1.6 In relativistic mechanics, energy and momentum are
related by the expression E2¼ p2c2þm2c4. Show that when
p2c2�m2c4 this expression reduces to E¼ p2/2mþmc2.
Construct the relativistic analogue of the Schrödinger
equation from the relativistic expression. What can be
said about the conservation of probability? Hint: For the
latter part, see Problem 1.36.

1.7 Confirm that the operators (a) T¼ � (�h2/2m)(d2/dx2)
and (b) lz¼ (�h/i)(d/df) are hermitian. Hint. Consider the
integrals

R L
0 c�aTcb dx and

R 2p
0 c�alzcb df and integrate

by parts.

1.8 Demonstrate that the linear combinations Aþ iB
and A� iB are not hermitian if A and B are hermitian
operators.

1.9 Evaluate the expectation values of the operators
px and px

2 for a particle with wavefunction (2/L)1/2

sin (px/L) in the range 0 to L.

1.10 Are the linear combinations 2x� y� z, 2y� x� z,
2z� x� y linearly independent or not?

1.11 Evaluate the commutators (a) [x,y], (b) [px,py],
(c) [x,px], (d) [x2,px], (e) [xn,px].
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1.12 Evaluate the commutators (a) [(1/x),px], (b) [(1/x), px
2],

(c) [xpy� ypx, ypz� zpy], (d) [x2(q2/qy2), y(q/qx)].

1.13 Show that (a) [A,B]¼ � [B,A], (b) [Am,An]¼ 0 for all
m, n, (c) [A2,B]¼A[A,B]þ [A,B]A,
(d) [A,[B,C] ]þ [B,[C,A] ]þ [C,[A,B] ]¼ 0.

1.14 Evaluate the commutator [ly,[ly,lz] ] given that
[lx,ly]¼ i�hlz, [ly,lz]¼ i�hlx, and [lz,lx]¼ i�hly.

1.15 The operator eA has a meaning if it is expanded as
a power series: eA¼Sn(1/n!)An. Show that if jai is an
eigenstate of A with eigenvalue a, then it is also an
eigenstate of eA. Find the latter’s eigenvalue.

1.16 (a) Show that eAeB¼ eAþB only if [A,B]¼ 0.
(b) If [A,B] 6¼ 0 but [A,[A,B] ]¼ [B,[A,B] ]¼ 0, show
that eAeB¼ eAþBef, where f is a simple function of
[A,B]. Hint. This is another example of the differences
between operators (q-numbers) and ordinary numbers
(c-numbers). The simplest approach is to expand the
exponentials and to collect and compare terms on both sides
of the equality. Note that eAeB will give terms like 2AB
while eAþB will give ABþBA. Be careful with order.

1.17 Evaluate the commutators (a) [H,px] and (b) [H,x],
where H¼ px

2/2mþV(x). Choose (i) V(x)¼V, a constant,
(ii) V(x)¼ 1

2kx2, (iii) V(x)!V(r)¼ e2/4pe0r.

1.18 Evaluate (by considering eqn 1.33) the limitation on
the simultaneous specification of the following observables:
(a) the position and momentum of a particle, (b) the three
components of linear momentum of a particle, (c) the kinetic
energy and potential energy of a particle, (d) the electric
dipole moment and the total energy of a one-dimensional
system, (e) the kinetic energy and the position of a particle in
one dimension.

1.19 An electron is confined to a linear box of length
0.10 nm. What are the minimum uncertainties in
(a) its velocity and (b) its kinetic energy?

1.20 Use the uncertainty principle to estimate the order of
magnitude of the diameter of an atom. Compare the result
with the radius of the first Bohr orbit of hydrogen,
a0¼ 4pe0�h2/mee

2. Hint. Suppose the electron is confined to a
region of extent Dx; this confinement implies a non-zero
kinetic energy. There is also a potential energy of order of
magnitude � e2/4pe0Dx. Find Dx such that the total energy
is a minimum, and evaluate the expression.

1.21 Use eqn 1.35 to find expressions for the rate of change
of the expectation values of position and momentum of a
harmonic oscillator; solve the pair of differential equations,
and show that the expectation values change in time in the
same way as for a classical oscillator.

1.22 Confirm that the z-component of angular
momentum, lz¼ (�h/i) d/df, is a constant of the motion for

a particle on a ring with uniform potential energy
V(f)¼V.

1.23 The only non-zero matrix elements of x and px for a
harmonic oscillator are

hvþ 1jxjvi ¼ �h

2mo

� �1=2

ðvþ 1Þ1=2

hv� 1jxjvi ¼ �h

2mo

� �1=2

v1=2

hvþ 1jpxjvi ¼ i
�hmo

2

� �1=2

ðvþ 1Þ1=2

hv� 1jpxjvi ¼ i
�hmo

2

� �1=2

v1=2

(and their hermitian conjugates); see Section 2.17. Write out
the matrices of x and px explicitly (label the rows and
columns v¼ 0, 1, 2, . . . ) up to about v¼ 4, and confirm by
matrix multiplication that they satisfy the commutation
rule. Construct the hamiltonian matrix by forming
px

2/2mþ 1
2kx2 by matrix multiplication and addition,

and infer the eigenvalues.

1.24 Use the completeness relation, eqn 1.42, and the
information in Problem 1.23 to deduce the value of the
matrix element hvjxpx

2xjvi.

1.25 Write the time-independent Schrödinger equations for
(a) the hydrogen atom, (b) the helium atom,
(c) the hydrogen molecule, (d) a free particle, (e) a particle
subjected to a constant, uniform force.

1.26 The time-dependent Schrödinger equation is separable
when V is independent of time. (a) Show that it is also
separable when V is a function only of time and uniform in
space. (b) Solve the pair of equations. Let V(t)¼V cos ot;
find an expression for C(x, t) in terms of C(x, 0). (c) Is C(x,
t) stationary in the sense specified in Section 1.12?

1.27 The ground-state wavefunction of a hydrogen atom
has the form c(r)¼Ne�br, b being a collection of
fundamental constants with the magnitude 1/(53 pm).
Normalize this spherically symmetrical function. Hint. The
volume element is dt¼ sin ydydf r2 dr, with 0� y� p,
0�f� 2p, and 0� r<1. ‘Normalize’ always means
‘normalize to 1’ in this text.

1.28 A particle in an infinite one-dimensional system was
described by the wavefunction c(x)¼Ne�x2=2G2

. Normalize
this function. Calculate the probability of finding the
particle in the range�G� x�G. Hint.
The integral encountered in the second part is the error
function. It is defined and tabulated in M. Abramowitz and
I.A. Stegun, Handbook of mathematical functions, Dover
(1965).

1.29 An excited state of the system in the previous
problem is described by the wavefunction
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cðxÞ ¼ Nxe�x2=2G2

. Where is the most probable
location of the particle?

1.30 On the basis of the information in Problem 1.27,
calculate the probability density of finding the electron
(a) at the nucleus, (b) at a point in space 53 pm from the
nucleus. Calculate the probabilities of finding the electron
inside a region of volume 1.0 pm3 located at these points
assuming that the probability density is constant inside the
small volume region.

1.31 (a) Calculate the probability of the electron being
found anywhere within a sphere of radius 53 pm for the
atom defined in Problem 1.27. (b) If the radius of the atom
is defined as the radius of the sphere inside which there is a
90 per cent probability of finding the electron, what is the
atom’s radius?

1.32 A particle is confined to the region 0� x�1 and its
state is described by the unnormalized wavefunction
c(x)¼ e�2x. What is the probability of finding the particle at
a distance x� 1?

1.33 A particle is moving in a circle in the xy plane.
The only coordinate of importance is the angle f which can
vary from 0 to 2p as the particle goes around the circle. We
are interested in measurements of the angular momentum L
of the particle. The angular momentum operator for such a
system is given by (�h/i) d/df. (a) Suppose that the state of the
particle is described by the wavefunction c(f)¼Ne�if

where N is the normalization constant. What values will we
find when we measure the angular momentum of the
particle? If more than one

value is possible, what is the probability of obtaining
each result? What is the expectation value of the
angular momentum? (b) Now suppose that the state
of the particle is described by the normalized
wavefunction c(f)¼N{(3/4)1/2e�if� (i/2)e2if}. When we
measure the angular momentum of the particle, what
value(s) will we find? If more than one value is
possible, what is the probability of obtaining each
result? What is the expectation value of the angular
momentum?

1.34 Explore the concept of phase length as follows.
First, consider two points P1 and P2 separated by a distance
l, and let the paths taken by waves of wavelength l be a
straight line from P1 to a point a distance d above the
midpoint of the line P1P2, and then on to P2. Find an
expression for the phase length and sketch it as a function of
d for various values of l. Confirm explicitly that f 0 ¼ 0 at
d¼ 0.

1.35 Confirm that the path of minimum phase length for
light passing from one medium to another corresponds to
light being refracted at their interface in accord with Snell’s
law (Section 1.21).

1.36 Show that if the Schrödinger equation had the form of
a true wave equation, then the integrated probability would
be time-dependent. Hint. A wave equation has
kq2/qt2 in place of q/qt, where k is a constant with the
appropriate dimensions (what are they?). Solve the time
component of the separable equation and investigate the
behaviour of

R
C�C dt.
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In this chapter we consider the quantum mechanics of translation and

vibration. Both types of motion can be solved exactly in certain cases, and

both are important not only in their own right but also because they form a

basis for the description of the more complicated types of motion encountered

in quantum chemistry. Translational motion also has the advantage of

introducing in a simple way many of the striking features of quantum

mechanics. However, there are certain features of wavefunctions that are

common to all the problems we shall encounter, and we start by considering

them. As we shall see, it is the combination of these features with the solution

of the Schrödinger equation that results in one of the most characteristic

features of quantum mechanics, the quantization of energy.

The characteristics of acceptable wavefunctions

We have seen that the Born interpretation of the wavefunction c, like that

of its time-dependent version C, is that c�c is a probability density. It must

therefore be square-integrable (Section 1.12), and specifically the wave-

function must satisfy the normalization conditionZ
c�c dt ¼ 1 ð2:1Þ

The implication of this condition is that the wavefunction cannot become

infinite over a finite region of space, as in Fig. 2.1. If it did become infinite, the

integral would be infinite, and the Born interpretation would be untenable.

This restriction does not rule out the possibility that the wavefunction could

be infinite over an infinitesimal region of space because then its integral may

remain finite (the integral is the area under the curve of c�c, and infinitely

high� infinitely narrow may result in a finite area). Such a wavefunction

corresponds to the localization of a particle at a single, precise point, like the

centre of mass of a speck of dust on a table at absolute zero. By the uncer-

tainty principle, we know that a particle described by a wavefunction of this

kind would have an infinitely uncertain linear momentum.

Another implication of the Born interpretation is that for c�c to be a valid

probability density, it must be single valued; that is, have one value at each

point. The Born interpretation would be untenable if c�c could take more

than one value at each point of space. In simple applications, the single-valued
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character of c�c implies that c itself must be single valued, and we shall

normally impose that condition on the wavefunction. (The exceptions arise

when electron spin is taken into account.)

There are two other conditions on the form of the wavefunction that stem

from the requirement that c is a solution of a second-order differential

equation, and therefore that its second derivative should exist. In the first

place, in order to define a second derivative of a function, it is necessary that

the function itself should be continuous (Fig. 2.2). A weaker requirement is

that the first derivative should also be continuous. This condition is weaker

because there are systems—those with certain ill-behaved potential energies—

where the restriction is too severe. For example, when we deal with a particle

in a box, we encounter a potential energy that is excessively ill-behaved

because it jumps from zero to infinity in an infinitesimal distance (when the

particle touches the wall of the box). In such a case there is no need for the

particle to have a continuous first derivative.

In summary, in general a wavefunction must satisfy the following conditions:

1. Single valued (strictly, c�c should be single valued).

2. Not infinite over a finite range.

3. Continuous everywhere.

4. Possess a continuous first derivative, except at ill-behaved regions of the

potential.

Some general remarks on the
Schrödinger equation

The time-independent Schrödinger equation is an equation for the second

derivative of the wavefunction, which we can interpret informally as its

curvature. With this idea established, it is possible to guess the form of its

solutions even when the form of the potential energy is complicated.

A function with positive curvature looks like and one with negative

curvature looks like . The one-dimensional Schrödinger equation expresses

the curvature of the wavefunction as

d2c
dx2
¼ 2m

�h2
ðV � EÞc ð2:2Þ

x

x

(a)

(b)

∞

∞

∞

W
av

ef
u

n
ct

io
n

, �
W

av
ef

u
n

ct
io

n
, �

Fig. 2.1 (a) A wavefunction

must not be infinite over a finite range
because it is then not square-

integrable. (b) However, it may be

infinite over an infinitesimal range for

such a function is square-integrable
(it corresponds to a Dirac

d-function).
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Fig. 2.2 Three unacceptable wavefunctions. (a) A wavefunction that is not

single-valued everywhere. (b) A discontinuous wavefunction. (c) A wavefunction
with a discontinuous slope.
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Therefore, if we know the values of V�E and c at a particular point, then we

can state the curvature of the wavefunction there. In this section,

we concentrate on the qualitative features of the equations, because they

show us how to unfold the qualitative features of the solutions without the

clutter of detail.

2.1 The curvature of the wavefunction

First, we should note that the curvature of c is proportional to the amplitude
of c. Therefore, for a given value of V�E when c is large, the curvature is

large. Where c falls towards zero its curvature decreases (Fig. 2.3). Where c is

zero, its curvature is zero.

Next, note that where E>V, the factor V�E<0, so the sign of the

curvature of c is opposite to the sign of c itself. That is, if E>V and c>0,

then c has negative curvature and looks like . On the other hand, where

E<V, V�E is positive, and the curvature of c has the same sign as its

amplitude. A wavefunction with positive amplitude would then have a

positive curvature, and look like . Finally, the curvature is proportional to

the difference jV�Ej, so if the total energy is greatly in excess of the potential

energy (that is, the kinetic energy is high), then the curvature is large. These

features are summarized in Fig. 2.4, which contains all the information

we need to solve the Schrödinger equation qualitatively for a one-particle,

one-dimensional system.

2.2 Qualitative solutions

Consider a system in which the potential energy depends on position as

depicted in Fig. 2.5. Suppose that at x00 the wavefunction has the amplitude

and slope as shown as A, and that the total energy of the particle is E.

Note that E<V for positions to the right of x 0 but that E>V to the left of x 0:
the sign of E�V therefore changes at x 0. Because cA> 0 at x00 and V<E, the

curvature of cA is negative. The wavefunction remains positive at x 0, but to

the right of that point V>E. Its curvature therefore becomes positive, and it

bends away from the x-axis and rises to infinity as x increases. Therefore,

according to the Born interpretation, c is an inadmissable wavefunction.

With this failure in mind, we select a function cB that has a different slope

at x00 but the same amplitude. This function has a negative curvature (because

E>V). Its curvature becomes positive to the right of x 0 because its amplitude

is positive but now E<V. The change in curvature is insufficient to stop cB

falling through zero to a negative value, and as it does so its curvature changes

sign. This negative curvature forces cB to a negatively infinite value as x

increases, and it is therefore an inadmissable wavefunction.

Learning from our mistakes, we now select a wavefunction cC that has a

slope intermediate between those of cA and cB. Its curvature changes sign at

x 0 but it does so in such a way that cC approaches zero asymptotically as x

increases. As it does so, its curvature lessens (because the curvature is pro-

portional to the amplitude) and it curls off to neither positive nor negative

infinity. Such a wavefunction is acceptable. Note that for the potential shown

This use of the term curvature is

colloquial. In fact, in mathematics,

curvature is a precisely defined

concept in the theory of surfaces: in

one dimension the curvature

of a function f is

Curvature of f

¼ ðd2f =dx2Þ
f1þ ðdf =dxÞ2g3=2

0–2 2
x

2

0

4

f=x 2

d2f /dx2 Curvature

For example, the curvature

of the parabola f¼x2 is

2/(1þ 4x2)3/2, and decreases as

jxj increases, whereas

d2f/dx2¼ 2, a constant

at all values of x (see the

illustration). For simplicity of

expression, we shall adopt the

colloquial meaning, and identify

curvature with the second

derivative d2f/dx2.

E < V E >V

�> 0

�< 0

Fig. 2.4 The variation of the
curvature of a wavefunction with

the sign of the wavefunction at the

point in question and the relative

size of the energy and potential
energy at the point.
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in Fig. 2.5, a well-behaved wavefunction can be found for any value of E
simply by adjusting the amplitude or slope of the function at x00. Therefore,

the energies of such systems are not quantized.

2.3 The emergence of quantization

Now that we have seen the sensitivity of the wavefunction to a potential

that rises to a large value only on one side, it should be easy to appreciate

the difficulty of fitting a function to a system in which the potential con-

fines the particle on both sides (Fig. 2.6). The function cC that was accept-

able in the system shown in Fig. 2.5 has been traced to the left, where V rises

above E again. We see that its behaviour at this boundary means that cC

is unacceptable. In fact, in general it is impossible to find an acceptable

solution for an arbitrary value of E. Only for some values of E is it possible to

construct a well-behaved function. One such function is cD in Fig. 2.6.

In other words, the energy is quantized in a system with a boundary on

each side.

The considerable importance of this conclusion cannot be overemphasized.

The Schrödinger equation, being a differential equation, has an infinite

number of solutions. It has mathematically acceptable solutions for any value

of E. However, the Born interpretation imposes restrictions on the solutions.

When the system has boundaries that confine the particle to a finite region,

almost all the solutions are unacceptable: acceptable solutions occur only for

special values of E. That is, energy quantization is a consequence of boundary

conditions.
The diagram in Fig. 2.7 depicts the effect of boundaries on the quanti-

zation of the energy of a particle. Quantization occurs only when the par-

ticle is confined to a finite region of space. When its energy exceeds E 0 the

particle can escape to positive values of x, and when its energy exceeds E00

the particle can travel indefinitely to positive and negative values of x.

Furthermore, as the potential becomes less confining (that is, when the

region for which E>V becomes larger), the separation between neigh-

bouring quantized levels is reduced because it gets progressively easier to

find energies that give well-behaved functions. The region of quantized

energy is generally taken to signify that we are dealing with bound states of

a system, in which the wavefunction is localized in a definite region (like an

electron in a hydrogen atom). The region of non-quantized energy is typi-

cally associated with scattering problems in which projectiles collide and

then travel off to infinity. We introduce both types of solution in this

chapter, but delay the complications of scattering problems until Chapter 14

at the end of the book.

2.4 Penetration into non-classical regions

A glance at Fig. 2.6 shows that a wavefunction may be non-zero even where

E<V; that is, c need not vanish where the kinetic energy is negative.

A negative kinetic energy is forbidden classically because v2 cannot be

negative, and the fact that a particle may be found in a region where the
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Fig. 2.5 The acceptability of a

wavefunction is determined by the

amplitude and slope at a particular
point and the consequent

implications on the behaviour of

the wavefunction at the boundary.
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Fig. 2.6 When there are two

boundary conditions to satisfy (in

the sense that the particle is
bounded), then it is possible to find

acceptable solutions only for certain

values of E. That is, the need to

satisfy boundary conditions implies
the quantization of the energy of

the system.
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kinetic energy is negative is an example of quantum mechanical ‘penetration’.

We shall elaborate on this term in the course of this chapter.

The penetration of a particle into a region where the kinetic energy is

negative is no particular cause for alarm. We have seen that observed energies

are the expectation values of operators, and the expectation value of the

kinetic energy operator is invariably positive (the operator for kinetic energy

is proportional to the square of an hermitian operator, px). In addition,

because the eigenvalues of the squares of hermitian operators are always

positive (Example 1.9), each individual determination of the kinetic energy

will have a positive outcome. Finally, any attempt to confine a particle within

a nonclassical region, and then to measure its kinetic energy, will be doomed

by the uncertainty principle. The confinement would have to be to such a

small region that the corresponding uncertainty in momentum, and hence in

kinetic energy, would be so great that we would be unable to conclude that

the kinetic energy was indeed negative.

Translational motion

The easiest type of motion to consider is that of a completely free particle

travelling in an unbounded one-dimensional region. Because the potential

energy is constant, and may be chosen to be zero, the hamiltonian for the

system is

H ¼ � �h2

2m

d2

dx2
ð2:3Þ

The time-independent Schrödinger equation, Hc¼Ec, therefore has the form

� �h2

2m

d2c
dx2
¼ Ec ð2:4Þ

The general solutions of this equation are

c ¼ Aeikx þ Be�ikx k ¼ 2mE

�h2

� �1=2

ð2:5Þ

as may readily be checked by substitution. Because e�ikx¼ cos kx � i sin kx

(Euler’s relation), an alternative form of this solution is

c ¼ C cos kxþD sin kx ð2:6Þ

In both forms, the solutions of the coefficients A, B, C, and D are to be

found by considering the boundary conditions (see below). However, an

important point is that functions of the form e�ikx are not square-integrable

(Section 1.12), so care needs to be taken with their interpretation. Indeed,

because they correspond to a uniform probability distribution throughout

space (because je�ikxj ¼ 1), they cannot be a description of real physical

systems. To cope with this problem we need the concept of wavepacket

(Section 2.8).
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Fig. 2.7 A general summary of the

role of boundaries: the system is

quantized only if it is confined to a

finite region of space. A single
boundary does not entail

quantization.
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2.5 Energy and momentum

The first point to note about the solutions is that, as the motion is completely

unconfined, the energy of the particle is not quantized. An acceptable solution

exists for any value of E: we simply use the appropriate value of k in eqn 2.5.

The relation between the energy of a free particle and its linear momentum

is E¼p2/2m. According to eqn 2.5, the energy is related to the parameter k

by E¼ k2�h2/2m. It follows that the magnitude of the linear momentum of

a particle described by the wavefunctions in eqn 2.5 is

p ¼ k�h ð2:7Þ

This expression can be developed in a number of ways. For example, we can

turn it round, and say that the form of the wavefunction of a particle with

linear momentum of magnitude p is given by eqn 2.5 with k¼p/�h. A second

point is that the wavefunctions in eqn 2.5 have a definite wavelength. This

may be easier to see in the case of eqn 2.6, because a wave of wavelength l is

commonly written as cos(2px/l) or as sin(2px/l). It follows that the wave-

length of the wavefunction in eqn 2.6 is l¼2p/k. That is, the wavefunction

for a particle with linear momentum p¼k�h has a wavelength l¼ 2p/k. It

follows that the wavelength and linear momentum are related by

p ¼ 2p
l
� �h ¼ h

l
ð2:8Þ

This is the de Broglie relation (Section 0.5).

2.6 The significance of the coefficients

The significance of the coefficients in the wavefunction can be determined

by considering the effect of the linear momentum operator in the position

representation, p¼ (�h/i)d/dx. Suppose initially that B¼ 0, then

pc ¼ �h

i

dc
dx
¼ �h

i

d Aeikx
� �

dx
¼ k�hAeikx ¼ k�hc ð2:9aÞ

We see that the wavefunction is an eigenfunction of the linear momentum

operator, and that its eigenvalue is k�h. Alternatively, if A¼0, then

pc ¼ �h

i

dc
dx
¼ �h

i

d Be�ikx
� �

dx
¼ �k�hBe�ikx ¼ �k�hc ð2:9bÞ

The distinction between the two solutions is the sign of the eigenvalue. Because

linear momentum is a vector quantity, we are immediately led to the con-

clusion that the two wavefunctions correspond to states of the particle with the

same magnitude of linear momentum but in opposite directions. This is a very

important point, for it lets us write down the wavefunctions for particles that

not only have a definite kinetic energy and therefore magnitude of linear

momentum, but for which we can also specify directions of travel (Fig. 2.8).

The significance of the coefficients A and B should now be clearer: they

depend on how the state of the particle was prepared. If it was shot from a gun

in the direction of positive x, then B¼ 0. If it had been shot in the opposite

� = eikx

�= e  –ikxp = – kh 

p = + kh

Fig. 2.8 Wavefunctions for a particle
travelling to the right (towards

increasing x) and left (towards

decreasing x) with a given magnitude

of linear momentum (k�h) are each
other’s complex conjugate.

48 j 2 LINEAR MOTION AND THE HARMONIC OSCILLATOR



direction (by the duelling partner), then its state would be described by

a wavefunction with A¼ 0.

Now we turn to the significance of the coefficients C and D in the altern-

ative form of the wavefunction. Suppose D¼ 0, so that the particle is described

by the wavefunction C cos kx. When we examine the effect of the momentum

operator we find

pc ¼ �h

i

dc
dx
¼ �h

i

d C cos kxð Þ
dx

¼ ik�hC sin kx

We see that the wavefunction is not an eigenfunction of the linear momentum

operator. However, by using Euler’s relation and writing

c ¼ 1
2 Ceikx þ 1

2 Ce�ikx

we see that the wavefunction is a superposition of the two linear momentum

eigenstates with equal coefficients. From the general considerations set out in

Section 1.11, we can conclude that in a series of observations, we would

obtain the linear momentum þk�h half the time and �k�h half the time, but we

would not be able to predict which direction we would detect in any given

observation. The expectation value of the linear momentum, its average

value, is zero if its wavefunction is a sine (or a cosine) function.

An important general point illustrated by this discussion is that a complex

wavefunction (such as eikx), or any function that cannot be made real simply

by multiplication by a constant, corresponds to a definite state of linear

momentum (in direction as well as in magnitude), whereas a real function

(such as cos kx) does not (see Self-test 1.9). To illustrate this point, Fig. 2.9

depicts both the real and imaginary components of a complex wavefunction

in a single diagram by plotting the points (cos kx, sin kx) against x. The two

functions shown there, (a) eikx and (b) e�ikx, which correspond to opposite

directions of travel, then form two helices, which convey the different senses

of motion.

2.7 The flux density

Further insight into the form of the general solutions of the Schrödinger

equation for free particles can be obtained by introducing a quantity called

the flux density, Jx. The full usefulness of this quantity will become clear in

later chapters where we are interested in the flow of charge in a molecule and

the impact of beams of molecules on one another. The flux density in the

x-direction is defined as follows:

Jx ¼
1

2m
C�pxCþCp�xC

�� �
ð2:10Þ

In the position representation, we interpret px as (�h/i)d/dx and p�x¼
�(�h/i) (d/dx). For a state with a definite energy, the time-dependent phase

factors in C and C� cancel, and the flux density is

Jx ¼
1

2m
c�pxcþ cp�xc

�� �
ð2:11Þ
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Im �
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Im �

(a)

(b)

x

x

Fig. 2.9 The relative phases of the

imaginary and real components of

a wavefunction determine the
direction of propagation of the

particle: the real component seems

to chase the imaginary component.

(a) eikx, (b) e�ikx.
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Illustration 2.1 The flux density

To see the significance of the flux density, here we calculate the flux density for

a system that is described by the wavefunction in eqn 2.5 with B¼ 0:

Jx ¼
1

2m
Aeikx
� �� �h

i

d

dx

� �
Aeikx
� �

þ Aeikx
� � �h

i

d

dx

� ��
Aeikx
� ��� 	

¼ 1

2m
A�e�ikx
� � �h

i

d

dx

� �
Aeikx
� �

� Aeikx
� � �h

i

d

dx

� �
A�e�ikx
� �� 	

¼ �hjAj2

2mi
e�ikx
� �

ikð Þ eikx
� �

� eikx
� �

�ikð Þ e�ikx
� �n o

¼ k�hjAj2

m

For the wavefunction with A¼ 0 we find similarly that

Jx ¼ �
k�hjBj2

m

We now note that �k�h/m is the classical velocity of the particle, so the flux

density is the velocity multiplied by the probability that the particle is in that

particular state.

2.8 Wavepackets

So far, we have considered a case in which the energy of the particle is specified

exactly. But suppose that the particle had been prepared with an imprecisely

specified energy. Because the energy is imprecise, the wavefunction that

describes the particle must be a superposition of functions corresponding to

different energies. Such a superposition is called a wavepacket. For example,

suppose the particle is a projectile fired towards positive x; then we know that

the wavefunction of the projectile must be a superposition of functions of the

form eikx with a range of values of k corresponding to the range of linear

momenta (and hence kinetic energies) possessed by the particle.

A wavepacket is a wavefunction that has a non-zero amplitude in a small

region of space and is close to zero elsewhere. In general, wavepackets move

through space in a manner that resembles the motion of a classical particle.

To see both these features, we consider a superposition of time-dependent

wavefunctions of the form

Ckðx, tÞ ¼ Aeikxe�iEkt=�h ð2:12Þ
The superposition is a linear combination of such functions, each one of

which is weighted by a coefficient g(k) called the shape function of the packet.

Because k is a continuously variable parameter, the sum is actually an integral

over k, and so the wavepacket has the form

Cðx, tÞ ¼
Z

gðkÞCkðx, tÞ dk ð2:13Þ

The pictorial form of such a packet is shown in Fig. 2.10. As a result of the

interference between the component waves, at one instant the wavepacket has

a large amplitude at one region of space. However, because the time-dependent

factor affects the phases of the waves that contribute to the superposition,
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Fig. 2.10 A wavepacket formed by

the superposition of many waves
with different wavelengths. Twenty

waves have been superimposed to

produce this figure.

50 j 2 LINEAR MOTION AND THE HARMONIC OSCILLATOR



the region of constructive interference changes with time (Fig. 2.11). It should

not be hard to believe that the centre of the packet moves to the right, and

this is confirmed by a mathematical analysis of the motion (see Further

information 5). The classical motion of a projectile is captured by the motion

of the wavepacket, and once again we see how classical mechanics emerges

from quantum mechanics.

Penetration into and through barriers

A highly instructive extension of the results for free translational motion is

to the case where the potential energy of a particle rises sharply to a high,

constant value, perhaps to decline to zero again after a finite distance.

Classically we know what happens: if a particle approaches the barrier from

the left, then it will pass over it only if its initial energy is greater than the

potential energy it possesses when it is inside the barrier. If its energy is lower

than the height of the barrier, then the particle is reflected. To see what

quantum mechanics predicts, we shall consider three types of barrier of

increasing difficulty.

2.9 An infinitely thick potential wall

The Schrödinger equation for the problem falls apart into two equations,

one for each zone in Fig. 2.12. The hamiltonians for the two zones are

Zone I ðx<0Þ: H ¼ � �h2

2m

d2

dx2

Zone II ðx  0Þ: H ¼ � �h2

2m

d2

dx2
þ V

ð2:14Þ

The corresponding equations are free-particle Schrödinger equations, except

for the replacement of E by E�V in Zone II. Therefore, the general solutions

can be written down by referring to eqn 2.5:

Zone I: c ¼ Aeikx þ Be�ikx k�h ¼ f2mEg1=2

Zone II: c ¼ A0eik0x þ B0e�ik0x k0�h ¼ f2mðE� VÞg1=2
ð2:15Þ

We shall concentrate on the case when E<V, so that classically the particle

cannot be found at x> 0 (inside the wall). The condition E<V implies that k 0

is imaginary; so we shall write k 0 ¼ ik, where k (kappa) is real. It then follows

that

Zone II: c ¼ A0e�kx þ B0ekx k�h ¼ f2mðV � EÞg1=2 ð2:16Þ
This wavefunction is a mixture of decaying and increasing exponentials: we

see that a wavefunction does not oscillate when E<V.

Because the barrier is infinitely wide, the increasing exponential must be

ruled out because it leads to an infinite amplitude. Therefore, inside a barrier

like that shown in Fig. 2.12, the wavefunction must be simply an exponen-

tially decaying function, e�kx. One important point about this conclusion is
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Fig. 2.11 Because each wave in a

superposition oscillates with a

different frequency, the point of
constructive interference moves as

time increases.
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of a barrier of finite height but
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that, because the wavefunction is non-zero inside the barrier, the particle may
be found inside a classically forbidden region, the effect called penetration.

The rapidity with which the wavefunction decays to zero is determined by the

value of k, for the amplitude of the wavefunction decreases to 1/e of its value

at the edge of the barrier in a distance 1/k, which is called the penetration

depth. The penetration depth decreases with increasing mass of the particle

and the height of the barrier above the energy of the incident particle (the

value of V�E). Macroscopic particles have such large masses that their

penetration depth is almost zero whatever the height of the barrier, and for

all practical purposes they are not found in classically forbidden regions.

An electron or a proton, on the other hand, may penetrate into a forbidden

zone to an appreciable extent. For example, an electron that has been

accelerated through a potential difference of 1.0 V, and which has acquired

a kinetic energy of 1.0 eV, incident on a potential barrier equivalent to 2.0 eV,

will have a wavefunction that decays to 1/e of its initial amplitude after

0.20 nm, which is comparable to the diameter of one atom. Hence, pene-

tration can have very important effects on processes at surfaces, such as

electrodes, and for all events on an atomic scale.

2.10 A barrier of finite width

We now consider the case of a barrier of a finite width (Fig. 2.13). In

particular, the potential energy, V(x), has the form:

Zone I ðx<0Þ: VðxÞ ¼ 0
Zone II ð0 � x<LÞ: VðxÞ ¼ V
Zone III ðx  LÞ: VðxÞ ¼ 0

ð2:17Þ

The general solutions of the time-independent Schrödinger equation can be

written down immediately:

Zone I: c ¼ Aeikx þ Be�ikx k�h ¼ f2mEg1=2

Zone II: c ¼ A0eik0x þ B0e�ik0x k0�h ¼ f2mðE� VÞg1=2

Zone III: c ¼ A00eikx þ B00e�ikx k�h ¼ f2mEg1=2

ð2:18Þ

In scattering problems, of which this is a simple example, it is common to

distinguish between ‘incoming’ and ‘outgoing’ waves. An incoming wave is a

contribution to the total wavefunction with a component of linear momen-

tum towards the target (from any direction). An outgoing wave is a con-

tribution with a component of linear momentum away from the target. Each

contribution corresponds to a flux of particles either towards or away from

the target. In the problem we are currently considering, in Zone I A is the

coefficient of the incoming wave and B the coefficient of the outgoing wave.

In Zone III, A00 is the coefficient of the outgoing wave and B00 the coefficient of

the incoming wave.

In this section we first consider solutions for E<V. Classically, the particle

does not have enough energy to overcome the potential barrier. Therefore,

for a particle incident from the left, the probability is exactly zero that it will be

found on the right of the barrier (x>L). Quantum mechanically, however,

the particle can be found on the right of the barrier even though E<V.
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Fig. 2.13 The potential energy

of a finite barrier. Particles incident

from one side may be found on the

opposite side of the barrier.
According to classical mechanics,

that is possible only if E is not less

than V. According to quantum

mechanics, however, barrier
penetration may occur whatever
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In Zone II, the wavefunction has the form given in eqn 2.16. We need to note

that the increasing exponential function in the wavefunction in this zone will

not rise to infinity before the potential has fallen to zero again and oscillations

resume. Therefore, the coefficient B 0 will not be zero. The values of the

coefficients are established by using the acceptability criteria for wavefunc-

tions set out at the beginning of this chapter, and in particular the requirement

that they and their slopes must be continuous. The continuity condition lets us

match the wavefunction at the points where the zones meet, and therefore to

find conditions for the coefficients. For example, the continuity of the

amplitude at x¼0 and at x¼L leads to the two conditions

At x ¼ 0: Aþ B ¼ A0 þ B0

At x ¼ L: A0e�kL þ B0ekL ¼ A00eikL þ B00e�ikL ð2:19Þ

Similarly, the continuity of slopes at the same two points leads to the two

conditions

At x ¼ 0: ikA� ikB ¼ �kA0 þ kB0

At x ¼ L: �kA0e�kL þ kB0ekL ¼ ikA00eikL � ikB00e�ikL ð2:20Þ

These four equations give four conditions for finding six unknowns.

The remaining conditions include a normalization requirement (one more

condition) and a statement about the initial state of the particle (such as the

fact that it approaches the barrier from the left).

Consider the case where the particles are prepared in Zone I with a linear

momentum that carries them to the right. It then follows that the coefficient

B00 ¼0, because the exponential function it multiplies corresponds to particles

with linear momentum towards the left on the right-hand side of the barrier,

and there can be no such particles. That is, there is no incoming wave, no

inward flux of particles, in Zone III. There may be particles travelling to the

left on the left of the barrier because reflection can take place at the barrier.

We can therefore identify the coefficient B as determining (via jBj2) the flux

density of particles reflected from the barrier in Zone I. The reflection prob-

ability, R, is the ratio of the reflected flux density to the incident flux density,

so from the results of Illustration 2.1 we can write (disregarding signs):

R ¼ ðk�h=mÞjBj2

ðk�h=mÞjAj2
¼ jBj

2

jAj2
ð2:21aÞ

Similarly, the coefficient A00, the coefficient of the outgoing wave in Zone III,

determines (via jA00j2) the flux of particles streaming away from the barrier on

the right. The transmission probability, T, is the ratio of the transmitted flux

density to the incident flux density, and is given by

T ¼ jA
00j2

jAj2
ð2:21bÞ

The complete calculation of T involves only elementary manipulations of the

relations given above, and the result is

T ¼ 1

1þ ekL � e�kLð Þ2=f16ðE=VÞð1� E=VÞg
R ¼ 1� T ð2:22Þ
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with k¼ {2mV(1�E/V)}1/2/�h. Because we have been considering energies

E<V, T represents the probability that a particle incident on one side of

the barrier will penetrate the barrier and emerge on the opposite side. That is,

T is the probability of tunnelling, non-classical penetration, through the

barrier (Fig. 2.14).

We now deal with energies E>V. Classically, the particle now has suffi-

cient energy to overcome the potential barrier. A particle incident from the

left would have unit probability of being found on the right of the barrier.

Once again, though, quantum mechanics gives a different result. To deter-

mine the expressions for T and R we could proceed as we did above for

energies E<V, write down four relations for the six coefficients, and then

manipulate them. However, it is considerably easier to take the expression for

T given above and replace k by k 0/i¼�ik 0. This procedure gives

T ¼ 1

1þ ðsin2ðk0LÞÞ=f4ðE=VÞðE=V � 1Þg
R ¼ 1� T ð2:23Þ

with �hk0 ¼ f2mVðE=V � 1Þg1=2. This function is plotted in Fig. 2.15.

The transmission coefficient, T, takes on its maximum value of 1 and

the barrier is transparent when sin(k 0L)¼0, which occurs at energies E

corresponding to1

k0 ¼ np
L

n ¼ 1, 2, . . . ð2:24aÞ

Furthermore, T has minima near

k0 ¼ np
2L

n ¼ 1, 3, . . . ð2:24bÞ

At high energies (E�V), T approaches its classical value of 1. We see in

Fig. 2.15 how the transmission coefficient for energies above the barrier

height fluctuates between maxima and minima.

We should take note of two striking differences between the quantum

mechanical and classical results. First, even when E>V, there is still a

probability of the particle being reflected by the potential barrier even though

classically it has enough energy to travel over the barrier. This phenomenon is

known as antitunnelling or non-classical reflection. Second, the strong vari-

ation of T with the energy of the incident particle is a purely quantum

mechanical effect. The peaks in the transmission coefficient for energies above

V are examples of scattering resonances. We shall have more to say con-

cerning resonances in Chapter 14 when we discuss scattering in general.

2.11 The Eckart potential barrier

The rectangular barrier we have been considering is obviously not very

realistic, but it does serve to introduce a number of concepts, and it has

properties that are found in more realistic models. In fact, there are only a few
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Fig. 2.14 The tunnelling probability

through a finite rectangular barrier as
a function of incident energy. The

curves are labelled with the value of

Lð2mVÞ1=2=�h.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The value n¼ 0 is excluded because in the limit of k 0 ! 0, T¼ 1/(1þmVL2/2�h2), which is

not equal to 1.

To obtain this result, we have used

the first of the two relations

sin x ¼ eix � e�ix

2i

cos x ¼ eix þ e�ix

2

We shall use the fact a number of

times that sin x¼ 0 at x¼np with

n¼ 0, 1, 2, . . . , and cos x¼ 0 at

x¼np/2, with n¼ 1, 3, 5, . . . .
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realistic potentials for which analytical expressions for the reflection

and transmission coefficients are available. One such potential is the Eckart

potential barrier:2

VðxÞ ¼ 4V0ebx

1þ ebxð Þ2
ð2:25Þ

where V0 and b are constants with dimensions of energy and inverse length,

respectively. The potential is shown in Fig. 2.16; we see that it is symmetric

in x with a maximum value of V0 at x¼ 0, and approaches zero as jxj !1.

The Schrödinger equation associated with this potential can be solved, but its

solutions are the so-called hypergeometric functions, which are beyond the

scope of this book. All we shall do is quote the analytical expression for the

transmission coefficient:

T ¼
cosh 4p 2mEð Þ1=2=�hb

n o
� 1

cosh 4p 2mEð Þ1=2=�hb
n o

þ cosh 2p 8mV0 � ð�hb=2Þ2
h i1=2

=�hb
� 	

ð2:26Þ

Figure 2.17 shows how T varies with E/V0. For E�V0, T�0. As the

energy approaches the top of the barrier (E¼V0), the transmission prob-

ability increases. This increase corresponds to the tunnelling of the particle

through the barrier and its emergence on the other side. As the energy

increases beyond V0, T approaches 1, but T< 1 even when E>V0. There is

still a probability of the particle being reflected by the barrier even when

classically it can pass over it. This behaviour is another example of the

antitunnelling displayed by the rectangular barrier. Finally, when E�V0,

T�1, as expected classically. However, unlike the rectangular barrier, there

are no oscillations in the transmission probability for E>V0.

Particle in a box

We now turn to a case in which a particle is confined by walls to a region

of space of length L. The walls are represented by a potential energy that is

zero inside the region but rises abruptly to infinity at the edges (Fig. 2.18).

This system is called a one-dimensional square well or a particle in a box.

The squareness in the former name refers to the steepness with which the

potential energy goes to infinity at the ends of the box. Because the particle is

confined, its energy is quantized, and the boundary conditions determine

which energies are permitted.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. This barrier was investigated by C. Eckart in 1930. For details, see C. Eckart, Phys. Rev.,

1303, 35 (1930).

The hyperbolic sin (sinh) and

cosine (cosh) functions are defined

as

sinh x ¼ ex � e�x

2

cosh x ¼ ex þ e�x

2
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Fig. 2.16 The Eckart potential

barrier, as described in the text.
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Fig. 2.15 The same as in the
preceding illustration, but for E>V.

Note that according to quantum

mechanics, the particle may be

reflected back from the barrier (so
that P<1) even though classically it

has enough energy to pass over it.
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2.12 The solutions

The hamiltonian for the system is

H ¼ � �h2

2m

d2

dx2
þ VðxÞ VðxÞ ¼ 0 for 0 � x � L

1 otherwise

�
ð2:27Þ

Because the potential energy of a particle that touches the walls is infinite, the

particle cannot in fact penetrate them. This result is justified by the behaviour

of the wavefunctions described in Section 2.9. It follows that the hamiltonian

for the region where the potential is not infinite, and therefore the only region

where the wavefunction is non-zero, is

H ¼ � �h2

2m

d2

dx2
ð2:28Þ

This expression is the same as the hamiltonian for free translational motion

(eqn 2.3), so we know at once that the solutions are those given in eqn 2.6.

However, in this case there are boundary conditions to satisfy, and they will

have the effect of eliminating most of the possible solutions.

The wavefunctions are zero outside the box where x<0 or x>L. Wave-

functions are everywhere continuous. Therefore, the wavefunctions must be

zero at the walls at x¼ 0 and x¼L. The boundary conditions are therefore

c(0)¼ 0 and c(L)¼0. We now apply each condition in turn to a general

solution of the form

cðxÞ ¼ C cos kxþD sin kx k�h ¼ ð2mEÞ1=2

First, at x¼ 0,

cð0Þ ¼ C cos 0þD sin 0 ¼ C

because cos 0¼ 1 and sin 0¼0. Therefore, to satisfy the condition c(0)¼0

we require C¼0. Next, at x¼L, after setting C¼ 0,

cðLÞ ¼ D sin kL

One way to achieve c(L)¼ 0 is to set D¼0, but then the wavefunction would

be zero everywhere and the particle found nowhere. The alternative is to

require that the sine function itself vanishes. It does so if kL is equal to an

integral multiple of p. That is, we must require k to take the values

k ¼ np
L

n ¼ 1, 2, . . . ð2:29Þ

The value n¼ 0 is excluded because it would give sin kx¼ 0 for all x, and the

particle would not be found anywhere. The integer n is an example of a

quantum number, a number that labels a state of the system and that, by the

use of an appropriate formula, can be used to calculate the value of an

observable of the system. For instance, because E¼k2�h2/2m, it follows that

the energy is related to n by

En ¼
n2�h2p2

2mL2
¼ n2h2

8mL2
n ¼ 1, 2, . . . ð2:30Þ
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Fig. 2.18 The infinite square-well

potential characteristic of a particle

in a box.
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Fig. 2.17 The tunnelling probability

for an Eckart barrier and its variation
with energy. The curves are labelled

with the value of ð2mV0Þ1=2=b�h.
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A major conclusion of this calculation at this stage is that the energy of the
particle is quantized; that is, confined to a series of discrete values.

There now remains only the constant D to determine before the solution is

complete. The probability of finding the particle somewhere within the box

must be 1, so the integral of c2 over the region between x¼ 0 and x¼L must

be equal to 1. The integral isZ L

0

c�c dx ¼ D2

Z L

0

sin2 npx

L

� �
dx ¼ 1

2LD2

Therefore, as we saw in Example 1.4, D¼ (2/L)1/2. The complete solution is

cðxÞ ¼ 2

L

� �1=2

sin
npx

L

� �

En ¼
n2h2

8mL2
n ¼ 1, 2, . . .

ð2:31Þ

We see that there is a single quantum number, n, which determines the

wavefunctions and the energies.

Figure 2.19 shows some of the solutions and Fig. 2.20 shows the squares of

the wavefunctions: the latter are the probability densities for finding the

particle in each location. Note how the particle seems to avoid the walls in

the low energy states but becomes increasingly uniformly distributed as n

increases. The distribution at high values of n corresponds to the classical

expectation that the particle spends, on the average, equal times at all points

as it bounces between the walls. This behaviour is an example of the corres-

pondence principle, which states that classical mechanics emerges from

quantum mechanics at high quantum numbers.

A point where a wavefunction passes through zero (not simply approaches

zero without passing through) is called a node. We see from Fig. 2.19 that the

lowest energy state has no nodes, and that the number increases as n

increases: in general, the number of nodes is n� 1. It is a common feature of

wavefunctions that the higher the number of nodes, the higher the energy.

With more nodes, there is greater curvature of the wavefunction and therefore

a greater kinetic energy.

2.13 Features of the solutions

The lowest energy that the particle can have is for the state with n¼1,

its lowest value, and is E1¼h2/8mL2. This irremovable energy is called the

zero-point energy. It is a purely quantum mechanical property, and in a

hypothetical universe in which h¼0 there would be no zero-point energy.

The uncertainty principle gives some insight into its origin, because the

uncertainty in the position of the particle is finite (it is somewhere between 0

and L), so the uncertainty in the momentum of the particle cannot be zero.

Because Dp 6¼ 0, it follows that hp2i 6¼ 0 and consequently that the average

kinetic energy, which is proportional to hp2i, also cannot be zero. A more

fundamental way of understanding the origin of the zero-point energy,

though, is to note that the wavefunction is necessarily curved if it is to be zero

at each wall but not zero throughout the interior of the box. We have already

To evaluate this integral we have

used the standard formZ
sin2 ax dx

¼ 1
2x�

1

4a
sin 2axþ constant
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Fig. 2.20 The probability

distribution of a particle in a box.

Note that the distribution becomes
more uniform as the energy increases.
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Fig. 2.19 The first six energy levels

and the corresponding

wavefunctions for a particle in a box.

Notice that the levels are more
widely separated as the energy

increases; the maximum amplitude

of the wavefunctions is the same in
all cases.
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seen that the curvature of a wavefunction signifies the possession of kinetic

energy, so the particle necessarily possesses non-zero kinetic energy if it is

inside the box.

The energy separation of neighbouring states decreases as the walls move

back and give the particle more freedom:

Enþ1 � En ¼ ðnþ 1Þ2 � n2
n o h2

8mL2
¼ ð2nþ 1Þ h2

8mL2
ð2:32Þ

As the length of the box approaches infinity (corresponding to a box of

macroscopic dimensions), the separation of neighbouring levels approaches

zero, and the effects of quantization become completely negligible. In effect,

the particle becomes unbounded and free, and its state is described by the

wavefunctions in eqn 2.5. The same is true as the mass, m, becomes large.

Consequently, classical mechanics can be used to describe the translational

motion of macroscopic objects.

2.14 The two-dimensional square well

Interesting new features arise when we consider a particle confined to a

rectangular planar surface with linear dimensions L1 in the x direction and L2

in the y direction (Fig. 2.21). Just as in one dimension, where the wave-

functions look like those of a vibrating string with clamped ends, so in two

dimensions they can be expected to correspond to the vibrations of a plate

with the edges rigidly clamped.

The hamiltonian for the two-dimensional, infinitely deep square well in

the interior of the well (the only region where the particle will be found, and

where its potential energy is zero) is

H ¼ � �h2

2m

q2

qx2
þ q2

qy2

 !
ð2:33Þ

The Schrödinger equation for the particle inside the walls is therefore

q2c
qx2
þ q2c

qy2
¼ � 2mE

�h2
c ð2:34Þ

The boundary conditions are that the wavefunction must vanish at all four

walls.

To solve this equation in two variables, we try the separation of variables

technique described in Section 1.14. The trial solution is written c(x,y)¼XY,

where X is a function of only x and Y is a function only of y. Inserting the trial

solution into the Schrödinger equation we get first

Y
d2X

dx2
þX

d2Y

dy2
¼ � 2mE

�h2
XY

and then, after dividing through by XY,

1

X

d2X

dx2
þ 1

Y

d2Y

dy2
¼ � 2mE

�h2

0
L1

L2

x

y

V (x, y )

Fig. 2.21 An exploded view of the

potential energy of a particle in a
two-dimensional square well.

58 j 2 LINEAR MOTION AND THE HARMONIC OSCILLATOR



We now use the same argument as in Section 1.14, and conclude that the

original equation can be separated into two parts:

d2X

dx2
¼ � 2mEX

�h2
X

d2Y

dy2
¼ � 2mEY

�h2
Y

with EXþEY¼E. Both equations have the same form as the equation for

a one-dimensional system, and the boundary conditions are the same.

Therefore, we may write the solutions immediately (using c¼XY):

cn1n2
ðx; yÞ ¼ 2

L1L2ð Þ1=2
sin

n1px

L1

� �
sin

n2py

L2

� �

En1n2
¼ h2

8m

n2
1

L2
1

þ n2
2

L2
2

� �
n1 ¼ 1, 2, . . . n2 ¼ 1, 2, . . .

ð2:35Þ

Note that to define the state of a particle in a two-dimensional system, we

need to specify the values of two quantum numbers; n1 and n2 can take any

integer values in their range independently of each other.

Many of the features of the one-dimensional system are reproduced in

higher dimensions. There is a zero-point energy (E1,1), and the energy

separations decrease as the walls move apart and become less confining. The

energy is quantized as a consequence of the boundary conditions. The shapes

of some of the low-energy wavefunctions are illustrated in Fig. 2.22 and

the corresponding probability densities are shown in Fig. 2.23. As in the one-

dimensional case, the particle is distributed more uniformly at high energies

than at low.

2.15 Degeneracy

One feature found in two dimensions but not in one dimension is apparent

when the box is geometrically square. Then L1¼L2¼L and the energies are

given by

En1n2
¼ h2

8mL2
n2

1 þ n2
2

� �
ð2:36Þ

This expression implies that a state with the quantum numbers n1¼ a and

n2¼b (which we could denote ja,bi) has exactly the same energy as one with

n1¼b and n2¼ a (the state jb,ai) even when a 6¼ b. This is an example of the

degeneracy of states mentioned in Section 1.2. For example, the two states

j1,2i and j2,1i both have the energy 5h2/8mL2 but their two wavefunctions

are different:

c1;2ðx; yÞ ¼
2

L
sin

px

L

� �
sin

2py

L

� �
c2;1ðx; yÞ ¼

2

L
sin

2px

L

� �
sin

py

L

� �

Inspection of Fig. 2.24 shows the origin of this degeneracy: one wavefunc-

tion can be transformed into the other by rotation of the box through 90�.

We should always expect degeneracies to be present in systems that have

a high degree of symmetry, as we shall see in more detail in Chapter 5.

(a)

(b)

(c)

Fig. 2.23 Three probability

distributions for a particle in

a two-dimensional square well:

(a) n1¼1, n2¼ 1, (b) n1¼2, n2¼1,
and (c) n1¼ 2, n2¼2 (as in the

previous illustration).

(a)

(b)

(c)

Fig. 2.22 Three wavefunctions for a

particle in a two-dimensional square

well: (a) n1¼ 1, n2¼1, (b) n1¼ 2,

n2¼1, and (c) n1¼2, n2¼ 2.
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In the case of a rectangular but not square box, the symmetry and the

degeneracy are lost. However, sometimes degeneracy is encountered where there

is no rotation that transforms one wavefunction into another; it is then called

accidental degeneracy. In certain cases, accidental degeneracy is known to arise

when the full symmetry of the system has not been recognized, and a deeper

analysis of the system shows the presence of a hidden symmetry that does inter-

relate the degenerate functions. It may be the case that all accidental degeneracies

canbe tracedto theexistenceofhiddensymmetries.Accidentaldegeneracyoccurs

in the hydrogen atom, and we shall continue the discussion there.

Example 2.1 Hidden symmetry and accidental degeneracy

Show that in a rectangular box with sides L1¼L and L2¼ 2L there is an

accidental degeneracy between the states j1,4i and j2,2i.

Method. To confirm the degeneracy, all we need do is to substitute the data

into the expression for the energy, eqn 2.35.

Answer. The two states have the following energies:

E1;4 ¼
h2

8m

12

L2
þ 42

ð2LÞ2

 !
¼ 5h2

8mL2

E2;2 ¼
h2

8m

22

L2
þ 22

ð2LÞ2

 !
¼ 5h2

8mL2

The energies are the same, despite the lack of symmetry.

Comment. In fact, inspection of the wavefunctions (Fig. 2.25) shows that there

is a kind of hidden symmetry, as one half of the box can be rotated relative to

the other half, and as a result the two wavefunctions are interconverted,

including their behaviour at their nodes and at the walls.

Self-test 2.1. Find other examples of degeneracy in this system.

[For instance, the pair (j2,8i, j4,4i)]

The harmonic oscillator

We now turn to one of the most important individual topics in quantum

mechanics, the harmonic oscillator. Harmonic oscillations occur when a

system contains a part that experiences a restoring force proportional to the

displacement from equilibrium. Pendulums and vibrating strings are familiar

examples. An example of chemical importance is the vibration of atoms in a

molecule. Another example is the electromagnetic field, which can be treated

as a collection of harmonic oscillators, one for each frequency of radiation

present. The importance of the harmonic oscillator also lies in the way that

the same algebra occurs in a variety of different problems; for example, it also

occurs in the treatment of rotational motion.

(a)

(b)

x
y

Fig. 2.25 An example of accidental

degeneracy: the two functions shown

here schematically are degenerate

even though one cannot be
transformed into the other by a

symmetry transformation of the

system. Note, however, that a hidden

symmetry (the separate rotation of
the two halves of the box) does

interconvert them.

+
–

+

–

x y

(a)

(b)

Fig. 2.24 A contour representation of

the two degenerate states (a) n1¼ 2,

n2¼1 and (b) n1¼ 1, n2¼ 2 for

a particle in a square square well.
Note that one wavefunction is

rotated into the other by a symmetry

transformation of the box (its

rotation through 90� about a vertical
axis). In this perspective view, the

plane looks oblong; it is in fact

square.
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The restoring force in a one-dimensional harmonic oscillator is given by

Hooke’s law as �kx, where the constant of proportionality k is called the

force constant. A stiff spring has a large force constant; a weak spring has a

small one. Because the force acting on a particle is the negative gradient of the

potential energy (F¼�dV/dx), it follows that the potential energy of the

oscillator varies with displacement x from equilibrium as

VðxÞ ¼ 1
2 kx2 ð2:37Þ

and a graph of potential energy against displacement is a parabola (Fig. 2.26).

The difference between this potential and the square-well potential is the

rapidity with which it rises to infinity: the ‘walls’ of the oscillator are much

softer, and so we should expect the wavefunctions of the oscillator to pene-

trate them slightly. In other respects the two potentials are similar, and we can

imagine the slow deformation of the square well into the smooth parabola of

the oscillator. The wavefunctions of one system should change slowly into

those of the other: they will have the same general form, but will penetrate

into classically disallowed displacements.

Another point about the harmonic oscillator is that it is really much too

simple. Its simplicity arises from the symmetrical occurrence of momentum

and displacement in the expression for the total energy. Classically, the energy

is E¼p2/2mþ kx2/2, and both p and x occur as their squares. This hidden

symmetry has important implications, one being that if there is a new theory

that can be applied to the harmonic oscillator and solved, then it may still be

unsolvable for other systems. Another implication involves the uncertainty

principle, for in the ground state of the harmonic oscillator, the product of the

uncertainties Dp and Dx is equal to 1
2 �h (see Problem 2.29).

2.16 The solutions

Because the potential energy is V ¼ 1
2 kx2, the hamiltonian operator for the

harmonic oscillator of mass m and force constant k is

H ¼ � �h2

2m

d2

dx2
þ 1

2kx2 ð2:38Þ

The Schrödinger equation is therefore

� �h2

2m

d2c
dx2
þ 1

2kx2c ¼ Ec ð2:39Þ

The best method for solving this equation—a method that also works for

rotational motion and the hydrogen atom—is set out in Further information 6.

This method depends on looking for a way of factorizing the hamiltonian and

introduces the concepts of ‘creation and annihilation operators’. The con-

ventional solution, which involves expressing the solutions as polynomials in

the displacement, is described in Further information 7. That algebra, how-

ever, need not deflect us from the main thread of this chapter, the discussions

of the solutions themselves. As might be expected for such a highly symme-

trical system, their properties are remarkably simple.
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Fig. 2.26 The parabolic potential

energy characteristic of a harmonic

oscillator and the evenly spaced

ladder of allowed energies (which
continues up to infinity).
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The energy of a harmonic oscillator is quantized (as expected from the

shape of the potential) and limited to the values

Ev ¼ ðvþ 1
2Þ�ho where o ¼ k

m

� �1=2

v ¼ 0; 1; 2; . . . ð2:40Þ

These energy levels are illustrated in Fig. 2.26. The wavefunctions are no

longer the simple sine functions of the square well, but do show a family

resemblance to them. They can be pictured as sine waves that collapse

towards zero at large displacements (Fig. 2.27). Their precise form is that of

a bell-shaped gaussian function, a function of the form e�x2
, multiplied by a

polynomial in the displacement:

cvðxÞ ¼ NvHvðaxÞe�a2x2=2 a ¼ mk

�h2

� �1=4

Nv ¼
a

2vv!p1=2

� �1=2

ð2:41Þ

The parameter a has the dimensions of 1/length (so ax is dimensionless).

The Hv(z) are Hermite polynomials (Table 2.1). Because H0(z)¼1, the

wavefunction for the state with v¼ 0 is proportional to the bell-shaped

gaussian function e�a
2x2=2:

c0ðxÞ ¼
a

p1=2

� �1=2
e�a

2x2=2

When v¼1, because H1(z)¼ 2z, the wavefunction is the same gaussian

function multiplied by 2ax, with a different normalization factor:

c1ðxÞ ¼
a

2p1=2

� �1=2
2axe�a

2x2=2 ¼ 2a3

p1=2

� �1=2

xe�a
2x2=2

Table 2.1 Hermite polynomials

v Hv(z)

0 1

1 2z

2 4z2� 2

3 8z3� 12z

4 16z4� 48z2þ 12

5 32z5� 160z3þ 120z

6 64z6� 480z4þ 720z2� 120

7 128z7� 1344z5þ 3360z3� 1680z

8 256z8� 3584z6þ 13440z4� 13440z2þ 1680

Differential equation: H00v � 2zH0v þ 2vHv ¼ 0

Recursion relation: Hvþ 1 ¼2zHv�2vHv�1

Orthogonality:
R1
�1HvðzÞHv0 ðzÞe�z2

dz ¼ 0 for v 6¼ v0

Normalization:
R1
�1HvðzÞ2e�z2

dz ¼ p1=22vv!

Factorial n, denoted n!,

is the product

n!¼n(n� 1)(n� 2) . . . 1, with

0!¼ 1 by definition. The factorials

of large values of n can be

estimated from Stirling’s

approximation,

n! � ð2pÞ1=2nnþ1=2e�n
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Fig. 2.27 The wavefunctions of

a harmonic oscillator for v up to 4:
(a) even values, (b) odd values. Note

that the number of nodes increases

with v, and that even v functions are

symmetric whereas odd v functions
are antisymmetric about x¼ 0.
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Example 2.2 The nodes of harmonic oscillator wavefunctions

Locate the nodes of the harmonic oscillator wavefunction with v¼ 4.

Method. The gaussian function has no nodes, so we need to determine the

nodes of the Hermite polynomials by determining the values of x at which they

pass through zero. The polynomials are listed in Table 2.1. We will need the

solutions of a quadratic equation:

ax2 þ bxþ c ¼ 0 x ¼
�b� b2 � 4ac

� �1=2

2a

Answer. Because H4(ax)¼ 16(ax)4� 48(ax)2þ 12, we need to solve

16ðaxÞ4 � 48ðaxÞ2 þ 12 ¼ 0

This is a quadratic equation in z¼ (ax)2,

16z2 � 48zþ 12 ¼ 0

with roots

z ¼
48� 482 � 4� 16� 12

� �1=2

2� 16
¼ 2:7247 and 0:2753

The nodes are therefore at x¼�1.6507/a and �0.5246/a (see Fig. 2.27).

Comment. For more complicated polynomials it is best and sometimes

essential to use numerical methods (the root extracting program of a mathe-

matics package). The graph in Fig. 2.28 shows the pattern of nodes: note how

they spread away from the origin but become more uniformly distributed as

v increases.

Self-test 2.2. Identify the location of the five nodes of H5.

[At ax¼ 0, �0.959, �2.020]

2.17 Properties of the solutions

Table 2.2 summarizes the properties of the harmonic oscillator. The most

significant point about the energy levels is that they form a ladder with equal

spacing. The energy separation between neighbours is

Evþ1 � Ev ¼ �ho ð2:42Þ
regardless of the value of v. The equal spacing of the energy levels is another

consequence of the hidden x2, p2 symmetry of the harmonic oscillator. As the

force constant k increases, so the separation between neighbouring levels also

increases (o / k1/2). As k decreases or the mass increases, so o decreases, and

the separation between neighbouring levels decreases too. In the limit of zero

force constant the parabolic potential fails to confine the particle (it cor-

responds to an infinitely weak spring) and the energy can vary continuously.

There is no quantization in this limit of an unconstrained, free particle.

When thinking about the contributions to the total energy of a har-

monic oscillator we have to take into account both the kinetic energy

0 +1 +2 +3–1–2–3 �x
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Fig. 2.28 The distribution of

nodes in the first 13 states of a

harmonic oscillator (up to v¼12).
The white regions show where the

wavefunction is positive and the

shaded regions where it is negative.
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(which depends on the curvature of the wavefunction) and the potential

energy (which depends on the probability of the particle being found at large

displacements from equilibrium). The discussion of the balance between

the kinetic and potential contributions to the total energy is greatly simplified

by the virial theorem, which although originally derived from classical

mechanics has a quantum mechanical counterpart (see Further information 3).

The virial theorem states that

If the potential energy can be expressed in the form V¼ axs, where a is a

constant, then the mean kinetic, EK, and potential, EP, energies are related by

2hEKi ¼ shEPi ð2:43Þ

It follows that the total mean energy is

E ¼ hEKi þ hEPi ¼ ð1þ 2=sÞhEKi ð2:44Þ

For the harmonic oscillator, s¼2, so hEKi¼ hEPi (hidden symmetry again),

and therefore E¼ 2hEKi. Consequently, as the total energy increases (as it

does as k increases for a given quantum state), both the kinetic and the

potential energy increase. Not only does the curvature of the wavefunction

increase, but the wavefunction also spreads into regions of higher potential

energy. In classical terms, this behaviour corresponds to a pendulum swinging

more rapidly and with greater amplitude as its energy is increased.

A harmonic oscillator has a zero-point energy of magnitude E0 ¼ 1
2 �ho: The

classical interpretation of such a conclusion is that the oscillator never stops

fluctuating about its equilibrium position. The reason for the existence of the

zero-point energy is the same as for a particle in a box: the wavefunctions

must be zero at large displacements in either direction (because the potential

energy is confining), non-zero in between (because the particle must be

somewhere), and continuous (as for all wavefunctions). These conditions can

be satisfied only if the wavefunction has curvature; hence the expectation

value of the kinetic energy of the oscillator must be non-zero in all its states.

By the virial theorem, the expectation values of the kinetic and potential

energies are equal in each state, therefore the expectation value of the energy

Table 2.2 Properties of the harmonic oscillator

Energies: Ev¼ (vþ 1
2)�ho, o¼ (k/m)1/2

Wavefunctions: cvðxÞ ¼ NvHv axð Þe�a2x2=2

a ¼ mk

�h2

� �1=4

Nv ¼
a

2vv!p1=2

� �1=2

Matrix elements: vþ 1h jx vj i ¼ �h

2mo

� �1=2

ðvþ 1Þ1=2 v� 1h jx vj i ¼ �h

2mo

� �1=2

v1=2

hvþ 1jpx vj i ¼ i
�hmo

2

� �1=2

ðvþ 1Þ1=2 v� 1h jpx vj i ¼ �i
�hmo

2

� �1=2

v1=2

Virial theorem: EKh i ¼ EPh i for all v
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is non-zero even in its lowest state. This argument can also be turned round: if

E¼0, then for an oscillator hEKi¼ hEPi¼0, which implies that both hp2i¼0

and hx2i¼0. For these to be possible mean values, both p and x must be zero,

which is contrary to the uncertainty principle.

2.18 The classical limit

The shapes of the wavefunctions have already been drawn in Fig. 2.27. Their

similarities to the square-well wavefunctions should be noted. The major

difference between the two is the penetration of the harmonic oscillator

wavefunctions into classically forbidden regions where E<V. In the same

way as for the square well, the particle clusters away from the walls (and stays

close to x¼0) in its lowest energy states. This is the behaviour to be expected

classically of a stationary particle, for such a particle will be found at zero

displacement and nowhere else. When the oscillator is moving, the classical

prediction is that it has the highest probability of being found at its maximum

displacement, the turning points of its classical trajectory, where it is briefly

stationary. The behaviour of the quantum oscillator is quite different

for low energy levels, but the two descriptions become increasingly similar as

it is excited into higher levels. We see from Fig. 2.29 that at high v, the

wavefunctions have their dominant maxima close to the classical turning

points and resemble the classical distribution, as we would expect from the

correspondence principle.

When the energy levels of the oscillator are close in comparison with the

precision with which its state can be prepared (for example, when the para-

bolic potential is so broad or the mass so great that the levels lie close toge-

ther), the state of the oscillator must be expressed as a superposition of the

wavefunctions considered so far. For example, because the energy levels are

only about 10�34 J apart for a pendulum of period 1 s, we cannot hope to set it

swinging with such precision that we can be confident that only one level

is occupied. Setting the pendulum swinging results in its being described by a

superposition of wavefunctions, and the interference between the compon-

ents of the superposition results in the formation of a wavepacket. The time-

dependence of the components results in a region of constructive interference

that moves from one side of the potential to the other with an angular

frequency o. That is, for coarse preparations of initial states, there is a sharply

defined wavepacket which oscillates in the potential with the angular fre-

quency o¼ (k/m)1/2. This is precisely the classical behaviour of an oscillator,

with the wavepacket denoting the location of the classical particle. In other

words, when we see a pendulum swing, we are seeing a display of the

separation of its quantized energy levels.

Example 2.3 The construction and motion of a wavepacket

Show that whatever superposition of harmonic oscillator states is used to

construct a wavepacket, it is localized at the same place at the times 0, T,

2T, . . . , where T is the classical period of the oscillator.
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Fig. 2.29 A comparison of the

probability distribution for a highly
excited state of a harmonic oscillator

(v¼ 12) and that of a classical

oscillator with the same energy.

Note how the former is starting to
resemble the latter.
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Method. The classical period is T¼ 2p/o. We need to form a time-dependent

wavepacket by superimposing the Cv(x,t) for the oscillator, and then evaluate

it at t¼ nT, with n¼ 0, 1, 2, . . . .

Answer. The wavepacket has the following form:

Cðx; tÞ ¼
X

v

cvCvðx; tÞ ¼
X

v

cvcvðxÞe�iEvt=�h

¼
X

v

cvcvðxÞe�iðvþ1=2Þot

It follows that

Cðx; nTÞ ¼
X

v

cvcvðxÞe�2npiðvþ1=2Þ ¼
X

v

cvcvðxÞð�1Þn

¼ð�1ÞnCðx; 0Þ

because e2pi¼ 1 and eip¼�1.

Comment. The wavefunction changes sign after each period T, but is otherwise

unchanged. Because the probability density is proportional to the square of the

amplitude, it follows that the original distribution of the particle is recovered

after each successive period (Fig. 2.30).

Self-test 2.3. Construct the explicit form of C at x¼ 0 and discuss its time

behaviour.

Translation revisited: The scattering matrix

In this concluding brief section of the chapter we return to the discussion of

unbound translational motion and show that it can be expressed more suc-

cinctly. The aim of this section is to introduce one of the most important

concepts in scattering theory, the scattering matrix. To do so, we shall

redevelop the finite barrier problem treated in Section 2.10, and express it in a

way that utilizes this concept. The material here will be developed further in

Chapter 14 and could be ignored at this stage.

We pick up the finite-barrier story at eqn 2.19 and express the relations

between the coefficients in forms of matrices. The coefficients will be written

as follows:

C ¼ A
B

� �
C0 ¼ A0

B0

� �
C00 ¼ A00

B00

� �

for Zones I, II, and III, respectively. The two equations relating the

coefficients A, B, A 0, and B 0 for the wavefunction in Zones I and II can now be

expressed in matrix form as:

C0 ¼MC M ¼ 1
2

1� ik=k 1þ ik=k
1þ ik=k 1� ik=k

� �
ð2:45Þ

The properties of matrices

are reviewed in Further

information 23; in this

section we deal only with

2� 2 matrices, and the

manipulations required

are very straightforward.

Only matrix multiplication is

required:

a b

d c

� �
x

y

� �
¼

ax þ by

dx þ cy

� �

a b

d c

� �
w x

z y

� �

¼
awþ bz ax þ by

dwþ cz dx þ cy

� �
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Likewise, the relations between the coefficients A 0, B 0, A00, and B00 in Zones II

and III can be expressed as another, slightly more complex, matrix expression:

C00 ¼ QC0 Q ¼ e�ðkþikÞL

2ik

�kþ ik ðkþ ikÞe2kL

ðkþ ikÞe2ikL ð�kþ ikÞe2ikLe2kL

 !
ð2:46Þ

We have the connection between Zone I and Zone II and between Zone II and

Zone III in matrix form. The connection between the coefficients in Zones III

and I is now easy to deduce by combining the two relations:

C00 ¼ TC T ¼ QM ð2:47Þ

In exactly the same way, we can set up a matrix relation between the

coefficients of the outgoing and incoming waves. First we write

Cin ¼
B00

A

� �
Cout ¼

A00

B

� �
ð2:48Þ

Then the two are related by

Cout ¼ SCin ð2:49Þ

Some straightforward algebra shows that the matrices S and T are related by

S11 S12

S21 S22

� �
¼ T21=T22 T11 � T21T12=T22

1=T22 �T12=T22

� �
ð2:50Þ

The matrix S is called the scattering matrix, or S matrix. It will play a central

role in the discussion of scattering in Chapter 14.

One of the many advantages of introducing the scattering matrix is that

reflection and transmission coefficients can be easily expressed in terms of its

elements. For example, if the particle is incident from the left, so that B00 ¼0,

then it follows from eqn 2.49 that

A00 ¼ S12A B ¼ S22A

Therefore, the reflection and transmission probabilities are

R ¼ jS22j2 T ¼ jS12j2 ð2:51Þ

Example 2.4 Properties of the S matrix

A property of the S matrix is that it is unitary (see below). Show that the

unitarity of the S matrix implies that TþR¼ 1.

Method. The unitarity of the S matrix means that

SyS ¼ SSy ¼ 1

where Sy is the adjoint of S (the complex conjugate of its transpose):

If S ¼
S11 S12

S21 S22

� �
; Sy ¼

S11 S12

S21 S22

� �T�

¼
S11 S21

S12 S22

� ��
¼

S�11 S�21

S�12 S�22

� �

The unitarity of the S matrix is established in Further information 13. The

condition TþR¼ 1 can be expressed in terms of the elements of the S matrix
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Fig. 2.30 (a) The trajectory of
a wavepacket, in this case of a

‘coherent state’, a wavefunction for

which the uncertainty product DpDx
has its minimum value of 1

2�h. This
wavepacket oscillates backwards and

forwards with the classical

frequency, and although it spreads

and contracts a little with time, at the
end of each period it has its initial

shape and location. The numbers

denote the sequence of four
snapshots. (b) This wavepacket has a
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spreading more pronounced.
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by using eqn 2.51. We should inspect the relation and see if it is implied by the

unitarity condition by writing the latter out in terms of the elements of S.

Answer. In terms of the elements of the S matrix, the condition TþR¼ 1 is

jS12j2 þ jS22j2 ¼ 1

The condition SyS¼ 1, when written out in full, is

S�11 S�21

S�12 S�22

 !
S11 S12

S21 S22

 !
¼

S�11S11 þ S�21S21 S�11S12 þ S�21S22

S�12S11 þ S�22S21 S�12S12 þ S�22S22

 !

¼
1 0

0 1

 !

Comparison of the (2,2)-elements implies that

S�12S12 þ S�22S22 ¼ 1

which is the same as TþR¼ 1.

Comment. As this calculation suggests, the unitarity of the S matrix is essen-

tially a way of saying that the number of particles is preserved during the

scattering event, because TþR¼ 1 expresses the fact that the sum of the

probabilities of transmission and reflection is 1. Whenever you see ‘unitarity’

referred to, think of it as implying the conservation of probability. Conversely,

if you want to ensure that probability is conserved, then you should impose the

property of unitarity on the matrices you are using.

Self-test 2.4. Suppose the particle flux is incident from the right of the barrier.

Define T and R in terms of the appropriate S matrix elements and confirm that

TþR¼ 1.

P R O B L E M S

2.1 Write the wavefunctions for (a) an electron travelling
to the right (x> 0) after being accelerated from rest
through a potential difference of (i) 1.0 V, (ii) 10 kV,
(b) a particle of mass 1.0 g travelling to the right at 10 m s�1.

2.2 Find expressions for the probability densities of the
particles in the preceding problem.

2.3 Use the qualitative ‘wavefunction generator’ in Fig. 2.4
to sketch the wavefunctions for (a) a particle with a
potential energy that decreases linearly to the right, (b) a
particle with a potential energy that is constant to x¼ 0,
then falls in the shape of a semicircle to a low value to climb
back to its original constant value at x¼L, (c) the same as in
part (b), but with the dip replaced by a hump.

2.4 Express the coefficients C and D in eqn 2.6 in terms of
the coefficients A and B in eqn 2.5.

2.5 Calculate the flux density (eqn 2.11) for a particle
with a wavefunction with coefficients A¼A0 cos z and
B¼A0 sin z, for a particle undergoing free motion in
one dimension, with z a parameter, and plot Jx as a
function of z.

2.6 A particle was prepared travelling to the right with
all momenta between (k� 1

2Dk)�h and (kþ 1
2Dk)�h

contributing equally to the wavepacket. Find the explicit
form of the wavepacket at t¼ 0, normalize it, and
estimate the range of positions, Dx, within which the
particle is likely to be found. Compare the last

68 j 2 LINEAR MOTION AND THE HARMONIC OSCILLATOR



conclusion with a prediction based on the uncertainty
principle. Hint. Use eqn 2.13 with g¼B, a constant,
inside the range k� 1

2Dk to kþ 1
2Dk and zero elsewhere,

and eqn 2.12 with t¼ 0 for Ck. To evaluate
R
jCkj2dt

(for the normalization step) use the integralR
�1
1 ðsin x=xÞ2dx ¼ p. Take Dx to be determined by the

locations where jCj2 falls to half its value at x¼ 0.
For the last part use Dpx� �hDk.

2.7 Sketch the form of the wavepacket constructed in
Problem 2.6. Sketch its form a short time after, when t is
non-zero but still small. Hint. For the second part use
eqn 2.13 but with e�i�hk2t/2m� 1� i�hk2t/2m. Use a computer
to draw the wavepacket at longer times, evaluating the
appropriate integrals numerically.

2.8 Repeat the evaluation that led to eqn 2.22 but do so for
the case E>V. Compare your result to the transmission
probability in eqn 2.23.

2.9 A particle of mass m is incident from the left on a wall
of infinite thickness and which may be represented by a
potential energy V. Calculate the reflection coefficient for
(a) E�V, (b) E>V. For electrons incident on a metal
surface V¼ 10 eV. Evaluate and plot the reflection
coefficient. Hint. Proceed as in the last problem but consider
only two domains, inside the barrier and outside it. The
reflection coefficient is the ratio jBj2/jAj2 in the notation of
eqn 2.21a.

2.10 A particle of mass m is confined to a one-dimensional
box of length L. Calculate the probability of finding it in
the following regions: (a) 0� x� 1

2L, (b) 0� x� 1
4L, (c)

1
2L� dx� x� 1

2Lþ dx. Derive expressions for a general
value of n, and then specialize to n¼ 1.

2.11 An electron is confined to a one-dimensional box of
length L. What should be the length of the box in order for
its zero-point energy to be equal to its rest mass energy
(mec

2)? Express the result in terms of the Compton
wavelength, lC¼ h/mec.

2.12 Energy is required to compress the box when a
particle is inside: this suggests that the particle exerts a
force on the walls. (a) On the basis that when the
length of the box changes by dL the energy changes by
dE¼�FdL, find an expression for the force. (b) At
what length does F¼ 1 N when an electron is in the
state n¼ 1?

2.13 The mean position hxi of a particle in a one-
dimensional well can be calculated by weighting its
position x by the probability that it will be found in
the region dx at x, which is c2(x)dx, and then summing
(i.e. integrating) these values. Show that hxi¼ 1

2L for all
values of n. Hint. Evaluate

R L
0 xc2

n xð Þdx:

2.14 The root mean square deviation of the particle
from its mean position is Dx¼ {hx2i� hxi2}1/2. Evaluate
this quantity for a particle in a well and show that it

approaches its classical value as n!1. Hint. Evaluate
hx2i¼

R L
0 x2c2(x)dx. In the classical case the distribution

is uniform across the box, and so in effect
c(x)¼ 1/L1/2.

2.15 For a particle in a box, the mean value and mean
square value of the linear momentum are given byR L

0 c
�pcdx and

R L
0 c�p2cdx, respectively. Evaluate these

quantities. Form the r.m.s. deviation Dp¼ {hp2i� hpi2}1/2

and investigate the consistency of the outcome with the
uncertainty principle. Hint. Use p¼ (�h/i)d/dx. For hp2i
notice that E¼ p2/2m and we already know E for each n.
For the last part, form DxDp and show that DxDp 1

2�h,
the precise form of the principle, for all n; evaluate DxDp
for n¼ 1.

2.16 Calculate the energies and wavefunctions for a
particle in a one-dimensional square well in which the
potential energy rises to a finite value V at each end,
and is zero inside the well. Show that for any V and L
there is always at least one bound level, and that
as V!1 the solutions coincide with those in eqn 2.30.
Hint. This is a difficult problem. Divide space into three
zones, solve the Schrödinger equations, and impose the
boundary conditions (finiteness and continuity of c and
continuity of dc/dx across the zone boundaries: combine the
latter continuity requirements into the continuity of the
logarithmic derivatives ((1/c)(dc/dx) ). After some
algebra arrive at

kLþ 2 arcsin
k�h

ð2mVÞ1=2

( )
¼ np k�h ¼ ð2mEÞ1=2

Solve this expression graphically for k and hence find the
energies for each value of the integer n.

2.17 (a) Confirm eqn 2.22 and eqn 2.23 for the one-
dimensional transition probability. (b) Demonstrate that the
two expressions coincide at E¼V and identify the value of
T at that energy.

2.18 Identify the locations of the nodes in the
wavefunction with n¼ 4 for a particle in a one-dimensional
square well.

2.19 A very simple model of a polyene is the free
electron molecular orbital (FEMO) model. Regard a chain of
N conjugated carbon atoms, bond length RCC, as forming a
box of length L¼ (N� 1)RCC. Find the allowed energies.
Suppose that the electrons enter the states in pairs so that the
lowest 1

2N states are occupied. Estimate the wavelength of
the lowest energy transition. Sometimes the length of the
chain is taken to be (Nþ 1)RCC, allowing for electrons to
spill over the ends slightly.

2.20 (a) Show that the variables in the Schrödinger
equation for a cubic box may be separated and the
overall wavefunctions expressed as X(x)Y(y)Z(z).
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(b) Deduce the energy levels and wavefunctions.
(c) Show that the functions are orthonormal. (d) What
is the degeneracy of the level with E¼ 14(h2/8mL2)?

2.21 (a) Demonstrate that accidental degeneracies can
exist in a rectangular infinite square-well potential provided
that the lengths of the sides are in a rational proportion.
(b) What are the degeneracies when L1¼ lL2, with l an
integer?

2.22 Find the form of the ground-state wavefunction of
a particle of mass m in an infinitely deep circular square well
of radius R. Hint. Separate the Schrödinger equation for the
system; the radial wavefunctions are related to Bessel
functions.

2.23 The Hermite polynomials Hv(y) satisfy the
differential equation

H00v ðyÞ � 2yH0vðyÞ þ 2HvðyÞ ¼ 0

Confirm that the wavefunctions in eqn 2.41 are solutions of
the harmonic oscillator Schrödinger equation.

2.24 Locate the nodes of the harmonic oscillator
wavefunction for the state with v¼ 6.

2.25 Confirm the expression for the normalization factor of
a harmonic oscillator wavefunction, eqn 2.41.

2.26 Evaluate the matrix elements (a) hvþ 1jxjvi and
hvþ 2jx2jvi of a harmonic oscillator by using the recursion
relations of the Hermite polynomials.

2.27 The oscillation of the atoms around their equilibrium
positions in the molecule HI can be modelled as a harmonic
oscillator of mass m�mH (the iodine atom is almost
stationary) and force constant k¼ 313.8 N m�1. Evaluate
the separation of the energy levels and predict the
wavelength of the light needed to induce a transition
between neighbouring levels.

2.28 What is the relative probability of finding the HI
molecule with its bond length 10 per cent greater than its
equilibrium value (equilibrium bond length of 161 pm)
when it is in (a) the v¼ 0 state, (b) the v¼ 4 state? Use the
information in Problem 2.27.

2.29 Calculate the values of (a) hxi, (b) hx2i, (c) hpxi,
(d) hpx

2i for a harmonic oscillator in its ground state
by evaluation of the appropriate integrals (as in
Problems 2.13–2.15). Examine the value of DxDpx in
the light of the uncertainty principle. Hint. Use the integrals

Z 1
�1

e�ax2

dx

Z 1
0

xe�ax2

dx ¼ 1

2a

Z 1
�1

x2e�ax2

dx ¼ 1

2

p
a3

� �1=2

2.30 Equation 2.50 gives the form of the S matrix for a one-
dimensional system in which a particle is scattered from an
abrupt blip in the potential energy. Write down the
analogous expression for scattering from a comparable dip
in the potential energy.

2.31 Show that the flux density associated with a
time-dependent wavefunction C of definite energy is
independent of location. Hint. Use eqn 2.10 in conjunction
with the time-dependent Schrödinger equation to show that
Jx is independent of x; that is,
qJx/qx¼ 0.

2.32 A particle of mass m is confined in a one-dimensional
box of length L. The state of the particle is given by the
normalized wavefunction c(x)¼ 1

3c1(x)þ 1
3ic3(x)� (7

9)
1/

2c5(x) where cn(x) is a normalized particle-in-a-box
wavefunction corresponding to quantum number n (eqn
2.31). (a) What will be the outcome when the energy of
the particle is measured? (b) If more than one result is
possible, give the probability of obtaining each result.
(c) What is the expectation value of the energy?

2.33 Consider a harmonic oscillator of mass m undergoing
harmonic motion in two dimensions x and y. The potential
energy is given by V(x,y)¼ 1

2kxx2þ 1
2kyy

2. (a) Write
down the expression for the Hamiltonian operator for
such a system. (b)What is the general expression
for the allowable energy levels of the two-dimensional
harmonic oscillator? (c) What is the energy
of the ground state (the lowest energy state)? Hint.
The hamiltonian operator can be written as a sum of
operators.

2.34 Consider a particle of mass 1.00� 10�25 g freely
moving in a (microscopic) three-dimensional cubic box
of side 10.00 nm. The potential energy is zero inside
the box and is infinite at the walls and outside of the box.
(a) Evaluate the zero-point energy of the particle.
(b) Consider the energy level that has an energy 9 times
greater than the zero-point energy. What is the degeneracy
of this level? Identify all the sets of quantum numbers that
correspond to this energy. (The energy levels of the cubic
box were deduced in Problem 2.20.)
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The second class of motion we consider is rotational motion, the motion of an

object around a fixed point. With this problem we encounter ‘angular

momentum’, which is one of the most important topics in quantum

mechanics. In this chapter we discuss rotational motion and angular

momentum in terms of solutions of the Schrödinger equation, but we return

to the topic in the next chapter and see how its properties emerge from the

operators for angular momentum. This is a chapter for pictures; the next

provides the algebra beneath the pictures.

The material we describe here occurs throughout quantum mechanics. In

particular, it crops up wherever we are interested in the motion of a particle in

a central potential, in which the potential energy depends only on the distance

from a single point. One example is the central potential experienced by an

electron in a hydrogen atom. That problem is also exactly solvable, and we

shall consider it in this chapter too.

Particle on a ring

As a first step, we consider the quantum mechanical description of a particle

travelling on a circular ring. This problem is more general than it might seem,

for as well as applying to the motion of a bead on a circle of wire, it also

applies to any body rotating in a plane (for example, a compact disk, Fig. 3.1).

This generality stems from the fact that any such body can be represented by a

mass point moving in a circle of radius r, its radius of gyration about the

centre of mass. We shall see, in fact, that the property that determines the

characteristics of the rotational motion of a body is the moment of inertia,

I¼mr2, and it is not necessary to enquire into whether the value of I for a

body is that of an actual particle moving on a ring of radius r or is that of a

body of mass m and radius of gyration r rotating about its own centre of mass.

3.1 The hamiltonian and the Schrödinger equation

The particle of mass m travels on a circle of radius r in the xy-plane. Its

potential energy is constant and taken to be zero. The hamiltonian is therefore

H ¼ � �h2

2m

q2

qx2
þ q2

qy2

 !
ð3:1Þ
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Because the motion is confined to a circle, a simpler expression is obtained

by adopting polar coordinates and writing x¼ r cosf and y¼ r sinf where

f ranges from 0 to 2p. The laplacian r2 in two dimensions is

q2

qx2
þ q2

qy2
¼ q2

qr2
þ 1

r

q
qr
þ 1

r2

q2

qf2
ð3:2Þ

Then, with r constant so that derivatives with respect to r can be discarded,

the hamiltonian is

H ¼ � �h2

2mr2

d2

df2
¼ � �h2

2I

d2

df2
ð3:3Þ

The wavefunction depends only on the angle f, so we denote it F. The

Schrödinger equation is therefore

d2F

df2
¼ �2IE

�h2
F ð3:4Þ

The general solutions are

F ¼ Aeimlf þ Be�imlf ml ¼
2IE

�h2

� �1=2

ð3:5Þ

The quantity ml is a dimensionless number, and at this stage it is completely

unrestricted in value; the significance of the subscript l will become apparent

later.

Example 3.1 The separation of the Schrödinger equation

The wavefunctions for a particle on a ring also arise in connection with a

particle confined to a circular region of zero potential energy by potential walls

of infinite height (a ‘circular square well’). Show that the Schrödinger equation

is separable, and find equations for the radial and angular components.

Method. We try to separate the equation by proposing a solution in the form

c(r, f)¼R(r)F(f). The hamiltonian for the problem has only a kinetic energy

contribution in the circular region where the particle may be found. It follows

from the symmetry of the problem that it is sensible to express the hamiltonian

in polar coordinates. The laplacian in two dimensions, which is needed to

write the hamiltonian, is given in eqn 3.2.

Answer. It follows from eqn 3.2 that the Schrödinger equation inside the well is

� �h2

2m

q2c
qr2
þ 1

r

qc
qr
þ 1

r2

q2c

qf2

( )
¼ Ec

Substitution of c¼RF and then division of both sides by RF gives

� �h2

2m

 !
1

R
R00 þ 1

r
R0

� �
� �h2

2mr2

F00

F
¼ E

where R 0 and R00 are first and second derivatives with respect to r and F00

is the second derivative with respect to f. The 1/r2 in the second term can be

r

r R = / 2√
MR

Fig. 3.1 The rotational

characteristics of a uniform disk
are represented by the motion of a

single mass point at its radius of

gyration.

Expressions for the laplacian in

different coordinate systems are

commonly derived in multivariable

calculus books. A general

expression can be found, for

example, in M.L. Boas,

Mathematical methods in the

physical sciences, Wiley (1983).
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eliminated by multiplication through by r2, and after a little rearrangement the

equation becomes

1

R
r2R00 þ rR0
	 


þ 2mE

�h2
r2 ¼ �F00

F

This equation is separable, because the left is a function only of r and the right

is a function only of f. We therefore write

F00 ¼ �m2
l F

which implies that

r2R00 þ rR0 þ 2mE

�h2
r2R ¼ m2

l R

Self-test 3.1. Go on to solve the radial equation by identifying the form of the

equation by reference to Chapter 9 of M. Abramowitz and I.A. Stegun,

Handbook of mathematical functions, Dover (1965) or a similar source.

Now we introduce the boundary conditions. There are no barriers to

the particle’s motion so long as it remains on the ring, so there is no

requirement for the wavefunctions to vanish at any point on the ring.

However, because wavefunctions must be single-valued (Chapter 2), it fol-

lows that F(fþ2p)¼F(f). This requirement is an example of a cyclic

boundary condition. It follows that

Aeimlfe2piml þ Be�imlfe�2piml ¼ Aeimlf þ Be�imlf

This relation is satisfied only if ml is an integer, for then, using Euler’s rela-

tion, e2piml ¼ 1. The boundary conditions therefore imply that

ml ¼ 0, 	 1, 	 2, . . .

It follows (from eqn 3.5) that the allowed energies are

Eml
¼

m2
l �h2

2I
with ml ¼ 0, 	 1, 	 2, . . . ð3:6Þ

3.2 The angular momentum

By analogy with the discussion of wavefunctions for linear momenta p¼k�h

with opposite signs of k, it can be anticipated that opposite signs of ml cor-

respond to opposite directions of circular motion. To confirm that this is so,

we consider the z-component of the angular momentum l.

The classical expression for l is

l ¼ r 
 p ¼
i j k
x y z
px py pz

������
������ ð3:7Þ

where i, j, and k are orthogonal unit vectors along the x-, y-, and z-axes,

respectively. With the angular momentum written as l¼ lxiþ lyjþ lzk, we can

expand the determinant in eqn 3.7 and pick out the z-component as

lz ¼ xpy � ypx ð3:8Þ

A vector product between two

vectors a and b, denoted a
b, is a

vector of length ab sin y, where y
is the angle between the two

vectors, a and b are the lengths of

the two vectors, and the vector

product is directed perpendicular

to the plane defined by a and b. To

construct the components of the

vector product from the

components of the two vectors

a¼ axiþ ay jþ azk and

b¼ bxiþ by jþ bzk, we expand the

following determinant:

a
 b ¼
i j k

ax ay az

bx by bz

������
������

¼ aybz � azby

� 
i

þ azbx � axbzð Þj
þ axby � aybx

� 
k

The expansion of a general 3
 3

determinant is

a b c

d e f

g h i

�������

�������
¼ aeiþ bfgð þ cdhÞ
� ceg þ afhþ bdið Þ

The properties of vectors are

summarized in Further

information 22.
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At this point we express the classical observable as an operator in the

position representation:

lz ! x
�h

i

q
qy

� �
� y

�h

i

q
qx

� �

Substitution of the polar coordinates defined above results in the expression

lz ¼
�h

i

q
qf

ð3:9Þ

Now consider the effect of this operator on the wavefunction with B¼0:

lzFml
¼ �h

i

q
qf

Aeimlf ¼ ml�hAeimlf ¼ ml�hFml
ð3:10Þ

This is an eigenvalue equation, and we see that the wavefunction corresponds

to an angular momentum ml�h. If ml>0, then the angular momentum is

positive, and if ml< 0, then the angular momentum is negative (Fig. 3.2).

The remaining task is to normalize the wavefunctions. For the function

with B¼0, we write

Z 2p

0

F� Fdf ¼ jAj2
Z 2p

0

e�imlfeimlf df ¼ jAj2
Z 2p

0

df ¼ 2pjAj2

It follows that jA j ¼1/(2p)1/2, and A is conventionally chosen to be real (so

the modulus bars can be dropped from this relation). It is easy to go on to

show that the wavefunctions with different values of ml are mutually

orthogonal (see Problem 3.4).

3.3 The shapes of the wavefunctions

The physical basis of the quantization of rotation becomes clear when we

inspect the shapes of the wavefunctions. The wavefunction corresponding to

a state of definite angular momentum ml�h is

Fml
¼ 1

2p

� �1=2

eimlf ¼ 1

2p

� �1=2

fcos mlfþ i sin mlfg ð3:11Þ

Note that the wavefunction is complex (for ml 6¼0), which is another illus-

tration of the fact that wavefunctions corresponding to definite states of

motion (other than being stationary in the sense that ml¼ 0) are complex. We

shall consider explicitly only the cosine component of the function, but

similar remarks apply to the sine component too: the two components are 90�

out of phase.

When ml is an integer, the cosine functions form a wave with an integral

number of wavelengths wrapped round the circular ring. The ‘ends’ of the

wave join at f and fþ2p, and the function reproduces itself on the next

circuit (Fig. 3.3). When ml is not an integer (for one of the disallowed solu-

tions), the wavefunction has an incomplete number of wavelengths between

0 and 2p, and does not reproduce itself on the next circuit of the ring. At any

point, it is double-valued, and hence must be rejected.

z

ml > 0

ml < 0

Fig. 3.2 The vector representation

of angular momentum of a particle

(or an effective particle) confined to

a plane. Note the right-hand screw
convention for the orientation of

the vector.

0 2π

�

W
av
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u

n
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, �

Fig. 3.3 The wavefunction must

satisfy cyclic boundary conditions;
only the dark curve of these three is

acceptable. The horizontal

coordinate corresponds to an

entire circumference of the ring,
and the end points should be

considered to be joined.
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A glance at the expression for the energy shows that all the levels except the

lowest (ml¼0) are doubly degenerate: because Eml
/ m2

l , the states þ jml j
and � jml j have the same energy. This degeneracy stems from the fact that

the particle can travel in either direction around the ring with the same

magnitude of angular momentum, and hence with the same kinetic energy.

The ground state is non-degenerate because when ml¼ 0 the particle is sta-

tionary and the question of alternative directions of travel does not arise.

There are several ways of depicting the wavefunctions. The simplest proce-

dure is toplot the real partofFon the perimeterof the ring (Fig. 3.4). It shouldbe

noted that in general the wavefunction is complex, and so it has real and ima-

ginary components displaced by 90�. It is therefore easier to unwrap the ring into

a straight line in the range 0�f�2p and to plot the wavefunctions on this line

(Fig. 3.5). Drawing the two components helps to remind us that although the

amplitude varies from point to point, the probability density is uniform:

jFml
j2 ¼ 1

2p

� �1=2

e�imlf 1

2p

� �1=2

eimlf ¼ 1

2p
ð3:12Þ

In a state of definite angular momentum, the particle is distributed

uniformly round the ring: certainty in the value of the angular momentum

implies total uncertainty in the location of the particle. A second point is

that as the energy and the angular momentum increase, so the number of

nodes in the real and imaginary components of the wavefunction increases

too. This is an example of the behaviour we have already discussed: as the

number of nodes is increased, the wavefunction is buckled backwards and

forwards more sharply to fit into the perimeter of the ring, and consequently

the kinetic energy of the particle increases. A further point that will prove to be

of significance later is that the wavefunctions have the following symmetry

properties:

Fml
ðfþ pÞ ¼ 1

2p

� �1=2

eimlðfþpÞ ¼ 1

2p

� �1=2

eimlfðeipÞml ¼ ð�1ÞmlFml
ðfÞ

ð3:13Þ

That is, points separated by 180� across the diameter of the ring have the

same amplitude but differ in sign if ml is odd.

A particle on a ring has no zero-point energy (E0¼0). The particle can

satisfy the cyclic boundary conditions without its wavefunction needing to be

curved (when ml¼0, F is a constant), so one possible state has zero kinetic

energy. The same argument is sometimes expressed in terms of the uncer-

tainty principle in the form that as the particle may be anywhere in an infinite

range of angles, its angular momentum can be specified precisely, and may be

zero. However, great care must be taken when applying the uncertainty

principle to periodic variables. In such cases it is appropriate to use more

elaborate forms of the observables than simply f itself, and then1

DlzD sinf � 1
2�hjhcosfij ð3:14Þ

Wavefunction, Φ

�

Fig. 3.4 One wavefunction for a
particle on a ring (with ml¼	1).

Only the real part is shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. See P. Carruthers and M.M. Nieto in Rev. Mod. Phys. 411, 40 (1968).
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Fig. 3.5 A wavefunction
corresponding to a definite state of

motion is complex. The real and

imaginary components shown here

correspond to ml¼þ1. Note that
the real component seems to chase

the imaginary one. The state with

ml¼�1 has the imaginary
component shifted in phase by p
(that is, the component is

multiplied by �1).
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3.4 The classical limit

When a particle is prepared with an energy that is imprecise in comparison

with the energy-level separations, as when a macroscopic disk is set spinning,

the correct description of the system is as a superposition of angular

momentum (and energy) eigenfunctions (eqn 3.11). The superposition results

in a wavepacket. The amplitude of the wavepacket may represent the location

of the actual particle or of a point representing the mass of the spinning disk.

Because each component has the form (recall eqn 1.31)

Cml
ðf; tÞ ¼ 1

2p

� �1=2

eimlf�im2
l
�ht=2I ð3:15Þ

the point of maximum interference rotates around the ring (Fig. 3.6) .

This motion corresponds to the classical description of a rotating body.

Rotating motion in classical physics is normally denoted by a vector that

represents the state of angular momentum of the body. For motion confined

to the xy-plane, the vector lies parallel to the z-axis (eqn 3.7). The length of

the vector represents the magnitude of the angular momentum, and its

direction indicates the direction of motion. The right-hand screw convention

is adopted: a vector pointing towards positive z represents clockwise rotation

seen from below (as in Fig. 3.2). A vector pointing towards negative z

represents motion in a counter-clockwise sense seen from below. The same

representation can be used in quantum mechanics, the only difference being

that in this case the length of the vector is confined to discrete values corres-

ponding to the allowed values of ml whereas in classical physics the length is

continuously variable.

Particle on a sphere

Now we consider the case of a particle free to move over the surface of a

sphere. The mass point can be an actual particle or a point in a solid body

that represents the motion of the whole body. For example, a solid uniform

sphere of mass m and radius R can be represented by the motion of a single

point of mass m at a distance r¼ (2
5)

1/2R (the radius of gyration) from the

centre of the sphere. This problem will build on the material covered in the

previous section and prove to be the foundation for many applications in

later chapters.

3.5 The Schrödinger equation and its solution

The potential energy of the particle is a constant taken to be zero, so the

hamiltonian for the problem is simply

H ¼ � �h2

2m
r2 ð3:16Þ

�

�

Fig. 3.6 A wavepacket formed from

the superposition of many angular
momentum eigenfunctions moves

round the ring like the location of a

classical particle. However, it also
spreads with time.
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It is convenient to mirror the spherical symmetry of the problem by expres-

sing the derivatives in terms of spherical polar coordinates (Fig. 3.7):

x ¼ r sin y cosf y ¼ r sin y sinf z ¼ r cos y ð3:17Þ

Standard manipulation of the differentials leads to the following expression

for the laplacian operator:

r2 ¼ 1

r

q2

qr2
rþ 1

r2
L2 ð3:18aÞ

Two equivalent, alternative forms are

r2 ¼ 1

r2

q
qr

r2 q
qr
þ 1

r2
L2 ð3:18bÞ

r2 ¼ q2

qr2
þ 2

r

q
qr
þ 1

r2
L2 ð3:18cÞ

The legendrian, L2, the angular part of the laplacian, is defined as

L2 ¼ 1

sin2 y

q2

qf2
þ 1

sin y
q
qy

sin y
q
qy

ð3:19Þ

The condition that the particle is confined to the surface of fixed radius is

equivalent to ignoring the radial derivatives, so we retain only the legendrian

part of the laplacian and treat r as a constant. The hamiltonian is therefore

H ¼ � �h2

2mr2
L2 ð3:20Þ

Then, because the moment of inertia is I¼mr2, the Schrödinger equation we

have to solve is

L2c ¼ � 2IE

�h2

� �
c ð3:21Þ

where c is a function of the angles y and f.

There are three ways of solving this second-order partial differential

equation. One is to realize that the functions should resemble the solutions

we have already found for the particle on a ring, for from one point of

view (from any point of view, in fact) a sphere can be regarded as a stack

of rings (Fig. 3.8). The difference is that for a sphere, the particle can travel

from ring to ring. This view suggests that the wavefunction ought to be

separable and of the form c(y,f)¼Y(y)F(f). Indeed, it is easy to verify

that the Schrödinger equation does separate, and that the component

equation for F is

d2F

df2
¼ constant
 F

This equation is the same as the one for a particle on a ring, and the cyclic

boundary conditions are the same. The solutions are therefore the same as

before, and are specified by the quantum number ml, with integral values.

The equation for Y is much more involved and its solution by elementary

techniques is cumbersome (it is given in Further information 9). The second

method of solution is to avoid dealing with the Schrödinger equation

r

�

�

x

y

z

Fig. 3.7 Spherical polar coordinates.

The angle y is called the colatitude

and the angle f is the azimuth.

z

x y

Fig. 3.8 The motion of a particle on
the surface of a sphere is like its

motion on a stack of rings with the

ability to pass between the rings.
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directly, and to use the properties of the angular momentum operators

themselves. The latter is a succinct and powerful approach, and will be

described in Chapter 4. The third method of solution is to make the

straighforward claim that we recognize eqn 3.21 as a well-known equation

in mathematics, so that we can simply refer to tables for its solutions.2

Indeed, solution by recognition is in fact the way that many differential

equations are tackled by professional theoreticians, and it is a method not

to be scorned!

As we show in Further information 9, the solutions of eqn 3.21 are the

functions called spherical harmonics, Ylml
(y, f). These highly important func-

ons satisfy the equation

L2Ylml
¼ �lðl þ 1ÞYlml

ð3:22Þ

where the labels l and ml have the following values:

l ¼ 0, 1, 2, . . . ml ¼ l, l � 1, . . . , � l

Equation 3.22 has the same form as eqn 3.21, so the wavefunctions c are

proportional to the spherical harmonics. The spherical harmonics are com-

posed of two factors:

Ylml
ðy,fÞ ¼ Ylml

ðyÞFml
ðfÞ ð3:23Þ

in accord with the separability of the Schrödinger equation. The functions

F are the same as those already described for a particle on a ring. The functions

Y are called associated Legendre functions. Table 3.1 lists the first few

spherical harmonics.

Table 3.1 Spherical harmonics

l ml Ylml
(�,�)

0 0 1/2�1/2

1 0 1
2(3/p)1/2 cos y

	1 �(3/2�)1/2 sin � e	i�

2 0 1
4(5/p)1/2 (3 cos2 y� 1)

	1 �1
2(15/2p)1/2 cos y sin y e	if

	2 1
4(15/2p)1/2 sin2 y e	2if

3 0 1
4(7/p)1/2 (2� 5 sin2 y) cos y

	1 �1
8(21/p)1/2 (5 cos2y� 1) sin y e	if

	2 1
4(105/2p)1/2 cos y sin2 y e	2if

	3 �1
8(35/p)1/2 sin3 y e	3if

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. This is in practice a common way of solving differential equations, and the Handbook of

mathematical functions mentioned in Example 3.1 is an excellent source of the appropriate

information. It is an ideal desert-island book for shipwrecked quantum chemists.
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Example 3.2 How to confirm that a spherical harmonic is a solution

Confirm that the spherical harmonic Y10 is a solution of eqn 3.22.

Method. The direct method is to substitute the explicit expression for the

spherical harmonic, taken from Table 3.1, into the left-hand side of eqn 3.22

and to verify that it is equal to the expression given on the right-hand side. The

expression for the legendrian operator is given in eqn 3.19; because Y10 is

independent of f (see Table 3.1), the partial derivatives with respect to f are

zero, and we need consider only the derivatives with respect to y.

Answer. It follows from Table 3.1 (writing N for the normalization constant)

that

L2Y10 ¼
1

sin y
q
qy

sin y
q
qy

N cos y ¼ �N
1

sin y
d

dy
sin2 y

¼ �2N
1

sin y
sin y cos y ¼ �2Y10

This result is consistent with eqn 3.22 when l¼ 1.

Self-test 3.2. Confirm that Y21 is a solution.

Comparison of eqns 3.21 and 3.22 shows that the energies of the particle

are confined to the values

Elml
¼ lðl þ 1Þ �h

2

2I
ð3:24Þ

The quantum number l is a label for the energy of the particle. Notice that Elml

is independent of the value of ml. Therefore, because for a given value of l

there are 2lþ 1 values of ml, we conclude that each energy level is (2lþ1)-

fold degenerate.

3.6 The angular momentum of the particle

Thequantum numbers l andml have a further significance. The rotational energy

of a spherical body of moment of inertia I and angular velocity o is given by

classical physics asE¼ 1
2Io

2. Because themagnitudeof the angularmomentum is

related to the angular velocityby l¼ Io, this energycan be expressedasE¼ l2/2I.
Comparison of this expression with the one in eqn 3.24 shows that

Magnitude of the angular momentum ¼ flðl þ 1Þg1=2�h ð3:25Þ

Thus, the magnitude of the angular momentum is quantized in quantum

mechanics. Indeed, l is called the angular momentum quantum number. This

result will be confirmed formally in Chapter 4.

The spherical harmonics are also eigenfunctions of lz:

lzYlml
¼ �h

i

q
qf

Ylml

eimlfffiffiffiffiffiffi
2p
p

� �
¼ ml�hYlml

ð3:26Þ

This result too will be derived more formally in Chapter 4. We see from it that

ml specifies the component of the angular momentum around the z-axis,
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the contribution to the total angular momentum that can be ascribed to

rotation around that axis. However, because ml is restricted to certain values,

the z-component of the angular momentum is also restricted to 2lþ 1 discrete

values for a given value of l. This restriction of the component of angular

momentum is called space quantization. The name stems from the vector

representation of angular momentum in which the angular momentum is

represented by a vector of length {l(lþ 1)}1/2 orientated so that its component

on the z-axis is of length ml; units of �h for the angular momentum are

implicitly understood. The angle y from the z-axis is given by geometry

cos y ¼ ml

flðl þ 1Þg1=2
ð3:27Þ

The vector can adopt only 2lþ1 orientations (Fig. 3.9), in contrast to the

classical description in which the orientation of the rotating body is con-

tinuously variable.

The quantum numbers l and ml do not enable us to specify the x- and

y-components of the angular momentum. Indeed, as we shall see later

(Section 4.1), because the operators corresponding to these components do

not commute with the operator for the z-component, these components

cannot in general be specified if the z-component is known. Therefore, a

better representation of the states of angular momentum of a body is in terms

of the cones shown in Fig. 3.10, in which no attempt is made to display any

components other than the z-component. At this stage you should not think

of the angular momentum vector as sweeping around the cones but simply as

lying at some unspecified position on them.

It is a feature of space quantization that the angular momentum vector

cannot lie exactly parallel to an arbitrarily specified z-axis; if it could, then we

would be able to specify (as zero) the x- and y- components. Its maximum

z-component is l�h, which in general is less than its magnitude, {l(lþ 1)}1/2�h.

Only for very large values of l (in the classical limit) is {l(lþ 1)}1/2� l, and

then rotation can take place around a single axis.

Example 3.3 The quantization of angular momentum for a macroscopic body

A solid ball of mass 250 g and radius 4.0 cm is spinning at 5.0 revolutions per

second. Estimate the value of l and the minimum angle its angular momentum

vector can make with respect to a selected axis.

Method. We need to calculate first its angular momentum, Io, and use the

expression I¼mr2, with r the radius of gyrationgiven in the text for a solid sphere

of radius R, which is r¼ (2
5)

1/2R. Then identify l by setting the calculated value of

angular momentum equal to {l(lþ 1)}1/2�h. The minimum angle can be obtained

by trigonometry using eqn 3.27 for a general value of ml and then setting ml¼ l.

Answer. The angular velocity of the ball is o¼ 2pn with n¼ 5.0 s�1. Its

moment of inertia is I¼ (2
5)mR2, so its angular momentum is (4

5)pnmR2. We set

{l(lþ 1)}1/2�h equal to this quantity:

flðl þ 1Þg1=2�h ¼ ð45ÞpnmR2

√6

√6

√6

√6

√6

–2

–1

0

+1

+2

ml

z

Fig. 3.9 The five (that is, 2lþ 1)

allowed orientations of the angular

momentum with l¼ 2. The length
of the vector is {l(lþ1)}1/2, which

in this case is 61/2.

–2

–1

+1

+2
ml

z

0

Fig. 3.10 To represent the fact
that if the z-component of angular

momentum is specified, the x- and

y-components cannot in general be

specified, the angular momentum
vector is supposed to lie at an

indeterminate position on one of

the cones shown here (for l¼2).
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Because l�1, it follows that l(lþ 1) � l2, and therefore that

l � 4pnmR2

5�h

Insertion of the numerical values gives l � 4.7
 1031. Using eqn 3.27, for

ml¼ l and l� 1 we can write

cos y ¼ l

flðl þ 1Þg1=2
¼ 1

1þ 1=lð Þ1=2
¼ 1

1þ 1=2l þ � � � ¼ 1� 1

2l
þ � � �

where we have used Taylor series expansions for (1þ x)1/2 and 1/(1þ x).

Because y� 1, we can equate this expression with the Taylor series expansion

cos y¼ 1� 1
2y

2þ � � � . It follows that

y � 1=l1=2 ¼ 1:5
 10�16 rad

Comment. This angle is virtually zero. Hence a macroscopic object can rotate

effectively solely around a single specified axis.

Self-test 3.3. Show that the difference between the angles y for the vectors with

ml¼ l and ml¼ l� 1 becomes zero as l becomes infinite.

3.7 Properties of the solutions

The wavefunctions for a particle on a sphere—the spherical harmonics—can

be represented diagramatically in a variety of ways. The most cumbersome

method is to plot the amplitude of the function relative to the surface of the

sphere, by analogy with the wavefunctions for a particle on a ring (Fig. 3.11).

It is more convenient, however, to plot the amplitudes of the spherical har-

monics as a surface, the distance from the origin indicating the amplitude at

that orientation (Fig. 3.12). The spherical harmonics are complex functions

for ml 6¼0, and the diagrams show only their real components. As for the

particle on a ring, the complex function consists of a real and an imaginary

component, the latter being the same shape as the former but rotated by 90�

around the z-axis. An example is shown in Fig. 3.13. This illustration is

included to emphasize the point that if ml is specified, then the azimuthal

distribution of the particle (the distribution with respect to the azimuth f) is

uniform: it is impossible to specify the azimuthal location of a particle with a

well-defined component of angular momentum around the z-axis.

Figure 3.14 shows the probability densities jYlml
j2 for l¼0, 1, and 2 and

the azimuthal uniformity is clearly apparent. Notice too how the distribution

shifts towards the equator as jml j approaches l. This change corresponds to

a reduced tilt in the plane of classical rotation. For each spherical harmonic

Ylml
, there are l angular nodes or distinct angles (to modulo p) for which

the probability density vanishes. This is also evident from Table 3.1. For

example, Y10 has a nodal xy-plane (y¼ 1
2p) whereas Y1	1 has a node along

the z-axis (y¼0). (For the former, y¼ 3
2p is not considered a second angular

node just as y¼p is not considered a second angular node for the latter.)

Positive
amplitude

Negative
amplitude

Nodal
plane

Fig. 3.11 One representation of the

wavefunction of a particle on a

sphere (with l¼ 1, ml¼0) plots the
function in terms of a height above or

below the surface of the sphere.

+

-

z

Fig. 3.12 In another representation of
the same wavefunction as in the

preceding illustration, the function is

plotted along a radius to the point in
question. In this case, the resulting

surface consists of two touching

spheres.
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It should be noticed that there is no zero-point energy (E00¼ 0) because

the wavefunction need not be curved (relative to the surface of the

sphere); indeed, Y00 is a constant and all its derivatives are zero. The

classical description of a rotating particle is achieved when the particle is

set rotating with an imprecisely defined energy. In that case, its wave-

function is a wavepacket formed from a superposition of the spherical

harmonics. This wavepacket moves in accord with the predictions of

classical physics and migrates through all angles, but spreads with time

(Fig. 3.15).

3.8 The rigid rotor

It is convenient at this point to introduce a variation on the topic of a particle

on a sphere, to see how the same results apply to a body made up of two

masses m1 and m2 at a fixed separation R. We have seen that any rigid object

will be described by the same equations as for a single effective particle, but it

is appropriate to present the argument more formally. As we shall see, the

separation of variables technique is the key.

l m = 1,  = 0l

l m = 2,  = 0l

l m = 1,  = ±1l

l m = 2,  = ±1l l m = 2,  = ±2l

l m = 0,  = 0l

z

Fig. 3.14 The boundary surfaces for jc j 2 corresponding to l¼ 0, 1, 2 and the allowed
values of jml j in each case.

Real
component

Imaginary
component

+
–

–

+

x

y

Fig. 3.13 The wavefunctions

corresponding to l¼1, ml¼	1 are

complex, with real and imaginary

components like those shown
here. The direction of motion is

determined by the relative phases

of the two components: the real

chases the imaginary.

x y

z

Fig. 3.15 The motion of a

wavepacket on the surface of a

sphere. As the wavepacket traces
out the path like that of a classical

particle, it also spreads.
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The hamiltonian for two particles moving in free space is

H ¼ � �h2

2m1
r2

1 �
�h2

2m2
r2

2 ð3:28Þ

where r2
i differentiates with respect to the coordinates of particle i. As we

show in Further information 4, this expression may be transformed by using

1

m1
r2

1 þ
1

m2
r2

2 ¼
1

m
r2

cm þ
1

m
r2

where m¼m1þm2 and

1

m
¼ 1

m1
þ 1

m2
ð3:29Þ

The quantity m is called the reduced mass of the system; the subscript ‘cm’ on

the first laplacian on the right indicates that the derivatives are with respect

to the centre of mass coordinates of the joint system, and the absence of

subscripts on the second laplacian indicates that it is composed of derivatives

with respect to the relative coordinates of the pair.

At this stage, the Schrödinger equation has become

� �h2

2m
r2

cmC�
�h2

2m
r2C ¼ EtotalC ð3:30Þ

This equation can be separated into equations for the motion of the centre of

mass and for the relative motion of the particles. To do so we write C¼ccmc,

and by the same arguments as we have used several times before, find that the

two factors separately satisfy the equations

� �h2

2m
r2

cmccm ¼ Ecmccm ð3:31aÞ

� �h2

2m
r2c ¼ Ec ð3:31bÞ

with Etotal¼EcmþE. The first of these equations should be recognized as

the translational motion of a free particle of mass m, which we solved in

Chapter 2, with coordinates given by the centre of mass of the particle.

The second equation needs a little more work, for although it looks as

simple as the first equation, the fact that R is a constant must be taken into

account by working in spherical polar coordinates. Because the separation R

of the two particles is constant (for a rigid rotor), the derivative with respect

to the radial coordinate plays no role in eqn 3.18. Consequently, only the

legendrian component need be retained, and we obtain

� �h2

2mR2
L2c ¼ Ec ð3:32Þ

At this stage we write

I ¼ mR2 ð3:33Þ
and obtain exactly the equation we have already considered (eqn 3.21).

The solutions of this equation require two quantum numbers playing
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the role of l and ml, and for the rigid rotor it is common to use J and MJ. The

wavefunctions of the diatomic rigid rotor are the spherical harmonics YJMJ
,

and the energy levels are

EJMJ
¼ Jð J þ 1Þ �h

2

2I
ð3:34Þ

with J¼0, 1, 2, . . . and MJ¼0, 	1, . . . , 	J. Note that because the energy is

independent of MJ and there are 2Jþ1 values of MJ for each value of J, each

energy level is (2Jþ 1)-fold degenerate. All the other features of the particle

on a sphere apply equally to the rigid diatomic rotor, including the quanti-

zation of the angular momentum and space quantization.

Motion in a Coulombic field

The motion of an electron in a Coulombic field, one in which the potential

varies as 1/r, is of central importance in chemistry because it includes the

structure of hydrogenic atoms, or one-electron species with arbitrary

atomic number Z (Z¼ 1 for hydrogen itself). Most of the work of solving the

Schrödinger equation has in fact already been done, for the motion can be

regarded as that of an electron on a series of concentric spheres (Fig. 3.16). It

follows that the wavefunctions can be expected to contain factors that corres-

pond to the motion of a particle on a sphere. The additional work we must do is

to account for the radial dependence of the motion, the extra degree of freedom

that allows the electron to travel between the nested spherical surfaces.

3.9 The Schrödinger equation for hydrogenic atoms

The hamiltonian for the two-particle electron–nucleus system is

H ¼ � �h2

2me
r2

e �
�h2

2mN
r2

N �
Ze2

4pe0r
ð3:35Þ

where me is the mass of the electron, mN is the mass of the nucleus, and r2
e

and r2
N are the laplacian operators that act on the electron and nuclear

coordinates, respectively. The quantity e0 is the vacuum permittivity. Apart

from the Coulombic potential energy term, this hamiltonian is the same as we

considered for the two-particle rotor. When we convert to centre-of-mass and

relative coordinates, the potential energy term remains unchanged because it

depends only on the separation of the particles. Therefore, we can use the

work in Further information 4 to write

H ¼ � �h2

2m
r2

cm �
�h2

2m
r2 � Ze2

4pe0r
ð3:36Þ

where m¼meþmN and the reduced mass is given by eqn 3.29. The resulting

Schrödinger equation is separable on account of the dependence of the

potential energy on the particle separation alone, and by the same argument

z

x y

Fig. 3.16 The motion of a particle

in a central field of force is like its

motion on a stack of spheres with
the ability to pass between the

spheres.
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as above, the Schrödinger equation for the relative motion of the electron and

nucleus is

� �h2

2m
r2c� Ze2

4pe0r
c ¼ Ec ð3:37Þ

The other component of the Schrödinger equation is that for the translational

motion of the atom as a whole, and we do not need to consider it further.

Unlike the rigid rotor, the electron and nucleus are not constrained to have

a fixed separation. We have to include the radial derivative in the laplacian,

and so write the Schrödinger equation as

1

r

q2

qr2
rcþ 1

r2
L2cþ Ze2m

2pe0�h2r
c ¼ � 2mE

�h2

� �
c ð3:38Þ

3.10 The separation of the relative coordinates

We have anticipated that the Schrödinger equation for the relative motion will

be separable into angular and radial components, with the former being the

equation for a particle on a sphere. We therefore attempt a solution of the form

cðr, y,fÞ ¼ RðrÞYðy,fÞ ð3:39Þ

where Y is a spherical harmonic. When this trial solution is substituted into

the Schrödinger equation and we use L2Y¼ � l(lþ 1)Y, it turns into

1

r

q2

qr2
rRY � lðl þ 1Þ

r2
RY þ Ze2m

2pe0�h2r

� �
RY ¼ � 2mE

�h2

� �
RY

The function Y may be cancelled throughout, and that leaves an equation for

the radial wavefunction, R:

1

r

d2ðrRÞ
dr2

þ Ze2m

2pe0�h2r
� lðl þ 1Þ

r2

� �
R ¼ � 2mE

�h2

� �
R

At this stage we write u¼ rR, and so obtain

d2u

dr2
þ 2m

�h2

� �
Ze2

4pe0r
� lðl þ 1Þ�h2

2mr2

( )
u ¼ � 2mE

�h2

� �
u ð3:40Þ

This is the one-dimensional Schrödinger equation in the coordinate r that

would have been obtained if, instead of the Coulomb potential, we had used

an effective potential energy Veff:

Veff ¼ �
Ze2

4pe0r
þ lðl þ 1Þ�h2

2mr2
ð3:41Þ

3.11 The radial Schrödinger equation

The effective potential energy may be given a simple physical interpreta-

tion. The first part is the attractive Coulomb potential energy. The second

part is a repulsive contribution that corresponds to the existence of a

centrifugal force that impels the electron away from the nucleus by virtue
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of its motion. When l¼0 the electron has no orbital angular momentum

and the force—now solely the Coulombic force—is everywhere attractive.

The potential energy for this special case is everywhere negative (Fig. 3.17).

When l> 0 the electron possesses an orbital angular momentum which

tends to fling it away from the vicinity of the nucleus, and there is a

competition between this effect and the attractive part of the potential. At

very short distances from the nucleus, the repulsive component tends more

strongly to infinity (as 1/r2) than the attractive part (which varies as 1/r),

and the former dominates. The two effective potentials (for l¼ 0 and l 6¼ 0)

are qualitatively quite different near r¼0, and we shall investigate them

separately.

When l¼ 0, the repulsive part of the effective potential energy is absent and

the potential is everywhere attractive, even close to r¼0. When r is close to

zero, the magnitude of the potential energy is locally so much larger than E

that the latter may be neglected in eqn 3.40. The equation then becomes

d2u

dr2
þ 2m

�h2

� �
Ze2

4pe0r

� �
u � 0 for l ¼ 0 and r � 0

A solution of this equation is

u � Arþ Br2 þ higher-order terms

as can be verified by substitution of the solution and taking the limit r! 0.3

Therefore, close to r¼ 0 the radial wavefunction itself has the form R¼ u/r�
A, which may be non-zero; that is, when l¼ 0, there may be a non-zero

probability of finding the electron at the nucleus.

When l 6¼ 0, the large repulsive component of the effective potential energy

of the electron at distances close to the nucleus has the effect of excluding it

from that region. In classical terms, the centrifugal force on an electron with

non-zero angular momentum is strong enough at short distances to overcome

the attractive Coulomb force. When l 6¼0 and r is close to zero, eqn 3.40

becomes

d2u

dr2
� lðl þ 1Þ

r2
u � 0 ð3:42Þ

because 1/r2 is the dominant term. The solution has the form

u � Ar lþ1 þ B

rl
for l 6¼ 0 and r � 0

as can be verified by substitution. Because u¼ rR, at r¼0 we know that u¼0;

so it follows that B¼ 0. Therefore, the radial wavefunction has the form

R ¼ u

r
� Arl for l 6¼ 0 and r � 0

This function implies that the amplitude is zero at r¼0 for all wavefunctions

with l 6¼0, and that the electron described by such a wavefunction will not be

found at the nucleus. The radial wavefunction does not have a node at r¼0 as

a node is defined as a point where a function passes through zero.
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l  0≠
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0

Fig. 3.17 The effective potential

experienced by an electron in a
hydrogen atom. When l>0 there is a

centrifugal contribution to the

potential that prevents the close

approach of the electron to the
nucleus, as it increases more rapidly

(as 1/r2) than the Coulomb attraction

(which varies as �1/r).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. The coefficients A and B are related by B¼ �AmZe2/4pe0�h2.
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Example 3.4 The asymptotic form of atomic wavefunctions at large distances

Show that at large distances from the nucleus, bound-state atomic wave-

functions decay exponentially towards zero.

Method. We need to identify the terms in eqn 3.40 that survive as r ! 1, and

then solve the resulting equation. When solving such asymptotic equations,

the solutions should also be tested in the limit r ! 1.

Answer. When r ! 1, eqn 3.40 reduces to

d2u

dr2
’ � 2mE

�h2

� �
u

(The sign’means ‘asymptotically equal to’.) However, because u¼ rR, in the

same limit this equation becomes

d2u

dr2
¼ d2

dr2
rR ¼ r

d2R

dr2
þ 2

dR

dr
’ r

d2R

dr2

Hence

d2R

dr2
’ � 2mE

�h2

� �
R ¼ þ 2mjEj

�h2

� �
R

where we have made use of the fact that E< 0 for bound states. This equation

is satisfied (asymptotically) by

R ’ e� 2mjEj=�h2ð Þ1=2r

The alternative solution, with a positive exponent, is not square-integrable

and so can be rejected. Hence, we can conclude that the wavefunction decays

exponentially at large distances.

Comment. All atomic wavefunctions, even those for many-electron atoms,

decay exponentially at large distances.

Self-test 3.4. Show that the unbound states (for which E> 0) are travelling

waves at large distances from the nucleus.

½R ’ e	i 2mjEj=�h2ð Þ1=2r�

Explicit solutions of the radial wave equation can be found in a variety of

ways. The most elementary method of solution is given in Further informa-

tion 8. As explained there, the acceptable solutions are the associated

Laguerre functions; the solutions are acceptable in the sense of being well-

behaved and corresponding to states of negative energy (bound states of the

atom). The first few hydrogenic wavefunctions are listed in Table 3.2.4 They

consist of a decaying exponential function multiplied by a simple polynomial

in r. Each one is specified by the labels n and l, with

n ¼ 1, 2, . . . l ¼ 0, 1, . . . , n� 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. See M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover (1965),

Chapter 22.
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Some of the radial wavefunctions are plotted as functions of r¼ 2Zr/na0 in

Fig. 3.18, where a0 is the Bohr radius:5

a0 ¼
4pe0�h2

mee2
ð3:43Þ

The numerical value of a0 is approximately 52.9 pm (see inside front cover).

Note that the functions with l¼ 0 are non-zero (and finite) at r¼ 0, whereas

all the functions with l 6¼ 0 are zero at r¼0.

Each radial wavefunction has n� l�1 nodes (the zero amplitude at r¼0

for functions with l 6¼0 are not nodes; recall the definition in Section 2.12).

The locations of these nodes are found by determining where the polynomial

in the associated Laguerre function is equal to zero.

Illustration 3.1 Locating nodes

The zeros of the function with n¼ 3 and l¼ 0 occur where

6� 6rþ r2 ¼ 0 with r ¼ 2Z

3a0

� �
r

The zeros of this polynomial occur at r¼ 3	p3, which corresponds to

r¼ (3	p3)(3a0/2Z).

Insertion of the radial wavefunctions into eqn 3.40 gives the following

expression for the energy:

En ¼ �
Z2me4

32p2e2
0�h2

 !
1

n2
n ¼ 1, 2; . . . ð3:44Þ

Table 3.2 Hydrogenic radial wavefunctions

n l Orbital Rnl(r)

1 0 1s (Z/a)3/22e�	/2

2 0 2s (Z/a)3/2(1/8)1/2(2� 	)e�	/2

1 2p (Z/a)3/2(1/24)1/2	e�	/2

3 0 3s (Z/a)3/2(1/243)1/2(6� 6	þ 	2)e�	/2

1 3p (Z/a)3/2(1/486)1/2(4� 	)	e�	/2

2 3d (Z/a)3/2(1/2430)1/2	2e�	/2

	¼ (2Z/na)r with a¼4�"0�h2/�e2. For an infinitely heavy nucleus, �¼me and

a¼ a0, the Bohr radius.

Relation to associated Laguerre functions:

RnlðrÞ ¼ � 2Z
na

� 3 ðn�l�1Þ!
2n½ðnþlÞ!�3

n o
rlL2lþ1

nþl ðrÞe�r=2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. In a precise calculation, the Bohr radius a0, which depends on the mass of the electron, should

be replaced by a, in which the reduced mass m appears instead. Very little error is introduced by

using a0 in place of a in this and the other equations in this chapter.
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The same values are obtained whatever the value of l or ml. Therefore, in

hydrogenic atoms (but not in any other kind of atom) the energy depends only

on the principal quantum number n and is independent of the values of l and

ml; therefore, each level, as discussed below in Section 3.14, is n2-fold

degenerate (that being the total number of wavefunctions for a given n). This

degeneracy is peculiar to the Coulomb potential in a non-relativistic system,

and we shall return to it shortly.

The roles of the quantum numbers in the hydrogen atom should now be

clear, but may be summarized as follows:

1. The principal quantum number, n, specifies the energy through eqn 3.44

and controls the range of values of l¼ 0, 1, . . . , n� 1; it also gives the total

number of orbitals with the specified value of n as n2 and gives the total

number of radial and angular nodes as n� 1.

2. The orbital angular momentum quantum number, l, specifies the orbital

angular momentum of the electron through eqn 3.25, and determines the

number of orbitals with a given n and l as 2lþ1. There are l angular nodes

in the wavefunction; the number of radial nodes is n� l�1.

3. The magnetic quantum number, ml, specifies the component of orbital

angular momentum of an electron through ml�h (see eqn 3.26) and, for a

given n and l, specifies an individual one-electron wavefunction.
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Fig. 3.18 Hydrogenic radial wavefunctions: (a) 1s, (b) 2s, (c) 3s, (d) 2p, (e) 3p, (f) 3d.
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3.12 Probabilities and the radial distribution function

The complete wavefunctions of the electron in a hydrogenic atom have the

form

cnlml
¼ RnlYlml

where the Rnl are related to the (real) associated Laguerre functions and the

Ylml
are the (in general, complex) spherical harmonics. The probability of

finding an electron in a volume element dt¼ r2sinydydfdr at a point specified

by the spherical polar coordinates (r,y,f) when the state of the electron

is described by the wavefunction cnlml
is jcnlml

(r,y,f) j 2 dt.
Although the wavefunction gives the probability of finding an electron at a

specified location, it is sometimes more helpful to know the probability of

finding the particle at a given radius regardless of the direction. This prob-

ability is obtained by integration over the volume contained between two

concentric spheres of radii r and rþdr (Fig. 3.19):

P rð Þ dr ¼
Z

surface

��cnlml

��2 dt ¼
Z p

0

Z 2p

0

R2
nljYlml

j2r2 sin y drdydf ð3:45Þ

The spherical harmonics are normalized to 1 in the sense thatZ p

0

Z 2p

0

jYlml
j2 sin y dydf ¼ 1

Therefore,

P rð Þdr ¼ R2r2 dr ð3:46Þ

The quantity P(r)¼R(r)2r2 is the radial distribution function: when multiplied

by dr it gives the probability that the electron will be found between r and

rþ dr.6 For an orbital with n¼1 and l¼0, it follows from Table 3.2 that

P rð Þ ¼ 4
Z

a0

� �3

r2e�2Zr=a0

This function is illustrated in Fig. 3.20. Note that it is zero at r¼ 0 (on account

of the factor r2) and approaches zero as r ! 1 on account of the exponential

factor. By differentiation with respect to r and setting dP/dr¼0 it is easy to

show that P goes through a maximum at

rmax ¼
a0

Z
ð3:47Þ

For a hydrogen atom (Z¼1), rmax¼ a0. Therefore, the radius that Bohr cal-

culated for the state of lowest energy in a hydrogen atom in his early pre-

quantum mechanical model of the atom is in fact the most probable distance

of the electron from the nucleus in the quantum mechanical model. Note that

this most probable radius decreases in hydrogenic atoms as Z increases,

because the electron is drawn closer to the nucleus as the charge of the latter

increases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. For an l¼ 0 wavefunction (an s-orbital), R2r2 is equivalent to 4pr2jcj2.

r dr

x y

z

Fig. 3.19 The radial distribution
function gives the probability that an

electron will be found anywhere

between two concentric spheres with

radii that differ by dr.

0
0 2 4

r /a0

0.6

0.4

0.2

P
/(

Z
/a

0)
3

Fig. 3.20 The radial distribution
function for a 1s-electron. The

function passes through a maximum

at the Bohr radius, a0.

Equation 3.47 represents the

most probable radius. Recall

from the calculus that maxima,

minima, and inflection points of a

function correspond to points of

vanishing first derivative.

Evaluation of the second derivative

of the function allows one to

distinguish between maxima,

minima, and inflection points.
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3.13 Atomic orbitals

One-electron wavefunctions in atoms are called atomic orbitals; this name

was chosen because it conveys a sense of less certainty than the term

‘orbit’ of classical theory. For historical reasons, atomic orbitals with

l¼ 0 are called s-orbitals, those with l¼ 1 are called p-orbitals, those with

l¼ 2 are called d-orbitals, and those with l¼ 3 are called f-orbitals. When

an electron is described by the wavefunction cnlml
we say that the elec-

tron occupies the orbital. An electron that occupies an s-orbital is called

an s-electron, and similarly for electrons that occupy other types of

orbitals.

The shapes of atomic orbitals can be expressed in a number of ways.

One way is to denote the probability of finding an electron in a region by

the density of shading there (Fig. 3.21). A simpler and generally adequate

procedure is to draw the boundary surface, the surface of constant

probability within which there is a specified proportion of the probability

density (typically 90 per cent). For real forms of the orbitals, the sign of

the wavefunction itself is often indicated either by tinting the positive

amplitude part of the boundary surface or by attaching þ and � signs to

the relevant lobes of the orbitals. There are few occasions when a precise

portrayal of either the amplitude or the probability density is required,

and the qualitative boundary surfaces shown in Fig. 3.22 are generally

adequate.

The boundary surfaces in Fig. 3.22 show that s-orbitals are spherically

symmetrical as Y00 is a constant independent of angle; we have also

already seen that s-orbitals differ from other types of orbitals insofar as

they have a non-zero amplitude at the nucleus. This feature stems from

their lack of orbital angular momentum. It may be puzzling why, with no

orbital angular momentum, an s-orbital can exist, because a classical

electron without angular momentum would plunge into the nucleus as a

result of the nuclear attraction. The answer is found in a quantum

mechanical competition between kinetic and potential energies. For an

s-electron to cluster close to the nucleus and hence minimize its potential

energy, it needs a wavefunction that peaks strongly at the nucleus and is

zero elsewhere. However, such a wavefunction is sharply curved, and, on

account of its high curvature, corresponds to a very high kinetic energy

for the electron. If, instead, the wavefunction spreads over a very wide

region with a gentle curvature, then although its kinetic energy will be

low, its potential energy will be high because it spends so much time far

from the nucleus. The lowest total energy is obtained when the wave-

function is a compromise between confined-but-curved and dispersed-but-

gently-curved.

The three p-orbitals with a given value of n correspond to the three

values that ml may have, namely 0 and 	1. The orbital with ml¼ 0 is real

(see Y10 in Table 3.1) and has zero component of angular momentum

around the z-axis; it is called a pz-orbital. The other two orbitals, pþ and

p�, are complex, and have their maximum amplitude in the xy-plane

x

x

y

y

z

z

(a)

(b)

Fig. 3.21 Two representations

of the probability density
corresponding to a 1s-orbital:

(a) the density represented by

the darkness of shading, (b) the

boundary surface of the orbital.
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(recall Fig. 3.14):

pz ¼
3

4p

� �1=2

Rn1ðrÞ cos y

pþ ¼ �
3

8p

� �1=2

Rn1ðrÞ sin y eif ð3:48Þ

p� ¼
3

8p

� �1=2

Rn1ðrÞ sin y e�if

It is usual to depict the real and imaginary components, and to call these

orbitals px and py:

px ¼
1ffiffiffi
2
p ðp� � pþÞ ¼

3

4p

� �1=2

Rn1ðrÞ sin y cosf

py ¼
iffiffiffi
2
p ðp� þ pþÞ ¼

3

4p

� �1=2

Rn1ðrÞ sin y sinf

ð3:49Þ

The complex orbitals are the appropriate forms to use in atoms and linear

molecules where there are no well-defined x- and y-axes; the real forms are

more appropriate when x- and y-axes are well defined, such as in non-linear

y

xx x

y y

z z z

pz pz pzpy px

dz2

dx2 – y2

dxy dzx dyz
Fig. 3.22 Boundary surfaces for p-

and d-orbitals.
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molecules. All three real orbitals (px, py, and pz) have the same double-lobed

shape, but aligned along the x-, y-, and z-axes, respectively.

Example 3.5 How to analyse the probability distribution of an electron

What is the most probable point in space at which a hydrogenic 2pz-electron

will be found, and what is the probability of finding the electron inside a

sphere of radius R centred on the nucleus?

Method. For the first part, we need to inspect the form of the wavefunction

and identify the location of the maximum amplitude by considering the

maxima in r, y, and f separately. The wavefunction itself is given by com-

bining the information in Tables 3.1 and 3.2, and using n¼ 2, l¼ 1, and

ml¼ 0. For the second part, we integrate jc j 2 over a sphere of radius R (that

is, over all angles and over all distances between 0 and R).

Answer. The wavefunction we require isc210¼R21Y10. The spherical harmonic

is proportional to cos y, and its maximum amplitude therefore lies at y¼ 0 or p,

which is along the z-axis. The wavefunction is constant with respect to the

azimuth f. The radial wavefunction is proportional to re�r/2 with r¼ (Z/a0)r.

To find the location of the maximum of this function we differentiate with

respect to r (which is proportional to r) and set the result equal to zero:

d

dr
re�r=2 ¼ 1� r

2

� �
e�r=2 ¼ 0

It follows that the maximum occurs at r¼ 2, or at r¼ 2a0/Z. There are two

points at which the probability reaches a maximum, at r¼ 2, y¼ 0 on the

positive z-axis and at r¼ 2, y¼ p on the negative z-axis.

For the second part of the question, we need to integrate:

PðrÞ ¼
Z

Sphere of radius R

R2
21jY10j2 dt ¼

Z R

0

R2
21r2 dr

We have used the fact that the spherical harmonics are normalized to 1 when

integrated over the surface of a sphere. It then follows from Table 3.2 that

PðrÞ ¼ 1

24

Z

a0

� �3Z R

0

r2e�rr2 dr

with r¼ (Z/a0)r. Therefore,

PðrÞ ¼ 1

24

Z

a0

� �5Z R

0

r4e�Zr=a0 dr ¼ 1

24

Z ZR=a0

0

x4e�x dx

¼ 1� 1þ ZR

a0

� �
þ 1

2

ZR

a0

� �2

þ 1

6

ZR

a0

� �3

þ 1

24

ZR

a0

� �4
( )

e�ZR=a0

For a hydrogen atom with Z¼ 1, we find that the probability of the electron

being within a sphere of radius 2a0 is

Pð2a0Þ ¼ 1� 7e�2 ¼ 0:053

Self-test 3.5. Repeat the calculation for a 2s-electron in a hydrogenic atom and

evaluate P(2a0) for a hydrogen atom.
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There are five d-orbitals (l¼ 2) for n� 3. All except the orbital with

ml¼0 are complex, and correspond to definite states of orbital angular

momentum around the z-axis. These complex orbitals have cylindrical sym-

metry around the z-axis; however, it is more common to display them as

their real components, as in Fig. 3.22:

dz2 ¼ d0 ¼
5

16p

� �1=2

Rn2ðrÞð3cos2 y�1Þ ¼ 5

16p

� �1=2

Rn2ðrÞð3z2� r2Þ=r2

dx2�y2 ¼ 1ffiffiffi
2
p ðdþ2þd�2Þ ¼

15

16p

� �1=2

Rn2ðrÞðx2� y2Þ=r2

dxy ¼
1

i
ffiffiffi
2
p ðdþ2�d�2Þ ¼

15

4p

� �1=2

Rn2ðrÞxy=r2

dyz ¼
1

i
ffiffiffi
2
p ðdþ1þd�1Þ ¼�

15

4p

� �1=2

Rn2ðrÞyz=r2

dzx ¼
1ffiffiffi
2
p ðdþ1�d�1Þ ¼�

15

4p

� �1=2

Rn2ðrÞzx=r2

The notation stems from the identification of the angular dependence of the

orbitals with the relations x¼ r sin y cos f and so on (eqn 3.17). In deriving

these results, we have used the phases of the spherical harmonics specified in

Table 3.1. The shapes of f-orbitals (l¼3) are shown in Fig. 3.23.

Once the wavefunctions of orbitals are available it is a simple matter

to calculate various properties of the electron distributions they represent.

For example, the mean radius of an orbital can be evaluated by calculating

the expectation value of r by using one of the radial wavefunctions given in

Table 3.2. However, it is usually much easier to use one of the following

general expressions that are obtained by using the general properties of

associated Laguerre functions to evaluate the expectation values:

hrinlml
¼ n2a0

Z
1þ 1

2 1� lðl þ 1Þ
n2

� �� �

1

r

� �
nlml

¼ Z

a0n2

ð3:50Þ

Note that the first of these expressions shows that the mean radius of an

ns-orbital is greater than that of an np-orbital, which is contrary to what

one might expect on the basis of the centrifugal effect of orbital angular

momentum. It is due to the existence of an additional radial node in the

ns-orbital, which tends to extend its radial distribution function out to greater

distances. The fact that the average value of 1/r is independent of l is in line

with the degeneracy of hydrogenic atoms, for the Coulomb potential energy

of the electron is proportional to the mean value of 1/r, and the result implies

that all orbitals of a given shell have the same potential energy.

3.14 The degeneracy of hydrogenic atoms

We have already seen that the energies of hydrogenic orbitals depend only on

the principal quantum number n. To appreciate this conclusion, we can note

z

l m = 3,  = ±3l

z

l m = 3,  = ±2l

z

l m = 3,  = ±1l

z

l m = 3,  = 0l

Fig. 3.23 The real parts of the
wavefunctions for the seven atomic

orbitals with l¼3. Note that

depicted in this way the unique form

of the wavefunction with ml¼ 0 is
seen to be a part of a family of

cylindrically symmetrical functions.

To derive the expressions for

the d-orbitals, we have also

used the trigonometric relations

cos 2f¼ cos2f� sin2f and

sin 2f¼ 2 sin f cos f.
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that the virial theorem (Section 2.17) for a system in which the potential is

Coulombic (s¼ �1) implies that

hEKi ¼ � 1
2 hEPi ð3:51Þ

However, we have just seen that the mean value of 1/r is independent of l;

therefore both the average potential energy and (by the virial theorem)

the average kinetic energy are independent of l. Hence the total energy is

independent of l, and all orbitals of a given shell have the same energy.

Because the permissible values of l are l¼0, 1, . . . , n� 1, and for each value

of l there are 2lþ 1 orbitals, the degeneracy of a level with quantum number

n is

gn ¼
Xn�1

l¼0

ð2l þ 1Þ ¼ n2 ð3:52Þ

as alluded to in Section 3.11. The degeneracy of orbitals with the same value

of n but different l is unique to hydrogenic atoms and is lost in the presence of

more than one electron. However, the degeneracy of the orbitals with dif-

ferent values of ml but the same values of n and l remains even in the presence

of many electrons7 because orbitals with different ml differ only in the

orientation of their angular momentum relative to an arbitrary axis.

The high degeneracy of a hydrogenic atom is an example of an acci-

dental degeneracy, because there is no obvious rotation of the atom that

allows an s-orbital to be transformed into a p-orbital, or some other orbital

(recall Section 2.15). However, the Coulomb potential does have a hidden

symmetry, a symmetry that is not immediately apparent. This hidden

symmetry shows up in spaces of dimension higher than 3. It implies that a

four-dimensional being would be able to see at a glance that a 2s-orbital

can be rotated into a 2p-orbital, and would therefore not be surprised at

their degeneracy, any more than we are surprised at the degeneracy of

the three 2p-orbitals. A way of illustrating this hidden symmetry is

shown in Fig. 3.24, where we have imagined how a two-dimensional being

might experience the projection of a patterned sphere. It is quite easy for us

to see that one of the rotations of the sphere results in a change in the

projection of the sphere which would lead a Flatlander to think that a

p-orbital has been transformed into an s-orbital. We, in our three dimen-

sions, can easily see that the orbitals are related by symmetry; the low-

dimensional being, however, might not, and would remain puzzled about

the degeneracy. The hydrogen atom has exactly the same kind of higher-

dimensional symmetry.

(a)

(b)

(c)

Fig. 3.24 A representation of

the origin of the degeneracy of

2s- and 2p-orbitals in hydrogenic
atoms. The object (a) can be rotated

into (b), corresponding (when the

projection on the two-dimensional

plane is inspected) to the rotation
of a 2py-orbital into a 2px-orbital.

However, rotation about another

axis results in a projection that

corresponds to a 2s-orbital (c).
Thus, in a space of higher

dimension, rotations can

interconvert 2s- and 2p-orbitals.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. The degeneracy of states with different values of ml can be removed by the presence of an

external electric or magnetic field (Sections 7.19--7.21).
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P R O B L E M S

3.1 The rotation of the HI molecule can be pictured as an
orbiting of the hydrogen atom at a radius of 160 pm about a
virtually stationary I atom. If the rotation is thought of as
taking place in a plane (a restriction removed later in
Problem 3.14), what are the rotational energy levels?
What wavelength of radiation is emitted in the transition
ml¼þ1!ml¼ 0?

3.2 Confirm eqn 3.2 for the laplacian in two dimensions.

3.3 Show that lz¼ (�h/i)q/qf (that is, confirm eqn 3.9) for a
particle confined to a planar surface.

3.4 Show that the wavefunctions in eqn 3.11 are mutually
orthogonal.

3.5 Calculate the rotational energy levels of a compact
disk of radius 10 cm, mass 50 g free to rotate in a plane.
To what value of ml does a rotation rate of 100 Hz
correspond?

3.6 Construct the analogues of Figs 3.4 and 3.5 for the
states of a rotor with ml¼þ3 and þ4.

3.7 (a) Construct a wavepacket C ¼ N
P1

ml¼0ð1=ml!Þeimlf

and normalize it to unity. Sketch the form of jC j 2 for
0 � f� 2p. (b) Calculate hfi, hsin fi, and hlzi. (c) Why
is hlzi� �h? Hint. Draw on a variety of pieces of
information, including

P1
n¼0 xn=n! ¼ ex and the following

integrals:Z 2p

0

ez cosfdf ¼ 2pI0ðzÞ
Z 2p

0

cosf ez cosfdf ¼ 2pI1ðzÞ

with I0(2)¼ 2.280 . . . , I1(2)¼ 1.591 . . . ; the I(z) are
modified Bessel functions.

3.8 Investigate the properties of the more general
wavepacket C ¼ N

P1
ml¼0ðaml=ml!Þeimlf and show that

when a is large hlzi� a�h. Hint. Proceed as in the last
problem. The large-value expansions of I0(z) and I1(z) are
I0(z)’ I1(z)’ ez/(2pz)1/2.

3.9 Confirm that the wavefunctions for a particle on a
sphere may be written c(y,f)¼Y(y)F(f) by the method of
separation of variables, and find the equation for Y.

3.10 Confirm eqn 3.18 for the laplacian in three
dimensions.

3.11 Confirm that the Schrödinger equation for a particle
free to rotate in three dimensions does indeed separate into
equations for the variation with y and f.

3.12 (a) Confirm that Y1,þ1 and Y2,0 as listed in Table 3.1
are solutions of the Schrödinger equation for a particle on a
sphere. (b) Confirm by explicit integration that Y1,þ 1 and
Y2,0 are normalized and mutually orthogonal. Hint. The

volume element for the integration is siny dy df, with 0 � f
� 2p and 0 � y� p.

3.13 (a) Confirm that the radius of gyration of a solid
uniform sphere of radius R is r¼ (2

5)
1/2R. (b) What is the

radius of gyration of a solid uniform cylinder of radius R
and length l?

3.14 Modify Problem 3.1 so that the molecule is free to
rotate in three dimensions. Calculate the energies and
degeneracies of the lowest three rotational levels, and
predict the wavelength of radiation emitted in the l¼ 1!0
transition. In which region of the electromagnetic spectrum
does this wavelength appear?

3.15 Calculate the angle that the angular momentum vector
makes with the z-axis when the system is described by the
wavefunction clml

. Show that the minimum angle
approaches zero as l approaches infinity. Calculate the
allowed angles when l is 1, 2, and 3.

3.16 Draw the analogues of Fig. 3.23 for l¼ 2. Observe
how the maxima of jY j 2 migrate into the equatorial plane
as jml j increases, and relate the diagrams to the
conclusions drawn in Problem 3.15.

3.17 Calculate the mean kinetic and potential energies
of an electron in the ground state of the hydrogen
atom, and confirm that the virial theorem is satisfied.
Hint. Evaluate hTi¼ � (�h2/2m)

R
c1s
� r2c1sdt and hVi¼

� (e2/4pe0)
R
c1s
� (1/r)c1sdt. The laplacian is given in

eqn 3.18 and the virial theorem is dealt with in Further
information 3.

3.18 Confirm that the radial wavefunctions u10, u20, and u31

satisfy the radial wave equation, eqn 3.40. Use Table 3.2.

3.19 Locate the radial nodes of the (a) 2s-orbital,
(b) 3s-orbital of the hydrogen atom.

3.20 Calculate (a) the mean radius, (b) the mean square
radius, and (c) the most probable radius of the 1s-, 2s-,
and 3s-orbitals of a hydrogenic atom of atomic number Z.
Hint. For the most probable radius look for the principal
maximum of the radial distribution function.

3.21 Calculate the probability of finding an electron
within a sphere of radius a0 for (a) a 3s-orbital,
(b) a 3p-orbital of the hydrogen atom.

3.22 Calculate the values of (a) hri and (b) h1/ri for
a 3s- and a 3p-orbital.

3.23 Confirm that c1s and c2s are mutually orthogonal.

3.24 A quantity important in some branches of
spectroscopy (Section 13.16) is the probability of an
electron being found at the same location as the nucleus.
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Evaluate this probability density for an electron in the
1s-, 2s-, and 3s-orbitals of a hydrogenic atom.

3.25 Another quantity of interest in spectroscopy is the
average value of l/r3 (for example, the average magnetic
dipole interaction between the electron and nuclear
magnetic moments depends on it). Evaluate h1/r3i for an
electron in a 2p-orbital of a hydrogenic atom.

3.26 Calculate the difference in ionization energies of 1H
and 2H on the basis of differences in their reduced masses.

3.27 For a given principal quantum number n, l takes the
values 0, 1, . . . , n� 1 and for each l, ml takes the values
l, l� 1, . . . ,� l. Confirm that the degeneracy of the term
with principal quantum number n is equal to n2 in a
hydrogenic atom.

3.28 Confirm, by drawing pictures like those in Fig. 3.24,
that a whimsical Flatlander might be shown that 3s-, 3p-,
and 3d-orbitals are degenerate.

3.29 The state of the electron in a Heþ ion is described
by the wavefunction: c(r,y,f)¼R41(r)Y11(y,f). Determine
(a) the energy of the electron; (b) the magnitude of the
angular momentum vector of the electron; and (c) the
projection of the angular momentum vector on to the z-axis.
In addition, draw as complete a picture as possible of the
vector model of the electron angular momentum. In your
picture, specify as many of the lengths and angles as
possible. Hint. For the last part of this problem, you need not
be concerned with the radial component of c.

3.30 A diatomic molecule of reduced mass
2.000
 10�26 kg and fixed bond length 250.0 pm is
rotating about its centre of mass in the xy plane. The
state of the molecule is described by the normalized
wavefunction c(f). When the total angular momentum of
different molecules is measured, two possible results are
obtained: a value of 3�h for 25 per cent of the time and a
value of �3�h for 75 per cent of the time. However, when
the rotational energy of the molecules is measured, the
result is surprising. (a) What is the expectation value of
the angular momentum? (b) Write down an expression
for the normalized wavefunction c(f). (c) What is the
result of measuring the energy? Explain (briefly) why
you, with your knowledge of quantum mechanics, are not
surprised by what is found.

3.31 The state of the electron in a Li2þ ion is described by
the normalized wavefunction

cðr, y,fÞ ¼ �ð13Þ
1=2R42ðrÞY2;�1ðy,fÞ þ 2

3iR32ðrÞY2;1ðy,fÞ
� ð29Þ

1=2R10ðrÞY0;0ðy,fÞ

(a) If the total energy of different Li2þ ions in this state is
measured, what values will be found? (b) If more than
one value is found, what is the probability of obtaining
each result and what is the average value? (c) If the
magnitude of the total angular momentum is measured,
what values will be found? (d) If more than one value is
possible, what is the probability of obtaining each result
and what is the average value?
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In this chapter, we develop the material introduced in Chapter 3 by showing

that many of the results obtained there can be inferred from the properties of

operators, as introduced in Chapter 1. For instance, although we have seen

that solving the Schrödinger equation leads to the conclusion that orbital

angular momentum is quantized, the same conclusion can in fact be

reached from the angular momentum operators directly without solving

the Schrödinger equation explicitly. A further point is that because the

development in this chapter will be based solely on the commutation pro-

perties of the angular momentum operators, it follows that the same con-

clusions apply to observables that are described by operators with the same

commutation properties. Therefore, whenever we meet a set of operators

with the angular momentum commutation rules, we will immediately know

all the properties of the corresponding observables. This generality is one

of the reasons why angular momentum is of such central importance in

quantum mechanics.

Angular momentum has many more mundane applications. It is central to

the discussion of the structures of atoms (we have already caught a glimpse of

that in the discussion of hydrogenic atoms), to the discussion of the rotation

of molecules, as well as to virtually all forms of spectroscopy. We shall draw

heavily on this material when we turn to the applications of quantum

mechanics in Chapter 7 onwards.

The angular momentum operators

It follows from the general introduction to quantum mechanics in Chapter 1,

that the quantum mechanical operators for angular momentum can be con-

structed by replacing the position, q, and linear momentum, pq, variables in

the classical definition of angular momentum by operators that satisfy the

commutation relation

½q, pq0 � ¼ i�hdqq0 ð4:1Þ

We shall set up these angular momentum operators and then show how to

determine their commutation relations.

Angular momentum

The angular momentum operators
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4.1 The operators and their commutation relations

In classical mechanics, the angular momentum, l, of a particle travelling with

linear momentum p at an instantaneous position r on its path is defined as the

vector product l¼ r� p (Fig. 4.1). Note that l displays the sense of rotation

according to the right-hand screw rule: it points in the direction a right-hand

(conventional) screw travels when it is turned in the same sense as the rotation.

If the position of the particle is expressed in terms of the components of

the vector

r ¼ xiþ yj þ zk

where i, j, and k are mutually orthogonal unit vectors, and the linear

momentum is expressed in terms of its components,

p ¼ pxiþ pyj þ pzk

then it follows that the angular momentum can be expressed in terms of its

components

l ¼ lxiþ lyj þ lzk

as

l ¼ r � p ¼ ðypz 	 zpyÞiþ ðzpx 	 xpzÞj þ ðxpy 	 ypxÞk ð4:2Þ

We can therefore identify the three components of the angular momentum as

lx ¼ ypz 	 zpy ly ¼ zpx 	 xpz lz ¼ xpy 	 ypx ð4:3Þ

Note how each component can be generated from its predecessor by cyclic

permutation of x, y, and z. The expression for lz matches that given by eqn 3.8.

The magnitude, l, of the angular momentum is related to its components by

the normal expression for constructing the magnitude of a vector:

l2 ¼ l2x þ l2y þ l2z ð4:4Þ

Classical mechanics puts no constraints on the magnitude of angular

momentum, which is consistent with the kinetic energy of rotation E¼ l2/2I

being continuously variable too. Nor does it put any constraints on the

components of angular momentum about the three axes, other than the

requirement, to be consistent with eqn 4.4, that none of the components

exceeds the magnitude (jlqj � l).

The definitions of the components and the magnitude carry over into

quantum mechanics, with the q and pq in the definitions of the lq interpreted

as operators. The operators lq in the position representation are obtained, as

explained in Section 1.5, by replacing q by q� and pq by (�h/i)q/qq:

lx ¼
�h

i
y
q
qz
	 z

q
qy

� �
ly ¼

�h

i
z
q
qx
	 x

q
qz

� �
lz ¼

�h

i
x
q
qy
	 y

q
qx

� �
ð4:5Þ

However, instead of developing the properties of angular momentum in a

specific representation, it is more general, more powerful, and more time-

saving to develop them without selecting a representation. Later in the

chapter we shall make use of the fact that because the operators lq and l2

l

r p

Fig. 4.1 The definition of orbital

angular momentum as l¼ r�p.

Note that the angular
momentum vector l stands

perpendicular to the plane of

the motion of the particle.
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correspond to observables, they must be hermitian (Section 1.8). The

property of hermiticity can be demonstrated explicitly in the position

representation (see Example 1.5); but it must be true in any representation if

the operators are to stand for observables.

To make progress, we need to establish the commutation relations of the lq
operators. Consider first the commutator of lx and ly:

½lx, ly� ¼ ½ypz 	 zpy, zpx 	 xpz�
¼ ½ypz, zpx� 	 ½ypz, xpz� 	 ½zpy, zpx� þ ½zpy, xpz�
¼ y½pz, z�px 	 0	 0þ xpy½z, pz�
¼ i�hð	ypx þ xpyÞ
¼ i�hlz ð4:6Þ

In line 1 we have inserted the definitions. In line 2 we have expanded the

commutators term by term. In line 3 we have used the fact that y and px

commute with each other and also with z and pz. The same is true of x and py.

The remaining commutators can be derived in the same way, but it is more

efficient to note that because the three operators lq are obtained from one

another by cyclic permutation, then the commutators can be obtained in the

same way. We therefore conclude that

½lx, ly� ¼ i�hlz ½ly, lz� ¼ i�hlx ½lz, lx� ¼ i�hly ð4:7Þ

The remaining operator is l2, the operator corresponding to the square of

the magnitude of the angular momentum. We need its commutator with the

operators lq, and proceed as follows. First, we write

½l2, lz� ¼ ½l2x þ l2y þ l2z , lz� ¼ ½l2x, lz� þ ½l2y , lz�

We have used the fact that the commutator of l2z and lz is zero:

½l2z , lz� ¼ l2z lz 	 lzl
2
z ¼ l3z 	 l3z ¼ 0

Next, consider the following commutator, which we develop by drawing on

the three fundamental relations derived above:

½l2x, lz� ¼ lxlxlz 	 lzlxlx

¼ lxlxlz 	 lxlzlx þ lxlzlx 	 lzlxlx

¼ lx½lx, lz� þ ½lx, lz�lx
¼ 	i�hðlxly þ lylxÞ

Similarly,

½l2y , lz� ¼ i�hðlxly þ lylxÞ

The sum of [l2x, lz] and [l2y , lz] is zero, so we can conclude that the commutator

of l2 with lz is zero. Moreover, because lx, ly, and lz occur symmetrically in l2, all

three operators must commute with l2 if any one of them does. That is,

½l2, lq� ¼ 0 ð4:8Þ

for all q.

The commutation relations in eqns 4.7 and 4.8 are the foundations for the

entire theory of angular momentum. Whenever we encounter four operators
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having these commutation relations, we know that the properties of the

observables they represent are identical to the properties we are about to

derive. Therefore, we shall say that an observable is an angular momentum if

its operators satisfy these commutation relations.1

4.2 Angular momentum observables

We saw in Section 1.16 that observables are complementary and restricted by

the uncertainty relation if their operators do not commute, and we have just

seen that lz does not commute with either lx or ly. Therefore, although we can

specify any one of these components, we cannot specify more than one.

However, l2 does commute with all three components, so the magnitude of

the angular momentum may be specified simultaneously with any of its

components. These conclusions are the quantum mechanical basis of the

‘vector model’ of angular momentum introduced in Section 3.6, where we

represent an angular momentum state by a vector of indeterminate orienta-

tion on a cone of given side (the magnitude of the momentum) and height (the

eigenvalue of lz, Fig. 4.2).

At this point, though, we can begin to see that the vector model must be

regarded with caution. The commutation relations in eqn 4.7 can be written

in a compact fashion as follows:

l � l ¼ i�hl ð4:9Þ

To confirm this relation, write the left-hand side as a determinant and expand

it; then compare it term-by-term with the expression on the right-hand side:

this procedure reproduces the three commutation relations (see Problem 4.4).

However, it is an elementary feature of vector algebra that the vector product

of a vector with itself is zero (the magnitude of a� b is proportional to sin y,

where y is the angle between the vectors; but when the two vectors are

identical that angle is zero). Therefore, because the vector product of l with

itself is not zero, we have to conclude that l is not a vector. The vector model

is useful only if we realize that it is not the whole truth, and note that l is a

vector operator, not a classical vector.

4.3 The shift operators

It will prove expedient to introduce linear combinations of the angular

momentum operators, called the shift operators. These operators will prove

to be particularly useful for establishing the properties of angular momentum

and for the evaluation of matrix elements of angular momentum operators.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Because all the properties of the observables are the same, this seems to be an appropriate

course of action. However, the procedure does capture some strange bed-fellows. The electric

charge of fundamental particles is described by operators that satisfy the same set of

communication relations, but should we regard it—or imagine it—as an angular momentum?

Electron spin is also described by the same set of communication relations, but should we regard

it—or imagine it—as an angular momentum?

z Eigenvalue
of lz

Square-root
of the eigenvalue
of l 2

Fig. 4.2 The cone used to

represent a state of angular

momentum with specified

magnitude and z-component.
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One operator, lþ , is called the raising operator; the other, l	 , is called the

lowering operator. They are defined as follows:

lþ ¼ lx þ ily l	 ¼ lx 	 ily ð4:10Þ
The inverse relations are

lx ¼
lþ þ l	

2
ly ¼

lþ 	 l	
2i

ð4:11Þ

We shall require the commutators of the shift operators. They are easily

derived from the fundamental commutation relations. For example,

½lz, lþ� ¼ ½lz, lx� þ i½lz, ly� ¼ i�hly þ �hlx ¼ �hlþ

The other commutation relations are obtained similarly, and all three are

½lz, lþ� ¼ �hlþ ½lz, l	� ¼ 	�hl	 ½lþ, l	� ¼ 2�hlz ð4:12Þ
Furthermore, because l2 commutes with each of its components, it also

commutes with l�. Therefore, we can add to these relations the rule

½l2, l�� ¼ 0 ð4:13Þ

The definition of the states

The next task is to see how the commutation relations govern the values of the

permitted eigenvalues of l2 and any one of the components lq. It is conven-

tional to call the selected component lz, but that is entirely arbitrary (as is the

choice of the direction denoted z). In the course of this development we shall

discover that the solutions found in Chapter 3 are incomplete in a very

important respect. We shall also set up an elegant way of constructing the

spherical harmonics, and find a simple way of evaluating the matrix elements

of angular momentum operators.

4.4 The effect of the shift operators

We shall suppose that the simultaneous eigenstates of l2 and lz are dis-

tinguished by two quantum numbers, which for the time being we shall

denote l and ml. The eigenstates are therefore denoted jl, mli. We define ml

through the relation

lzjl, mli ¼ ml�hjl, mli ð4:14Þ
This relation must be true, because �h has the same dimensions as an angular

momentum (M L2 T	1), so the eigenvalue of lz must be a numerical multiple

of �h; we are not presupposing that ml is restricted to discrete values, but that

will emerge in due course. All we know is that ml is a real number: that

follows from the hermiticity of lz.

Because l2 commutes with lz, the state jl, mli is also an eigenstate of l2. At

this stage we shall allow for the possibility that the eigenvalues of l2 depend

on both quantum numbers, and write

l2jl, mli ¼ f ðl, mlÞ�h2jl, mli ð4:15Þ
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where f is a function that we need to determine: from the work we did in

Chapter 3 we know that it will turn out to be equal to l(lþ 1) where l is the

maximum value of jmlj, but that is something we shall derive. All we know at

this stage is that because l2 is hermitian, f is real. Moreover, because l2 is the

sum of squares of hermitian operators, we also know (recall Example 1.9)

that its eigenvalues are non-negative.

Because l2 	 l2z ¼ l2x þ l2y , it follows that the eigenvalues of the operator

l2 	 lz
2 are non-negative:

ðl2 	 l2z Þjl, mli ¼ ðl2x þ l2yÞjl, mli � 0

However, we also know from the definitions of the effects of l2 and l2z that

ðl2 	 l2z Þjl, mli ¼ ff ðl, mlÞ 	m2
l g�h

2jl, mli

For these two relations to be consistent, it follows that

f ðl, mlÞ � m2
l ð4:16Þ

To take the next step we use the commutation relations to establish the

effect of the shift operators (and see why they are so-called). Consider the effect

of the operator lþ on jl, mli. Because jl, mli is an eigenstate of neither lx nor ly,
when lþ acts on it, it generates a new state. First, we show that lþjl,mli
is an eigenstate of l2 with the same value of f; that is jl,mli and lþjl,mli
share the same eigenvalue of l2. To do so, consider the effect of l2 on the state

obtained by acting with lþ :

l2lþjl, mli ¼ lþl2jl, mli ¼ lþf ðl, mlÞ�h2jl, mli ¼ f ðl, mlÞ�h2lþjl, mli

where the first equality follows from the fact that l2 and lþ commute. It

follows, because the eigenvalue of l2 for the state lþjl, mli is the same as that

for the original state jl, mli, that lþ leaves the magnitude of the angular

momentum unchanged when it acts.

Now consider the same argument applied to jl, mli treated as an eigenstate

of lz. The conclusion will be different, because lþ and lz do not commute.

Instead, we must use the following string of equalities to find the effect of lz on

lþjl,mli:

lzlþjl, mli ¼ ðlþlz þ ½lz, lþ�Þjl, mli ¼ ðlþlz þ �hlþÞjl, mli
¼ ðlþml�hþ �hlþÞjl, mli ¼ ðml þ 1Þ�hlþjl, mli

However, we know from eqn 4.14 that

lzjl, ml þ 1i ¼ ðml þ 1Þ�hjl, ml þ 1i

Therefore, the state lþjl, mlimust be proportional to the state jl, mlþ 1i and

we can write

lþjl, mli ¼ cþðl, mlÞ�hjl, ml þ 1i ð4:17aÞ

where cþ (l, ml) is a dimensionless numerical coefficient which in due course

we shall need to find. We now see why lþ is called a raising operator: when

it operates on a state with z-component ml�h, it generates from it a state

with the same magnitude of angular momentum but with a z-component

one unit greater, (mlþ1)�h (Fig. 4.3). In exactly the same way, the effect

Recall that if j!i is an

eigenstate of O, then

O2j!i¼O!j!i¼!Oj!i
¼!2j!i.

ml

ml +1

ml –1

l+

l–

Fig. 4.3 The effect of the shift

operators lþ and l	 .
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of the operator l	 can be shown to lower the z-component from ml�h to

(ml	 1)�h:

l	jl, mli ¼ c	ðl, mlÞ�hjl, ml 	 1i ð4:17bÞ

where c	 (l, ml) is another dimensionless numerical coefficient.

4.5 The eigenvalues of the angular momentum

The shift operators step ml by �1 each time they operate. However, we have

already established from the hermiticity of the operators that ml
2 cannot

exceed f(l, ml); it follows that ml must have a maximum value, which we shall

denote l. When we operate with lþ on a state in which ml ¼ l, we generate

nothing, because there is no state with a larger value of ml:

lþjl, li ¼ 0

This relation will give us the value of the unknown function f. When acted on

by l	, it gives

l	lþjl, li ¼ 0

However, the product l	 lþ can be expanded as follows:

l	lþ ¼ ðlx 	 ilyÞðlx þ ilyÞ ¼ l2x þ l2y þ ilxly 	 ilylx ¼ l2x þ l2y þ i½lx, ly�
¼ l2 	 l2z þ iði�hlzÞ ð4:18Þ

Therefore, the last equation can be written

ðl2 	 l2z 	 �hlzÞjl, li ¼ 0

When we rearrange this expression and use the definition of the effect of lz on

a state, we obtain

l2jl, li ¼ ðl2z þ �hlzÞjl, li ¼ ðl2 þ lÞ�h2jl, li

It follows that

f ðl, lÞ ¼ lðl þ 1Þ

We have already established that when l	 acts on a state, it leaves the

eigenvalue of l2 unchanged. Therefore, all the states jl, li, jl, l	 1i, etc. have

the same eigenvalue of l2. Therefore,

f ðl, mlÞ ¼ lðl þ 1Þ for ml ¼ l, l 	 1, . . .

We know that there is a lower bound on ml because the eigenvalue of lz
2

cannot exceed the eigenvalue of l2, and for the moment we denote this lower

bound by k. It is quite easy to show that k ¼	l. To see that this is the case,

we start from l	jl,ki¼ 0, and by a similar argument but using lþ l	jl,ki¼0,

conclude that f(l,k)¼ k(k	 1). However, because f(l,ml) is independent of

ml, we must have l(lþ 1)¼ k(k	 1). Of the two solutions k ¼	l and

k¼ lþ1, only the former is acceptable (the lower bound must be below the

upper bound!). Therefore,

f ðl, mlÞ ¼ lðl þ 1Þ for ml ¼ l, l 	 1, . . . , 	l
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At this point we can put the spare quantum number l to work, and identify

it as l, the maximum value of jmlj. Then,

f ðl, mlÞ ¼ lðl þ 1Þ for ml ¼ l, l 	 1, . . . , 	l ð4:19Þ

That is, we now know that

l2jl, mli ¼ lðl þ 1Þ�h2jl, mli ð4:20Þ

and we see that the value of l (the maximum value of ml) determines the

magnitude of the angular momentum. We already know that

lzjl, mli ¼ ml�hjl, mli ð4:21Þ

and so we have an effectively complete description of angular momentum.

Finally, we need to decide on the allowed values of l and ml. As we have

seen, the shift operators step the states jl, mli from jl,þ li to jl,	li in unit

steps. The symmetry of this ladder of states allows for only two types of value

for l: it may be integral or half-integral. For example, we can have l¼2, to

give the ladder ml¼ þ2, þ1, 0, 	1, 	2, or we could have l¼ 3
2, to give

ml¼þ3
2, þ1

2, 	1
2, 	3

2. We cannot obtain a symmetrical ladder with any other

type of value (l¼ 3
4, for instance, would give the unsymmetrical ladder

ml¼þ3
4, 	1

4).

We can summarize the conclusions so far. On the basis of the hermiticity of

the angular momentum operators and their commutation relations, we have

shown:

1. The magnitude of the angular momentum is confined to the values

{l(lþ 1)}1/2�h, with l¼ 0, 1
2, 1, . . . .

2. The component on an arbitrary z-axis is limited to the 2lþ1 values ml�h
with ml¼ l, l	 1, . . . ,	l.

These conclusions differ in one detail from those obtained by solving the

Schrödinger equation in Chapter 3. There we saw that l was confined to the

integral values l¼ 0, 1, 2, . . . . In that analysis, we obtained the permitted

values of l by imposing cyclic boundary conditions. What the present analysis

does is to show that angular momentum may be described by half-integral

quantum numbers, but such quantum numbers do not necessarily apply to

a particular physical situation. For orbital angular momentum, where the

Born interpretation requires cyclic boundary conditions to be satisfied, only

integral values are admissible. Where cyclic boundary conditions are not

relevant, as for the intrinsic angular momentum known as spin, the half-

integral values may be appropriate.

We shall use the following notation to emphasize that there is a distinction

between angular momenta according to the boundary conditions that have to

be satisfied. For orbital angular momenta, when the boundary conditions on

the wavefunctions allow only integral quantum numbers, we shall use the

notation l and ml and write states as jl,mli. When internal angular momentum

(spin) is being considered, we shall use the notation s and ms for the (possibly

half-integral) quantum numbers and write the states js,msi. When the dis-

cussion is general and applicable to either kind of angular momentum, we

shall use the quantum numbers j and mj, and write the states as jj, mji. The
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expressions we have deduced so far may therefore be written in this general

notation as

j2jj, mji ¼ jð jþ 1Þ�h2jj, mji jzjj, mji ¼ mj�hjj, mji ð4:22Þ

with mj¼ j, j	1, . . . , 	j.

4.6 The matrix elements of the angular momentum

One outstanding problem at this point is the value of the coefficient c�
introduced in connection with the effect of the shift operators:

j�jj, mji ¼ c�ð j, mjÞ�hjj, mj � 1i ð4:23Þ

Because the states jj,mji form an orthonormal set, multiplication from the left

by the bra h j,mj � 1j gives

h j, mj � 1jj�jj, mji ¼ c�ð j, mjÞ�h ð4:24Þ

So, we need to know the coefficients if we want to know the values of these

matrix elements. Matrix elements of this kind occur in connection with the

calculation of magnetic properties and the intensities of transitions in mag-

netic resonance (Chapter 13).

The first step involves finding two expressions for the matrix elements of

the operator j	 jþ . First, we can use eqn 4.18 to write

j	jþjj, mji ¼ ð j2 	 j2z 	 �hjzÞjj, mji ¼ f jð jþ 1Þ 	mjðmj þ 1Þg�h2jj, mji

Alternatively, we can use eqn 4.23 to write

j	jþjj, mji ¼ j	cþð j, mjÞ�hjj, mj þ 1i ¼ cþð j, mjÞc	ð j, mj þ 1Þ�h2jj, mji

Comparison of the two expressions shows that

cþð j, mjÞc	ð j, mj þ 1Þ ¼ jð jþ 1Þ 	mjðmj þ 1Þ ð4:25Þ

The next step is to find a relation between the two coefficients that occur in

the last expression. We shall base the calculation on the matrix element

h j, mjjj	jj, mj þ 1i ¼ c	ð j, mj þ 1Þ�h

and the hermiticity of jx and jy. Consider the following string of

manipulations:

h j,mjjj	jj,mjþ1i ¼ h j,mjjjx	 ijyjj,mjþ1i
¼ h j,mjjjxjj,mjþ 1i	 ih j,mjjjyjj,mjþ1i
¼ h j,mjþ 1jjxjj,mji� 	 ih j,mjþ 1jjyjj,mji� ½by hermiticity�
¼ fh j,mjþ1jjxjj,mjiþ ih j,mjþ 1jjyjj,mjig�

¼ h j,mjþ 1jjþjj,mji�

The relation just derived, which reads

h j, mjjj	jj, mj þ 1i ¼ h j, mj þ 1jjþjj, mji� ð4:26Þ

shows that j	 and jþ are each other’s hermitian conjugate. Neither

operator is hermitian, and so neither operator corresponds to a physical
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observable. In general, two operators A and B are each other’s hermitian

conjugate if

hajAjbi ¼ hbjBjai� ð4:27Þ

The relation we have just derived implies a relation between the coefficients

c�. Because the matrix element on the left of eqn 4.26 is equal to

c	 (j,mjþ 1)�h and that on the right is equal to c�þ(j,mj)�h, it follows that

c	ð j, mj þ 1Þ ¼ c�þð j, mjÞ ð4:28Þ

It then follows from eqn 4.25 that

jcþð j, mjÞj2 ¼ jð jþ 1Þ 	mjðmj þ 1Þ

If we make a convenient choice of phase (choosing cþ to be real and positive),

it follows that

cþð j, mjÞ ¼ fjð jþ 1Þ 	mjðmj þ 1Þg1=2 ð4:29aÞ

Moreover, because c	 (j,mj)¼ cþ
�(j, mj	 1), we can also write

c	ð j, mjÞ ¼ fjð jþ 1Þ 	mjðmj 	 1Þg1=2 ð4:29bÞ

With these matrix elements established, we can calculate a wide range of

other quantities, as illustrated in the following example.

Example 4.1 How to evaluate matrix elements of the angular momentum

Evaluate the matrix elements (a) hj, mjþ 1jjxjj, mji, (b) h j, mjþ 2jjxjj, mji, and

(c) h j, mjþ 2jjx2jj, mji.

Method. Because we know the matrix elements of the shift operators,

one approach is to express all the operators in the questions in terms of

them and then to use eqns 4.24 and 4.29. Note that j2x ¼ jxjx and

h j0;m0jjj;mji ¼ dj0jdmj0mj
.

Answer.

ðaÞ h j, mj þ 1jjxjj, mji ¼ 1
2 h j, mj þ 1jjþ þ j	jj, mji

¼ 1
2 h j, mj þ 1jjþjj, mji þ 1

2 h j, mj þ 1jj	jj, mji
¼ 1

2 cþð j, mjÞ�h
because h j, mjþ 1jj	jj, mji / hj, mjþ 1jj, mj	 1i¼ 0.

ðbÞ h j, mj þ 2jjxjj, mji ¼ 0

because j� steps mj only by one unit, and the resulting states are orthogonal to

the state jj, mjþ 2i.

ðcÞ h j, mj þ 2jj2xjj, mji ¼ 1
4 h j, mj þ 2jj2þ þ j2	 þ jþj	 þ j	jþjj, mji

¼ 1
4 h j, mj þ 2jj2þjj, mji

¼ 1
4 cþð j, mj þ 1Þcþð j, mjÞ�h2

¼ 1
4 fjð jþ 1Þ	ðmj þ 1Þðmj þ 2Þg1=2

� f jð jþ 1Þ 	mjðmj þ 1Þg1=2�h2

4.6 THE MATRIX ELEMENTS OF THE ANGULAR MOMENTUM j 107



Comment. Note that it is quite easy to spot short-cuts, as in (c), where it

should be obvious that only j2þ can contribute to the matrix element.

Self-test 4.1. Evaluate the matrix element hj,mjþ 1jjx3jj,mji.

4.7 The angular momentum eigenfunctions

Now we consider orbital angular momentum explicitly. This version of the

general theory refers to the angular momentum arising from the distribution

of a particle in space, so it is subject to cyclic boundary conditions on the

wavefunctions. As we saw in Chapter 3, these conditions limit the angular

momentum quantum numbers to integral values, and we denote them l and

ml. In Chapter 3 we saw that the wavefunctions are solutions of a second-

order differential equation, and we asserted (and proved in Further informa-
tion 9) that they were the spherical harmonics. With the work done in this

chapter, we can show that they can also be obtained by solving a first-order

differential equation, which is a much simpler task.

We begin by finding the wavefunction for the state jl,li (for which ml¼ l).

Once this wavefunction has been determined, the wavefunctions for the states

jl,mli can be generated by acting on jl,li with l	 the appropriate number of

times. The equation we have to solve is

lþjl, li ¼ 0

To express this equation as a differential equation, we must adopt a repres-

entation for the operators. In the position representation, the orbital angular

momentum operators are

lx ¼ 	
�h

i
sinf

q
qy
þ cot y cosf

q
qf

� �

ly ¼
�h

i
cosf

q
qy
	 cot y sinf

q
qf

� �

lz ¼
�h

i

q
qf

ð4:30Þ

These operators are obtained from the cartesian forms given in eqn 4.3 by

expressing them in terms of spherical polar coordinates. It follows that the

shift operators in the position representation are

lþ ¼ �heif q
qy
þ i cot y

q
qf

� �

lþ ¼ 	�he	if q
qy
	 i cot y

q
qf

� �
ð4:31Þ

It follows from the equation lþjl, li¼0 that

�heif q
qy
þ i cot y

q
qf

� �
cl;lðy,fÞ ¼ 0

To obtain these expressions

we have used Euler’s relation

e�ix¼ cos x � i sin x and

cot x¼ 1/tan x¼ cos x/sin x.
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This partial differential equation can be separated by writing c(y,f)¼
Y(y)F(f), for in the normal way (substituting, differentiating, and then

dividing through by YF) we then obtain

tan y
Y

dY
dy
¼ 	 i

F
dF
df

According to the usual separation of variables argument, both sides are equal

to a constant, which we denote c. The equation therefore separates into the

following two first-order ordinary differential equations:

tan y
dY
dy
¼ cY

dF
df
¼ icF

The two equations integrate immediately to

Y / sinc y F / eicf

The value of c is found to be l by requiring that lzcl,l¼ lcl,l. Therefore, the

complete solution is

cl;l ¼ N sinl y eilf ð4:32Þ
where N is a normalization constant. This is the explicit form of the spherical

harmonic Yll given in Table 3.1, apart from the normalization constant,

which can be obtained by integration over the surface of a sphere. With this

function found, it is a straightforward matter to apply the operator l	 to

obtain the rest of the functions with a given value of l.

Example 4.2 How to construct wavefunctions for states with ml< l

Construct the wavefunction for the state jl, l	 1i.

Method. We know that l	jl, li¼ c	�hjl, l	 1i. We also know the position

representation form of l	 (eqn 4.31). We need to combine the two expressions.

Answer. In the position representation we have

l	cl;l ¼ 	�he	if q
qy
	 i cot y

q
qf

� �
N sinl yeilf

¼ 	N�he	ifðl sinl	1 y cos y	 iðilÞ cot y sinl yÞeilf

¼ 	2Nl�h sinl	1 y cos y eiðl	1Þf

However, we also know that

l	jl, li ¼ flðl þ 1Þ 	 lðl 	 1Þg1=2�hjl, l 	 1i ¼ ð2lÞ1=2�hjl, l 	 1i
Therefore,

cl;l	1 ¼ 	ð2lÞ1=2N sinl	1y cos eiðl	1Þf

Comment. If cl,l is normalized to unity, then so is cl,l	 1 and all the other states

that can be generated in this way. The normalization constant is

N ¼ 1

2ll!

ð2l þ 1Þ!
4p

� �1=2

Self-test 4.2. Derive an expression for the wavefunction with ml¼ l 	 2 in the

same way.
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4.8 Spin

The Dutch physicists George Uhlenbeck and Samuel Goudsmit realized in

1925 that a great simplification of the description of atomic spectra could be

obtained if it was assumed that an electron possessed an intrinsic angular

momentum with quantum number s¼ 1
2 and which could exist in two states

with ms¼þ1
2, denoted a or ", and ms¼	1

2, denoted b or #. This intrinsic

angular momentum is called the spin of the electron (but footnote 1 of this

chapter should be recalled). This realization shed light on a seminal experi-

ment performed several years earlier by Otto Stern and Walther Gerlach.

The Stern–Gerlach experiment consisted of preparing a beam of silver

atoms and passing them through a strong, inhomogeneous magnetic field.

Stern and Gerlach found that the beam was deflected into two directions and

ascribed the effect to space quantization and the magnetic moment of the

electron. (In an Ag atom, there is a single electron outside a closed shell, so

the atom behaves like a single electron on a heavy platform, the rest of the

atom.) However, Stern and Gerlach did not realize they had discovered

electron spin but rather devised their experiment based on considerations

of orbital angular momentum.2 Moreover, although electron spin was

discovered in 1925, it appears that it was not until 1927 that the Stern–

Gerlach splitting was attributed to the spin of the electron being in either of

two directions, to what we would now interpret as the states with ms¼þ1
2

and 	1
2.

Spin is a purely quantum mechanical phenomenon in the sense that in a

universe in which h ! 0 the spin angular momentum would be zero. Orbital

angular momentum survives in a classical world, because l can be allowed

to approach infinity as h ! 0 and the quantity {l(lþ1)}1/2�h� l�h can be

non-zero. Uhlenbeck and Goudsmit’s proposal was initially no more than

a hypothesis, but when Dirac showed how to combine quantum mechanics

and special relativity, the existence of particles with half-integral angular

momentum quantum numbers appeared automatically.

The angular momentum operators describe spin, but for s¼ 1
2 they do so in

a very simple way. If we denote the state j12,þ1
2i by a and the state j12,	1

2i by

b, then the general expressions given earlier become

sza ¼ þ1
2�ha szb ¼ 	1

2�hb s2a ¼ 3
4�h

2a s2b ¼ 3
4�h

2b ð4:33Þ

and the effects of the shift operators are

sþ a ¼ 0 sþ b ¼ �ha s	 a ¼ �hb s	 b ¼ 0 ð4:34Þ

It follows that the only non-zero matrix elements of the shift operators are

hajsþjbi ¼ hbjs	jai ¼ �h ð4:35Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. An enjoyable and amusing account of the Stern–Gerlach experiment and its interpretation

can be found in Space Quantization: Otto Stern’s Lucky Star, by B. Friedrich and D. Herschbach,

Daedalus, 165, 127 (1998).
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Recall that an arbitrary function

f can be written as a linear

combination of basis set

functions {f1, f2, . . . , fn} as

f¼
P

n cnfn. The function can be

represented as an n� 1

column vector

f ¼

c1

c2

..

.

cn

0
BBB@

1
CCCA

The basis set functions

themselves can be regarded as

column vectors with all

components, except one, equal

to zero.

The operators can be written succinctly in terms of matrices by considering

their effects on the orthonormal basis set {a, b}:

a ¼ 1

0

� �
b ¼ 0

1

� �
ð4:36Þ

With this notation, the effect of the operator sz can be reproduced by the

effect of a two-dimensional matrix:

sza ¼ þ1
2 �h

1 0
0 	1

� �
1
0

� �
¼ þ1

2 �h
1
0

� �
¼ þ1

2 �ha

with a similar expression for the effect of sz on b. Likewise, the effect of sx

on a, which according to eqns 4.11 and 4.34 is sxa¼ 1
2�hb, can be expressed as

follows:

sxa ¼ þ1
2 �h

0 1
1 0

� �
1
0

� �
¼ þ1

2 �h
0
1

� �
¼ þ1

2 �hb

with a similar expression for the effect of sx on b. In fact, all the properties of

the spin-1
2 operators, including their commutation relations, are reproduced

by the matrices:

sx ¼
0 1
1 0

� �
sy ¼

0 	i
i 0

� �
sz ¼

1 0
0 	1

� �
ð4:37Þ

sþ ¼
0 2
0 0

� �
s	 ¼

0 0
2 0

� �

and the relation

sq ¼ 1
2 �hsq ðq ¼ x, y, z, þ ,	Þ ð4:38Þ

The set of matrices sx, sy, sz are known collectively as the Pauli matrices.

These matrices play an important role in the development of the properties of

spin-1
2 systems, and we shall meet them again.

Illustration 4.1 The Pauli representation of commutation relations

To confirm that the Pauli matrices correctly represent the angular momentum

commutation relations, we write

½sx, sy� ¼
0 1

1 0

� �
0 	i

i 0

� �
	

0 	i

i 0

� �
0 1

1 0

� �

¼
i 0

0 	i

� �
	
	i 0

0 i

� �

¼ 2
i 0

0 	i

� �

¼ 2i
1 0

0 	1

� �
¼ 2isz

It then follows from eqn 4.38 that

½sx, sy� ¼ 1
4 �h2½sx, sy� ¼ 1

4 �h2ð2iszÞ ¼ i�hsz

as required.
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The angular momenta of composite systems

We now consider a system in which there are two sources of angular

momentum, which we denote j1 and j2. The system might be a single particle

that possesses both spin and orbital angular momentum, or it might consist of

two particles with spin or orbital angular momentum. The question we

investigate here is what the commutation rules imply for the total angular

momentum j of the system.

4.9 The specification of coupled states

The state of particle 1 is fully specified by reporting the quantum numbers j1
and mj1, and the same is true of particle 2 in terms of its quantum numbers j2
and mj2. If we are to be able to specify the overall state as jj1mj1; j2mj2i, we

need to know whether all the corresponding operators commute with one

another. In fact, operators for independent sources of angular momentum do

commute with one another, and we can write

½ j1q, j2q0� ¼ 0 ð4:39Þ

for all the components q¼ x, y, z and q 0 ¼ x, y, z. One way to confirm this

conclusion is to note that in the position representation the operators are

expressed in terms of the coordinates and derivatives of each particle sepa-

rately, and the derivatives for one particle treat the coordinates of the other

particle as constants. Operators that refer to independent components of a

system always commute with one another. Because the operators j21 and j22 are

defined in terms of their components, which commute, so too do these two

operators. Hence, all four operators j21, j1z, j22, and j2z commute with one

another, and it is permissible to express the state as jj1mj1;j2mj2i.
We now explore whether the total angular momentum, j¼ j1þ j2, can also

be specified. First, we investigate whether j is indeed an angular momentum.

To do so, we evaluate the commutators of its components, such as

½ jx, jy� ¼ ½ j1x þ j2x, j1y þ j2y�
¼ ½ j1x, j1y� þ ½ j2x, j2y� þ ½ j1x, j2y� þ ½ j2x, j1y�
¼ i�hj1z þ i�hj2z þ 0þ 0

¼ i�hjz ð4:40Þ

This commutation relation, and the other two that can be derived from it by

cyclic permutation of the coordinate labels, is characteristic of angular

momentum, so j is an angular momentum (j1 	 j2, on the other hand, is not).

Because j is an angular momentum, we can conclude without further work

that its magnitude is {j(jþ 1)}1/2�h with j integral or half-integral, and its

z-component has the values mj�h with mj¼ j, j	 1, . . . , 	j.

We now need to work towards discovering which values of j can exist in

the system. The initial question is whether we can actually specify j if j1 and

j2 have been specified. Because j21 commutes with all its components and
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j22 commutes with its, and because j2 can be expressed in terms of those same

components, it follows that

½ j2,j21� ¼ ½ j2,j22� ¼ 0 ð4:41Þ

Therefore, we can conclude that the eigenvalues of j21, j22, and j2 can be

specified simultaneously. For instance, a p-electron (for which l¼1 and s¼ 1
2)

can be regarded as having a well-defined total angular momentum with a

magnitude given by some value of j (the actual permitted values of which we

have yet to find).

Because j2 commutes with its own components, in particular it commutes

with jz¼ j1zþ j2z. Therefore, we know that we can specify the value of mj as

well as j. At this point, we have established that a state of coupled angular

momentum can be denoted j j1j2;jmji. Note, however, that we have not yet

established that it can be specified more fully as j j1mj1 j2mj2;jmji because we

have not yet established whether j2 commutes with j1z and j2z. To explore this

point we proceed as follows:

½ j1z, j2� ¼ ½ j1z, j2x� þ ½ j1z, j2y � þ ½ j1z, j2z �

¼ ½ j1z, ð j1x þ j2xÞ2� þ ½ j1z, ð j1y þ j2yÞ2� þ ½ j1z; ð j1z þ j2zÞ2�
¼ ½ j1z, j21x þ 2j1xj2x� þ ½ j1z, j21y þ 2j1yj2y�
¼ ½ j1z, j21x þ j21y� þ 2½ j1z, j1x�j2x þ 2½ j1z, j1y�j2y

¼ ½ j1z, j21 	 j21z� þ 2i�hj1yj2x 	 2i�hj1xj2y

¼ 2i�hð j1yj2x 	 j1xj2yÞ ð4:42Þ

The commutator is not zero, and so we cannot specify mj1 (or mj2) if we

specify j.

It follows from this analysis that we have to make a choice when specifying

the system. Either we use the uncoupled picture jj1mj1;j2mj2i, which leaves the

total angular momentum unspecified and therefore, in effect, says nothing

about the relative orientation of the two momenta, or we use the coupled

picture jj1j2;jmji, which leaves the individual components unspecified. At

this stage, which choice we make is arbitrary. Later, when we consider the

energy of interaction between different angular momenta we shall see that

one picture is more natural than the other. At this stage, the two pictures are

simply alternative ways of specifying a composite system.

4.10 The permitted values of the total angular momentum

If we decide to use the coupled picture, the question arises as to the permis-

sible values of j and mj. We know that the commutation relations permit j to

have any positive integral or half-integral values, but we need to determine

which of these many values actually occur for a given j1 and j2. For example,

the total angular momentum of a p-electron (l¼1 and s ¼ 1
2) is unlikely to

exceed j¼ 3
2.

The allowed values of mj follow immediately from the relation jz¼ j1zþ j2z,

and are

mj ¼ mj1 þmj2 ð4:43Þ
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That is, the total component of angular momentum about an axis is the sum

of the components of the two contributing momenta (Fig. 4.4).

To determine the allowed values of j, we first note that the total

number of states in the uncoupled picture is (2j1þ1)(2j2þ 1)¼ 4j1j2þ2j1þ
2j2þ1. There is only one state in which both components have their maxi-

mum values, mj1¼ j1 and mj2¼ j2, and this state corresponds to mj¼ j1þ j2.

However, the maximum value of mj is by definition j, so the maximum

value of j is j¼ j1þ j2. There are 2jþ 1¼2j1þ 2j2þ1 states corresponding

to this value of j, and so there are a further 4j1j2 states to find.

Although the state with mj¼ j1þ j2 can arise in only one way, the state

with mj¼ j1þ j2	 1 can arise in two ways, from mj1¼ j1	 1 and mj2¼ j2 and

from mj1¼ j1 and mj2¼ j2	 1. The state with j¼ j1þ j2 accounts for only

one of these states (or for one of their two linear combinations), and so there

must be another coupled state for which the maximum value of mj is mj¼
j1þ j2	1. This state corresponds to a state with j¼ j1þ j2	1. A system with

this value of j accounts for a further 2jþ 1¼ 2j1þ2j2	 1 states. The process

can be continued by considering the next lower value of mj, which is

mj¼ j1þ j2	 2, and which can be produced in three ways. The two states with

j¼ j1þ j2 and j¼ j1þ j2	 1 account for two of them; the third (or the third

linear combination) must arise from the state with j¼ j1þ j2	 2. This argu-

ment can be continued, and all the states are accounted for by the time we

have reached j¼ jj1	 j2j (j is a positive number, hence the modulus signs).

Therefore, the permitted states of angular momentum that can arise from a

system composed of two sources of angular momentum are given by the

Clebsch–Gordan series:

j ¼ j1 þ j2, j1 þ j2 	 1, . . ., j j1 	 j2j ð4:44Þ

Example 4.3 Using the Clebsch–Gordan series

What angular momentum states can arise from a system with two sources of

angular momentum, one with j1¼ 1
2 and the other with j2¼ 3

2? Specify the

states.

Method. Use the Clebsch–Gordan series in eqn 4.44 to find the highest and

lowest values of j first, and then complete the series. The composite system has

(2j1þ 1)(2j2þ 1) states, which may be specified either as jj1mj1;j2mj2i or as

jj1j2; jmji.

Answer. The highest and lowest values of j are 1
2þ 3

2¼ 2 and j12	 3
2j ¼ 1,

respectively. So the complete Clebsch–Gordan series is j¼ 2, 1. A specification

of the 4� 2¼ 8 states in the uncoupled representation is:

j 12 ,þ1
2 ; 3

2 ,þ3
2i j 12 ,þ1

2 ; 3
2 ,þ1

2i j 12 ,þ1
2 ; 3

2 ,	1
2i j 12 ,þ1

2 ; 3
2 ,	3

2i
j 12 ,	1

2 ; 3
2 ,þ3

2i j 12 ,	1
2 ; 3

2 ,þ1
2i j 12 ,	1

2 ; 3
2 ,	1

2i j 12 ,	1
2 ; 3

2 ,	3
2i

The alternative specification, in the coupled representation, is

j 12 ,32 ; 2,þ2i j 12 ,32 ; 2,þ1i j 12 ,32 ; 2,0i j 12 ,32 ; 2,	1i j 12 , 3
2 ; 2,	2i

j 12 , 3
2 ; 1,þ1i j 12 , 3

2 ; 1,0i j 12 , 3
2 ; 1,	1i

mj1

mj2

mj = mj1+ mj2

j2

j1

Fig. 4.4 A representation of

the requirement that mj¼mj1þmj2.
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Comment. The eight states in the coupled representation are linear combi-

nations of the eight states in the uncoupled representation. We explore the

relation between them in Section 4.12.

Self-test 4.3. Repeat the question for j1¼ 1 and j2¼ 2.

The Clebsch–Gordan series can be expressed in a simple pictorial way.

Suppose we are given rods of lengths j1 and j2 and are asked for the lengths j of

the third side of a triangle that can be formed using these two rods (with all

three lengths integers or half-integers). Then the answer would be precisely

those given by the Clebsch–Gordan series (Fig. 4.5). For example, j1¼ 1 and

j2¼1 require rods of lengths j¼ 2, 1, 0 to form a triangle. Although the

triangle condition is no more than a simple mnemonic, it does suggest that

angular momenta in quantum mechanics do in some respects behave like

vectors and that the total angular momentum can be regarded as the resultant

of the contributing momenta. The exploration of this point leads to the

‘vector model’ of coupled angular momenta.

4.11 The vector model of coupled angular momenta

The vector model of coupled angular momentum is an attempt to represent

pictorially the features of coupled angular momenta that we have deduced

from the commutation relations. The approach gives insight into the sig-

nificance of various coupling schemes and is often a helpful guide to the

imagination: it puts visual flesh on the operator bones.

The features that the vector diagrams of coupled momenta must express

are as follows:

1. The length of the vector representing the total angular momentum is

{j(jþ 1)}1/2, with j one of the values permitted by the Clebsch–Gordan

series.

2. This vector must lie at an indeterminate angle on a cone about the z-axis

(because jx and jy cannot be specified if jz has been specified).

3. The lengths of the contributing angular momentum vectors are

{j1(j1þ 1)}1/2 and {j2(j2þ1)}1/2. These lengths have definite values even

when j is specified.

4. The projection of the total angular momentum on the z-axis is mj; in the

coupled picture (in which j is specified), the values of mj1 and mj2 are

indefinite, but their sum is equal to mj.

5. In the uncoupled picture (in which j is not specified), the individual

components mj1 and mj2 may be specified, and their sum is equal to mj.

The diagrams in Figs 4.6 and 4.7 capture these points. Figure 4.6 shows

one of the states of the uncoupled picture: both mj1 and mj2 are specified, but

there is no indication of the relative orientation of j1 and j2 apart from the fact

that they lie on their respective cones. The total angular momentum is

therefore indeterminate, for it could be either of the resultants shown in (a) or

(b) or anything in between. Figure 4.7 shows one of the states of the coupled

j2

j1

j1+ j2

|j1– j2|

j1+ j2– 1

j1+ j2– 2

j1+ j2– 3

Fig. 4.5 The triangle condition

corresponding to the Clebsch–Gordan

series. The allowed values of j are those
for which lines of length j, j1, and j2 can

be used to form a triangle.

j1

j1

j2

j2

j

j

(a)

(b)

Fig. 4.6 Two possible states of total

angular momentum that can arise
from two specified contributing

momenta with quantum numbers j1
and j2. The relative orientations of

the contributing momenta on their
cones determine the total magnitude.
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picture. Now the resultant, the total angular momentum, has a well-defined

magnitude and resultant on the z-axis, but the individual components mj1 and

mj2 are indeterminate. It is important not to think of the vectors as actively

precessing around their cones: at this stage of describing it, the vector model is a

display of possible but unspecifiable orientations.

An important example, and one that we shall encounter many times in later

chapters, is the case of two particles with spin s¼ 1
2, such as two electrons or

two protons. For each particle, s¼ 1
2 and ms¼�1

2. In the uncoupled picture,

the electrons may be in any of the four states

a1a2 a1b2 b1a2 b1b2

These four states are illustrated in Fig. 4.8. The individual angular momenta

lie at unspecified positions on their cones and the total angular momentum is

indeterminate.

Now consider the coupled picture. The triangle condition (or the Clebsch–

Gordan series) tells us that the total spin S (upper-case letters are used to

denote the angular momenta of collections of particles) can take the values 1

and 0. When S¼ 0, there is only one possible value of its z-component,

namely 0, corresponding to MS¼ 0. Such a coupled state is called a singlet.

When S¼1, MS¼þ1, 0, 	1, and so this coupled arrangement is called a

triplet.

The vector model of the triplet is shown in Fig. 4.9. The cones have been

drawn to scale, and several points should be apparent. One is that to arrive at

a resultant corresponding to S¼1 (of length 21/2) using component vectors

corresponding to s¼ 1
2 (of length 1

2 � 31/2), the vectors must lie at a definite

angle relative to one another. In fact, they must lie in the same plane, as

shown in the illustration, for only that orientation results in a vector of the

correct length. Note that although spins are said to be ‘parallel’ in a triplet

state (and represented " "), they are in fact at an acute angle (of close to 70�).

The two spins make the same angle to one another in the states with MS¼�1;

that is necessary if they are to have the same resultant.

The vector model of the singlet must represent a state in which the spin

angular momentum vectors sum to give a zero resultant (Fig. 4.10). It is clear

from the illustration that the two spins are truly antiparallel ("#) in this state.

As in the triplet states, only the relative orientation of the vectors is fixed; the

absolute orientation is completely indeterminate.

j1

j2

j

mj =mj 1 + mj 2

mj 1

mj 2

Fig. 4.7 If the two contributing

momenta are locked together so

that they give rise to a specified

total, the projections of the
contributing momenta span a

range (as depicted by the

vertical bars) and although their
sum can be specified, their individual

values cannot be specified.

�1�2 �1�2

�1�2 �1�2

Fig. 4.8 The four uncoupled states of a system consisting of two spin-1
2 particles (such

as electrons), depicted by the cones on which the individual spins lie.
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4.12 The relation between schemes

The state jj1j2;jmji is built from all values of mj1 and mj2 such that

mj1þmj2¼mj. This remark suggests that it should be possible to express

the coupled state as a sum over all the uncoupled states jj1mj1;j2mj2i
that conform to mj1þmj2¼mj. It follows that we should be able to write

jj1j2; jmji ¼
X

mj1;mj2

Cðmj1, mj2Þjj1mj1; j2mj2i ð4:45Þ

The coefficients C(mj1,mj2) are called vector coupling coefficients. Alternative

names are ‘Clebsch–Gordan coefficients’, ‘Wigner coefficients’, and (in a

slightly modified form), the ‘3j-symbols’.

We shall illustrate the use of vector coupling coefficients by considering

the singlet and triplet states of two spin-1
2 particles. The values are set out in

Table 4.1 (more values for other cases will be found in Appendix 2). The

values in the table imply that, using the notation jS,MSi,

j1;þ1i ¼ a1a2

j1, 0i ¼ 1

21=2
a1b2 þ

1

21=2
b1a2

j1,	1i ¼ b1b2

j0, 0i ¼ 1

21=2
a1b2 	

1

21=2
b1a2

There are two points to note. One is that even a ‘spin-parallel’ triplet state

(" ") can be composed of ‘opposite’ spins (see the composition of j1,0i).
Second, the þ sign in j1,0i is taken to signify that the a and b spins from

which it is built are in phase with one another (as suggested by the vector

diagram for this state), whereas the 	 sign in j0,0i signifies that they are out

of phase. This feature is also captured by the antiparallel arrangement of

vectors in the vector diagram.

General expressions for the vector coupling coefficients can be derived,

but they are very complicated and it is usually simplest to use tables of

numerical values. These values can be derived quite simply in special cases,

and we shall indicate the procedure for the values in Table 4.1. The general

point to note is that the coefficients are in fact the overlap integrals for

coupled states with uncoupled states. To see that this is so, multiply both sides

S = 1,
MS = +1

S = 1,
MS = 0

S = 1,
MS = –1

Fig. 4.9 Three of the four coupled
states of a system consisting of two

spin-1
2 particles. These states all

correspond to S¼1. The relative

orientations of the individual angular
momenta are the same in each case

(the angle is arccos (1/3)¼ 70.53�).

S
M

 = 0,
 = 0S

z

Fig. 4.10 The remaining coupled

state of two spin-1
2 particles. This

state corresponds to S ¼ 0. Note that

the two contributing momenta are

perfectly antiparallel.

Table 4.1 Vector coupling coefficients for s1¼ 1
2, s2¼ 1

2

ms1 ms2 j1, þ1i j1, 0i j0, 0i j1, 	1i

þ1
2 þ1

2 1 0 0 0

þ1
2 	1

2 0 1/21/2 1/21/2 0

	1
2 þ1

2 0 1/21/2 	1/21/2 0

	1
2 	1

2 0 0 0 1
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of eqn 4.45 from the left by hj1m0j1;j2m0j2j: the only term that survives on

the right is the one with mj1¼m0j1 and mj2¼m0j2 (by the orthogonality of the

states), so

h j1m0j1; j2m0j2jj1j2; jmji ¼ Cðm0j1, m0j2Þ ð4:46Þ

Thus, the coefficient C(mj1, mj2) can be interpreted as the extent to which

the coupled state jj1j2; jmji resembles the uncoupled state jj1mj1;j2mj2i.
The state j1,þ1i must be composed of a1a2, because only this state

corresponds to MS¼þ1. It follows that

j1,þ1i ¼ a1a2 ð4:47Þ

The effect of the lowering operator S_ on j1,þ1i is given by eqns 4.23 and

4.29, which in the current notation reads

S	jS, MSi ¼ fSðSþ 1Þ 	MSðMS 	 1Þg1=2�hjS, MS 	1i ð4:48Þ

Therefore

S	j1,þ1i ¼ 21=2�hj1, 0i

However, because S_¼ s1	þ s2	, the effect of S_ can also be written

S	jS, MSi ¼ ðs1	 þ s2	Þa1a2 ¼ �hða1b2 þ b1a2Þ

Comparison of these two expressions results in

j1, 0i ¼ 1

21=2
ða1b2 þ b1a2Þ ð4:49Þ

as found from Table 4.1. The third state of the triplet is obtained by repeating

the procedure:

S	j1, 0i ¼ 21=2�hj1, 	1i ¼ ðs1	 þ s2	Þ
1

21=2
ða1b2 þ b1a2Þ

¼ 21=2�hb1b2

It follows that

j1,	1i ¼ b1b2 ð4:50Þ

as we found from the table and exactly as would be expected on physical

grounds (namely, that there is only one way of achieving a state with MS¼	1

from two spin-1
2 systems).

Only the singlet state remains to be found. Because it necessarily has

MS¼ 0 and MS¼ms1þms2, it is constructed from a1b2 and b1a2. However, it

must (by the hermiticity of S2) be orthogonal to the state j1, 0i. Therefore, we

can write immediately (to within a factor of �1) that

j0, 0i ¼ 1

21=2
ða1b2 	 b1a2Þ ð4:51Þ

as was given by the use of Table 4.1.

As a second illustration, consider two d-electrons. The Clebsch–Gordan

series gives the total orbital angular momentum, L, as L¼4, 3, 2, 1, 0. With

these states there are associated 25 states, so the problem is somewhat

larger than before. The state with L¼4 must have ML¼þ4 as one of its
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components, and this state can be obtained in only one way, when ml1¼þ2

and ml2¼þ2. It follows that

j4,þ4i ¼ j þ2,þ2i
where the notation on the left is jL, MLi and that on the right is jml1, ml2i.
To avoid this rather confusing symbolism, we shall denote the states with

L¼0, 1, . . . , 4 by the letters S, P, D, F, G (by analogy with the labels for

atomic orbitals). Then instead of the line above we can write

jG,þ4i ¼ j þ2,þ2i
We may now proceed to generate the remaining eight states with L¼ 4 by

applying the operator L_¼ l1	 þ l2	 . From L_ applied to the left of the last

equation we get

L	jG,þ4i ¼ 81=2�hjG,þ3i
and from l1	þ l2	 applied to the right we get

ðl1	 þ l2	Þj þ2,þ2i ¼ 41=2�hðj þ1,þ2i þ j þ2,þ1iÞ
from which it follows that

jG,þ3i ¼ 1

21=2
ðj þ1,þ 2i þ j þ2,þ1iÞ

The remaining seven states of this set may be generated similarly. The state

jF,þ3i also arises from the states j þ1,þ2i and j þ2,þ1i and must be

orthogonal to jG,þ 3i. Therefore, we can immediately write

jF,þ 3i ¼ 1

21=2
ðj þ1,þ2i 	 j þ2,þ 1iÞ

The remaining six states of this set can now be generated. The same argument

may then be applied to generate the D, P, and S states and the table of

coefficients given in Appendix 2 can be compiled.

Example 4.4 How to use vector coupling coefficients

Construct the state with j¼ 3
2 and mj¼ 	 1

2 for a p-electron.

Method. For a p-electron, l¼ 1 and s¼ 1
2. The state with j¼ 3

2 and mj¼	1
2 is a

linear combination of the states j1,ml;
1
2,msi with ml þ ms¼	1

2. Use

Appendix 2 for the vector coupling coefficients.

Answer. We write the coupled state in the form

j 32 ,	1
2i ¼ 2

3

 �1=2j1, 0; 1
2 ,	1

2i þ 1
3

 �1=2j1,	1; 1
2 ,þ1

2i

Self-test 4.4. Find the expression for the state jD, 0i arising from the orbital

angular momenta of two p-electrons. Use the tables in Appendix 2.

4.13 The coupling of several angular momenta

The final point we need to make in this section concerns the case where three

or more momenta are coupled together. In the case of three momenta, we
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have the choice of first coupling j1 to j2 to form j1,2 and then coupling j3 to

that to give the overall resultant j.

Illustration 4.2 Coupling several momenta

Consider the total orbital angular momenta of three p-electrons. The coupling

of one pair gives l1,2¼ 2, 1, 0. Then the third couples with each of these

resultants in turn: l1,2¼ 2 gives rise to L¼ 3, 2, 1; l1,2¼ 1 gives rise to L¼
2, 1, 0; and l1,2¼ 0 gives rise to only L¼ 1. The angular momentum states

are therefore F þ 2D þ 3P þ S.

When there are more than two sources of angular momentum, the overall

states may be formed in different ways. Thus, instead of the scheme described

above, j1 and j3 can first be coupled to form j1,3, and then j2 coupled to j1,3 to

form j. The triangle condition applies to each step in the coupling procedure,

but the compositions of the states obtained are different. The states obtained

by the first coupling procedure can be expressed as linear combinations of the

states obtained by the second procedure, and the expansion coefficients are

known as Racah coefficients or, in slightly modified form, as ‘6j-symbols’.

The question of alternative coupling schemes, and how to select the most

appropriate ones, arises in discussions of atomic and molecular spectra, and

we shall meet it again there.

P R O B L E M S

4.1 Evaluate the commutator [lx,ly] in (a) the position
representation, (b) the momentum representation.

4.2 Evaluate the commutators (a) [l2y ,lx], (b) [l2y ,l2x], and
(c) [lx,[lx,ly]]. Hint. Use the basic commutators in eqn 4.7.

4.3 Confirm that [l2, lx]¼ 0.

4.4 Verify that eqn 4.9 expresses the basic angular
momentum commutation rules. Hint. Expand the left of
eqn 4.9 and compare coefficients of the unit vectors. Be
careful with the ordering of the vector components when
expanding the determinant: the operators in the second row
always precede those in the third.

4.5 Verify that the five matrices in eqn 4.37 yield
the correct results for the applications of the
spin operators sq (q¼ x, y, z, þ , 	 ) on the spin states
a and b.

4.6 (a) Confirm that the Pauli matrices

sx ¼
0 1
1 0

� �
sy ¼

0 	i
i 0

� �
sz ¼

1 0
0 	1

� �

satisfy the angular momentum commutation relations
when we write sq¼ 1

2�hsq, and hence provide a matrix
representation of angular momentum. (b) Why does the
representation correspond to s¼ 1

2? Hint. For the second
part, form the matrix representing s2 and establish its
eigenvalues.

4.7 Using the Pauli matrix representation, reduce each of
the operators (a) sxsy, (b) sxs2

ys2
z , and (c) s2

xs2
ys2

z to a single
spin operator.

4.8 Evaluate the effect of (a) eisx=�h, (b) eisy=�h, (c) eisz=�h on
an a spin state. Hint. Expand the exponential operators
as in Problem 1.15 and use arguments like those in
Problem 4.7.

4.9 Suppose that in place of the actual angular momentum
commutation rules, the operators obeyed [lx,ly]¼ 	 i �hlz.
What would be the roles of l�?

4.10 Calculate the matrix elements (a) h0,0jlzj0,0i,
(b) h2,1jlþj2,0i, (c) h2,2jl2þj2,0i, (d) h2,0jlþ l	j2,0i,
(e) h2,0jl	 lþj2,0i, and (f) h2,0jl2	lz l2þj2,0i.
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4.11 Demonstrate that j1	 j2 is not an angular
momentum.

4.12 Calculate the values of the following matrix elements
between p-orbitals: (a) hpxjlzjpyi, (b) hpxjlþjpyi, (c) hpzjlyjpxi,
(d) hpzjlxjpyi, and (e) hpzjlxjpxi.

4.13 Evaluate the matrix elements (a) h j;mj þ 1jj3xjj;mji
and (b) h j;mj þ 3jj3xjj;mji.

4.14 Verify eqn 4.31 for the shift operators in spherical
polar coordinates. Use eqn 4.30.

4.15 Confirm that the spherical polar forms of the
orbital angular momentum operators in eqn 4.30 satisfy
the angular momentum commutation relation [lx, ly]¼ i �hlz
and that the shift operators in eqn 4.31 satisfy
[lþ , l	 ]¼ 2�hlz.

4.16 Verify that successive application of l	 to cll with
l¼ 2 in eqn 4.32 generates the five normalized spherical
harmonics Y2ml

as set out in Table 3.1.

4.17 (a) Demonstrate that if [j1q, j2q0 ]¼ 0 for all q, q 0,
then j1� j2¼ 	 j2� j1. (b) Go on to show that if j1� j1¼ i�hj1
and j2� j2¼ i�hj2, then j� j¼ i �hj where j¼ j1 þ j2.

4.18 In some cases mj1 and mj2 may be specified at the
same time as j because although [j2,j1z] is non-zero, the
effect of [j2,j1z] on the state with mj1¼ j1, mj2¼ j2 is zero.
Confirm that [j2,j1z]jj1j1; j2j2i¼ 0 and [j2,j1z]jj1,	 j1;
j2,	 j2i¼ 0.

4.19 Determine what total angular momenta may arise in
the following composite systems: (a) j1¼ 3, j2¼ 4; (b) the
orbital momenta of two electrons (i) both in p-orbitals,
(ii) both in d-orbitals, (iii) the configuration p1d1;
(c) the spin angular momenta of four electrons. Hint.
Use the Clebsch–Gordan series, eqn 4.44; apply it
successively in (c).

4.20 Construct the vector coupling coefficients for a
system with j1¼ 1 and j2 ¼ 1

2 and evaluate the matrix
elements hj 0mj

0jj1zjjmji. Hint. Proceed as in Section 4.12

and check the answer against the values in Appendix 2.
For the matrix element, express the coupled states in the
uncoupled representation, and then operate with j1z.

4.21 Use the vector model of angular momentum to
derive the value of the angle between the vectors
representing (a) two a spins, (b) an a and a b spin in a
state with S¼ 1 and MS¼þ1 and MS¼ 0, respectively.

4.22 Set up a quantum mechanical expression that can be
used to derive the same result as in Problem 4.21. Hint.
Consider the expectation value of s1 � s2.

4.23 Apply both procedures (of the preceding two
problems) to calculate the angle between a spins in the aaa
state with S ¼ 3

2.

4.24 Consider a system of two electrons that can have
either paired or unpaired spins (e.g. a biradical). The
energy of the system depends on the relative orientation
of their spins. Show that the operator (hJ/�h2)s1 � s2

distinguishes between singlet and triplet states. The system
is now exposed to a magnetic field in the z-direction.
Because the two electrons are in different environments,
they experience different local fields and their interaction
energy can be written (mB/�h)b(g1s1zþ g2s2z) with g1 6¼ g2; mB

is the Bohr magneton and g is the electron g-value,
quantities discussed in Chapter 13. Establish the matrix
of the total hamiltonian, and demonstrate that when
hJ>> mBb, the coupled representation is ‘better’, but that
when mBb>> hJ, the uncoupled representation is ‘better’.
Find the eigenvalues and eigenstates of the system in
each case.

4.25 What is the expectation value of the z-component of
orbital angular momentum of electron 1 in the jG,MLi state
of the configuration d2? Hint. Express the coupled state in
terms of the uncoupled states, find hG,MLjl1zjG,MLi in
terms of the vector coupling coefficients, and evaluate it for
ML¼þ4, þ3, . . . , 	4.

4.26 Prove that
P

mj1
,mj2
jCmj1

,mj2
j2¼ 1 for a given j1, j2, j.

Hint. Use eqn 4.45 and form hj1j2;jmjjj1j2;jmji.
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The subject of this chapter—the mathematical theory of symmetry—is one of

the most remarkable in quantum mechanics. Not only does it simplify cal-

culations, but it also reveals unexpected connections between apparently

disparate phenomena. Whole regions of study are brought together in terms

of its concepts. Angular momentum is a part of group theory; so too are the

properties of the harmonic oscillator. The conservation of energy and of

momentum can be discussed in terms of group theory. Group theory is used to

classify the fundamental particles, to discuss the selection rules that govern

what spectroscopic transitions are allowed, and to formulate molecular

orbitals. The subject simply glitters with power and achievements.

What are the capabilities of group theory within quantum chemistry? We

shall see that group theory is particularly helpful for deciding whether an

integral is zero. Integrals occur throughout quantum chemistry, for they

include expectation values, overlap integrals, and matrix elements. It is par-

ticularly helpful to know, with minimum effort, whether these integrals are

necessarily zero. A limitation of group theory, though, is that it cannot give

the magnitude of integrals that it cannot show to be necessarily zero. The

values of non-zero integrals typically depend on a variety of fundamental

constants, and group theory is silent on them. One particular type of matrix

element is the ‘transition dipole moment’ between two states. This quantity

determines the intensities of spectroscopic transitions, and if we know that

they are necessarily zero, then we have established a selection rule for the

transition. In Chapter 2 we encountered the phenomenon of degeneracy and

saw qualitatively at least that it is related to the symmetry of the system;

group theory lets us anticipate the occurrence and degree of degeneracy that

may exist in a system. Finally, we shall see that group theory, by making use

of the full symmetry of a system, provides a very powerful way of con-

structing and classifying molecular orbitals.

The symmetries of objects

We begin by establishing the qualitative aspects of the symmetries of objects.

This will enable us to classify molecules according to their symmetry. Once

molecules have been classified, many properties follow immediately. More-

over, this is a first step to the mathematical formulation of the theory, from

which its full power flows.

Group theory

The symmetries of objects

5.1 Symmetry operations and

elements

5.2 The classification of molecules

The calculus of symmetry

5.3 The definition of a group

5.4 Group multiplication tables

5.5 Matrix representations

5.6 The properties of matrix

representations

5.7 The characters of

representations

5.8 Characters and classes

5.9 Irreducible representations

5.10 The great and little

orthogonality theorems

Reduced representations

5.11 The reduction of

representations

5.12 Symmetry-adapted bases

The symmetry properties of

functions

5.13 The transformation of

p-orbitals

5.14 The decomposition of direct-

product bases

5.15 Direct-product groups

5.16 Vanishing integrals

5.17 Symmetry and degeneracy

The full rotation group

5.18 The generators of rotations

5.19 The representation of the full

rotation group

5.20 Coupled angular momenta

Applications
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5.1 Symmetry operations and elements

An operation applied to an object is an act of doing something to it,

such as rotating it through some angle. A symmetry operation is an

operation that leaves an object apparently unchanged. For example, the

rotation of a sphere around any axis that includes the centre of the sphere

leaves it apparently unchanged, and is thus a symmetry operation. The

translation of the function sin x through an interval 2p leaves it apparently

unchanged, and so it is a symmetry operation of the function. Not all

operations are symmetry operations. The rotation of a rectangle through 90�

is only a symmetry operation if the rectangle happens to be a square. Every

object has at least one symmetry operation: the identity, the operation of

doing nothing.

To each symmetry operation there corresponds a symmetry element, the

point, line, or plane with respect to which the operation is carried out. For

example, a rotation is carried out with respect to a line called an ‘axis of

symmetry’, and a reflection is carried out with respect to a plane called a

‘mirror plane’. If we disregard translational symmetry operations, then there

are five types of symmetry operations that leave the object apparently

unchanged, and five corresponding types of symmetry element:

E The identity operation, the act of doing nothing. The corresponding

symmetry element is the object itself.

Cn An n-fold rotation, the operation, a rotation by 2p/n around an axis of

symmetry, the element.

A hexagon, or a hexagonal molecule such as benzene, has two-, three-, and

six-fold axes (C2, C3, and C6, respectively) perpendicular to the plane and

several two-fold axes (C2) in the plane (Fig. 5.1). For n> 2 the direction of

rotation is significant, and the n orientations of the object are visited in a

different order depending on whether the rotation is clockwise as seen from

below (Cþn ) or counterclockwise (C�n ). Therefore, for n>2, there are two

rotations associated with each symmetry axis. If an object (such as a hexagon)

has several axes of rotation, then the one with the largest value of n is called

the principal axis, provided it is unique. Therefore, for benzene, C6 is the

principal axis.

s A reflection, the operation, in a mirror plane, the element.

When the mirror plane includes the principal axis of symmetry, it is termed a

vertical plane and denoted sv. If the principal axis is perpendicular to

the mirror plane, then the latter symmetry element is called a horizontal

plane and denoted sh. A dihedral plane, sd, is a vertical plane that bisects

the angle between two C2 axes that lie perpendicular to the principal axis

(Fig. 5.2).

i An inversion, the operation, through a centre of symmetry, the

element.

C2,C3,C6

C2

C2

Fig. 5.1 Some of the rotational axes

of a regular hexagon, such as a

benzene molecule.
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The inversion operation is a hypothetical operation which consists of taking

each point of an object through its centre and out to an equal distance on the

other side (Fig. 5.3).

Sn An n-fold improper rotation, the operation (which is also called a

‘rotary-reflection’) occurs about an axis of improper rotation, the

symmetry element (or ‘rotary-reflection axis’).

An improper rotation is a composite operation consisting of an n-fold rota-

tion followed by a horizontal reflection in a plane perpendicular to the n-fold

axis.1 Neither operation alone is in general a symmetry operation, but

the overall outcome is. A methane molecule, for example, has three S4

axes (Fig. 5.4). Care should be taken to recognize improper rotations in

disguised form. Thus, S1 is equivalent to a reflection, and S2 is equivalent to an

inversion.

5.2 The classification of molecules

To classify a molecule according to its symmetry, we list all its symmetry

operations, and then ascribe a label based on the list of those operations. In

other words, we use the list of symmetry operations to identify the point

group of the molecule. The term ‘point’ indicates that we are considering only

the operations corresponding to symmetry elements that intersect in at least

one point. That point is not moved by any operation. To classify crystals, we

would also need to consider translational symmetry, which would lead us to

classify them according to their space group.

The name of the point group is expressed using either the Schoenflies

system or the International system (which is also called the ‘Hermann–

Mauguin system’). It is common to use the former for individual mole-

cules and the latter when considering species in solids. We shall describe

and use the Schoenflies system here, but a translation table is given in

Table 5.1. In the Schoenflies system, the name of the point group is

based on a dominant feature of the symmetry of the molecule, and the

label given to the group is in some cases the same as the label of that feature.

This double use of a symbol is actually quite helpful, and rarely leads to

confusion.

i

Fig. 5.3 The centre of inversion of a

regular octahedron.

S4

S4

Fig. 5.4 An axis of improper rotation

in a tetrahedral molecule (such as
methane).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The order of the operations Cn and sh actually does not matter as these operations commute

(Section 5.3).

�v

�v'
�h

(a) (b)
C2

C2

�d

(c)
Fig. 5.2 (a) Two vertical mirror

planes, (b) a horizontal mirror plane,
and (c) a dihedral mirror plane.
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(a)

(b)

(c)

Fig. 5.5 Objects belonging to the

groups (a) C1, (b) Cs, and (c) Ci.

1. The groups C1, Cs, and Ci. These groups consist of the identity alone (C1),

the identity and a reflection (Cs), and the identity and an inversion (Ci)

(Fig. 5.5).

2. The groups Cn. These groups consist of the identity and an n-fold rotation

(Fig. 5.6).

3. The groups Cnv. In addition to the operations of the groups Cn, these

groups also contain n vertical reflections (Fig. 5.7). An important example

is the group C1v, the group to which a cone and a heteronuclear diatomic

molecule belong.

4. The groups Cnh. In addition to the operations of the groups Cn, these

groups contain a horizontal reflection together with whatever operations

the presence of these operations imply (Fig. 5.8).

It is important to note, as remarked in the last definition, that the presence

of a particular set of operations may imply the presence of other opera-

tions that are not mentioned explicitly in the definition. For example, C2h

automatically possesses an inversion, because rotation by 180� followed by a

horizontal reflection is equivalent to an inversion. The full set of operations in

each group can be found by referring to the tables (the ‘character tables’)

listed in Appendix 1. These tables contain a mass of additional information,

and they will gradually move to centre stage as the chapter progresses.

5. The groups Dn. In addition to the operations of the groups Cn, these groups

possess n two-fold rotations perpendicular to the n-fold (principal) axis,

together with whatever operations the presence of these operations imply

(Fig. 5.9).

Table 5.1 The Schoenflies and International notations for point groups

Ci: 1 Cs: m

C1: 1 C2: 2 C3: 3 C4: 4 C6: 6

C2v: 2mm C3v: 3m C4v: 4mm C6v: 6mm

C2h: 2/m C3h: 6 C4h: 4/m C6h: 6/m

D2: 222 D3: 32 D4: 422 D6: 622

D2h: mmm D3h : 62m D4h: 4/mmm D6h: 6/mmm

D2d: 42m D3d: 3m S4: 4 S6: 3

T: 23 Td: 43m Th: m3 O: 432 Oh: m3m

The entries in the table are in the form Schoenflies: International. The International system is also

known as the Hermann–Mauguin system. The group D2: 222 is sometimes denoted V and called the

Vierer group (group of four).

Fig. 5.6 An object belonging to the group

C4. In this and the following illustrations

(up to Fig. 5.15), the shading should not
be taken into account when considering

Fig. 5.7 An object belonging to the

group C4v.

Fig. 5.8 An object belonging to the
group C4h.

Fig. 5.9 An object belonging to the

group D4.
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6. The groups Dnh. These groups consist of the operations present in Dn

together with a horizontal reflection, in addition to whatever operations

the presence of these operations imply (Fig. 5.10). An important example

is D1h, the group to which a uniform cylinder and a homonuclear

diatomic molecule belong.

7. The groups Dnd. These groups contain the operations of the groups Dn and

n dihedral reflections, together with whatever operations the presence of

these operations imply (Fig. 5.11).

8. The groups Sn, with n even. These groups contain the identity and an

n-fold improper rotation, together with whatever operations the presence

of these operations imply (Fig. 5.12).

Only the even values of n need be considered, because groups with odd n are

identical to the groups Cnh, which have already been classified. Note also that

the group S2 is equivalent to the group Ci.

9. The cubic and icosahedral groups. These groups contain more than

one n-fold rotation with n�3. The cubic groups are labeled T (for

tetrahedral) and O for octahedral; the icosahedral group is labelled I.
The group Td is the group of the regular tetrahedron; T is the same

group but without the reflections of the tetrahedron; Th is a tetrahedral

group with an inversion. The group of the regular octahedron is called

Oh; if it lacks reflections it is called O. The group of the regular

icosahedron is called Ih; if it lacks inversion it is called I. Some objects

belonging to these point groups are depicted in Figs 5.13, 5.14, and 5.15,

respectively.

Fig. 5.10 An object belonging to the
group D4h.

(a)

(b)

Fig. 5.14 Objects belonging to the
groups (a) Oh and (b) O.

(c)(b)(a)
Fig. 5.13 Objects belonging to the
groups (a) Td, (b) T, and (c) Th.

Fig. 5.11 An object belonging to the

group D4d.
Fig. 5.12 An object belonging to the group S4.
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10. The full rotation group, R3. This group consists of all rotations through

any angle and in any orientation. It is the symmetry group of the sphere.

Atoms belong to R3, but no molecule does. The properties of R3 turn out to be

the properties of angular momentum. This is the deep link between this

chapter and Chapter 4, and we explore it later.

There are two simple ways of determining to what point group a molecule

belongs. One way is to work through the decision tree illustrated in Fig. 5.16.

The other is to recognize the group by comparing the molecule with the

objects in Fig. 5.17.

Molecule

Linear?Y N

i ?

i ?

i ?

Y N Y NTwo
or more 
Cn,n >2?

D∞h C∞v

Y N

C5?
Y NIh Td

YY
*

Y

N

�?Cs

N
�h?Y

N

n�d?Dnd Dn
Y N

�h?
Y

N

N

Cnh

Y n�v?Cnv

Y NS2n Cn

N

Y NC i C1

*   Select Cn with
highest n; then, is nC2
perpendicular to Cn?

Dnh

Cn?

Oh

S2n?
Fig. 5.16 A flow chart for deciding on

the name of a point group to which

an object belongs.

Fig. 5.15 An object belonging to the

group I.
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Cone

2 3 4 5 6 ∞

Cn

Dn

Cnv

Dnh

Dnd

S2n

Cnh

(plane or bipyramid)

(pyramid)

n  =

Fig. 5.17 Representative shapes for a
variety of point groups.

Example 5.1 How to assign a point group to a molecule

What is the point group of benzene, C6H6?

Method. Use the flow chart given in Fig. 5.16, recognizing that benzene has a

unique C6 principal axis that is perpendicular to the molecular plane.

Answer. Benzene, a nonlinear molecule, does not contain two (or more)

principal axes: C6 is a unique principal axis and there are six C2 axes in the

molecular plane and perpendicular to C6; three axes intersect carbon atoms on

opposite vertices and three axes bisect carbon–carbon bonds on opposite

edges. The molecular plane is sh. From Fig. 5.16, the point group is D6h.

Comment. Benzene resembles the hexagon of Fig. 5.17.

Self-test 5.1. Assign a point group for 1,4-dichlorobenzene.

[D2h]
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The calculus of symmetry

Power comes to group theory from its mathematical structure. We shall

present the material in two stages. The first considers the symmetry opera-

tions themselves, and shows how they may be combined together. The second

stage shows how to associate matrices with each symmetry operation and

to draw on the properties of matrices to establish several important results.

5.3 The definition of a group

Symmetry operations can be performed consecutively. We shall use the

convention that the operation R followed by the operation S is denoted SR.

The order of operations is important because in general the outcome of the

operation SR is not the same as the outcome of the operation RS. When the

outcomes of RS and SR are equivalent, the operations are said to commute.

A general feature of symmetry operations is that the outcome of a joint

symmetry operation is always equivalent to a single symmetry operation.

We have already seen this property when we saw that a two-fold rotation

followed by a reflection in a plane perpendicular to the two-fold axis is

equivalent to an inversion:

shC2 ¼ i

In general, it is true that for all symmetry operations R and S of an object,

we can write

RS ¼ T ð5:1Þ

where T is an operation of the group.

A further point about symmetry operations is that there is no difference

between the outcomes of the operations (RS)T and R(ST), where (RS) is the

outcome of the joint operation S followed by R and (ST) is the outcome of

the joint operation T followed by S. In other words, (RS)T¼R(ST) and the

multiplication of symmetry operations is associative.

Illustration 5.1 Associative property of multiplication of symmetry operations

Consider a square object and the symmetry operations C2 (coincident with the

principal C4 axis), i, and sh. Then C2(ish)¼C2C2¼E and (C2i)sh¼ shsh¼E

and the associative property holds.

These observations, together with two others which are true by inspection,

can be summarized as follows:

1. The identity is a symmetry operation.

2. Symmetry operations combine in accord with the associative law of

multiplication.
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3. If R and S are symmetry operations, then RS is also a symmetry

operation.

4. The inverse of each symmetry operation is also a symmetry operation.

The third observation implies that R2 (which is shorthand for RR) is a

symmetry operation. In observation 4, the inverse of an operation R, generally

denoted R�1, is defined such that

RR�1 ¼ R�1R ¼ E ð5:2Þ

The remarkable point to note is that in mathematics a set of entities called

elements form a group if they satisfy the following conditions:

1. The identity is an element of the set.

2. The elements multiply associatively.

3. If R and S are elements, then RS is also an element of the set.

4. The inverse of each element is a member of the set.

That is, the set of symmetry operations of an object fulfil conditions that

ensure they form a group in the mathematical sense. Consequently, the

mathematical theory of groups, which is called group theory, may be applied

to the study of the symmetry of molecules. This is the justification for the title

of this chapter.2

5.4 Group multiplication tables

A table showing the outcome of forming the products RS for all symmetry

operations in a group is called a group multiplication table. The procedure

used to construct such tables can be illustrated by the group C3v. The symmetry

operations for this group are illustrated in Fig. 5.18. We see that there are

six members of the group, so it is said to have order 6, which we write as h¼6.

To determine the outcome of a sequence of symmetry operations, we

consider diagrams like those in Fig. 5.19. You should note that the sequence

of changes takes place with respect to fixed positions of the symmetry ele-

ments, in the sense that if a Cþ3 operation is performed, the line representing

the sv plane in Fig. 5.18 remains in the same position on the page and is not

rotated through 120� by the Cþ3 operation. Thus it follows that

C�3 Cþ3 ¼ E svCþ3 ¼ s00vs
0
vsv ¼ Cþ3

The complete set of 36 (in general, h2) products is shown in Table 5.2. As can

be seen, each product is equivalent to a single element of the group. Note that

RS is not always the same as SR; that is, not all symmetry operations com-

mute. Similar tables can be constructed for all the point groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. The unfortunate double meaning of the term ‘element’ should be noted. It is important to

distinguish ‘element’, in the sense of a member of a group, from ‘symmetry element’, as defined

earlier. The symmetry operations are the elements that comprise the group.

�v

�v
�v

C 3
+ C 3

–

E

Fig. 5.18 The symmetry elements of
the group C3v.

�v

�v"

C3
+

Fig. 5.19 The effect of the operation
Cþ3 followed by sv is equivalent to the

single operation s00v :
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Example 5.2 How to construct a group multiplication table

Construct the group multiplication table for the group C2v, the elements of

which are shown in Fig. 5.20.

Method. Consider a single point on the object of the given point group, and

the effect on the point of each pair of symmetry operations (RS). Identify the

single operation that reproduces the effect of the joint application (RS¼T),

and enter it into the table. Note that ER¼RE¼R for all R, where E is the

identity operation. The orientation on the page of the symmetry elements is

unchanged by all the operations.

Answer. The group multiplication table is as follows:

Comment. Note that in this group RS¼ SR for all entries in the table. Groups

of this kind, in which the elements commute, are called ‘Abelian’. The group

C3v is an example of a ‘non-Abelian group’.

Self-test 5.2. Construct the group multiplication table for the group D3, with

elements shown in Fig. 5.21.

5.5 Matrix representations

Relations such as RS¼T are symbolic summaries of the effect of actions

carried out on objects. We can enrich this symbolic representation of

symmetry operations by representing the operations by entities that can

be manipulated just like ordinary algebra. However, because symmetry

C2'
C2"

C2

C3

E

Fig. 5.21 The symmetry elements of

the group D3.

C2
σv

�v'

E

Fig. 5.20 The symmetry elements of
the group C2v.

Table 5.2 The C3v group multiplication table

First: E C3
þ C3

� �v s9v s0v

Second:

E E Cþ3 C�3 sv s0v s00v
Cþ3 Cþ3 C�3 E s0v s00v sv

C�3 C�3 E Cþ3 s00v sv s0v
sv sv s00v s0v E C�3 Cþ3

s0v s0v sv s00v Cþ3 E C�3

s00v s00v s0v �v C�3 Cþ3 E

E C2 �v �v
0

E E C2 sv sv
0

C2 C2 E sv
0 sv

�v sv sv
0 E C2

�v
0 sv

0 sv C2 E
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operations are in general non-commutative (that is, their outcome depends

on the order in which they are applied), we should expect to need to use

matrices rather than simple numbers, for matrix multiplication is also non-

commutative in general. The matrix representative of a symmetry operation is

a matrix that reproduces the effect of the symmetry operation (in a manner we

describe below). A matrix representation is a set of representatives, one for

each element of the group, which multiply together as summarized by the

group multiplication table.

To establish a matrix representative for a particular operation of a group,

we need to choose a basis, a set of functions on which the operation takes

place. To illustrate the procedure, we shall consider the set of s-orbitals sA, sB,

sC, and sN on an NH3 molecule (Fig. 5.22), which belongs to the group C3v.

We have chosen this basis partly because it is simple enough to illustrate a

number of points in a straightforward fashion but also because it will be used

in the discussion of the electronic structure of an ammonia molecule when we

construct molecular orbitals in Chapter 8. The dimension of this basis, the

number of members, is 4. We can write the basis as a four-component vector

(sN, sA, sB, sC). In general, a basis of dimension d can be written as the row

vector f, where

f ¼ ðf1, f2, . . . , fdÞ

Under the operation sv, the vector changes from (sN, sA, sB, sC) to sv(sN, sA,

sB, sC)¼ (sN, sA, sC, sB). This transformation can be represented by a matrix

multiplication:

svðsN, sA, sB, sCÞ ¼ ðsN, sA, sB, sCÞ

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775 ð5:3Þ

This portrayal of the effect of the symmetry operation can be verified by

carrying out the matrix multiplication. (For information on matrices, see

Further information 23.) The matrix in this expression is the representative of

the operation sv for the chosen basis, and is denoted D(sv). Note that a four-

dimensional basis gives rise to a 4�4-dimensional representative, and that in

general a d-dimensional basis gives rise to a d� d-dimensional representative.

In terms of the explicit rules for matrix multiplication, the effect of an

operation R on the general basis f is to convert the component fi into

Rfi ¼
X

j

fjDjiðRÞ ð5:4Þ

where Dji(R) is a matrix element of the representative D(R) of the operation

R. For example,

svsB ¼ sN � 0þ sA � 0þ sB � 0þ sC � 1 ¼ sC

as required.

The representatives of the other operations of the group can be found in the

same way. Note that because Ef¼ f, the representative of the identity

operation is always the unit matrix.

sN

sA

sB

sC

Fig. 5.22 One basis for a discussion

of the representation of the group

C3v; each sphere can be regarded as
an s-orbital centred on an atom.
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Example 5.3 How to formulate a matrix representative

Find the matrix representative for the operation Cþ3 in the group C3v for the

s-orbital basis used above.

Method. Examine Fig. 5.22 to decide how each member of the basis is

transformed under the operation, and write this transformation in the form

Rf¼ f 0. Then construct a d� d matrix D(R) which generates f 0 when fD(R) is

formed and multiplied out.

Answer. Inspection of Fig. 5.22 shows that under the operation,

Cþ3 ðsN, sA, sB, sCÞ ¼ ðsN, sB, sC, sAÞ

This transformation can be expressed as the matrix product

Cþ3 ðsN, sA, sB, sCÞ ¼ ðsN, sA, sB, sCÞ

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

2
664

3
775

Therefore, the 4� 4 matrix above is the representative of the operation Cþ3 in

the basis.

Self-test 5.3. Find the matrix representative of the operation C�3 in the same

basis.

[Table 5.3]

The complete set of representatives for this basis are displayed in Table 5.3.

We now arrive at a centrally important point. Consider the effect of the

consecutive operations Cþ3 followed by sv. From the group multiplication

table we know that the effect of the joint operation svC
þ
3 is the same as the

effect of the reflection sv
00. That is,

svCþ3 ¼ s00v

Table 5.3 The matrix representation of C3v in the
basis {sN,sA,sB,sC}

D(E) D (Cþ3 ) D(C�3 )

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

2
664

3
775

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

2
664

3
775

w(E)¼ 4 �(Cþ3 )¼ 1 �(C�3 )¼ 1

D(sv) D(sv
0) D(sv

00)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
664

3
775

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

2
664

3
775

w(sv)¼ 2 �(sv
0)¼ 2 �(sv

00)¼ 2
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Now consider this joint operation in terms of the matrix representatives.

DðsvÞDðCþ3 Þ ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

2
6664

3
7775 ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
6664

3
7775

¼ Dðs00vÞ

That is, the matrix representatives multiply together in exactly the same way

as the operations of the group. This is true whichever operations are con-

sidered, and so the set of six 4� 4 matrices in Table 5.3 form a matrix

representation of the group for the selected basis in the sense that

if RS ¼ T, then DðRÞDðSÞ ¼ DðTÞ ð5:5Þ

for all members of the group.

Proof 5.1 The representation of group multiplication

The formal proof that the representatives multiply in the same way as the

symmetry operations gives a taste of the kind of manipulation that will be

needed later. Once again we consider two elements R and S which multiply

together to give the element T. It follows from eqn 5.4 that for the general basis f,

RSfi ¼ R
X

j

fjDjiðSÞ ¼
X
j, k

fkDkjðRÞDjiðSÞ

The sum over j of Dkj(R) Dji(S) is the definition of a matrix product, and so

RSfi ¼
X

k

fkfDðRÞDðSÞgki

where {D(R)D(S)}ki refers to the element in row k and column i of the matrix

given by the product D(R)D(S). However, we also know that RS¼T,

so we can also write

RSfi ¼ Tfi ¼
X

k

fkfDðTÞgki

By comparing the two equations we see that

fDðRÞDðSÞgki ¼ fDðTÞgki

for all elements k and i. Therefore,

DðRÞDðSÞ ¼ DðTÞ
That is, the representatives do indeed multiply like the group elements, as we

set out to prove.

It follows from the fact that the representatives multiply like the group ele-

ments, that the representatives of an operation R and its inverse R�1 are related by

DðR�1Þ ¼ DðRÞ�1 ð5:6Þ
where D�1 denotes the inverse of the matrix D. For instance, because

RR�1¼E, it follows that

DðRÞDðR�1Þ ¼ DðRÞDðRÞ�1 ¼ 1 ¼ DðEÞ
where 1 is the unit matrix.
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5.6 The properties of matrix representations

To develop the content of matrix representations, we need to introduce some

of their properties. In each case we shall introduce the concept using the

s-orbital basis for C3v to fix our ideas, and then generalize the concept to

any basis for any group.

To begin, we introduce the concept of ‘similarity transformation’. Suppose

that instead of the s-orbital basis, we select a linear combination of these

orbitals to serve as the basis. One such set might be (sN, s1, s2, s3), where s1¼
sAþ sBþ sC, s2¼2sA� sB� sC, and s3¼ sB� sC (apart from the requirement

that the combinations are linearly independent, the choice is arbitrary, but

later we shall see that this set has a special significance). The combinations are

illustrated in Fig. 5.23. We should expect the matrix representation in this

basis to be similar to that in the original basis. This similarity is given a formal

definition by saying that two representations are similar if the representatives

for the two bases are related by the similarity transformation

DðRÞ ¼ cD0ðRÞc�1 ð5:7aÞ

where c is the matrix formed by the coefficients relating the two bases (see the

proof below for an explicit definition). The inverse relation is obtained by

multiplication from the left by c�1 and from the right by c:

D0ðRÞ ¼ c�1DðRÞc ð5:7bÞ

Proof 5.2 The similarity of representations

Because the new basis f 0 ¼ (f1
0, f2
0, . . . , fd

0) is a linear combination of the original

basis f¼ (f1, f2, . . . , fd), we can express any member as

f 0i ¼
X

j

fjcji

where the cji are constant coefficients.3 This expansion can be expressed as a

matrix product by writing

f 0 ¼ fc

where c is the matrix formed of the coefficients cji. Now suppose that in the

original basis the representative of the element R is D(R) in the sense that

Rfi ¼
X

k

fkDkiðRÞ, or Rf ¼ fDðRÞ

Likewise, the effect of the same operation on a member of the transformed

basis set is

Rf 0i ¼
X

k

f 0kD0kiðRÞ, or Rf 0 ¼ f 0D0ðRÞ

s1

s2

s3

Fig. 5.23 The symmetry-adapted

linear combinations of the peripheral

atom orbitals in a C3v molecule.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. For the particular basis f 0 ¼ (sN, s1, s2, s3), the coefficients are specified in Example 5.4.
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The relation between the two ‘similar’ representatives can be found by sub-

stituting f 0 ¼ fc into the last equation, which then becomes

Rfc ¼ fcD0ðRÞ

If we then multiply through from the right by c�1, the reciprocal of the matrix

c (in the sense that cc�1¼ c�1c¼ 1), then we obtain

Rf ¼ fcD0ðRÞc�1

Comparison of this expression with Rf¼ fD(R) leads to eqn 5.7a.

In general, if two matrices A and

B are related by an expression of

the form A¼CBC�1, then the

matrices are said to be similar and

the expression is a similarity

transformation. Such

transformations are useful in

diagonalizing matrices as

encountered in Example 1.10.

Example 5.4 How to construct a similarity transformation

The representative of the operation Cþ3 in C3v for the s-orbital basis is given in

Table 5.3. Derive an expression for the representative in the transformed basis

given at the start of this subsection.

Method. To implement the recipe in eqn 5.7, we need to construct the matrices

c and c�1. Therefore, begin by expressing the relation between the two bases in

matrix form (as f 0 ¼ fc), and find the reciprocal of c by the methods described

in Further information 23. Finally, evaluate the matrix product c�1D(R)c.

Answer. The relation between the two bases,

sN ¼ sN s1 ¼ sA þ sB þ sC s2 ¼ 2sA � sB � sC s3 ¼ sB � sC

can be expressed as the following matrix:

ðsN, s1, s2, s3Þ ¼ ðsN, sA, sB, sCÞ

1 0 0 0
0 1 2 0
0 1 �1 1
0 1 �1 �1

2
664

3
775

which lets us identify the matrix c. The reciprocal of this matrix is

c�1 ¼ 1
6

6 0 0 0
0 2 2 2
0 2 �1 �1
0 0 3 �3

2
664

3
775

The representative of Cþ3 in the new basis is therefore

D0ðCþ3 Þ ¼ c�1DðCþ3 Þc

¼ 1
6

6 0 0 0

0 2 2 2

0 2 �1 �1

0 0 3 �3

2
6664

3
7775

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

2
6664

3
7775

1 0 0 0

0 1 2 0

0 1 �1 1

0 1 �1 �1

2
6664

3
7775

¼ 1
6

6 0 0 0

0 6 0 0

0 0 �3 �3

0 0 9 �3

2
6664

3
7775 ¼

1 0 0 0

0 1 0 0

0 0 �1
2 �1

2

0 0 3
2 �1

2

2
6664

3
7775

Self-test 5.4. Find the representative for the operation sv in the transformed

basis.

[See Table 5.4]
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The same technique as that illustrated in the example may be applied to the

other representatives, and the results are collected in Table 5.4.

5.7 The characters of representations

There is one striking feature of the two representations in Tables 5.3 and 5.4.

Although the matrices differ for the two bases, for a given operation the sum

of the diagonal elements of the representative is the same in the two bases.

The diagonal sum of matrix elements is called the character of the matrix, and

is denoted by the symbol w(R) where w is chi:

wðRÞ ¼
X

i

DiiðRÞ ð5:8Þ

In matrix algebra, the sum of diagonal elements is called the trace of the

matrix, and denoted tr. So, a succinct definition of the character of the

operation R is

wðRÞ ¼ tr DðRÞ ð5:9Þ
We now demonstrate that the character of an operation is invariant under a

similarity transformation of the basis. The proof makes use of the fact (which

we shall use several times in the following discussion) that the trace of a

product of matrices is invariant under cyclic permutation of the matrices:

tr ABC ¼ tr CAB ¼ tr BCA ð5:10Þ

Proof 5.3 The invariance of the trace of a matrix and the character of a

representative

First, we express the trace as a diagonal sum:

tr ABC ¼
X

i

ðABCÞii

Then we expand the matrix product by the rules of matrix multiplication:

tr ABC ¼
X
ijk

AijBjkCki

Table 5.4 The matrix representation of C3v in the basis {sN,s1,s2,s3}

D(E) D(Cþ3 ) D(C�3 )

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

1 0 0 0

0 1 0 0

0 0 � 1
2 � 1

2

0 0 1
2 � 1

2

2
6664

3
7775

1 0 0 0

0 1 0 0

0 0 � 1
2

1
2

0 0 � 1
2 � 1

2

2
6664

3
7775

w(E)¼ 4 �(Cþ3 )¼ 1 �(C�3 )¼ 1

D(sv) D(s0v) D(s00v)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

2
664

3
775

1 0 0 0

0 1 0 0

0 0 � 1
2

1
2

0 0 3
2

1
2

2
6664

3
7775

1 0 0 0

0 1 0 0

0 0 � 1
2 � 1

2

0 0 � 3
2

1
2

2
6664

3
7775

w(sv)¼ 2 �(s0v)¼ 2 �(s00v)¼ 2
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Matrix elements are simple numbers that may be multiplied in any order.

If they are permuted cyclically in this expression, neighbouring subscripts

continue to match, and so the matrix product may be reformulated with the

matrices in a permuted order:

tr ABC ¼
X
ijk

BjkCkiAij ¼
X

j

ðBCAÞjj ¼ tr BCA

as required.

Now we apply this general result to establish the invariance of the character

under a similarity transformation brought about by the matrix c:

wðRÞ ¼ tr DðRÞ ¼ tr cD0ðRÞc�1 ¼ tr D0ðRÞc�1c ¼ tr D0ðRÞ ¼ w0ðRÞ

That is, the characters of R in the two representations, w(R) and w 0(R), are

equal, as we wanted to prove.

5.8 Characters and classes

One feature of the characters shown in Tables 5.3 and 5.4 is that the char-

acters of the two rotations are the same, as are the characters of the three

reflections. These equalities suggest that the operations fall into various

classes that can be distinguished by their characters.

The formal definition of the class of a symmetry operation is that two

operations R and R 0 belong to the same class if there is some symmetry

operation S of the group such that

R0 ¼ S�1RS ð5:11Þ

The elements R and R 0 are said to be conjugate. Conjugate members belong to

the same class. The physical interpretation of conjugacy and membership

within a class is that R and R 0 are the same kind of operation (such as a

rotation) but performed with respect to symmetry elements that are related by

a symmetry operation.

Example 5.5 How to show that two symmetry operations are conjugate

Show that the symmetry operations Cþ3 and C�3 are conjugate in the group C3v.

Method. We need to show that there is a symmetry transformation of

the group that transforms Cþ3 into C�3 . Intuitively, we know that the reflection

of a rotation in a vertical plane reverses the sense of the rotation, so we

can suspect that a reflection is the necessary operation. To work out the

effect of a succession of operations, we use the information in the group

multiplication table (Table 5.2); to find the reciprocal of an operation, we

look for the element that produces the identity E in the group multiplication

table.
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Answer. We consider the joint operation sv
�1Cþ3 sv. According to Table 5.2,

the inverse of sv is sv itself. Therefore, from the group multiplication table

we can write

s�1
v Cþ3 sv ¼ svðCþ3 svÞ ¼ svs0v ¼ C�3

Hence, the two rotations belong to the same class.

Self-test 5.5. Show that sv and sv
0 are members of the same class in C3v.

With the concept of conjugacy established, it is now straightforward to

demonstrate that symmetry operations in the same class have the same

character in a given representation.

Proof 5.4 The invariance of character

We use the cyclic invariance of the trace of the product of representatives

(eqn 5.10). We also use the fact (as a result of eqn 5.11) that D(R 0) and D(R)

are related by a similarity transformation:

wðR0Þ ¼ tr DðR0Þ ¼ tr D�1ðSÞDðRÞDðSÞ ¼ tr DðRÞDðSÞD�1ðSÞ ¼ tr DðRÞ
¼ wðRÞ

A word of warning: although it is true that all members of the same class

have the same character in a given representation, the characters of different

classes may be the same as one another. For example, as we shall see, one

matrix representation of a group consists of 1�1 matrices each with the single

element 1. Such a representation certainly reproduces the group multiplication

table, but does so in a trivial way, and hence is called the unfaithful repres-

entation of the group. We shall see later that this representation is in fact one

of the most important of all possible representations. The characters of all the

operations of the group are 1 in the unfaithful representation, and although it

is true that members of the same class have the same character (1 in each case),

different classes also share that character.

5.9 Irreducible representations

Inspection of the representation of the group C3v in Table 5.3 for the

original s-orbital basis shows that all the matrices have a block-diagonal

form:

1 0 0 0
0
0
0

2
664

3
775

As a consequence, we see that the original four-dimensional basis

may be broken into two, one consisting of sN alone and the other of the
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three-dimensional basis (sA, sB, sC):

E Cþ3 C�3
1 1 1

1 0 0

0 1 0

0 0 1

2
64

3
75

0 0 1

1 0 0

0 1 0

2
64

3
75

0 1 0

0 0 1

1 0 0

2
64

3
75

sv s0v s00v
1 1 1

1 0 0
0 0 1
0 1 0

2
4

3
5 0 1 0

1 0 0
0 0 1

2
4

3
5 0 0 1

0 1 0
1 0 0

2
4

3
5

The first row in each case is the one-dimensional representation spanned by

sN and the 3�3 matrices form the three-dimensional representation spanned

by the three-dimensional basis (sA, sB, sC).

The separation of the representation into sets of matrices of lower

dimension is called the reduction of the representation. In this case, we

write

Dð4Þ ¼ Dð3Þ �Dð1Þ ð5:12Þ

and say that the four-dimensional representation has been reduced to a direct

sum (the significance of the � sign) of a three-dimensional and a one-

dimensional representation. The term ‘direct sum’ is used because we are not

simply adding together matrices in the normal way but creating a matrix of

high dimension from matrices of lower dimension.

There are several points that should be noted about the reduction. First, we

see that one of the representations obtained is the unfaithful representation

mentioned earlier, in which all the representatives are 1�1 matrices with the

same single element, 1, in each case. Another point is that the characters of the

representatives of symmetry operations of the same class are the same, as we

proved earlier. That is true of D(4), D(3), and D(1) (although the characters do

have different values for each representation).

The question that we now confront is whether D(3) is itself reducible.

A glance at the representation in Table 5.4 shows that the similarity trans-

formation we discussed earlier converts D(4) to a block-diagonal form of

structure

1 0 0 0
0 1 0 0
0 0
0 0

2
664

3
775

which corresponds to the reduction

Dð4Þ ¼ Dð1Þ �Dð1Þ �Dð2Þ

The two one-dimensional representations in this expression are the same

as the single one-dimensional (and unfaithful) representation introduced

above, so in effect the new feature we have achieved is the reduction of the
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three-dimensional representation:

Dð3Þ ¼ Dð1Þ �Dð2Þ

In this case, the linear combination s1 is a basis for D(1) whereas before

the single orbital sN was a basis for D(1). A glance at Fig. 5.23 shows the

physical reason for this analogy: the orbital sN has the ‘same symmetry’ as s1.

However, we are now moving to a position where we can say what we mean

by the colloquial term ‘same symmetry’: we mean act as a basis of the same

matrix representation.

The question that immediately arises is whether the two-dimensional

representation can be reduced to the direct sum of two one-dimensional

representations by another choice of similarity transformation. As we shall

see shortly, group theory can be used to confirm that D(2) is an irreducible

representation (‘irrep’) of the molecular point group in the sense that no

similarity transformation (that is, linear combination of basis functions) can

be found that simultaneously converts the representatives to block-diagonal

form. The unfaithful representation D(1) is another example of an irreducible

representation.

Each irreducible representation of a group has a label called a symmetry

species. The symmetry species is ascribed on the basis of the list of characters

of the representation. Thus, the unfaithful representation of the group C3v

has the list of characters (1, 1, 1, 1, 1, 1) and belongs to the symmetry species

named A1.4 The two-dimensional irreducible representation has characters

(2, �1, �1, 0, 0, 0), and its label is E. The letters A and B are used for the

symmetry species of one-dimensional irreducible representations, E is used

for two-dimensional irreducible representations, and T is used for three-

dimensional irreducible representations. The irreducible representations

labelled A1 and E are also labelled G(1) and G(3), respectively (we meet G(2)

shortly: the numbers on G do not refer to the dimension of the irreducible

representation, they are just labels). We shall use the G notation for general

expressions and the A, B, . . . labels in particular cases. If a particular set of

functions is a basis for an irreducible representation G, then we say that the

basis spans that irreducible representation. The complete list of characters of

all possible irreducible representations of a group is called a character table.

As we shall shortly show, there are only a finite number of irreducible

representations for groups of finite order, and we shall see that these tables are

of enormous importance and usefulness.

We are now left with three tasks. One is to determine which symmetry

species of irreducible representation may occur in a group and establish their

characters. The second is to determine to what direct sum of irreducible

representations an arbitrary matrix representation can be reduced—that is

equivalent to deciding which irreducible representations an arbitrary basis

spans. The third is to construct the linear combinations of members of an

arbitrary basis that span a particular irreducible representation. This work

requires some powerful machinery, which the next subsection provides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. For any point group, the unfaithful representation will be labelled with the letter A.
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5.10 The great and little orthogonality theorems

The quantitative development of group theory is based on the great ortho-

gonality theorem (GOT), which states the following. Consider a group of order

h, and let D(l)(R) be the representative of the operation R in a dl-dimensional

irreducible representation of symmetry species G(l) of the group. Then

X
R

D
ðlÞ
ij ðRÞ

�D
ðl0Þ
i0j0 ðRÞ ¼

h

dl
dll0dii0djj0 ð5:13Þ

Note that this form of the theorem allows for the possibility that the repres-

entatives have complex elements; in the applications in this chapter, however,

they will in fact be real and complex conjugation has no effect. Although this

expression may look fearsome, it is simple to apply. In words, it states that

if you select any location in a matrix of one irreducible representation, and

any location in a matrix of the same or different irreducible representation of

the group, multiply together the numbers found in those two locations, and

then sum the products over all the operations of the group, then the answer is

zero unless the locations of the elements are the same in both sets of matrices,

and indeed the same set of matrices (the same irreducible representations) are

chosen. If the locations are the same, and the two irreducible representations

are the same, then the result of the calculation is h/dl.

Example 5.6 How to use the great orthogonality theorem

Illustrate the validity of the GOT by choosing two examples from Table 5.3,

one that gives a non-zero value and one that gives a zero value according to the

theorem.

Method. For a non-zero outcome, we must choose the same location

in the same matrix representation: a simple example would be to use the one-

dimensional unfaithful representation A1. For the zero outcome, we can

choose either different locations in a single irreducible representation

or arbitrary locations in two different irreducible representations. Refer to

Table 5.3 for the specific values of the matrix elements.

Answer. (a) For C3v, for which h¼ 6, take the irreducible representation A1

(which has d¼ 1), in which the matrices are 1, 1, 1, 1, 1, 1. The sum on the left

of the GOT with each matrix element multiplied by itself isX
R

D
ðA1Þ
11 ðRÞ

�D
ðA1Þ
11 ðRÞ ¼ 1� 1þ 1� 1þ 1� 1þ 1� 1þ 1� 1þ 1� 1 ¼ 6

which is equal to 6/1¼ 6, as required by the theorem. (b) Consider two dif-

ferent locations in the two-dimensional irreducible representation E. For

example, take the 34 and 33 elements of the matrices in Table 5.3:X
R

D
ðEÞ
34 ðRÞ

�D
ðEÞ
33 ðRÞ ¼ D

ðEÞ
34 ðEÞ

�D
ðEÞ
33 ðEÞ þD

ðEÞ
34 ðCþ3 Þ

�D
ðEÞ
33 ðCþ3 Þ þ � � �

¼ 0� 1þ 0� 0þ 1� 0þ 1� 0þ 0� 0þ 0� 1 ¼ 0

which is also in accord with the theorem.
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Self-test 5.6. Confirm the validity of the GOT by using the irreducible

representation A1 and any element of the irreducible representation E for the

matrices in Table 5.4.

The great orthogonality theorem is too great for most of our purposes, and

it is possible to derive from it a weaker statement in terms of the characters of

irreducible representations. The little orthogonality theorem (LOT) states

thatX
R

wðlÞðRÞ�wðl0ÞðRÞ ¼ hdll0 ð5:14Þ

Proof 5.5 The little orthogonality theorem

To prove the little orthogonality theorem from the GOT, we set j¼ i and

j 0 ¼ i 0, to obtain diagonal elements on the left of eqn 5.13, and then sum over

all these diagonal elements. The left of eqn 5.13 becomes

X
i;i0

X
R

D
ðlÞ
ii ðRÞ

�D
ðl0Þ
i0 i0 ðRÞ ¼

X
R

X
i

D
ðlÞ
ii ðRÞ

�
( ) X

i0
D
ðl0Þ
i0i0 ðRÞ

( )

¼
X

R

wðlÞðRÞ�wðl0 ÞðRÞ

Under the same manipulations, the right-hand side of eqn 5.13 becomes

X
i;i0

h

dl


 �
dll0dii0dii0 ¼

h

dl
dll0

X
i

dii

There are dl values of the index i in a matrix of dimension dl, and so the

sum on the right is the sum of 1 taken dl times, or dl itself. Hence, on com-

bining the two halves of the equation, we arrive at the little orthogonality

theorem.

The LOT can be expressed slightly more simply by making use of the fact

that all operations of the same class have the same character. Suppose that the

number of symmetry operations in a class c is g(c), so that g(C3)¼2 and

g(sv)¼3 in the group C3v. ThenX
c

gðcÞwðlÞðcÞ�wðl0ÞðcÞ ¼ hdll0 ð5:15Þ

where the sum is now over the classes. When l 0 ¼ l, this expression becomesX
c

gðcÞ wðlÞðcÞ
�� ��2 ¼ h ð5:16Þ

which signifies that the sum of the squares of the characters of any irreducible

representation of a group is equal to the order of the group.

The form of the LOT suggests the following analogy. Suppose we inter-

pret the quantity {g(c)}1/2wc
(l) as a component vc

(l) of a vector v(l), with
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each component distinguished by the index c; then the LOT can be writtenX
c

vðlÞ�c vðl
0Þ

c ¼ vðlÞ� � vðl0Þ ¼ hdll0 ð5:17Þ

This expression shows that the LOT is equivalent to the statement that two

vectors are orthogonal unless l 0 ¼ l. However, the number of orthogonal

vectors in a space of dimension N cannot exceed N (think of the three

orthogonal vectors in ordinary space). In the present case, the dimensionality

of the ‘space’ occupied by the vectors is equal to the number of classes of the

group. Therefore, the number of values of l which distinguish the different

orthogonal vectors cannot exceed the number of classes of the group. Because

l labels the symmetry species of the irreducible representations of the group, it

follows that the number of symmetry species cannot exceed the number of

classes of the group. In fact, it follows from a more detailed analysis of the

GOT (as distinct from the LOT) that these two numbers are equal. Hence, we

arrive at the following restriction on the structure of a group:

The number of symmetry species is equal to the number of classes.

The vector interpretation can be applied to the GOT itself. To do so, we

identify Dij
(l)(R) as the Rth component of a vector v identified by the three

indices l, i, and j. The orthogonality condition is then

vðl;i;jÞ� � vðl0;i0;j0Þ ¼ h

dl
dll0dii0djj0 ð5:18Þ

This condition implies that any pair of vectors with different labels are

orthogonal. The orthogonality condition is expressed in terms of a sum over

all h elements of a group, so the vectors are h-dimensional. The total number

of vectors of a given irreducible representation is d2
l because the labels i and j

can each take dl values in a dl�dl matrix. The total dimensionality of the

space is therefore the sum of d2
l over all the symmetry species. The resulting

number
P

l d2
l

�
cannot exceed the dimension h of the space the vectors

inhabit, and it may be shown that the two numbers are in fact equal.

Therefore, we have the following further restriction on the structure of the

group:X
l

d2
l ¼ h ð5:19Þ

Example 5.7 How to construct a character table

Use the restrictions derived above and the LOT to complete the C3v character

table.

Method. We have identified two of the irreducible representations of the six-

dimensional group, namely A1 and E. The restriction given above will tell us

the number of symmetry species to look for, and we can use eqn 5.19 to

determine their dimensions. The characters themselves can be found from the

LOT by ensuring that they are orthogonal to the two irreducible representa-

tions we have already found.

144 j 5 GROUP THEORY



Answer. The order of the group is h¼ 6 and there are three classes of opera-

tion; therefore, we expect there to be three symmetry species of irreducible

representation. The dimensionality, d, of the unidentified irreducible repres-

entation must satisfy

12 þ 22 þ d2 ¼ 6

Hence, d¼ 1, and the missing irreducible representation is one-dimensional.

We shall call it A2. At this stage we can use the LOT to construct three

equations for the three unknown characters. With l¼ l 0 ¼A2, eqn 5.16 is

fwðA2ÞðEÞg2 þ 2fwðA2ÞðC3Þg2 þ 3fwðA2ÞðsvÞg2 ¼ 6

With l¼A2 and l 0 ¼A1 we obtain

wðA2ÞðEÞwðA1ÞðEÞ þ 2wðA2ÞðC3ÞwðA1ÞðC3Þ þ 3wðA2ÞðsvÞwðA1ÞðsvÞ ¼ 0

and with l¼A2 and l 0 ¼E

wðA2ÞðEÞwðEÞðEÞ þ 2wðA2ÞðC3ÞwðEÞðC3Þ þ 3wðA2ÞðsvÞwðEÞðsvÞ ¼ 0

When the known values of the characters of A1 and E are substituted, these

two equations become

wðA2ÞðEÞ þ 2wðA2ÞðC3Þ þ 3wðA2ÞðsvÞ ¼ 0

and

2wðA2ÞðEÞ � 2wðA2ÞðC3Þ ¼ 0

The three equations are enough to determine the three unknown characters,

and we find wðA2Þ(E)¼ 1, wðA2Þ(C3)¼ 1, and wðA2Þ(sv)¼�1. The complete set of

characters is displayed in Table 5.5.

Comment. The character of the identity in a one-dimensional irreducible

representation is 1, so that value could have been obtained without any

calculation.

Self-test 5.7. Construct the character table for the group C2v.

[See Table 5.6]

The character table for any symmetry group can be constructed as we

have illustrated, and a selection of character tables is given in Appendix 1.

Reduced representations

A great deal depends on being able to establish what irreducible representa-

tions are spanned by a given basis. This problem leads us into the applications

of group theory that we shall use throughout the text.

Table 5.5 The C3v character
table

C3v E 2C3 3�v

A1 1 1 1

A2 1 1 �1

E 2 �1 0

Table 5.6 The C2v character
table

C2v E C2 �v �0v

A1 1 1 1 1

A2 1 1 �1 �1

B1 1 �1 1 �1

B2 1 �1 �1 1
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D

�

D (1)

D (2)

D (3)

�(1)+ �(2)+ �(3)

Fig. 5.24 A diagrammatic

representation of the reduction of a
matrix to block-diagonal form. The

sum of the diagonal elements remains

unchanged by the reduction.

5.11 The reduction of representations

The question we now tackle is, given a general set of basis functions, how do

we find the symmetry species of the irreducible representations they span?

Often, as we shall see, we are interested more in the symmetry species and its

characters than in the actual irreducible representation (the set of matrices).

We have seen that a representation may be expressed as a direct sum of

irreducible representations

DðRÞ ¼ DðG
ð1ÞÞðRÞ �DðG

ð2ÞÞðRÞ � � � � ð5:20Þ
by finding a similarity transformation that simultaneously converts the matrix

representatives to block-diagonal form. It is notationally simpler to express

this reduction in terms of the symmetry species of the irreducible repre-

sentations that occur in the reduction:

G ¼
X

l

alG
ðlÞ ð5:21Þ

where al is the number of times the irreducible representation of symmetry

species G(l) appears in the direct sum. For example, the reduction of the

s-orbital basis we have been considering would be written G¼2A1þE.

Our task is to find the coefficients al. To do so, we make use of the fact

that because the character of an operation is invariant under a similarity

transformation, the character of the original representative is the sum of

the characters of the irreducible representations into which it is reduced

(Fig. 5.24). Therefore,

wðRÞ ¼
X

l

alw
ðlÞðRÞ ð5:22Þ

Now we use the LOT to determine the coefficients. To do so, we multiply both

sides of this equation by w(l 0)(R)� and sum over all the elements of the group:X
R

wðl
0ÞðRÞ�wðRÞ ¼

X
R

X
l

alw
ðl0ÞðRÞ�wðlÞðRÞ

¼ h
X

l

aldll0 ¼ hal0

That is, the coefficients are given by the rule

al ¼
1

h

X
R

wðlÞðRÞ�wðRÞ ð5:23Þ

Because the characters of members of the same class of operation are the

same, we can express this equation in terms of the characters of the classes:

al ¼
1

h

X
c

gðcÞwðlÞðcÞ�wðcÞ ð5:24Þ

Although the last two expressions provide a formal procedure for finding

the reduction coefficients, in many cases it is possible to find them by

inspection. Forexample, in the s-orbital basis forC3v, the characters are (4, 1,2)

for the classes (E, 2C3, 3sv). By inspection of the character table (Table 5.5), it

is immediately clear that the reduction is 2A1þE. However, in more com-

plicated cases, the formal procedure is almost essential.
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a

b

c

d

C3

C2, S4

�d

Fig. 5.25 The symmetry elements of
the group Td used in Example 5.8.

Example 5.8 How to determine the reduction of a representation

What symmetry species do the four H1s-orbitals of methane span?

Method. Methane belongs to the point group Td; the character table can be

found in Appendix 1. The character of each operation in the four-dimensional

basis (Ha, Hb, Hc, Hd) can be determined by noting the number (N) of

members left in their original location after the application of each operation:

a 1 occurs in the diagonal of the representative in each case, and so the

character is the sum of 1 taken N times. (If the member of the basis moves, a

zero appears along the diagonal which makes no contribution to the char-

acter.) Only one operation from each class need be considered because the

characters are the same for all members of a class. With the characters w(c)

established, apply eqn 5.24 to determine the reduction.

Answer. Refer to Fig. 5.25. The numbers of unchanged basis members under

the operations E, C3, C2, S4, sd are 4, 1, 0, 0, 2, respectively. The order of the

group is h¼ 24. It follows from eqn 5.24 that

aðA1Þ ¼ 1
24fð4� 1Þ þ 8ð1� 1Þ þ 3ð0� 1Þ þ 6ð0� 1Þ þ 6ð2� 1Þg ¼ 1

aðA2Þ ¼ 1
24fð4� 1Þ þ 8ð1� 1Þ þ 3ð0� 1Þ � 6ð0� 1Þ � 6ð2� 1Þg ¼ 0

aðEÞ ¼ 1
24fð4� 2Þ � 8ð1� 1Þ þ 3ð0� 2Þ þ 6ð0� 0Þ þ 6ð2� 0Þg ¼ 0

aðT1Þ ¼ 1
24fð4� 3Þ þ 8ð1� 0Þ � 3ð0� 1Þ þ 6ð0� 1Þ � 6ð2� 1Þg ¼ 0

aðT2Þ ¼ 1
24fð4� 3Þ þ 8ð1� 0Þ � 3ð0� 1Þ � 6ð0� 1Þ þ 6ð2� 1Þg ¼ 1

Hence, the four orbitals span A1þT2.

Comment. In some cases, an operation changes the sign of a member of the

basis without moving its location (an example is the O2px-orbital in H2O

under the operation C2). This sign reversal results in �1 appearing on the

diagonal. In other cases, such as for the basis (px, py) on the central atom in a

molecule belonging to the group C3v, a fractional value appears on the diag-

onal: see Section 5.13.

Self-test 5.8. What symmetry species do the five Cl3s-orbitals of PCl5, a

trigonal bipyramidal molecule in the gas phase, span?

5.12 Symmetry-adapted bases

We now establish how to find the linear combinations of the members of a

basis that span an irreducible representation of a given symmetry species. This

procedure is called finding a symmetry-adapted basis and the resulting basis

functions are called symmetry-adapted linear combinations. The next couple

of pages will bristle with subscripts; if you do not wish to pick your way

through the thicket, you will be able to use the final result (eqn 5.32).

We need to define a projection operator:

P
ðlÞ
ij ¼

dl

h

X
R

D
ðlÞ
ij ðRÞ

�R ð5:25Þ

This operator can be thought of as a mixture of the operations of the group,

with a weight given by the value of the matrix elements of the representation.
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We prove below that the effect of the projection operator is as follows:

P
ðlÞ
ij f
ðl0Þ
j0 ¼ f

ðlÞ
i dll0djj0 ð5:26Þ

Proof 5.6 The effect of a projection operator

Consider the set of functions f (l 0)¼ (f1
(l 0), f2

(l 0), . . . , fd
(l 0) ) that form a basis for a

dl 0-dimensional irreducible representation D(l 0) of symmetry species G(l 0) of a

group of order h. We can express the effect of any operation of the group as

Rf
ðl0Þ
j0 ¼

X
i0

f
ðl0Þ
i0 D

ðl0 Þ
i0j0 ðRÞ

The GOT may now be invoked. First we multiply by the complex conjugate of

an element Dij
(l)(R) of a representative of the same operation, and then sum

over the elements, using the GOT to simplify the outcome:

X
R

D
ðlÞ
ij ðRÞ

�Rf
ðl0Þ
j0 ¼

X
R

X
i0

D
ðlÞ
ij ðRÞ

�f
ðl0 Þ
i0 D

ðl0Þ
i0j0 ðRÞ

¼
X

i0
f
ðl0Þ
i0

X
R

D
ðlÞ
ij ðRÞ

�D
ðl0Þ
i0j0 ðRÞ

( )

¼
X

i0
f
ðl0Þ
i0

h

dl0


 �
dll0dii0djj0

¼ h

dl0


 �
dll0djj0 f

ðl0 Þ
i ¼ h

dl


 �
dll0djj0 f

ðlÞ
i

which is equivalent to eqns 5.25 and 5.26.

The reason why P is called a projection operator can now be made

clear. In the first case, suppose that either l 6¼ l 0 or j 6¼ j 0; then when Pij
(l)

acts on some member fj 0
(l 0), it gives zero. That is, when Pij

(l) acts on a function

that is not a member of the basis set that spans G(l), or—if it is a member—is

not at the location j in the set, then it gives zero. On the other hand, if the

member is at the location j of the set that does span G(l), then it converts

the function standing at the location j into the function standing at the

location i. That is, P projects a member from one location to another loca-

tion (Fig. 5.26). The importance of this result is that if we know only one

member of a basis of a representation, then we can project all the other

members out of it.

In the special case of l 0 ¼ l and i¼ j, the effect of the projection operator on

some member of the basis is

P
ðlÞ
ii f
ðlÞ
j0 ¼ f

ðlÞ
i dij0 ð5:27Þ

That is, P then either generates 0 (if i 6¼ j 0) or regenerates the original function

(if i¼ j 0). The significance of this special case will be apparent soon.

Now suppose that we are given a linearly independent but otherwise

arbitrary set of functions f¼ (f1, f2, . . . ). An example might be the s-orbital

A B C D E

Basis set

Symmetry-
adapted basis

Symmetry-
adapted basis

Pii
(l )

Pii
(l )

Pji'
(l' )

Pji
(l )

i

i j

0

Fig. 5.26 A schematic diagram to

illustrate the effect of the various

projection operators.
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basis we considered earlier. What is the effect of the projection operator

Pii
(l) on any one member? Just as any member of the symmetry-adapted

basis f 0 can be expressed as the appropriate linear combination of the

members of the arbitrary basis f, we can express any fj as a linear combination

of all the fj 0
(l 0):

fj ¼
X
l0;j0

f
ðl0Þ
j0 ð5:28Þ

(The expansion coefficients have been absorbed into the fj 0
(l 0).) If we now

operate on eqn 5.28 with the projection operator Pii
(l), we obtain

P
ðlÞ
ii fj ¼

X
l0;j0

P
ðlÞ
ii f
ðl0Þ
j0 ¼

X
l0;j0

dll0dij0 f
ðl0Þ
j0 ¼ f

ðlÞ
i ð5:29Þ

That is, when Pii
(l) operates on any member of the arbitrary initial basis, it

generates the ith member of the basis for the irreducible representation of

symmetry species G(l). With that member obtained, we can act on it with Pji
(l)

to construct the jth member of the set. This solves the problem of finding a

symmetry-adapted basis.

The problem with the method detailed above is that to set up the projection

operators we need to know the elements of all the representatives of the

irreducible representation. It is normally the case that only the characters (the

sums of the diagonal elements) are available. However, even that limited

information can be useful. Consider the projection operator p(l) formed by

summing P(l) over its diagonal elements:

pðlÞ ¼
X

i

P
ðlÞ
ii ¼

dl

h

X
i;R

D
ðlÞ
ii ðRÞ

�R ð5:30Þ

The sum over the diagonal elements of a representative is the character of the

corresponding operation, so

pðlÞ ¼ dl

h

X
R

wðlÞðRÞ�R ð5:31Þ

This operator can therefore be constructed from the character tables alone. Its

effect is to generate a sum of the members of a basis spanning an irreducible

representation (Fig. 5.27):

pðlÞfj ¼
X

i

P
ðlÞ
ii fj ¼

X
i

f
ðlÞ
i ð5:32Þ

The fact that a sum is generated is of no consequence for one-dimensional

irreducible representations because in such cases there is only one member

of the basis set. However, for two- and higher-dimensional irreduc-

ible representations the projection operator gives a sum of two or more

members of the basis. Nevertheless, because we are generally concerned

only with low-dimensional irreducible representations, this is rarely a severe

complication, and the following example shows how any ambiguity can be

resolved.

If a basis set g 0 ¼ (g1
0, g2

0, . . . )

is a linear combination of

another basis set g¼ (g1, g2, . . . )

in the form g 0 ¼ gc (as in Proof 5.2),

then g can be expressed as a

linear combination of g 0 via

g¼ g 0c�1.

A B C D E

Basis set

Symmetry-
adapted basis

p

+ + + +

Fig. 5.27 The projection operator p
generates a sum of the symmetry-

adapted basis functions when it is

applied to any member of the original

basis.
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Example 5.9 How to use projection operators

Construct the symmetry-adapated bases for the group C3v using the s-orbital

basis.

Method. We have already established that the s-orbital basis spans 2A1þE, so

we can use eqn 5.32 to construct the appropriate symmetry-adapted bases by

projection. We shall take all the characters to be real. The simplest way to use

eqn 5.32 is to follow this recipe:

1. Draw up a table headed by the basis and show in the columns the effect of

the operations. (A given column is headed by fj and an entry in the table

shows Rfj.)

2. Multiply each member of the column by the character of the corresponding

operation. (This step produces w(R)Rfj at each location; the characters in

Table 5.5 are real.)

3. Add the entries within each column. (This produces
P

R w(R)Rfj for a

given fj.)

4. Multiply by dimension/order. (This produces pfj.)

For the group C3v, h¼ 6.

Answer. The table to construct is as follows:

For the irreducible representation of symmetry species A1, d¼ 1 and all

w(R)¼ 1. Hence, the first column gives

1
6 ðsN þ sN þ sN þ sN þ sN þ sNÞ ¼ sN

The second column gives

1
6 ðsA þ sB þ sC þ sA þ sB þ sCÞ ¼ 1

3 ðsA þ sB þ sCÞ

The remaining two columns give the same outcome. For E, d¼ 2 and for the six

operations w¼ (2,�1,�1, 0, 0, 0) for the six operations. The first column gives
2
6 ð2sN � sN � sN þ 0þ 0þ 0Þ ¼ 0

The second column gives
2
6 ð2sA � sB � sC þ 0þ 0þ 0Þ ¼ 1

3 ð2sA � sB � sCÞ
The remaining columns produce 1

3 ð2sB � sC � sAÞ and 1
3 ð2sC � sA � sBÞ:

These three linear combinations are not linearly independent (the sum of them

Original set: sN sA sB sC

Under E sN sA sB sC

C3
þ sN sB sC sA

C3
� sN sC sA sB

�v sN sA sC sB

�v
0 sN sB sA sC

�v
00 sN sC sB sA
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is zero), so we can form a linear combination of the second two combinations

that is orthogonal to the first. The combination

s3 ¼ 1
3 ð2sB � sC � sAÞ � 1

3 ð2sC � sA � sBÞ ¼ sB � sC

is orthogonal to s2 ¼ 1
3 ð2sA � sB � sCÞ. Note that the two linear combinations

s2 and s3 have a different character under sv (þ1 and �1, respectively).

Self-test 5.9. Find the symmetry-adapted linear combinations of the p-orbitals

in NO2.

y

y

y

y

x

x

x

x

y

y

x

–x

–1/2x + 1/2√3y

–1/2x – 1/2√3y

–1/2y – 1/2√3x

Fig. 5.28 The effect of certain

symmetry operations of the group

C3v on the functions x and y.

The symmetry properties of functions

We now turn to a consideration of the transformation properties of functions

in general. To set the scene, we shall investigate how the three p-orbitals of

the nitrogen atom in NH3 transform under the operations of the group C3v.

The basis set for the representation we shall develop is (px, py, pz). Intuitively,

we can expect the representation to reduce to an irreducible representation

spanned by pz because pz ! pz under all operations of the group (but is it of

symmetry species A1 or A2?) and a two-dimensional irreducible representa-

tion spanned by (px,py) of symmetry species E, because these orbitals are

mixed by the symmetry operations. But suppose the basis was extended to

include d-orbitals on the central atom—what irreducible representations

would then be spanned? To answer questions like that, we need a systematic

procedure that can be applied even when—especially when—the conclusions

are not obvious. The systematic approach is set out below. The procedures

are essentially the same as we have already described, but they are more

generally applicable than the calculations done above.

5.13 The transformation of p-orbitals

Consider the basis (px,py,pz) for C3v. We know from Section 3.13 that the

orbitals have the form

px ¼ xf ðrÞ py ¼ yf ðrÞ pz ¼ zf ðrÞ
where r is the distance from the nucleus. All operations of a point group leave

r unchanged, and so the orbitals transform in the same way as the basis (x, y, z).

Some of the transformations of this basis are illustrated in Fig. 5.28.

The effect of sv on the basis is

svðx, y, zÞ ¼ ð�x, y, zÞ ¼ ðx, y, zÞ
�1 0 0
0 1 0
0 0 1

2
4

3
5

This relation identifies D(sv) in this basis. Under the rotation Cþ3 we have

Cþ3 ðx, y, zÞ ¼ ð�1
2xþ 1

2

ffiffiffi
3
p

y, � 1
2

ffiffiffi
3
p

x� 1
2y, zÞ ¼ ðx, y, zÞ

�1
2 �1

2

ffiffiffi
3
p

0
1
2

ffiffiffi
3
p

�1
2 0

0 0 1

2
4

3
5
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and we can identify D(Cþ3 ) for the basis. The complete representation can

be established in this way, and is set out in Table 5.7, together with the

characters.

The characters of the operations E, 2C3, and sv in the basis (x, y, z) are 3, 0,

and 1, respectively. This corresponds to the reduction A1þE. The function z

is a basis for A1, and the pair (x,y) span E. We therefore now also know that

the three p-orbitals also span A1þE, and that pz is a basis for A1 and (px, py)

is a basis for E.

The identities of the symmetry species of the irreducible representations

spanned by x, y, and z are so important that they are normally given explicitly

in the character tables (see Appendix 1). Exactly the same procedure may be

applied to the quadratic forms x2, xy, etc. that arise when the d-orbitals are

expressed in Cartesian coordinates (Section 3.13):

dxy ¼ xyf ðrÞ dyz ¼ yzf ðrÞ dzx ¼ zxf ðrÞ
dx2�y2 ¼ ðx2 � y2Þf ðrÞ dz2 ¼ ð3z2 � r2Þf ðrÞ

and the symmetry species these functions span are also normally reported:

in C3v the five functions span A1þ 2E.

5.14 The decomposition of direct-product bases

The question that now arises is stimulated by noticing that the quadratic

forms that govern the symmetry properties of the d-orbitals are expressed

as products of the linear terms that govern the symmetry properties of

p-orbitals. We can now explore whether it is possible to find the symmetry

species of quadratic forms such as xy, for instance, directly from the prop-

erties of x and y without having to go through the business of setting up the

symmetry transformations and their representatives all over again. In more

general terms, if we know what symmetry species are spanned by a basis

(f1, f2, . . . ), can we state the symmetry species spanned by their products, such

as (f1
2, f1f2, . . . )? We shall now show that this information is carried by

the character tables.

Table 5.7 The matrix representation of C3v in the basis
(x,y,z)

DðEÞ DðCþ3 Þ DðC�3 Þ
1 0 0
0 1 0
0 0 1

2
4

3
5 � 1

2 � 1
2

ffiffiffi
3
p

0
1
2

ffiffiffi
3
p

� 1
2 0

0 0 1

2
4

3
5 � 1

2
1
2

ffiffiffi
3
p

0

� 1
2

ffiffiffi
3
p

� 1
2 0

0 0 1

2
4

3
5

wðEÞ ¼ 3 wðCþ3 Þ ¼ 0 wðC�3 Þ ¼ 0

DðsvÞ Dðs0vÞ Dðs00vÞ
�1 0 0
0 1 0
0 0 1

2
4

3
5

1
2 � 1

2

ffiffiffi
3
p

0

� 1
2

ffiffiffi
3
p

� 1
2 0

0 0 1

2
4

3
5

1
2

1
2

ffiffiffi
3
p

0
1
2

ffiffiffi
3
p

� 1
2 0

0 0 1

2
4

3
5

wðsvÞ ¼ 1 wðs0vÞ ¼ 1 wðs00vÞ ¼ 1
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First, we show that if fi
(l) is a member of a basis for an irreducible repres-

entation of symmetry species G(l) of dimension dl, and fi 0
(l 0) is a member of a

basis for an irreducible representation of symmetry species G(l 0) of dimension

dl 0, then the products also form a basis for a representation, which is called

a direct-product representation. Its dimension is dldl 0.

Proof 5.7 The direct-product representation

Under an operation R of a group the two basis functions transform as follows:

Rf
ðlÞ
i ¼

X
j

f
ðlÞ
j D

ðlÞ
ji ðRÞ Rf

ðl0Þ
i0 ¼

X
j0

f
ðl0Þ
j0 D

ðl0Þ
j0i0 ðRÞ

It follows that their product transforms as

Rf
ðlÞ
i

� �
Rf
ðl0Þ
i0

� �
¼
X
j;j0

f
ðlÞ
j f

ðl0Þ
j0 D

ðlÞ
ji ðRÞD

ðl0 Þ
j0i0 ðRÞ

which is a linear combination of the products fj
(l)fj 0

(l 0).

To discover whether the direct-product representation is reducible, we

need to work out its characters. The matrix representative of the operation R
in the direct-product basis is Dji

(l)(R)Dj 0i 0
(l 0)(R), where the pair of indices jj 0 now

label the row of the matrix and the indices ii 0 label the column. The diagonal

elements are the elements with j¼ i and j 0 ¼ i 0. It follows that the character of

the operation R is

wðrÞ ¼
X
i;i0

D
ðlÞ
ii ðRÞD

ðl0Þ
i0i0 ðRÞ ¼

X
i

D
ðlÞ
ii ðRÞ

( ) X
i0

D
ðl0Þ
i0i0 ðRÞ

( )

¼ wðlÞðRÞwðl0ÞðRÞ ð5:33Þ
This is a very simple and useful result: it states that the characters of the

operations in the direct-product basis are the products of the corresponding

characters for the original bases. With the characters of the representation

established, we can then use the standard techniques described above to

decide on the reduction of the representation. This procedure is illustrated in

the following example.

Example 5.10 The reduction of a direct-product representation

Determine the symmetry species of the irreducible representations spanned by

(a) the quadratic forms x2, y2, z2 and (b) the basis (xz, yz) in the group C3v.

Method. For both parts of the problem we use the result set out in eqn 5.33 to

establish the characters of the direct-product representation, and then

reconstruct that set of characters as a linear combination of the characters of

the irreducible representations of the group. If the decomposition of the

characters is not obvious, use the procedure set out in Example 5.8.

Answer. (a) The basis (x,y,z) spans a (reducible) representation with

characters 3, 0, 1 (in the usual order E, 2C3, 3sv). The direct-product basis
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composed of x2, y2, z2 therefore spans a representation with characters 9, 0, 1.

This set of characters corresponds to 2A1þA2þ 3E. (b) The basis (xz, yz) is

the direct product of the bases z and (x, y) which span A1 and E, respectively.

The direct-product basis therefore has characters (in the usual order)

ð1 1 1Þ � ð2�1 0Þ ¼ ð2�1 0Þ

which we recognize as the characters of E itself. Therefore, (xz, yz) is a basis

for E, as indicated in Appendix 1.

Comment. The fact that the direct product of bases that span A1 and E spans E

is normally written

A1 � E ¼ E

Self-test 5.10. What irreducible representations are spanned by the direct

product of (x, y) with itself in the group C3v?

[A1þA2þE]

In the example we have shown that A1�E¼E, which is a formal way of

expressing the fact that the direct-product basis (xz, yz) spans E. In the same

way, the direct product of (x, y) with itself, which consists of the basis (x2, xy,

yx, y2), spans

E� E ¼ A1 þ A2 þ E

(The significance of the appearance of both xy and yx is discussed below.)

Tables of decompositions of direct products like these are called direct-

product tables. They can be worked out once and for all, and some are listed

in Appendix 1. We shall see that they are often as important as the character

tables themselves! A particularly important point to note from the tables

is that the product G(l)�G(l 0) contains the totally symmetric irreducible

representation (A1 in many groups) only if l 0 ¼ l.

Finally, we need to account for the presence of both xy and yx in the direct-

product basis. We need to note that the symmetrized direct product

f
ðþÞ
ij ¼ 1

2 ff
ðlÞ
i f

ðlÞ
j þ f

ðlÞ
j f

ðlÞ
i g ð5:34Þ

and the antisymmetrized direct product

f
ð�Þ
ij ¼ 1

2 ff
ðlÞ
i f

ðlÞ
j � f

ðlÞ
j f

ðlÞ
i g ð5:35Þ

of a basis taken with itself also form bases for the group. Clearly, the latter

(eqn 5.35) vanishes identically in this case because xy� yx¼0. We need

to establish which irreducible representations are spanned by the anti-

symmetrized direct product and discard them from the decomposition. The

characters of the products (eqns 5.34 and 5.35) are given by the following

expressions:5

wþðRÞ ¼ 1
2 fwðlÞðRÞ

2 þ wðlÞðR2Þg w�ðRÞ ¼ 1
2 fwðlÞðRÞ

2 � wðlÞðR2Þg ð5:36Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. For a derivation, see M. Hamermesh, Group theory and its applications to physical problems,

Addison-Wesley, Reading, Mass. (1962).
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In the direct-product tables the symmetry species of the antisymmetrized

product is denoted [G]. The fact that it is reported at all signifies that it has

some use: we shall see what it is in Section 7.16. In the present case

E� E ¼ A1 þ ½A2� þ E

and so we now know that (x2, xy, y2) spans A1þE. One of the most

important applications of this type of procedure is in the determination of

selection rules (see below, Section 5.16).

5.15 Direct-product groups

We can now consider another example of using group theory to build up

information from existing results. Here we shall show how to build up the

properties of larger groups by cementing together the character tables for

smaller groups.

Suppose there exists a group G of order h with elements R1, R2, . . . , Rh and

another group G 0 of order h with elements R1
0, R2

0, . . . , R0h0 . Let the

groups satisfy the following two conditions:

1. The only element in common is the identity.

2. The elements of group G commute with the elements of group G 0.

Because commutation holds, RR 0 ¼R 0R. Examples of two such groups are Cs

and C3v. Then the products RR 0 of each element of G with each element of G 0

form a group called the direct-product group:

G00 ¼ G�G0 ð5:37Þ

That G00 is in fact a group can be verified by checking that the group property

is obeyed for all pairs of elements. Then, because RiRj ¼Rk (because G is a

group) and Rr
0Rs
0 ¼Rt

0 (for a similar reason), in G00 with elements RiRr
0:

ðRiR
0
rÞðRjR

0
sÞ ¼ RiR

0
rRjR

0
s ¼ RiRjR

0
rR
0
s ¼ RkR0t

and the element so generated is a member of G00. The order of the direct-

product group is hh 0 (so the order of Cs � C3v is 2�6¼ 12).

The direct-product group can be identified by constructing its elements

(Cs � C3v will turn out to be D3h), and the character table can be constructed

from the character tables of the component groups. To do so, we proceed as

follows. Let (f1, f2, . . . ) be a basis for an irreducible representation of G

and (f1
0, f2
0, . . . ) be a basis for an irreducible representation of G 0. It follows

that we can write

Rfi ¼
X

j

fjDjiðRÞ R0f 0r ¼
X

s

f 0sDsrðR0Þ ð5:38Þ

Then the effect of RR 0 on the direct-product basis is

RR0fif
0
r ¼ ðRfiÞðR0f 0rÞ ¼

X
j;s

fjf
0
sDjiðRÞDsrðR0Þ

The character of the operation RR 0 is the sum of the diagonal elements:

wðRR0Þ ¼
X

ir

DiiðRÞDrrðR0Þ ¼wðRÞwðR0Þ ð5:39Þ
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Therefore, the character table of the direct-product group can be written

down simply by multiplying together the appropriate characters of the two

contributing groups.

Example 5.11 How to construct the character table of a direct-product group

Construct the direct-product group Cs�C3v, identify it, and build its char-

acter table from the constituent groups.

Method. To construct the direct-product group, we form elements by com-

bining each element of one group with each element of the other group in turn.

It is often sufficient to deal with the products of classes of operation rather

than each individual operation. The resulting group is recognized by noting its

composition and referring to Fig. 5.16. The characters are constructed by

multiplying together the characters contributing to each operation.

Answer. The groups Cs and C3v have, respectively, two and three classes, so

the direct-product group has 2� 3¼ 6 classes. It follows that it also has six

symmetry species of irreducible representations. The classes of Cs are (E,sh)

and those of C3v are (E, 2C3, 3sv). When each class of C3v is multiplied by the

identity operation of Cs, the same three classes, (E, 2C3, 3sv), are reproduced.

Each of these classes is also multiplied by sh. The operation Esh is the same as

sh itself. The operations Cþ3 sh and C3
�sh are the improper rotations S3

þ and S3
�,

respectively (see Fig. 5.29). The operations svsh are the same as two-fold

rotations about the bisectors of the angles of the triangular object (Fig. 5.30)

and are denoted C2. The direct-product group is therefore formed as follows:

According to the system of nomenclature described in Section 5.2, this set

of operations corresponds to the group D3h. At this point, we use the rule

about characters to construct the character table. The two component group

character tables are shown here and in the margin on p. 145. Upon taking all

the appropriate products we obtain the following table:

This is the table for this group given in Appendix 1.

E

E �h

�h

C3v:

C3v⊗ Cs:E

Cs:

2C3

E �h

2C3 3C22S3

3σv

E �h

3�v

E¼EE sh¼Esh 2C3¼
E(2C3)

2S3¼
sh(2C3)

3sv¼
E(3sv)

3C2¼
sh(3sv)

A1
0(¼A1A 0) 1 1 1 1 1 1

A1
00(¼A2A00) 1 �1 1 �1 �1 1

A2
0(¼A2A 0) 1 1 1 1 �1 �1

A2
00(¼A1A00) 1 �1 1 �1 1 �1

E 0(¼EA 0) 2 2 �1 �1 0 0

E00(¼EA00) 2 �2 �1 1 0 0

C3
+

�h

Fig. 5.29 A combination of the

operations sh and Cþ3 is equivalent to

the operation Sþ3 .

C2

�h

�v

Fig. 5.30 A combination of the

operations sh and sv is equivalent to

the operation C2.

Cs E �h

A 0 1 1

A00 1 � 1
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Comment. The procedure described here is an important and easy way of

constructing the character tables for more complex groups, such as

D6h¼D6�Ci and Oh¼O�Ci.

Self-test 5.11. Construct the character table for the group D6h¼D6�Ci.

5.16 Vanishing integrals

One of the more important applications of group theory is to the problem of

deciding when integrals are necessarily zero on account of the symmetry of

the system. This application can be illustrated quite simply by considering

two functions f(x) and g(x), and the integral over a symmetrical range around

x¼0.

Let f(x) be a function that is antisymmetric with respect to the interchange

of x and �x, so f(�x)¼�f(x). The integral of this function over a range

from x¼�a to x¼þa is zero (Fig. 5.31). On the other hand, if g(x) is a

symmetrical function in the sense that g(�x)¼ g(x), then its integral over the

same range is not necessarily zero. Note that the integral of g may, by accid-

ent, be zero, whereas the integral of f is necessarily zero. Now consider

another way of looking at the two functions. The range (�a, a) is considered

an ‘object’ with two symmetry elements: the identity and a mirror plane

perpendicular to the x-axis (Fig. 5.32). Such an object belongs to the point

group Cs. The function f spans the irreducible representation of symmetry

species A00 because Ef¼ f and shf¼�f. On the other hand, g spans A 0 because

Eg¼ g and sh g¼ g. That is, if the integrand is not a basis for the totally

symmetric irreducible representation of the group, then the integral is

necessarily zero. If the integrand is a basis for the totally symmetric irre-

ducible representation, then the integral is not necessarily zero (but may

accidentally be zero).

This simple example also introduces a further point that generalizes to all

groups. The integrals of f 2 and g2 are not zero, but the integral of fg is

necessarily zero. This feature is consistent with the discussion above, because

f 2 is a basis for A00 �A00 ¼A 0, which is the totally symmetric irreducible

representation; likewise g2 is a basis for A 0 �A 0 ¼A 0, which is also the totally

symmetric irreducible representation. However fg is a basis for A00 �A 0 ¼A00,

which is not totally symmetric, so the integral necessarily vanishes. Another

way of looking at this result is to note that f spans one species of irreducible

representation, g spans another. Then, basis functions that span irreducible
representations of different symmetry species are orthogonal.

More formally: if fi
(l) is the ith member of a basis that spans the irreducible

representation of symmetry species G(l) of a group, and fj
(l) is the jth member

of a basis that spans the irreducible representation of symmetry species G(l) of

the same group, then for a symmetric range of integration:

Z
f
ðlÞ�
i f

ðl0Þ
j dt / dll0dij ð5:40Þ

f

f

f

–a

–a

a

a

a

x

x

x

0

0

0

(a)

(b)

(c)

–a

Fig. 5.31 (a) An antisymmetric

function with necessarily zero

integral over a symmetric range

about the origin. (b) A symmetric
function with non-zero integral over

a symmetric range. (c) The integral of

this symmetric function, however,

is zero.

�

a

–a

Fig. 5.32 The symmetry element of a

symmetric integration range.
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The proof of this result is based on the GOT, and is given in Further
information 14. Note that the integral may be zero even when l 0 ¼ l and i¼ j,

because the eqn 5.40 is silent concerning the value of the proportionality

constant.

We have now arrived at one of the most important results of group theory.

The conclusion can be summarized as follows:

An integral
R

f (l)�f (l 0) dt over a symmetric range is necessarily zero unless the

integrand is a basis for the totally symmetric irreducible representation of

the group which will be the case only if G(l)¼G(l 0).

Example 5.12 The identification of zero integrals

Determine which orbitals of nitrogen in ammonia may have non-vanishing

overlap with the symmetry-adapted linear combinations s1, s2, and s3 of

hydrogen 1s-orbitals specified in Example 5.4.

Method. The overlap integral has the form
R
ci
�cj dt; hence it is non-vanishing

only if Gi�Gj includes A1. Begin by identifying the symmetry species of the

N2s- and N2p-orbitals by using the character table in Appendix 1 and noting

that px transforms as x, etc., and decide which can have non-vanishing overlap

with the symmetry-adapted linear combinations of the H1s-orbitals. Use the

direct-product tables in Appendix 1. Recall from Section 5.9 that s1 spans the

irreducible representation A1 and (s2, s3) spans E.

Answer. In C3v, the N2p-orbitals span A1(pz) and E(px,py). Because

A1�A1¼A1 and E�E¼A1þA2þE, the N2pz orbital can have non-zero

overlap with the combination s1, and the px and py orbitals can have non-zero

overlap with s2 and s3. The N2s-orbital also spans A1, and so may also overlap

with s1.

Comment. Note that whether the s1 symmetry-adapted linear combination

has non-zero overlap with N2pz depends on the bond angle: when the mole-

cule is flat, s1 lies in the nodal plane of N2pz and the overlap is zero.

Self-test 5.12. Show using group theory that the overlap of s1 and N2pz is

necessarily zero when the molecule is planar.

An integral of the form

I ¼
Z

f ðlÞ� f ðl
0Þf ðl

00Þdt ð5:41Þ

over all space is also necessarily zero unless the integrand is a basis for the

totally symmetric irreducible representation (such as A1). To determine

whether that is so, we first form G(l)�G(l 0) and expand it in the normal way.

Then we take each G(k) in the expansion and form the direct product

G(k)�G(l00). If A1 (or the equivalent totally symmetric irreducible representa-

tion) occurs nowhere in the resulting expression, then the integral I is

necessarily zero. In other words, the integral I necessarily vanishes if the

symmetry species G(l00) does not match one of the symmetry species in the
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direct product G(l)�G(l 0). This conclusion is of the greatest importance in

quantum mechanics because we often encounter integrals of the form

hajOjbi ¼
Z

c�aOcbdt

Therefore, we can use group theory to decide when matrix elements are

necessarily zero. This often results in an immense simplification of the con-

struction of molecular orbitals, the interpretation of spectra, and the calcula-

tion of molecular properties.

Example 5.13 The identification of vanishing matrix elements

Do the integrals (a) hdxyjzj dx2�y2i and (b) hdxyjlzj dx2�y2i vanish in a C4v

molecule?

Method. We need to assess whether G(l)�G(l 0)�G(l00) contains A1. To do so,

we use the character tables in Appendix 1 to identify the symmetry species

of each function in the integral. Angular momenta transform as rotations

(Section 5.18) so lz transforms as the rotation Rz, which is listed in the tables.

Use Appendix 1 for the direct-product decomposition.

Answer. In C4v, dxy and dx2�y2 span B2 and B1, respectively, whereas z spans

A1 and lz spans A2. (a) The integrand spans

B2 � A1 � B1 ¼ B2 � B1 ¼ A2

and hence the matrix element must vanish. (b) The integrand spans

B2 � A2 � B1 ¼ B2 � B2 ¼ A1

and hence the integral is not necessarily zero.

Comment. Matrix elements of this kind are particularly important for

discussing electronic spectra: we shall see that they occur in the formulation

of selection rules.

Self-test 5.13. Does the integral hdxy j lz j dxzi vanish in a C3v molecule?

5.17 Symmetry and degeneracy

We have already mentioned (in Section 2.15) that the presence of degeneracy

is a consequence of the symmetry of a system. We are now in a position to

discuss this relation. To do so, we note that the hamiltonian of a system must

be invariant under every operation of the relevant point group:

ðRHÞ ¼ H ð5:42Þ

A qualitative interpretation of eqn 5.42 is that the hamiltonian is the operator

for the energy, and energy does not change under a symmetry operation. An

example is the hamiltonian for the harmonic oscillator: the kinetic energy

operator is proportional to d2/dx2 and the potential energy operator is pro-

portional to x2. Both terms are invariant under the replacement of x by �x,

and so the hamiltonian spans the totally symmetric irreducible representation

5.17 SYMMETRY AND DEGENERACY j 159



of the point group Cs. Because H is invariant under a similarity transforma-

tion of the group (that is, any symmetry operation leaves it unchanged), we

can write

RHR�1 ¼ H

Multiplication from the right by R gives RH¼HR, so we can conclude that

symmetry operations must commute with the hamiltonian.

We now demonstrate that functions that can be generated from one

another by any symmetry operation of the system have the same energy.

That is:

Eigenfunctions that are related by symmetry transformations of the system

are degenerate.

We have already seen an example of this result in the discussion of the geo-

metrically square two-dimensional square-well eigenfunctions in Section 2.15.

Proof 5.8 Degeneracy and symmetry

Consider an eigenfunction ci of H with eigenvalue E. That is, Hci¼Eci. We

can multiply this equation from the left by R, giving RHci¼ERci, and insert

R�1R for the identity, to obtain

RHR�1Rci ¼ ERci

From the invariance of H it then follows that

HRci ¼ ERci

Therefore, ci and Rci correspond to the same energy E.

We can go on to formulate a rule for the maximum degree of degeneracy

that can occur in a system of given symmetry. Consider a member cj of a basis

for an irreducible representation of dimension d of the point group for the

system, and suppose it has an energy E. We have already seen that all the

other members of the basis can be generated by acting on this function with

the projection operator Pij defined in eqn 5.25. However, because Pij is a

linear combination of the symmetry operations of the group, it commutes

with the hamiltonian. Therefore,

PijHcj ¼ HPijcj ¼ Hci and PijHcj ¼ PijEcj ¼ Eci

and hence Hci¼Eci, and ci has the same eigenvalue as cj. But we can

generate all d members of the d-dimensional basis by choosing the index i

appropriately, and so all d basis functions have the same energy. We can

conclude that:

The degree of degeneracy of a set of functions is equal to the dimension of

the irreducible representation they span.

This dimension is always given by w(E), the character of the identity.

In the harmonic oscillator, with point group Cs, the only irreducible

representations are one-dimensional, and therefore all the eigenfunctions are

non-degenerate. For a geometrically square two-dimensional square-well

160 j 5 GROUP THEORY



potential, with point group C4v, two-dimensional irreducible representations

are allowed, and so some levels can be doubly degenerate. Triply degenerate

levels occur in systems with cubic point-group symmetry, and five-fold

degeneracy is encountered in icosahedral systems. The full rotation group, R3,

has irreducible representations of arbitrarily high dimension, so degeneracies

of any degree can occur.

The full rotation group

We shall now consider the full rotation groups in two and three dimensions

(R2 and R3) and discover the deep connection between group theory and the

quantum mechanics of angular momentum. The techniques are no different in

principle from those introduced earlier in the chapter, but there are some

interesting points of detail.

5.18 The generators of rotations

Consider first the full rotation group R2 in two dimensions, the point group of

a circular system (Fig. 5.33). The name R2 is a synonym of C1v and is an

example of an infinite rotation group in the sense that rotations through any

angles (and in particular infinitesimal angles) are symmetry operations. You

should bear in mind the analogous illustration for the equilateral triangle

(Fig. 5.28) to see the similarities and differences between finite and infinite

rotation groups.

We shall first establish the effect of an infinitesimal counter-clockwise

rotation through an angle df about the z-axis on the basis (x, y). It will be

convenient to work in polar coordinates and to write the basis as (r cosf,

r sinf), with r a constant under all operations of the group. Under the infi-

nitesimal rotation df, which we denote Cdf, the basis transforms as follows:

Cdfðx;yÞ ¼ fr cosðf�dfÞ,r sinðf�dfÞg
¼ fr cos f cos dfþ r sin f sin df, r sin f cos df � r cos f sin dfg
¼ fr cosfþ r df sin fþ�� �,r sin f� r df cos fþ�� �g
¼ ðxþ y dfþ�� �,y�x dfþ�� �Þ
¼ ðx,yÞ� ð�y,xÞdfþ�� �

We have used the expansions sin x¼ x� 1
6x3þ�� � and cos x¼1� 1

2x
2þ �� �

and have kept only lowest-order terms in the infinitesimal angle df. That is:

Cdfðx, yÞ ¼ ðx, yÞ � ð�y, xÞdfþ � � �

Now we identify an important fact. Consider the effect of the angular

momentum operator

lz ¼
�h

i
x
q
qy
� y

q
qx


 �
ð5:43Þ

x

x

y

y

y

x

y – x��
x +y��

��

Fig. 5.33 The effect on the functions

x and y of an infinitesimal rotation
df about the z-axis.
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on the basis:

lzðx, yÞ ¼ �h

i
x
q
qy
� y

q
qx


 �
ðx, yÞ ¼ �h

i
ð�y, xÞ

By comparing this result with the effect of Cdf, we see that

Cdfðx, yÞ ¼ 1� i

�h
dflz þ � � �

� �
ðx, yÞ ð5:44Þ

and that the operator itself can be written

Cdf ¼ 1� i

�h
dflz þ � � � ð5:45Þ

The infinitesimal rotation operator therefore differs from the identity to first

order in df by a term that is proportional to the operator lz. The operator

1� (i/�h)dflz is therefore called the generator of the infinitesimal rotation

about the z-axis. In a similar way, the operators lx and ly are the generators for

rotations about the x- and y-axes in R3.

We know that the angular momentum operators satisfy a set of com-

mutation relations. These can be seen in a different light as follows. The effect

of a sequence of rotations about different axes depends on the order in which

they are applied (Fig. 5.34). Under a rotation by da about x followed by

a rotation by db about y, we have

C
ðyÞ
db C

ðxÞ
da ¼ 1� i

�h
dbly þ � � �


 �
1� i

�h
dalx þ � � �


 �

¼ 1� i

�h
ðdbly þ dalxÞ þ

i

�h


 �2

dbdalylx þ � � �

However, if the rotations are applied in the opposite order the outcome is

C
ðxÞ
da C

ðyÞ
db ¼ 1� i

�h
dalx þ � � �


 �
1� i

�h
dbly þ � � �


 �

¼ 1� i

�h
ðdbly þ dalxÞ þ

i

�h


 �2

dbdalxly þ � � �

The difference between these two operations to second order is

C
ðyÞ
db C

ðxÞ
da � C

ðxÞ
da C

ðyÞ
db ¼

i

�h


 �2

dadbðlylx � lxlyÞ ¼
i

�h
dadblz ð5:46Þ

where the last equality follows from the commutation relation [lx,ly]¼ i�hlz.

The result we have established is that the difference between two infinit-

esimal rotations is equivalent to a single infinitesimal rotation through the

angle �dadb about the z-axis, which is geometrically plausible (Fig. 5.34).

The reverse argument, that it is geometrically obvious that the difference is

a single rotation, therefore implies that [lx,ly]¼ i�hlz. Hence, the angular

momentum commutation relations can be regarded as a direct consequence of

the geometrical properties of composite rotations.

5.19 The representation of the full rotation group

We shall now look for the irreducible representations of the full rotation

group R3. As a starting point, we note that the spherical harmonics Ylml
for

x y

z

C��
(x )

C��
(x )

C��
(y )

C��
(y )

C��
(x )

C��
(x )

C��
(y )

C��
(y )

Fig. 5.34 The non-commutation of

perpendicular rotations. Notice that

the outcome of the combined

rotation C
ðyÞ
db C

ðxÞ
da is different

from the outcome of C
ðxÞ
da C

ðyÞ
db :
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a given l transform into linear combinations of one another under a rotation.

(For example, p-orbitals rotate into one another, d-orbitals do likewise, and

so on, but p-orbitals do not rotate into d-orbitals. This is consistent with the

result that eigenfunctions related by symmetry transformations are degen-

erate.) Therefore, the functions Yll, Yl,l�1, . . . ,Yl,� l form a basis for a (2lþ1)-

dimensional (and it turns out, irreducible) representation of the group. Each

spherical harmonic has the form Ylml
¼P(y)eimlf, and so, as a result of a

rotation by a around the z-axis, each one transforms into P(y)eiml(f� a). The

entire basis therefore transforms as follows:

CðzÞa ðYll, Yl;l�1, . . . , Yl;�lÞ ¼
�

PðyÞeilðf�aÞ, PðyÞeiðl�1Þðf�aÞ, . . . , PðyÞe�ilðf�aÞ
�

¼ ðYll, Yl;l�1, . . . , Yl;�lÞ

e�ila 0 0 � � � 0

0 e�iðl�1Þa 0 � � � 0

0 0 ..
.

..

. ..
. ..

.

0 0 � � � � � � eila

2
66666664

3
77777775

ð5:47Þ

This expression lets us recognize the matrix representative of the rotation in

the basis.

The character of a rotation through the angle a about the z-axis (and

therefore about any axis, because in R3 all rotations through a given angle

belong to the same class) is the following sum:

wðCaÞ ¼ e�ila þ e�iðl�1Þa þ � � � þ eila

¼ 1þ 2 cos aþ 2 cos 2aþ � � � þ 2 cosðl � 1Þaþ 2 cos la ð5:48Þ
To obtain this expression, we have used eixþ e�ix¼2 cos x; the leading 1

comes from the term with ml¼ 0. This simple expression can be used to

establish the character of any rotation for a (2lþ1)-dimensional basis.

An even simpler version is obtained by recognizing that the first line is

a geometric series. Hence, it is the sum

wðCaÞ ¼
Xl

ml¼�l

eimla ¼ e�ilaðeið2lþ1Þa � 1Þ
eia � 1

ð5:49Þ

This slightly awkward expression can be manipulated into

wðCaÞ ¼
sinðl þ 1

2Þa
sin 1

2 a
ð5:50Þ

In the limit a! 0 pertaining to an infinitesimal rotation, the character is

2lþ1, and so the levels with quantum number l are (2lþ1)-fold degenerate in

a spherical system.

Example 5.14 How to determine the symmetry species of atoms in various

environments

An atom has a configuration that gives rise to a state with l¼ 3. What sym-

metry species would it give rise to in an octahedral environment?

The sum of a series

aþ arþ ar2þ � � � þ arn is

a(rnþ 1� 1)/(r� 1). In the present

case, a¼ e�ila, r¼ eia, and n¼ 2l.

To evaluate (sin ax)/(sin bx) in the

limit x!0, recall that in this

same limit (sin ax)/(ax)¼ 1, and

therefore (sin ax)/(sin bx)¼ a/b.

In the present case, x¼ a, a¼ lþ 1
2,

and b¼ 1
2.

5.19 THE REPRESENTATION OF THE FULL ROTATION GROUP j 163



Method. We need to identify the rotations that are common to both R3 and O,

and then to calculate their characters from eqn 5.50 with l¼ 3. Then, by

referring to the character table for O in Appendix 1, we can identify the

symmetry species spanned by the state in the reduced symmetry environment.

Answer. The rotation angles in O (recall in R3 all angles are permitted) are

a¼ 0 for E, a¼ 2p/3(C3), p(C2), p/2(C4), p(C2
0). Because

wðCaÞ ¼
sinð7a=2Þ
sinða=2Þ

we find w¼ (7, 1,�1,�1,�1) for (E, C3, C2, C4, C2
0). Then, use of eqn 5.24

with h¼ 24 gives a(A2)¼ 1, a(T1)¼ 1, and a(T2)¼ 1. Therefore, in the reduced

symmetry environment the symmetry species are A2þT1þT2.

Comment. The step down from a group to its subgroup is called ‘descent in

symmetry’. It is a particularly important technique in the theory of the

structure and spectra of d-metal complexes (see Chapter 8). The atomic

configuration with l¼ 3 is called an F term; the descent in symmetry in this

case is denoted F ! A2þT1þT2.

Self-test 5.14. What irreducible representations does an l¼ 4 state (a G term)

span in tetrahedral symmetry?

5.20 Coupled angular momenta

We now explore the group-theoretical description of the coupling of two

angular momenta. We suppose that we have two sets of functions that are the

bases for irreducible G(j1) and G(j2) of the full rotation group. The functions

will be denoted f
ðj1Þ
mj1 and f

ðj2Þ
mj2 , respectively. The products f

ðj1Þ
mj1 f

ðj2Þ
mj2 provide a

basis for the direct-product representation Gðj1Þ � Gðj2Þ. This representation is

in general reducible, and we can reduce it as explained in Section 5.14.

First, we write

Gðj1Þ � Gðj2Þ ¼
X

j

ajGðjÞ ð5:51Þ

To determine the coefficients we consider the characters:

wðCaÞ ¼ wðj1ÞðCaÞwðj2ÞðCaÞ ¼
Xj1

mj1¼�j1

Xj2

mj2¼�j2

eiðmj1þmj2Þa ð5:52Þ

The question we now address is whether the right-hand side of this equation

can be expressed as a sum over Smj
eimja and, if so, how many times each term

in the sum appears. We shall now demonstrate that each term appears exactly

once, and that j varies from j1þ j2 down to j j1� j2 j .
The argument runs as follows. Because jmj1þmj2 j � j1þ j2, it follows that

jmj j � j1þ j2, and so j� j1þ j2. Therefore, aj¼ 0 if j > j1þ j2. The maximum

value of mj may be obtained from mj1 and mj2 in only one way: when mj1¼ j1
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and mj2¼ j2. Therefore, aj1þ j2¼ 1. The next value of mj, which is j�1, may

be obtained in two ways, namely mj1¼ j1� 1 and mj2¼ j2 or mj1¼ j1 and

mj2¼ j2� 1; one of these ways is accounted for by the representation with

j¼ j1þ j2, and so we can conclude that aj1þj2�1¼1. This argument can be

continued down to j¼ j j1� j2 j , and so eqn 5.52 is equivalent to

wðCaÞ ¼
Xj1þj2

j¼jj1�j2j

Xj

mj¼�j

eimja ¼
Xj1þj2

j¼jj1�j2j
wðjÞðCaÞ ð5:53Þ

Therefore, we can conclude that the direct product decomposes as follows:

Gðj1Þ � Gðj2Þ ¼ Gðj1þj2Þ þ Gðj1þj2�1Þ þ � � � þ Gðjj1�j2jÞ ð5:54Þ

which is nothing other than the Clebsch–Gordan series, eqn 4.44. This result

shows, in effect, that the whole of angular momentum theory can be regarded

as an aspect of group theory and the symmetry properties of rotations.

Applications

There are numerous applications of group theory, both explicit and implicit.

We shall encounter many of them in the following pages. That being so, we

shall only indicate here the types of applications that are encountered, and

where in the text.

The application of the rotation groups (R3, D1h, and C1v) will appear

wherever we discuss the angular momentum of atoms and molecules

(Chapters 7, 10, and 11). Finite groups play an important role in the dis-

cussion of molecular structure and properties, both in the setting up of

molecular orbitals (Chapter 8) and in the evaluation of the matrix elements

and expectation values that are needed to evaluate molecular properties

(Chapter 6). When an atom or ion is embedded in a local environment, as in a

crystal or a complex, the degeneracy of its orbitals is removed with important

consequences for its spectroscopic features (Chapter 11). Spectroscopy in

general also relies heavily on group-theoretical arguments in its classification

of states, the construction of normal modes of vibration, and the derivation

of selection rules. The calculation of the electric and magnetic properties of

molecules relies on the evaluation of matrix elements, and group theory helps

by eliminating many integrals on the basis of symmetry alone (Chapters 12

and 13). The following chapters will confirm that group theory does indeed

pervade the whole of quantum chemistry.
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P R O B L E M S

5.1 Classify the following molecules according to their
point symmetry group: (a) H2O, (b) CO2, (c) C2H4,
(d) cis-ClHC¼CHCl, (e) trans-ClCH¼CHCl,
(f) benzene, (g) naphthalene, (h) CHClFBr, (i) B(OH)3.

5.2 Which of the molecules listed above may possess a
permanent electric dipole moment? Hint. Decide on
the criterion for the non-vanishing of h�i¼

R
c��c dt

and refer to the tables in Appendix 1; � transforms as
r¼ (x, y, z).

5.3 Find the representatives of the operations of the
group C2v using as a basis the valence orbitals of H and O
in H2O (that is, H1sA, H1sB, O2s, O2p). Hint. The group is
of order 4 and so there are four 6-dimensional matrices
to find.

5.4 Confirm that the representatives established in Problem
5.3 reproduce the group multiplications
C2

2¼E, svC2¼ s 0v.

5.5 Determine which symmetry species are spanned by
the six orbitals of H2O described in Problem 5.3. Find
the symmetry-adapted linear combinations, and confirm
that the representatives are in block-diagonal form. Hint.
Decompose the representation established in Problem 5.3
by analysing the characters. Use the projection operator
in eqn 5.31 to establish the symmetry-adapted bases
(using the elements of the representatives established
in Problem 5.3), form the matrix of coefficients cji

(Section 5.6) and use eqn 5.7 to construct the irreducible
representations.

5.6 Find the representatives of the operations of the group
Td by using as a basis four 1s-orbitals, one at each apex of a
regular tetrahedron (as in CH4). Hint. The basis is four-
dimensional; the order of the group is 24, and so there are
24 matrices to find.

5.7 Confirm that the representations established in Problem
5.6 reproduce the group multiplications Cþ3C�3¼E,
S4C3¼ S 04, and S4C3¼ sd.

5.8 Determine which irreducible representations are
spanned by the four 1s-orbitals in methane. Find the
symmetry-adapted linear combinations, and confirm that
the representatives for Cþ3 and S4 are in block-diagonal
form. Hint. Decompose the representation into irreducible
representations by analysing the characters. Use the
projection operator in eqn 5.31 to establish the symmetry-
adapted bases.

5.9 Analyse the following direct products into the symmetry
species they span: (a) C2v: A2�B1�B2,
(b) C3v: A1�A2�E, (c) C6v: B2�E1, (d) C1v: E1

2,
(e) O: T1�T2�E.

5.10 Show that 3x2y� y3 is a basis for an A1 irreducible
representation of C3v. Hint. Show that Cþ3 (3x2y� y3)/
3x2y� y3; likewise for the other elements of the group.

5.11 A function f(x,y,z) was found to be a basis for a
representation of C2v, the characters being (4, 0, 0, 0).
What symmetry species of irreducible representations
does it span? Hint. Proceed by inspection to find the al

in eqn 5.21 or use eqn 5.23.

5.12 Find the components of the function f(x,y,z) (from
Problem 5.11) acting as a basis for each irreducible
representation it spans. Hint. Use eqn 5.31. The basis for
A1, for example, turns out to be 1

4{f(x, y, z)þ
f(�x, �y, z)þ f(x,�y, z)þ f(�x, y, z)}.

5.13 Regard the naphthalene molecule as having C2v

symmetry (with the C2 axis perpendicular to the plane),
which is a subgroup of its full symmetry group. Consider
the p-orbitals on each carbon as a basis. What symmetry
species do they span? Construct the symmetry-adapted
bases. Hint. Proceed as in Example 5.9.

5.14 Repeat the process of Problem 5.13 for benzene,
using the subgroup C6v of the full symmetry group. After
constructing the symmetry-adapted linear combinations,
refer to the D6h character table to label them according to
the full group.

5.15 Show that in an octahedral array, hydrogen
1s-orbitals span A1gþEgþT1u of the group Oh.

5.16 Classify the terms that may arise from the following
configurations: (a) C2v: a2

1b1
1b1

2; (b) C3v: a1
2e1, e2; (c) Td:

a1
2e1, e1t1

1, t1
1t1

2, t2
1, t2

2; (d) O: e2, e1t1
1, t2

2. Hint. Use the direct
product tables; triplet terms have antisymmetric spatial
functions.

5.17 Construct the character tables for the groups Oh and
D6h. Hint. Use D6h¼D6�Ci and Oh¼O�Ci and the
procedure in Section 5.15.

5.18 Demonstrate that there are no non-zero integrals of
the form

R
c 0Hc dt when c 0 and c belong to different

symmetry species.

5.19 The ground states of the C2v molecules NO2 and
ClO2 are 2A1 and 2B1, respectively; the ground state of
O2 is 3Sg

�. To what states may (a) electric-dipole,
(b) magnetic-dipole transitions take place? Hint. The
electric-dipole operator transforms as translations, the
magnetic as rotations.

5.20 What is the maximum degeneracy of the energy levels
of a particle confined to the interior of a regular
tetrahedron?
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5.21 Demonstrate that the linear momentum operator
p¼ (�h/i)(d/dx) is the generator of infinitesimal translations.
Hint. Proceed as in eqn 5.45.

5.22 An atom bearing a single p-electron is trapped in an
environment with C3v symmetry. What symmetry species
does it span? Hint. Use eqn 5.49 with a¼ 120�.

5.23 The group multiplication table for C2v is shown in
Example 5.2. Confirm that the group elements multiply
associatively.

5.24 A molecule of carbon dioxide, initially in a S�u
electronic state, absorbs z-polarized electromagnetic

radiation. What is the symmetry of the excited electronic
state?

5.25 In the square-planar xenon tetrafluoride molecule,
consider the symmetry-adapted linear combination
p1 ¼ pA � pB þ pC � pD where pA, pB, pC, pD are the 2pz

atomic orbitals on the fluorine atoms (clockwise
labelling of the fluorine atoms). Which of the various s,
p, and d atomic orbitals on the central xenon atom can
overlap with p1 to form molecular orbitals? Hint: It
will be much easier to work in the reduced point group
D4 rather than the full symmetry point group of the
molecule.
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This is a sad but necessary chapter. It is sad because we have reached the point

at which the hope of finding exact solutions is set aside and we begin to look

for methods of approximation. It is necessary, because most of the problems

of quantum chemistry cannot be solved exactly, so we must learn how to

tackle them. There are very few problems for which the Schrödinger equation

can be solved exactly, and the examples in previous chapters almost exhaust

the list. As soon as the shape of the potential is distorted from the forms

already considered, or more than two particles interact with one another (as

in a helium atom), the equation cannot be solved exactly.

There are three ways of making progress. The first is to try to guess the

shape of the wavefunction of the system. Even people with profound insight

need a criterion of success, and this is provided by the ‘variation principle’,

which we specify below. It is useful to be guided to the form of the wave-

function by a knowledge of the distortion of the system induced by the

complicating aspects of the potential or the interactions. For example, the

exact solutions for a system that resembles the true system may be known and

can be used as a guide to the true solutions by noting how the hamiltonians of

the two systems differ. This procedure is the province of ‘perturbation

theory’. Perturbation theory is particularly useful when we are interested

in the response of atoms and molecules to electric and magnetic fields. When

these fields change with time (as in a light wave) we have to deal with ‘time-

dependent perturbation theory’. The third important method of approxi-

mation, which is dealt with in detail in Chapters 7 and 9, makes use of

‘self-consistent field’ procedures, which is an iterative method for solving the

Schrödinger equation for systems of many particles.

Time-independent perturbation theory

In time-independent perturbation theory we make use of the fact that the

hamiltonians for the true and simpler model system, H and H(0), respectively,

differ by a contribution that is independent of the time:

H ¼ Hð0Þ þHð1Þ ð6:1Þ

We refer to H(1) as the perturbation. Our aim is to generate the wavefunctions

and energy of the perturbed system from a knowledge of the unperturbed

Techniques of approximation

Time-independent perturbation

theory

6.1 Perturbation of a two-level

system

6.2 Many-level systems

6.3 The first-order correction to

the energy

6.4 The first-order correction to

the wavefunction

6.5 The second-order correction to

the energy

6.6 Comments on the perturbation

expressions

6.7 The closure approximation

6.8 Perturbation theory for

degenerate states

Variation theory

6.9 The Rayleigh ratio

6.10 The Rayleigh–Ritz method

The Hellmann–Feynman

theorem

Time-dependent perturbation

theory

6.11 The time-dependent behaviour

of a two-level system

6.12 The Rabi formula

6.13 Many-level systems: the
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6.14 The effect of a slowly switched

constant perturbation

6.15 The effect of an oscillating

perturbation

6.16 Transition rates to continuum

states

6.17 The Einstein transition
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6.18 Lifetime and energy

uncertainty
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system and a procedure for taking into account the presence of the

perturbation.

6.1 Perturbation of a two-level system

Consider first a system that has only two eigenstates. We suppose that the two

eigenstates of H(0) are known, and denote them j1i and j2i. The corres-

ponding wavefunctions are cð0Þ1 and cð0Þ2 , respectively. These states and

functions form a complete orthonormal basis. They correspond to the ener-

gies E
ð0Þ
1 and E

ð0Þ
2 :

Hð0Þcð0Þm ¼ Eð0Þm cð0Þm m ¼ 1, 2

The wavefunctions of the true system differ only slightly from those of the

model system, and we can hope to solve the equation

Hc ¼ Ec ð6:2Þ

in terms of them by writing

c ¼ a1c
ð0Þ
1 þ a2c

ð0Þ
2 ð6:3Þ

where a1 and a2 are constants to be determined.

To find the constants am we insert the linear combination into the

Schrödinger equation and obtain (using ket notation)

a1ðH � EÞj1i þ a2ðH � EÞj2i ¼ 0

When this equation is multiplied from the left by the bras h1j and h2j in turn,

and use is made of the orthonormality of the two states, we obtain the two

equations

a1ðH11 � EÞ þ a2H12 ¼ 0

a1H21 þ a2ðH22 � EÞ ¼ 0
ð6:4Þ

where Hmn¼hmjHjni.
The condition for the existence of non-trivial solutions of this pair of

equations is that the determinant of the coefficients of the constants a1 and a2

should disappear (see Further Information 23 and Example 1.10):

H11 � E H12

H21 H22 � E

����
���� ¼ 0

This expression expands to

ðH11 � EÞðH22 � EÞ �H12H21 ¼ 0

and then to

E2 � ðH11 þH22ÞEþH11H22 �H12H21 ¼ 0

This quadratic equation has the solutions

E	 ¼ 1
2 H11 þH22ð Þ 	 1

2 H11 �H22ð Þ2þ 4H12H21

n o1=2
ð6:5Þ
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In the special case of a perturbation for which the diagonal matrix elements

are zero (H
ð1Þ
mm ¼ 0, so we can write Hmm ¼ E

ð0Þ
m ), this expression simplifies to

E	 ¼ 1
2 E

ð0Þ
1 þ E

ð0Þ
2

� �
	 1

2 E
ð0Þ
1 � E

ð0Þ
2

� �2
þ4e2

� �1=2

ð6:6Þ

where e2 ¼ H
ð1Þ
12 H

ð1Þ
21 . Because H(1) is hermitian, we can write e2 ¼ jHð1Þ12 j

2.

When the perturbation is absent, e¼ 0 and Eþ ¼ E
ð0Þ
1 , E� ¼ E

ð0Þ
2 , the two

unperturbed energies.

Figure 6.1 shows the variation of the energies of the system as the

separation of the states of the model system is increased. As can be seen, the

lower of the two levels is lowered in energy and that of the upper level is

raised. In other words, the effect of the perturbation is to drive the energy

levels apart and to prevent their crossing. This non-crossing rule is a common

feature of all perturbations that can link two states (that is, for which

H
ð1Þ
mn 6¼ 0 for m 6¼ n). A second general feature can also be seen from the

illustration: the effect of the perturbation is greater the smaller the energy

separation of the unperturbed levels. For instance, when the two original

energies have the same energy (E
ð0Þ
1 ¼ E

ð0Þ
2 ), then

Eþ � E� ¼ 2e

Equation 6.6 also shows that the stronger the perturbation, the stronger the

effective repulsion of the levels. In summary:

1. When a perturbation is applied, the lower level moves down in energy and

the upper level moves up.

2. The closer the unperturbed states are in energy, the greater the effect of

a perturbation.

3. The stronger the perturbation, the greater the effect on the energies of the

levels.

The effect of the perturbation can be seen in more detail by considering the

case of a perturbation that is weak compared with the separation of the

energy levels in the sense that e2 � ðEð0Þ1 � E
ð0Þ
2 Þ

2. When this condition holds,

we can expand eqn 6.6 by making use of (1þx)1/2¼1þ 1
2xþ � � � , to obtain

E	 ¼ 1
2 E

ð0Þ
1 þ E

ð0Þ
2

� �
	 1

2 E
ð0Þ
1 � E

ð0Þ
2

� �
1þ 4e2

E
ð0Þ
1 � E

ð0Þ
2

� �2

8><
>:

9>=
>;

1=2

¼ 1
2 E

ð0Þ
1 þ E

ð0Þ
2

� �
	 1

2 E
ð0Þ
1 � E

ð0Þ
2

� �
1þ 2e2

E
ð0Þ
1 � E

ð0Þ
2

� �2
þ � � �

8><
>:

9>=
>;

from which it follows that to second-order in e we have

Eþ  E
ð0Þ
1 �

e2

DEð0Þ
E�  E

ð0Þ
2 þ

e2

DEð0Þ
ð6:7Þ

where DEð0Þ ¼ E
ð0Þ
2 � E

ð0Þ
1 (Fig. 6.2). These two solutions converge on the

exact solutions when (2e/DE(0))2� 1, as shown in Fig. 6.1. A general feature

E–

E+

E1

E2

E E2 + /� ∆2

E E1 – /� ∆2

∆E

E
n

er
g

y

Fig. 6.1 The variation of the energies
of a two-level system with a constant

perturbation as the separation of the

unperturbed levels is increased. The

pale lines show the energies
according to second-order

perturbation theory.
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Fig. 6.2 (a) When the unperturbed

levels are far apart in energy, the shift

in energy caused by a perturbation of

strength e is 	e2/DE. (b) If the levels
are initially degenerate, then the shift

in energy is much larger, and is equal

to 	e.
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of all perturbation theory calculations is that the shifts in energy are of the

order of e2/DE(0).

The perturbed wavefunctions are obtained by solving eqn 6.4 for the

coefficients setting in turn E¼Eþ (to obtain cþ) and E¼E� (to obtain c�).

A convenient way to express the solutions is to write

cþ ¼ c0
1 cos zþ cð0Þ2 sin z c� ¼ � cð0Þ1 sin zþ cð0Þ2 cos z ð6:8Þ

for this ensures that cþ and c� are orthonormal for all values of z. Then it is

found (see Example 1.10 for details) that1

tan 2z ¼
2 H

ð1Þ
12

��� ���
E
ð0Þ
1 � E

ð0Þ
2

ð6:9Þ

For a degenerate model system ðEð0Þ1 ¼ E
ð0Þ
2 Þ, we have tan 2z¼1, corres-

ponding to z¼ p/4. In this case the perturbed wavefunctions are

cþ ¼
1

21=2
cð0Þ1 þ cð0Þ2

� �
c� ¼

1

21=2
cð0Þ2 � cð0Þ1

� �
ð6:10Þ

It follows that each perturbed state is a 50 per cent mixture of the two model

states. In contrast, for a perturbation acting on two widely separated states

we can write tan 2z  2z ¼ �2jHð1Þ12 j=DEð0Þ. Furthermore, because sin z z
and cos z1, it follows from eqn 6.8 that

cþ  cð0Þ1 �
H
ð1Þ
12

��� ���
DEð0Þ

cð0Þ2 c�  cð0Þ2 þ
H
ð1Þ
12

��� ���
DEð0Þ

cð0Þ1 ð6:11Þ

We see that each model state is slightly contaminated by the other state.

6.2 Many-level systems

Now we generalize these results to a system in which there are numerous,

and possibly an infinite number of, non-degenerate levels. Special precautions

have to be taken if the state of interest is degenerate, and we consider that

possibility in Section 6.8.

We suppose that we know all the eigenfunctions and eigenvalues of a

model system with hamiltonian H(0) that differs from the true system to a

small extent. An example might be an anharmonic oscillator or a molecule in

a weak electric field: the model systems would then be a harmonic oscillator

or a molecule in the absence of a field, respectively. We therefore suppose that

we have found the solutions of the equations

Hð0Þjni ¼ Eð0Þn jni ð6:12Þ

with n¼0, 1, 2, . . . , and jni a member of an orthonormal basis. We shall

suppose that we are calculating the perturbed form of the state j0i of energy

E
ð0Þ
0 , but this state is not necessarily the ground state of the system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. In general, a complex matrix element H
ð1Þ
12 can be written as jHð1Þ12 jeif. In the following, we

suppose that f¼ 0.
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The hamiltonian of the perturbed system will be written

H ¼ Hð0Þ þ lHð1Þ þ l2Hð2Þ þ � � � ð6:13Þ

The only significance of the parameter l is that it keeps track of the order of

the perturbation, and will enable us to identify all first-order terms in the

energy, all second-order terms, and so on. At the end of the calculation we set

l¼1 because by then it will have served its purpose. Similarly, the perturbed

wavefunction of the system will be written

c0 ¼ cð0Þ0 þ lcð1Þ0 þ l2cð2Þ0 þ � � � ð6:14Þ

which shows how the unperturbed function ðcð0Þ0 Þ is corrected by terms that

are of various orders in the perturbation. The energy of the perturbed state

also has correction terms of various orders, and we write

E0 ¼ E
ð0Þ
0 þ lE

ð1Þ
0 þ l2E

ð2Þ
0 þ � � � ð6:15Þ

We shall refer to E
ð1Þ
0 as the first-order correction to the energy, to E

ð2Þ
0 as the

second-order correction, and so on.

The equation to solve is

Hc ¼ Ec ð6:16Þ

Insertion of the preceding equations into this equation, followed by collecting

terms that have the same power of l, then results in

l0fHð0Þcð0Þ0 � E
ð0Þ
0 cð0Þ0 g

þ l1fHð0Þcð1Þ0 þHð1Þcð0Þ0 � E
ð0Þ
0 cð1Þ0 � E

ð1Þ
0 cð0Þ0 g

þ l2fHð0Þcð2Þ0 þHð1Þcð1Þ0 þHð2Þcð0Þ0 � E
ð0Þ
0 cð2Þ0 � E

ð1Þ
0 cð1Þ0

� E
ð2Þ
0 cð0Þ0 g þ � � � ¼ 0

Because l is an arbitrary parameter, the coefficient of each power of l must

equal zero separately, so we have the following set of equations:

Hð0Þcð0Þ0 ¼ E
ð0Þ
0 cð0Þ0

fHð0Þ � E
ð0Þ
0 gc

ð1Þ
0 ¼ fE

ð1Þ
0 �Hð1Þgcð0Þ0

fHð0Þ � E
ð0Þ
0 gc

ð2Þ
0 ¼ fE

ð2Þ
0 �Hð2Þgcð0Þ0 þ fE

ð1Þ
0 �Hð1Þgcð1Þ0

ð6:17Þ

and so on.

6.3 The first-order correction to the energy

The solution of the first of eqn 6.17 is assumed known (it is eqn 6.12). The

first-order correction to the wavefunction is written as a linear combination

of the unperturbed wavefunctions of the system because the latter constitute a

complete basis set of functions:

cð1Þ0 ¼
X

n

anc
ð0Þ
n ð6:18Þ
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The sum is over all states of the model system including those belonging to the

continuum, if there is one. When this expansion is inserted into the equation

for cð1Þ0 , we obtain (in ket notation)X
n

an Hð0Þ � E
ð0Þ
0

n o
nj i ¼

X
n

an Eð0Þn � E
ð0Þ
0

n o
nj i

¼ E
ð1Þ
0 �Hð1Þ

n o
0j i ð6:19Þ

When this expression is multiplied from the left by the bra h0j we obtainX
n

an Eð0Þn � E
ð0Þ
0

n o
0 jnh i ¼ 0h j E

ð1Þ
0 �Hð1Þ

n o
0j i

¼ E
ð1Þ
0 � 0h jHð1Þ 0j i

The left-hand side of this equation is zero, so we can conclude that the first-

order correction to the energy of the state j0i is

E
ð1Þ
0 ¼ h0jHð1Þj0i ¼ H

ð1Þ
00 ð6:20Þ

The matrix element H
ð1Þ
00 is the average value of the first-order perturbation

over the unperturbed state j0i. An analogy is the first-order shift in the fre-

quency of a violin string when small weights are added along its length: those

at the nodes have no effect on the frequency, those at the antinodes (the points

of maximum amplitude) affect the frequency most strongly, and the overall

effect is an average taking into account the displacement of the string at the

location of each weight. In the special case in which the diagonal matrix

elements of the perturbation are zero, there is no first-order correction to

the energy.

Example 6.1 How to calculate the first-order correction to the energy

A small step in the potential energy is introduced into the one-dimensional

square-well problem (Fig. 6.3). Calculate the first-order correction to the

energy of a particle confined to the well and evaluate it for a¼L/10, so the blip

in the potential occupies the central 10 per cent of the well, and for (a) n¼ 1,

(b) n¼ 2.

Method. We need to evaluate eqn 6.20 by using

Hð1Þ ¼ e if 1
2 ðL� aÞ � x � 1

2 ðLþ aÞ
0 if x is outside this region

�

The wavefunctions are given in eqn 2.31. We should anticipate that the effect

of the perturbation will be much smaller for n¼ 2 than for n¼ 1 because in the

former the perturbation is applied in the vicinity of a node.

Answer. The integral required is

Eð1Þn ¼
2e
L

Z 1
2ðLþaÞ

1
2ðL�aÞ

sin2 npx

L

� �
dx ¼ e

a

L
� ð�1Þn

np
sin

npa

L

� �� �

With a¼L/10, (a) for n¼ 1, E(1)¼ 0.1984e; (b) for n¼ 2, E(1)¼ 0.0065e.

We have used the integralZ
sin2 kx dx

¼ 1
2x�

1

4k
sin 2kxþ constant
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Fig. 6.3 The perturbation to a

square-well potential used in
Example 6.1.
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Comment. The relative sizes of the two answers are consistent with the per-

turbation being close to an antinode and a node, respectively. When n is very

large, E(1) (a/L)e, independent of n. At such high quantum numbers, the

probability of finding the particle in the region a is a/L regardless of n. Note

that if e> 0, then the energy of the states is increased from the unperturbed

values.

Self-test 6.1. Evaluate the first-order correction to the energy of a particle in a

box for a perturbation of the form e sin(xp/L) for n¼ 1 and n¼ 2.

6.4 The first-order correction to the wavefunction

Now we look for the first-order correction to the state of the system. To find

it, multiply eqn 6.19 from the left by the bra hkj, where k 6¼ 0:

X
n

an k Eð0Þn � E
ð0Þ
0

n o��� ���nD E
¼ k E

ð1Þ
0 �Hð1Þ

n o��� ���0D E

The orthonormality of the states again simplifies this expression to

ak E
ð0Þ
k � E

ð0Þ
0

n o
¼ E

ð1Þ
0 k j0h i � kh jHð1Þ 0j i ¼ � kh jHð1Þ 0j i

Because the state j0i is non-degenerate, the differences E
ð0Þ
k � E

ð0Þ
0 are all

non-zero for k 6¼ 0. Therefore, the coefficients are given by

ak ¼
H
ð1Þ
k0

E
ð0Þ
0 � E

ð0Þ
k

ð6:21Þ

where H
ð1Þ
k0 ¼ hkjHð1Þj0i. It follows that the wavefunction of the system

corrected to first-order in the perturbation is

c0  cð0Þ0 þ
X

k

0 H
ð1Þ
k0

E
ð0Þ
0 � E

ð0Þ
k

( )
cð0Þk ð6:22Þ

where the prime on the sum means that the state with k¼0 should be

omitted.

The last equation echoes the expression derived for the two-level system in

the limit of a weak perturbation and widely separated energy levels. As in that

case, perturbation theory guides us towards the form of the perturbed state of

the system. In this case, the procedure simulates the distortion of the state by

mixing into it the other states of the system. This mixing is expressed by

saying that the perturbation induces virtual transitions to these other states of

the model system. However, that is only a pictorial way of speaking: in fact,

the distorted state is being simulated as a linear superposition of the unper-

turbed states of the system. The equation shows that a particular state k

makes no contribution to the superposition if H
ð1Þ
k0 ¼ 0, and (for a given

magnitude of the matrix element) the contribution of a state is smaller the

larger the energy difference jEð0Þ0 � E
ð0Þ
k j.
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6.5 The second-order correction to the energy

We use the same technique to extract the second-order correction to the

energy from eqn 6.17. First, we write the second-order correction to the

wavefunction as the linear combination

cð2Þ0 ¼
X

n

bnc
ð0Þ
n ð6:23Þ

and then substitute this expansion into the third equation in eqn 6.17, which

in ket notation becomes

X
n

bn Eð0Þn � E
ð0Þ
0

n o���nE ¼ E
ð2Þ
0 �Hð2Þ

n o���0EþX
n

an E
ð1Þ
0 �Hð1Þ

n o���nE

Now multiply this equation through from the left by h0j, which gives

X
n

bn Eð0Þn � E
ð0Þ
0

n o
0 jnh i ¼

D
0
���nE

ð2Þ
0 �Hð2Þ

o���0E

þ
X

n

an

D
0
��� E

ð1Þ
0 �Hð1Þ

n o���nE

¼E
ð2Þ
0 � 0h jHð2Þ 0j i þ

X
n

an

D
0
��� E

ð1Þ
0 �Hð1Þ

n o���nE

¼E
ð2Þ
0 � 0h jHð2Þ 0j i þ a0 E

ð1Þ
0 � 0h jHð1Þ 0j i

n o

þ
X

n

0an 0
���nE

ð1Þ
0 �Hð1Þ

D o���nE

The left-hand side is zero, as is (from eqn 6.20) the third term on the right as

well as the term E
ð1Þ
0 h0jni in the final sum (because n 6¼ 0), so

E
ð2Þ
0 ¼ 0h jHð2Þ 0j i þ

X
n

0an 0h jHð1Þ nj i

At this point we can import eqn 6.21 for the coefficients an, and obtain the

following expression for the second-order correction to the energy:

E
ð2Þ
0 ¼ H

ð2Þ
00 þ

X
n

0 H
ð1Þ
0n H

ð1Þ
n0

E
ð0Þ
0 � E

ð0Þ
n

ð6:24Þ

As usual, the prime on the sum signifies omission of the state with n¼ 0.

Equation 6.24 is very important and we shall use it frequently. It is a

generalization of the approximate form of the solutions for the two-level

problem, and consists of two parts. One, H
ð2Þ
00 , is the same kind of average

as occurs for the first-order correction, and is an average of the second-

order perturbation over the unperturbed wavefunction of the system. The

second term is more involved, but can be interpreted as the average of the

first-order perturbation taking into account the first-order distortion of

the original wavefunction. It should be noticed that because by hermiticity

H
ð1Þ
0n H

ð1Þ
n0 ¼ H

ð1Þ
0n H

ð1Þ�
0n ¼ jH

ð1Þ
0n j

2, the sum in eqn 6.24 gives a negative con-

tribution (lowers the energy) if E
ð0Þ
n >E

ð0Þ
0 for all n, which is the case if j0i is the

ground state.
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Example 6.2 How to evaluate a second-order correction to the energy

Suppose that the square-well potential was modified by the addition of a

contribution of the form� e sin(px/L) (Fig. 6.4). Find the second-order cor-

rection to the energy of the state with n¼ 1 (the ground state, in this problem)

by numerical evaluation of the perturbation sum.

Method. Evaluate the matrix elements H
ð1Þ
n0 (where the ‘0’ state of interest here

is the ground state with quantum number 1) analytically using the wave-

functions given in eqn 2.31. The denominator in eqn 6.24 is obtained from the

energy expression in eqn 2.31 and is proportional to 1� n2. Evaluate the terms

in the perturbation sum using mathematical software. By symmetry, only odd

values of n contribute. In this problem, H(2)¼ 0 and H
ð1Þ
n0 is real.

Answer. The matrix elements we require are as follows:

H
ð1Þ
n0 ! H

ð1Þ
n1 ¼�

2e
L

Z L

0

sin
npx

L

� �
sin

px

L

� �
sin

px

L

� �
dx

¼ e
p

1

n
� 1

2ðnþ 2Þ �
1

2ðn� 2Þ

� �
ð�1Þn � 1f g

E
ð0Þ
0 � Eð0Þn ! E

ð0Þ
1 � Eð0Þn ¼ 1� n2

� � h2

8mL2

We must therefore evaluate the following sum (where the sum starts at n¼ 3

because the lowest value of n, n¼ 1, is omitted and all terms with n even are

zero):

E
ð2Þ
0 ! E

ð2Þ
1 ¼

32mL2e2

h2p2

X
n¼3;5;...

1

1� n2

� �
1

n
� 1

2ðnþ 2Þ �
1

2ðn� 2Þ

� �2

¼� 32mL2e2

h2p2
� 8:953� 10�3
� �

Comment. The distorted wavefunction can be calculated from eqn 6.22 and is

c1 ¼ cð0Þ1 �
8mL2e
100h2

2:12cð0Þ3 þ 0:101cð0Þ5 þ 0:0168cð0Þ7 þ � � �
n o

This wavefunction corresponds to a greater accumulation of amplitude in the

middle of the well.

Self-test 6.2. Repeat the calculation for a perturbation of the form

e sin(2px/L).

6.6 Comments on the perturbation expressions

We could now go on to find the second-order correction to the wavefunction,

and use that result to deduce the third-order correction to the energy, and so

on. However, such high-order corrections are only rarely needed and more

advanced techniques are generally employed. Furthermore, a useful theorem

states that to know the energy correct to order 2nþ1 in the perturbation, it is

sufficient to know the wavefunctions only to nth order in the perturbation.

Thus, from the first-order wavefunction, we can calculate the energy up to

third order. A final technical problem is to know whether the perturbation
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Fig. 6.4 The perturbation to a

square-well potential used in

Example 6.2.
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theory expansion actually converges. This is answered affirmatively for most

common cases by a theorem due to Rellich and Kato,2 but it is normally

simply assumed that convergence occurs. The Further reading section sug-

gests places where this delicate question can be pursued.

The practical difficulty with eqn 6.24 is that we do not normally have

detailed information about the states and energies that occur in the sum. The

sum extends, for instance, over all the states of the system, which includes the

continuum, if that exists. There are, happily, several aspects of the formula-

tion that diminish this problem.

In the first place, the contribution of states that differ by a large energy

from the state of interest can be expected to be small on account of the

appearance of energy differences in the denominator. Other things being

equal, only energetically nearby states contribute appreciably to the sum. The

continuum states are generally so high in energy (they correspond, for

instance, to ionized states of the system), that they can often safely be ignored.

A further apparent difficulty is that although states that are high in energy

make only small individual contributions to the sum, there may be very many

of them, so their total contribution may be significant. For the hydrogen

atom, the number of states of a given energy (that is, the degeneracy) increases

as n2, and when n¼103 there are 106 states of the same energy, each one

making a small contribution to the sum. However, it often turns out that the

matrix elements in the numerators of the perturbation sum vanish identically

for many states. For instance, for a hydrogen atom in a uniform electric field

in the z-direction, for each n only one of the n2 states of the same energy (the

npz-orbital) has non-vanishing matrix elements to the ground state of the

atom. Thus, although there may be 106 states lining up to be included, only

one of them is selected.

The vanishing of matrix elements that so greatly simplifies the perturbation

formulas and helps to guarantee convergence of perturbation expansions

depends on the symmetry properties of the system. This is where group theory

plays such a striking role. The matrix elements of interest are in fact integrals:

H
ð1Þ
0n ¼

Z
cð0Þ�0 Hð1Þcð0Þn dt ð6:25Þ

We saw in Section 5.16 that such integrals are necessarily zero unless the direct

product G(0)�G(pert)�G(n) contains the totally symmetric irreducible repres-

entation (for instance, A1 or its equivalent). The physical basis of this important

conclusion can be understood by considering the distortion of the wavefunc-

tion inducedby theperturbation. Suppose that the stateof interest (the state j0i)
is totally symmetric (it might be the 1s-orbital of a hydrogenic atom). Then

Gð0Þ � GðpertÞ � GðnÞ ¼ A1 � GðpertÞ � GðnÞ ¼ GðpertÞ � GðnÞ

and this product must contain A1 (or its equivalent). It does so only if G(pert)¼
G(n). It follows that the only states that are mixed into the ground state by the

perturbation are those with the same symmetry as the perturbation. In other

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. See the volume edited by C.H. Wilcox, Perturbation theory and its applications in quantum

mechanics, Wiley, New York (1966), for a discussion of these matters.
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words: the distortion impressed on the system has the same symmetry as

the perturbation; the perturbation leaves its footprint on the system. For

example, if the perturbation is an electric field in the z-direction, then only the

pz-orbitals of the atom have the correct symmetry to mirror the effect of

the perturbation and are the only orbitals to be included in the sum.

Example 6.3 How to determine the states to include in a perturbation

calculation

What orbitals should be mixed into a d-orbital when it is perturbed by the

application of an electric field in the x-direction?

Method. An electric field of strength e in the x-direction corresponds to the

perturbation H(1)¼�mxe, where mx is the x-component of the electric dipole

moment operator: mx¼�ex. Therefore, we need to decide which matrix

elements hdjxjni are non-zero. To do so, we decide on the symmetry species for

orbital jni that gives the totally symmetric irreducible representation when we

evaluate G(d)�G(x)�G(n). We use the full rotation group and the results of

Section 5.20. In addition, further symmetry analysis can often reduce the list

of candidates for the admixed orbitals.

Answer. The function for a d-orbital (l¼ 2) is a component of the basis for G(2)

and x is likewise a component of the basis for G(1) (recall px / x). Because

G(2)�G(1)¼G(3)þG(2)þG(1) by eqn 5.54, at this stage we can infer that f-, d-,

and p-orbitals can be mixed into the d-orbital. However, under the symmetry

operation of inversion, all of the d-orbitals are even but x is odd; therefore the

admixed function must be odd, which eliminates d-orbitals. The appropriate

functions are therefore f and p.

Comment. If a particular d-orbital were specified, only specific f- and

p-orbitals would be in the admixture. For example, of the three p-orbitals,

only pz would mix with a dzx-orbital.

Self-test 6.3. What orbitals would be mixed into a p-orbital for a field applied

in the z-direction?

6.7 The closure approximation

It is sometimes useful to make a ‘back-of-the-envelope’ assessment of the

magnitude of a property without evaluating the perturbation sum in detail. If

the spectrum of energy levels of the system resembles that shown in Fig. 6.5,

then we can make the approximation that all the energy differences E
ð0Þ
n � E

ð0Þ
0

in the perturbation expression can be replaced by their average value DE.

Then the expression for the second-order correction to the energy becomes

E
ð2Þ
0  H

ð2Þ
00 �

1

DE

X
n

0H
ð1Þ
0n H

ð1Þ
n0

The sum is almost in the form of a matrix product:X
n

ArnBnc ¼ ðABÞrc

∆EE
n

er
g

y

0

Fig. 6.5 The qualitative basis of the

closure approximation, in which it

is supposed that the individual

excitation energies can all be set
equal to a single average value.
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It would be such a product if the sum extended over all n, including n¼ 0. So,

we extend the sum, but cancel the term that should not be present:

E
ð2Þ
0  H

ð2Þ
00 �

1

DE

X
n

H
ð1Þ
0n H

ð1Þ
n0 þ

1

DE
H
ð1Þ
00 H

ð1Þ
00

 H
ð2Þ
00 �

1

DE
Hð1ÞHð1Þ
� �

00
þ 1

DE
H
ð1Þ
00 H

ð1Þ
00

ð6:26Þ

The energy correction is now expressed solely in terms of integrals over the

ground state of the system and we need no information about excited states

other than their average energy above the ground state. Because the

approximation effectively ‘closes’ the sum over matrix elements down into a

single term, it is called the closure approximation.

The closure approximation for the second-order energy can be expressed

succinctly by introducing the term

e2 ¼ h0jHð1Þ2j0i � h0jHð1Þj0i2 ð6:27aÞ

for then it becomes

E
ð2Þ
0  H

ð2Þ
00 �

e2

DE
ð6:27bÞ

We shall use this expression several times later in the text.

Two comments are in order at this point. One is that the closure approxi-

mation is a very crude procedure in most instances, because the array of

energy levels often differs quite significantly from that supposed in Fig. 6.5.

The energy levels of a particle in a box is an example of an array of levels that

is quite different from the bunching supposed in the approximation. How-

ever, an alternative way of regarding the approximation is to identify DE not

with a mean energy but with the following ratio:

DE ¼ H
ð1Þ2
00 � ðHð1Þ2Þ00P

n

0H
ð1Þ
0n H

ð1Þ
n0

.
E
ð0Þ
0 � E

ð0Þ
n

� � ð6:28Þ

With this definition of DE, the closure approximation is exact; but of course

the net effect is to create more work, and the formal procedure is only useful

in so far as it establishes the significance of De somewhat more precisely.

Example 6.4 How to use the closure approximation

Derive an approximate expression for the ground-state energy of a hydrogen

atom in the presence of an electric field of strength e applied in the z-direction

by using the closure approximation.

Method. The perturbation hamiltonian is H(1)¼�mze¼ eze. The first-order

correction to the energy is zero because eeh0jzj0i¼ 0. (That the integral

vanishes can be easily deduced as follows: the ground state j0i is proportional

to Y0,0 and z is proportional to Y1,0 so the symmetry species of the integrand

G(0)�G(1)�G(0) does not include the totally symmetric irrep G(0).) There is no

second-order component of the hamiltonian, so the energy expression is
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slightly simplified in so far as it has no terms in H(2). Set up the expression for

E
ð2Þ
0 and then apply closure. The resulting expression can be simplified by

taking into account the spherical symmetry of the atom in its ground state and

relating the expectation value of z2 to the expectation value of r2.

Answer. The full perturbation expression is

E
ð2Þ
0 ¼ e2

e
2
X

n

0 z0nzn0

E
ð0Þ
0 � E

ð0Þ
n

We now apply closure, and note that h0jzj0i¼ 0 by symmetry; therefore, from

eqn 6.27a,

e2 ¼ e2
e

2h0jz2j0i

The expectation value of z2 in a spherical system is the same as the expectation

values of x2 and y2, and because r2¼ x2þ y2þ z2 it follows that

h0jz2j0i ¼ 1
3h0jr

2j0i ¼ 1
3hr

2i

where hr2i is the mean square radius of the atom in its ground state. It follows

from eqn 6.27b that

E
ð2Þ
0  �

e2
e

2 r2
� �

3DE

Comment. This is a very much simpler expression than the full perturbation

formula. The mean excitation energy may be identified with the ionization

energy of the atom, which is close to hcRH, where RH is the Rydberg constant

for the hydrogen atom (see Section 7.1).

Self-test 6.4. Derive a similar expression for the effect of an electric field on a

one-dimensional harmonic oscillator treated as an electric dipole of magni-

tude ex and force constant k.

6.8 Perturbation theory for degenerate states

Figure 6.1 warns us that the totally wrong result may be obtained for sys-

tems in which perturbations are applied to degenerate states, because the

denominators E
ð0Þ
n � E

ð0Þ
0 then stand the risk of becoming zero. Another

problem with degeneracies is that a small perturbation can induce very large

changes in the forms of functions. This point is illustrated schematically in

Fig. 6.6, where we see that the perturbation (the effect of which is represented

by the conversion of a circle to an ellipse) leads to a large change in the initial

pair of degenerate states for one particular choice of starting functions, but to

a much more modest change for another choice in which the nodes remain in

the same locations. The fact that any linear combination of degenerate

functions is also an eigenfunction of the hamiltonian means that we have the

freedom to select the combination that most closely resembles the final form

of the functions once the perturbation has been applied. We shall now show

that both these problems—the selection of optimum starting combinations

and the avoidance of zeros in the energy denominators—can be solved by a

single procedure.

Perturbed wavefunctions

(a)

(b)

Fig. 6.6 A representation of the

importance of making the correct

choice of basis when considering the

effect of a perturbation on degenerate
states. In this diagram, the

perturbation is represented by the

squashing of the circle in a vertical
direction. (a) A good choice of basis,

because the wavefunctions undergo

least change. (b) A poor choice,

because both linear combinations are
extensively distorted by the

perturbation.
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We suppose that the energy level of interest in the system is r-fold degen-

erate and that the states corresponding to the energy E
ð0Þ
0 are j0, li, with l¼

1, 2, . . . , r; the corresponding wavefunctions are cð0Þ0;l . All r states satisfy

Hð0Þj0, li ¼ E
ð0Þ
0 j0, li ð6:29Þ

The linear combinations of the degenerate states that most closely resemble

the perturbed states are

fð0Þ0;i ¼
Xr

i¼1

cilc
ð0Þ
0;l ð6:30Þ

When the perturbation is applied, the state fð0Þ0;i is distorted into ci, which it

closely resembles, and its energy changes from E
ð0Þ
0 to Ei, which has a similar

value. The index i is needed on the new energy Ei because the degeneracy may

be removed by the perturbation. As in Section 6.2, we write

ci ¼ fð0Þ0;i þ lcð1Þ0;i þ � � �

Ei ¼ E
ð0Þ
0 þ lE

ð1Þ
0;i þ � � �

Substitution of these expansions into Hci¼Eici and collection of powers of

l, just as for the non-degenerate case, gives (up to first order in l)

Hð0Þfð0Þ0;i ¼ E
ð0Þ
0 fð0Þ0;i

fHð0Þ � E
ð0Þ
0 gc

ð1Þ
0;i ¼ fE

ð1Þ
0;i �Hð1Þgfð0Þ0;i

ð6:31Þ

As before, we attempt to express the first-order correction to the wave-

function as a sum over all functions. The simplest procedure is to divide the

sum into two parts, one being a sum over the members of the degenerate set

j0,li, and the other the sum over all the other states (which may or may not

have degeneracies among themselves):

cð1Þ0;i ¼
X

l

alc
ð0Þ
0;l þ

X
n

0anc
ð0Þ
n

On insertion of this expression into eqn 6.31 and conversion to ket notation,

we obtainX
l

al E
ð0Þ
0 � E

ð0Þ
0

n o
0, lj i þ

X
n

0an Eð0Þn � E
ð0Þ
0

n o
nj i

¼
X

l

cil E
ð1Þ
0;i �Hð1Þ

n o
0, lj i

The first term is zero. On multiplying the remaining terms from the left by the

bra h0,kj, we obtain zero on the left (because the states jni are orthogonal to

the states j0,ki), and hence we are left withX
l

cil E
ð1Þ
0;i 0,kj0, lh i � 0, kh jHð1Þ 0, lj i

n o
¼ 0

The degenerate functions need not be orthogonal, so we introduce the fol-

lowing overlap integral:

Skl ¼ h0, kj0, li ð6:32Þ
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If the degenerate functions are orthogonal, the overlap integral Skl¼ dkl.

Similarly, we write

H
ð1Þ
kl ¼ h0, kjHð1Þj0, li ð6:33Þ

Then we obtain

X
l

cil E
ð1Þ
0;i Skl �H

ð1Þ
kl

n o
¼ 0 ð6:34Þ

These equations (there is one for each value of i) are called the secular

equations. They are a set of r simultaneous equations for the coefficients cil

and have non-trivial solutions only if the secular determinant is equal to zero:

detjHð1Þkl � E
ð1Þ
0;i Sklj ¼ 0 ð6:35Þ

The solution of this equation gives the energies E
ð1Þ
0;i that we seek. The solution

of the secular equations for each of these values of the energy then gives the

coefficients that define the optimum form of the linear combinations to use

for any subsequent perturbation distortion.

Example 6.5 The perturbation of degenerate states

What is the first-order correction to the energies of a doubly degenerate pair of

orthonormal states?

Method. We set up the secular determinant and solve it for the energies by

expanding it and looking for the roots of the resulting polynomial in E.

Because the pair of states is orthonormal, Skl¼ dkl.

Answer. The secular determinant is

H
ð1Þ
11 � E

ð1Þ
0;i H

ð1Þ
12

H
ð1Þ
21 H

ð1Þ
22 � E

ð1Þ
0;i

�����
����� ¼ 0

This equation expands to

ðHð1Þ11 � E
ð1Þ
0;i ÞðH

ð1Þ
22 � E

ð1Þ
0;i Þ �H

ð1Þ
12 H

ð1Þ
12 ¼ 0

which corresponds to the following quadratic equation for the energy:

E
ð1Þ2
0;i � ðH

ð1Þ
11 þH

ð1Þ
22 ÞE

ð1Þ
0;i þ ðH

ð1Þ
11 H

ð1Þ
22 �H

ð1Þ
12 H

ð1Þ
21 Þ ¼ 0

The roots of this equation are

E
ð1Þ
0;i ¼ 1

2fH
ð1Þ
11 þH

ð1Þ
22 g 	 1

2fðH
ð1Þ
11 þH

ð1Þ
22 Þ

2

� 4ðHð1Þ11 H
ð1Þ
22 �H

ð1Þ
12 H

ð1Þ
21 Þg

1=2

Comment. This result is the same as we obtained for the two-level problem in

Section 6.1.
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Variation theory

Another very useful method for estimating the energy and approximating the

wavefunction of a known hamiltonian is based on variation theory. Variation

theory is a way of assessing and improving guesses about the forms of

wavefunctions in complicated systems. The first step is to guess the form of a

trial function, ctrial, and then the procedure shows how to optimize it.

6.9 The Rayleigh ratio

We suppose that the system is described by a hamiltonian H, and denote the

lowest eigenvalue of this hamiltonian as E0. The Rayleigh ratio, e, is then

defined as

e ¼
R
c�trialHctrial dtR
c�trialctrial dt

ð6:36Þ

Then the variation theorem states that

for any ctrial,e � E0 ð6:37Þ
The equality holds only if the trial function is identical to the true ground-

state wavefunction of the system.

Proof 6.1 The variation theorem

The trial function can be written as a linear combination of the true (but

unknown) eigenfunctions of the hamiltonian (which form a complete set):

ctrial ¼
X

n

cncn where Hcn ¼ Encn

Now consider the integral

I ¼
Z

c�trial H � E0ð Þctrial dt

¼
X
n;n0

c�ncn0

Z
c�n H � E0ð Þcn0 dt

¼
X
n;n0

c�ncn0 En0 � E0ð Þ
Z

c�ncn0 dt

¼
X

n

c�ncn En � E0ð Þ � 0

The final inequality follows from En � E0 and jcnj2 � 0. It follows thatZ
c�trial H � E0ð Þctrial dt � 0

which rearranges into e�E0.

The significance of the variation theorem is that the trial function giving the

lowest Rayleigh ratio is the optimum function of that form. Moreover,
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because the Rayleigh ratio is not less than the true ground-state energy of

the system, we have a way of calculating an upper bound to the true energy of

the system. Typically, the trial function is expressed in terms of one or more

parameters that are varied until the Rayleigh ratio is minimized (Fig. 6.7). The

procedure is illustrated in the following example.

Example 6.6 Using the variation theorem to find an optimized wavefunction

Find the optimum form of a trial function of the form e�kr and the upper

bound to the ground-state energy of a hydrogenic atom.

Method. Begin by writing the hamiltonian for the problem and then evaluate

the integrals that occur in the expression for the Rayleigh ratio. The ratio will

be obtained as a function of the parameter k, so to find the minimum value of

the ratio we need to find the value of k that corresponds to de/dk¼ 0.

Answer. The hamiltonian for the atom is

H ¼ � �h2

2m
r2 � Ze2

4pe0r

However, because the trial function is independent of angle, we need consider

only the radial derivatives in the laplacian (see eqn 3.18):

r2c ¼ 1

r

d2

dr2
rc

The integrals we require are therefore

Z
c�trialctrial dt ¼

Z 2p

0

df

zfflfflfflffl}|fflfflfflffl{2p Z p

0

sin ydy

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{2 Z 1
0

e�2krr2dr

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{1=ð4k3Þ

¼ p
k3

Z
c�trial

1

r

� �
ctrial dt ¼

Z 2p

0

df
Z p

0

sin y dy
Z 1

0

e�2krrdr

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{1=ð4k2Þ

¼ p
k2

Z
c�trialr2ctrial dt ¼

Z
c�trial

1

r

d2

dr2

 !
re�krdt

¼
Z

c�trial k2 � 2k

r

� �
ctrialdt

¼ k2

Z
c�trialctrialdt� 2k

Z
c�trial

1

r

� �
ctrialdt

¼ p
k
� 2p

k
¼ � p

k

Therefore,

Z
c�trialHctrial dt ¼ p�h2

2mk
� Ze2

4e0k2

and the Rayleigh ratio is

e ¼ ðp�h2=2mkÞ � ðZe2=4e0k2Þ
p=k3

¼ k2�h2

2m
� Ze2k

4pe0

Parameter p
1 Par

am
ete

r p 2

R
ay

le
ig

h
 r

at
io

Optimum
parameters

Fig. 6.7 The variation principle

seeks the values of the parameters

(two are shown here) that minimize
the energy. The resulting

wavefunction is the optimum

wavefunction of the selected form.
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This function is plotted in Fig. 6.8. To find its minimum value we differentiate

with respect to k:

de

dk
¼ k�h2

m
� Ze2

4pe0
¼ 0 when k ¼ Ze2m

4pe0�h2

The best value of e is therefore

e ¼ � Z2e4m

32p2e2
0�h2

and the optimum form of the wavefunction has the value of k given above.

Comment. This optimum value of the Rayleigh ratio turns out to be the exact

ground-state energy and the corresponding trial function is the true wave-

function for the atom. This special result follows from the fact that the trial

function happens to include the exact wavefunction as a special case.

Self-test 6.6. Repeat the calculation for a trial function of the form e�kr2

and

confirm that the Rayleigh ratio lies above the true energy of the ground state.

6.10 The Rayleigh–Ritz method

The variation procedure we have described was devised by Lord Rayleigh.

A modification called the Rayleigh–Ritz method represents the trial function

by a linear combination of fixed basis functions with variable coefficients;

these coefficients are treated as the variables to be changed until an optimized

set is obtained.

The trial function is taken to be

ctrial ¼
X

i

cici ð6:38Þ

with only the coefficients (not the basis functions ci) variable; we shall sup-

pose that all coefficients and basis functions are real. The Rayleigh ratio is

e ¼
R
c�trialHctrial dtR
c�trialctrial dt

¼

P
i;j

cicj

R
ciHcj dt

P
i;j

cicj

R
cicj dt

¼

P
i;j

cicjHij

P
i;j

cicjSij
ð6:39Þ

To find the minimum value of this ratio, we differentiate with respect to each

coefficient in turn and set qe/qck¼0 in each case:

qe
qck
¼

P
j

cjHkj þ
P

i

ciHik

P
i;j

cicjSij
�

�P
j

cjSkj þ
P

i

ciSik

�P
i;j

cicjHij

�P
i;j

cicjSij

�2

¼

P
j

cj Hkj � eSkj

� �
P
i;j

cicjSij
þ

P
i

ci Hik � eSikð Þ
P
i;j

cicjSij
¼ 0

0 1 2 3 4 5
k

a = 4

a = 5

a = 6

–10

–5

0

5

Fig. 6.8 The function derived

in Example 6.6, with
a¼Ze2m/2pe0�h2. Note that the

minimum is found at k¼ a/2.
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This expression is satisfied if the numerators vanish, which means that we

must solve the secular equationsX
i

ci Hik � eSikð Þ ¼ 0 ð6:40Þ

This is a set of simultaneous equations for the coefficients ci. The con-

dition for the existence of solutions is that the secular determinant should

be zero:

detjHik � eSikj ¼ 0 ð6:41Þ

Solution of eqn 6.41 leads to a set of values of e as the roots of the cor-

responding polynomial, and the lowest value is the best value of the ground

state of the system with a basis set of the selected form. The coefficients in the

linear combination are then found by solving the set of secular equations with

this value of e. The procedure is illustrated in the following example.

Example 6.7 Using the Rayleigh–Ritz method

Suppose we are investigating the effect of mass of the nucleus on the ground-

state wavefunctions of the hydrogen atom. One approach might be to use as a

trial function a linear combination of the 1s- and 2s-orbitals of a hydrogen

atom with an infinitely heavy nucleus but to use the true hamiltonian for the

atom. Find the optimum linear combination of these orbitals and the ground-

state energy of the atom.

Method. We use the wavefunctions of a hydrogen atom with an infinitely

heavy nucleus as the basis, and the hamiltonian of the actual hydrogen atom:

neither orbital is an eigenfunction of the hamiltonian, but a linear combina-

tion of them can be expected to be a reasonable approximation to an eigen-

function. The first step is to evaluate the matrix elements needed for the

secular determinant: these can be expressed in terms of the Rydberg constant

R with a suitable correction for the energy. Then set the secular determinant

equal to zero and find the lowest root of the resulting polynomial in e. Use this

value in the secular equations for the coefficients.

Answer. The basis functions are

c1 ¼
1

pa3
0

� �1=2

e�r=a0 c2 ¼
1

32pa3
0

� �1=2

2� r

a0

� �
e�r=2a0

The trial function is then ctrial¼ c1c1þ c2c2. The basis functions are ortho-

normal, so S11¼ S22¼ 1 and S12¼ S21¼ 0. The hamiltonian is the same as that

given in Example 6.6 with Z¼ 1:

H ¼ � �h2

2m
r2 � e2

4pe0r

and as there, because the basis functions are independent of angles, only

the radial derivatives need be retained. Express the energies in terms of

hcR ¼ �h2=2a2
0me. The integrals required are quite straightforward to evaluate
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and are as follows:

H11 ¼ ðg� 1ÞhcR H22 ¼ 1
4ðg� 1ÞhcR

H12 ¼ H21 ¼
16g

27� 21=2

� �
hcR

with g¼me/mp. The secular determinant expands as follows:

H11 � eS11 H12 � eS12

H21 � eS21 H22 � eS22

����
���� ¼ H11 � e H12

H21 H22 � e

����
����

¼ e
2 � H11 þH22ð Þeþ H11H22 �H12H21ð Þ

¼ 0

Substitution of the matrix elements gives the lower root

e ¼ 1
8ðg� 1Þf5þ 3ð1þ 2G2Þ1=2ghcR where G ¼ 26g

34ðg� 1Þ
Because G¼ � 0.000 43, it follows that e¼ � 0.999 46hcR. The secular

equations are

c1ðH11 � eÞ þ c2H21 ¼ 0 c1H12 þ c2ðH22 � eÞ ¼ 0

and for the trial function to be normalized we also know that c2
1 þ c2

2 ¼ 1.

It follows that with the value of e found above,

c1  1:000 00 c2 ¼ �0:000 54

Comment. The wavefunction has a 3.0� 10�5 per cent admixture of

2s-orbital into the 1s-orbital, with a negative sign for the coefficient. The latter

signifies a small decrease in amplitude of the overall wavefunction at the

nucleus. The explanation of this reduction can be traced to the fact that the

reduced mass is slightly less than the mass of the electron, and so the ‘effective

particle’ has slightly more freedom than an electron.

The variation principle leads to an upper bound for the energy of the

system. It is also possible to use the principle to determine an upper bound for

the first excited state by formulating a trial function that is orthogonal to the

ground-state function. There are also variational techniques for finding lower

bounds, so the true energy can be sandwiched above and below and hence

located reasonably precisely. These calculations, though, are often quite dif-

ficult because they involve integrals over the square of the hamiltonian. A

further remark is that although the variation principle may give a good value

for the energy, there is no guarantee that the optimum trial function will give a

good value for some other property of the system, such as its dipole moment.

The Hellmann–Feynman theorem

Consider a system characterized by a hamiltonian that depends on a para-

meter P. This parameter might be the internuclear distance in a molecule or

the strength of the electric field to which the molecule is exposed. The exact
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(not trial) wavefunction for the system is a solution of the Schrödinger

equation, so it and its energy also depend on the parameter P. The question

we tackle is how the energy of the system varies as the parameter is varied,

and we shall now prove the following relation, which is the Hellmann–

Feynman theorem:

dE

dP
¼ qH

qP

% &
ð6:42Þ

Proof 6.2 The Hellmann–Feynman theorem

We suppose that the wavefunction is normalized to 1 for all values of P, in

which case

EðPÞ ¼
Z

cðPÞ�HðPÞcðPÞdt

The derivative of E with respect to P is

dE

dP
¼
Z

qc�

qP

� �
Hc dtþ

Z
c�

qH

qP

� �
cdtþ

Z
c�H

qc
qP

� �
dt

¼ E

Z
qc�

qP

� �
c dtþ

Z
c�

qH

qP

� �
c dtþ E

Z
c�

qc
qP

� �
dt

¼ E
d

dP

Z
c�cdtþ

Z
c�

qH

qP

� �
c dt

In the last term of the second line, we have employed the hermiticity of H to

let it operate on the function standing to its left. The first term on the right

of the last line is zero because the integral is equal to 1 for all values of P.

The second term is the expectation value of the first-derivative of the

hamiltonian.

The great advantage of the Hellmann–Feynman theorem is that the

operator qH/qP might be very simple. For example, if the total hamiltonian is

H¼H(0)þPx, then qH/qP¼x, and there is no mention of H(0), which might

be a very complicated operator. In this case,

dE

dP
¼ xh i

and the calculation is apparently very simple.

There is, as always, a complication. The proof of the theorem supposes that

the wavefunctions are the exact eigenfunctions of the total hamiltonian.

Therefore, to evaluate the expectation value of even a simple operator like x,

we need to have solved the Schrödinger equation for the complete, compli-

cated hamiltonian. Nevertheless, we can use the perturbation theory descri-

bed earlier in the chapter to arrive at successively better approximations to

the true wavefunctions, and therefore can calculate successively better

approximations to the value of dE/dP, the response of the system to changes

in the hamiltonian. We shall use this technique in Chapters 12 and 13 to

calculate the properties of molecules in electric and magnetic fields.
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Time-dependent perturbation theory

Just about every perturbation is time-dependent, even those that appear to be

stationary. Even stationary perturbations have to be turned on: samples are

inserted into electric and magnetic fields, the shapes of vessels are changed,

and so on. The reason why time-independent perturbation theory can often

be applied in these cases is that the response of a molecule is so rapid that for

all practical purposes the systems forget that they were ever unperturbed and

settle rapidly into their final perturbed states. Nevertheless, if we really want

to understand the properties of molecules, we need to see how systems

respond to newly imposed perturbations and then settle into stationary states

after an interval.

But there is a much more important reason for studying time-dependent

perturbations. Many important perturbations never ‘settle down’ to a con-

stant value. A molecule exposed to electromagnetic radiation, for instance,

experiences an electromagnetic field that oscillates for as long as the pertur-

bation is imposed. Time-dependent perturbation theory is essential for such

problems, and is used to calculate transition probabilities in spectroscopy and

the intensities of spectral lines.

We adopt the same approach as for time-independent perturbation theory.

First, we consider a two-level system. Then we generalize that special case to

systems of arbitrary complexity.

6.11 The time-dependent behaviour of a two-level system

The total hamiltonian of the system is

H ¼ Hð0Þ þHð1ÞðtÞ ð6:43Þ

A typical example of a time-dependent perturbation is one that oscillates at an

angular frequency o, in which case

Hð1ÞðtÞ ¼ 2Hð1Þcos ot ð6:44Þ

where H(1) is a time-independent operator and the 2 is present for future

convenience. We need to deal with the time-dependent Schrödinger equation:

HC ¼ i�h
qC
qt

ð6:45Þ

As in the earlier part of the chapter, we denote the energies of the two states

as E
ð0Þ
1 and E

ð0Þ
2 and the corresponding time-independent wavefunctions as

cð0Þ1 and cð0Þ2 . These wavefunctions are the solutions of

Hð0Þcð0Þn ¼ Eð0Þn cð0Þn ð6:46Þ

and are related to the time-dependent unperturbed wavefunctions by

Cð0Þn ðtÞ ¼ cð0Þn e�iE
ð0Þ
n t=�h ð6:47Þ
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In the presence of the perturbation H(1)(t), the state of the system is expressed

as a linear combination of the basis functions:

CðtÞ ¼ a1ðtÞCð0Þ1 ðtÞ þ a2ðtÞCð0Þ2 ðtÞ ð6:48Þ

Notice that the coefficients are also time-dependent because the composition

of the state may evolve with time. The total time-dependence of the wave-

function therefore arises from the oscillation of the basis functions and the

evolution of the coefficients. The probability that at any time t the system is in

state n is jan(t)j2.

Substitution of the linear combination into the Schrödinger equation,

eqn 6.45, leads to the following expression:

HC ¼ a1Hð0ÞCð0Þ1 þ a1Hð1ÞðtÞCð0Þ1 þ a2Hð0ÞCð0Þ2 þ a2Hð1ÞðtÞCð0Þ2

¼ i�h
q
qt

a1C
ð0Þ
1 þ a2C

ð0Þ
2

� �

¼ i�ha1
qCð0Þ1

qt
þ i�hCð0Þ1

da1

dt
þ i�ha2

qCð0Þ2

qt
þ i�hCð0Þ2

da2

dt

Each basis function satisfies

Hð0ÞCð0Þn ¼ i�h
qCð0Þn

qt

so the last equation simplifies to

a1Hð1ÞðtÞCð0Þ1 þ a2Hð1ÞðtÞCð0Þ2 ¼ i�h _aa1C
ð0Þ
1 þ i�h _aa2C

ð0Þ
2

where _aa¼ da/dt.

The next step is to extract equations for the time-variation of the coefficients.

To do so, we write the time-dependence of the wavefunctions explicitly:

a1Hð1ÞðtÞj1ie�iE
ð0Þ
1

t=�h þ a2Hð1ÞðtÞj2ie�iE
ð0Þ
2

t=�h

¼ i�h _aa1j1ie�iE
ð0Þ
1

t=�h þ i �h _aa2 2j ie�iE
ð0Þ
2

t=�h

We have also taken this opportunity to express the wavefunctions cð0Þn as the

kets jni. Now multiply through from the left by h1j and use the orthonorm-

ality of the states to obtain

a1H
ð1Þ
11 ðtÞe

�iE
ð0Þ
1

t=�h þ a2H
ð1Þ
12 ðtÞe

�iE
ð0Þ
2

t=�h ¼ i�h _aa1e�iE
ð0Þ
1

t=�h

where H
ð1Þ
ij ðtÞ ¼ hijHð1ÞðtÞjji.

The expression we have obtained can be simplified in a number of ways.

In the first place, we shall write �ho21 ¼ E
ð0Þ
2 � E

ð0Þ
1 , and so obtain

a1H
ð1Þ
11 ðtÞ þ a2H

ð1Þ
12 ðtÞe

�io21t ¼ i�h _aa1 ð6:49Þ

Next, it is commonly the case that the time-dependent perturbation has no

diagonal elements, so we can set H
ð1Þ
11 ðtÞ ¼ H

ð1Þ
22 ðtÞ ¼ 0. The equation then

reduces to

_aa1 ¼
1

i�h
a2H

ð1Þ
12 ðtÞe

�io21t ð6:50aÞ
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This differential equation for a1 depends on a2, so we need an equation for that

coefficient too. The same procedure, but with multiplication by h2j, leads to

_aa2 ¼
1

i�h
a1H

ð1Þ
21 ðtÞe

io21t ð6:50bÞ

First, suppose the perturbation is absent, so its matrix elements are zero. In

that simple case _aa1¼ 0 and _aa2¼ 0. The coefficients do not change from their

initial values and the state is

CðtÞ ¼ a1ð0Þcð0Þ1 e�iE
ð0Þ
1

t=�h þ a2ð0Þcð0Þ2 e�iE
ð0Þ
2

t=�h ð6:51Þ

Although C(t) oscillates with time, the probability of finding the system in

either of the states is constant, because the square modulus of the coefficients

of each ai is constant. That is, in the absence of a perturbation, the state of the

system is frozen at whatever was its initial composition.

Now consider the case of a constant perturbation applied at t¼ 0 (Fig. 6.9).

We shall write H
ð1Þ
12 ðtÞ ¼ �hV and (by hermiticity) H

ð1Þ
21 ðtÞ ¼ �hV� when the

perturbation is present. Then

_aa1 ¼ �iVa2e�io21t _aa2 ¼ �iV�a1eio21t ð6:52Þ

There are several ways of solving coupled differential equations such as

these. The most elementary method (which we employ here) is to substitute

one equation into the other.3 On differentiation of _aa2 and then using the

expression for _aa1 we obtain

€aa2 ¼ �iV� _aa1eio21t þ o21V�a1eio21t ¼ �jVj2a2 þ io21 _aa2 ð6:53Þ

The corresponding expression for ä1 is obtained by differentiating the

expression for _aa1. Note that two coupled first-order equations lead to one

second-order differential equation for either a1 or a2. The general solutions of

this second-order differential equation are

a2ðtÞ ¼ ðAeiOt þ Be�iOtÞeio21t=2 where O ¼ 1
2ðo

2
21 þ 4jVj2Þ1=2 ð6:54Þ

where A and B are constants determined by the initial conditions. A similar

expression holds for a1.

Now suppose that at t¼ 0 the system is definitely in state 1. Then a1(0)¼1

and a2(0)¼0. These initial conditions are enough to determine the two

constants in the general solution, and after some straightforward algebra we

find the following two particular solutions:

a1ðtÞ ¼ cosOt þ io21

2O
sinOt

� �
e�io21t=2 a2ðtÞ ¼ �

ijVj
O

sin Ot eio21t=2

ð6:55Þ

These are the exact solutions for the problem: we have made no approxi-

mations in their derivation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. A much more powerful method is to use Laplace transforms.
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Fig. 6.9 The form of a constant

perturbation switched on at t¼ 0

and off at t¼T.
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6.12 The Rabi formula

We are interested in the probability of finding the system in one of the

two states as a function of time. These probabilities are P1(t)¼ ja1(t)j2 and

P2(t)¼ ja2(t)j2. For state 2, the initially unoccupied state, we find the Rabi

formula:

P2ðtÞ ¼
4jVj2

o2
21 þ 4jVj2

 !
sin2 1

2ðo
2
21 þ 4jVj2Þ1=2t ð6:56Þ

This expression will be at the centre of the following discussion. The prob-

ability of the system being in state 1 is of course P1(t)¼ 1�P2(t), so we do not

need to make a special calculation for its value.

The first case we consider is that of a degenerate pair of states, so o21¼0.

The probability that the system will be found in state 2 if at t¼0 it was

certainly in state 1 is then

P2ðtÞ ¼ sin2 jVjt ð6:57Þ

Figure 6.10 shows a graph of this function. We see that the system oscillates

between the two states, and periodically is certainly in state 2. Because the

frequency of the oscillation is governed by jVj, we also see that strong per-

turbations drive the system between its two states more rapidly than weak

perturbations. However, provided we wait long enough (specifically, for a

time t¼p/2jVj), then, whatever the perturbation, in due course the system

will be found with certainty in state 2. This responsiveness is a special

characteristic of degenerate systems. Degenerate systems are ‘loose’ in the

sense that the populations of their states may be transferred completely even

by weak stimuli.

Now consider the other extreme, when the energy levels are widely sepa-

rated in comparison with the strength of the perturbation, in the sense

o2
21 � 4jVj2. In this case, 4jVj2 can be ignored in both the denominator and

the argument of the sine function, and we obtain

P2ðtÞ 
2jVj
o21

� �2

sin2 1
2o21t ð6:58Þ

The behaviour of the system is now quite different (Fig. 6.11). The popu-

lations oscillate, but P2(t) never rises above 4jVj2/o2
21, which is very much less

than 1. There is now only a very small probability that the perturbation will

drive the system from state 1 to state 2. Moreover, the frequency of oscillation

of the population is determined solely by the separation of the states and is

independent of the strength of the perturbation. That is like the behaviour of a

bell that is struck by a hammer: the frequency is largely independent of the

strength of the blow. (Indeed, there is a deep connection between the two

phenomena.) The only role of the perturbation, other than its role in causing

the transitions, is to govern the maximum extent to which population transfer

occurs. If the perturbation is strong (but still weak in comparison with the

energy separation of the states), then there is a higher probability of finding

the system in state 2 than when the perturbation is weak.
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Fig. 6.10 The variation with time of

the probability of being in an

initially empty state of a two-level
degenerate system that is subjected

to a constant perturbation turned on

at t¼ 0 and extinguished at t¼T.
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Fig. 6.11 The variation with time of
the probability of being in an

initially empty state of a two-level

non-degenerate system that is

subjected to a constant perturbation
turned on at t¼ 0 and extinguished at

t¼T. The variation labelled (a)

corresponds to a small energy

separation and that in (b)
corresponds to a large separation.

Note that the latter oscillates more

rapidly than the former.
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Example 6.8 How to prepare systems in specified states

Suggest how you could prepare a degenerate two-level system in a

mixed state in which there is equal likelihood of finding it in either

state.

Method. We know that a state, once prepared, persists with constant

composition in the absence of a perturbation. This suggests that we should

use the Rabi formula to find the time for which a perturbation should

be applied to result in P2(t)¼ 0.5, and then immediately extinguish the

perturbation.

Answer. The Rabi formula shows that P2(t)¼ 0.5 when t¼ p/4jVj. Therefore,

the perturbation should be applied to a system that is known to be in state 1

initially, and removed at t¼ p/4jVj. Although the wavefunction of the system

will oscillate, the probability of finding the system in either state will remain

0.5 until another perturbation is applied.

Comment. This state preparation procedure is the quantum mechanical basis

of pulse techniques in nuclear magnetic resonance.

Self-test 6.8. For how long should the perturbation be applied to the

same system to obtain a state with probability 0.25 of being in

state 2?

6.13 Many-level systems: the variation of constants

The discussion of the two-level system has revealed two rather depressing

features. One is that even very simple systems lead to very complicated dif-

ferential equations. For a two-level system the problem requires the solution

of a second-order differential equation; for an n-level system, the solution

requires dealing with an nth-order differential equation, which is largely

hopeless. The second point is that even for a two-level system, the differential

equation could be solved only for a trivially simple perturbation, one that did

not vary with time. The differential equation is very much more complicated

to solve when the perturbation has a realistic time-dependence, such as

oscillation in time. Even the case cos ot is very complicated. Clearly, we need

to set up an approximation technique for dealing with systems of many levels

and which can cope with realistic perturbations.

We shall describe the technique invented by P.A.M. Dirac and known

(agreeably paradoxically) as the variation of constants. It is a generalization

of the two-level problem, and that relationship should be held in mind as we

go through the material.

As before, the hamiltonian is taken to be H¼H(0)þH(1)(t). The eigenstates

of H(0) will be denoted by the ket jni or by the corresponding wavefunction

cð0Þn as convenient, where

Cð0Þn ðtÞ ¼ cð0Þn e�iE
ð0Þ
n t=�h Hð0ÞCð0Þn ¼ i�h

qCð0Þn

qt
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The state of the perturbed system is C. As before, we express it as a time-

dependent linear combination of the time-dependent unperturbed states:

CðtÞ ¼
X

n

anðtÞCð0Þn ðtÞ ¼
X

n

anðtÞcð0Þn e�iE
ð0Þ
n t=�h HC ¼ i�h

qC
qt

ð6:59Þ

Our problem, as for the two-level case, is to find how the linear combination

evolves with time. To do so, we set up and then solve the differential equa-

tions satisfied by the coefficients an.

We proceed as before. Substitution of C into the Schrödinger equation

leads to the following expressions:

HC ¼
X

n

anðtÞHð0ÞCð0Þn ðtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
#

þ
X

n

anðtÞHð1ÞðtÞCð0Þn ðtÞ

i�h
qC
qt
¼
X

n

anðtÞi�h
qCð0Þn

qt
þ i�h

X
n

_aanðtÞCð0Þn ðtÞ

The two indicated terms are equal, so we are left withX
n

anðtÞHð1ÞðtÞCð0Þn ðtÞ¼ i�h
X

n

_aanðtÞCð0Þn ðtÞ

In terms of the time-independent kets, this equation is

X
n

anðtÞHð1ÞðtÞ nj ie�iE
ð0Þ
n t=�h¼ i�h

X
n

_aanðtÞ nj ie�iE
ð0Þ
n t=�h

At this point we have to extract one of the _aan on the right. To do so, we make

use of the orthonormality of the eigenstates, and multiply through by hkj:
X

n

anðtÞ kh jHð1ÞðtÞ nj ie�iE
ð0Þ
n t=�h¼ i�h _aakðtÞe�iE

ð0Þ
k

t=�h

We simplify the appearance of this expression by writing H
ð1Þ
kn ðtÞ ¼

hkjHð1ÞðtÞjni and �hokn ¼ E
ð0Þ
k � E

ð0Þ
n , when it becomes

_aakðtÞ ¼
1

i�h

X
n

anðtÞHð1Þkn ðtÞe
ioknt ð6:60Þ

Equation 6.60 is exact. We can move towards finding exact solutions and

from this point on the development diverges from the exact two-level cal-

culation described earlier. To solve a first-order differential equation, we

integrate it from t¼ 0, when the coefficients had the values an(0), to the time t

of interest:

akðtÞ � akð0Þ ¼
1

i�h

X
n

Z t

0

anðtÞHð1Þkn ðtÞe
iokntdt ð6:61Þ

The trouble with this equation is that although it appears to give an

expression for any coefficient ak(t), it does so in terms of all the coefficients,

including ak itself. These other coefficients are unknown, and must be

determined from equations of a similar form. So, to solve eqn 6.61, it appears
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that we must already know all the coefficients! A way out of this cyclic

problem is to make an approximation. We shall base the approximation on

the supposition that the perturbation is so weak and applied for so short a

time that all the coefficients remain close to their initial values. Then, if the

system is certainly in state jii at t¼ 0, all coefficients other than ai are close to

zero throughout the period for which the perturbation is applied, and any

single coefficient, such as the coefficient of state jfi that is zero initially, is

given by

afðtÞ ¼
1

i�h

Z t

0

aiðtÞHð1Þfi ðtÞe
iofitdt

because all terms in the sum are zero (an(t)0) except for the term corres-

ponding to the initial state. We have also made use in the sum of the fact that

af(t) af(0)¼ 0. However, the coefficient of the initial state remains close to 1

for all the time of interest, so we can set ai(t) 1, and obtain

afðtÞ ¼
1

i�h

Z t

0

H
ð1Þ
fi ðtÞe

iofitdt ð6:62Þ

This is an explicit expression for the value of the coefficient of a state that was

initially unoccupied and will be the formula that we employ in the following

discussion.

The approximation we have adopted ignores the possibility that the

perturbation can take the system from its initial state jii to some final

state jfi by an indirect route in which the perturbation induces a sequence

of several transitions (Fig. 6.12). Put another way: the approximation

assumes that the perturbation acts only once, and that we are therefore

dealing with first-order perturbation theory. This restriction to first-order

contributions can be expressed diagrammatically (Fig. 6.13): the intersection

of the sloping and horizontal lines is intended to convey the idea that the

perturbation (the sloping line) acts on the molecular states (the horizontal

line) only once. The upper diagram in Fig. 6.13 can be regarded as a succinct

expression for the right-hand side of eqn 6.62. Second-order perturbation

theory (which we are not doing here) would give rise to diagrams like the one

shown in the lower part of Fig. 6.13. These diagrams are sometimes asso-

ciated with the name of R.P. Feynman, who introduced similar diagrams in

the context of fundamental particle interactions, and are called Feynman

diagrams.

6.14 The effect of a slowly switched constant perturbation

As a first example of how to use eqn 6.62, consider a perturbation that rises

slowly from zero to a steady final value (Fig. 6.14). Such a switched pertur-

bation is

Hð1ÞðtÞ ¼ 0 for t< 0
Hð1Þð1� e�ktÞ for t � 0

�
ð6:63Þ

i

f

(a) (b) (c)

Fig. 6.12 The procedure described in

the text corresponds to considering

only direct transitions between the
initial and final states (as in (a)), and

ignoring indirect transitions (as in (b)

and (c)), which correspond to higher-

order processes.
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Fig. 6.13 Diagrams for (a) first-order
and (b) second-order contributions to

the perturbation of a system.
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Fig. 6.14 An exponentially switched

but otherwise constant perturbation.
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where H(1) is a time-independent operator and, for slow switching, k is small

(and positive). The coefficient of an initially unoccupied state is given by

eqn 6.62 as

afðtÞ ¼
1

i�h
H
ð1Þ
fi

Z t

0

1� e�kt
� �

eiofitdt

¼ 1

i�h
H
ð1Þ
fi

eiofit � 1

iofi
þ e�ðk�iofiÞt � 1

k� iofi

� � ð6:64Þ

This result, which is exact within first-order perturbation theory, can be

simplified by supposing that we are interested in times very long after the

perturbation has reached its final value, which means t� 1/k, and that

the perturbation is switched slowly in the sense that k2 � o2
fi. Then

afðtÞj j2¼
H
ð1Þ
fi

��� ���2
�h2o2

fi

ð6:65Þ

This is the result that would have been obtained by applying time-

independent perturbation theory (compare to eqn 6.21), and assuming that

the constant perturbation had always been present.

We can now see why time-independent perturbation theory can be used

for most problems of chemical interest, except where the perturbation con-

tinues to change after it has been applied. When a ‘constant’ perturbation is

switched on, it is done so very slowly in comparison with the frequencies

associated with the transitions in atoms and molecules (k 103 s�1,

of i 1015 s�1). Furthermore, we are normally interested in a system’s prop-

erties at times long after the switching is complete (t� 10�3 s; and in general

kt� 1). These are the conditions under which time-dependent perturbation

theory has effectively settled down into time-independent perturbation

theory. All the transients stimulated by the switching have subsided and the

populations of states are steady.

Example 6.9 The effect of a constant perturbation

A constant perturbation was switched on exponentially starting at t¼ 0.

Evaluate the probability of finding a system in state 2 given that initially it was

in state 1, and illustrate the role of transients.

Method. The perturbation is given by eqn 6.63 and the solution is expressed

by eqn 6.64. To find the probability that the system is in state 2, we need to

form P2¼ ja2(t)j2 for a general value of k and then to plot P2 against t.

For example plots, set l¼ k/o21 and plot P2/(jVj/o21)2, with jVj ¼ H
ð1Þ
12 /�h, for

l¼ 0.01, 0.1, and 1, which corresponds to switching rates increasing in

10-fold steps.

Answer. From eqn 6.64 with l¼ k/o21 and x¼o21t,

P2ðtÞ ¼
Vj j2p2ðtÞ
o2

21
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with

p2ðtÞ ¼
1

1þ l2
1þ 2l2 � 2l2 cos xþ 2� e�lx

� �
e�lx þ 2l 1� e�lx

� �
sin x

' () *

This function is plotted for l¼ 0.01, 0.1, 1 in Fig. 6.15.

Comment. Notice how slow switching (l¼ 0.01) generates hardly any tran-

sients, whereas rapid switching (l¼ 1) is like an impulsive shock to the system,

and causes the population to oscillate violently between the two states. For

very rapid switching (l�1), p2 varies as 2(1� cos x), and so it oscillates

between 0 and 4 with an average value of 2: such rapid switching is like a

hammer blow.

Self-test 6.9. Suppose the constant perturbation was switched on as l�hVt for

0� lt< 1 and remained at �hV for lt� 1. Investigate how the transients

behave.

6.15 The effect of an oscillating perturbation

We now consider a system that is exposed to an oscillating perturbation, such

as an atom may experience when it is exposed to electromagnetic radiation in

a spectrometer or in sunlight. Once we can deal with oscillating perturba-

tions, we can deal with all perturbations, for a general time-dependent per-

turbation can be expressed as a superposition of harmonically oscillating

functions. In the first stage of the discussion we consider transitions between

discrete states jii and jfi.
A perturbation oscillating with an angular frequency o¼ 2pn and turned

on at t¼0 has the form

Hð1ÞðtÞ ¼ 2Hð1Þ cosot ¼ Hð1Þ eiot þ e�iot
� �

ð6:66Þ

for t� 0. If this perturbation is inserted into eqn 6.62 we obtain

afðtÞ ¼
1

i�h
H
ð1Þ
fi

Z t

0

eiot þ e�iot
� �

eiofit dt

¼ 1

i�h
H
ð1Þ
fi

eiðofiþoÞt � 1

iðofi þ oÞ þ
eiðofi�oÞt � 1

iðofi � oÞ

� � ð6:67Þ

As it stands, eqn 6.67 is quite obscure (but it is quite easy to compute). It can

be simplified to bring out its principal content by taking note of the conditions

under which it is normally used. In applications in electronic spectroscopy,

the frequencies of i and o are of the order of 1015 s�1; in NMR, the lowest

frequency form of spectroscopy generally encountered, the frequencies are

still higher than 106 s�1. The exponential functions in the numerator of the

term in braces are of the order of 1 regardless of the frequencies in its argu-

ment (because eix¼ cos xþ i sin x, and neither harmonic function can exceed 1).

However, the denominator in the first term is of the order of the frequencies,

so the first term is unlikely to be larger than about 10�6 and may be of the

order of 10�15 in electronic spectroscopy. In contrast, the denominator in
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Fig. 6.15 The time variation of the

probability of occupying an
initially0unoccupied state when

the0perturbation is switched on at

different rates for different values

of0the switching rate as expressed
by the parameter l¼ k/o21.
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the second term can come arbitrarily close to 0 as the external perturbation

approaches a transition frequency of the system. Therefore, the second term is

normally larger than the first for absorption, and overwhelms it completely as

the frequencies approach one another. Consequently, in most practical

applications we can be confident about ignoring the first term. When that is

done, it is easy to conclude that the probability of finding the system in the

discrete state jfi after a time t if initially it was in state jii at t¼ 0 is

PfðtÞ ¼
4 H

ð1Þ
fi

��� ���2
�h2 ofi � oð Þ2

sin2 1
2 ofi � oð Þt ð6:68Þ

Once again we write jHð1Þfi j
2 ¼ �h2jVfij2, in which case we obtain

PfðtÞ ¼
4 Vfij j2

ofi � oð Þ2
sin2 1

2 ofi � oð Þt ð6:69Þ

The last expression should be familiar. Apart from a small but significant

modification, it is exactly the same as eqn 6.58, the expression for a static

perturbation applied to a two-level system. The one significant difference is

that instead of the actual frequency difference ofi appearing in the expression,

it is replaced throughout by ofi�o. This replacement can be interpreted as an

effective shift in the energy differences involved in exciting the system as a

result of the presence of a photon in the electromagnetic field. As depicted in

Fig. 6.16, where the wavy line now represents an oscillating perturbation,

the overall energy difference E
ð0Þ
f � E

ð0Þ
i should actually be thought of as

E
ð0Þ
f � E

ð0Þ
i ¼ E(excited molecule, no photon)

� Eðground-state molecule, photon of energy �hoÞ
¼ �hðofi � oÞ

According to eqn 6.69, the time-dependence of the probability of being

found in state jfi depends on the frequency offset, ofi�o (Fig. 6.17). When

the frequency offset is zero, the field and the system are said to be in reso-

nance, and the transition probability increases most rapidly with time. To

obtain the quantitative form of the time-dependence at resonance, we take

the limit of eqn 6.69 as o!ofi by using

lim
x!0

sin x

x
¼ lim

x!0

x� 1
6x

3 þ � � �
x

¼ 1

Then,

lim
o!ofi

PfðtÞ ¼ Vfij j2t2 ð6:70Þ

and the probability increases quadratically with time. This conclusion is valid

so long as jVfij2t2�1, because that is the underlying assumption of first-order

perturbation theory. It follows that the transition probability may approach

(and, indeed, in this approximation, unphysically exceed) 1 as the applied

frequency approaches a transition frequency. This behaviour can be inter-

preted in terms of the system then becoming, in effect, a loose, degenerate

i f

E hf f= �E hi = (�i +�)

h�

Fig. 6.16 The use of an oscillating

perturbation effectively modifies

the energy separation between the

initial and final states, and at
resonance the overall system is

effectively degenerate and hence

highly responsive.

0 �fi–�

T
ra

n
si

ti
o

n
 p

ro
b

ab
ili

ty

Time1

Time3

Time4

Time2

Fig. 6.17 The variation of

transition probability with offset
frequency and time. Note that the

central portion of the curve

becomes taller but narrower
with time.
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system as the overall energy difference E
ð0Þ
f � E

ð0Þ
i approaches zero, and which

can be nudged fully from state to state even by gentle perturbations.

6.16 Transition rates to continuum states

We now turn to the case in which the final state is a part of a continuum of

states. Although we can still use eqn 6.69 to calculate the transition prob-

ability to one member of the continuum, the observed transition rate is an

integral over all the transition probabilities to which the perturbation can

drive the system. Specifically, if the density of states is written r(E), where

r(E)dE is the number of continuum states in the range E to Eþ dE, then the

total transition probability, P(t), is

PðtÞ ¼
Z

range

PfðtÞrðEÞ dE ð6:71Þ

In this expression ‘range’ means that the integration is over all final states

accessible under the influence of the perturbation.

To evaluate the integral, we first express the transition frequency of i in

terms of the energy E by writing of i ¼E/�h

PðtÞ ¼
Z

range

4 Vfij j2
sin2 1

2ðE=�h� oÞt
ðE=�h� oÞ2

rðEÞ dE

The integral can be simplified by noting that the factor (sin2x)/x2 is sharply

peaked close to E/�h¼o, the frequency of the radiation. However, for an

appreciable transition probability, the frequency of the incident radiation

must be close to the transition frequency ofi, so we can set E/�hofi wherever

E occurs. In other words, we can evaluate the density of states at Efi¼ �hofi,

and treat it as a constant. Moreover, although the matrix elements jVfij vary

with E, such a narrow range of energies contributes to the integral that it is

permissible to treat jVfij as a constant. The integral then simplifies to

PðtÞ ¼ Vfij j2rðEfiÞ
Z

range

4 sin2 1
2ðE=�h� oÞt

ðE=�h� oÞ2
dE

An additional approximation that stems from the narrowness of the function

remaining in the integrand is to extend the limits from the actual range to

infinity: the integrand is so small outside the actual range that this extension

introduces no significant error (Fig. 6.18). At this point it is also convenient

to set x¼ 1
2(E/�h�o)t, which implies that dE¼ (2�h/t)dx. Consequently, the

integral becomes

PðtÞ ¼ 2�h

t

� �
Vfij j2rðEfiÞt2

Z 1
�1

sin2 x

x2
dx

The integral is standard:

Z 1
�1

sin2 x

x2
dx ¼ p
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Fig. 6.18 The extension of the

range of integration from the actual

range (light shading) to infinity
(dark shading) barely affects the

value of the integral.
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Therefore, we conclude that

PðtÞ ¼ 2p�htjVfij2rðEfiÞ ð6:72Þ

which increases linearly with time. The physical reason for this different time-

dependence (compared to the result in eqn 6.70) is that as time increases, the

height of the central peak in Fig. 6.17 increases as t2, but the width of the

central peak decreases, and is proportional to 1/t. The area under the curve

therefore increases as t2� 1/t¼ t.
The transition rate, W, is the rate of change of probability of being in an

initially empty state:

W ¼ dP

dt
ð6:73Þ

and the intensities of spectral lines are proportional to these transition rates

because they depend on the rate of transfer of energy between the system and

the electromagnetic field. It follows that

W ¼ 2p�hjVfij2rðEfiÞ ð6:74Þ

This succinct expression is called Fermi’s golden rule. It asserts that to

calculate a transition rate, all we need do is to multiply the square modulus

of the transition matrix element between the two states by the density of

states at the transition frequency.

6.17 The Einstein transition probabilities

Einstein considered the problem of the transfer of energy between the electro-

magnetic field and matter and arrived at the conclusion that although

eqn 6.74 correctly accounts for the absorption of radiation, it fails to take into

account all contributions to the emission of radiation from an excited state.

He considered a collection of atoms that were in thermal equilibrium with the

electromagnetic field at a temperature T.

First, we note that the quantity jVfij2 is proportional to the square of the

electric field strength of the incident radiation (for a perturbation of the form

–me), and hence is proportional to the intensity, I, of the radiation at the

frequency of the transition. The intensity is defined so that the energy of

radiation in the frequency range n to nþdn that passes through an area A in an

interval Dt is

dE ¼ IðnÞADt dn ð6:75Þ

Because all the radiation within a distance cDt can pass through the area A in

that time interval (Fig. 6.19), the volume containing the energy is cDtA, and

the energy density, rrad(n)dn, in that frequency range is

rradðnÞdn ¼
dE

AcDt
¼ IðnÞ

c
dn

c t∆

A

Fig. 6.19 All photons within a

distance cDt can reach the right-hand
wall in an interval Dt.
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Therefore, the energy density of radiation, the energy in a given volume and

given frequency range divided by the volume of the region and the range of

frequencies, is

rradðnÞ ¼
IðnÞ

c
ð6:76Þ

Consequently, jVfij2 is proportional to rrad evaluated at the transition fre-

quency, or equivalently through the relation Efi¼hnfi, at the transition

energy. It follows that we can write

Wf i ¼ BifrradðEfiÞ ð6:77Þ

where Bif is the Einstein coefficient of stimulated absorption.

Einstein also recognized that the rate at which an excited state jfi is induced

to make transitions down to the ground state jii is also proportional to the

intensity of radiation at the transition frequency:

Wf!i ¼ BfirradðEfiÞ ð6:78Þ

The coefficient Bfi is the Einstein coefficient of stimulated emission. It is

simple to show that Bif¼Bfi. The argument is based on the hermiticity of the

perturbation hamiltonian, which lets us write

Bif / VifV
�
if ¼ V�fiVfi / Bfi

Einstein, however, was able to infer this equality in a different way, as we

shall now see. Specifically, for electric-dipole allowed transitions, we show in

Further information 16 that

Bif ¼
jmfij2

6e0�h2
ð6:79Þ

where �fi is the transition dipole moment:

�fi ¼
Z

c�f�cidt ð6:80Þ

with � the electric dipole moment operator.

The transition probabilities we have derived refer to individual atoms.

If there are Ni atoms in the state jii and Nf in the state jfi, then at thermal

equilibrium, when there is no net transfer of energy between the system and

the field,

NiWf i ¼ NfWf!i

Because the two transition rates are equal, it follows that the populations

are also equal. However, that conclusion is in conflict with the Boltzmann

distribution, which requires from very general principles that

Nf

Ni
¼ e�Efi=kT
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To avoid this conflict, Einstein proposed that there was an additional

contribution to the emission process that is independent of the presence

of radiation of the transition frequency. This additional contribution

he wrote

Wspont
f!i ¼ Afi ð6:81Þ

where Afi is the Einstein coefficient of spontaneous emission. The total rate of

emission is therefore

Wf!i ¼ Afi þ BfirradðEfiÞ ð6:82Þ

and the condition for thermal equilibrium is now

NiBifrradðEfiÞ ¼ NffAfi þ BfirradðEfiÞg

This expression is consistent with the Boltzmann distribution. Indeed, if we

accept the Boltzmann distribution for the ratio Nf /Ni, it can be rearranged

into

rradðEfiÞ ¼
Afi=Bfi

ðBif=BfiÞeEfi=kT � 1

However, it is also known from very general considerations that at equili-

brium, the density of states of the electromagnetic field is given by the Planck

distribution (see the Introduction):

rradðEfiÞ ¼
8phn3

fi=c
3

eEfi=kT � 1
ð6:83Þ

Comparison of the last two expressions confirms that Bif¼Bfi and, moreover,

gives a relation between the coefficients of stimulated and spontaneous

emission:

Afi ¼
8phn3

fi

c3
Bfi ð6:84Þ

The important point about eqn 6.84 is that it shows that the relative

importance of spontaneous emission increases as the cube of the transi-

tion frequency, and that it is therefore potentially of great importance at

very high frequencies. That is one reason why X-ray lasers are so difficult

to make: highly excited populations are difficult to maintain and discard

their energy at random instead of cooperating in a stimulated emission

process.

The spontaneous emission process can be viewed as the outcome of

the presence of zero-point fluctuations of the electromagnetic field. As

indicated in footnote 2 of Chapter 7 (Section 7.3), the electromagnetic

field has zero-point oscillations even though there are no photons present.

These fluctuations perturb the excited state and induce the transition to
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a lower state. ‘Spontaneous’ transitions are actually caused by these

zero-point fluctuations of the electromagnetic vacuum. Spontaneous absorp-

tions in a field devoid of photons are ruled out by the conservation of

energy.

6.18 Lifetime and energy uncertainty

We are now in a position to establish the relation between the lifetime of a

state and the range of energies that it may possess. We have seen that if a state

has a precise energy, then its time-dependent wavefunction has the form

C¼ce� iEt/�h; such states are stationary states in the sense that jCj2¼ jcj2, a

time-independent probability density. However, if the wavefunction decays

with time, perhaps because the system is making transitions to other states,

then its energy is imprecise.

We suppose that the probability of finding the system in a particular

excited state decays exponentially with time with a time-constant t:

jCj2 ¼ jcj2e�t=t ð6:85Þ

The justification of this assumption can be found in the references in

Further reading and Section 14.13. The amplitude therefore has the form

C ¼ ce�iEt=�h�t=2t ð6:86Þ

This wavefunction decays as it oscillates (Fig. 6.20), and its energy is not

immediately obvious. However, such a function can be modelled as a

superposition of oscillating functions by using the techniques of Fourier

analysis, and we write

e�iEt=�h�t=2t ¼
Z

gðE0Þe�iE0t=�hdE0

where

gðE0Þ ¼ ð�h=2ptÞ
ðE� E0Þ2 þ ð�h=2tÞ2

ð6:87Þ

This expression shows that the decaying function corresponds to a range of

energies (in fact, all values of energy appear in the superposition), and

therefore it implies that any state that has a finite lifetime must be regarded as

having an imprecise energy.

We can arrive at the quantitative relation between lifetime and energy

by considering the shape of the spectral density function, g (Fig. 6.21).

The width at half-height is readily shown to be equal to �h/2t, and this

quantity can be taken as an indication of the range of energies dE present in

the state.

It follows that

tdE  1
2�h ð6:88Þ

A
m

p
lit

u
d

e,
 r

e 
Ψ

t

Fig. 6.20 A wavefunction
corresponding to a precise energy

has a constant maximum

amplitude; if the wavefunction
decays, then it no longer corresponds

to a precise energy.

The expression for g given in eqn

6.87 can be verified by using

Euler’s relation and the definite

integralsZ 1
�1

sin½aðb� xÞ�
x2 þ c2

dx

¼ p
c

e�acsin ab

Z 1
�1

cos½aðb� xÞ�
x2 þ c2

dx

¼ p
c

e�accos ab

A function of the form

f ðxÞ ¼ a

x2 þ b2

0 20 40–20–40
0

x

a = 10, b = 10

a = 20, b = 20
0.05

0.1

f (x )

has a maximum value f(x¼ 0)¼ a/

b2 and has its half-height a/2b2 at

x¼ b. The illustration shows a

graph of the function for two sets

of values of a and b.
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This lifetime broadening relation is reminiscent of the uncertainty

principle (Sections 1.16 and 1.18). It shows that the shorter the lifetime of

the state (the shorter the time-constant t for its decay), then the less

precise its energy. When a state has zero lifetime, we can say nothing about

its energy. Only when the lifetime of a state is infinite can the energy be

specified exactly.

S
p

ec
tr

al
 d

en
si

ty
, g

(x
)

x

0.5

1.0

2

1

0
0 1 2 3

Fig. 6.21 The spectral density

function for two wavefunctions that

decay at different rates. The labels of
the lines are the values of �h/2t, with

x¼E�E 0 (in the same units).

P R O B L E M S

6.1 One excited state of the sodium atom lies at
25 739.86 cm�1 above the ground state, another lies at
50 266.88 cm�1. Suppose they are connected by a
perturbation equivalent in energy to (a) 100 cm�1,
(b) 1000 cm�1, (c) 5000 cm�1. Calculate the energies
and composition of the states of the perturbed system. Hint.
Use eqn 6.6 for the energies and eqn 6.8 for the states, and
express the composition as the contribution of the
unperturbed states.

6.2 A simple calculation of the energy of the helium atom
supposes that each electron occupies the same hydrogenic
1s-orbital (but with Z¼ 2). The electron–electron
interaction is regarded as a perturbation, and calculation
gives

Z
c2

1sðr1Þ
e2

4pe0r12

� �
c2

1sðr2Þdt ¼
5

4

e2

4pe0a0

� �

(see Example 7.3). Estimate (a) the binding energy of
helium, (b) its first ionization energy. Hint. Use eqn 6.6 with
E1¼E2¼E1s. Be careful not to count the electron–electron
interaction energy twice.

6.3 Show that the energy of the perturbed levels is related
to the mean energy of the unperturbed levels �EE¼ 1/2
(E1þE2) by E	� �EE¼	1

2(E1�E2) sec 2z, where z is the
parameter in eqn 6.9. Devise a diagrammatic method of
showing how E	� �EE depends on E1�E2 and z. Hint. Use
eqn 6.9.

6.4 We normally think of the one-dimensional well as being
horizontal. Suppose it is vertical; then the potential energy
of the particle depends on x because of the presence of the
gravitational field. Calculate the first-order correction to the
zero-point energy, and evaluate it for an electron in a box on
the surface of the Earth. Account for the result. Hint. The
energy of the particle depends on its height as mgx where
g¼ 9.81 m s�2. Use eqn 6.20 with c(x) given by n¼ 1 in eqn
2.31. Because g is so small, the energy correction is tiny; but
it would be significant if the box were on the surface of a
neutron star.

6.5 Calculate the second-order correction to the energy for
the system described in Problem 6.4 and calculate the
ground-state wavefunction. Account for the shape of the
distortion caused by the perturbation. Hint. Use eqn 6.24
for the energy and eqn 6.22 for the wavefunction. The
integrals involved are of the formZ

x sin ax sin bx dx ¼ � d

da

Z
cos ax sin bx dx

Z
cos ax sin bx dx ¼ cosða� bÞx

2ða� bÞ �
cosðaþ bÞx

2ðaþ bÞ
Evaluate the sum over n numerically.

6.6 Calculate the first-order correction to the energy of a
ground-state harmonic oscillator subject to an anharmonic
potential of the form ax3þ bx4 where a and b are small
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(anharmonicity) constants. Consider the three cases in
which the anharmonic perturbation is present (a) during
bond expansion (x� 0) and compression (x� 0), (b) during
expansion only, (c) during compression only.

6.7 In the free-electron molecular orbital method
(Problem 2.19) the potential energy may be made
slightly more realistic by supposing that it varies
sinusoidally along the polyene chain. Select a potential
energy with suitable periodicity, and calculate the first-
order correction to the wavelength of the lowest energy
transition.

6.8 Show group-theoretically that when a perturbation of
the form H(1)¼ az is applied to a hydrogen atom, the
1s-orbital is contaminated by the admixture of npz-orbitals.
Deduce which orbitals mix into
(a) 2px-orbitals, (b) 2pz-orbitals, (c) 3dxy-orbitals.

6.9 The symmetry of the ground electronic state of the
water molecule is A1. (a) An electric field, (b) a magnetic
field is applied perpendicular to the molecular plane. What
symmetry species of excited states may be mixed into the
ground state by the perturbations? Hint. The electric
interaction has the form H(1)¼ ax; the magnetic interaction
has the form H(1)¼ blx.

6.10 Repeat Problem 6.5, but estimate the second-order
energy correction using the closure approximation.
Compare the two calculations and deduce the appropriate
value of DE. Hint. Use eqn 6.27.

6.11 Calculate the second-order energy correction to the
ground state of a particle in a one-dimensional box for a
perturbation of the form H(1)¼�e sin(px/L) by using the
closure approximation. Infer a value of DE by comparison
with the numerical calculation in the Example 6.2. These
two problems (6.10 and 6.11) show that the parameter DE
depends on the perturbation and is not simply a
characteristic of the system itself.

6.12 Suppose that the potential energy of a particle on a
ring depends on the angle f as H(1)¼ e sin2 f. Calculate the
first-order corrections to the energy of the degenerate
ml¼	1 states, and find the correct linear combinations for
the perturbation calculation. Find the second-order
correction to the energy. Hint. This is an example of
degenerate-state perturbation theory, and so find the
correct linear combinations by solving eqn 6.35 after
deducing the energies from the roots of the secular
determinant. For the matrix elements, express sin f as
(1/2i)(eif� e�if). When evaluating eqn 6.35, do not
forget the ml¼ 0 state lying beneath the degenerate pair.
The energies are equal to ml

2�h2/2mr2; use cml
¼

ð1/2pÞ1=2eimlf for the unperturbed states.

6.13 A particle of mass m is confined to a one-dimensional
square well of the type treated in Chapter 2. Choose trial

functions of the form (a) sin kx, (b) (x� x2/L)þ
k(x� x2/L)2, (c) e� k(x� 1

2L)� e�
1
2kL for x� 1

2L, and
ek(x� 1

2L)� e�
1
2kL for x� 1

2L. Find the optimum values
of k and the corresponding energies.

6.14 Consider the hypothetical linear H3 molecule.
The wavefunctions may be modelled by expressing them as
c¼ cAsAþ cBsBþ cCsC, the si denoting hydrogen
1s-orbitals of the relevant atom. Use the Rayleigh–Ritz
method to find the optimum values of the coefficients and
the energies of the orbital. Make the approximations
Hss¼ a, Hss 0 ¼ b for neighbours but 0 for non-neighbours,
Sss¼ 1, and Sss 0 ¼ 0. Hint. Although the basis can be used as
it stands, it leads to a 3� 3 determinant and hence to
a cubic equation for the energies. A better procedure is to set
up symmetry-adapted combinations, and then to use the
vanishing of Hij unless Gi¼Gj.

6.15 Repeat the last problem but set HsAsC
¼ g and Sss 0 6¼ 0.

Evaluate the overlap integrals between 1s-orbitals on centres
separated by R; use

S ¼ 1þ R

a0
þ 1

3

R

a0

� �2
( )

e�R=a0

Suppose that b=g ¼ SsAsB
=SsAsC

. For a numerical result, take
R¼ 80 pm, a0¼ 53 pm.

6.16 A hydrogen atom in a 2s1 configuration passes into
a region where it experiences an electric field in the
z-direction for a time t. What is its electric dipole moment
during its exposure and after it emerges? Hint.
Use eqn 6.55 with o21¼ 0; the dipole moment is the
expectation value of �ez; use

R
c2szc2pz

dt ¼ 3a0.

6.17 A biradical is prepared with its two electrons in a singlet
state. A magnetic field is present, and because the two
electrons are in different environments their interaction with
the field is (mB/�h)B(gls1zþ g2s2z) with gl 6¼ g2. Evaluate the
time-dependence of the probability that the electron spins
will acquire a triplet configuration (that is, the probability
that the S¼ 1, MS¼ 0 state will be populated). Examine
the role of the energy separation hJ of the singlet state and
the MS¼ 0 state of the triplet. Suppose g1� g2 1� 10�3

and J 0; how long does it take for the triplet state to
emerge when B¼ 1.0 T? Hint. Use eqn 6.56; take
j0,0i¼ (1/21/2)(ab� ba) and j1,0i¼ (1/21/2)(abþ ba). See
Problem 4.24 for the significance of mB and g.

6.18 An electric field in the z-direction is increased
linearly from zero. What is the probability that a hydrogen
atom, initially in the ground state, will be found with its
electron in a 2pz-orbital at a time t? Hint. Use eqn 6.62
with H

ð1Þ
fi / t.

6.19 At t¼ 1
2T the strength of the field used in

Problem 6.18 begins to decrease linearly. What is the
probability that the electron is in the 2pz-orbital at t¼T?
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What would the probability be if initially the electron was in
a 2s-orbital?

6.20 Instead of the perturbation being switched linearly, it
was switched on and off exponentially and slowly, the
switching off commencing long after the switching on was
complete. Calculate the probabilities, long after the
perturbation has been extinguished, of the 2pz-orbital being
occupied, the initial states being as in Problem 6.18. Hint.
Take H(1) / 1� e�kt for 0� t�T and H(1) / e�k(t�T) for
t�T. Interpret ‘slow’ as k�o and ‘long after’ as both
kT�1 (for ‘long after switching on’) and k(t�T)�1 (for
‘long after switching off’).

6.21 Calculate the rates of stimulated and spontaneous
emission for the 3p ! 2s transition in hydrogen when it is
inside a cavity at 1000 K.

6.22 Find the complete dependence of the A and B
coefficients on atomic number for the 2p ! 1s
transitions of hydrogenic atoms. Calculate how the
stimulated emission rate depends on Z when the
atom is exposed to black-body radiation at
1000 K. Hint. The relevant density of states also
depends on Z.

6.23 Examine how the A and B coefficients depend on the
length of a one-dimensional square well for the transition
nþ 1!n.

6.24 Estimate the lifetime of the upper state of
a spectroscopic transition if the spectra shows
a peak with a full width at half maximum of
(a) 0.010 cm�1, (b) 1.5 cm�1, (c) 40 cm�1. Hint.
Use eqn 6.88.
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A great deal of chemically interesting information can be obtained by inter-

preting the line spectra of atoms, the frequencies of the electromagnetic

radiation that atoms emit when they are excited. We can use the information

to establish the electronic structures of the atoms, and then use that infor-

mation as a basis for discussing the periodicity of the elements and the

structures of the bonds they form. Atomic spectra were also of considerable

historical importance, because their study led to the formulation of the Pauli

principle, without which it would be impossible to understand atomic

structure, chemical periodicity, and molecular structure. The information

provided by atoms is of considerable importance for the discussion of

molecular structure. For example, we need values of ionization energies and

spin–orbit coupling parameters if we are to understand the structures of

molecules and their properties, particularly their photochemical reactions.

As in the preceding chapters, we begin by describing a system that can be

solved exactly: the hydrogen atom. Then we build on our knowledge of

that atom’s structure and spectra to discuss the properties and structures of

many-electron atoms.

The spectrum of atomic hydrogen

So long as we ignore electron spin, the state of an electron in a hydrogen atom

is specified by three quantum numbers, n, l, and ml (Section 3.11) and its

energy is given by

En ¼ �
me4

32p2e2
0�h2

 !
1

n2
n ¼ 1, 2, . . . ð7:1Þ

This expression is normally written

En ¼ �
hcRH

n2
RH ¼

me4

8e2
0h3c

ð7:2Þ

where RH is the Rydberg constant for hydrogen. The origin of this expression

was explained in Chapter 3 and there is no need to repeat the arguments here,

but for convenience the array of energy levels is shown in Fig. 7.1.
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7.1 The energies of the transitions

The spectrum of atomic hydrogen arises from transitions between its per-

mitted states, and the difference in energy, DE, between the states is discarded

as a photon of energy hn and wavenumber ~nn, where ~nn ¼ n=c. For the transition

n2!n1, the wavenumber of the emitted radiation is

~nn ¼ 1

n2
1

� 1

n2
2

� �
RH ð7:3Þ

For a given value of n1, the set of transitions from n2¼n1þ 1, n1þ 2, . . .

constitutes a series of lines, and these series bear the names of their discoverers

or principal investigators:

n1 ¼ 1, n2 ¼ 2, 3, . . . Lyman series, ultraviolet

n1 ¼ 2, n2 ¼ 3, 4, . . . Balmer series, visible

n1 ¼ 3, n2 ¼ 4, 5, . . . Paschen series, infrared

n1 ¼ 4, n2 ¼ 5, 6, . . . Brackett series, far infrared

n1 ¼ 5, n2 ¼ 6, 7, . . . Pfund series, far infrared

n1 ¼ 6, n2 ¼ 7, 8, . . . Humphreys series, far infrared

Because each series corresponds to a specific value of n1 but all possible

integer values of n2 (provided n2>n1), the limit of each series is the wave-

number obtained by setting n2¼1 in eqn 7.3, and is given by

~nn1 ¼
RH

n2
1

ð7:4Þ

The energy when n¼1 is zero (eqn 7.1), and corresponds to the complete

removal of the electron from the atom; that is, n¼1 corresponds to the

ionized state of the atom. The ionization energy I of the atom, the minimum

energy required to ionize it from its n¼1 ground state, is the energy difference

E1�E1. Hence,

I ¼ hcRH ð7:5Þ

The numerical value of the ionization energy is 2.180 aJ (where 1 aJ¼ 10�18 J),

which corresponds to 1312 kJ mol�1 and 13.60 eV.

Example 7.1 Determining the ionization energy of a hydrogenic atom

What is the ionization energy of Heþ?

Method. The energy for one-electron ions is given by eqn 3.44. To a good

approximation, we can use me in place of m and, subsequently, use the value of

R given on the inside front cover. The ground state of the ion is n¼ 1; for He,

Z¼ 2.

Answer. The ionization energy is the energy difference E1�E1 and is

I ¼ hcZ2R ¼ 8:719 aJ

E
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Fig. 7.1 The energy levels of

the hydrogen atom. Hydrogenic
atoms in general have the same

spectrum, but with the energy

scale magnified by a factor of Z2.
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Comment. For greater accuracy, we should use RHe, and take into account the

reduced mass of the electron and the helium nucleus. The ionization energy of

Heþ is also the second ionization energy (the energy required to remove a

second electron from the ground-state species) of neutral He.

Self-test 7.1. What is the ionization energy of Li2þ?

7.2 Selection rules

Not all transitions between states are allowed. The selection rules for electric-

dipole transitions, the rules that specify the specific transitions that may

occur, are based on an examination of the transition dipole moment (Section

6.17) between the two states of interest. They are established by identifying

the conditions under which the transition dipole moment is non-zero,

corresponding to an allowed transition, or zero, for a forbidden transition.

The transition dipole moment for a transition between states jii and jfi is

defined as

�if ¼ hij�jfi ð7:6Þ

where �¼�er is the electric dipole operator. The transition dipole

moment can be regarded as a measure of the size of the electromagnetic jolt

that the electron delivers to the electromagnetic field when it makes a transi-

tion between states. Large shifts of charge through large distances can deliver

strong impulses provided they have a dipolar character (as in the transition

between s- and p-orbitals but not between s-orbitals where the shift of charge

is spherically symmetrical), and such transitions give rise to intense lines.

Group theory (Section 5.16) tells us that a transition dipole moment must

be zero unless the integrand in eqn 7.6 is totally symmetric under the sym-

metry operations of the system, which for atoms is the full rotation group, R3.

The easiest operation to consider is inversion, under which r! � r. Under

inversion, an atomic orbital with quantum number l has parity (�1)l, as can

be appreciated by noting that orbitals with even l (s- and d-orbitals for

example) do not change sign whereas those with odd l (p- and f-orbitals for

example) do change sign. This behaviour is also apparent from the mathe-

matical form of the spherical harmonics (see Table 3.1). The parity of the

integrand is therefore (�1)li(�1)(�1)lf, which is even if the two orbitals

have opposite parity (one odd, the other even). This argument is the basis

of the Laporte selection rule:

The only allowed electric-dipole transitions are those involving a change

in parity.

Next, consider the rotational characteristics of the components of the

integrand. The atomic orbitals are angular momentum wavefunctions and

span the irreducible representations G(li) and G(lf) of the full rotation group.

The electric dipole moment operator behaves like a translation and, recalling

the relation among l¼ 1 spherical harmonics and Cartesian coordinates,
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spans the irreducible representation G(1) of the group. The product of G(li) and

G(1) therefore spans

GðliÞ � Gð1Þ ¼ Gðliþ1Þ þ GðliÞ þ Gðli�1Þ

as explained in Section 5.20. For the product of all three factors in the inte-

grand to span the totally symmetric irreducible representation (G(0)), we

require G(lf) to be equal to G(liþ 1), G(li), or G(li� 1). In other words, lf¼ li� 1, li,

or liþ 1. However, we have already ruled out transitions that do not change

parity, so the only allowed transitions are those to the states with lf¼ li�1.

That is:

Dl ¼ �1 ð7:7Þ

The origin of this selection rule can be put on a more physical basis by

noting that the intrinsic spin angular momentum of a photon is 1.1 Therefore,

when it is absorbed or emitted, to conserve total angular momentum, the

orbital angular momentum of the electron in the atom must change by �1.

An increase in orbital angular momentum (Dl¼þ1) can accompany either an

absorption or an emission of a photon, depending on the orientation of the

angular momentum of the photon relative to the angular momentum of the

electron in the atom (Fig. 7.2).

It is quite easy to extend these pictures to obtain the selection rules for ml,

the magnetic orbital quantum number. Now we need to know that a photon

has an intrinsic helicity, s, the spin angular momentum relative to its line of

flight, of s¼ �1 (Fig. 7.3). We shall suppose that ml labels the component of

orbital angular momentum on the axis defined by the line of flight of the

photon. Then, absorption of a left-circularly polarized photon (with helicity

s¼þ1) results in Dml¼þ1 to preserve overall angular momentum, and its

emission results in Dml¼�1. The opposite holds for a right-circularly

polarized photon. The maximum change in ml is therefore �1. It follows that

for an atom that has its electron with a definite value of ml for the component

of angular momentum relative to an arbitrary axis, not necessarily the line of

flight of the photon, the maximum change in ml is still �1 but an allowed

intermediate value may also occur if the photon is travelling in an inter-

mediate direction. Therefore, the general selection rule is

Dml ¼ 0, �1 ð7:8Þ

The selection rule on ml can also be deduced algebraically. Suppose

the radiation is plane-polarized with the electric field in the z-direction,

then only the z-component of the dipole moment is relevant, and we can

write mz¼ � er cosy. The f integral in the transition moment is then pro-

portional to

Z 2p

0

e�imlffð�er cos yÞeimlifdf /
Z 2p

0

eiðmli�mlfÞfdf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. A photon, having integral spin, is a boson (Section 7.11).

l

l

1

1

l – 1

l + 1

l

l

Fig. 7.2 The basis of the Dl¼�1

selection rule is the conservation of
angular momentum and the fact that

a photon has a helicity (the projection

of its spin on its direction of

propagation) of �1. Note that the
absorption of a photon (as depicted

in both instances here) can result in

either an increase or a decrease of l.

� = –1

� = +1

�ml = –1

�ml = +1

z

Fig. 7.3 The change in ml that

accompanies the absorption of a
photon; the z-axis is taken to be

the line of flight of the photon.
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The integral over f is zero unless mli¼mlf. Therefore, for z-polarized

radiation, Dml¼0. The selection rules Dml¼�1 arise similarly for radiation

polarized in the xy-plane.

Example 7.2 The calculation of transition moments

Calculate the electric dipole transition moment for the transition 2pz!2s in a

hydrogenic atom.

Method. We use the wavefunctions set out in Tables 3.1 and 3.2 to evaluate

the integral h2pz j mz j 2si with mz¼ � er cos y.

Answer. The wavefunctions for the orbitals are

c2pz
¼ Z5

32pa5
0

� �1=2

r cos ye�Zr=2a0

c2s ¼
Z3

32pa5
0

� �1=2

ð2a0 � ZrÞe�Zr=2a0

The integral we require is therefore

2pz mz

�� ��2s
� �

¼�e
Z4

32pa5
0

� �Z 1
0

ð2a0�ZrÞr4e�Zr=a0 dr

Z p

0

cos2ysinydy
Z 2p

0

df

¼�3ea0

Z

For the hydrogen atom itself, h2pz jmz j2si¼�3ea0.

Comment. The sign of the transition dipole moment has no physical sig-

nificance because the relative signs of the wavefunctions used to calculate it

are arbitrary. The physical observable, the transition intensity, depends on the

square modulus of the transition dipole moment.

Self-test 7.2. Repeat the calculation for the transition 2pz!1s.

Electric dipole transitions are not the only types of transition that may

occur. Light is an electromagnetic phenomenon, and the perturbation arising

from the effect of the magnetic component of the field can induce magnetic

dipole transitions. Such transitions have intensities that are proportional to

the squares of matrix elements like hijlzjfi and are typically about 105 times

weaker than allowed electric dipole transitions. However, because they obey

different selection rules, they may give rise to spectral lines where the electric

dipole transition is forbidden. Another type of transition is an electric

quadrupole transition in which the spatial variation of the electric field

interacts with the electric quadrupole moment operator. Such transitions

have intensities that are proportional to the squares of matrix elements like

hijxyjfi. These transitions are about 108 times weaker than electric dipole

transitions. Their selection rule is Dl¼0, �2. The large change in angular

momentum that accompanies the transition arises from the fact that the

quadrupole transition imparts an orbital angular momentum to the photon
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(that is, generates it with a non-spherically symmetric wavefunction) in

addition to its intrinsic spin. The weakness of magnetic dipole and electric

quadrupole transitions stems from the fact that both depend on the variation

of the electromagnetic wave over the extent of the atom. As atomic diameters

are much smaller than typical wavelengths of radiation, this variation is

typically very small and the intensity is correspondingly weak.

In some systems, a transition can result in the generation of two photons by

an electric dipole mechanism more efficiently than a single photon is gener-

ated by a magnetic dipole transition. An example of this multiple-quantum

dipole transition is provided by the excited 1s12s1 singlet state of helium: the

two-photon process governs the lifetime of the state because the magnetic

dipole transition probability is so low.

7.3 Orbital and spin magnetic moments

So far, we have ignored the spin of the electron. Now we consider its effect on

the structure and spectra of hydrogenic atoms. Its effect is not very pro-

nounced on the energy levels of hydrogen itself, but it can be of great

importance for atoms of high atomic number. We note that an electron has

spin quantum number s¼ 1
2 and that the spin magnetic quantum number is

one of the two values ms¼� 1
2.

An electron is a charged particle and there is a magnetic moment associated

with its angular momentum. Because the electron in an atom may have two

types of angular momentum, spin and orbital angular momentum, there are

two sources of magnetic moment. These two magnetic moments can interact

and give rise to shifts in the energies of the states of the atom which affect the

appearance of the spectrum of the atom. The resulting shifts and splitting of

lines is called the fine structure of the spectrum.

First, consider the magnetic moment arising from the orbital angular

momentum of the electron. The quantum mechanical derivation of its orbital

magnetic moment is described in Section 13.6; here we shall use the following

classical argument. If a particle of charge �e circulates in an orbit of radius r

in the xy-plane at a speed v, the current generated is

I ¼ � ev

2pr

This current gives rise to a magnetic dipole moment with z-component

mz¼ IA, where A is the area enclosed by the orbit, A¼ pr2. It follows that

mz ¼ IA ¼ � evpr2

2pr
¼ �1

2evr

The z-component of the orbital angular momentum of the electron is

lz¼mevr (recall l¼ r�p and p¼mv), so

mz ¼ �
e

2me
lz

The same argument applies to orbital motion in other planes, and we can

therefore write

m ¼ gel ð7:9Þ
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where

ge ¼ �
e

2me
ð7:10Þ

The constant ge is called the magnetogyric ratio of the electron.

The properties of the orbital magnetic moment m follow from those of the

angular momentum itself. In particular, its z-component is quantized and

restricted to the values

mz ¼ geml�h ml ¼ l, l � 1, . . ., �l ð7:11Þ

The positive quantity

mB ¼ �ge�h ¼
e�h

2me
ð7:12Þ

is called the Bohr magneton, and is often regarded as the elementary unit of

magnetic moment. Its value is 9.274� 10�24 J T�1. In terms of the Bohr

magneton, the z-component of orbital magnetic moment is

mz ¼ �mBml

Now we consider the magnetic moment that arises from the spin of the

electron. By analogy with the orbital magnetic moment, we might expect the

spin magnetic moment to be related to the spin angular momentum by

m¼ ges, but this turns out not to be the case. This should not be too surprising

however, because spin has no classical analogue, yet here we are trying to

argue by analogy with orbital angular momentum, which does have a clas-

sical analogue. The relation between the spin and its magnetic moment can be

derived from the relativistic Dirac equation, which gives m¼ 2ges: the mag-

netic moment due to spin is twice the value expected on the basis of a classical

analogy. The experimental value of the magnetic moment can be determined

by observing the effect of a magnetic field on the motion of an electron beam,

and it is found that

m ¼ geges where ge ¼ 2:002 319 304 ð7:13Þ

The factor ge is called the g-factor of the electron. The small discrepancy

between the experimental value and the Dirac value of exactly 2 is accounted

for by the more sophisticated theory of quantum electrodynamics, in which

charged particles are allowed to interact with the quantized electromagnetic

field.2 As for the orbital magnetic moment, the spin magnetic moment has

quantized components on the z-axis, and we write

mz ¼ �gemBms ms ¼ �1
2 ð7:14Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. The following classical picture might be helpful. Quantum electrodynamics expresses the

electromagnetic field as a collection of harmonic oscillators. We have seen that a harmonic

oscillator has a zero-point energy, and so the electromagnetic vacuum has fluctuating electric and

magnetic fields even if no photons are present. These vacuum fluctuations interact with the

electron, and instead of moving smoothly the electron jitterbugs (technically, this motion is called

Zitterbewegung). It also wobbles as it spins (in so far as spin has any such significance), for the same

reason, and the wobble increases its magnetic moment above the value that would be expected for a

smoothly spinning object.
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7.4 Spin–orbit coupling

We now turn to the energy of interaction between the two magnetic moments,

spin and orbital, of an electron. In fact, we shall use this opportunity to

emphasize the danger of arguing by classical analogy, particularly when spin

is involved.

The classical calculation of the energy of interaction runs as follows.

A particle of mass me and charge �e moving at a velocity v in an electric field

E experiences a magnetic field

B ¼ E � v

c2

If the field is due to an isotropic electric potential f, we can write

E ¼ � r

r

df
dr

It follows that

B ¼ � 1

rc2

df
dr

r � v

The orbital angular momentum of the particle is l¼ r�p¼mer� v, and so

B ¼ � 1

merc2

df
dr

l ð7:15Þ

The energy of interaction between a magnetic field B and a magnetic dipole

m is �m �B, so we might anticipate (using eqns 7.10, 7.13, and 7.15 and

taking ge¼2) that the spin–orbit coupling hamiltonian should be

Hso ¼ �m �B ¼ 1

merc2

df
dr

m � l ¼ � e

m2
e rc2

df
dr

s � l ð7:16Þ

It turns out that this is exactly twice the result obtained by solving the Dirac

equation. The error in the above formulation is the implicit assumption that

one can step from the stationary nucleus to the moving electron without

treating the change of viewpoint relativistically.3 The correct calculation

gives

Hso ¼ xðrÞl � s ð7:17Þ
where x (xi) is given by

xðrÞ ¼ � e

2m2
e rc2

df
dr

ð7:18Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. The phenomenon that gives rise to the factor 1
2 is called Thomas precession. The electron

moves in its orbital with speeds that approach the speed of light. To an observer on the nucleus, the

coordinate system seems to rotate in the plane of motion, and the electron moves in such a way that

its coordinate system appears to rotate by 180� when it has completed one circuit of the nucleus. It

is spinning (in a classical sense) within its own frame with only one-half the rate if the frame

were stationary, and this virtual slowing of its apparent motion reduces its magnetic moment by

a factor of 1
2.

214 j 7 ATOMIC SPECTRA AND ATOMIC STRUCTURE



The radial average for the state jnlmli of the function x(r)�h2is written hcz,
where z (zeta) is called the spin–orbit coupling constant; specifically

hcznl ¼ nlmljxðrÞjnlmlh i�h2 ð7:19Þ

The same value is obtained regardless of the value of ml because the electric

potential is isotropic. Defined in this way, z is a wavenumber and hcz is an

energy. For an electron in a hydrogenic atom, the potential arising from a

nucleus of charge Ze is Coulombic, and

f ¼ Ze

4pe0r

Consequently

xðrÞ ¼ Ze2

8pe0m2
e r3c2

ð7:20Þ

The expectation value of r�3 for hydrogenic orbitals, using the general

properties of associated Laguerre functions (Section 3.11), is

nlmlh jr�3 nlmlj i ¼ Z3

n3a3
0lðl þ 1

2Þðl þ 1Þ
ð7:21Þ

where a0 is the Bohr radius (eqn 3.43). Therefore, the spin–orbit coupling

constant for a hydrogenic atom is

hcznl ¼
Z4e2�h2

8pe0m2
e c2n3a3

0lðl þ 1
2Þðl þ 1Þ

ð7:22Þ

It proves useful to express this ungainly formula in terms of the fine-structure

constant, a, which is defined as

a ¼ e2

4pe0�hc
ð7:23Þ

This dimensionless collection of fundamental constants has a value close to

1/137 (more precisely, a¼7.297 35� 10�3) and is of extraordinarily broad

significance because it is a fundamental constant for the strength of the

coupling of a charge to the electromagnetic field. In the present context, we

can use it to write

znl ¼
a2RZ4

n3lðl þ 1
2Þðl þ 1Þ

ð7:24Þ

where R is the Rydberg constant obtained by replacing m in eqn 7.2 by me (see

inside front cover).

For hydrogen itself, Z¼1, and for a 2p-electron z¼ a2R/24, which is about

2.22�10�6�R. Energy level separations and the wavenumbers of transi-

tions (see eqn 7.3) are of the order of R itself, so the fine structure of the

spectrum of atomic hydrogen is a factor of about 2� 10�6 times smaller, or

of the order of 0.2 cm�1, as observed. In passing, note that as z/Z4, spin–

orbit coupling effects are very much larger in heavy atoms than in light atoms.

What may be seen as a niggling problem in hydrogen can be of dominating

7.4 SPIN–ORBIT COUPLING j 215



importance in heavy elements, and the work we are doing here will prepare

us for them.

7.5 The fine-structure of spectra

We can now explore how the spin–orbit coupling affects the appearance of

spectra. Consider Fig. 7.4. When the spin and orbital angular momenta are

parallel, the total angular momentum quantum number, j, takes its highest

value (j¼ 3
2 for l¼ 1 and s¼ 1

2, and lþ 1
2 in general). The corresponding

magnetic moments are also parallel, which is a high-energy arrangement

(eqn 7.17). When the two angular momenta are antiparallel, j has its minimum

value (j¼ 1
2 when l¼1 and s¼ 1

2, and j¼ l� 1
2 in general). The corresponding

magnetic moments are now antiparallel, which is a low-energy arrangement.

We conclude that the energy of the level with j¼ lþ 1
2 should lie above the level

with j¼ l� 1
2, and that the separation should be of the order of the spin–orbit

coupling constant as that is a measure of the strength of the magnetic inter-

action between momenta. Note that the high energy of a state with high j does

not stem directly from the fact that the total angular momentum is high, but

rather stems from the fact that a high j indicates that two magnetic moments

are parallel and hence interacting adversely. Without that interaction, high j

and low j would have the same energy.

Because the spin–orbit interaction is so weak in comparison with the

energy-level separations of the atom, we can use first-order perturbation

theory to assess its effect. The first-order correction to the energy of the state

j ls;jmji is

Eso ¼ hls; jmjjHsojls; jmji ¼ hls; jmjjxðrÞl � sjls; jmji ð7:25Þ

(In the language of Section 4.9, note that we are using the coupled repres-

entation of the state, which is the natural one to use for the problem.) The

matrix elements of a scalar product can be evaluated very simply by noting

that

j2 ¼ jl þ sj2 ¼ l2 þ s2 þ 2l � s ð7:26Þ

Therefore,

l � sjls; jmji ¼ 1
2ð j

2 � l2 � s2Þjls; jmji
¼ 1

2 �h2f jð jþ 1Þ � lðl þ 1Þ � sðsþ 1Þgjls; jmji ð7:27Þ

Consequently, the interaction energy is

Eso ¼ 1
2�h2 jð jþ 1Þ � lðl þ 1Þ � sðsþ 1Þf ghls; jmjjxðrÞjls; jmji

¼ 1
2hcznl jð jþ 1Þ � lðl þ 1Þ � sðsþ 1Þf g

¼ Z4a2hcR
jð jþ 1Þ � lðl þ 1Þ � sðsþ 1Þ

2n3lðl þ 1
2Þðl þ 1Þ

( )
ð7:28Þ

Note that the energy is independent of mj, the orientation of the total angular

momentum in space, as is physically plausible, so each level is (2jþ1)-fold

degenerate. The matrix element hls;jmj j x j ls;jmji is independent of s, j, and mj

l

l

s

s

High
energy High j

Low j

Low
energy

(a)

(b)

Fig. 7.4 (a) High and (b) low energy

relative orientations of spin and

orbital angular momenta of an
electron as a result of the interaction

of the corresponding angular

momenta. The black arrows denote

angular momenta and the blue
arrows denote magnetic moments.
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because x depends only on the radius r; as a result, the matrix element may be

identified with hcznl/�h
2.

For an s-electron, the spin–orbit interaction is zero because the electron has

no orbital angular momentum. Specifically, because j¼ s when l¼0,

h0s; smsjl � sj0s; smsi ¼ 1
2�h

2fsðsþ 1Þ � 0� sðsþ 1Þg ¼ 0

For a p-electron, the separation between levels with j¼ 3
2 and j¼ 1

2 is

Z4a2hcR/2n3, and so it rapidly becomes negligible as n increases. For a

hydrogen 2p-electron the splitting is a2R/16 � 0.365 cm�1. It should be noted

that the centroid of the split levels, with each one weighted by its degeneracy,

is at the same energy as the unsplit state (Fig. 7.5), as illustrated below.

Illustration 7.1 Finding the centroid of split levels

For a p-electron j¼ 3
2 or 1

2. We need to focus only on the term

j(jþ 1)� l(lþ 1)� s(sþ 1) from eqn 7.28 as all other terms for Eso are fixed for

specified values of n and l. For j¼ 3
2, there are 2jþ 1¼ 4 degenerate states and

they are raised in energy (relative to l¼ 1, s¼ 1
2) by an amount proportional to

j(jþ 1)� l(lþ 1)� s(sþ 1)¼ 1. Similarly, for j¼ 1
2, there are 2jþ 1¼ 2 degen-

erate states and their increase in energy is proportional to

j(jþ 1)� l(lþ 1)� s(sþ 1)¼�2; that is, they are lowered in energy. The

centroid of the split levels remains unchanged: 4� 1þ 2� (�2)¼ 0.

7.6 Term symbols and spectral details

To simplify the discussion of the spectrum that arises from these energy levels

we need to introduce some more notation. Spectral lines arise from transitions

between terms, which is another name for energy levels. The wavenumber, ~nn,
of a transition is the difference between the energies of two terms expressed

as wavenumbers:

~nn ¼ T 0 � T ð7:29Þ
A transition is denoted T 0 !T for emission and T 0 T for absorption, with

the term T 0 higher in energy than the term T.

The configuration of an atom is the specification of the orbitals that the

electrons occupy. There is only one electron in hydrogen, so we speak of the

configuration 1s1 if the electron occupies a 1s-orbital, 2s1 if it occupies a 2s-

orbital, and so on.4 A single configuration (such as 2p1) may give rise to

several terms. For hydrogen, each configuration with l> 0 gives rise to a

doublet term in the sense that each term splits into two levels with different

values of j, namely j¼ lþ 1
2 and j¼ l� 1

2. For example, the configuration 2p1

gives rise to a doublet term with the levels j¼ 3
2 and j¼ 1

2, the configuration 3d1

gives rise to a doublet term with the levels j¼ 5
2 and j¼ 3

2, and so on. Each level

j = 3
2

j = 

l s = 1,  = 

1
2

1
2

Fig. 7.5 The splitting of the states of a

p-electron by spin–orbit coupling.

Note that the centre of gravity of the

levels is unshifted.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. For hydrogen, 1s1 is the ground-state configuration; all others, such as 2s1, are excited-state

configurations.
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labelled by the quantum number j consists of 2jþ1 individual states dis-

tinguished by the quantum number mj. The hierarchy of concepts is

summarized in Fig. 7.6.

The level of each term arising from a particular configuration is summar-

ized by a term symbol:

multiplicity!2Sþ1fLg  
J Level

orbital angular momentum

where {L} is a letter (S, P, D, F, etc.) corresponding to the value of the total

orbital angular momentum quantum number L (0, 1, 2, 3, etc.). For a hydrogen

atom, L¼ l, so a configuration ns1 gives rise to an S term, a configuration np1

gives rise to a P term, and so on. The multiplicity of a term is the value of

2Sþ 1, where S is the total spin angular momentum quantum number; pro-

vided that L� S, the multiplicity is the number of levels of the term. For

hydrogen, S¼ s¼ 1
2, so 2Sþ1¼ 2, and all terms are doublets and are denoted

2S, 2P, etc. As we saw earlier, all terms other than 2S have two levels dis-

tinguished by the value of J, and for hydrogen J¼ j. A 2S term has only a single

level, with J¼ j¼ s¼ 1
2. The precise level of a term is specified by the right

subscript of the term symbol, as in 2S1/2 and 2P3/2. Each of these levels consists

of 2Jþ1 states, but these are rarely specified in a term symbol as they are

degenerate in the absence of external electric and magnetic fields.

7.7 The detailed spectrum of hydrogen

The transitions responsible for the spectrum of hydrogen can be expressed

using term symbols (Fig. 7.7). Consider, for instance, the transitions

responsible for the Ha line in the Balmer series (the line responsible for the red

glow of excited hydrogen atoms). The upper terms have n¼3 and the lower

have n¼ 2. The configuration 3s1 gives rise to a 2S1/2 term with a single level.

The configuration 3p1 gives rise to 2P3/2 and 2P1/2, with a very small spin–

orbit splitting between the two levels. The 3d1 configuration gives rise to the

levels 2D5/2 and 2D3/2. In each case, the level with the lower value of J lies

lower in energy. The configuration 2s1 similarly gives rise to a term 2S1/2 and

the configuration 2p1 gives rise to 2P3/2 and 2P1/2 with a splitting of about

0.36 cm�1, as explained before.

One possibly confusing point is that, according to the Dirac theory of the

hydrogen atom, the energy of the ns1 2S1/2 term is the same as that of the np1

2P1/2 term (see Fig. 7.7). One way to view this degeneracy is that the Schrö-

dinger equation ignores relativistic effects. When these effects are taken into

account (as they are by the Dirac equation), they give rise to a contribution to

the energy which is of the same order of magnitude as the spin–orbit inter-

action (which is also a relativistic phenomenon), with the result that levels of

the same value of j but different values of l are degenerate. Nevertheless,

although the Dirac equation predicts an exact degeneracy, there is experi-

mentally a small splitting between 2S1/2 and 2P1/2, which is known as the

Lamb shift. As in the case of other discrepancies between experiment and

the Dirac equation, we have to look for an explanation in the role of

the electromagnetic vacuum in which the atom is immersed, and quantum
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Fig. 7.6 The hierarchy of names and
the origin of the splittings that occur

in atoms.

1  Ss1 2
1/2

3  Ss1 2
1/2

2  Ss1 2
1/2

3  Pp1 2
3/2

2  Pp1 2
3/2

2  Pp1 2
1/2

3  Dd 1 2
5/2

3  Dd 1 2
3/2

3  Pp1 2
1/2

H�

Fig. 7.7 The energy levels of a

hydrogen atom showing the fine

structure and the transitions that give
rise to certain features in the

spectrum. Note that in this

approximation some degeneracies
remain (for states of the same j).
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electrodynamics accounts fully for the Lamb shift. The pictorial explanation

appeals to the role of the zero-point fluctuations of the oscillations of the

electromagnetic field, and their influence on the motion of the electron. This

jitterbugging motion of the electron tends to smear its location over a region

of space. The effect of this smearing on the energy is most pronounced for

s-electrons, as they spend a high proportion of their time close to the nucleus.

The smearing tends to reduce the probability that the electron will be found at

the nucleus itself, and so the energy of the orbital is raised slightly. There is

less effect on the energy of a p-electron because it spends less time close to the

nucleus and its interaction with the nucleus is less sensitive to the smearing.

The allowed transitions between terms arising from the configurations with

n¼3, 2, and 1 are shown in Fig. 7.7 (the selection rules on which this illus-

tration is based are discussed later). Because the only appreciable spin–orbit

splitting occurs in the 2p1configuration, the transitions contributing to the

Ha line fall into two groups separated by 0.36 cm�1. The doublet structure

in the spectrum is therefore a compound doublet arising from two almost

coincident groups of transitions.

The structure of helium

We now move towards a discussion of many-electron atoms by setting up an

approximate description of the simplest example: the helium atom. We shall

then use the features that this atom introduces to discuss more complex

atoms.

7.8 The helium atom

The hamiltonian for the helium atom (Z¼2) is

H ¼ � �h2

2me
ðr2

1 þr2
2Þ �

2e2

4pe0r1
� 2e2

4pe0r2
þ e2

4pe0r12
ð7:30Þ

with the distances defined in Fig. 7.8. The first two terms are the kinetic

energy operators for the two electrons, the following two are the potential

energies of the two electrons in the field of the nucleus of charge 2e, and the

final term is the potential energy arising from the repulsion of the two elec-

trons when they are separated by a distance r12. In a very precise calculation

we should use the reduced mass of the electron, but the calculation will be so

crude that this refinement is unnecessary.

The Schrödinger equation has the form

Hcðr1, r2Þ ¼ Ecðr1, r2Þ ð7:31Þ

and the wavefunction depends on the coordinates of both electrons. It

appears to be impossible to find analytical solutions of such a complicated

partial differential equation in six variables (this is due to the presence of the

electronic repulsion term in eqn 7.30), and almost all work has been directed

r1

r2

r12

Fig. 7.8 The distances involved in the
potential energy of a two-electron

atom.
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towards finding increasingly refined numerical solutions. The simplest version

of these approximate solutions is based on a perturbation approach, and this

is the line we shall initially take here. The obvious candidate to use as the

perturbation is the electron–electron interaction, but as it is not particularly

small compared with the other terms in the hamiltonian we should not expect

very good agreement with experiment, and will need to make further

refinements.

The unperturbed system is described by a hamiltonian that is the sum of

two hydrogenic hamiltonians:

Hð0Þ ¼ H1 þH2, Hi ¼ �
�h2

2me
r2

i �
2e2

4pe0ri
ð7:32Þ

Whenever a hamiltonian is expressed as the sum of two independent terms,

the eigenfunction is the product of two factors.

Proof 7.1 Eigenfunction as a product of independent factors

We seek the eigenfunction c such that H(0)c¼Ec, with H(0)a sum of inde-

pendent terms H1þH2þ � � � þHn. Writing c as a product of independent

terms c1c2 . . .cn, where Hici¼Eici, we find

ðH1 þH2 þ � � � þHnÞc ¼ ðH1 þH2 þ � � � þHnÞc1c2 . . .cn

¼ ðH1c1Þc2 . . .cn þ c1ðH2c2Þc3 . . .cn

þ � � � þ c1c2 . . .cn�1ðHncnÞ

¼ E1c1c2 . . .cn þ E2c1c2 . . .cn

þ � � � þ Enc1c2 . . .cn

¼ ðE1 þ E2 þ � � � þ EnÞc

Therefore, the product c¼c1c2 . . .cn is an eigenfunction with eigenvalue

E¼E1þE2þ � � � þEn.

It follows that for helium the wavefunction of the two electrons (with

their repulsion disregarded) is the product of two hydrogenic wavefunctions:5

cðr1, r2Þ ¼ cn1l1ml1
ðr1Þcn2l2ml2

ðr2Þ ð7:33Þ

and that, from eqn 3.44, the energies are

E ¼ �4hcR
1

n2
1

þ 1

n2
2

� �
ð7:34Þ

where we use R (inside front cover) because we are replacing the true reduced

mass with the electron mass.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. This simple product of two hydrogenic wavefunctions is most appropriate when both

electrons occupy the same orbital, as in the ground state of He. When electrons occupy different

orbitals, see Section 7.9.
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Now consider the influence of the electron–electron repulsion term. The

first-order correction to the energy is

Eð1Þ ¼ hn1l1ml1; n2l2ml2
e2

4pe0r12

����
����n1l1ml1; n2l2ml2i ¼ J ð7:35Þ

The term J is called the Coulomb integral:

J ¼ e2

4pe0

Z
jcn1l1ml1

ðr1Þj2
1

r12

� �
jcn2l2ml2

ðr2Þj2 dt1dt2 ð7:36Þ

This integral (which is positive) has a very simple interpretation (Fig. 7.9).

The term jcn1l1ml1
ðr1Þj2dt1 is the probability of finding the electron in the

volume element dt1, and when multiplied by �e it is the charge associated

with that region. Likewise, �ejcn2l2ml2
ðr2Þj2dt2 is the charge associated with

the volume element dt2. The integrand is therefore the Coulombic potential

energy of interaction between the charges in these two volume elements and

J is the total contribution to the potential energy arising from electrons in the

two orbitals.

Example 7.3 Evaluation of a Coulomb integral

Evaluate the Coulomb integral for the configuration 1s2 of a hydrogenic atom

given the following expansion6

1

r12
¼ 1

r1

X
l;ml

4p
2l þ 1

� �
r2

r1

� �l

Y�lml
ðy1,f1ÞYlml

ðy2,f2Þ

when rl> r2, and with r1 and r2 interchanged when r1< r2.

Method. The integral should be evaluated using c ¼ ðZ3=pa3
0Þ

1=2 e�Zrla0 for

each electron. Because the wavefunctions are independent of angle, the

integration over the angles is straightforward: the integration over Y gives zero

except when l¼ 0 and ml¼ 0. Hence, the sum given above reduces to a single

term inside the integral, namely 1/r12¼ 1/r1 when r1> r2 and 1/r12¼ 1/r2

when r2> r1. The radial integrations should be divided into two parts, one

with r1> r2 and the other with r2> r1.

Answer. The integration is as follows:

J ¼ e2

4pe0

� �
Z3

pa3
0

� �2Z 2p

0

df1

Z 2p

0

df2

Z p

0

sin y1dy1

Z p

0

sin y2dy2

�
Z 1

0

Z 1
0

e�2Zðr1þr2Þ=a0

r12
r2
1r2

2dr1dr2

¼ e2

4pe0

� �
Z3

pa3
0

� �2

ð4pÞ2
Z 1

0

Z r2

0

r2
1e�2Zr1=a0

r2
dr1

�

þ
Z 1

r2

r2
1e�2Zr1=a0

r1
dr1


r2
2e�2Zr2=a0 dr2

¼ e2

4pe0

� �
Z3

pa3
0

� �2

ð4pÞ2 � 5

27

a0

Z

� �5

¼ 5

8

e2

4pe0

� �
Z

a0

� �

J

Electron density
in orbital 2

Electron density
in orbital 1

Fig. 7.9 The physical interpretation

of the Coulomb integral, J.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. See, for example, eqn (3.70) of J.D. Jackson, Classical electrodynamics, Wiley (1975).
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For helium, Z¼ 2, and so

J ¼ 5

4

e2

4pe0a0

� �
� 5:45 aJ

Comment. Take care with the expansion when orbitals other than s-orbitals

are involved, because additional terms then survive.

Self-test 7.3. Evaluate J for the configuration 1s12s1.

It is shown in the example that J�5.45 aJ, which corresponds to 34 eV or

2.50hcR. The total energy of the ground state of the atom in this approx-

imation is therefore

E ¼ ð�4� 4þ 2:50ÞhcR ¼ �5:50hcR

This value corresponds to �12.0 aJ, or �7220 kJ mol�1. The experi-

mental value, which is equal to the sum of the first and second ionization

energies of the atom, is �7619 kJ mol�1 (�12.65 aJ, �5.804hcR). The

agreement is not brilliant, but the calculation is obviously on the right

track. One of the reasons for the disagreement is that the perturbation is not

small, and so first-order perturbation theory cannot be expected to lead to

a reliable result.

7.9 Excited states of helium

A new feature comes into play when we consider the excited states of the

atom. When the two electrons occupy different orbitals (as in the configuration

1s12s1), the wavefunctions are either cn1l1ml1
(r1)cn2l2ml2

(r1) or cn2l2ml2
(r1)

cnll1ml1
(r2), which we shall denote a(1)b(2) and b(1)a(2), respectively. Both

wavefunctions have the same energy and their unperturbed energies are

EaþEb. To calculate the perturbed energy, we use the form of perturbation

theory appropriate to degenerate states (Section 6.8), and therefore set up

the secular determinant. To do so, we need the following matrix elements, in

which we identify state 1 with a(1)b(2) and state 2 with b(1)a(2):

H11 ¼ hað1Þbð2Þ H1 þH2 þ
e2

4pe0r12

����
����að1Þbð2Þi ¼ Ea þ Eb þ J

H22 ¼ Ea þ Eb þ J

H12 ¼ hað1Þbð2Þ H1 þH2 þ
e2

4pe0r12

����
����að2Þbð1Þi

¼ ðEa þ EbÞhað1Þbð2Þjað2Þbð1Þi þ hað1Þbð2Þ
e2

4pe0r12

����
����að2Þbð1Þi ¼ H21

The first of the integrals in H12 is zero because the orbitals a and b are

orthogonal:

hað1Þbð2Þjað2Þbð1Þi ¼ hað1Þjbð1Þihbð2Þjað2Þi ¼ 0
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The remaining integral is called the exchange integral, K:

K ¼ e2

4pe0
hað1Þbð2Þ 1

r12

����
����að2Þbð1Þi ð7:37Þ

Like J, this integral is positive. The secular determinant is therefore

H11 � ES11 H12 � ES12

H21 � ES21 H22 � ES22

�����
����� ¼

H11 � E H12

H21 H22 � E

�����
�����

¼
Ea þ Eb þ J � E K

K Ea þ Eb þ J � E

�����
�����

¼ 0 ð7:38Þ

(Note that S11¼ S22¼1 and S12¼ S21¼0 due to orthonormality of states 1

and 2.) The solutions are

E ¼ Ea þ Eb þ J�K ð7:39Þ

and the corresponding wavefunctions are

c�ð1, 2Þ ¼ 1

21=2
fað1Þbð2Þ � bð1Það2Þg ð7:40Þ

or, in more detail,

c�ðr1, r2Þ ¼
1

21=2
fcn1l1ml1

ðr1Þcn2l2ml2
ðr2Þ � cn2l2ml2

ðr1Þcn1l1ml1
ðr2Þg

where the individual functions are hydrogenic atomic orbitals with Z¼2.

The striking feature of this result is that the degeneracy of the two product

functions a(1)b(2) and b(1)a(2) is removed by the electron repulsion, and their

two linear combinationsc� differ in energy by 2K. The exchange integral has no

classical counterpart, and should be regarded as a quantum mechanical cor-

rection to the Coulomb integral J. However, despite its quantum mechanical

origin, it is possible to discern the origin of this correction by considering the

amplitudes c� as one electron approaches the other. The crucial point is that

c�¼ 0 when r1¼ r2 whereascþ does not necessarily vanish. The corresponding

differences in the probability densities are illustrated in Fig. 7.10. We see that

there is zero probability of finding the two electrons in the same infinitesimal

region of space if they are described by the wavefunctionc� , but there is no such

restriction if their wavefunction is cþ (indeed, there is a small enhancement

in the probability that they will be found together). The dip in the probability

density jc� j2 wherever r1� r2 is called a Fermi hole. It is a purely quantum

mechanical phenomenon, and has nothing to do with the charge of the electrons;

even ‘uncharged electrons’ would exhibit this phenomenon.

It follows from the existence of the Fermi hole, that electrons that occupy

c� tend to avoid one another. Therefore, the average of the electron–

electron repulsion energy can be expected to be lower for c� than for cþ ,

for in the latter the electrons tend to be found near one another. The effect

on the energy accounts for the reduction of the Coulombic potential

energy from J to J�K for electrons in c� and its increase from J to JþK for

electrons in cþ .

0

0

r1– r2

r1– r2

| |�–
2

| |�+
2

(a)

(b)

Fig. 7.10 (a) The formation of a

Fermi hole by spin-correlation and
(b) the formation of a Fermi heap

when the spins are paired.
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It is appropriate at this point to mention something that will prove to be of

crucial importance shortly. The wavefunction c� is antisymmetric under the

interchange of the names of the electrons:

c�ð2, 1Þ ¼ 1

21=2
fað2Þbð1Þ � bð2Það1Þg

¼ � 1

21=2
fað1Þbð2Þ � bð1Það2Þg ¼ �c�ð1, 2Þ

whereas cþ is symmetric under particle interchange:

cþð2, 1Þ ¼ 1

21=2
fað2Þbð1Þ þ bð2Það1Þg

¼ 1

21=2
fað1Þbð2Þ þ bð1Það2Þg ¼ cþð1, 2Þ

7.10 The spectrum of helium

At this stage we have seen that when both electrons are in the same orbital (as

in 1s2, the ground state), the configuration gives rise to a single term with

energy 2Eaþ J, with both Ea and J depending on the orbital that is occupied.

When the two electrons occupy different orbitals (as in 1s12s1), then the

configuration gives rise to two terms, one with energy EaþEbþ J�K and the

other with energy EaþEbþ JþK. The separation of the terms by 2K should

be detectable in the spectrum, and so we shall now consider the transitions in

more detail.

The ground-state configuration is 1s2. Its total orbital angular momentum

is zero (because l1¼ l2¼0), so L¼ 0 and it gives rise to an S term. The only

excited configurations that we need consider in practice are those involving

the excitation of a single electron, and therefore having the form 1s1nl1,

because the excitation of two electrons exceeds the ionization energy of the

atom. The configuration 1s1nl1 gives rise to terms with L¼ l because only one

of the electrons may have a non-zero orbital angular momentum. Therefore,

the terms we have to consider are 1s12s1 S, 1s12p1 P, and so on. The selection

rule Dl¼�1 implies that transitions may occur between S and P terms,

between P and D, etc., but not between S and D.

We need to consider the selection rules governing transitions between

states of the form cþ and c� described above. It turns out (as we demon-

strate below) that the selection rules are

symmetrical$ symmetrical antisymmetrical$ antisymmetrical

but transitions between symmetrical and antisymmetrical combinations

are not allowed. The basis of this selection rule is the vanishing of the

transition dipole moment for states with different permutation symmetry.

The electric dipole moment operator for a two-electron system is equal to

� er1 � er2, which is symmetric under the permutation of the labels 1 and 2.

The dipole moment for the transition between states of different permutation

symmetry is

�þ� ¼ �e

Z
c�þðr1, r2Þðr1 þ r2Þc�ðr1, r2Þdt1dt2
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However, under the interchange of the labels 1 and 2, the integrand changes

sign. As the value of an integral cannot depend on the labels that we give to

the electrons, it follows that the only possible value for the integral is zero.

Hence, there can be no transitions between symmetric and antisymmetric

combinations.

Finally, we need to consider the multiplicities of the terms. Because each

electron has s¼ 1
2, we expect S¼ 0 and 1, corresponding to singlet and triplet

terms, respectively. For the singlet terms, J¼L; for the triplet terms, the

Clebsch–Gordan series gives J¼Lþ1, L, L�1 provided that L>0. Thus, we

can expect levels such as 1P1, 3P2, 3P1, and 3P0 to stem from each 1s1np1

configuration, and these levels are expected to be split by the spin–orbit

coupling. At this stage (a phrase intended to strike a note of warning), we

expect each of these terms to exist as the symmetric and antisymmetric

combinations. So we expect eight terms to stem from a 1s1np1 configuration,

with a symmetric and antisymmetric combination for each of 1P1, 3P2, 3P1,

and 3P0. Similarly we expect (but see below) four terms from a 1s1ns1 con-

figuration, corresponding to the symmetric and antisymmetric combinations

for each of 1S and 3S.

The observed spectrum of helium is, to some extent, consistent with

these remarks. Each 1s1nl1 configuration gives rise to two types of term

(Fig. 7.11), one symmetric and the other antisymmetric. We know which is

which, because the ground-state configuration must be symmetric (both

electrons occupy the same orbital), and therefore only symmetric states

have appreciable transition intensity to the ground state. Furthermore,

wherever both types of term can be identified, the antisymmetrical combi-

nation (the one that does not make transitions to the ground state) lies lower

in energy than the symmetrical combination, in accord with the discussion in

Section 7.9.7 There is, however, an extraordinary feature. An analysis of the

spectrum shows that all the symmetric states are singlets and all the anti-

symmetric states are triplets. There are no symmetric triplets and no anti-

symmetric singlets. Moreover, there are only four terms from each 1s1np1

configuration, not eight. In fact, half of all possible terms appear to be

excluded.

7.11 The Pauli principle

The explanation of the omission of half the expected terms requires the

introduction of an entirely new fundamental feature of nature. This was

recognized by Wolfgang Pauli, who proposed the following solution.

1s 2

1 2s s1 1

1 2s s1 1

1 3s s1 1 1 3s p1 1

1 2s p1 1

1 2s p1 1

1 3s d1 1

1 3s s1 1
1 3s p1 1

1 3s   d1 1

Orbitally
symmetric

Orbitally
antisymmetric

1S 1P 1D 3S 3P 3D

Allowed
Allowed

Forbidden

Fig. 7.11 The energy levels of a

helium atom, their classification as

singlets and triplets, and some of the

allowed and forbidden transitions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. Not too much should be made of this point. Although the analysis has shown that it is

plausible that an antisymmetric combination, with its Fermi hole, should lie lower in energy, the

conclusion was based on first-order perturbation theory and therefore ignored the distortion of the

wavefunction that may occur. It turns out that this distortion, which corresponds to the shrinkage

of the antisymmetric combination wavefunction so that the electrons lie closer to the nucleus than

they do in the symmetric combination wavefunction, is of dominating importance for determining

the order of energy levels. It remains true that the antisymmetric combination has a lower energy,

but the reason is more complicated than the first-order argument suggests.
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Consider the state of the system when the spins of the electrons are taken

into account. In Section 4.12 we saw that the spin state of two electrons

corresponding to S¼ 0 is

s�ð1, 2Þ ¼ 1

21=2
fað1Þbð2Þ � bð1Það2Þg

where, as usual, a denotes the state with ms¼ þ 1
2 and b denotes the state

with ms¼ � 1
2. The state s� is antisymmetric under particle exchange:

s�ð2, 1Þ ¼ �s�ð1, 2Þ

On the other hand, the three states that correspond to S¼1 are all symmetric

under particle interchange:

sðþ1Þ
þ ð1, 2Þ ¼ að1Það2Þ

sð0Þþ ð1, 2Þ ¼ 1

21=2
fað1Þbð2Þ þ bð1Það2Þg

sð�1Þ
þ ð1, 2Þ ¼ bð1Þbð2Þ

(The superscript is the value of MS.) We can now list all combinations of

orbital and spin states that might occur:

The experimentally observed states have been printed with a tinted back-

ground. It is clear that there is a common feature: the allowed states are all

antisymmetrical overall under particle interchange. This observation has been

elevated to a general law of nature:

The Pauli principle: The total wavefunction (including spin) must be

antisymmetric with respect to the interchange of any pair of electrons.

In fact, the Pauli principle can be expressed more broadly by recognizing

that elementary particles can be classified as fermions or bosons. A fermion is

a particle with half-integral spin; examples are electrons and protons. A

boson is a particle with integral spin, including 0. Examples of bosons are

photons (spin 1) and a-particles (helium-4 nuclei, spin 0). The more general

form of the Pauli principle is then as follows:

The total wavefunction must be antisymmetric under the interchange of

any pair of identical fermions and symmetrical under the interchange of

any pair of identical bosons.

We shall consider only the restricted ‘electron’ form of the principle here, but

use the full principle later (in Section 10.7). The principle should be regarded

as one more fundamental postulate of quantum mechanics in addition to

those presented in Chapter 1. However, it does have a deeper basis, for it can

be rationalized to some extent by using relativistic arguments and the

requirement that the total energy of the universe be positive. For us, it is a

succinct, subtle, summary of experience (the spectrum of helium) that, as we

shall see, has wide and never transgressed implications for the structure and

properties of matter.

c�s� cþ�� c��
ðþ1Þ
þ cþ�

ðþ1Þ
þ

c�s
ð0Þ
þ cþ�

ð0Þ
þ c��

ð�1Þ
þ cþ�

ð�1Þ
þ
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It is a direct consequence of the Pauli principle that there is a restriction on

the number of electrons that can occupy the same state. This implication of

the Pauli principle is called the Pauli exclusion principle:

No two electrons can occupy the same state.

In its simplest form, the derivation of the exclusion principle from the Pauli

principle runs as follows. Suppose the spin states of two electrons are the

same. We can always choose the z-direction such that their joint spin state is

a1a2, which is symmetric under particle interchange. According to the Pauli

principle, the orbital part of the overall wavefunction must be antisymmetric,

and hence of the form a(1)b(2)� b(1)a(2). But if a and b are the same

wavefunctions, then this combination is identically zero for all locations of

the two electrons. Therefore, such a state does not exist, and we cannot have

two electrons with the same spins in the same orbital. If the two electrons do

not have the same spin, then there does not exist a direction where their joint

spin state is a1a2, so the argument fails. It follows that if two electrons do

occupy the same spatial orbital, then they must pair; that is, have opposed

spins. (Note that ‘opposed spins’ does not mean that the spin part of the total

wavefunction is a(1)b(2) or b(1)a(2) but rather the antisymmetric linear

combination s� (1,2).)

Overall wavefunctions that satisfy the Pauli principle are often written as a

Slater determinant. To see how such a determinant is constructed, consider

another way of expressing the (overall antisymmetric) wavefunction of the

ground state of helium:

cð1, 2Þ ¼ c1sðr1Þc1sðr2Þs�ð1, 2Þ

¼ 1

21=2
c1sðr1Þc1sðr2Þfað1Þbð2Þ � bð1Það2Þg

¼ 1

21=2

c1sðr1Það1Þ c1sðr1Þbð1Þ
c1sðr2Það2Þ c1sðr2Þbð2Þ

����
����

It is easy to show that the expansion of the determinant generates the pre-

ceding line.

We now simplify the appearance of the Slater determinant by introducing

the concept of a spinorbital, a joint spin–space state of the electron:

ca
1sð1Þ ¼ c1sðr1Það1Þ cb

1sð1Þ ¼ c1sðr1Þbð1Þ

Then the ground state can be expressed more succinctly as the following

determinant:

cð1, 2Þ ¼ 1

21=2

ca
1sð1Þ cb

1sð1Þ
ca

1sð2Þ cb
1sð2Þ

�����
�����

This is an example of a Slater determinant. The determinant displays the

overall antisymmetry of the wavefunction very neatly, because if the labels 1

and 2 are interchanged, then the rows of the determinant are interchanged,

and it is a general property of determinants that the interchange of two rows

results in a change of sign.

The expansion of a 2� 2

determinant is

a b
c d

����
���� ¼ ad � bc
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Now suppose that the electrons have the same spin and occupy the same

orbitals. The Slater determinant for such a state would be

cð1, 2Þ ¼ 1

21=2

ca
1sð1Þ ca

1sð1Þ
ca

1sð2Þ ca
1sð2Þ

����
����

Because a determinant with two identical columns has the value 0 (another

general property of determinants that can be easily verified in this case), this

Slater determinant is identically zero. Such a state, therefore, does not exist, as

required by the Pauli exclusion principle.

The general form of a Slater determinant composed of the spinorbitals fa,

fb, . . . and containing N electrons is

cð1, 2, . . ., NÞ ¼ 1

N!

� �1=2

fað1Þ fbð1Þ � � � fzð1Þ
fað2Þ fbð2Þ � � � fzð2Þ

..

. ..
.

� � � ..
.

faðNÞ fbðNÞ � � � fzðNÞ

���������

���������
ð7:41Þ

A Slater determinant has N rows and N columns because there is one spi-

norbital for each of the N electrons present. The state is fully antisymmetric

under the interchange of any pair of electrons, because that operation cor-

responds to the interchange of a pair of rows in the determinant. Further-

more, if any two spinorbitals are the same, then the determinant vanishes

because it has two columns in common. Instead of writing out the determi-

nant in full, which is tiresome, it is normally summarized by its principal

diagonal:

cð1, 2, . . ., NÞ ¼ 1

N!

� �1=2

detjfað1Þfbð2Þ . . .fzðNÞj ð7:42Þ

We are now in a position to return to the helium spectrum. We have

seen that two electrons tend to avoid each other if they are described by an

antisymmetric spatial wavefunction. However, if the two electrons are

described by such a wavefunction, it follows that their spin state must be

symmetrical, and hence correspond to S¼1. Therefore, we can summarize

the effect by saying that parallel spins tend to avoid one another. This effect

is called spin correlation. However, the preceding discussion has shown

that spin correlation is only an indirect consequence of spin working through

the Pauli principle. That is, if the spins of the electrons are parallel, then

the Pauli principle requires them to have an antisymmetric spatial wave-

function, which implies that the electrons cannot be found at the same point

simultaneously.

A consequence of spin correlation is, as we have seen, that the triplet term

arising from a configuration lies lower in energy than the singlet term of the

same configuration. The point should be noted, however, that the difference

in energy is a similar indirect consequence of the relative spin orientations of

the electrons and does not imply a direct interaction between spins. The

difference in energy of terms of different multiplicity is a purely Coulombic

effect that reflects the influence of spin correlation on the relative spatial

distribution of the electrons.
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Many-electron atoms

We have seen that a crude description of the ground state of the helium atom is

1s2 with both electrons in hydrogenic 1s-orbitals with Z¼2. An improved

description takes into account the repulsion between the electrons and the

consequent swelling of the atom to minimize this disadvantageous contribu-

tion to the energy. It turns out that the effect of this repulsion on the orbitals

occupied can be simulated to some extent by replacing the true nuclear

charge, Ze, by an effective nuclear charge, Zeffe.8 The optimum value for

helium, in the sense of corresponding to the lowest energy (recall the variation

principle, Section 6.9), is Zeff�1.3. This approach to the description of

atomic structure can be extended to other many-electron atoms, and we shall

give a brief description of what is involved. Some of the principles will be

familiar from elementary chemistry and we shall not dwell on them unduly.

7.12 Penetration and shielding

Most descriptions of atomic structure are based on the orbital approxima-

tion, where it is supposed that each electron occupies its own atomic orbital,

and that orbital bears a close resemblance to one of the hydrogenic orbitals.

This is the justification of expressing the structure of an atom in terms of a

configuration, such as 1s22s22p6 for neon. Thus, we write the wavefunction

for the neon atom in the orbital approximation as

c ¼ 1

10!

� �1=2

det 1sað1Þ1sbð2Þ . . . 2pbð10Þ
�� ��

It must clearly be understood that this expression is an approximation,

because the actual many-electron wavefunction is not a simple product (or a

sum of such simple products) but is a more general function of 3N variables

and two spin states for each electron. To reproduce the exact wavefunction,

we would have to take a superposition of an infinite number of antisymmetric

products, as discussed in Chapter 9.

According to the Pauli exclusion principle, a maximum of two electrons

can occupy any one atomic orbital. As a result, the electronic structure of an

atom consists of a series of concentric shells of electron density, where a shell

consists of all the orbitals of a given value of n. We refer to the K-shell for

n¼1, the L-shell for n¼2, the M-shell for n¼ 3, and so on. The Li atom

(Z¼ 3), for example, consists of a complete K-shell and one electron in one of

the orbitals of the L-shell. Each shell consists of n subshells, which are the

orbitals with a common value of l. There are 2lþ1 individual orbitals in a

subshell. In a hydrogenic atom, all subshells of a given shell are degenerate,

but the presence of electron–electron interactions in many-electron atoms

removes this degeneracy, and although the members of a given subshell

remain degenerate (so the three 2p-orbitals are degenerate in all atoms), the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. In casual usage, Zeff itself rather than Zeffe is commonly called the ‘effective nuclear charge’.
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subshells correspond to different energies. It is typically found, for valence

(outermost) electrons at least, that the energies of the subshells lie in the order

s<p< d< f, but there are deviations from this simple rule.

The explanation of the order of subshells is based on the central-field

approximation, in which the highly complicated inter-electronic contribution

to the energy, which for electron 1 is

V ¼
X
i 6¼1

e2

4pe0r1i
ð7:43Þ

is replaced by a single point negative charge on the nucleus, so

V � se2

4pe0r1
ð7:44Þ

where �se is an effective charge that repels the charge �e of the electron of

interest. As a result of this approximation, the nuclear charge Ze is reduced to

(Z� s)e, and hence we can write

Zeff ¼ Z� s ð7:45Þ

The quantity s is called the nuclear screening constant and is characteristic of

the orbital that the electron (which we are calling 1) occupies. Thus, s is

different for 2s- and 2p-orbitals. It also depends on the configuration of the

atom, and s for a given orbital has different values in the ground and excited

states.

The partial justification for this seemingly (and actually) drastic approx-

imation comes from classical electrostatics. According to classical electro-

statics, when an electron is outside a spherical region of electric charge, the

potential it experiences is the same as that generated by a single point charge

at the centre of the region with a magnitude equal to the total charge within a

sphere that cuts through the position of the electron (Fig. 7.12). Thus, if the

K-shell is full and very compact, the effect of its two electrons can be simu-

lated by placing a point charge �2e on the nucleus provided that the electron

of interest stays wholly outside the core region (here the region of the K-shell

electrons) of the atom. If the electron of interest wanders into the core, then its

interaction varies the closer it is to the nucleus, and when it is at the nucleus,

it experiences the full nuclear charge.

The reduction of the nuclear charge due to the presence of the other elec-

trons in an atom is called shielding, and its magnitude is determined by the

extent of penetration of core regions of the atom, the extent to which the

electron of interest will be found close to the nucleus and inside spherical

shells of charge. Strictly speaking, the shielding constant varies with distance,

and an electron does not have a single value of s. However, in the next

approximation we replace the varying value of s by its average value, and

hence treat Zeff as a constant typical of the atom and of the orbital occupied

by the electron of interest. This is the basis for replacing Z¼ 2 by Z¼ 1.3 for

each electron in a He atom, for we are ascribing the average value s¼0.7 to

each electron.

It follows from the discussion of the radial distribution functions

for electrons in atoms (Section 3.12) that an ns-electron penetrates closer

+Ze – e

Fig. 7.12 According to classical

electrostatics, the charge of a

spherically symmetrical distribution
can be represented by a point charge

equal in value to the total charge of

the region and placed at its centre.
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to the nucleus than does an np-electron. Hence we can expect an ns-electron

to be less shielded by the core electrons than an np-electron, and hence

to have a lower energy. There is a similar difference between np- and

nd-electrons, for the wavefunctions of the latter are proportional to r2

whereas those of the former are proportional to r close to the nucleus;

hence, nd-electrons are excluded more strongly from the nucleus than np-

electrons. These effects can be seen in the atomic energy-level diagram for

Li (Fig. 7.13), which has been inferred from an analysis of its emission

spectrum.

7.13 Periodicity

The ground-state electron configurations of atoms are determined experi-

mentally by an analysis of their spectra or, in some cases, by magnetic mea-

surements. These configurations show a periodicity that mirrors the block,

group, and period structure of the periodic table. The rationalization of

the observed configurations is normally expressed in terms of the building-up

(or aufbau) principle. According to this principle, electrons are allowed

to occupy atomic orbitals in an order that mirrors the structure of the

periodic table (Fig. 7.14) and subject to the Pauli exclusion principle that

no more than two electrons can occupy any one orbital, and if two electrons

do occupy an orbital, then their spins must be paired. The order of occupation

largely follows the order of energy levels as determined by penetration

and shielding, with ns-orbitals being occupied before np-orbitals. The low-

ering of the energy of ns-orbitals is so great that in certain regions of the

table they lie below the (n�1)d-orbitals of an inner shell: the occupation of

4s-orbitals before 3d-orbitals is a well-known example of this phenomenon,

and it accounts for the intrusion of the d-block into the structure of the

periodic table.

It is too much to expect such a simple procedure based on the energies of

one-electron orbitals to account for all the subtleties of the periodic table.

What matters is the attainment of the lowest total energy of the atom, not the

lowest sum of one-electron energies, for the latter largely ignores electron–

electron interactions (except implicitly). Thus, it is found in some cases that

the lowest total energy of the atom is attained by shipping electrons around:

the favouring of d5 and d10 configurations is an example of a manner in which

the atom can relocate electrons to minimize the total energy, perhaps at the

expense of having to occupy an orbital of higher energy. There are various

regions of the periodic table where it is necessary to adjust the configuration

suggested by the building-up principle, but it is a remarkably simple and

generally reliable principle for accounting for the subtleties of the properties

of atoms.

There are two features of the building-up principle that should be kept in

mind. One is that when more than one orbital is available for occupation,

electrons occupy separate orbitals before entering an already half-occupied

orbital. This gives them a greater spatial separation, and hence minimizes the

total energy of the atom. Second, when electrons occupy separate orbitals,

they do so with parallel spins. This rule is often called Hund’s rule of

2  Ss1 2

3  Ss1 2

2  Pp1 2

3  Pp1 2 3  Dd 1 2

2S 2P 2D 2F

E
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y

Fig. 7.13 A schematic indication of

the orbital energy levels of a many-

electron atom (lithium, in fact)
showing the removal of the

degeneracy characteristic of

hydrogenic atoms.
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Fig. 7.14 The order of occupation of

energy levels as envisaged in the
building-up principle. At the end of

each period, revert to the start of the

next period.
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maximum multiplicity (Section 7.17), and it can be traced to the effects of

spin correlation, as we have already seen for helium.

Example 7.4 The ground-state electron configurations of atoms

What is the ground-state electron configuration of carbon?

Method. This example is a recapitulation of material normally encountered in

introductory chemistry courses, but is included to illustrate the foregoing

material. Decide on the number of electrons in the atom, then let them occupy

the available orbitals in accord with the scheme in Fig. 7.14 and the restric-

tions of the Pauli principle. When dealing with the outermost electrons, allow

electrons to occupy separate degenerate orbitals, and take note of Hund’s rule.

Answer. The six electrons of carbon (Z¼ 6) have a ground-state configuration

1s22s22p2. In more detail, we expect the configuration 1s22s22p1
x2p1

y , with

the two 2p-electrons having parallel spins. A triplet is therefore expected for

the ground term of the atom.

Comment. It should always be remembered that an electron configuration has

meaning only within the orbital approximation.

Self-test 7.4. What is the ground-state electron configuration of an O atom?

[1s22s22p2
x2p1

y2p1
z , a triplet term]

Once the ground-state electron configuration of an atom is known, it

is possible to go on to rationalize a number of the properties. For example,

the ionization energy, I, of an element, the minimum energy needed to

remove an electron from a gas-phase (ground-state) atom of an element at

T¼0 (that is, absolute zero)

EðgÞ ! EþðgÞ þ e�ðgÞ

generally increases across a period because the effect of nuclear attraction on

the outermost electron increases more rapidly than the repulsion from the

additional electrons that are present. However, the variation is not uniform

(Fig. 7.15), because account must be taken of the identity of the orbitals from

which the outermost electron is removed and the energy of the ion remaining

after the loss of the electron. The dip between Be and B, for instance, can be

explained on the grounds that their electron configurations are 1s22s2 and

1s22s22p1, respectively; so ionization takes place from a 2p orbital in B but a

2s orbital in Be, and the latter orbital has a lower energy on account of its

shielding and penetration. The decrease between N and O reflects the fact

that in N (1s22s22p1
x2p1

y2p1
z ) the electron is removed from a half-filled 2p-

orbital, whereas in O (1s22s22p2
x2p1

y2p1
z ) the electron is ‘helped’ on its way by

another electron that is present in the 2px-orbital and the fact that the

resulting 2p3 configuration (being a half-filled configuration) has a low

energy. The steep fall in ionization energy between He and Li, and between

Ne and Na, reflects the fact that the electron is being removed from a new

shell and so is more distant from the nucleus.
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Fig. 7.15 The variation of the first
ionization energy through Period 2 of

the periodic table.
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7.14 Slater atomic orbitals

No definitive analytical form can be given for the atomic orbitals of many-

electron atoms because the orbital approximation is very primitive. Never-

theless, it is often helpful to have available a set of approximate atomic

orbitals which model the actual wavefunctions found by using the more

sophisticated numerical techniques that we describe in Chapter 9. These

Slater type orbitals (STOs) are constructed as follows:

1. An orbital with quantum numbers n, l, and ml belonging to a nucleus of

an atom of atomic number Z is written

cnlml
ðr, y,fÞ ¼ Nrneff�1e�Zeffr=neff Ylml

ðy,fÞ

where N is a normalization constant, Ylml
is a spherical harmonic

(Table 3.1), and r¼ r/a0.

2. The effective principal quantum number, neff, is related to the true

principal quantum number, n, by the following mapping:

n! neff : 1! 1 2! 2 3! 3 4! 3:7 5! 4:0 6! 4:2

3. The effective nuclear charge, Zeff, is taken from Table 7.1.

The values in Table 7.1 have been constructed by fitting STOs to

numerically computed wavefunctions,9 and they supersede the values that

were originally given by Slater in terms of a set of rules. Care should be

taken when using STOs because orbitals with different values of n but the

Table 7.1 Values of Zeff¼Z� s for neutral ground-state atoms

H He

1s 1 1.6875

Li Be B C N O F Ne

1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421

2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584

2p 2.4214 3.1358 3.8340 4.4532 5.1000 5.7584

Na Mg Al Si P S Cl Ar

1s 10.6259 11.6089 12.5910 13.5754 14.5578 15.5409 16.5239 17.5075

2s 6.5714 7.3920 8.2136 9.0200 9.8250 10.6288 11.4304 12.2304

2p 6.8018 7.8258 8.9634 9.9450 10.9612 11.9770 12.9932 14.0082

3s 2.5074 3.3075 4.1172 4.9032 5.6418 6.3669 7.0683 7.7568

3p 4.0656 4.2852 4.8864 5.4819 6.1161 6.7641

Values are from E. Clementi and D.L. Raimondi, Atomic screening constants from SCF functions. IBM Res. Note NJ-27 (1963).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. The procedure by which the value of Zeff¼1.6875 for He shown in Table 7.1 was obtained

differs from the procedure based on the variation principle which yields the value of 1.3 quoted in

Section 7.12.
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same values of l and ml are not orthogonal to one another. Another

deficiency of STOs is that ns-orbitals with n> 1 have zero amplitude at

the nucleus.

7.15 Self-consistent fields

The best atomic orbitals are found by numerical solution of the Schrödinger

equation. The original procedure was introduced by Hartree and is known as

the self-consistent field (SCF) method. The procedure was improved by Fock

and Slater to include the effects of electron exchange, and the orbitals

obtained by their methods are called Hartree–Fock orbitals.10

The assumption behind the technique is that any one electron moves in a

potential which is a spherical average of the potential due to all the other

electrons and the nucleus, and which can be expressed as a single charge

centred on the nucleus (this is the central-field approximation; but it is not

assumed that the charge has a fixed value). Then the Schrödinger equation, a

differential equation, is integrated numerically for that electron and that

spherically averaged potential, taking into account the fact that the total

charge inside the sphere defined by the position of the electron varies as the

distance of the electron from the nucleus varies (recall Fig. 7.12). This

approach supposes that the wavefunctions of all the other electrons are

already known so that the spherically averaged potential can be calculated.

That is not in general true, so the calculation starts out from some approx-

imate form of the wavefunctions, such as approximating them by STOs. The

Schrödinger equation for the electron is then solved, and the procedure is

repeated for all the electrons in the atom. At the end of this first round of

calculation, we have a set of improved wavefunctions for all the electrons.

These improved wavefunctions are then used to calculate the spherically

averaged potential, and the cycle of computation is performed again. The

cycle is repeated until the improved set of wavefunctions does not differ

significantly from the wavefunctions at the start of the cycle. The wave-

functions are then self-consistent, and are accepted as good approximations

to the true many-electron wavefunction.

The Hartree–Fock equations on which the procedure is based are slightly

tricky to derive (see Further information 11) but they are reasonably easy to

interpret. The hamiltonian that we need to consider is

H ¼
X

i

hi þ 1
2

X
i; j

0 e2

4pe0rij
ð7:46Þ

where hi is a hydrogenic hamiltonian for electron i in the field of a

bare nucleus of charge Ze. This operator is called the core hamiltonian. The

factor of 1
2 in the double sum prevents the double-counting of interactions.

The prime on the summation excludes terms for which i¼ j as electrons do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10. See Chapter 9 for a more detailed account of the Hartee–Fock procedure.
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not interact with themselves. The Hartree–Fock equation for a space orbital

(spatial wavefunction) cs occupied by electron 1 is

h1 þ
X

r

ð2Jr � KrÞ
( )

csð1Þ ¼ escsð1Þ ð7:47Þ

The sum is over all occupied spatial wavefunctions. The terms Jr and Kr are

operators that have the following effects. The Coulomb operator, Jr, is

defined as follows:

Jrcsð1Þ ¼
Z

c�r ð2Þ
e2

4pe0r12

� �
crð2Þdt2

� 
csð1Þ ð7:48Þ

This operator represents the Coulombic interaction of electron 1 with elec-

tron 2 in the orbital cr. The exchange operator, Kr, is defined similarly:

Krcsð1Þ ¼
Z

c�r ð2Þ
e2

4pe0r12

� �
csð2Þdt2

� 
crð1Þ ð7:49Þ

This operator takes into account the effects of spin correlation. The quantity es
in eqn 7.47 is the one-electron orbital energy. Equations 7.48 and 7.49 show

that it is necessary to know all the other spatial wavefunctions in order to set

up the operators J and K and hence to find the form of each wavefunction.

Once the final, self-consistent form of the orbitals has been established, we

can find the orbital energies by multiplying both sides of eqn 7.47 by c�s (1)

and integrating over all space. The right-hand side is simply es, and so

es ¼
Z

c�s ð1Þh1csð1Þdt1 þ
X

r

ð2Jsr � KsrÞ ð7:50Þ

where

Jsr ¼
Z

c�s ð1ÞJrcsð1Þdt1

¼ e2

4pe0

Z
c�s ð1Þcrð2Þ

1

r12

� �
c�r ð2Þcsð1Þdt1dt2 ð7:51Þ

which, after reorganizing the integrand a little, is seen to be the Coulomb

integral introduced in connection with the structure of helium (eqn 7.36). It is

the average potential energy of interaction between an electron in cs and an

electron in cr. Similarly,

Ksr ¼
Z

c�s ð1ÞKrcsð1Þdt1

¼ e2

4pe0

Z
c�s ð1Þc�r ð2Þ

1

r12

� �
csð2Þcrð1Þdt1dt2 ð7:52Þ

This integral is recognizable, after some reorganization, as the exchange

integral (eqn 7.37). In passing, note that Krr¼ Jrr.

The sum of the orbital energies is not the total energy of the atom, for such

a sum counts all electron–electron interactions twice. So, to obtain the total

energy we need to eliminate the effects of double counting:

E ¼ 2
X

s

es �
X
r; s

ð2Jrs � KrsÞ ð7:53Þ
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where the sum is over the occupied orbitals (each of which is doubly occupied

in a closed-shell species). We can verify that this procedure gives the correct

result for helium in the ground-state configuration 1s2. The one-electron

energy is

e1s ¼ E1s þ ð2J1s;1s � K1s;1sÞ ¼ E1s þ J1s;1s

and the total energy is

E ¼ 2e1s � ð2J1s;1s � K1s;1sÞ ¼ 2ðE1s þ J1s, 1sÞ � J1s;1s

¼ 2E1s þ J1s;1s

exactly as before.

The energy required to remove an electron from an orbital cr, on the

assumption that the remaining electrons do not adjust their distributions, is

the one-electron energy er. Therefore, we may equate the one-electron orbital

energy with the ionization energy of the electron from that orbital. This

identification is the content of Koopmans’ theorem:

Ir � �er ð7:54Þ
The theorem is only an approximation, because the remaining N�1 electrons

have a different set of Hartree–Fock orbital energies (in the N�1 electron

ion) than they did in the N electron atom. (The spherically averaged elec-

trostatic potentials differ in the N and N� 1 electron systems.)

Solutions of the Hartree–Fock equations are generally given either as

numerical tables or fitted to sets of simple functions. Once they are available,

the total electron density in an atom may be calculated very simply by sum-

ming the squares of the wavefunctions for each electron. As Fig. 7.16 shows,

the calculated value exhibits the shell structure of the atom that more pri-

mitive theories have led us to expect. Note that the total electron density

shows the shell structure as a series of inflections: it decreases monotonically

without intermediate maxima and minima.

Hartree–Fock SCF atomic orbitals are by no means the most refined

orbitals that can be obtained. They are rooted in the orbital approximation

and therefore to an approximate central-field form of the potential. The true

wavefunction for an atom, whatever that may be, depends explicitly on

the separations of the electrons, not merely their distances from the nucleus.

The incorporation of the separations rij explicitly into the wavefunction is the

background of the correlation problem, which is at the centre of much

modern work (Chapter 9). Another route to improvement is to use the Dirac

equation for the calculation rather than the non-relativistic Schrödinger

equation. Relativistic effects are of considerable importance for heavy atoms,

and are needed to account for various properties of the elements, including

the colour of gold, the lanthanide contraction, the inert-pair effect, and even

the liquid character of mercury.

7.16 Term symbols and transitions of many-electron atoms

The state of a many-electron atom is expressed by a term symbol of exactly

the same kind as we have already described (Section 7.6). To construct the

symbol, we need to know the total spin, S, the total orbital angular momentum, L,
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Fig. 7.16 A representation of the

electron density calculated for a
many-electron atom. Note that the

shell structure is apparent, but that

the total electron density falls to

zero monotonically. The graph is a
plot of the electron density along a

radius, not the radial distribution

function.
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and the total angular momentum, J, of the atom.11 These quantities are

constructed by an appropriate application of the Clebsch–Gordan series

(Section 4.10). For instance, in the Russell–Saunders coupling scheme, the

total angular momenta of the valence electrons are constructed as follows:

S ¼ s1 þ s2, s1 þ s2 � 1, . . ., js1 � s2j
L ¼ l1 þ l2, l1 þ l2 � 1, . . ., jl1 � l2j
J ¼ Lþ S, Lþ S� 1, . . ., jL� Sj

Each of these series may need to be applied several times if there are more

than two electrons in the valence shell. The core electrons can be neglected

because the angular momentum of a closed shell is zero.

Example 7.5 The construction of term symbols

Construct the term symbols that can arise from the configurations (a) 2p13p1

and (b) 2p5.

Method. First, construct the possible values of L by using the Clebsch–Gordan

series and identify the corresponding letters for the terms. Then construct the

possible values of S similarly, and work out the multiplicities. Finally, con-

struct the values of J from the values of L and S for each term by using the

Clebsch–Gordan series again. A useful trick for shells that are more than half

full is to consider the holes in the shell as particles, and to construct the term

symbol for the holes. That is equivalent to treating the electrons, because a

closed shell has zero angular momentum, and the angular momentum of the

electrons must be equal to (in the sense of cancelling) the angular momentum

of the holes.

Answer. (a) For this configuration l1¼ 1 and l2¼ 1, so L¼ 2, 1, 0, and the

configuration gives rise to D, P, and S terms. Two electrons result in S¼ 1, 0,

giving rise to triplet and singlet terms, respectively, so the complete set of

terms is 3D, 1D, 3P, 1P, 3S, and 1S. The values of J that can arise are

formed from J¼Lþ S, Lþ S� 1, . . . , jL� Sj, and so the complete list of term

symbols is

3D3, 3D2, 3D1, 1D2, 3P2, 3P1, 3P0, 1P1, 3S1, 1S0

(b) The configuration 2p5 is equivalent to a single hole in a shell, so L¼ l¼ 1,

corresponding to a P term. Because S¼ s¼ 1
2 for the hole, the term symbol is 2P.

The two levels of this terms are 2P3/2 and 2P1/2, the same terms that arise

from 2p1.

Comment. The configuration 2p2 does not give rise to all the terms that 2p13p1

generates because the Pauli principle forbids the occurrence of certain com-

binations of spin and orbital angular momentum. This point is taken up below.

Self-test 7.5. Construct the term symbols that can arise from the configura-

tions (a) 3d14p1 and (b) 3d9.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11. The ‘total’ angular momentum J we are considering here takes into account contributions

from electrons; angular momentum due to, for instance, nuclear spin is not being considered.
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As indicated in the Comment in the example, some care is needed

when deriving the term symbols arising from configurations of equivalent

electrons, as in the 2p2 configuration of carbon. For instance, although

the configuration gives rise to D, P, and S terms, and S¼ 0, 1, it is easy to see

that 3D is excluded. For this L¼2 term to occur, we need to obtain a state

with ML¼ þ2, as well as the other ML states that belong to a D term. To

obtain ML¼ þ2, both electrons must occupy orbitals with ml¼þ1.

However, because the two electrons are in the same orbital (n¼2, l¼1,

ml¼þ1), they cannot have the same spins, so the S¼1 state is excluded.

A quick way to decide which combinations of L and S are allowed is to

use group theory and to identify the antisymmetrized direct product

(Section 5.14). For the 2p2 configuration we need to form

Gð1Þ � Gð1Þ ¼ Gð2Þ þ ½Gð1Þ� þ Gð0Þ ð7:55aÞ

Gð1=2Þ � Gð1=2Þ ¼ Gð1Þ þ ½Gð0Þ� ð7:55bÞ

where we have used the notation introduced in Sections 5.14 and 5.20. (For

eqn 7.55b, it should be apparent from Section 7.11 that [G(0)] is associated

with the singlet spin state s� which is antisymmetric under electron inter-

change. For eqn 7.55a, inspection of the vector coupling coefficients in

Appendix 2 readily shows that [G(1)] is antisymmetric with respect to electron

exchange.) To ensure that the overall state is antisymmetric, we need to

associate symmetric with antisymmetric combinations. In this case the terms

are 1D, 3P, and 1S.

A more pedestrian procedure is to draw up a table of microstates, or

combinations of orbital and spin angular momentum of each individual

electron, and then to identify the values of L and S to which they belong. We

shall denote the spinorbital as ml if the spin is a and ml if the spin is b. Then

one typical microstate of two electrons would be ð1, 1Þ if one electron

occupies an orbital with ml¼þ1 with a spin and the second electron occupies

the same orbital with b spin. This microstate has ML¼ þ2 and MS¼ 0, and is

put into the appropriate cell in Table 7.2. The complete set of microstates can

be compiled in this way, and ascribed to the appropriate cells in the table.

Note that microstates such as (1,1), which correspond to the two a-spins in an

Table 7.2 The microstates of p2

ML, MS: þ1 0 �1

þ2 (1,�11)

þ1 (1,0) (1,�00), (�11,0) (�11,�00)

0 (1,�1) (1,��11), (�11,�1), (0,�00) (�11,��11)

�1 (�1,0) (�1,�00), (��11,0) (��11,�00)

�2 (�1,��11)
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orbital with ml¼þ1, are excluded by the Pauli principle and have been

omitted.

Now we analyse the microstates to see to which values of L and S

they belong. The microstate ð1, 1Þ must belong to L¼ 2, S¼0, which iden-

tifies it as a state of a 1D term. There are five states with L¼2, so we can

strike out one microstate in each row of the column headed MS¼ 0; which

one we strike out in each case is immaterial as this is only a bookkeeping

exercise, and striking out one state is equivalent to striking out one possible

linear combination. The next row shows that there is a microstate with

ML¼þ1 and MS¼þ1. This state must belong to L¼ 1 and S¼1 and hence

to the term 3P. The nine states of this term span ML¼þ1, 0, �1 and

MS¼þ1, 0, �1, and so we can strike out nine of the remaining ten micro-

states. Only one microstate remains: it has ML¼ 0 and MS¼ 0, and hence

belongs to L¼ 0 and S¼0, and is therefore a 1S term. Now we have

accounted for all the microstates, and have identified the terms as 1D, 3P, and
1S, as we had anticipated.

The transitions that are allowed by the selection rules for a many-electron

atom are

DJ ¼ 0, � 1 but J ¼ 0! J ¼ 0 forbidden

DL ¼ 0, � 1 Dl ¼ �1 DS ¼ 0

The rules regarding DJ and DL express the general point about the con-

servation of angular momentum. The rule concerning Dl is based on the

conservation of angular momentum for the actual electron that is excited in

the transition and its acquisition of the angular momentum of the photon; it is

relevant when using a single Slater determinant to represent a state. The rule

regarding DS reflects the fact that the electric component of the electro-

magnetic field can have no effect on the spin angular momentum of the

electron, and in particular that it cannot induce transitions between wave-

functions that have different permutation symmetry (see Section 7.10). The

selection rules on J are exact: those concerning l, L, and S presume that these

individual angular momenta are well-defined.

7.17 Hund’s rules and the relative energies of terms

Friedrich Hund devised a set of rules for identifying the lowest energy term of

a configuration with the minimum of calculation.

1. The term with the maximum multiplicity lies lowest in energy.

For the configuration 2p2, we expect the 3P term to lie lowest in energy. The

explanation of the rule can be traced to the effects of spin correlation. On

account of the existence of a Fermi hole, orbitals containing electrons with the

same spin can contract towards the nucleus without an undue increase in

electron–electron repulsion. The Fermi hole acts as a kind of protective halo

around the electrons.

2. For a given multiplicity, the term with the highest value of L lies lowest in

energy.
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For example, if we had to choose between 3P and 3F in a particular config-

uration, then we would select the latter as the lower energy term. The classical

basis of this rule is essentially that if electrons are orbiting in the same

direction (and so have a high value of L), then they will meet less often than

when they are orbiting in opposite directions (and so have a low value of L).

Because they meet less often, their repulsion is less.

3. For atoms with less than half-filled shells, the level with the lowest value of

J lies lowest in energy.

For the 2p2 configuration, which corresponds to a shell that is less than

half full, the ground term is 3P. It has three levels, with J¼2, 1, 0. We

therefore predict that the lowest energy level is 3P0. When a shell is more than

half full, the opposite rule applies (highest J lies lowest in energy). The origin

of this rule, in both its forms, is the spin–orbit coupling, and was discussed in

Section 7.5.

The rules are reasonably reliable for predicting the term of lowest energy,

but are not particularly reliable for ranking all the terms according to their

energy. One reason for their failure may be that the structure of an atom is

inaccurately described by a single configuration, and a better description is in

terms of configuration interaction, a superposition of several configurations.

An example is found among the excited states of magnesium, and in parti-

cular the configuration 3s13d1, which is expected to have 3D energetically

below 1D whereas the opposite is found to be the case. An explanation is that

the 1D term is actually a mixture of about 75 per cent 3s13d1 and 25 per cent

3p2 (which can also give rise to a 1D term). If the two configurations have a

similar energy, the electron–electron repulsion term perturbs them and, as for

any two-level system, they move apart in energy (Fig. 7.17). The lower

combination is pressed down in energy, and as a result may fall below the 3D

term, which is unchanged because there is no 3p2 3D term. Configuration

interaction is discussed in more detail in Chapter 9.

7.18 Alternative coupling schemes

We have just seen that a configuration should not be taken too literally; the

same is true of term symbols as well. The specification of a term symbol

implies that L and S have definite values, but that may not be true when spin–

orbit coupling is appreciable, particularly in heavy atoms.

The term symbols we have introduced are based on Russell–Saunders (LS)

coupling, which is applicable when spin–orbit coupling is weak in compar-

ison with Coulombic interactions between electrons. When the latter are

dominant, they result in the coupling of orbital angular momenta into a

resultant with quantum number L and the spin angular momenta into a

resultant with quantum number S. The weak spin–orbit interaction finally

couples these composite angular momenta together into J (Fig. 7.18). To

represent the relative strengths of the coupling of the angular momenta, we

imagine the component vectors as precessing, or migrating around their

cones, at a rate proportional to the strength of the coupling. When Russell–

Saunders coupling is appropriate, the individual orbital momenta and the

3p 2

3 3s d1 1

1D

1D

1D

1D

3D 3D

1/rij

Fig. 7.17 The effect of configuration
interaction between two D terms of

the same multiplicity and the

consequent reversal of the order of

the terms of a configuration predicted
by Hund’s rules.

J

L

S
l1

s s1 2, 

l2

Fig. 7.18 A vector representation of

Russell–Saunders (LS) coupling in a

two-electron atom.
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spin momenta precess rapidly around their resultants, but the two resultants

L and S precess only slowly around their resultant, J.

When spin–orbit coupling is strong, as it is in heavy atoms, we use

jj-coupling. In this scheme, the orbital and spin angular momenta of indivi-

dual electrons couple to give a combined angular momentum j, and then these

combined angular momenta couple to give a total angular momentum J. Now

l and s each precess rapidly around their resultant j, and the various js precess

slowly around their resultant J (Fig. 7.19). In this scheme, L and S are not

specified and so the term symbol loses its significance.

Example 7.6 Using the jj-coupling scheme

Within the jj-coupling scheme, what values of the total angular momentum J

are permitted for the electron configuration 5p15d1?

Method. Coupling l1¼ 1 and s1¼ 1
2 yields values for the resultant j1. Similarly,

coupling l2¼ 2 and s2¼ 1
2 yields values for the resultant j2. Then couple j1 and

j2 to obtain J. Use the Clebsch–Gordan series in each case.

Answer. Coupling l1¼ 1 and s1¼ 1
2 yields j1¼ 3

2,
1
2. Coupling l2¼ 2 and s2¼ 1

2

yields j2¼ 5
2,

3
2. Finally, coupling j1 and j2 gives values of J¼ 4, 3, 3, 3, 2, 2, 2, 2,

1, 1, 1, 0.

Self-test 7.6. Within the jj-coupling scheme, what values of the total angular

momentum J are permitted for the electron configuration 5d16d1?

Although the significance of the term symbol is lost when jj-coupling is

relevant, symbols can still be used to label the terms because there is a cor-

relation between Russell–Saunders and jj-coupled terms. To see that this is so,

consider the np2 configurations of the Group 14 elements carbon to lead. In

the Russell–Saunders scheme we expect 1S, 3P, and 1D terms, and the levels
3P2, 3P1, and 3P0 of the 3P term. The energies of these terms are indicated on

the left of Fig. 7.20. On the other hand, in jj-coupling, each p-electron can

have either j¼ 1
2 or j¼ 3

2. The resulting total angular momenta will be

Gð1=2Þ � Gð1=2Þ ¼ Gð1Þ þ Gð0Þ

Gð1=2Þ � Gð3=2Þ ¼ Gð2Þ þ Gð1Þ

Gð3=2Þ � Gð3=2Þ ¼ Gð3Þ þ Gð2Þ þ Gð1Þ þ Gð0Þ

Because an electron with j¼ 1
2 can be expected to have a lower energy than one

with j¼ 3
2 on the basis of spin–orbit coupling in a less than half-filled shell, we

expect the order of energies indicated on the right of the illustration. Note

that the Pauli principle excludes J¼ 3, because to achieve it, both electrons

would need to occupy the same orbital with the same spin.

The states on the two sides can be correlated because J is well-defined in

both coupling schemes and we know (Section 6.1) that states of the same

symmetry (in this case, the same J) do not cross when perturbations are

present. The resulting correlation of states is shown in the illustration, which

J

l1

l 2

s 1

s 2

j 2

j1

Fig. 7.19 A vector representation of

jj-coupling in a two-electron atom.
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Fig. 7.20 The correlation diagram

for a p2 configuration and the
approximate location of Group 14

atoms. Note that Russell–Saunders

terms can be used to label the

atoms regardless of the extent of
jj-coupling.
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is called a correlation diagram. As can be seen, even though Russell–Saunders

coupling is inappropriate for the heavier members of the group, it can still be

used to construct labels for the terms.

Atoms in external fields

In this final section, we shall consider how the application of electric and

magnetic fields can affect the energy levels and hence the spectra of atoms. We

shall describe two effects: the Zeeman effect is the response to a magnetic

field; the Stark effect is the response to an electric field.

7.19 The normal Zeeman effect

Electrons possess magnetic moments as a result of their orbital and spin

angular momenta. These moments will interact with an externally applied

magnetic field, and the resulting shifts in energy should be apparent in the

spectrum of the atom.

Consider first the effect of a magnetic field on a singlet term, such as 1P.

Because S¼ 0, the magnetic moment of the atom arises solely from the orbital

angular momentum. For a field of magnitude b in the z-direction the

hamiltonian is

Hð1Þ ¼ �mzb ¼ �gelzb ð7:56Þ

If several electrons are present,

Hð1Þ ¼ �Mzb ¼ �geðlz1 þ lz2 þ � � �Þb ¼ �geLzb ð7:57Þ

The first-order correction to the energy of the P term is therefore

Eð1Þ ¼ h1PML jHð1Þj1PMLi ¼ �geML�hb ¼ mBMLb ð7:58Þ

where mB is the Bohr magneton (eqn 7.12). A 1S term has neither orbital nor

spin angular momentum, so it is unaffected by a magnetic field. It follows

that the transition 1P! 1S should be split into three lines (Fig. 7.21), with

a splitting of magnitude mBb. A 1 T magnetic field splits lines by only

0.5 cm�1, so the effect is very small. This splitting of a spectral line into three

components is an example of the normal Zeeman effect.

The three transitions that make up 1P! 1S correspond to different values

of DML. We have already seen that transitions with different values of Dml

(and likewise DML) correspond to different polarization of electromagnetic

radiation. In the present case, an observer perpendicular to the magnetic field

sees that the outer lines of the trio (those corresponding to DML¼�1) are

circularly polarized in opposite senses. These lines are called the �-lines.

The central line (which is due to DML¼0) is linearly polarized parallel to the

applied field. It is called the p-line.

The normal Zeeman effect is observed wherever spin is not present.

It occurs even for transitions such as 1D! 1P, in which the upper term is

1P

1S

B = 0 B > 0

∆M –L = 1 0 +1

ML

+1

0

–1

0

�~

Fig. 7.21 The splitting of energy

levels of an atom in the normal
Zeeman effect, and the splitting of

the transitions into three groups of

coincident lines.
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split into five states and the lower is split into three. In this case, the splittings

are the same in the two terms, and the selection rules DML¼ 0, �1 limit the

transitions to three groups of coincident lines, as illustrated below.

Illustration 7.2. Analysing the splitting pattern for 1D! 1P

Take the energy of an ‘unsplit’ P term to be zero. Then, in the presence

of the magnetic field, the energies of ML¼�1, 0, þ1 are, by eqn 7.58,

�mBb; 0; mBb, respectively. Similarly, if the energy of an ‘unsplit’ D term is

taken to be e, then the energies of the states ML¼ � 2, �1, 0, þ1, þ2 are

e� 2mBb; e� mBb; e; eþ mBb; eþ 2mBb respectively. All DML¼þ1 transi-

tions, for instance 1D(ML¼�2)! 1P(ML¼�1), occur at an energy e� mBb;

all DML¼ 0 transitions at e; and all DML¼�1 transitions at eþ mBb There

are three groups, each one consisting of three coincident lines.

7.20 The anomalous Zeeman effect

The anomalous Zeeman effect, in which a more elaborate pattern of lines is

observed, is in fact more common than the normal Zeeman effect. It is

observed when the spin angular momentum is non-zero and stems from the

unequal splitting of the energy levels in the two terms involved in the tran-

sition. That unequal splitting stems in turn from the anomalous magnetic

moment of the electron (Section 7.3).

If the g-value of an electron were 1 and not 2, then the total magnetic

moment of the electron would be collinear with its total angular momentum

(Fig. 7.22). But in fact, because of the anomaly, the two are not collinear. The

spin and orbital angular momenta precess about their resultant (as a result of

spin–orbit coupling), and as a result, the magnetic moment is swept around

too. This motion has the effect of averaging to zero all except the component

collinear with the direction of J, but the magnitude of this surviving magnetic

moment depends on the values of L, S, and J because vectors of different

lengths will lie at different angles to one another and give rise to different

non-vanishing components of the angular momentum.

The calculation of the surviving component of the magnetic moment runs

as follows. The hamiltonian for the interaction of a magnetic field B with

orbital and spin angular momenta is

Hð1Þ ¼ �morbital �B�mspin �B ¼ �geðLþ 2SÞ �B ð7:59Þ

where we have used 2 in place of ge. At this point, we look for a way of

expressing the hamiltonian as proportional to J by writing

Hð1Þ ¼ �gJge J �B ð7:60Þ

where gJ is a constant. The two hamiltonians in eqns 7.59 and 7.60 are not

equivalent in general, but for a first-order calculation we need only ensure

that they have the same diagonal elements.

J

J

L

L

S

S

m(spin)

m (spin)

m (orbital)

m (orbital)

m (total)

m (total)

(a)

(b)

Fig. 7.22 (a) If the spin magnetic

moment of an electron bore the same

relation to the spin as the orbital

moment bears to the orbital angular
momentum, the total magnetic

moment would be collinear with

the total angular momentum.
(b) However, because the spin has

an anomalous magnetic moment,

the total moment is not collinear

with the total angular momentum.
The surviving component, after

allowing for precession, is

determined by the Landé g-factor.
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Fig. 7.23 The vector diagram used

to calculate the Landé g-factor.
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Fig. 7.24 The anomalous Zeeman

effect. The splitting of energy levels

with different g-values leads to a
more complex pattern of lines than

in the normal Zeeman effect.

Consider Fig. 7.23. There are three precessional motions: S about J, L

about J, and J about B. The effective magnetic moment can be found by

projecting L on to J and then J on to B, and then doing the same for S. The

precession averages to zero all the components perpendicular to this motion

(this classical averaging is equivalent to ignoring all off-diagonal components

in a quantum mechanical calculation). If k is a unit vector along J, it follows

that the only surviving terms are

L �B! ðL � kÞðk �BÞ ¼ ðL � JÞðJ �BÞ
jJj2

S �B! ðS � kÞðk �BÞ ¼ ðS � JÞðJ �BÞ
jJj2

Because J¼Lþ S, it follows that

2L � J ¼ J2 þ L2 � S2 2S � J ¼ J2 þ S2 � L2

If these quantities are now inserted into eqn 7.59 and the quantum mechanical

expressions for magnitudes replace the classical values (so that J2 is replaced by

J(Jþ1)�h2, etc.), we find

Hð1Þ ¼ �geðLþ 2SÞ �B

¼ �ge 1þ JðJ þ 1Þ þ SðSþ 1Þ � LðLþ 1Þ
2JðJ þ 1Þ

� 
J �B

This is the form we sought. It enables us to identify the Landé g-factor as

gJðL; SÞ ¼ 1þ JðJ þ 1Þ þ SðSþ 1Þ � LðLþ 1Þ
2JðJ þ 1Þ ð7:61Þ

When S¼ 0, gJ¼1 because then J must equal L. In this case, the magnetic

moment is independent of L, and so all singlet terms are split to the same

extent. This uniform splitting results in the normal Zeeman effect. When

S 6¼0, the value of gJ depends on the values of L and S, and so different terms

are split to different extents (Fig. 7.24). The selection rule DMJ¼ 0, �1

continues to limit the transitions, but the lines no longer coincide and form

three neat groups.

Example 7.7 How to analyse the anomalous Zeeman effect

Account for the form of the Zeeman effect when a magnetic field is applied to

the transition 2D3/2! 2P1/2.

Method. Begin by calculating the Landé g-factor for each level, and then split

the states by an energy that is proportional to its g-value. Proceed to apply the

selection rule DMJ¼ 0, � 1 to decide which transitions are allowed.

Answer. For the level 2D3/2 we have L¼ 2, S¼ 1
2, and J¼ 3

2. It follows that

g3/2(2, 1
2)¼ 4

5. For the lower level, 2P1/2, we have g1/2(1, 1
2)¼ 2

3. The splittings are
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therefore of magnitude 4
5mBb in the 2D3=2 term and 2

3mBb in the 2P1=2 term.

The six allowed transitions are summarized in Fig. 7.24, where it is seen that

they form three doublets.

Self-test 7.7. Construct a diagram showing the form of the Zeeman effect

when a magnetic field is applied to a 3D2! 3P1 transition.

When the applied field is very strong, the coupling between L and S may be

broken in favour of their direct coupling to the magnetic field.12 The indivi-

dual angular momenta, and therefore their magnetic moments, now precess

independently about the field direction (Fig. 7.25). As the electromagnetic

field couples to the spatial distribution of the electrons (recall the form of the

transition dipole moment), not to the magnetic moment due to the spin, the

presence of the spin now makes no difference to the energies of the transi-

tions. As a result, the anomalous Zeeman effect gives way to the normal

Zeeman effect. This switch from the anomalous effect to the normal effect is

called the Paschen–Back effect.

7.21 The Stark effect

The hamiltonian for the interaction with an electric field of strength e in the

z-direction is

Hð1Þ ¼ �mze ¼ eze ð7:62Þ

where mz is the z-component of the electric dipole moment operator,

mz¼ � ez. This operator has matrix elements between orbitals that differ in l

by 1 but which have the same value of ml (recall Sections 5.16 and 7.2).

The linear Stark effect is a modification of the spectrum that is proportional

to the strength of the applied electric field. It arises when there is a degeneracy

between the two wavefunctions that the perturbation mixes, as for the 2s and

2pz orbitals of hydrogen. The matrix element of the perturbation is, from

Example 7.2,

h2pzjHð1Þj2si ¼ 3ea0e ð7:63Þ

and from Fig. 6.2 (or more formally from eqn 6.6) we know that the

two degenerate orbitals mix and give rise to a splitting of magnitude 6ea0e.

The two functions that diagonalize the hamiltonian are N(2s� 2pz), with

N¼1/21/2 (Fig. 7.26). It is easy to see that they correspond to a shift of

charge density into and out of the direction of the field, and this difference

in distribution accounts for their difference in energy. The splitting is

J

L

L

S

S

(a)

(b)

Fig. 7.25 As the strength of the

applied field is increased, the
precession of angular momenta

about their resultant (as in (a)) gives

way to precession about the magnetic
field (as in (b)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12. This feature is examined in Further information 15, where the full significance of the

recoupling is seen to be the search for the representation that gave matrices with the smallest

off-diagonal elements: the vector recoupling diagram is a pictorial representation of that effect.

+

-

(a)

(b)

Fig. 7.26 The origin of the first-order

Stark effect. The two mixed states

(a) and (b) give rise to two electron
distributions that differ in energy.
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very small: even for fields of 1.0 MV m�1, the splitting corresponds to

only 2.6 cm�1.

The linear Stark effect depends on the peculiar degeneracy characteristic of

hydrogenic atoms, and is not observed for many-electron atoms where that

degeneracy is absent. In these atoms, it is replaced by the quadratic Stark

effect, which is even weaker. The origin of the effect is the same, but now the

distortion of the charge distribution occurs only as a perturbation and the

resulting shifts in energy are proportional to e
2. The field has to distort a non-

degenerate and hence ‘tight’ system, and then interact with the dipole pro-

duced by that distortion.

At very high field strengths the Ha line is seen to broaden and its intensity to

decrease. These effects are traced to the tunnelling of the electron. In high

fields the potential experienced by the electron has the form shown in

Fig. 7.27. The tails of the atomic orbitals seep through the region of high

potential and penetrate into the external region, where the potential can strip

the electron away from the atom. This ionization results in fewer atoms being

able to participate in emission, and so the intensity is decreased. Moreover, as

the upper state has a shorter lifetime, its energy is less precise and the tran-

sition becomes diffuse.

Energy due to
externally 
applied
potential

Coulomb
potential
energy

Total
potential
energy

�

Fig. 7.27 When the applied field is

very strong, its contribution to the

total potential energy is such as to

provide a tunnelling escape route for
the originally bound state of an

electron.

P R O B L E M S

7.1 Calculate the wavenumbers of the transitions of Heþ

for the analogue of the Balmer series of hydrogen. Hint. Use
eqn 7.2 with the Rydberg constant modified to account for
the mass and charge differences.

7.2 Determine the longest possible wavelengths (the
smallest wavenumbers) and the shortest possible
wavelengths (the series limits) for lines in the (a) Lyman, (b)
Balmer, (c) Paschen, and (d) Brackett series of the spectrum
of atomic hydrogen.

7.3 Predict the form of the spectrum of the muonic atom
formed from an electron in association with a m-meson
(mm¼ 207me, chargeþ e).

7.4 Which of the following transitions are electric-dipole
allowed: (a) 1s! 2s, (b) 1s!2p, (c) 2p! 3d, (d) 3s! 5d,
(e) 3s! 5p?

7.5 The spectrum of a one-electron ion of an element
showed that its ns-orbitals were at 0, 2 057 972 cm�1, 2 439
156 cm�1, and 2 572 563 cm�1 for n¼ 1, 2, 3, 4,
respectively. Identify the species and predict the ionization
energy of the ion.

7.6 Demonstrate that for one-electron atoms the
selection rules are Dl¼ � 1, Dml¼ 0, � 1, and Dn
unlimited. Hint. Evaluate the electric-dipole transition
moment hn0l0m0lj�jnlmli with mx¼�er sin y cosf, my¼�er
sin y sinf, and mz¼�er cos y. The easiest way of
evaluating the angular integrals is to recognize
that the components just listed are proportional to Ylml

with l¼ 1, and to analyse the resulting integral group
theoretically.

7.7 Confirm that in hydrogenic atoms, the spin–orbit
coupling constant depends on n and l as in eqn 7.24.

7.8 Calculate the spin-orbit coupling constant for a
2p-electron in a Slater-type atomic orbital, and evaluate it
for the neutral atoms of Period 2 of the periodic table
(from boron to fluorine).

7.9 Deduce the Landé interval rule, which states that for a
given l and s, the energy difference between two levels
differing in j by unity is proportional to j. Hint. Evaluate Eso

in eqn 7.28 for j and j� 1; use the second line in the
equation (in terms of znl).
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7.10 The ground-state configuration of an iron
atom is 3d64s2, and the 5D term has five levels
(J¼ 4, 3, . . . , 0) at relative wavenumbers 0, 415.9, 704.0,
888.1, and 978.1 cm�1. Investigate how well the Landé
interval rule (Problem 7.9) is obeyed. Deduce a value
of z3d.

7.11 (a) Calculate the energy difference between the levels
with the greatest and smallest values of j for given l and s.
Each term of a level is (2jþ 1)-fold degenerate.
(b) Demonstrate that the barycentre (mean energy) of a
term is the same as the energy in the absence of spin–orbit
coupling. Hint. Weight each level with 2jþ 1 and sum
the energies given in eqn 7.28 from j¼ j l� s j to j¼ lþ s.
Use the relations

Xn

s¼0

s ¼ 1
2 nðnþ 1Þ

Xn

s¼0

s2 ¼ 1
6 nðnþ 1Þð2nþ 1Þ

Xn

s¼0

s3 ¼ 1
4 n2ðnþ 1Þ2

7.12 Identify the terms that may arise from the ground
configurations of the atoms of elements of Period 2 and
suggest the order of their energies. Hint. Construct the term
symbols as explained in Section 7.6 and use Hund’s rules to
arrive at their relative orders. Recall the hole–particle rule
explained in Example 7.5.

7.13 Find the first-order corrections to the energies of the
hydrogen atom that result from the relativistic mass
increase of the electron. Hint. The energy is related to the
momentum by E¼ (p2c2þm2c4)1/2þV. When
p2c2<<m2c4, E � mc2þ p2/2mþV� p4/8m3c2, where the
reduced mass m has replaced m. Ignore the rest energy mc2,
which simply fixes the zero. The term� p4/8m3c2 is a
perturbation; hence calculate hnlml jH(1) jnlmli¼
� (1/2mc2)hnlml j (p2/2m)2 jnlmli¼
� (1/2mc2)hnlml j (Enlml

�V)2 j nlmli. We know Enlml
;

therefore calculate the matrix elements of
V¼ � e2/4pe0r and V2.

7.14 Write the hamiltonian for the lithium atom (Z¼ 3)
and confirm that when electron–electron repulsions are
neglected the wavefunction can be written as a product
c(1)c(2)c(3) of hydrogenic orbitals and the energy is a sum
of the corresponding energies.

7.15 Write the explicit expression for the Slater
determinant corresponding to the 1s22s1 ground state of
atomic lithium. Demonstrate the antisymmetry of the
wavefunction upon interchange of the labels of any two
electrons.

7.16 The Slater atomic orbitals are normalized but not
mutually orthogonal. In the Schmidt orthogonalization
procedure one orbital c is made orthogonal to another
orbital c 0 by forming c00 ¼c� cc 0, with c¼

R
c�c 0 dt.

Confirm that c00 and c 0 are orthogonal and construct
a 2s-orbital that is orthogonal to a 1s-orbital from an
STO basis.

7.17 Take a trial function for the helium atom as
c¼c(1)c(2), with c(1)¼ (z3/p)1/2e� zrl and c(2)¼
(z3/p)1/2e� zr2, z being a parameter, and find the best
ground-state energy for a function of this form, and the
corresponding value of z. Calculate the first and second
ionization energies. Hint. Use the variation theorem.
All the integrals are standard; the electron repulsion term
is calculated in Example 7.3. Interpret Z in terms of a
shielding constant. The experimental ionization energies
are 24.58 eV and 54.40 eV.

7.18 On the basis of the same kind of calculation as in
Problem 7.17, but for general Z, account for the first
ionization energies of the ions Liþ, Be2þ, B3þ, and C4þ.
The experimental values are 73.5, 153, 258, and 389 eV,
respectively.

7.19 Consider a one-dimensional square well containing
two electrons. One electron has n¼ 1 and the other has
n¼ 2. Plot a two-dimensional contour diagram of the
probability distribution of the electrons when their spins
are (a) parallel, (b) antiparallel. Devise a measure of the
radius of the Fermi hole. Hint. Recall the discussion in
Section 7.11. When the spins are parallel (for example, aa)
the antisymmetric combination c1(1)c2(2)�c2(1)c1(2)
must be used, and when the spins are antiparallel, the
symmetric combination must be used. In each case plot c2

against axes labelled x1 and x2. Computer graphics may
be used to obtain striking diagrams, but a sketch is
sufficient.

7.20 The first few S terms of helium lie at the following
wavenumbers: 1s2 1S: 0; 1s12s1 1S: 166 272 cm�1: 1s12s1 3S:
159 850 cm�1; 1s13s1 1S: 184 859 cm�1; 1s13s1 3S:
183 231 cm�1. What are the values of K in the 1s12s1

and 1s13s1 configurations?

7.21 What levels may arise from the following terms:
1S, 2P, 3P, 3D, 2D, 1D, 4D? Arrange in order of increasing
energy the terms that may arise from the following
configurations: 1s12p1, 2p13p1, 3p13d1. What terms
may arise from (a) a d2 configuration, (b) an f 2

configuration?

7.22 An excited state of atomic calcium has the electron
configuration 1s22s22p63s23p63d14f 1. (a) Derive all the
term symbols (with the appropriate specifications of S, L,
and J) for the electron configuration. (b) Which term
symbol corresponds to the lowest energy of this electron
configuration? (c) Consider a 3F2 level of calcium derived
from a different electron configuration than that shown
above. Which of the term symbols determined in part
(a) can participate in spectroscopic transitions to this 3F2

level?
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7.23 Write down the Slater determinant for the ground
term of the beryllium atom, and find an expression for its
energy in terms of Coulomb and exchange integrals. Find
expressions for the energy in terms of the Hartree–Fock
expression, eqn 7.53. Hint. Use eqn 7.53 for the
configuration 1s22s2; evaluate the expectation value
hc jH jci.

7.24 Calculate the magnetic field required to produce a
splitting of 1 cm�1 between the states of a 1P1 level.

7.25 Calculate the Landé g-factor for (a) a term in which
J has its maximum value for a given L and S; (b) a term in
which J has its minimum value.

7.26 Transitions are observed and ascribed to 1F! 1D.
How many lines will be observed in a magnetic field
of 4.0 T?

7.27 Calculate the form of the spectrum for the Zeeman
effect on a 3P! 3S transition.
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Now we come to the heart of chemistry. If we can understand the forces that

hold atoms together in molecules, we may also be able to understand why,

under certain conditions, initial arrangements of atoms change into new ones

in the course of the events we call ‘chemical reactions’. The aim of this chapter

is to introduce some of the features of valence theory, the theory of the forma-

tion of chemical bonds. The description of bonding has been greatly enriched

by numerical techniques, and the following chapter describes these more

quantitative aspects of the subject.

There are two principal models of molecular structure: molecular orbital

theory and valence bond theory. Both models contribute concepts to the

everyday language of chemistry and so it is worthwhile to examine them both.

However, molecular orbital theory has undergone much more development

than valence bond theory, and we shall concentrate on it.

The Born–Oppenheimer approximation

It is an unfortunate fact that, having arrived in sight of the promised

land, we are forced to make an approximation at the outset. Even the

simplest molecule, Hþ2 , consists of three particles, and its Schrödinger

equation cannot be solved analytically. To overcome this difficulty, we

adopt the Born–Oppenheimer approximation, which takes note of the

great difference in masses of electrons and nuclei. Because of this differ-

ence, the electrons can respond almost instantaneously to displacement of

the nuclei. Therefore, instead of trying to solve the Schrödinger equation

for all the particles simultaneously, we regard the nuclei as fixed in

position and solve the Schrödinger equation for the electrons in the static

electric potential arising from the nuclei in that particular arrangement.

Different arrangements of nuclei may then be adopted and the calculation

repeated. The set of solutions so obtained allows us to construct the

molecular potential energy curve of a diatomic molecule (Fig. 8.1), and in

general a potential energy surface of a polyatomic species, and to identify

the equilibrium conformation of the molecule with the lowest point on

this curve (or surface). The Born–Oppenheimer approximation is very

reliable for ground electronic states, but it is less reliable for excited

states.

An introduction to molecular
structure

The Born–Oppenheimer

approximation

8.1 The formulation of the

approximation

8.2 An application: the hydrogen

molecule–ion

Molecular orbital theory

8.3 Linear combinations of atomic

orbitals

8.4 The hydrogen molecule

8.5 Configuration interaction

8.6 Diatomic molecules
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combinations

8.9 Conjugated p-systems

8.10 Ligand field theory

8.11 Further aspects of ligand field

theory

The band theory of solids
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8.13 The Kronig–Penney model

8.14 Brillouin zones
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8.1 The formulation of the approximation

The simplest approach to the formulation of the Born–Oppenheimer

approximation is to consider a one-dimensional analogue of the hydrogen

molecule–ion, in which all motion is confined to the z-axis (Fig. 8.2). The full

hamiltonian, H, for the problem is

H ¼ � �h2

2me

q2

qz2
�
X
j¼1;2

�h2

2mj

q2

qZ2
j

þ Vðz, Z1, Z2Þ ð8:1Þ

where z is the location of the electron and Zj, with j¼1,2, the locations of the

two nuclei. More simply:

H ¼ Te þ TN þ V

for the electron kinetic energy, the nuclear kinetic energy, and the potential

energy of the system, respectively. The Schrödinger equation is

HCðz, Z1, Z2Þ ¼ ECðz , Z1, Z2Þ ð8:2Þ

We attempt a solution of the form

Cðz, Z1, Z2Þ ¼ cðz; Z1, Z2ÞwðZ1, Z2Þ ð8:3Þ

where c is the electronic wavefunction and w (chi) is the nuclear wavefunc-

tion. The notation c(z;Z1,Z2) means that the wavefunction for the electron is

a function of its position z and depends parametrically on the coordinates of

the two nuclei in the sense that we get a different wavefunction c(z) for each

arrangement of the nuclei. When this trial solution is substituted into eqn 8.2

we obtain

Hcw ¼ wTecþ cTNwþ VcwþW ¼ Ecw ð8:4Þ

where

W ¼ �
X
j¼1;2

�h2

2mj
2
qc
qZj

qw
qZj
þ q2c
qZ2

j

w

 !

This latter quantity is non-zero because c depends on the nuclear coordinates,

so qc/qZj is non-zero. However, because the nuclear masses occur in the

denominator, we suppose that W is small and can be neglected and instead of

eqn 8.4 try to solve1

wTecþ cTNwþ Vcw ¼ Ecw

or, collecting terms and rearranging slightly,

cTNwþ ðTecþ VcÞw ¼ Ecw ð8:5Þ

As a first step at solving eqn 8.5 we write

Tecþ Vc ¼ EeðZ1, Z2Þc ð8:6Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. W is responsible for so-called ‘non-adiabatic effects’, which can be very important when

interactions between electronic states are significant. For further details, see the Further reading

section.
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Fig. 8.1 A typical molecular

potential energy curve for a

diatomic species.

1 2e

X1

X2

x

Fig. 8.2 The coordinates used
in the discussion of the Born–

Oppenheimer approximation.
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for fixed values of the nuclear coordinates. This equation is the Schrödinger

equation for the electron in a potential V that depends on the fixed locations

of the two nuclei. The solution is the electronic wavefunction c, and the

eigenvalue Ee(Z1,Z2) is the electronic contribution to the total energy of the

molecule plus the potential energy of internuclear repulsion at the preselected

nuclear locations. It is this function that when plotted against the nuclear

position gives the molecular potential energy curve.

Finally, on substituting eqn 8.6 into eqn 8.5, we find

cTNwþ Eecw ¼ Ecw

and on cancelling c obtain

TNwþ Eew ¼ Ew ð8:7Þ

This equation is the Schrödinger equation for the wavefunction w of the nuclei

when the nuclear potential energy, now represented by Ee, has the form of the

molecular potential energy curve. Its eigenvalue E is the total energy of the

molecule within the Born–Oppenheimer approximation.

From now on (in this chapter) we shall concentrate on eqn 8.6, but write it

more simply and generally, and with the normal symbols for the potential

energy and total energy, as

Hc ¼ Ec H ¼ � �h2

2me
r2 þ V ð8:8Þ

where V is the potential energy of the electron in the field of the stationary nuclei

plus the nuclear interaction contribution and E is the total electronic and

nucleus–nucleus repulsion energy for a stationary nuclear conformation.

8.2 An application: the hydrogen molecule–ion

Even within the Born–Oppenheimer approximation there is only one mole-

cular species for which the Schrödinger equation can be solved exactly: the

hydrogen molecule–ion, Hþ2 . The hamiltonian for this species is

H ¼ � �h2

2me
r2 � e2

4pe0rA
� e2

4pe0rB
þ e2

4pe0R
ð8:9Þ

with the distances defined in Fig. 8.3. The final term represents the repulsive

interaction between the two nuclei, and within the Born–Oppenheimer

approximation is a constant for a given relative location of the nuclei.

As Hþ2 has only one electron, it has a status in valence theory analogous to

the hydrogen atom in the theory of atomic structure. Just as the Schrödinger

equation for the hydrogen atom is separable and solvable when expressed in

spherical polar coordinates, so the equation for Hþ2 is separable and solvable

when expressed in ‘ellipsoidal coordinates’ (m,n,f), where

m ¼ rA þ rB

R
n ¼ rA � rB

R
ð8:10Þ

and f is the azimuthal angle around the internuclear axis (Fig. 8.4). In these

coordinates, the two nuclei lie at the foci of ellipses of constant m. The

e
rA rB

RA B

Fig. 8.3 The coordinates
used to specify the hamiltonian for

the hydrogen molecule–ion.

�

�

= constant
� = constant

Fig. 8.4 The elliptical coordinates m,
n, and f used for the separation of

variables in the exact treatment

(within the Born–Oppenheimer

approximation) of the hydrogen
molecule–ion.
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resulting solutions are called molecular orbitals and resemble atomic orbitals

but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more

complicated than the atomic orbitals of hydrogen, and as we shall shortly

make yet another approximation, there is little point in giving their detailed

form.2 However, some of their features are very important and will occur in

other contexts.

The molecular potential energy curves vary with internuclear distance, R,

as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we

concentrate on them. The steep rise in energy as R! 0 is largely due to the

increase in the nucleus–nucleus potential energy as the two nuclei are brought

close together. At large distances, as R!1, the curves tend towards the

values typical of a hydrogen atom with the second proton a long way away.

The lowest curve passes through a minimum close to R¼2a0, and its energy

then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen

atom and proton. This result suggests that Hþ2 is a stable species (in the sense

of having a lower energy than its dissociation products, but not in a chemical

sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV

and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the

form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows

the two molecular orbitals of lowest energy as contour diagrams for various

values of R. The striking difference between them is that the higher energy

orbital (denoted 2s) has an internuclear node whereas the lower energy orbital

(1s) does not. There is therefore a much greater probability of finding the

electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that

because the electron can interact with both nuclei if its wavefunction is 1s,

then it is in a favourable electrostatic environment and will have a lower

energy than that of a separated hydrogen atom and proton. It is on the basis

of such a simplistic argument that chemical bond formation is commonly

associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more

delicate problem. The total energy of a molecule has contributions from

several sources, including the kinetic energy of the electron. What appears

to happen on bond formation (in Hþ2 at least) is that, as R is reduced

from a large value, the lowest energy wavefunction shrinks on to the nuclei

slightly as well as accumulating in the internuclear region. The transfer of

electron density into the internuclear region is disadvantageous, because it is

removed from close to the nuclei. However, the shrinkage of the orbitals

overcomes this disadvantage, for although a slight increase in kinetic energy

accompanies the shrinking (because the wavefunction becomes more sharply

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. A reference to their form is provided in the Further reading section.

3. The label s signifies the cylindrical symmetry of the orbital about the internuclear axis.

A s orbital has zero units of electronic orbital angular momentum about that axis, a fact used in

Section 8.4.
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curved), a significant reduction in potential energy overcomes all these

unwanted effects, and the net outcome is a lowering of energy. The formation

of 2s, on the other hand, results in a small expansion of the electron dis-

tribution around the nuclei, and that has a net energy-raising effect. In other

words, it is not the shift of electron density into the internuclear region that

lowers the energy of the molecule but the freedom that this redistribution

gives for the wavefunction to shrink in the vicinity of the two nuclei.

In what follows, we shall anticipate the formation of a bond—as signalled

by a lowering of the energy of the molecule—whenever there is an enhanced

probability density in the internuclear region, but accept that this might be no

more than a correlation rather than a direct effect on the energy of the

molecule. A detailed analysis has been performed only for H2
þ , and the

argument might be quite different in other molecules.4

Molecular orbital theory

A difficulty will already have become apparent: the solution of the

Schrödinger equation for H2
þ is so complicated (even after making the Born–

Oppenheimer approximation) that there can be little hope that exact solu-

tions will be found for more complicated molecules. Therefore, we must

resort to another approximation, but use the exact solutions for H2
þ as a

guide. Another reason why making a further approximation is quite sensible

is that we already have available quite good atomic orbitals for many-electron

atoms, and it seems appropriate to try to use them as a starting point for the

description of many-electron molecules built from those atoms.

8.3 Linear combinations of atomic orbitals

Inspection of the form of the wavefunctions for H2
þ shown in Fig. 8.6

suggests that they can be simulated by forming linear combinations of

hydrogen atomic orbitals:

cþ 
 fa þ fb c� 
 fa � fb ð8:11Þ

where fa is a H1s-orbital on nucleus A and fb its analogue on nucleus B.5

In the first case, the accumulation of electron density in the internuclear

region is simulated by the constructive interference that takes place between

the two waves centred on neighbouring atoms. The nodal plane in the true

wavefunction is recreated by the destructive interference between waves

superimposed with opposite signs.

The partial justification for simulating molecular orbitals as an LCAO,

a linear combination of atomic orbitals, can be appreciated by examining

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. See M.J. Feinberg, K. Ruedenberg, and E.L. Mehler, The origin of binding and antibinding in

the hydrogen molecule�ion. Adv. Quantum Chem., 27, 5 (1970).

5. In this chapter, we use f to denote an atomic orbital and c to denote a molecular orbital.
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the hamiltonian for the problem given in eqn 8.9. When the electron is close

to nucleus A, rA� rB, and the hamiltonian is approximately

H ¼ � �h2

2me
r2 � e2

4pe0rA
þ e2

4pe0R
ð8:12Þ

Apart from the final, constant term, this hamiltonian is the same as that for a

hydrogen atom. Therefore, close to nucleus A, the wavefunction of the

electron will resemble a hydrogen atomic orbital. The same is true close to B,

and this form of the solution is captured by the two linear combinations

constructed above.

The same conclusions can be reached in a more formal way, one that is

more readily extended to other species, by writing the molecular orbitals as

the following LCAO:

c ¼
X

r

crfr ð8:13Þ

The atomic orbitals used in this expansion constitute the basis set for the

calculation. In principle, we should use an infinite basis set for a precise

recreation of the molecular orbital, but in practice only a finite basis set is

used. Throughout this chapter we shall assume that the members of the basis

set are real and that each one is normalized to 1. The optimum values of the

coefficients are found by applying the variation principle, which means

(Section 6.10) that we have to solve the secular equationsX
r

crfHrs � ESrsg ¼ 0 ð8:14Þ

where Hrs is a matrix element of the hamiltonian and Srs is an overlap matrix

element. These secular equations have non-trivial solutions only if the secular

determinant vanishes. We write this condition as

jH � ESj ¼ 0 ð8:15Þ

where H is the matrix of elements Hrs and S is the corresponding matrix of

elements Srs. To make progress with finding the roots of the determinant

jH�ES j we need to evaluate the relevant matrix elements.

For a basis set of two atomic orbitals, one on atom A and the other on an

identical atom B, the secular determinant is 2�2 and we can write

SAA ¼ SBB ¼ 1 SAB ¼ SBA ¼ S

where S is the overlap integral, and

HAA ¼ HBB ¼ a HAB ¼ HBA ¼ b

where a is the molecular Coulomb integral and b is the resonance integral.

The secular determinant is

a� E b� ES
b� ES a� E

����
���� ¼ 0

and its roots are

E� ¼
a� b
1� S

ð8:16Þ
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The corresponding values for the real coefficients of the normalized wave-

functions are

cA ¼ cB cA ¼
1

f2ð1þ SÞg1=2
for Eþ ¼

aþ b
1þ S

cA ¼ �cB cA ¼
1

f2ð1� SÞg1=2
for E� ¼

a� b
1� S

ð8:17Þ

We establish the detailed form of the Coulomb and resonance integrals

as follows. First, we insert the explicit form of the hamiltonian into their

definitions:

a ¼ hAjHjAi ¼ E1s �
e2

4pe0
A

1

rB

����
����A

� �
þ e2

4pe0R
ð8:18Þ

where we have abbreviated jfAi by jAi and will later abbreviate jfBi by

jBi. The combination e2/4pe0 will occur many times in the following and

henceforth we denote it j0:

j0 ¼
e2

4pe0
ð8:19Þ

in which case we can write

a ¼ E1s � j0 A
1

rB

����
����A

� �
þ j0

R
ð8:20Þ

The first term in this expression (E1s) is obtained because fA is an eigen-

function of the atomic hamiltonian. The second term corresponds to the total

Coulombic energy of interaction between an electron density f2
A and the

second nucleus B (Fig. 8.7). We shall call this contribution j 0:

j0 ¼ j0

Z
f2

A

rB
dt ð8:21Þ

This integral is positive. It follows that the total Coulomb integral is

a ¼ E1s � j0 þ j0
R

ð8:22Þ

Example 8.1 The evaluation of overlap and Coulomb integrals

Evaluate (a) the overlap integral S and (b) the integral j 0 for an electron in the

molecular orbital cþ composed of two hydrogenic 1s-orbitals.

Method. To evaluate integrals of this kind, it is natural to use ellipsoidal

coordinates, eqn 8.10, for which the volume element is

dt ¼ 1
8R

3ðm2 � n2Þdmdndf

with 1 � m � 1, � 1 � n � 1, and 0 � f � 2p. The atomic wavefunctions

we use are f(r)¼ (Z3/pa0
3)1/2 e�Zr=a0 , where Z is the atomic number and a0 is

the Bohr radius; each orbital is centred on its nucleus. All the integrations are

straightforward in ellipsoidal coordinates.

A B

j'

Fig. 8.7 The interpretation of the

integral j 0 as the total Coulombic

potential energy arising from a
charge distribution on A with

nucleus B.
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Fig. 8.8 The variation of the

overlap integral of two H1s-orbitals

with internuclear distance in the
hydrogen molecule–ion.
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Fig. 8.9 The variation of the integral
j 0 with internuclear distance in the

hydrogen molecule–ion.

A B
� �A B

k'

Fig. 8.10 The interpretation of the

integral k 0 as the interaction of an
overlap charge distribution with

one of the nuclei.

Answer. (a) The product of the two wavefunctions is

fAðrAÞfBðrBÞ ¼
Z3

pa3
0

� 	
e�ZðrAþrBÞ=a0 ¼ Z3

pa3
0

� 	
e�ZmR=a0

Therefore, the overlap integral is

S ¼ hAjBi ¼ Z3R3

8pa3
0

Z 2p

0

Z 1
1

Z 1

�1

ðm2 � n2Þe�ZmR=a0 dmdndf

¼ Z3R3

8pa3
0

� 2p�
Z 1

1

Z 1

�1

ðm2 � n2Þe�ZmR=a0 dmdn (after integration over f)

¼ Z3R3

8pa3
0

� 2p�
Z 1

1

2m2 � 2

3

� 	
e�ZmR=a0 dm (after integration over n)

¼ 1þ ZR

a0
þ 1

3

ZR

a0

� 	2
( )

e�ZR=a0

(b) The contribution j 0 is similarly, using m2� n2¼ (mþ n)(m� n):

j0 ¼ j0Z3

pa3
0

Z 2p

0

Z 1
1

Z 1

�1

1
8 R3 m2 � n2

� 
e�ZðmþnÞR=2a0

1
2 Rðm� nÞ

dmdndf

¼ 1

2
j0

Z

a0

� 	3

R2

Z 1
1

Z 1

�1

ðmþ nÞe�ZðmþnÞR=2a0 dmdn

¼ 1

R
j0 1� 1þ ZR

a0

� 	
e�2ZR=a0

� �

These two functions are plotted in Figs 8.8 and 8.9 .

Comment. Both S and j 0 decrease as Z increases because the higher nuclear

charge shrinks the orbitals down on to their respective nuclei. A more detailed

account of the calculation of molecular integrals is given in S.P. McGlynn,

L.G. Vanquickenborne, M. Kinoshita, and D.G. Carroll, Introduction to

applied quantum chemistry, Holt, Rinehart, and Winston, New York (1972).

Self-test 8.1. Evaluate the overlap integral between two Slater 2s-orbitals on

different atoms.

For the resonance integral b, we use the fact that fB is an eigenfunction of

the hamiltonian for hydrogen atom B with eigenvalue E1s, and write

b ¼ hAjHjBi ¼ E1shAjBi � j0 A
1

rA

����
����B

� �
þ j0

R
hAjBi

¼ E1s þ
j0
R

� 	
S� k0

ð8:23aÞ

where

k0 ¼ j0

Z
fAfB

rA
dt ð8:23bÞ

The analytical expression for k 0 for two H1s-orbitals is

k0 ¼ j0
a0

1þ R

a0

� �
e�R=a0 ð8:24Þ
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Fig. 8.11 The molecular orbital
energy level diagram of the hydrogen

molecule–ion in the LCAO

approximation. Note that the
2s-orbital is slightly more

antibonding than the 1s-orbital is

bonding.
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Fig. 8.12 The calculated molecular

potential energy curves of the two

lowest energy molecular orbitals of
the hydrogen molecule–ion within

the LCAO approximation. Note the

change in scale between the bonding

and antibonding curves.
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Fig. 8.13 The parity classification of

orbitals in a homonuclear diatomic

molecule: (a) g, (b) u.

The integral k 0, which in this case is positive, has no classical analogue.

However, an indication of its significance is that we can think of it as

representing the interaction of the overlap charge density, � efAfB, with

nucleus A (Fig. 8.10). By symmetry, the interaction with nucleus B has the

same value.

It follows that the energies of the two LCAO-MOs are

Eþ ¼ E1s þ
j0
R
� j0 þ k0

1þ S

E� ¼ E1s þ
j0
R
� j0 � k0

1� S

ð8:25Þ

The integrals j 0 and k 0 are both positive, with j 0>k 0; the lower of the two

energies is Eþ (Fig. 8.11). The ladder of energy levels is called a molecular

orbital energy level diagram. The lower-energy orbital, which has the form

cþ ¼fAþfB, is called a bonding orbital. The higher-energy orbital, which

has the form c� ¼fA �fB, is called an antibonding orbital. Occupation of a

bonding orbital lowers the energy of a molecule and helps to draw the two

nuclei together; when an antibonding orbital is occupied, the energy of the

molecule is raised and the two nuclei tend to be forced apart. One feature that

should be noticed is that the diagram is not quite symmetrical: the anti-

bonding orbital lies further above the energy of a hydrogen atom than the

bonding orbital lies below it (as shown in Figs 8.5 and 8.11). This asymmetry

is largely due to the repulsion between the two nuclei, which pushes both

orbitals up in energy. In other words, an antibonding orbital is more anti-

bonding than a bonding orbital is bonding.

The analytical expressions for the energies are plotted in Fig. 8.12. As can

be seen, the molecular potential energy curve has a minimum close to

R¼ 2.5a0 (130 pm) at a depth of 0.13hcRH (170 kJ mol�1). The experimental

values are 2.0a0 (106 pm) and 0.195hcRH (255 kJ mol�1), and so the

agreement is not spectacularly good. The principal source of error is that the

basis is insufficiently flexible: we saw in the discussion of the exact solutions

that a major contribution to the bonding comes from a shrinkage of the

orbitals on to their respective nuclei, but this feature cannot be captured by

the present model.

One final detail of the molecular orbitals can usefully be introduced at

this stage. The two molecular orbitals we have constructed can be classified

according to their parity, their symmetry properties under inversion of

the electron coordinates. As indicated in Fig. 8.13, under inversion the

wavefunction cþ remains indistinguishable from itself, and hence it is

classified as having gerade symmetry, denoted g, where gerade is the

German word meaning ‘even’. In contrast, c� changes sign under inver-

sion, so it is classified as ungerade, the German word for ‘odd’, and

denoted u. The full-dress versions of the orbital labels are therefore 1sg and

1su (note that when u and g are added as labels, each set is labelled

separately). We already know that the symmetry classification is important

for the discussion of selection rules (Section 7.2); we shall see that the same

classification also helps us to understand the electronic structures of

molecules.
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8.4 The hydrogen molecule

We model the electronic structure of the hydrogen molecule, H2, by the

addition of a second electron to the 1sg orbital, to give the configuration 1s2
g.

The orbital description is therefore cþ(1)cþ(2), where the 1 and 2 in par-

entheses are short for r1 and r2, respectively, the locations of the two elec-

trons. Writing the true wavefuntion c(1,2) as a product is an approximation

that is valid only if electron–electron interactions are ignored or replaced by

some kind of average one-electron potential energy (as in the central-field

approximation, Section 7.12) so that the true hamiltonian

H ¼ � �h2

2me
r2

1 �
�h2

2me
r2

2 �
e2

4pe0rA1
� e2

4pe0rB1

� e2

4pe0rA2
� e2

4pe0rB2
þ e2

4pe0r12
þ e2

4pe0R
ð8:26aÞ

is replaced by an expression of the form

H ¼ H1 þH2 þ
e2

4pe0R
ð8:26bÞ

where each Hi is expressed in terms of the coordinates of the electron i alone.

The approximate spatial wavefunction cþ(1)cþ(2) is symmetric under

particle interchange, so the spin component must be proportional to

a(1)b(2)�b(1)a(2) to guarantee that the overall wavefunction is anti-

symmetrical. Therefore, when the two electrons enter a single molecular

orbital, they do so with paired spins ("#). Spin-pairing is thus seen not to be an

end in itself, but the way that electrons must arrange themselves in order to

pack into the lowest energy orbital.

The ground-state configuration of H2 is classified as 1Sg in an echo of the

term symbols used for atoms. The superscript 1 is the spin multiplicity of the

state, which in this instance corresponds to S¼0 because the two electrons

are paired.6 The S (uppercase sigma) is the analogue of the letter S used to

denote full spherical rotational symmetry and indicates that the total orbital

angular momentum around the internuclear axis is zero because both elec-

trons occupy s-orbitals, and so neither has orbital angular momentum about

the axis. More formally, we denote the component of orbital angular

momentum about the axis as l for each electron, and the total as L¼ l1þ l2.

In ground-state H2, l1¼ l2¼0, so L¼ 0, corresponding to a S term. The

subscript g indicates that the overall parity of the state is g. To calculate it

from the individual values for each electron we use

g� g ¼ g g� u ¼ u u� u ¼ g

which follow from the mathematical properties of the products of odd and

even functions, and use the first of these results for this two-electron system in

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. As usual, we run into a paucity of letters. Be careful to distinguish S (upper case italic) for the

overlap integral, S (upper case italic) for the total spin quantum number, and S (upper case roman)

for a symmetry label of an atomic term.
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which both electrons occupy g orbitals. Had one electron occupied a su

orbital, then the term would have been of overall u parity.

The full form of the H2 two-electron approximate wavefunction is

cð1, 2Þ ¼ cþð1Þcþð2Þs�ð1, 2Þ ð8:27Þ

where the factor s� is the spin contribution (1
2)

1/2{a(1)b(2)� a(2)b(1)}. The

energy of the molecule is found by evaluating the expectation value of the

hamiltonian in eqn 8.26a. The resulting expression is

E ¼ 2E1s þ
j0
R
� 2j0 þ 2k0

1þ S
þ jþ 2kþmþ 4l

2ð1þ SÞ2
ð8:28Þ

where, in addition to the integrals already defined, we need:

The repulsion of a charge density of electron 1 on A with the charge density

of electron 2 on B:

j ¼ j0

Z
fAð1Þ

2 1

r12
fBð2Þ

2dt1dt2 ¼ ðAAjBBÞ ð8:29aÞ

The repulsion of the overlap charge density of electron 1 and the overlap

charge density of electron 2:

k ¼ j0

Z
fAð1ÞfBð1Þ

1

r12
fAð2ÞfBð2Þdt1dt2 ¼ ðABjABÞ ð8:29bÞ

The repulsion of the charge density of electron 1 on A with the overlap

charge density of electron 2:

l ¼ j0

Z
fAð1Þ

2 1

r12
fAð2ÞfBð2Þdt1dt2 ¼ ðAAjABÞ ð8:29cÞ

The repulsion of the charge density of electron 1 on A with the charge

density of electron 2 also on A:

m ¼ j0

Z
fAð1Þ

2 1

r12
fAð2Þ

2dt1dt2 ¼ ðAAjAAÞ ð8:29dÞ

The values for these integrals are given in Further information 10; the nota-

tion on the right will be used again in Chapter 9. The molecular potential

energy curve calculated from this expression is shown in Fig. 8.14. It has

a minimum at R¼1.4a0 (74 pm), and the minimum lies at 0.27hcRH

(350 kJ mol�1) below 2E1s, the energy of two separated hydrogen atoms. The

experimental values are 1.40a0 (74.1 pm) and 0.33hcRH (430 kJ mol�1),

respectively, and although there is a fair measure of agreement, there is room

for improvement. The kind of improvement that can be made includes the use

of a more flexible basis set, the use of SCF procedures, and the incorporation

of electron correlation (see Chapter 9).

8.5 Configuration interaction

One procedure that is widely used and can be illustrated here is the method

of configuration interaction (CI), first mentioned in connection with atoms

in Section 7.17. If we continue to stick with the two-orbital basis set,

If f(x) is an even function, so that

f(x)¼ f(�x), and g(y) is an odd

function, so that g(y)¼ � g(�y),

then the product h(x,y)¼ f(x)g(y)

is an odd function:

hð�x, �yÞ ¼ f ð�xÞgð�yÞ
¼ �f ðxÞgðyÞ
¼ �hðx, yÞ

1 2 3
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Fig. 8.14 The calculated molecular

potential energy curve for the

lowest energy orbital of a hydrogen
molecule in the LCAO

approximation.
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then there are two molecular orbitals for the two electrons of H2 to occupy.

The following configurations are possible:

1s2
g 1s1

g1s1
u 1s2

u

The corresponding wavefunctions, including spin, are

C1ð1, 2; 1SgÞ ¼ cþð1Þcþð2Þs�ð1, 2Þ
C2ð1, 2; 1SuÞ ¼ ð12Þ

1=2fcþð1Þc�ð2Þ þ cþð2Þc�ð1Þgs�ð1, 2Þ
C3ð1, 2; 1SgÞ ¼ c�ð1Þc�ð2Þs�ð1, 2Þ
C4ð1, 2; 3SuÞ ¼ ð12Þ

1=2fcþð1Þc�ð2Þ � cþð2Þc�ð1Þgsþð1, 2Þ

Each state has been classified according to the procedure indicated in

Section 8.4 and has been constructed to be antisymmetric with respect to

electron interchange, as required by the Pauli principle.

The MO description given above considered only C1(1,2). When the

energies of all four terms are calculated, we obtain the molecular potential

energy curves shown in Fig. 8.15. One important feature is that two of them,

C1(1,2) andC3(1,2), converge on the same energy as R ! 1. Moreover, they

are both 1Sg terms. We have already seen that states of the same symmetry

never cross because the hamiltonian always has non-zero matrix elements

between them.7 As a result configuration interaction occurs, and instead of

crossing the two terms move apart as shown in Fig. 8.15. Configuration

interaction lowers the energy of the lower term because their interaction in

effect pushes the two states apart (as in Fig. 6.1), and hence leads to an

improved description of the ground state and a lowering of its energy.

With CI, the wavefunction of the lower state is

Cð1, 2Þ ¼ c1C1ð1, 2Þ þ c3C3ð1, 2Þ ¼ Fð1, 2Þs�ð1, 2Þ ð8:30Þ

and the orbital structure of this function is

Fð1, 2Þ ¼ c1cþð1Þcþð2Þ þ c3c�ð1Þc�ð2Þ
¼ 1

2 c1ffAð1Þ þ fBð1ÞgffAð2Þ þ fBð2Þg
þ 1

2 c3ffAð1Þ � fBð1ÞgffAð2Þ � fBð2Þg
¼ 1

2 ðc1 þ c3ÞffAð1ÞfAð2Þ þ fBð2ÞfBð1Þg
þ 1

2ðc1 � c3ÞffAð1ÞfBð2Þ þ fBð1ÞfAð2Þg ð8:31aÞ

It is revealing to compare this wavefunction with the form it has in the

absence of CI (setting c1¼1 and c3¼0):

Fð1, 2Þ ¼ 1
2fAð1ÞfAð2Þ þ 1

2fBð2ÞfBð1Þ þ 1
2fAð1ÞfBð2Þ

þ 1
2fBð1ÞfAð2Þ ð8:31bÞ

The key point is that the former wavefunction is more flexible because the

coefficients c1þ c3 and c1� c3 are variable; there is no such flexibility in

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. In diatomic molecules, potential energy curves for states of the same symmetry do not

intersect but rather undergo avoided crossings. In polyatomic molecules, potential energy surfaces

of electronic states of the same symmetry may intersect; one important and common type of

intersection of electronic states is the so-called ‘conical intersection’.
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Fig. 8.15 The variation of the

energies of four states of the

hydrogen molecule with changing
internuclear distance and the effect of

configuration interaction which

pushes the two pale curves apart.
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the latter wavefunction. This relaxation of constraint is an improvement

and is reflected in the lowering of energy of the lower of the two inter-

acting states.

8.6 Diatomic molecules

It is not a long step, at least at the present level of exposition, from H2 to the

LCAO-MO description of other homonuclear diatomic molecules. The basic

principle for the construction of molecular orbitals is to form linear combi-

nations of atomic orbitals that have the same symmetry with respect to

rotations about the internuclear axis. More formally, we build linear com-

binations of atomic orbitals that have the same symmetry species (that is,

span the same irreducible representation) within the molecular point group.

As we established in Section 5.16, only orbitals of the same symmetry species

may have non-zero overlap (S 6¼ 0) and hence only they contribute to bonding.

Thus, with the internuclear axis taken as the z-axis, s-, pz-, and dz2-orbitals all

have symmetry species S in C1v and may contribute to s-orbitals. Similarly,

px- and py-orbitals jointly span P in C1v, and hence may contribute to p-

orbitals (Fig. 8.16) which have one unit of orbital angular momentum about

the internuclear axis; dyz- and dzx-orbitals also span irreducible representa-

tions of symmetry species P, and they too may contribute to

p-orbitals. It is rarely necessary to consider d-orbitals, but the same principles

can be applied: we select atomic orbitals of symmetry species D (specifically

dxy and dx2�y2 ), and form linear combinations of them.

We have stressed that group theory provides techniques for selecting atomic

orbitals that may contribute to bonding, but other types of arguments must be

used to decide whether these orbitals do in fact contribute, and to what extent.

There are essentially two criteria to keep in mind in this connection.

First, to participate significantly in bond formation, atomic orbitals must

be neither too diffuse nor too compact. In either case, there would be only

weak constructive or destructive overlap between neighbouring atoms, and

only feeble bonds would result. It follows that in Period 2, (1s,1s)-overlap can

be largely neglected in comparison with (2s,2s)-overlap, for 1s-orbitals are

too compact to have significant overlap with each other. Indeed, it is generally

safe, for qualitative discussions at least, to consider only overlap between

orbitals of the valence shell, for only these orbitals are neither too compact

nor too diffuse to have significant overlap.

Second, the energies of the orbitals should be similar. To see why this is so,

consider the following secular determinant for the bond formed between two

different atoms A and B:

aA � E b� ES
b� ES aB � E

����
���� ¼ 0 ð8:32Þ

The roots are found by solving the quadratic equation for the energy, and

when j aA� aB j �b and S¼ 0 they are

Eþ ¼ aA �
b2

aB � aA
E� ¼ aB þ

b2

aB � aA
ð8:33Þ

(a) (b)

(c) (d)

Fig. 8.16 Examples of varieties

of molecular orbitals: (a) and
(b) s-orbitals, (c) and (d) p-orbitals.
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These results (which are illustrated in Fig. 8.17) show that the molecular

orbital energies are shifted from the atomic orbital energies (aA and aB) by

only a small amount when aA and aB are very different. The implication is that

in homonuclear diatomic molecules, the atomic orbitals of identical energy

dominate the bonding. The strongest bonds will therefore have compositions

such as (2s,2s) and (2p,2p), and there is no need (for qualitative discussions,

at least) to consider (2s,1s) and (2p,1s) contributions. There is normally

insufficient energy difference between 2s- and 2p-orbitals for it to be safe to

ignore (2s,2p) contributions, although in elementary accounts that is often

adopted as an initial approximation.

With these rules in mind, it is quite easy to set up a plausible molecular

orbital energy level diagram for the Period 2 homonuclear diatomic

molecules. We consider only the valence orbitals (and, in due course, the

electrons they contain). From the four atomic orbitals of S symmetry (the

2s- and 2pz-orbitals on each atom), we can form four linear combinations;

these are the four s-orbitals marked on the diagram. To a first approx-

imation we can think of the 2s-orbitals as forming bonding and anti-

bonding combinations and the 2pz-orbitals as doing the same. However, it

is better to think of all four combinations as formed from the four atomic

orbitals, with increasing energy from the most bonding combination (1sg)

to the most antibonding combination (2su). All four s-orbitals have mixed

2s- and 2pz-orbital character, with the lowest energy combination pre-

dominantly 2s-orbital in character and the highest energy combination

predominantly 2pz. The four orbitals with P symmetry likewise form four

combinations, but because they span the two-dimensional irreducible

representation, they fall into two doubly degenerate sets, which we call 1pu

and 1pg. It is hard to predict the order of energy levels, particularly the

relative ordering of the s and p sets, but it is found experimentally and

confirmed by more detailed calculations that the order shown on the left of

Fig. 8.18 applies from Li2 to N2, whereas the order shown on the right

applies to O2 and F2.

To arrive at the electron configuration of the neutral molecule, we add

the appropriate number of valence electrons to each set of energy levels. The

procedure mirrors the building-up principle for atoms in that the electrons

are added to the lowest energy available orbital subject to the requirement of

the Pauli exclusion principle. If more than one orbital is available (as is the

case when electrons occupy the p-orbitals), then electrons first occupy separ-

ate orbitals so as to minimize electron–electron repulsions; moreover, to

benefit from spin correlation (Section 7.11), they do so with parallel spins.

For instance, for N2 we need to accommodate 10 valence electrons, and the

ground-state configuration is

N2 1s2
g1s2

u1p4
u2s2

g
1Sg

For O2, there are 12 valence electrons to accommodate, and the expected

configuration is

O2 1s2
g1s2

u2s2
g1p4

u1p2
g

3Sg

�A

�A

� B

�B

	

	

	 � �2
A B/( )–

	 � �2
A B/( )–

(a)

(b)

Fig. 8.17 The molecular orbital

energy levels stemming from

atomic orbitals of (a) the same
energy, (b) different energy.
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Note that because only two electrons occupy the 1pg orbital, they will be in

separate orbitals and have parallel spins. Hence the ground state is predicted

to be a triplet (S¼1). The possession of non-zero spin is consistent with the

paramagnetic character of oxygen gas. The terms HOMO and LUMO are

used to refer to the highest occupied and lowest unoccupied molecular

orbitals, respectively, which in the case of O2 are the 1pg (HOMO) and 2su

(LUMO) orbitals. The HOMO and LUMO are referred to jointly as the

frontier orbitals: the frontier is the site of much of the reactive and spectro-

scopic activity of the species.

The term symbols that have been attached to the configurations listed

above have been worked out in the manner already sketched for H2. How-

ever, the symbol for O2 is quite instructive (and incomplete). To determine

the value of L, the total orbital angular momentum around the internuclear

axis, we add together all the individual ls. For s-orbitals (and each electron

they contain), l¼0. For p-orbitals, l¼�1 because each orbital corresponds

to a different sense of rotation about the axis: l¼ þ1 corresponds to the

linear combination pþ ¼ pxþ ipy and l¼ �1 corresponds to p� ¼px� ipy

(in each case the unwritten normalization factor is 1/21/2). It follows that a

p4 configuration necessarily contributes 0 to L, because it has equal numbers

of electrons orbiting clockwise and counter-clockwise. A p2 configuration,

as in O2, however, can contribute 0 or �2 because the two electrons can be

in different orbitals (p1
þp

1
�) or the same orbital (p2

þ or p2
�), respectively.

Hence, the configuration can give rise to a S ( jL j ¼0) and a D ( jL j ¼ 2)

term, respectively. Because we expect the two electrons to occupy different

orbitals (to minimize their mutual repulsion), it follows that we expect

the ground term to be S, with D higher in energy. Moreover, because the

electrons are in different p-orbitals, they can have either S¼ 0 or S¼ 1, so we

1�g1�g

1�u
1�u

2�g

2�g

2�u
2�u

1�u1�u

1�g1�g

Li2

Be2

B , C2 2

N2

O , F2 2

Ne2

Energy

2p

2s 2s

2p

Fig. 8.18 The molecular orbital
energy levels of diatomic molecules

of the Period 2 elements. The labels

indicate the highest occupied level of

the specified species. Note the change
in the order that appears between

dinitrogen and dioxygen.
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expect 1S and 3S terms, with the latter lower in energy. On the other hand,

the D term must have paired spins because both electrons occupy the same

p-orbital, and so it must have S¼ 0, so giving a 1D term. The experimental

molecular potential energy curves for O2 are illustrated in Fig. 8.19, and these

terms can be identified.

We remarked that the term symbol for O2 given above is incomplete.

Terms designated S also require a label to distinguish their behaviour under

reflection in a plane that contains the internuclear axis (see the C1v character

table in Appendix 1). Each s-orbital has the character þ1 under

this operation. A p-orbital, however, may have the character þ1 or �1

(Fig. 8.20). If the two electrons of interest occupy different p-orbitals, then

one of them will be þ1 and the other will be �1, and overall the character of

the configuration will be (þ1)� (�1)¼�1. This symmetry is denoted by a

right superscript, so the full term symbol for the ground state of O2 is 3Sg
� .

The case of C2 is equally instructive. The straightforward application of the

building-up principle suggests the ground-state configuration

C2 1s2
g1s2

u1p4
u

1Sþg

However, we have to be circumspect, because we are dealing with a many-

electron molecule, and the occupation of the lowest energy orbitals does not

necessarily lead to the lowest energy. We need to allow for the possibility that

excitation of an electron to a nearby orbital, as illustrated in Fig. 8.21, might

lower the electron–electron repulsion and result in a lower overall energy

despite the occupation of a higher energy orbital. The resulting config-

uration1s2
g1s2

u1p3
u2s1

g would result in a 3Pu term, with the lowering of

energy aided by the presence of spin correlation. Provided that the 1pu and

1πu

1πu

2�g

2�g

(a)

(b)

1 +Σg

3Πu

Fig. 8.21 When orbitals have similar

energies, there may be a competition

to determine whether (a) the lowest
energy orbitals are occupied or (b) a

higher energy orbital is occupied,

with the advantage of the effects of

spin correlation.

(a)

(b)

Fig. 8.20 The origin of the

þ/� symmetry classification:
(a) a p_-orbital, (b) a pþ -orbital.

0
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–4
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4

E
/e

V

100 200 300
R/pm

1∆g

1 +
g

3 +
u

3 ñΣ

Σ

Σ

Σ

u

O( P) + O( P)3 3

O( P) + O( D)3 1

–6

3 ñ
u

Fig. 8.19 The experimentally

determined molecular potential

energy curves of some of the lower
energy states of dioxygen.
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2sg orbitals are quite close in energy, there is no unambiguous way of pre-

dicting which is the lower state. Indeed, even the experimental situation was

unclear for many years, but it has now been resolved in favour of a 1Sg
þ

ground state.

This qualitative approach to the electronic structure of diatomic molecules

is only a first stage in reaching an understanding. Modern quantitative the-

ories of structure are based on detailed numerical calculations like those

described in Chapter 9.

8.7 Heteronuclear diatomic molecules

The qualitative effect of the presence of two different atoms in a molecule is

for there to be a non-uniform distribution of electron density. Specifically, for

molecular orbitals of the form

c ¼ cAfA þ cBfB ð8:34Þ

it will no longer be true that j cA j 2¼ j cB j 2. A useful rule of thumb is that if A

is the more electronegative atom of the two, then the bonding combination

will have j cA j 2 > j cB j 2, with cA and cB of the same sign, as it is a con-

tribution to the lowering of energy for the electron to be found predominantly

on A. On the other hand, for the antibonding combination, j cA j 2 < j cB j 2,

with cA and cB of opposite sign, and an electron in this orbital will be found

predominantly on B. Its occupation of an orbital on B is a contribution to the

raising of the energy of this molecular orbital.

A second feature of heteronuclear bonding is that because, except by

accident, the energies of the orbitals of one atom do not coincide with those of

the second atom, the extent to which the molecular orbitals are shifted in

energy from the atomic orbitals is less than for homonuclear species. To

borrow a term from classical physics, in homonuclear molecules the orbitals

of the same designation ‘resonate’ with one another and hence couple

strongly, whereas the resonance is imperfect in heteronuclear species and the

coupling is weaker.

These features suggest that a heteronuclear bonding system can be gener-

ated from the homonuclear system by reducing the shifts in energy repre-

sented by the molecular orbital energy levels, and moving bonding orbitals

towards the lower energy contributing atomic orbitals to represent their

greater contribution; antibonding orbitals are similarly shifted towards the

higher energy orbitals. The resulting scheme (for CO) is illustrated in

Fig. 8.22. Note also that, because a heteronuclear diatomic molecule lacks a

centre of inversion, the parity designation (g or u) is no longer relevant. The

electron configuration of CO can now be deduced by adding the 10 valence

electrons to the lowest five orbitals:

CO 1s22s21p43s2 1Sþ

The HOMO is 3s, which is in fact a largely non-bonding orbital on the

C atom, so 3s2 corresponds to a lone pair on C. The LUMO is 2p, which is a

doubly degenerate pair of orbitals of largely C2p-orbital character. This

combination of a HOMO that can provide two electrons and a LUMO that

C2p

C2s

O2s

O2p

1�

2�

1�

3�

2�

4�

Fig. 8.22 A schematic depiction of

the molecular orbital energy levels of

the carbon monoxide molecule.
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can accept them is potent, and accounts for the widespread occurrence of

metal carbonyl complexes such as Ni(CO)4 and for the ability of carbon

monoxide to act as a poison.

Once again, it must be stressed that arguments such as these are little more

than a qualitative rule of thumb for rationalizing certain features of the

electronic structures of diatomic molecules. For accurate energies and elec-

tron distributions, and to calculate reliable molecular properties from these

wavefunctions, it is necessary to use the numerical techniques described in

Chapter 9.

Molecular orbital theory of polyatomic
molecules

The molecular orbitals of polyatomic species are LCAOs just like those in

eqn 8.13, which we repeat here:

c ¼
X

r

crfr ð8:35Þ

The main difference is that now the sum extends over all the atomic orbitals

of the atoms in the molecule. However, as for diatomic molecules, only

atomic orbitals that have the appropriate symmetry make a contribution,

because only they have net overlap with one another. When a molecule lacks

any symmetry elements (other than the identity), there is no way of avoiding

assembling each molecular orbital from the entire basis set. However, when

the molecule has elements of symmetry, group theory can be particularly

helpful in deciding which orbitals can contribute to each molecular orbital,

and in classifying the resulting orbitals according to their symmetry species.

8.8 Symmetry-adapted linear combinations

The concept behind the construction of a symmetry-adapted linear combi-

nation (SALC) is to identify two or more equivalent atoms in a molecule, such

as the two H atoms in H2O, and to form linear combinations of the atomic

orbitals they provide that belong to specific symmetry species. Then mole-

cular orbitals are constructed by forming linear combinations of each SALC

with an atomic orbital of the same symmetry species on the central atom (the

O atom in H2O). We can be confident that only the SALC with a given

symmetry species will have a net overlap with an atomic orbital of the same

symmetry species. The effect of using SALCs instead of the raw basis is to

factorize the secular determinant into block-diagonal form, because all ele-

ments Hrs and Srs are zero except between orbitals of the same symmetry

species. The secular determinant is thereby factorized into a product of

smaller determinants, and we need to find the roots of these determinants,

which is in general a much simpler task.

An example should make this clear. Consider the H2O molecule, which

belongs to the point group C2v. If we use the six-member basis (H1sA, H1sB,

O2s, O2px, O2py, O2pz), then we should expect a 6� 6 determinant and
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a sixth-order equation to solve for E. However, it should be clear from

Fig. 8.23 that the two linear combinations

fðA1Þ ¼ H1sA þH1sB fðB2Þ ¼ H1sA �H1sB

can have net overlap with O2s and O2pz (for f(A1) ) and with O2py (for

f(B2)), but not with O2px (there is no f(B1) from the H1s basis). This

observation suggests that molecular orbitals in H2O will fall into the fol-

lowing groups:

cðA1Þ ¼ c1fðO2sÞ þ c2fðO2pzÞ þ c3fðA1Þ
cðB1Þ ¼ fðO2pxÞ
cðB2Þ ¼ c4fðO2pyÞ þ c5fðB2Þ

where we take z as the twofold rotation axis and x as perpendicular to the

molecular plane. The secular determinant consists of three blocks, one being

three-dimensional (involving the solution of a cubic equation for E), one

being one-dimensional (involving only a trivial statement of the energy), and

one being two-dimensional (and requiring the solution of a quadratic equa-

tion). In each case we have identified the symmetry species of the SALC by

reference to the character table and have combined it with atomic orbitals of

the same symmetry species to form a molecular orbital of the specified

symmetry species. The molecular orbitals (not the SALCs) are labelled by

lower case italic letters corresponding to the symmetry species, so in H2O we

can expect the orbitals a1, b1, and b2. Each orbital of a particular symmetry

species is then numbered sequentially in order of increasing energy, to give

a notation such as 1a1, 2a1, and so on.

The formal procedure for the construction of SALCs was explained in

Section 5.12, where we saw that a character table is used to formulate a

projection operator, and then that projection operator is applied to a member

of the basis. The procedure is illustrated in the following example.

Example 8.2 The construction of symmetry-adapted linear combinations

Construct the SALCs for the basis set given above for H2O.

Method. Follow the method set out in Example 5.9. The point group is C2v

and h¼ 4.

Answer. The effect of the operations of the group on the basis is set out in the

following table:

a1

a1

b2

b2

b1

H1  + H1s sA B

H1  – H1s sA B

O2px

O2py

O2 , O2s pz

Fig. 8.23 The symmetry classification

of the oxygen atomic orbitals in

H2O, a C2v molecule, and the two

symmetry-adapted linear
combinations of the H1s orbitals.

C2v O2s O2px O2py O2pz H1sA H1sB

E O2s O2px O2py O2pz H1sA H1sB

C2 O2s �O2px �O2py O2pz H1sB H1sA

sv O2s O2px �O2py O2pz H1sB H1sA

sv
0 O2s �O2px O2py O2pz H1sA H1sB

8.8 SYMMETRY-ADAPTED LINEAR COMBINATIONS j 267



For A1, d¼ 1 and all w(R)¼þ1. Hence, column 1 gives O2s, column 2 and

column 3 give 0, column 4 gives O2pz and column 5 gives 1
2(H1sAþH1sB).

This set of orbitals combine to give the molecular orbital c(A1) listed in the

text. For A2, with characters (1,1,�1,�1), no column survives. For B1 with

characters (1,�1,1,�1), column 2 gives O2px, and all other columns give 0.

The B1 orbital is therefore a non-bonding orbital confined to the O atom, as no

other orbitals present have net overlap with it (see Fig. 8.23). For B2, with

characters (1,�1,�1,1), column 3 gives O2py and columns 5 or 6 give
1
2(H1sA�H1sB). Hence, the B2 orbital has the form given in the text.

Comment. If there were d-orbitals available (as in H2S), the dz2 - and

dx2� y2-orbitals would contribute to A1 orbitals, dyz would contribute to B2,

and dzx and dxy would be non-bonding and B1 and A2, respectively.

Self-test 8.2. Construct SALCs from the H1s orbitals of NH3.

The energies of the orbitals and the values of the coefficients are found

by solving the secular equations in the normal way. However, there is the added

complication that the bond lengths and the bond angle must also be varied

until the total energy of the molecule is a minimum, and that lowest energy

arrangement of the atoms is accepted as the most stable state of the molecule.

Alternatively, if the geometry of the molecule is known, then a single calcu-

lation may be carried out for that arrangement of nuclei. For H2O, for

instance, the bond angle is 104�, and the molecular orbital energy level dia-

gram is as shown in Fig. 8.24. As there are eight valence electrons to accom-

modate, the ground-state electron configuration of H2O is expected to be

H2O 1a2
11b2

22a2
11b2

1
1A1

The overall term symbol is calculated by multiplying together the characters

of the occupied orbitals, and then identifying the overall symmetry species of

the molecule from the character table. As all the orbitals are doubly occupied,

and their characters are �1, the outcome is the set (1,1,1,1), which corres-

ponds to A1. All electrons are paired, so S¼0 and the multiplicity is 1.

The same technique may be applied to ammonia, NH3, which belongs to

the point group C3v. Now the minimum basis set, the basis set employing

only the valence orbitals, consists of N2s, N2p, and three H1s, giving

seven members in all. Without adopting symmetry arguments, we would

expect to have to solve a 7�7 secular determinant. With symmetry taken into

account, we would expect the problem to be reduced to a series of bite-sized

determinants. Intuitively, we should expect the N2s- and N2pz-orbitals to

belong to one symmetry species and N2px and N2py to belong to another. This

separation can indeed be seen at a glance by looking at the C3v character table

in Appendix 1, because an s-orbital and a pz-orbital on the central atom both

span A1 whereas (px,py) jointly span E. The symmetry species of the three H

atoms were established in Example 5.9, and we know that the SALCs, which

there were called s1, s2, and s3, span A1þE. These points can be verified by

reference to Fig. 8.25 or by reviewing the work that was done in Example 5.9.

1a1

1b2

1b1

2b2

3a1

2a1

Fig. 8.24 The molecular orbitals of

H2O at its equilibrium bond angle

of 104�.

a1

a1

e

e

Fig. 8.25 The symmetry classification

of the nitrogen atomic orbitals in

NH3, a C3v molecule, and the three

symmetry-adapted linear
combinations of the H1s orbitals.
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The complete 7� 7 secular determinant for NH3 factorizes into a 3�3

determinant (for the A1 orbitals) and two 2� 2 determinants (for the

E orbitals). The molecular orbitals are therefore of the form

cðA1Þ ¼ c1s1 þ c2fðN2sÞ þ c3fðN2pzÞ
cðEÞ ¼ c1

0s2 þ c2
0fðN2pxÞ and c1

00s3 þ c2
00fðN2pyÞ

(The e-orbitals are distinguished by their reflection symmetry.) The solution

of the secular determinant for the observed bond angle of 107� gives a set of

energy levels shown in Fig. 8.26. There are eight electrons to accommodate,

and so the configuration of the ground state is expected to be

NH3 1a2
11e42a2

1
1A1

The HOMO is the 2a1-orbital, which is largely a non-bonding orbital com-

posed of N2s- and N2pz-orbitals: the electrons that occupy it therefore

constitute a lone pair on the N atom.

8.9 Conjugated p-systems

A special class of polyatomic molecules consists of those containing p-bonded

atoms, particularly conjugated polyenes and arenes. They fall into a unique

class because the orbitals with local s and p symmetry can be discussed

separately. By ‘local’ symmetry we mean symmetry with respect to one

internuclear axis rather than the global symmetry of the molecule. For global

symmetry we have to classify orbitals according to the overall point group of

the molecule, and the s,p designation is relevant only for linear species.

However, if we focus on an individual A–B fragment of the molecule, then the

orbitals do have a characteristic rotational symmetry about that axis, and

they can be classified as locally s or p.

One reason for the separate treatment of orbitals that can be classified

locally as s and p is that the electrons in p-orbitals are typically less strongly

bound than those in s-orbitals, so there is little interaction between the two

types of orbital (recall the principles set out in Section 8.6). Another reason

for the separation is that as p-orbitals are typically found in planar molecules,

they have global symmetry properties (specifically, with respect to reflection

in the plane) that distinguish them from s-orbitals, and therefore span dif-

ferent irreducible representations of the molecular point group. As a con-

sequence, they can be discussed separately.

The simplest organic p-system is the ethene molecule, CH2¼CH2. The

s-orbitals in ethene are molecular orbitals composed of various symmetry-

adapted linear combinations of C2s, C2px, C2py, and H1s orbitals; the

p-orbitals are formed by overlap between C2pz orbitals where the z-axis lies

perpendicular to the molecular plane (Fig. 8.27). This model immediately

accounts for the torsional rigidity of the molecule, because (C2pz,C2pz)-

overlap is greatest when the molecule is planar. The p-orbital energies are found

by solving a 2�2 secular determinant, and the solutions given in eqn 8.17

may be employed because the carbon–carbon fragment is homonuclear.

When the p-system is conjugated, which means that the p-system extends

over several neighbouring atoms, the simplest description of the bonding is in

1a1

1e

2a1

2e

3a1

Fig. 8.26 The molecular orbitals of

NH3 at its equilibrium bond angle

of 107�.

Fig. 8.27 The structure of the

p-orbital in ethene.
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terms of the Hückel approximation. This drastic approximation makes the

following assumptions in the formulation of the secular determinant jH�ES j:

1. All overlap integrals are set equal to zero: Srs¼ drs.

This is in fact a poor approximation, because actual overlap integrals are

typically close to 0.2. Nevertheless, when the rule is relaxed, the energies are

shifted in a simple way and their relative order is not greatly disturbed.

2. All diagonal matrix elements of the hamiltonian are ascribed the same

value: Hrr¼ a.

The parameter a is negative. This approximation is reasonable for species that

do not contain heteroatoms because all the conjugated atoms are electron-

ically similar. Some justification comes from the Coulson–Rushbrooke

theorem, which states that the charge density on all the carbon atoms is the

same in alternant hydrocarbons. An alternant hydrocarbon is one in which

the atoms can be divided into two groups by putting a star on alternate atoms

and not having any neighbouring stars when the numbering is complete.

Benzene (1) is alternant, azulene (2) is non-alternant.

3. All off-diagonal elements of the hamiltonian are set equal to zero except

for those between neighbouring atoms, all of which are set equal to b.

The parameter b is negative. It is the important parameter characteristic of

Hückel theory, in so far as it governs the spacing of the molecular orbital

energy levels.

Example 8.3 The implementation of the Hückel approximation

Set up and solve the secular determinant for p-orbitals of the butadiene

molecule in the Hückel approximation.

Method. Construct the secular determinant by setting all diagonal elements

equal to a�E and off-diagonal elements between neighbouring atoms equal

to b; all other elements are zero. Set the secular determinant equal to zero, and

solve the resulting quartic equation in x¼ a�E for x and hence E.

Answer. The equation to solve is

a� E b 0 0
b a� E b 0
0 b a� E b
0 0 b a� E

��������

��������
¼ 0

On setting x¼ a�E and expanding the determinant, we obtain

x4 � 3b2x2 þ b4 ¼ 0

This quartic in x is a quadratic equation in y¼ x2, so its roots can be found by

elementary methods:

x ¼ 3� 51=2

2

� 	1=2

b x ¼ � 3� 51=2

2

� 	1=2

b

� 	 + 1.618

� 	 – 1.618

� 	 + 0.618

� 	 – 0.618

Fig. 8.28 The Hückel molecular

orbitals and their energies in
butadiene (as viewed down the

axis of the p-orbitals).

*

*

*
*

*

**

*

1

2
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We conclude that the energy levels are

E ¼ a� 1:618b a� 0:618b

as shown in Fig. 8.28.

Self-test 8.3. Find the roots of the secular determinant for the p-orbitals of

square-planar cyclobutadiene. [a � 2b, a, a]

The worked example has shown how to calculate the molecular orbital energy

levels in a simple case. The coefficients of the orbitals can be found by substituting

these energies into the secular equations. However, in practice it is much easier to

employ a computer: the roots we have found are the eigenvalues of the secular

matrix H�ES and the corresponding eigenfunctions of the matrix are the

coefficients of the atomic orbitals that contribute to each molecular orbital. For

example, the four molecular orbitals of butadiene are found in this way to be

cð1pÞ ¼ 0:372fA þ 0:602fB þ 0:602fC þ 0:372fD

cð2pÞ ¼ �0:602fA � 0:372fB þ 0:372fC þ 0:602fD

cð3pÞ ¼ �0:602fA þ 0:372fB þ 0:372fC � 0:602fD

cð4pÞ ¼ 0:372fA � 0:602fB þ 0:602fC � 0:372fD

where fJ is a 2pz-orbital on atom J. The composition of these molecular

orbitals is independent of the values of a and b (provided b 6¼ 0). Notice that

the energy of the orbital increases with the number of nodes, and that the

amplitude of each coefficient follows a sine wave fitted to the length of the

molecule (Fig. 8.29).

The ground-state configuration of the molecule is 1p22p2, which corres-

ponds to a total p-electron energy of 4aþ 2(5)1/2b. The energy of a single

unconjugated (bonding) p-orbital is aþb (see eqn 8.16 and ignore overlap),

and so if the molecule were described as having two unconjugated p-bonds,

its total p-electron energy would have been 4aþ4b. The difference, which in

this case is 2(51/2 � 2)b¼ 0.472b, is called the delocalization energy of the

molecule. The delocalization energy is independent of a within the Hückel

approximation largely because all atoms are equivalent and the total electron

density on them is the same regardless of the extent of delocalization of

the orbitals. Remember that b is negative. A very approximate order-of-

magnitude value is b¼ 0.75 eV (72 kJ mol�1).

The Hückel procedure leads to secular determinants of large dimension.

However, they may often be factorized into more manageable dimensions by

making use of the symmetry of the system beyond the simple mirror plane that

enables the p-system to be distinguished from the s-system. This additional

factorization follows from the usual arguments about the hamiltonian having

no non-zero elements between linear combinations of orbitals that belong to

different symmetry species of the molecular point group. For benzene, for

instance, the 6�6 determinant can be simplified considerably by making use of

the D6h symmetry of the molecule. In fact, because every 2pz-orbital changes

sign under reflection in the molecular plane, we lose no information by using

the C6v subgroup of the molecule. The procedure involves treating the C atoms

Fig. 8.29 The contributions of the
p-orbitals to each p-orbital match

the amplitude of a sine wave (the

wavefunction for a particle in a

The secular determinant for

butadiene is an example of a so-

called ‘tridiagonal determinant’, in

which the non-zero elements all lie

along three neighbouring diagonal

lines. From the theory of

determinants, an N�N tridiagonal

determinant has the following

roots:

Ek ¼ aþ 2b cos
kp

N þ 1

� 	

k ¼ 1, 2, . . . , N
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Fig. 8.30 The Hückel molecular

orbitals and their energies in benzene.

as the peripheral atoms of a molecule, and setting up SALCs of their

2pz-orbitals; however as there is no ‘central’ atom, these SALCs are in this

instance the actual p molecular orbitals of the molecule. The projection

operator technique described in Section 5.12 leads to the following linear

combinations (labelled according to the symmetry species of the group D6h):

cða2uÞ ¼
1

6

� 	1=2

ðpA þ pB þ pC þ pD þ pE þ pFÞ

cðe1gÞ ¼ ðaÞ
1

12

� 	1=2

ð2pA þ pB � pc � 2pD � pE þ pFÞ and

ðbÞ 1
2
ðpB þ pC � pE � pFÞ

cðe2uÞ ¼ ðaÞ
1

12

� 	1=2

ð2pA � pB � pC þ 2pD � pE � pFÞ and

ðbÞ 1
2
ðpB � pC þ pE � pFÞ

cðb2gÞ ¼
1

6

� 	1=2

ðpA � pB þ pC � pD þ pE � pFÞ

These orbitals are sketched in Fig. 8.30. Note that the form of the orbitals

is determined solely by the symmetry of the molecule and makes no

reference to the values of a or b. As we show in the following example, the

energy levels are

Eða2uÞ ¼ aþ 2b Eðe1gÞ ¼ aþ b Eðe2uÞ ¼ a� b Eðb2gÞ ¼ a� 2b

As we have already remarked, b is negative, so the orbitals lie in the order

shown in the illustration.

Example 8.4 The energy levels of the benzene molecule

Determine the p-electron energy levels of the benzene molecule by using the

Hückel approximation.

Method. The molecular orbitals are specified above. We need form secular

determinants for each orbital species separately as the hamiltonian has no off-

diagonal elements between orbitals of different symmetry species. Use the

Hückel rules for writing the matrix elements after expanding the Hrs in terms of

the linear combinations of 2pz-orbitals. The orbitals that span one-dimensional

irreducible representations will give simple 1� 1 determinants, which are trivial

to solve. The orbitals that span two-dimensional irreducible representations will

give 2� 2 determinants, which will lead to quadratic equations. However,

because the e-orbitals of each set have different reflection symmetry, they too

give diagonal determinants, so the roots can be found trivially.

Answer. The matrix elements we require are as follows:

ha2ujHja2ui ¼ 1
6hpA þ � � � þ pFjHjpA þ � � � þ pFi ¼ aþ 2b

hb2gjHjb2gi ¼ 1
6hpA � � � � � pFjHjpA � � � � � pFi ¼ a� 2b

he1gðaÞjHje1gðaÞi ¼ aþ b he1gðbÞjHje1gðbÞi ¼ aþ b

he2uðaÞjHje2uðaÞi ¼ a� b he2uðbÞjHje2uðbÞi ¼ a� b

he1gðaÞjHje1gðbÞi ¼ 0 he2uðaÞjHje2uðbÞi ¼ 0
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Fig. 8.31 The pattern of energy
levels in cyclic polyenes mirrors the

locations of the carbon atoms in

the ring.

The resulting energies are those quoted in the text and displayed in Fig. 8.30.

Comment. For a cyclic polyene of formula CNHN containing N carbon atoms

in the ring, the general solution of the secular determinant yields the energy

levels

Ek ¼ aþ 2b cos
2kp
N

� 	

where k ¼ 0, �1, �2, . . . , �(N � 1)/2 for odd N and k ¼ 0, �1, �2, . . . ,

�(N � 2)/2, N/2 for even N. This result is the basis of a simple graphical

mnemonic for relating the energy levels of a cyclic polyene to its shape. As

shown in Fig. 8.31, the pattern of energy levels mirrors the locations of the

carbon atoms (which lie at locations given by cos(2kp/N) around the ring of an

N-atom polyene).

Self-test 8.4. Use the C2v subgroup of naphthalene to find the p-electron

molecular orbital energy levels within the Hückel approximation.

The ground-state electron configuration of benzene is

C6H6 a2
2ue1g

4 1A1g

and the delocalization energy is

Edeloc ¼ ð6aþ 8bÞ � 6ðaþ bÞ ¼ 2b

The six electrons just complete the molecular orbitals with net bonding effect,

leaving unfilled the orbitals with net antibonding character, which is a

characteristic configuration for aromatic molecules. To some extent this

configuration echoes the configuration of N2, and both molecules have a

pronounced chemical inactivity. Another feature of the energy levels of

benzene is that the array of levels is symmetrical: to every bonding level there

corresponds an antibonding level. This symmetry is a characteristic feature of
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alternant hydrocarbons and can be traced to the topological character of the

molecules. Indeed, many of the results of Hückel theory can be established on

the basis of ‘graph theory’, the branch of topology concerned with the

properties of networks. One particular result of this kind of analysis is the

justification of the ‘(4n þ 2)-rule’ for the anticipation of aromatic character,

where n is the number of p-electrons.

As we have stressed, Hückel theory, which virtually hijacks the disagree-

able integrals that appear in a full treatment, is only the most primitive stage

of discussing p-electron molecules.8 The modern, far more reliable numerical

approaches are described in Chapter 9.

8.10 Ligand field theory

The success of Hückel theory is rooted in the fact that the orbitals themselves

are determined by the symmetry of the system. These symmetry-determined

orbitals are then put into an order of energies, essentially by counting the

number and noting the importance of their nodes. The energy differences

between the orbitals are typically so large that the coarseness of this proced-

ure does not unduly misrepresent their order. A similar situation occurs in the

complexes of d-metal ions. These complexes consist of a central metal ion

surrounded by a three-dimensional array of ligands. The composition of the

orbitals of the complex is largely determined by the symmetry of the envir-

onment, and a single parameter can be used to give a rough indication of the

order of the energies of the molecular orbitals of the complex. Ligand field

theory is a kind of three-dimensional version of Hückel theory, in which

symmetry plays a central role, and in which structural, spectroscopic, mag-

netic, and thermodynamic properties are parametrized in terms of the ligand

field splitting parameter, D.

We denote the central metal ion by M and assume that it has the config-

uration dn. The ligands are denoted L, and we confine attention to ML6

octahedral complexes with Oh symmetry. The orbitals of the ligands are

denoted l. In particular, we suppose that each ligand i supplies an orbital li
(s)

that has local s symmetry with respect to the M��L bond. Thus, in ligand field

theory, each Lewis-base ligand is simulated by a single orbital that supplies

two electrons. Later we shall allow for the possibility that the ligands can

supply electrons from or accept electrons into their p-orbitals, and denote the

latter by lðpÞi .

The first step in ligand field theory is to set up symmetry-adapted linear

combinations and to identify the symmetry species of the d-orbitals on the

central metal ion. A glance at the Oh character table in Appendix 1 shows that

in an octahedral environment, two of the d-orbitals (dz2 and dx2�y2 ) span

Eg and the remaining three (dxy, dyz, and dzx) span T2g. The standard tech-

niques of group theory show that the ligand s-orbitals span A1g þ Eg þ T1u

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. In a more sophisticated version of Hückel theory, called extended Hückel theory, overlap

integrals are not neglected. See the Further reading section for details.
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in Oh, and projection operator techniques give the following explicit forms of

the corresponding SALCs:

cðA1gÞ ¼
1

6

� 	1=2

lðsÞ1 þ lðsÞ2 þ lðsÞ3 þ lðsÞ4 þ lðsÞ5 þ lðsÞ6

� �

cðEgÞ ¼ ðaÞ
1

12

� 	1=2

2lðsÞ5 þ 2lðsÞ6 � lðsÞ1 � lðsÞ2 � lðsÞ3 � lðsÞ4

� �
and

ðbÞ 1
2

lðsÞ1 þ lðsÞ2 � lðsÞ3 � lðsÞ4

� �

cðT1uÞ ¼ ðaÞ
1

2

� 	1=2

lðsÞ1 � lðsÞ2

� �
, ðbÞ 1

2

� 	1=2

lðsÞ3 � lðsÞ4

� �
, and

ðcÞ 1

2

� 	1=2

lðsÞ5 � lðsÞ6

� �

These SALCs are illustrated in Fig. 8.32. Note that there is no T2g combi-

nation. These combinations differ in energy slightly when we take into

account overlap between ligand orbitals (as distinct from the (M,L) overlap

that is predominantly responsible for bonding).

Now we form molecular orbitals as linear combinations of the SALCs and

the d-orbitals of the same symmetry species, for only these combinations have

non-zero net overlap. It is apparent from Fig. 8.32 that dz2 has non-zero

overlap with c(Eg, a) but not with c(Eg, b); the opposite is true for dx2�y2 .

cða1gÞ ¼ cðA1gÞ
cðegÞ ¼ ðaÞ c1fðdz2Þ þ c2cðEg, aÞ and ðbÞ c01fðdx2�y2Þ þ c02cðEg, bÞ
cðt1uÞ ¼ cðT1uÞ
cðt2gÞ ¼ ðaÞ dxy, ðbÞ dyz, ðcÞ dzx

We have not included overlap with s- and p-orbitals: they transform as A1g and

T1u, respectively, and so would combine with the SALCs of those symmetry

species. Within the d-orbital-only approximation, we see that we can expect

an array of energy levels like that shown in Fig. 8.33. The bonding eg com-

bination is largely confined to the ligands (the lower energy orbitals) and the

antibonding combination is largely confined to the metal ion. The a1g and t1u

combinations labelled ‘bonding’ in Fig. 8.33 are confined almost entirely to

the ligands. The t2g orbitals are non-bonding atomic orbitals on the metal ion.

There are 12 electrons to accommodate that are supplied by the ligands

(two from each Lewis base), and n electrons supplied by the metal ion. Of

these 12þ n electrons, 12 fill the two bonding eg and four ‘bonding’ a1g and

t1u orbitals: these electrons are largely confined to the ligands. Up to six of the

remaining n electrons are free to occupy the three t2g orbitals on the metal ion

and the remainder will occupy the antibonding eg combination, which is

largely confined to the metal ion too.

However, at this point there is a complication. The ground-state electron

configuration of the complex is the configuration that corresponds to the

lowest total energy. When the separation between t2g and the antibonding eg

orbitals is small, it may be advantageous to occupy the latter orbital before

completely filling the former, because then the electrons occupy spatially

a1g

eg

t1u

1 23

4

5

6

Fig. 8.32 A depiction of the

symmetry-adapted linear
combination of ligand atomic

orbitals in an octahedral complex.
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Fig. 8.33 The molecular orbital

energy level diagram for an

octahedral complex. For accounting

purposes, the ligand electrons occupy
all the bonding orbitals; the electrons

supplied by the metal atom occupy

the orbitals in the box.
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distinct regions and may do so with parallel spins and so benefit from spin

correlation. The crucial quantity is the ligand field splitting parameter, D, the

energy separation between eg and t2g. If this splitting is large, then a d4

complex, for instance, will adopt the configuration t2g
4 with one orbital doubly

occupied. However, if the splitting is small, then it may be energetically

advantageous for the complex to adopt the configuration t2g
3 eg

1 with all four

electrons in separate orbitals with parallel spins.

It follows from this discussion that we should distinguish between the

following two cases:

1. The strong-field case, in which the ligand field splitting parameter is large

and it is energetically favourable to occupy the t2g orbitals first.

2. The weak-field case, in which the ligand field splitting parameter is small

and it is energetically favourable to occupy the eg orbitals before the t2g

orbitals are completely filled.

As an indication of magnitudes, the ligand field splitting parameter in

[Cr(CN)6]3� (a d3 strong-field case) is 26 600 cm�1 (3.30 eV) whereas that in

[Cr(OH2)6]3þ (a d3 weak-field case) is 17 400 cm�1 (2.16 eV). The second

category is sometimes further divided into ‘weak field’ itself and very weak

field, according to whether the ligand field splitting parameter is stronger or

weaker, respectively, than the spin–orbit interaction. The very weak field case

is applicable to the f-block elements in which the f-electrons are embedded

deeply in the atom and experience the surrounding ligands only very weakly.

We shall not consider it further.

The ambiguity in ground-state configuration is found for d4, d5, d6, and

d7 complexes. When the ligand field is so large that a t2g
4 , t2g

5 , t2g
6 , t2g

6 eg
1

configuration is adopted, the spins need to pair. As a result, such complexes

are classified as low-spin complexes. As may be verified from Fig. 8.34,

they have 2, 1, 0, and 1 unpaired spins, respectively. When the ligand field

is weak, the complexes can be expected to be t2g
3 eg

1, t2g
3 eg

2, t2g
4 eg

2, and t2g
5 eg

2,

with 4, 5, 4, and 3 unpaired spins. Such complexes are classified as high-spin

complexes. Because the number of unpaired electrons is responsible for

the magnetic properties of complexes, we see that modification of the ligands

and consequently the size of D may influence the magnetic properties of the

species.

8.11 Further aspects of ligand field theory

There are three aspects of ligand field theory that need to be touched on here.

In the first place, we need to be aware that the weak-field case can be quite

tricky to handle because the tn
2gen0

g configurations are so strongly perturbed

by electron–electron interactions. We shall illustrate the difference between

high-field and low-field cases by considering a d2 configuration.

In a free ion, a d2 configuration, as in Ti2þ and V3þ , can give rise to

the terms 1G, 3F, 1D, 3P, and 1S. From Hund’s rules, we can expect the 3F

term to lie lowest in energy, with perhaps the 3P next above it. When the

ligand field is weak, we can think of the formation of molecular orbitals as a

small perturbation on the free-ion levels. To determine the effect of this

Strong
field

Weak
field

4

5

6

7

Fig. 8.34 The high- and low-spin
arrangements that arise from weak

and strong ligand fields for

complexes with four to seven
d-electrons.
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perturbation, we consider the effect of the reduction in symmetry from R3

(the full rotation group in three dimensions, typical of an atom) to Oh and

identify the symmetry species that 3F and 3P become in the octahedral

environment. The technique required was described in Section 5.19 and

illustrated in Example 5.14:

3P! 3T1g
3F! 3A2g þ 3T1g þ 3T2g

The separation of the terms stemming from 3F increases as the perturbation

becomes stronger (Fig. 8.35). In the strong-field case we can discuss the con-

figurations in terms of occupation of the t2g and eg orbitals, and we can have

t2
2g

3T1g t1
2ge1

g
3T1g þ 3T2g e2

g
3A2g

(we have retained only the triplet terms). The order of energies can

be anticipated by referring to Fig. 8.33, and they are shown on the right of

Fig. 8.35.

At this point, we can construct the correlation diagram by connecting states

of the same symmetry but allowing for the non-crossing rule. The diagram in

Fig. 8.35 is in fact a part of a Tanabe–Sugano diagram for the correlation of

strong and weak field states of a complex. The actual state of a complex

corresponds to an intermediate stage of the diagram, and the location can be

determined by fitting the observed spectroscopic transitions to the energy

levels. In practice, a Tanabe–Sugano diagram is expressed in terms of quan-

tities that parametrize the strengths of the electron–electron repulsion and

the ligand field splitting parameter, so these quantities can be determined.

More information on the procedures will be found in the books referred to in

the Further reading section for this chapter.

The second feature we need to mention concerns deviations from octa-

hedral symmetry that arise spontaneously in certain complexes such as many

of the hexa-coordinate copper(II) complexes. Their occurrence is summarized

by the Jahn–Teller theorem:

In any non-linear system, there exists a vibrational mode that removes the

degeneracy of an orbitally degenerate state.

The theorem can be illustrated by considering a d9 octahedral complex, such

as [Cu(OH2)6]2þ. The ground-state configuration is expected to be t6
2ge

3
g; it

is orbitally degenerate because the ‘hole’ in the d10 configuration can occupy

either dz2 or dx2�y2 . If the complex were to distort so that it lengthened along a

C4 axis, then the degeneracy of the antibonding eg orbital would be removed

by the change in overlap. We would expect the antibonding character of the

orbital formed by overlap with the dz2 -orbital to be reduced as the M��L

length increases, so this molecular orbital will become lower in energy

(Fig. 8.36). Alternatively, if the M–L length were to shorten, the same eg

orbital would become higher in energy. In either case, the complex will

remain in the distorted shape, because it then has a lower energy than in the

undistorted, regular octahedral shape.

A final detail concerns the role of p-bonding between the metal ion and

the ligands. We shall suppose that on each ligand there are two orbitals

Weak
field

Strong
field

d 2 3F

eg 2g
2 3A

e tg 2g 1g
1 1 3T

e tg 2g 2g
1 1 3T

t2g 1g
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E
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Fig. 8.35 A Tanabe–Sugano

type of correlation diagram for
the states of an octahedral

two-electron complex.
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Fig. 8.36 The effect of the

distortions envisaged in the

Jahn–Teller effect.
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Fig. 8.37 A representation of

the symmetry-adapted linear

combinations of ligand
p-orbitals. Each arrow can

be regarded as indicating a

p-orbital, the head indicating

the positive lobe.

with local p symmetry with respect to the M–L axis. They span T1u þ T2u þ
T1g þ T2g (Fig. 8.37), and only the last can have net overlap with the t2g

orbitals of the ion. The explicit structures of the SALCs of these orbitals are

as follows:

cðt1uÞ ¼ ðaÞ 1
2ðp3x þ p4x þ p5x þ p6xÞ, ðbÞ 1

2ðp1y þ p2y þ p5y þ p6yÞ,
ðcÞ 1

2ðp1z þ p2z þ p3z þ p4zÞ
cðt2gÞ ¼ ðaÞ 1

2ðp5x � p6x þ p1z � p2zÞ, ðbÞ 1
2ðp5y � p6y � p3z þ p4zÞ,

ðcÞ 1
2ðp1y � p3x � p2y þ p4xÞ

cðt1gÞ ¼ ðaÞ 1
2ðp6x � p5x þ p1z � p2zÞ, ðbÞ 1

2ðp5y � p6y þ p3z � p4zÞ,
ðcÞ 1

2ðp1y � p2y þ p3x � p4xÞ
cðt2uÞ ¼ ðaÞ 1

2ðp5y þ p6y � p1y � p2yÞ, ðbÞ 1
2ðp1z þ p2z � p3z � p4zÞ,

ðcÞ 1
2ðp5x þ p6x � p3x � p4xÞ

Two cases may be distinguished, and are illustrated in Fig. 8.38. In the first,

the ligand p-orbitals are full (the ligands act as p-donors). In this case, the

ligand field splitting parameter is reduced by the formation of (M,L)

p-orbitals because the original non-bonding t2g orbitals become slightly

antibonding. In the second case, in which the p-orbitals of the ligands

are initially empty (so the ligands act as p-acceptors), the t2g orbitals are

made slightly bonding, with the result that the ligand-field splitting para-

meter is increased. The correlation of the value of D with the identity of

the ligand and the metal ion depends critically on the ability of the species to

form p-orbitals. Moreover, the stability of complexes such as those formed

by CO (a p-acceptor ligand, recall the discussion in Section 8.7), including

Ni(CO)4 and [Fe4(CO)13]2�, can also be traced to the involvement of

p-orbitals.

The band theory of solids

The electronic structures of solids can be regarded as an extension of

molecular orbital theory to aggregates consisting of virtually infinite numbers

of atoms. However, there are certain features that are unique to solids,

particularly the formation of continuous bands of energy levels instead

of discrete levels, and the role of the translational symmetry of the lattice.

∆

∆
d d

�
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�

t2g

t2g

t2g

t2g
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eg
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eg

(a) (b)

Fig. 8.38 The effect of p-bonding on
the ligand field splitting in an

octahedral complex: (a) occupied

ligand p-orbitals (a p-donor

ligand) and (b) unoccupied ligand
p-orbitals (a p-acceptor ligand).
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Fig. 8.39 The string of s-orbitals used
to discuss the formation of bands in a

one-dimensional solid.
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Fig. 8.40 The formation of molecular
orbitals from a chain of N atomic

orbitals. Note that the separation of

the most bonding and most

antibonding orbitals remains finite
and that the density of orbitals is

greatest at the edges of the band.

There are in fact two starting points for the discussion of solids. One is the

particle-in-a-box wavefunctions described in Chapter 2. The other is the

discussion of conjugated molecules presented earlier in this chapter. We shall

give a brief introduction to both and see how one may be correlated with the

other. We shall confine our attention to one-dimensional solids because they

are so much simpler to treat. However, such solids do not show all the

properties of a three-dimensional solid, and this material must be regarded as

no more than introductory.

8.12 The tight-binding approximation

The tight-binding approximation treats a solid as an extended molecule, and

takes as its starting point orbitals that are confined to individual atoms (hence

the name of the approach). Then molecular orbitals are formed that spread

throughout the solid.

The simplest approach of all is to adopt the Hückel approximation and

to consider a line of N atoms, each of which has one valence s-orbital that

can overlap only its two immediate neighbours (Fig. 8.39). As usual, the

wavefunctions will be

c ¼
X

r

crfr ð8:36Þ

where the index r runs over all the atoms in the line. The N�N secular

determinant has the form

a� E b 0 0 � � �
b a� E b 0 � � �
0 b a� E b � � �
..
. ..

. ..
. ..

. ..
.

���������

���������
¼ 0

This determinant is tridiagonal (see Example 8.3), so we can write down the

roots immediately:

Ek ¼ aþ 2b cos
kp

N þ 1

� 	
k ¼ 1, 2, . . . , N ð8:37Þ

As N ! 1 the energy separation between neighbouring levels approaches

zero but the width of the band remains finite (Fig. 8.40):

lim
N!1

ðE1 � ENÞ ¼ 4b ð8:38Þ

The lowest energy corresponds to a fully bonding linear combination of atomic

orbitals and the highest energy corresponds to a molecular orbital that has a

node between each pair of neighbouring atoms. The molecular orbitals of

intermediate energy have k� 1 nodes distributed along the chain of atoms.

Example 8.5 The density of states of a one-dimensional solid

Inspection of the diagram in Fig. 8.40 indicates that the density of states, r(E),

the number of states in an energy range divided by the width of the range,

increases towards the edges of the bands. Confirm this conclusion analytically.
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Method. First, we need to define the density of states analytically. Each value

of k denotes a single state. If the quantum number k changes from k to k þ Dk

as the energy changes from E to E þ DE, there are Dk states in the energy

range DE, so the density of states at the energy E is r(E) ¼ Dk/DE. When the

states are packed together so closely that to a good approximation they form

a continuum, we can replace the finite quantities by infinitesimals and write

r(E) ¼ dk/dE. It is simpler to express the energy as e ¼ E� a.

Answer. We write the energy expression as

e ¼ 2b cos
kp

N þ 1

� 	

from which it follows that

k ¼ N þ 1

p

� 	
arccos

e
2b

� 	

The density of states is therefore

rðeÞ ¼ dk

de
¼ � ðN þ 1Þ=2bp

1� ðe=2bÞ2
n o1=2

This function (noting that b < 0) becomes infinite at the edges of the band,

where e ¼ �2b (Fig. 8.41).

Comment. The graphical mnemonic in Example 8.4 illuminates this conclu-

sion, for when N is very large there is little difference between a line of atoms

and one with the ends joined to form a circle. There are more points captured

by slices near the top and bottom of the circle than at its mid-point. The

increase of the density of states towards the edge of the band is unchar-

acteristic of higher-dimensional solids. In them, the density is highest towards

the centre of the band, and is least at the edges. This difference arises from the

possibility of degeneracies in dimensions greater than 1.

Self-test 8.5. Derive an expression for the mean energy of a band that is

half full.

The band of orbitals we have constructed is called an s-band because it is

formed by the linear combination of s-orbitals. If the atoms have valence

p-orbitals too, then a similar superposition can take place, with the formation

of a p-band. In a typical solid, the energy separation of the s- and p-orbitals of

the free atoms will be quite large, and as a result the two bands will not overlap.

The orbital structure of the solid will therefore consist of two (or more) bands

separated by a band gap, a region of energy to which no orbitals belong. If

each atom provides one electron, the s-band will be half full. The band is then

known as a conduction band because the electrons in the highest filled

orbitals can travel through the solid in response to the application of electric

fields. If, however, each atom provides two electrons, then the s-band will be

full. It is then called a valence band. Its uppermost electrons are separated by a

substantial energy gap from the p-band, and so they are not mobile.

A metallic conductor is a substance with an electric conductivity that

decreases as the temperature is increased. Such materials have incomplete

We have used the result that

d

dx
arccos ax

¼ � a

ð1� a2x2Þ1=2

0

2
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6

8
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)
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N
 

Fig. 8.41 The density of states in

a band formed from an infinite
chain of atomic orbitals.
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conduction bands and the decrease in conductivity arises from the increased

scattering of the mobile electrons by lattice vibrations. A semiconductor is a solid

with an electric conductivity that increases as the temperature is increased. Such

materials have a full valence band separated by a small gap from an empty

conduction band. Their conductivity arises from the excitation of electrons from

the valence band into the conduction band, and the number of electrons so

promoted increases with temperature. If the band gap is large compared withkT,

so that the conductivity is very low, then the material is termed an insulator. The

artificial manipulation of the properties of conduction and valence bands by the

insertion of foreign atoms is the basis of the semiconductor industry, and further

information can be found in the references given in Further reading.

8.13 The Kronig–Penney model

We now turn to a seemingly entirely different attack on the same problem.

This approach will echo the material in Chapter 2, and—most surprisingly—

results in a description of solids that, despite the entirely different starting

point, mirrors the molecular-orbital approach. The origin of that similarity is

another manifestation of the power of symmetry, in this case translational

symmetry, in determining the general structure of energy levels regardless of

the details of physical interactions.

If we were to disregard the variation in the potential energy of an electron

as it travels through the lattice, the solutions of the Schrödinger equation

would be those of a free particle, and we would write9

ckðxÞ ¼ eikx Ek ¼
k2�h2

2me
ð8:39Þ

Note how the energy varies quadratically with the wavevector k. In an actual

solid, the potential energy varies periodically, and the Schrödinger equation is

� �h2

2me

d2c
dx2
þ VðxÞc ¼ Ec ð8:40Þ

with V(xþ a) ¼ V(x), where a is the spacing of the lattice points. According

to the Bloch theorem, the solutions of the Schrödinger equation for a periodic

potential of this kind have the form

ckðxÞ ¼ ukðxÞeikx ukðxþ aÞ ¼ ukðxÞ ð8:41Þ
The periodic functions uk(x) are called Bloch functions. Substitution of the

function uk(x)eikx into the Schrödinger equation leads to the following

equation for the Bloch functions:

u00k þ 2iku0k �
2me

�h2
fVðxÞ � Eg þ k2

� 	
uk ¼ 0 ð8:42Þ

where u 0 ¼ du/dx and u00 ¼ d2u/dx2.

We shall establish the form of the Bloch functions in the particular case of

a periodic potential energy like that shown in Fig. 8.42, which is called the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. We consider here only linear momentum in the positive x direction and therefore ignore the

free-particle solutions e�ikx.

–b 0 a x

V

Fig. 8.42 The potential energy

of an electron in the Kronig–Penney

model.
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Kronig–Penney model. It is plainly a great simplification of the true potential

energy, but it establishes certain important features that are found in practice.

There are two types of region, one in which the potential is zero and the

other in which it has the constant value V. We shall consider solutions for

which E < V and shortly simplify the problem still further by letting V ! 1
and b ! 0 in such a way that Vb (the area of the rectangular region of non-

zero potential energy) remains constant. It will be convenient to introduce the

two real parameters

a2 ¼ 2meE

�h2
b2 ¼ 2meðV � EÞ

�h2
ð8:43Þ

and then to write the equations for the two regions as

ðaÞ V ¼ 0 : uk
00 þ 2ikuk

0 þ ða2 � k2Þuk ¼ 0

ðbÞ V 6¼ 0 : uk
00 þ 2ikuk

0 � ðb2 þ k2Þuk ¼ 0

The solutions are subject to the requirement that the wavefunctions and their

first derivatives are continuous at the interfaces between the regions.

As may be verified by substitution, the solutions of the two differential

equations have the form

ðaÞ ukðxÞ ¼ Aeiða�kÞx þ Be�iðaþkÞx

ðbÞ ukðxÞ ¼ Ceðb�ikÞx þDe�ðbþikÞx

The conditions of continuity of u and u 0 at the two boundaries of each zone,

namely uk(a) ¼ uk(�b) and uk
0(a) ¼ uk

0(�b), lead to the following four

equations:

Aþ B� C�D ¼ 0

Aeiða�kÞa þ Be�iðaþ kÞa � Ce�ðb�ikÞb �DeðbþikÞb ¼ 0

iða� kÞA� iðaþ kÞB� ðb� ikÞCþ ðbþ ikÞD ¼ 0

iða� kÞAeiða�kÞa � iðaþ kÞBe�iðaþkÞa � ðb� ikÞCe�ðb�ikÞb

þ ðbþ ikÞDeðbþikÞb ¼ 0

For these four simultaneous equations to have a solution, the determinant of

the coefficients must be zero:

1 1 �1 �1
eiða�kÞa e�iðaþkÞa �eðb�ikÞb �eðbþikÞb

iða� kÞ �iðaþ kÞ �ðb� ikÞ ðbþ ikÞ
iða� kÞeiða�kÞa �iðaþ kÞe�iðaþkÞa �ðb� ikÞe�ðb�ikÞb ðbþ ikÞeðbþikÞb

��������

��������
¼ 0

ð8:44Þ

This rather horrendous determinant reduces (as can best be shown by use

of symbolic algebra software, but patience and a pencil also work) to the

condition

b2 � a2

2ab

 !
sinhbb sin aaþ cosh bb cos aa ¼ cos kðaþ bÞ ð8:45Þ
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Fig. 8.44 The formation of bands as

a function of the parameter g in the

Kronig–Penney model. The limit
g¼0 corresponds to the absence of

barriers, and there is no discrete

band structure (the levels are those

of a free particle, so there is one
infinitely wide band). The other limit,

g¼1, corresponds to a series of

independent infinitely deep square
wells, and each energy level

corresponds to those of a particle

in a box of width a.
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Fig. 8.43 The solution of the

equation for the energy levels of the

Kronig–Penney model. The only

permitted solutions are those that
correspond to the regions in which

the curve lies between þ1 and �1.

When we introduce the simplifying conditions V ! 1, b ! 0, Vb ¼
constant, eqn 8.45 simplifies to

g
sin aa

aa
þ cos aa ¼ cos ka g ¼ meVba

a�h2
ð8:46Þ

This equation is still transcendental, but we can identify its implications by

plotting the left-hand side against aa. The left-hand side depends on the value

of g, which is a measure of the height and width of the barrier between

neighbouring wells, and one such graph is shown in Fig. 8.43, where we have

used g ¼ 3
2p.

The essential point can now be made clear. Because the right-hand side

of eqn 8.46 lies between �1 and þ1, only certain values of aa (that is,

only certain values of E, because a / E1/2) give rise to solutions. Where

the left-hand side lies outside the range �1 to þ1, there are no solutions.

It follows that the solutions of the Schrödinger equation for a periodic

potential correspond to a series of allowed bands separated by gaps. More-

over, as can be seen from Figs 8.43 and 8.44, the widths of the allowed

bands increase with increasing energy. A final important point can be seen by

comparing the diagrams in Fig. 8.44, which show the effect of changing g, the

depth of the potential wells. As can be seen, as the depth increases, the

allowed regions become narrower and converge on those of a particle in

a square well.

Example 8.6 The asymptotic behaviour of a periodic solid

Show that for infinitely deep wells, the energy spectrum of a periodic solid

becomes that of a collection of independent wells.

Method. When examining an equation for its asymptotic solutions, identify

the terms that dominate the others as the selected parameter becomes infinite,

and retain only them. Find the solution of the remaining terms.

Answer. As g ! 1, the first term in eqn 8.46 dominates the other two and the

equation becomes

g
sin aa

aa
’ 0

This equation has solutions only for aa ¼�np with n¼ 1, 2, . . . . It follows

that the allowed energies are

En ¼
�h2a2

2me
¼ n2h2

8mea2

exactly as for a particle in a single box.

Comment. The electron cannot tunnel between neighbouring boxes when the

wells are infinitely deep.

Self-test 8.6. Derive an expression for the width of the allowed band.

[2 arctan (g/aa)]

8.13 THE KRONIG–PENNEY MODEL j 283



Equation 8.46 can be solved numerically for a as a function of k, and hence

the variation of the energy with k can be determined. The variation for g ¼ 3
2p

is shown in Fig. 8.45. The discontinuities occur at

k ¼ np=a n ¼ �1, � 2, . . . ð8:47Þ

8.14 Brillouin zones

Each region between the discontinuities in eqn 8.47 is called a Brillouin zone.

The discontinuities occur at the edges of the Brillouin zones, and towards the

centres of the zones the variation of E with k is parabolic, exactly as in a free

particle model. This observation, together with eqn 8.47, is a clue to the

origin of the existence of band gaps, because they occur where the periodicity

of the lattice matches the periodicity of the wavefunctions. In the centres of

the zones, there is no match between the two, and the combinations cos kx

and sin kx of the complex wave eikx are degenerate because, averaged over the

lattice, each combination samples favourable regions of the potential equally.

However, when the periods match, the cosine function (for instance) has

maximum probability in the wells throughout the solid and the sine function

has nodes in the wells everywhere. The two combinations are now no longer

degenerate, and the perturbation caused by the lattice has driven them apart

(just as in famous Fig. 6.1).

It should be noted that k in the right-hand side of eqn 8.46 can be changed

to k � 2pn/a without changing the value of the right-hand side. So we can

adjust the value of k by this amount at will, yet still obtain the same energies.

In the reduced wavevector representation, k is modified by a different amount

in each Brillouin zone to bring its value into the range � p/a � k � p/a. This

reduction has the effect of compressing Fig. 8.45 into the form shown in

Fig. 8.46, where all the values of k lie in a range of width 2p/a.

Finally, we impose a further constraint on the wavefunctions. When there

are many atoms (wells) in the lattice, there is little error introduced if we

assume that the ends of the lattice can be brought round into a circle and

joined. This procedure preserves the translational symmetry of the system

throughout its length rather than introducing awkward end effects. (If we

were interested in the surface states of metals, such a procedure would be

invalid, of course.) The circularity of the system implies that the wavefunc-

tions must satisfy cyclic boundary conditions (Section 3.1), and that

c(xþL)¼c(x) where L ¼ Na, N being the number of atoms in the ring. In

terms of the Bloch functions, this condition is

ukðxþ LÞeikðxþLÞ ¼ ukðxÞeikx

However, because uk(xþL)¼ uk(x) (as one location is an integral number of

lattice periods a away from the other), this condition is equivalent to

k ¼ 2pn

L
¼ 2pn

Na
n ¼ 0, � 1, � 2, . . .

We have seen, however, that an entire zone is expressed by values of k that lie

within a length 2p/a. It follows that j n j cannot exceed 1
2N, for otherwise k

would lie outside the range. Therefore, the number of spatial states in any

band of the system is N. Another way of accepting the validity of this result is

0 1 2 3 4 5
ka/π

E
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g

y
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Fig. 8.46 In this depiction of the

band structure, the curves
illustrated in the previous diagram

have all been transferred into the

central zone to give a more
compact representation.
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Fig. 8.45 The band structure

represented as a plot of energy
against the parameter k.
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to consider the limit of very deep wells, when we have seen that the solid is

then equivalent to N independent wells. Each band then consists of an infi-

nitely narrow band of N levels of the same energy (recall Fig. 8.44), and this

number is preserved when interactions are allowed between the wells.

The conclusion we have just drawn concerning the number of levels in a

band is of the greatest importance for understanding the electronic structure

of solids, for it implies that each Brillouin zone can accommodate up to 2N

electrons. When each atom provides one electron, the zone is only half full

and the solid is a metallic conductor. When each atom provides two electrons,

the lowest zone is full and there is an energy gap before the next zone becomes

available; such a material is a semiconductor (and an effective insulator if the

gap is large). This description mirrors exactly the conclusions of the mole-

cular orbital, tight-binding description of solids.

P R O B L E M S

8.1 The dependence of the molecular integrals j 0, k 0, and
S for the hydrogen molecule–ion on the internuclear
separation R are specified in Section 8.3. Plot the variation
of the integrals a and b and the energies Eþ and E� against
R and identify the equilibrium bond length and the
dissociation energy of the molecule–ion.

8.2 Confirm that 1
2(E�þEþ)�E1s is a positive quantity,

and hence that the effect of an antibonding orbital
outweighs the effect of a bonding orbital. Hint. Set up
expressions for the quantity using eqns 8.23 and 8.24 and
the results of Example 8.1; proceed to plot the quantity
against R.

8.3 (a) Evaluate the probability density of the electron
in Hþ2 at the mid-point of the bond, and plot it as a
function of R. (b) Evaluate the difference densities
r�¼c2

� � 1
2 ðc

2
a þ c2

bÞ at points along the line joining
the two nuclei (including the regions outside the nuclei)
for R ¼ 130 pm. The difference density shows the
modification to the electron distribution brought about by
constructive (or destructive) overlap. Hint. Use the c� in
eqn 8.15. The overlap integral S is given in Example 8.1.
(c) Repeat the calculation for several values of R.

8.4 We shall see in Chapter 10 that the vibrational
frequency of a chemical bond is o ¼ (k/m)1/2, where
k¼ (d2E/dR2)0 is the force constant and m is the effective
mass; for a homonuclear diatomic molecule of atoms of
mass m, m¼ 1

2m. Estimate the vibrational frequency of the
hydrogen molecule–ion.

8.5 Take the hydrogen molecule wavefunction in
eqn 8.27 and find an expression for the expectation value
of the hamiltonian in terms of molecular integrals.
Hint. The outcome of this calculation is eqn 8.28.

8.6 All the integrals involved in the H2 molecular orbital
calculation are listed in eqn 8.29 and Further information
10. (a) Write and run a procedure using mathematical
software to calculate E � 2E1s as a function of R.
(b) Identify the equilibrium bond length and the
dissociation energy.

8.7 Evaluate the probability density for a single electron at
a point on a line running between the two nuclei in H2 and
plot the difference density r1 � 2(ca

2þcb
2) for R¼ 74 pm.

Hint. Use eqn 8.27. The probability density of electron 1,
r1, is obtained from c2(1,2) by integrating over all locations
of electron 2, because the latter’s position is irrelevant.
Therefore, begin by forming r1¼

R
c2(1, 2) dt2.

8.8 Confirm that the CI wavefunction c¼ c1C1þ c3C3 in
Section 8.5 can be expressed as shown there, in terms of the
sums and differences of the coefficients ci.

8.9 Predict the ground configuration of (a) C2, (b) C2
þ,

(c) C2
� , (d) N2

þ , (e) N2
� , (f) F2

þ , and (g) Ne2
þ . Decide

which terms can arise in each case, and suggest which lies
lowest in energy.

8.10 The bond order of a diatomic molecule can be
determined from its molecular orbital energy level
diagram by taking the difference between the numbers
of bonding and antibonding electrons and dividing by
two. Compute the bond orders of all the species in
Problem 8.9.

8.11 Predict the ground configuration of (a) CO, (b) NO.
Decide which terms can arise in each case, and suggest
which lies lowest in energy.

8.12 Use a minimal basis set for the MO description of the
molecule H2O to show that the secular determinant
factorizes into (1� 1), (2� 2), and (3� 3) determinants.

PROBLEMS j 285



Set up the secular determinant, denoting the Coulomb
integrals aH, aO, and aO 0 for H1s, O2p, and O2s, respectively,
and writing the (O2p, H1s) and (O2s, H1s) resonance
integrals as b and b 0, respectively. Neglect overlap. First,
neglect the 2s-orbital, and find expressions for the energies
of the molecular orbitals for a bond
angle of 90�.

8.13 Now develop the previous calculation by taking into
account the O2s-orbital. Set up the secular determinant with
the bond angle y as a parameter. Find expressions for the
energies of the molecular orbitals and of the entire molecule.
As a first step in analysing the expressions, set aH 
 aO 

aO 0 and b 
 b 0. Can you devise improvements to the values
of the Coulomb integrals on the basis of atomic spectral
data?

8.14 Set up and solve the secular determinants for (a)
hexatriene, (b) the cyclopentadienyl radical in the Hückel p-
electron scheme; find the energy levels and molecular
orbitals, and estimate the delocalization energy.

8.15 (a) Confirm that the symmetry-adapted linear
combinations of p-orbitals for benzene are those set out
above Example 8.4. (b) Find the corresponding
combinations for naphthalene.

8.16 Within the Hückel p-electron scheme, estimate the
delocalization energy of (a) the benzene cation C6Hþ6 and
(b) the benzene dianion C6H6

2� .

8.17 The allyl radical CH2¼CHCH2
� is a conjugated

p-system having a p-orbital on the carbon atom adjacent to
a double bond. Estimate its p-electron energy by using the
Hückel approximation.

8.18 Confirm that the solutions of a tridiagonal
determinant are those given in Example 8.3.

8.19 Show that the roots of the secular determinant
for a cyclic polyene of N atoms can be constructed by
inscribing a regular N-gon in a circle and noting the
locations of the corners of the polygon, as in Fig. 8.31.
Hint. See A.A. Frost and B. Musulin. J. Chem. Phys., 21,
572 (1953).

8.20 Heterocyclic molecules may be incorporated into the
Hückel scheme by modifying the Coulomb integral of
the atom concerned and the resonance integrals to which it
contributes. Consider pyridine, C5H5N (symmetry group
C2v). Construct and solve the Hückel secular determinant
with bCC 
 bCN 
 b and aN ¼ (aC þ 1

2b). Estimate the
electron energy and the delocalization energy. Hint. The
roots of the determinants are best found on a computer.

8.21 Explore the role of p-orbital overlap in p-electron
calculations. Take the cyclobutadiene secular determinant,
but construct it without neglect of overlap between
neighbouring atoms. Show that in place of x¼ (a�E)/b

and 1 the elements of the determinant become o¼
(a�E)/(b�ES) and 1, respectively. Hence the roots in
terms of o are the same as the roots in terms of x. Solve
for E. Typically S¼ 0.25.

8.22 Find the effect of including neighbouring atom overlap
on the p-electron energy levels of benzene. Use a computer
to explore how the energies depend on the bond lengths,
using b / S and

Sð2pp, 2ppÞ ¼ 1þ sþ 2
5 s2 þ 1

15 s3
� �

e�s s ¼ ZeffR

2a0

where Zeff is taken from Table 7.1. Consider the difference
in resonance energy between the cases where the molecule
has six equivalent C–C bond lengths of 140 pm (the
experimental value) and where it has alternating lengths of
133 pm and 153 pm (typical C¼¼C and C��C lengths,
respectively).

8.23 Determine which symmetry species are spanned by
d-orbitals in a tetrahedral complex.

8.24 An ion with the configuration f 2 enters an
environment of octahedral symmetry. What terms arise
in the free ion, and with which terms do they
correlate in the complex? Hint. Follow the discussion
of Section 8.11.

8.25 In the strong field case, the configuration d2 gives
rise to e2

g , t1
2ge1

g , and t2
2g. (a) What terms may arise?

(b) How do the singlet terms of the complex correlate
with the singlet terms of the free ion? (c) What
configurations arise in a tetrahedral complex, and what
are the correlations?

8.26 Find the symmetry-adapted linear combinations of
(a) s-orbitals, (b) p-orbitals on the ligands of an
octahedral complex. Hint. Set Cartesian axes on each
ligand site, with z pointing towards the central ion,
determine how the orbitals are transformed under the
operations of the group O, and use the procedures for
establishing symmetry-adapted orbitals as described in
Chapter 5.

8.27 Repeat Problem 8.26 for a tetrahedral complex. What
is the role of p-bonding in such complexes?

8.28 Repeat Problem 8.26 for a square planar complex.
What is the role of p-bonding in such complexes?

8.29 Verify that the Kronig–Penney model results in
eqn 8.44, and show that this condition can be expressed as
eqn 8.45.

8.30 Explore the effect of changing the depth of the
potential well by finding the solutions of eqn 8.46 for
different values of g. Solve the equations numerically for
(a) g¼ p and (b) g¼ 2p.
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One of the primary goals in molecular quantum mechanics is to solve the

time-independent Schrödinger equation and to determine the electronic

structures of atoms and molecules. Chapter 8 established the qualitative

features of molecular structure calculations in terms of visualizable concepts.

In this chapter, we introduce some of the computational techniques that are

used to solve the Schrödinger equation for electrons in molecules: we establish

the equations that are used and describe some of the approximations that

make the computations feasible.

Our starting point is the Born–Oppenheimer approximation (Section 8.1)

and our focus is the solution of the electronic Schrödinger equation

Hcðr; RÞ ¼ EðRÞcðr; RÞ ð9:1Þ

for a fixed set of locations R of the nuclei. The electronic wavefunction c
depends on the electronic coordinates r and parametrically on R; E(R) is the

electronic energy. The hamiltonian is

H ¼ � �h2

2me

Xn

i

r2
i �

Xn

i

XN
I

ZIe
2

4pe0rIi
þ 1

2

Xn

ij

e2

4pe0rij
ð9:2Þ

In molecular structure calculations it is conventional not to include the

nucleus–nucleus repulsion term in H, but to add it as a classical term at the

end of the calculation; we adopt that convention here.

There are two main approaches to the solution of the Schrödinger equation.

In an ab initio calculation,1 a model is chosen for the electronic wavefunction

and eqn 9.1 is solved using as input only the values of the fundamental con-

stants and the atomic numbers of the nuclei. The accuracy of this approach is

determined primarily by the model chosen for the wavefunction. For large

molecules, accurate ab initio calculations are computationally expensive

and semiempirical methods have been developed to treat a wider variety of

chemical species. A semiempirical method makes use of a simplified form for

the hamiltonian and adjustable parameters obtained from experimental data.

In both cases it is a challenging task to compute ‘chemically accurate’ energies;

that is, energies calculated within about 0.05 eV (about 5 kJ mol�1) of the

exact values.

This chapter concentrates on the calculation of the electronic wavefunction

and the electronic energy. However, once those quantities are known, a wide

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The term ab initio comes from the Latin words for ‘from the beginning’.

The calculation of electronic
structure

The Hartree–Fock

self-consistent field method

9.1 The formulation of the approach

9.2 The Hartree–Fock approach

9.3 Restricted and unrestricted
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range of chemically and physically important properties can be determined.

For example, by finding the minimum of the potential energy surface (that is,

the electronic energy plus the nucleus–nucleus repulsion energy) of a stable

molecule, it is possible to characterize its equilibrium structure in terms of its

bond lengths and bond angles. Force constants and vibrational frequencies can

be determined from gradients of the potential energy surfaces. The modern

trend is to broaden the range of properties that are calculated to include the

location of the stationary points of the surface describing a reactive system,

and hence to characterize activated complexes and transition states.

Almost universally in the field of electronic structure calculations, but not

in this presentation, the equations and results are expressed in ‘atomic units’

(au). Atomic units do not have the same status as actual SI units, as they are

combinations of various fundamental constants and have values that change

when the accepted values of the fundamental constants change. In atomic

units, lengths are expressed as multiples of the bohr (the Bohr radius)

a0¼4pe0�h2/mee
2 (¼52.918 pm) and energies are expressed in terms of the

hartree, Eh ¼ �h2=mea
2
0 ¼ 2hcR1ð¼ 4:3597 aJ, 27:21 eVÞ:

The Hartree–Fock self-consistent field method

The self-consistent field method was described in Section 7.15. However,

because it is the starting point of many of the ab initio methods, we consider it

again here in more detail and generalize some of the previous discussion.

9.1 The formulation of the approach

The crucial complication in all electronic structure calculations is the presence

of the electron–electron potential energy, which depends on the electron–

electron separations rij as given by the third term in eqn 9.2. As a first step,

suppose that the true electronic wavefunction, c, is similar in form to the

wavefunction c� that would be obtained if this complicating feature were

neglected. That is, c� is a solution of

H�c� ¼ E�c� H� ¼
Xn

i¼1

hi ð9:3Þ

where hi is the core hamiltonian for electron i (see Section 7.15). This

n-electron equation can be separated into n one-electron equations, so we can

immediately write c� as a product of n one-electron wavefunctions (orbitals)

of the form c�aðr i; RÞ. To simplify the notation, we shall denote the orbital

occupied by electron i with coordinate ri and parametrically depending on the

nuclear arrangement R as c�aðiÞ. It is a solution of

hic
�
aðiÞ ¼ E�ac

�
aðiÞ ð9:4Þ

where E�a is the energy of an electron in orbital a in this independent-electron

model. The overall wavefunction c� is a product of one-electron wavefunctions:

c� ¼ c�að1Þc
�
bð2Þ . . .c�zðnÞ ð9:5Þ
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The function c� depends on all the electron coordinates and, parametrically,

on the nuclear locations. The overall energy E� is a sum of the one-electron

energies.

At this stage, we have not taken into account the spin of the electron or the

requirement that the electronic wavefunction must obey the Pauli principle.

To do so, we introduce the concept of the spinorbital, fa(i), first encountered

in Section 7.11. A spinorbital is a product of an orbital wavefunction and a

spin function, and in a more elaborate notation would be denoted fa(xi;R),

where xi represents the joint spin–space coordinates of electron i. So that the

Paul principle is obeyed, we use a Slater determinant (Section 7.11) and the

overall wavefunction is written as:

c�ðx; RÞ ¼ ðn!Þ�1=2detjfað1Þfbð2Þ . . .fzðnÞj ð9:6Þ

The spinorbitals fu, with u¼ a, b, . . . , z, are orthonormal and the label u now

incorporates the spin state as well as the spatial state.

9.2 The Hartree–Fock approach

Electron–electron repulsions are critically important and must be included

in any accurate electronic structure treatment. In the Hartree–Fock method

(HF method),2 a product wavefunction of the form of eqn 9.6 is sought, with

the electron–electron repulsions treated in an ‘average’ way. Each electron

is considered to be moving in the electrostatic field of the nuclei and the

average field of the other n�1 electrons. The spinorbitals that give the ‘best’

n-electron determinantal wavefunction are found by using variation theory

(Section 6.9), which involves minimizing the Rayleigh ratio

e ¼
R
c
ðx; RÞHcðx; RÞ dxR
c
ðx; RÞcðx; RÞ dx

ð9:7Þ

subject to the constraint that the spinorbitals are orthonormal. The lowest

value of e is identified with the electronic energy of the ground state of the

atom and molecule for the selected nuclear configuration R.

The application of this minimization procedure leads to the Hartree–

Fock equations for the individual spinorbitals (see Further information 11).

The Hartree–Fock equation for spinorbital fa(1), where we have arbitrarily

assigned electron 1 to spinorbital fa, is

f1fað1Þ ¼ eafað1Þ ð9:8Þ

where ea is the spinorbital energy and f1 is the Fock operator:

f1 ¼ h1 þ
X

u

f Juð1Þ � Kuð1Þg ð9:9Þ

In eqn 9.9, h1 is the core hamiltonian for electron 1, the sum is over all

spinorbitals u¼ a, b, . . . , z, and the Coulomb operator, Ju, and exchange

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Electronic structure calculations are littered with acronyms: the terms we use in this chapter

are collected together in Box 9.1 at the end of the chapter.
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operator, Ku, are defined as follows:

Juð1Þfað1Þ ¼ j0

Z
f
uð2Þ

1

r12
fuð2Þ dx2

� �
fað1Þ ð9:10aÞ

Kuð1Þfað1Þ ¼ j0

Z
f
uð2Þ

1

r12
fað2Þ dx2

� �
fuð1Þ ð9:10bÞ

where, as in eqn 8.19,

j0 ¼
e2

4pe0

The Coulomb and exchange operators are defined here in terms of

spinorbitals rather than in terms of spatial wavefunctions, as in Section 7.15,3

but their meaning is essentially the same: the Coulomb operator takes into

account the Coulombic repulsion between electrons, and the exchange

operator represents the modification of this energy that can be ascribed to

the effects of spin correlation. It follows that the sum in eqn 9.9 represents the

average potential energy of electron 1 due to the presence of the other n�1

electrons. Note that because

Jað1Þfað1Þ ¼ Kað1Þfað1Þ
the sum in eqn 9.9 includes contributions from all spinorbitals fu except the

fa being computed.

Each spinorbital must be obtained by solving an equation of the form of

eqn 9.8 with the corresponding Fock operator fi. However, because fi depends

on the spinorbitals of all the other n�1 electrons, it appears that to set up the

HF equations, one must already know the solutions beforehand! This is

a common dilemma in electronic structure calculations, and it is commonly

attacked by adopting an iterative style of solution, and stopping when

the solutions are self-consistent; hence the name self-consistent field (SCF)

is given to this approach. In a self-consistent procedure, a trial set of

spinorbitals is formulated and used to construct the Fock operator, then the

HF equations are solved to obtain a new set of spinorbitals that are used to

construct a revised Fock operator, and so on. The cycle of calculation and

reformulation is repeated until a convergence criterion is satisfied.4

The Fock operator defined in eqn 9.9 depends on the n occupied spinorbitals.

However, once these spinorbitals have been determined, the Fock operator can be

treated as a well-defined hermitian operator and, like other hermitian operators

(for example the hamiltonian operator), it has an infinite number of eigenfunc-

tions. In other words, there is an infinite number of spinorbitals fu with an

accompanying energy eu that solve eqn 9.8. In practice, of course, we have to be

content with solving eqn 9.8 for a finite number m of spinorbitals with mn.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. To compare eqn 9.9 with eqn 7.47, we need to note that the factor of 2 accompanying J in

the latter equation arises when the Hartree–Fock equations for the spinorbitals are converted to

equations for spatial orbitals, with each spatial orbital doubly occupied.

4. Convergence problems are sometimes encountered but they usually are not a major problem

for many calculations. Several methods have been developed to improve convergence; these include

the ‘level shifter method’ of V.R. Saunders and I.H. Hillier, Int. J. Quantum Chem., 699, 7 (1973),

and the direct inversion of the iterative subspace, P. Pulay, Chem. Phys. Lett., 393, 73 (1980).
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The m optimized spinorbitals obtained on completion of the HF-SCF

procedure are arranged in order of increasing orbital energy, and the n lowest

energy spinorbitals are called the occupied orbitals. The remaining unoccu-

pied m� n spinorbitals are called virtual orbitals. The Slater determinant

(of the form given in eqn 9.6) composed of the n occupied spinorbitals is the

HF ground-state wavefunction for the molecule; we shall denote it F0.5

By ordering the orbital energies and analysing the radial and angular nodal

patterns of the spatial parts of the spinorbitals, we can identify a spinorbital

as a 1s-spinorbital, a 2s-spinorbital, and so on.

9.3 Restricted and unrestricted Hartree–Fock calculations

It is customary in HF-SCF calculations on closed-shell states of atoms

(for which the number of electrons, n, is always even) to suppose that the

spatial components of the spinorbitals are identical for each member of a pair

of electrons. There are then 1
2n spatial orbitals of the form ca(r1) and the HF

wavefunction is

F0 ¼ ðn!Þ�1=2det jca
að1Þcb

að2Þca
bð3Þ . . .cb

z ðnÞj ð9:11Þ

where we have used the same notation as in Section 7.11. Such a wave-

function is called a restricted Hartree–Fock (RHF) wavefunction. The HF

equations for the spinorbitals given in eqns 9.8–9.10 are converted to the set

of spatial eigenvalue equations given in eqns 7.47–7.49 by integration over

the spin functions and using the orthonormality of a and b.6

Two procedures are commonly used for open-shell states of atoms. In

the restricted open-shell formalism, all electrons except those occupying

open-shell orbitals are forced to occupy doubly occupied spatial orbitals.

For example, the restricted open-shell wavefunction for atomic lithium would

be of the form

F0 ¼ ð6Þ�1=2det jca
1sð1Þc

b
1sð2Þc

a
2sð3Þj

in which the first two spinorbitals in the Slater determinant (which we identify

as 1s-spinorbitals) have the same spatial wavefunction. However, the restricted

open-shell formalism imposes a severe constraint on the wavefunction;

whereas the 1sa-electron has an exchange interaction with the 2sa-electron,

the 1sb-electron does not and, as a result, the variational ground-state energy

is usually not accurate. In the unrestricted open-shell Hartree–Fock (UHF)

formalism the two 1s-electrons are not constrained to the same spatial wave-

function. For instance, the UHF wavefunction for Li would be of the form

F0 ¼ ð6Þ�1=2det jca
að1Þc

b
bð2Þc

a
cð3Þj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. The HF ground-state wavefunction, F0, is either a single determinant or a linear combination

of a small number of Slater determinants chosen to give the correct symmetry of the electronic state.

6. The details of the conversion are given in Section 3.4.1 of the excellent book A. Szabo

and N.S. Ostlund, Modern quantum chemistry: Introduction to advanced electronic structure,

Dover Publications, Inc., New York (1996). This text should be consulted for many of the details of

the discussions in this chapter.
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in which all three spatial orbitals are different (with ca and cb versions of

1s-orbitals and cc a 2s-orbital). By relaxing the constraint of occupying

orbitals in pairs, the open-shell UHF formalism gives a lower variational

energy than the open-shell RHF formalism. However, one disadvantage of

the UHF approach is that whereas the RHF wavefunction is an eigenfunction

of S2, the UHF function is not; that is, the total spin angular momentum is not

well-defined for a UHF wavefunction.

Example 9.1 Showing that the RHF wavefunction is an eigenfunction of S2

Consider the following restricted Hartree–Fock wavefunction for the

helium atom:

F0 ¼ ð2Þ�1=2detjca
að1Þcb

að2Þj
Show that this Slater determinant is an eigenfunction of S2 and evaluate its

eigenvalue.

Method. We need to expand the Slater determinant and consider the effect

of the spin operator, which acts only on the spin states a and b and not on the

spatial function ca. Because we are dealing with a two-electron system,

S¼ s1þ s2, where si acts only on electron i. We use the relations

S2 ¼ ðs1 þ s2Þ � ðs1 þ s2Þ ¼ s2
1 þ s2

2 þ 2s1 � s2

and

s1 � s2 ¼ s1zs2z þ s1xs2x þ s1ys2y ¼ s1zs2z þ 1
2 ðs1þs2� þ s1�s2þÞ

The results of the operations of s2, sz, sþ , and s� on a and b are given in

Section 4.8.

Answer. First, we expand the determinant:

F0 ¼ ð2Þ�1=2 cað1Það1Þcað2Þbð2Þ � cað2Það2Þcað1Þbð1Þf g
The effect of S2 on the first term in F0 is

S2cað1Það1Þcað2Þbð2Þ
¼ cað1Þs2

1að1Þcað2Þbð2Þ þ cað1Það1Þcað2Þs2
2bð2Þ

þ 2cað1Þs1zað1Þcað2Þs2zbð2Þ þ cað1Þs1það1Þcað2Þs2�bð2Þ
þ cað1Þs1�að1Þcað2Þs2þbð2Þ
¼ 3

4 �h2cað1Það1Þcað2Þbð2Þ þ 3
4 �h2cað1Það1Þcað2Þbð2Þ

� 1
2 �h2cað1Það1Þcað2Þbð2Þ þ 0þ �h2cað1Þbð1Þcað2Það2Þ

¼ �h2cað1Það1Þcað2Þbð2Þ þ �h2cað1Þbð1Þcað2Það2Þ

A similar analysis of the effect of S2 on the second term in F0 yields

S2cað2Það2Þcað1Þbð1Þ ¼ �h2cað2Það2Þcað1Þbð1Þ þ �h2cað2Þbð2Þcað1Það1Þ
On collecting terms we obtain

S2F0 ¼ ð2Þ�1=2 ð�h2 � �h2Þcað1Það1Þcað2Þbð2Þ
n

�ð�h2 � �h2Þcað2Það2Þcað1Þbð1Þ
o
¼ 0
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Therefore, F0 is an eigenfunction of S2 with an eigenvalue of zero, as is to be

expected because the ground state of the closed-shell helium atom is a singlet.

Self-test 9.1. Confirm that the UHF wavefunction for helium of the form F0¼
(2)�1=2 detjca(1)a(1)cb(2)b(2)j, where ca 6¼cb, is not an eigenfunction of S2.

In practice, the expectation value of S2 for the unrestricted wavefunction

is computed and compared with the true value S(Sþ1)�h2 for the ground state.

If the discrepancy is not significant, the UHF method has given a reasonable

molecular wavefunction. The UHF wavefunction is often used as a first

approximation to the true wavefunction even if the discrepancy is signific-

ant. It is also possible to use projection operator techniques on the UHF

wavefunction to obtain an improved wavefunction with more accurate S2

expectation values.

9.4 The Roothaan equations

We have concealed a difficulty up to this point. The HF-SCF procedure

is relatively straightforward to implement for atoms, for their spherical

symmetry means that the HF equations can be solved numerically for the

spinorbitals. However, such numerical solution for spinorbitals for molecular

systems is sufficiently computationally complex that a modification of the

technique must be used. As long ago as 1951, C.C.J. Roothaan and G.G. Hall

independently suggested using a known set of basis functions with which to

expand the spinorbitals (more precisely, the spatial parts of the spinorbitals).

In this section, which is limited to a discussion of the restricted closed-

shell Hartree–Fock formalism, we show how this suggestion transforms the

coupled HF equations into a matrix problem which can be solved by using

matrix manipulations.

We begin with eqn 7.47 for the spatial function ca(1) occupied by

electron 1 and write it in the notation of this chapter as

f1cað1Þ ¼ eacað1Þ ð9:12Þ

where f1 is the Fock operator expressed in terms of the spatial wavefunctions:

f1 ¼ h1 þ
X

u

2Juð1Þ � Kuð1Þf g ð9:13Þ

and the Coulomb and exchange operators are defined in eqns 7.48 and 7.49,

solely in terms of spatial coordinates.

Next, we introduce a set of M basis functions yj (their form is described in

Section 9.5) and express each spatial wavefunction ci as a linear combination

of these basis functions:

ci ¼
XM
j¼1

cjiyj ð9:14Þ

where cji are as yet unknown coefficients. From a set of M basis functions,

we can obtain M linearly independent spatial wavefunctions, and the problem
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of calculating the wavefunctions has been transformed to one of computing

the coefficients cji.

When the expansion in eqn 9.14 is substituted into eqn 9.12, we obtain

f1

XM
j¼1

cjayjð1Þ ¼ ea

XM
j¼1

cjayjð1Þ ð9:15Þ

Multiplication of both sides of this equation by y
i ð1Þ and integration over r1

yields

XM
j¼1

cja

Z
y
i ð1Þf1yjð1Þ dr1 ¼ ea

XM
j¼1

cja

Z
y
i ð1Þyjð1Þ dr1 ð9:16Þ

As is often the case in quantum chemistry, the structure of a set of equations

becomes clearer if we introduce a more compact notation. In this case, it

proves sensible to introduce the overlap matrix, S, with elements

Sij ¼
Z

y
i ð1Þyjð1Þ dr1 ð9:17Þ

(this matrix is not in general the unit matrix because the basis functions are

not necessarily orthogonal) and the Fock matrix, F, with elements

Fij ¼
Z

y
i ð1Þf1yjð1Þ dr1 ð9:18Þ

Then eqn 9.16 becomes

XM
j¼1

Fijcja ¼ ea

XM
j¼1

Sijcja ð9:19Þ

This expression is one in a set of M simultaneous equations (one for each

value of i) that are known as the Roothaan equations. The entire set of

equations can be written as the single matrix equation

Fc ¼ Sc" ð9:20Þ

where c is an M�M matrix composed of elements cja and " is an M�M
diagonal matrix of the orbital energies ea.

At this stage we can make progress by drawing on some of the properties of

matrix equations (see Further information 23). The Roothaan equations have

a non-trivial solution only if the following secular equation is satisfied:

detjF � eaSj ¼ 0 ð9:21Þ

This equation cannot be solved directly because the matrix elements Fij

involve integrals over the Coulomb and exchange operators which themselves

depend on the spatial wavefunctions. Therefore, as before, we must adopt a

self-consistent field approach, obtaining with each iteration a new set of

coefficients cja and continuing until a convergence criterion has been reached

(Fig. 9.1).

It is instructive to examine the matrix elements of the Fock operator, for in

that way we can begin to appreciate some of the computational difficulties of
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obtaining HF-SCF wavefunctions. The explicit form of the matrix element

Fij is obtained from eqns 9.13, 7.48, and 7.49, and is

Fij ¼
Z

y
i ð1Þh1yjð1Þ dr1

þ 2j0
X

u

Z
y
i ð1Þc



uð2Þ

1

r12
cuð2Þyjð1Þ dr1dr2

� j0
X

u

Z
y
i ð1Þc
uð2Þ

1

r12
yjð2Þcuð1Þ dr1dr2

ð9:22Þ

The first term on the right is a one-electron integral that we shall denote hij.

Insertion of the expansion in eqn 9.14 results in the following expression for

Fij solely in terms of integrals over the known basis functions:

Fij ¼ hij þ 2j0
X
u;l;m

c
lucmu

Z
y
i ð1Þy



l ð2Þ

1

r12
ymð2Þyjð1Þ dr1dr2

� j0
X
u;l;m

c
lucmu

Z
y
i ð1Þy



l ð2Þ

1

r12
yjð2Þymð1Þ dr1dr2

ð9:23Þ

The appearance of this rather horrendous expression can be greatly simplified

by introducing the following notation for the two-electron integrals over the

basis functions:

ðabjcdÞ ¼ j0

Z
y
að1Þybð1Þ

1

r12
y
cð2Þydð2Þ dr1dr2 ð9:24Þ

Equation 9.23 then becomes

Fij ¼ hij þ
X
u;l;m

c
lucmu 2ðijjlmÞ � ðimjljÞf g ð9:25Þ

No
Yes

Done

Formulate set of trial
coefficients  (and
therefore wavefunctions
�a

cja

Choose set of
basis functions
�j

eqn 9.17

Overlap
matrix, S

eqn 9.21

Energies, 
coefficients, 

�a

jac

Fock
matrix, F

eqn 9.18

Convergence?

Fig. 9.1 A summary of the iteration

procedure for a Hartree–Fock

self-consistent field calculation.
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which is usually written as

Fij ¼ hij þ
X
l;m

Plm ðijjlmÞ � 1
2ðimjljÞ

� 	
ð9:26Þ

where Plm is defined as

Plm ¼ 2
X

u

c
lucmu ð9:27Þ

The matrix elements Plm are referred to as density matrix elements, and are

interpreted as the total electron density in the overlap region of yl and ym;

recall that the summation in eqn 9.27 is over all spatial wavefunctions. When

l¼m, Pll is the electron density on atom l; when l 6¼m, Plm is the bond order

between l and m.

The one-electron matrix elements hij need to be evaluated only once

because they remain unchanged during each iteration. However Plm, which

depends on the expansion coefficients clu and cmu, does need to be

re-evaluated at each iteration. Because the number of two-electron integrals

(eqn 9.24) to evaluate is of the order of M4—so even small basis sets for

moderately-sized molecules can rapidly approach millions of two-electron

integrals—their efficient calculation poses the greatest challenge in an

HF-SCF calculation. The problem is alleviated somewhat by the possibilities

that a number of integrals may be identically zero due to symmetry, some of

the non-zero integrals may be equal by symmetry, and some of the integrals

may be negligibly small because the basis functions may be centred on atomic

nuclei separated by a large distance. Nevertheless, in general, there will be

many more two-electron integrals than can be stored in the core memory of

the computer, and a large body of work has been done in trying to develop

efficient approaches to the calculation of two-electron integrals.7

9.5 The selection of basis sets

In principle, a complete set of basis functions must be used to represent

spinorbitals exactly, and the use of an infinite number of basis functions

would then result in a Hartree–Fock energy equal to that given by the

variational expression, eqn 9.7. This limiting energy is called the Hartree–

Fock limit. The HF limit is not the exact ground-state energy of the molecule

because it still ignores effects of electron correlation (a point discussed

below). However, because an infinite basis set is not computationally feasible,

a finite basis set is always used and the error due to the incompleteness of the

basis is called the basis-set truncation error. A measure of this error is the

difference between the Hartree–Fock limit and the computed lowest energy in

an HF-SCF calculation. A critical computational consideration therefore will

be to keep the number of basis functions low (to minimize the number of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. For a discussion of some of these approaches, see Section 2.3 of D.M. Hirst, A computational

approach to chemistry, Blackwell Scientific Publications, Oxford (1990) and references therein.

Another useful reference is C.M. Quinn, Computational quantum chemistry: an interactive guide

to basis set theory, Academic Press, London (2002).
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two-electron integrals to evaluate) and to choose them cleverly (to minimize

the computational effort for the evaluation of each integral), but nevertheless

achieve a small basis-set truncation error.

The basis functions chosen are usually real. One choice of basis func-

tions for use in eqn 9.14 are the Slater-type orbitals (STOs) introduced in

Section 7.14. A complete basis set consists of STOs with all permitted integral

values of n, l, and ml and all positive values of the orbital exponents, z (zeta),

the parameter that occurs in the radial part (e�zr) of the STO. In practice, only

a small number of all possible functions are used. The best values of z are

determined by fitting STOs to the numerically computed atomic wavefunc-

tions. For atomic SCF calculations, STO basis functions are centred on the

atomic nucleus. For diatomic and polyatomic species, STOs are centred on

each of the atoms. However, for HF-SCF calculations on molecules with three

or more atoms, the evaluation of the many two-electron integrals (abjcd) is

impractical. Indeed, this ‘two-electron integral problem’ was once considered

to be one of the greatest problems in quantum chemistry.

The introduction of Gaussian-type orbitals (GTOs) by S.F. Boys8 in 1950

played a major role in making ab initio calculations computationally

feasible.9 Cartesian Gaussians are functions of the form

yijkðr1 � rcÞ ¼ ðx1 � xcÞiðy1 � ycÞjðz1 � zcÞke�ajr1�rcj2 ð9:28Þ

where (xc, yc, zc) are the Cartesian coordinates of the centre of the Gaussian

function at rc; (x1, y1, z1) are the Cartesian coordinates of an electron at r1;

i, j, and k are non-negative integers; and a is a positive exponent. When

i¼ j¼k¼0, the Cartesian Gaussian is an s-type Gaussian; when iþ jþk¼1,

it is a p-type Gaussian; when iþ jþ k¼2, it is a d-type Gaussian, and

so on (Fig. 9.2). There are six d-type Gaussians. If preferred, six linear

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. S.F. Boys, Proc. R. Soc. (London), 542, A200 (1950).

9. A valuable review of the development and use of Gaussian basis sets in a variety of electronic

structure techniques is A.F. Jalbout, F. Nazari, and L. Tucker, Theochem., 671, 1 (2004).
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Fig. 9.2 Gaussian orbitals. (a), (b), and (c) show the contour plots for s-, p-, and d-type Gaussians, respectively, with the

form e�r2

, xe�r2

, and xye�r2

. (d) Cross-sections through the three wavefunctions.
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combinations of these d-type Gaussians can be used instead, five of them

having the angular behaviour of the five real 3d-hydrogenic orbitals and the

sixth being spherically symmetrical like an s-function. This sixth linear

combination is sometimes eliminated from the basis set, but its elimination is

not essential because we have not assumed that the basis set is orthogonal.

Spherical Gaussians, in which factors like x1�xc are replaced by spherical

harmonics, are also used.

The central advantage of GTOs is that the product of two Gaussians at

different centres is equivalent to a single Gaussian function centred at a point
between the two centres (Fig. 9.3). Therefore, two-electron integrals on three

and four different atomic centres can be reduced to integrals over two

different centres, which are much easier to compute. However, there is also a

disadvantage to using GTOs that to some extent negates the computational

advantage. A 1s hydrogenic atomic orbital has a cusp at the atomic nucleus;

an n¼1 STO also has a cusp there, but a GTO does not (Fig. 9.4). Because

a GTO gives a poorer representation of the orbitals at the atomic nuclei, a

larger basis must be used to achieve an accuracy comparable to that obtained

from STOs.

To alleviate the latter problem, several GTOs are often grouped together

to form what are known as contracted Gaussian functions. In particular, each

contracted Gaussian, w, is taken to be a fixed linear combination of the ori-

ginal or primitive Gaussian functions, g, centred on the same atomic nucleus:

wj ¼
X

i

djigi ð9:29Þ

with the contraction coefficients dji and the parameters characterizing g held

fixed during the calculation. The spatial orbitals are then expressed as a linear

combination of the contracted Gaussians:

ci ¼
X

j

cjiwj ð9:30Þ

The use of contracted rather than primitive Gaussians reduces the number of

unknown coefficients cji to be determined in the HF calculation. For example,

if each contracted Gaussian is composed of three primitives from a set of 30

primitive basis functions, then whereas the expansion in eqn 9.14 involves 30

unknown cji coefficients, the corresponding expansion in eqn 9.30 has only 10

unknown coefficients. This decrease in the number of coefficients leads to

potentially large savings in computer time with little loss of accuracy if the

contracted Gaussians are well-chosen.

How are the primitives and the contracted Gaussians constructed? In some

applications, a set of basis functions is chosen and an atomic SCF calculation

is performed, resulting in an optimized set of exponents (for example, a in

eqn 9.28) for the basis functions, which can then be used in molecular

structure calculations. The simplest type of basis set is a minimal basis set in

which one function is used to represent each of the orbitals of elementary

valence theory. A minimal basis set would include one function each for H

and He (for the 1s-orbital); five basis functions each for Li to Ne (for the 1s-,

2s-, and three 2p-orbitals); nine functions each for Na to Ar, and so on. For

instance, a minimal basis set for H2O consists of seven functions, and includes
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Fig. 9.3 The product of two

Gaussians (G) is itself a
Gaussian lying between the two

original functions. In this illustration,

the amplitude of the product has been

multiplied by 100.
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two basis functions to represent the two H1s orbitals, and one basis function

each for the 1s-, 2s-, 2px-, 2py-, and 2pz-orbitals of oxygen. However, a mini-

mal basis set results in wavefunctions and energies that are not very close to

the Hartree–Fock limits: accurate calculations need more extensive basis sets.

A significant improvement is achieved by adopting a double-zeta basis set

(DZ basis set), in which each basis function in the minimal basis set is replaced

by two basis functions. Compared to a minimal basis set, the number of basis

functions has doubled and with it the number of variationally determined

expansion coefficients cji. A DZ basis set for H2O, for instance, would use

14 functions. In a triple-zeta basis set (TZ basis set), three basis functions are

used to represent each of the orbitals encountered in elementary valence theory.

A split-valence basis set (SV basis set) is a compromise between the inadequ-

acy of a minimal basis set and the computational demands of DZ and TZ basis

sets. Each valence atomic orbital is represented by two basis functions while

each inner-shell atomic orbital is represented by a single basis function. For

example, for an atomic SCF calculation on C using contracted Gaussians in

an SV basis, there is one contracted function representing the 1s-orbital, two

representing the 2s-orbital, and two each for the three 2p-orbitals.

The basis sets we have described so far ignore possible contributions from

basis functions representing orbitals for which the value of the quantum

number l is larger than the maximum value considered in elementary valence

theory (such as the inclusion of d-orbitals in the discussion of carbon

compounds). When bonds form in molecules, atomic orbitals are distorted

(or polarized) by adjacent atoms. This distortion can be taken into account

by including basis functions representing orbitals with high values of l.
For example, the inclusion of p-type basis functions can model reasonably

well the distortion of a 1s-orbital, and d-type functions are used to describe

distortion of p-orbitals. The addition of these polarization functions to a DZ

basis set results in a double-zeta plus polarization basis (DZP basis). For

example, in a DZP basis for methane, a set of three 2p-functions is added to

each hydrogen atom and a set of six 3d-functions is added to the carbon atom.

There are numerous ways to construct contracted Gaussian basis sets. One

approach is to make a least-squares fit of N primitive Gaussians to a set of

STOs that have been optimized in an atomic SCF calculation. For example, an

SCF calculation is performed on atomic carbon using STOs to find the con-

tracted Gaussians best representing the 1s, 2s, and 2p STOs, and then these

contracted Gaussians are used in a subsequent SCF calculation on methane.

The expansion of an STO in terms of N primitive Gaussians is designated

STO-NG. A common choice is N¼3, giving a set of contracted Gaussians

referred to as STO-3G. A second approach is to perform an atomic SCF

calculation using a relatively large basis of Gaussian primitives. This proced-

ure results in a set of variationally determined SCF coefficients (cji in eqn 9.14)

for the primitives of each spatial orbital ci. The coefficients of the primitive

Gaussians can then be used (eqn 9.29) to obtain contracted Gaussian basis

sets for use in molecular calculations. In the (4s)/[2s] contraction scheme,10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10. S. Huzinaga, J. Chem. Phys., 1293, 42 (1965).
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four primitive s-type Gaussians are used to construct two basis set functions for

atomic hydrogen. As in many contraction schemes, the most diffuse primitive

(the one with the smallest value of the exponent a) is left uncontracted, and

each of the remaining primitives appears in only one contracted Gaussian. That

is, in the (4s)/[2s] scheme, three of the primitives are used to form one con-

tracted Gaussian basis set function.

In the (9s5p)/[3s2p] contraction scheme,11 nine s-type and five p-type

primitive Gaussians (which have been optimized in an atomic SCF calculation

on a Period 2 element) are contracted into three and two basis functions,

respectively. This contraction scheme usually results in a split-valence basis

set containing one basis function representing the inner-shell 1s-orbital, two

basis functions for the valence 2s-orbital, and two for each of the three

2p-orbitals. Therefore, the contraction scheme reduces the total number of

basis functions from 24 (five p-type primitives for each of 2px, 2py, and 2pz,

and nine s-type primitives) to nine. This reduction achieves substantial

decrease in computer time because the number of two-electron integrals to be

evaluated is proportional to the fourth power of the number of basis functions.

Other contraction schemes also result in valuable savings. In the 3-21G

basis set,12 one contracted Gaussian composed of three primitives is used to

represent each inner-shell atomic orbital. Each valence-shell orbital is repres-

ented by two functions, one a contracted Gaussian of two primitives and one

a single (and usually diffuse) primitive. The primitives are first optimized in an

SCF calculation on atoms, and the contracted sets are then used in molecular

calculations. The 6-31G* basis set starts with the split-valence 6-31G basis

and adds polarization functions in the form of six d-type functions for

each atom other than H. Another star, an additional polarization function:

6-31G** indicates the addition to 6-31G
 of a set of three p-type polarization

functions for each H atom.

Example 9.2 Determining the number of basis set functions in a molecular

structure calculation

Determine the total number of Gaussian basis set functions in an ab initio

calculation of C2H2 using a 6-31G
 basis set.

Method. Start with the 6-31G basis, which, for each atom in the molecule,

consists of (a) one contracted Gaussian composed of six primitives for

each inner-shell orbital and (b) two functions for each valence-shell orbital,

a contracted Gaussian of three primitives and a single uncontracted primitive.

Then add six d-type polarization functions for each atom other than hydrogen.

Answer. Each 1s-orbital of H is represented by two basis set functions, using a

total of four primitive Gaussians. Each 1s-orbital of C is represented by one

contracted Gaussian of six primitives. The 2s-, 2px-, 2py-, and 2pz-orbitals of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11. T.H. Dunning, J. Chem. Phys., 2823, 53 (1970).

12. W.J. Hehre, L. Radom, P.v.R Schleyer, and J.A. Pople, Ab initio molecular orbital theory,

Wiley, New York (1986).
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each C atom are each represented by two basis set functions, one a contraction

of three primitives and one a single uncontracted primitive. In addition, each

C atom will also have six d-type polarization functions. Therefore, the total

number of 6-31G
 basis set functions for C2H2 is 2(1þ 4� 2þ 6)þ 2� 2¼ 34.

The total number of primitives used is 2{6þ 4� (3þ 1)þ 6}þ 2� 4¼ 64.

Self-test 9.2. How many basis functions would there be in a molecular

structure calculation on H2O using a 6-31G

 basis?

[25 basis functions composed of 42 primitives]

The basis-set superposition error is a contribution to the inaccuracy of

calculations that stems from the use of a finite basis set; this error may arise in

the calculation of the interaction energy of two weakly bound systems. As an

example, suppose we were interested in the energetics of the dimerization of

hydrogen fluoride and we defined the interaction energy as the energy of the

dimer minus the energies of the two infinitely separated monomers. If we

used, for example, a 6-31G basis set for each of the atoms in hydrogen

fluoride, it might seem that the obvious choice would be to use a 6-31G basis

set on each of the four atoms of the dimer. However, when the energy of an

individual hydrogen fluoride molecule is computed, only the basis set func-

tions on two atoms (H and F) are used to describe each electronic spatial

orbital c. On the other hand, the orbitals in the calculation for the dimer are

expressed as linear combinations of the basis set functions on all four atoms.

In other words, the basis set for the dimer is larger than that for either

monomer, and this enlargement of the basis results in a non-physical lowering

of the energy of the dissociated dimer relative to the separated monomers.

A common method used to correct the basis-set superposition error is

the counterpoise correction,13 in which the energies of the monomer are

computed by using the full basis set used for the dimer. For example, in

the case of the hydrogen fluoride dimer, when computing the energy of an

individual molecule, a basis set is used that consists of functions centred

on each nucleus of the monomer as well as the same basis set functions

centred at the two points in space that would correspond to the equilibrium

positions of the other two nuclei in the dimer.

9.6 Calculational accuracy and the basis set

Table 9.1 presents results of ab initio Hartree–Fock SCF calculations on the

ground states of several closed-shell molecules and shows how the SCF energy

varies with the basis set used in the calculation. The reported SCF energies

correspond to geometries at or nearly at equilibrium. The energies represent

the sum of the electronic (ab initio) energy and the nucleus–nucleus repulsion

energy for the selected geometry. We see from the table that the energy

approaches the Hartree–Fock limit as the basis set becomes more complete.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13. S.F. Boys and F. Bernardi, Mol. Phys., 553, 19 (1970).
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We have mentioned that the electronic potential energy surface (or curve

for a diatomic molecule) can be used to predict the equilibrium geometries of

molecules. This prediction can then be compared directly with the best

experimental values. Table 9.2 shows a number of calculated equilibrium

bond lengths using the basis sets indicated in Table 9.1. A good ab initio SCF

calculation typically is in error by 0.02–0.04a0 (corresponding to 1–2 pm).

Electron correlation

However good the HF ground-state wavefunction F0 may appear to be, it is

not the ‘exact’ wavefunction. The Hartree–Fock method relies on averages:

it does not consider the instantaneous coulombic interactions between elec-

trons; nor does it take into account the quantum mechanical effects on

electron distributions because the effect of the n – 1 electrons on the electron

of interest is treated in an average way. We summarize these deficiencies by

saying that the HF method ignores electron correlation. A great deal of

modern work in the field of electronic structure calculation is aimed at taking

electron correlation into account.

Table 9.1 Self-consistent field energies with a variety of basis sets


Basis set H2 N2 CH4 NH3 H2O

STO-3G �1.117 �107.496 �39.727 �55.454 �74.963

4-31G �1.127 �108.754 �40.140 �56.102 �75.907

6-31G
 �1.127 �108.942 �40.195 �56.184 �76.011

6-31G

 �1.131 �108.942 �40.202 �56.195 �76.023

HF limit �1.134 �108.997 �40.225 �56.225 �76.065


 The energies are expressed as multiples of the hartree, Eh¼4.359 74 aJ.

Table 9.2 Self-consistent field equilibrium bond lengths with a variety of
basis sets


Basis set H2 N2 CH4 NH3 H2O

STO-3G 1.346 2.143 2.047 1.952 1.871

4-31G 1.380 2.050 2.043 1.873 1.797

6-31G
 1.380 2.039 2.048 1.897 1.791

6-31G

 1.385 2.039 2.048 1.897 1.782

Observed 1.401 2.074 2.050 1.912 1.809


 The bond lengths are expressed as multiples of the Bohr radius (a0¼ 52.917 72 pm).
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9.7 Configuration state functions

The HF method yields a finite set of spinorbitals when a finite basis set

expansion is used. In general, a basis with M members (see eqn 9.14) results

in M spatial wavefunctions and 2M different spinorbitals. As discussed in

Section 9.2, by ordering the spinorbitals energetically and taking the n lowest

in energy (to be occupied by the n electrons), we form the Hartree–Fock

wavefunction F0. However, there remain 2M� n virtual orbitals. Clearly,

many Slater determinants can be formed from the 2M spinorbitals; F0 is just

one of them. By using the single determinantal wavefunction F0 as a con-

venient reference, we can classify all other determinants according to how

many electrons have been promoted from occupied orbitals to virtual orbitals.

To simplify the appearance of the following expressions, we write the nor-

malized Slater determinants using the notation k . . . k, and hence denote F0 as

F0 ¼ ð1=n!Þ1=2detjf1f2 . . .fafb . . .fnj ¼ jjf1f2 . . .fafb . . .fnjj
where fa and fb are among the n occupied spinorbitals for the Hartree–Fock

ground state.

A singly excited determinant corresponds to one for which a single electron

in occupied spinorbital fa has been promoted to a virtual spinorbital fp

(Fig. 9.5):

F p
a ¼ jjf1f2 . . .fpfb . . .fnjj

A doubly excited determinant is one in which two electrons have been

promoted, one from fa to fp and one from fb to fq

F pq
ab ¼ jjf1f2 . . .fpfq . . .fnjj

In a similar manner, we can form other multiply excited determinants. Each

of the determinants, or a linear combination of a small number of them

constructed so as to have the correct electronic symmetry,14 is called a con-

figuration state function (CSF). More precisely, a CSF is an eigenfunction of

all the operators that commute with H. These excited CSFs can be used to

approximate excited-state wavefunctions or, as we shall now see, they can be

used in a linear combination with F0 to improve the representation of the

ground-state or any excited-state wavefunction.

9.8 Configuration interaction

The exact ground-state or excited-state wavefunction can be expressed as a

linear combination of all possible n-electron Slater determinants arising from

a complete set of spinorbitals.15 Therefore, we can write the exact electronic

wavefunction C for any state of the system in the form

C ¼ C0F0 þ
X
a,p

Cp
aF

p
a þ

X
a<b
p<q

C pq
ab F

pq
ab þ

X
a<b<c
p<q<r

Cpqr
abcF

pqr
abc þ � � � ð9:31Þ

�1

�2

�a

�b

� c

�p

�q

�2n

F0 Fa
p

Fab
pq

Fig. 9.5 The notation for excited

determinants.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14. For example, a linear combination of determinants for an eigenfunction of S2.

15. A proof of this statement can be found in P.-O. Löwdin, Adv. Chem. Phys., 207, 2 (1959),

a classic review on electron correlation.
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where the Cs are expansion coefficients and where the limits in the summa-

tion indices (a<b and so on) ensure that we sum over all unique pairs

of spinorbitals in doubly excited determinants, over all unique triplets of

spinorbitals in triply excited determinants, and so on. In other words, a given

excited determinant appears only once in the summation. An ab initio method

in which the wavefunction is expressed in the form of eqn 9.31 is called

configuration interaction (CI). A primitive example of CI was described in

Section 8.5 in connection with the electronic structure of H2.

The energy associated with the exact ground-state wavefunction of the

form of eqn 9.31 is the exact non-relativistic ground-state energy (within

the Born–Oppenheimer approximation). The difference between this exact

energy and the HF limit is called the correlation energy. Configuration

interaction accounts for the electron correlation neglected in the Hartree–

Fock method.

At this point the familiar refrain is inevitable: in practice, it is computa-

tionally impossible to handle an infinite basis set of n-electron Slater deter-

minants with each determinant constructed from an infinite set of spinorbitals.

Furthermore, it becomes computationally very demanding (both in computer

time and storage) to handle extremely large numbers of determinants. The

latter problem is slightly alleviated by the observation that a number of

the determinants in eqn 9.31 can often be eliminated on the basis of symmetry.

For example, if we are interested in computing an accurate wavefunction for

the 1Sþg ground state of H2, we do not need to include CSFs that do not

correspond to the required 1Sþg symmetry. For instance, we can ignore CSFs

that have u parity or which have non-zero eigenvalues of Sz.

There is another point that emphasizes—if further emphasis is required—

the difficulty of carrying out molecular structure calculations reliably. Even if

we could include all CSFs of the desired symmetry in eqn 9.31, we must also

remember that the CSFs themselves are constructed from a finite set of one-

electron spinorbitals. A calculation is classified as full CI if all CSFs of the

appropriate symmetry are used for a given finite basis set. For a given basis,

full CI is the best CI calculation we can do. The difference between the

ground-state energies obtained from a Hartree–Fock SCF calculation and a

full CI calculation using the same basis set is called the basis-set correlation

energy (Fig. 9.6). As the number of one-electron spinorbitals computed from

the HF equations gets larger and larger, the basis-set correlation energy gets

closer and closer to the exact correlation energy.

Unfortunately, even for molecular calculations involving a small number

(n) of electrons and a relatively small number (M) of basis set functions y (and

consequently a small number 2M of spinorbitals), the total number of

determinants can be extremely large. For example, with 10 electrons and 20

basis set functions, the total number of determinants is

2M
n


 �
¼ 8:477 . . .� 108

In practice, therefore, the expansion in eqn 9.31 must almost always be

truncated. Nonetheless, although the calculation is limited to a finite set of

spinorbitals and a fraction of all possible determinants, CI is a popular
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method for the calculation of accurate molecular wavefunctions and potential

energy surfaces. Even with a small number of CSFs it can correct for one of

the deficiencies that stem from the use of only doubly occupied orbitals in

the restricted HF method, namely the incorrect behaviour for the dissociation

of a molecule. This point was illustrated in Section 8.5. A calculation in

which the incorrect behaviour of the HF wavefunction upon dissociation is

corrected accounts for an important part of the correlation energy called

non-dynamical correlation or structural correlation. On the other hand,

dynamical correlation accounts for the incorrect HF wavefunction at short

interatomic distances.

9.9 CI calculations

In configuration interaction calculations, the ground- or excited-state wave-

function, C, for state s (which we will denote for the remainder of this chapter

by Cs to avoid confusion with the spatial function ci) is represented as a linear

combination of n-electron Slater determinants. Equation 9. 31 can be written

in a notationally simpler form as

Cs ¼
XL

J¼1

CJsFJ ð9:32Þ

where the sum is over a finite number L of determinants FJ with expansion

coefficients CJs for the state s. The expansion coefficients CJs are determined

variationally by minimizing the Rayleigh ratio e of eqn 9.7 using Cs as the

trial function. As in all applications of variation theory (see Sections 6.9

and 6.10), this minimization is equivalent to solving a set of simultaneous

equations for the coefficients CJs for each state s:

XL

J¼1

HIJCJs ¼ Es

XL

J¼1

SIJCJs ð9:33Þ

where

HIJ ¼
Z

F
I HFJ dx1dx2 . . . dxn ð9:34Þ

and

SIJ ¼
Z

F
IFJ dx1dx2 . . . dxn ð9:35Þ

where the notation
R

. . . dx implies integration over spatial (r) and spin

coordinates. The set of equations can be written in matrix notation as

HC ¼ ESC ð9:36Þ

where the elements of the L�L square matrices H and S are HIJ and SIJ,

respectively; E is the diagonal matrix of energies Es; and C is an L�L matrix

of coefficients. Because the Slater determinants form an orthonormal set

(SIJ¼ dIJ), eqn 9.36 becomes

HC ¼ EC ð9:37Þ
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This matrix equation can be solved by diagonalizing H, and yields a total of L
wavefunctions (eigenfunctions) Cs with energies (eigenvalues) Es. The lowest

energy eigenvalue represents an upper bound to the ground-state energy of

the molecule; it would be the exact ground-state energy in a full CI calculation

with an infinite number of spinorbitals. Provided the excited-state wave-

function is orthogonal to the ground-state wavefunction, the next lowest

energy eigenvalue represents an upper bound for the first excited-state energy

of the molecule, and so on.

The matrix elements HIJ, which must be evaluated in CI calculations, can

ultimately be expressed in terms of the basis functions y, because the Slater

determinants are composed of spinorbitals expressed in terms of the basis

functions (Fig. 9.7). When the number of determinants is large, there may be

too many one- and two-electron integrals to store in the memory of the

computer simultaneously, so their computation may have to be done in

groups. In any event, conventional CI calculations are usually limited to a

number of CSFs on the order of 104, and because full CI usually results in a

list far exceeding this number, it is necessary to employ a truncation scheme

so that the list of CSFs is kept at a manageable size.

The use of a truncated CSF list is referred to as limited CI. A systematic

approach to the selection of determinants for use in eqn 9.32 is to include all

those determinants differing from the HF wavefunction F0 by no more than

some predetermined number of spinorbitals. Because the spinorbitals cannot

be improved once the HF-SCF calculation has been completed, the best we

can do is systematically include more and more excited determinants in the

expansion in eqn 9.31. Hamiltonian matrix elements H0J between the HF

wavefunction F0 and determinants FJ that are more than doubly excited are

zero. In addition, through the use of Brillouin’s theorem,16 hamiltonian

matrix elements between F0 and all singly excited determinants also vanish.

Thus, a first approach (which can be expected to be reasonably accurate

when F0 is an approximation to the exact wavefunction) is to limit the list

of excited determinants to those that are singly and doubly excited.17

Limitation of the list of determinants to F0 and determinants that are singly

and doubly excited with respect to F0 is denoted SDCI. If only F0 and doubly

excited determinants are used, then the technique is denoted DCI.

Table 9.3 presents results for CI calculations on H2 using some of the basis

sets of Table 9.1. In particular, we compare results from DCI and SDCI. As

dihydrogen is a two-electron species, SDCI in this case is the same as full CI.

The entries for the energies in Table 9.3 represent the differences between the

SCF and CI ground-state energies, both computed using the same basis set.

Several things are apparent from the table. First, the single excitations make a

very small contribution to the energy. Second, the contribution to the

Slater determinants, ΦI

Section 9.7

Section 7.11

Spinorbitals, �i

Spatial wave-
functions, �i

Basis functions, �i

Section 9.4

Fig. 9.7 Matrix elements between

Slater determinants can ultimately

be0expressed in terms of matrix
elements between basis functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16. See Problem 9.17.

17. Singly excited determinants will have a small but non-zero effect on the calculation of

the ground-state energy because they have non-zero matrix elements with doubly excited

determinants, which themselves mix with F0. Moreover, single excitations do affect the electronic

charge distribution and therefore properties such as the dipole moment. Thus, they are often

included in CI calculations.
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energy from the double excitations is very sensitive to the basis set. As the

basis set gets larger, we recover a larger fraction of the exact correlation

energy of �0.0409Eh (�1.11 eV) from the doubly excited configurations.

However, even the largest basis set of Table 9.3, 6-31G

, gives an energy that

is significantly different from the exact correlation energy, primarily because

l  2 functions have not been included in the basis.

Table 9.3 also presents the equilibrium bond length of H2 obtained by

finding the minimum in the calculated potential energy curve as a function of

the bond length. We see that as the basis set is improved, the computed bond

length is closer to the experimental result of 1.401a0. By comparing

Tables 9.2 and 9.3, we can see that for a given basis set, the full CI calculation

is superior to the HF-SCF result.

Configuration interaction calculations that include single, double, triple,

and quadruple excitations (in addition to F0) are designated SDTQCI.

However, for basis sets large enough to recover most of the correlation

energy, SDTQCI often involves too many determinants to be computationally

practicable. As the quadruply excited determinants can be important in

computing the correlation energy, a simple formula known as the Davidson

correction has been proposed for estimating the contribution DEQ of quad-

ruply excited determinants to the correlation energy:18

DEQ ¼ 1� C2
0

� 
ðEDCI � ESCFÞ ð9:38Þ

where EDCI is the ground-state energy and C0 is the coefficient of F0 (for the

normalized wavefunction of eqn 9.32), both obtained in a DCI calculation.

ESCF is the ground-state energy associated with F0 obtained in an HF-SCF

calculation. Using eqn 9.38 in a CI study of the ground state of N2, Langhoff

and Davidson18 estimated that the contribution of quadruple excitations to

the correlation energy of N2 was 7.6 per cent or 0.048hcR1 (corresponding

to 24 millihartree, 0.65 eV).

One serious deficiency that plagues limited CI calculations is the lack

of size-consistency. A method is deemed size-consistent if the energy of a

many-electron system is proportional to the number of electrons n in the

limit of n!1; in particular, the energy of AB computed when subsystems

A and B are infinitely far apart should be equal to the sum of the energies of

Table 9.3 Calculated properties of dihydrogen


Basis set {E(DCI)�E(SCF)}/
(10�3 Eh)

{E(SDCI)�E(SCF)}/
(10�3 Eh)

Re(SDCI)/a0

STO-3G �20.56 �20.56 1.389

4-31G �24.87 �24.94 1.410

6-31G

 �33.73 �33.87 1.396


 The energy differences (in hartrees, Table 9.1) are calculated at 1.4a0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18. S.R. Langhoff and E.R. Davidson, Int. J. Quantum Chem., 61, 8 (1974).
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A and B separately computed using the same method. That the physical

requirement of size-consistency is not satisfied, for example, by a SDCI

wavefunction is demonstrated in the following example.

Example 9.3 Demonstrating the lack of size-consistency

Demonstrate that the SDCI calculation on the dimer He2 is not size-consistent.

Method. To show that the calculation is not size-consistent, we need to show

that the energy of two infinitely separated He atoms is not equal to the energy

of the dimer He2 when the internuclear distance in the dimer is infinite.

Recalling that full CI is size-consistent but limited CI is not, we should

compare SDCI calculations to full CI calculations on both HeþHe and He2.

Answer. First, consider the energies of the two He atoms separately computed

using SDCI. The infinitely separated atoms each have a (restricted) HF

wavefunction given by

F0 ¼ jjca
1sð1Þc

b
1sð2Þjj

Because He has only two electrons, a calculation involving all single and

double excitations would involve all possible determinants: it would be a full

CI calculation for each atom. Therefore, the SDCI calculation on the two

independent two-electron He systems (that is, the four-electron HeþHe SDCI

calculation) includes contributions from quadruply excited determinants in

which both electrons on each independent He atom are excited. Now consider

the SDCI calculation on the composite four-electron He–He dimer with an

infinite internuclear distance. An SDCI calculation involving only singly and

doubly excited determinants will not be the same as full CI; in particular, it will

not include contributions from quadruply excited determinants. Therefore,

the SDCI calculation on the composite four-electron system He2 (at infinite

internuclear separation) will result in both a different wavefunction and a

different energy than the SDCI treatment of the two independent two-electron

He systems. Thus, the limited CI calculation is not size-consistent.

Self-test 9.3. What level of CI calculation is necessary to ensure that the He2

dimer CI calculation is size-consistent?

[SDTQCI]

The magnitude of the size-consistency error increases as the size of the

molecule increases. However, using the Davidson correction can reduce the

error significantly.

9.10 Multiconfiguration and multireference methods

In the CI methods described in the previous section, the expansion coefficients

cji of eqn 9.14 are determined in an initial HF-SCF calculation and held fixed

in the subsequent CI calculation. In the multiconfiguration self-consistent field

method (MCSCF), the coefficients cji, as well as the coefficients CJs of eqn 9.32,

are optimized. This simultaneous optimization of both sets of expansion

coefficients makes MCSCF computationally demanding, but by optimizing cji,

308 j 9 THE CALCULATION OF ELECTRONIC STRUCTURE



accurate results can be obtained with the inclusion of a smaller number

of CSFs.

Development of efficient MCSCF methods is particularly important for

excited states. One such scheme is the complete active-space self-consistent

field method (CASSCF)19 in which the spinorbitals (which are themselves

optimized during the calculation by determining the optimal values of cji) are

divided into three classes:

1. A set of inactive orbitals composed of the lowest energy spinorbitals that

are doubly occupied in all determinants included in eqn 9.32.

2. A set of virtual orbitals of very high energy spinorbitals that are

unoccupied in all determinants.

3. A set of active orbitals that are energetically between the inactive and

virtual orbitals.

The active electrons are those electrons not in the doubly occupied inactive

orbital set. The CSFs included in the CASSCF calculation are configurations

(of the appropriate symmetry and spin) that arise from all possible ways of

distributing the active electrons over the active orbitals.

The choice of which orbitals to include as active orbitals is critical in

CASSCF. One approach is to select the bonding, non-bonding, and anti-

bonding orbitals that arise in qualitative MO theory from the valence atomic

orbitals of the atoms in the molecule. For example, in a CASSCF calculation

of the ground-state wavefunction and energy of the homonuclear diatomic

B2, one choice could be to take the inactive orbitals to be the s-orbitals

formed from the B1s atomic orbitals and to take the active orbitals to be

the s- and p-orbitals that are formed from the 2s and 2p atomic orbitals.

The choice of active orbitals is important because the number of CSFs rises

very quickly as the number of active orbitals increases.

In the restricted active-space (RAS) SCF method,20 the set of active orbitals

is further divided into three subsets of orbitals (denoted I, II, and III) with

the requirements that subset I contains a (specified) minimum number of

electrons and subset III contains a (specified) maximum number of electrons.

The number of electrons in subset II is unrestricted but the total number of

electrons in the three subsets must be specified in the RASSCF calculation. In

practice, subset II contains the most important orbitals for the problem at

hand and this set of orbitals is reminiscent of the ‘normal’ active set of

CASSCF.

In the CI methods described so far, the HF-SCF wavefunction F0 is used as

a reference configuration and configuration state functions are formed by

moving electrons out of the occupied spinorbitals of F0 into unoccupied

spinorbitals. In multireference configuration interaction (MRCI), a set of

reference configurations is created, from which excited determinants are

formed for use in a CI calculation. For example, one procedure would be to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19. B.O. Roos, Int. J. Quantum Chem. Symp., 175, 14 (1980); L.M. Cheung, K.R. Sundberg,

and K. Ruedenberg, Int. J. Quantum Chem., 1103, 16 (1979).

20. J. Olsen, B.O. Roos, P. Jørgensen, and H.J.A. Jensen, J. Chem. Phys., 2185, 89 (1988).
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perform an MCSCF calculation and select a set of reference configurations

from the determinants that have a coefficient CJs larger than some threshold

value (such as 0.05 or 0.1) in the final normalized MCSCF wavefunction. For

each reference determinant, electrons are moved from occupied spinorbitals

to unoccupied spinorbitals to create more determinants for inclusion in the CI

expansion in eqn 9.32. Then the configuration interaction calculation is

performed, optimizing all the coefficients CJs of the determinants that have

been included. The reference determinants will often be singly and doubly

excited determinants with respect to F0 and single and double excitations

from the reference determinants are often included. As a result, the final

MRCI wavefunction will include determinants that are triply and quadruply

excited from F0. Because MRCI calculations often include the most import-

ant quadruply excited determinants, they usually reduce the size-consistency

error encountered in SDCI calculations significantly. In addition, it is often

the case that a large fraction of the exact correlation energy can be recovered

from MRCI calculations with a much smaller number of determinants.

9.11 Møller–Plesset many-body perturbation theory

Configuration interaction calculations provide a systematic approach for

going beyond the Hartree–Fock level, by including determinants that are

successively singly excited, doubly excited, triply excited, and so on, from a

reference configuration. One important feature of CI is that it is variational,

but one disadvantage is its lack of size-consistency (with the exception of full

CI). Perturbation theory (PT, Section 6.2) provides an alternative systematic

approach to finding the correlation energy: whereas its calculations are size-

consistent, they are not variational in that it does not in general give energies

that are upper bounds to the exact energy.

The application of PT to a system composed of many interacting particles is

called many-body perturbation theory (MBPT). Because we want to find the

correlation energy for the ground state, we take the zero-order hamiltonian

from the Fock operators of the HF-SCF method. This choice of H(0) was

made in the early days of quantum mechanics (in 1934) by C. Møller and

M.S. Plesset, and the procedure is called Møller–Plesset perturbation theory

(MPPT). Applications of MPPT to molecular systems did not actually begin

until some 40 years later.21

In MPPT, the zero-order hamiltonian H(0) (in this context denoted HHF) is

given by the sum of the one-electron Fock operators defined in eqn 9.9:

HHF ¼
Xn

i¼1

fi ð9:39Þ

As we show in the following example, the HF ground-state wavefunction F0

is an eigenfunction of HHF with an eigenvalue E
ð0Þ
0 given by the sum of the

orbital energies of all the occupied spinorbitals.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21. See J.A. Pople, J.S. Binkley, and R. Seeger, Int. J. Quantum Chem. Symp., 1, 10 (1976) for

an early reference.
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Example 9.4 Showing that F0 is an eigenfunction of HHF and determining its

eigenvalue

Show that the HF ground-state wavefunction is an eigenfunction of the zero-

order MPPT hamiltonian and that its eigenvalue equals the sum of the

occupied spinorbital energies.

Method. Consider the hamiltonian HHF of eqn 9.39 and the effect of the one-

electron Fock operator fi on the spinorbital fa (eqn 9.8). Analyse the effect of

HHF on each term in the expansion of F0. Use the fact that a linear combi-

nation of eigenfunctions of an hermitian operator all having an identical

eigenvalue is itself an eigenfunction with the same eigenvalue.

Answer. The HF ground-state wavefunction is

F0 ¼ fað1Þfbð2Þ . . .fzðnÞ
�� ���� ��

An expansion of the Slater determinant yields a sum of terms, each of which

involves a product of the n spinorbitals fafb . . .fz with the electrons 1, 2, . . . ,

n distributed differently in each term in the summation. Consider the effect of

HHF on one of these terms, the principal diagonal of the determinant, using

eqns 9.39 and 9.8:

HHFfað1Þfbð2Þ . . .fzðnÞ ¼
Xn

i¼1

fi fað1Þfbð2Þ . . .fzðnÞ
� 	

¼ f1fað1Þf gfbð2Þ . . .fzðnÞ
þfað1Þ f2fbð2Þf g . . .fzðnÞ
þ � � �þfað1Þfbð2Þ . . . fnfzðnÞ

	
¼ ðeaþ ebþ� � �þ ezÞfað1Þfbð2Þ . . .fzðnÞ

Each term in the expansion of F0 has each occupied spinorbital appearing

once; therefore each term in the expansion is an eigenfunction of HHF with the

same eigenvalue eaþ ebþ � � � þ ez. We can immediately conclude that F0 is an

eigenfunction of the MPPT zero-order hamiltonian with an eigenvalue given

by the sum of the orbital energies of all occupied spinorbitals.

Self-test 9.4. Show that all singly and multiply excited determinants are also

eigenfunctions of HHF with eigenvalues equal to the sums of the orbital

energies of the spinorbitals occupied in that particular determinant.

The perturbation H(1) is given by

Hð1Þ ¼ H �
Xn

i¼1

fi ð9:40Þ

where, as before, H is the electronic hamiltonian. The HF energy EHF asso-

ciated with the (normalized) ground-state HF wavefunction F0 is the

expectation value

EHF ¼ hF0jHjF0i ð9:41Þ
or, equivalently,

EHF ¼ hF0jHHF þHð1ÞjF0i ð9:42Þ
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It is easy to show that EHF is equal to the sum of the zero-order energy E
ð0Þ
0

and the first-order energy correction E
ð1Þ
0 . From eqns 6.12 and 6.20 and the

fact that F0 is an eigenfunction of HHF, we know

E
ð0Þ
0 ¼ hF0jHHFjF0i ð9:43Þ

E
ð1Þ
0 ¼ hF0jHð1ÞjF0i ð9:44Þ

From eqns 9.42–9.44, we conclude that

EHF ¼ E
ð0Þ
0 þ E

ð1Þ
0

Therefore, the first correction to the ground-state energy is given by second-

order perturbation theory as (see eqn 6.24)

Eð2Þ ¼
X
J 6¼0

hFJjHð1ÞjF0ihF0jHð1ÞjFJi
E
ð0Þ
0 � E

ð0Þ
J

ð9:45Þ

where FJ is a multiply excited determinant and an eigenfunction of HHF with

eigenvalue E
ð0Þ
J . To evaluate eqn 9.45, we need to be able to evaluate the off-

diagonal matrix elements hFJjH(1)jF0i. First, we note that the matrix element

hFJjHHFjF0i ¼ 0

because F0 is an eigenfunction of HHF and the spinorbitals, and hence the

determinants, are orthogonal. Therefore,

if hFJjHjF0i ¼ 0, then hFJjHð1ÞjF0i ¼ 0

From Brillouin’s theorem and the discussion in Section 9.9, we conclude that

only the doubly excited determinants have non-zero H(1) matrix elements

with F0 and therefore only double excitations contribute to E(2). An analysis

of these non-vanishing matrix elements22 yields the following expression:

Eð2Þ ¼ 1
4

Xocc

a;b

Xvir

p;q

ðabjjpqÞðpqjjabÞ
ea þ eb � ep � eq

ð9:46Þ

where

ðabjjpqÞ ¼ j0

Z
f
að1Þf
bð2Þ

1

r12
fpð1Þfqð2Þ dx1dx2

� j0

Z
f
að1Þf
bð2Þ

1

r12
fqð1Þfpð2Þ dx1dx2

ð9:47Þ

with fa and fb being occupied spinorbitals and fp and fq being virtual

spinorbitals. The inclusion of the second-order energy correction in MPPT is

designated MP2.

In general, bond lengths computed using MP2 are in excellent agreement

with experiment for bonds involving hydrogen. However, the same is not

generally true for multiple bonds. For example, the bond lengths for N2 from

MP2 are 2.322a0 (STO-3G basis), 2.171a0 (4-31G basis), and 2.133a0

(6-31G

 basis) compared to the experimental value of 2.074a0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22. See, for example, Section 2.3.4.3 of D.M. Hirst, A computational approach to chemistry,

Blackwell Scientific Publications, Oxford (1990).
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It is possible to extend MPPT to include third- and fourth-order energy

corrections, and the procedures are then denoted MP3 and MP4.23 The

algebra involved becomes more complicated at higher orders of perturbation

theory, and it is common to use diagrammatic techniques to classify and

represent the various terms that appear in the perturbation series expressions.

These diagrammatic representations can be used to prove that MPPT is size-

consistent in all orders.

9.12 The coupled-cluster method

Another popular ab initio method that, like MPPT, is size-consistent but not

variational, is called the coupled-cluster method (CC method). The CC

method introduces the cluster operator C, which relates the exact electronic

wavefunction C to the HF wavefunction F0 through

C ¼ eCF0

where the exponential operator eC is defined by the series expansion

eC ¼ 1þ Cþ 1
2!C

2 þ 1
3!C

3 þ � � �

We show below that the effect of eC on F0 is to create a linear combination of

Slater determinants that includes F0 and all its singly, doubly, . . . , N-tuply

excited determinants (reminiscent of eqn 9.31). Therefore, provided the

spinorbitals comprising F0 form a complete basis set (which, of course,

in practice will never be the case), C is the exact wavefunction for any state of

the system.

The effect of the cluster operator C on F0 is to give a linear combination

of Slater determinants in which electrons from occupied spinorbitals have

been excited to virtual spinorbitals. In particular, C is the sum of the one-

electron excitation operator C1, two-electron excitation operator C2, . . . ,

N-electron excitation operator CN:

C ¼ C1 þ C2 þ � � � þ CN

The effects of the excitation operators are

C1F0 ¼
X
a;p

t p
a F

p
a

C2F0 ¼
X

a;b;p;q

tpq
abF

pq
ab

and likewise for C3 to CN; the t p
a are called single-excitation amplitudes,

t pq
ab double-excitation amplitudes, and so on. No operators beyond CN appear

because F0 has all electrons in N occupied spinorbitals. The excitation

amplitudes are determined by solving the coupled cluster equations; the latter

set of equations is derived by substituting eCF0 into the electronic Schrödinger

equation.24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23. For a detailed discussion, see S. Wilson, Electron correlation in molecules, Clarendon Press,

Oxford (1984).

24. For details, see F. Jensen, An introduction to computational chemistry, Wiley, Chichester

(1999). A useful review article on CC is R.J. Bartlett, J. Phys. Chem., 1697, 93 (1989).
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The effect of eC on F0 yields terms of the form C1F0, C2F0, C3F0, . . . , but it

also results in products of excitation operators such as C1C1F0, C1C2F0, and

C1C2C3F0. Because C1F0 results in singly excited determinants, another

application of C1 (as in C1C1F0) results in doubly excited determinants;

the latter also result from C2F0. However, there is an important difference.

For C2F0, the double-excitation amplitudes t pq
ab appear whereas for C1C1F0,

products tp
a tq

b of single-excitation amplitudes result. We say that C2F0 rep-

resents a ‘connected’ double-excitation contribution whereas C1C1F0 repres-

ents a ‘disconnected’ double-excitation contribution.25 Similarly, C3F0 is

a connected triple-excitation contribution while C1C1C1F0 (that is, C1
3F0)

and C1C2F0 are disconnected, involving, respectively, products of three

single-excitation amplitudes and products of single- and double-excitation

amplitudes. Only a finite number of terms will appear in the Taylor-series

expansion of eCF0 as many terms, such as C1
N þ1F0, vanish.

Two approximations are widely made in CC applications. First, as discussed

previously, a finite (and hence incomplete) basis set is used in the determination

of F0. Second, the expression for the cluster operator C is truncated to include

only specified electron excitation operators. In the approach referred to as

‘coupled cluster singles and doubles’ (CCSD), C is approximated by C1þC2.

In CCD, only C2 is employed whereas in CCSDT, C is given by C1þC2þC3.

Example 9.5 Deriving the set of coupled-cluster equations

Derive the set of coupled-cluster equations for the double-excitation ampli-

tudes in the CCD method.

Method. Substitute the expression eCF0 into the electronic Schrödinger

equation (taking the cluster operator C in the CCD approach to be C2); follow

that by multiplication of both sides of the equation by F
j (where FJ is the HF

wavefunction F0 or any excited Slater determinant) and integration over all

spin–space coordinates. Use the fact that hamiltonian matrix elements

between Slater determinants differing by four (or more) spin orbitals are zero.

(The latter result is an example of a Slater–Condon rule, Problem 9.18.)

Answer. Substitution of eCF0 into the electronic Schrödinger equation yields

HeCF0 ¼ EeCF0

and using the series expansion of eC with C¼C2 gives

Hð1þ C2 þ 1
2C

2
2 þ � � �ÞF0 ¼ Eð1þ C2 þ 1

2C
2
2 þ � � �ÞF0

Inserting the effects of the excitation operator C2 gives

HF0 þH
X

a;b;p;q

tpq
abF

pq
ab þ 1

2 H
X
a;b;c;d;
p;q;r;s

trs
cd tpq

ab F
pqrs
abcd þ � � �

¼ EF0 þ E
X

a;b;p;q

tpq
ab F

pq
ab þ 1

2 E
X
a;b;c;d;
p;q;r;s

trs
cd tpq

ab F
pqrs
abcd þ � � �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25. The words connected and disconnected are intimately related to linked and unlinked

features in the diagrammatic representation of the coupled-cluster method.
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We multiply both sides of the above equation by F
0 and integrate over spin–

space coordinates. Because F0 is normalized and orthogonal to all excited

Slater determinants, and because hamiltonian matrix elements between Slater

determinants differing by four (or more) spinorbitals are zero, we obtain

EHF þ
X

a;b;p;q

tpq
abhF0jHjFpq

abi ¼ E

where the HF-SCF energy EHF¼hF0jHjF0i.
Proceeding in the same way we did above for F
0, we now multiply both sides

of the Schrödinger equation by the doubly excitedFkl

ij and integrate over spin–

space coordinates. Using the orthonormality of the Slater determinants and

the Slater–Condon rules, we find

hFkl
ij jHjF0i þ

X
a;b;
p;q

tpq
abhF

kl
ij jHjF

pq
abi þ 1

2

X
a;b;c;d;
p;q;r;s

trs
cd tpq

ab hF
kl
ij jHjF

pqrs
abcdi

¼ E
X
a;b;
p;q

tpq
abhF

kl
ij jF

pq
abi

¼ Etkl
ij

Finally, inserting the expression for E given above (which was obtained from

multiplication of the Schrödinger equation by F
0), we obtain

hFkl
ij jHjF0i þ

X
a;b;
p;q

tpq
abhF

kl
ij jHjF

pq
abi þ 1

2

X
a;b;c;d;
p;q;r;s

trs
cdtpq

abhF
kl
ij jHjF

pqrs
abcdi

¼
(

EHF þ
X
a;b;
p;q

tpq
abhF0jHjFpq

abi
)

tkl
ij

If there is a total of m doubly excited determinants Fkl
ij , there are m

equations of the form given above and there are m unknown double-excitation

amplitudes tkl
ij . Once the hamiltonian matrix elements are computed (as well

as the HF energy), the set of non-linear equations for the double-excitation

amplitudes is solved (usually in an iterative fashion beginning with estimates

of the amplitudes). From the amplitudes the CCD energy E and wavefunction

eCF0 are determined.

Self-test 9.5. Derive the set of coupled-cluster equations for the excitation

amplitudes in the CCSD method.

We conclude this section by making some comparisons between the CI and

CC methods, both of which are configuration-state-function approaches

to electronic structure. For a specified basis set for determination of the

spinorbitals, a full CI calculation and a CC calculation including all excita-

tion operators (C1, C2, . . . , CN) would yield identical electronic energies. In

the CCD approach, the wavefunction eCF0 includes the HF wavefunction and

all its doubly excited, quadruply excited, hextuply excited, . . . , determinants.

Only the double-excitations are connected; for example, the contributions

from the quadruply excited determinants are given by (disconnected)
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products of two double-excitation amplitudes. Therefore, quadruply excited

determinants are not treated exactly as they are in SDTQCI; in the latter, the

doubly and quadruply excited determinants have coefficients Cpq
ab and Cpqrs

abcd

that are determined independently. However, it is often the case that the CCD

term C2
2F0 is able to account for most of the effects of quadruply excited

determinants; in other words, approximating Cpqrs
abcd as products t pq

ab t rs
cd is often

quite reasonable. CCD is generally more accurate than DCI but requires more

computer time; however, this CC method requires significantly less computer

time than (the slightly more accurate but not size-consistent) SDTQCI. The

CCSD approach is generally more popular currently than CCD because the

inclusion of the one-electron excitation operator has little effect on the overall

computation time.

Density functional theory

The ab initio methods described above all start with the Hartree–Fock

approximation in that the HF equations are first solved to find spinorbitals

that can then be used to construct configuration state functions. These

methods are widely used by quantum chemists today. However, they do have

limitations, in particular the computational difficulty of performing accurate

calculations with large basis sets on molecules containing many atoms and

many electrons.

An alternative to the HF methods that is also popular among quantum

chemists is density functional theory (DFT). In contrast to the methods

described above, which use CSFs, DFT begins with the concept of the electron

probability density. One reason for the popularity of DFT is that it takes into

account electron correlation while being less demanding computationally

than, for example, CI and MP2. It can be used to do calculations on molecules

of 100 or more atoms in significantly less time than these HF methods.

Furthermore, for systems involving d-block metals, DFT yields results that

very frequently agree more closely with experiment than HF calculations do.

The basic idea behind DFT is that the energy of an electronic system can be

written in terms of the electron probability density, r.26 For a system of n

electrons, r(r) denotes the total electron density at a particular point r in

space. The electronic energy E is said to be a functional of the electron density

and is denoted E[r], in the sense that for a given function r(r), there is a single

corresponding energy.27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26. For more extensive treatments, the reader is encouraged to see the qualitative discussion in

S. Borman, Chem. Eng. News, 22, 68 (1990) and a more detailed quantitative discussion

in the review by T. Ziegler, Chem. Rev., 651, 91 (1991). A review by W. Kohn can be found in

Rev. Mod. Phys., 1253, 71 (1999). More recent reviews include M.K. Harbola and A. Banerjee,

J. Theor. Comput. Chem., 301, 2 (2003) and T. Nakajima, T. Tsuneda, H. Nakano, and K. Hirao,

J. Theor. Comput. Chem., 109, 1 (2002).

27. We have encountered the functional before, but we did not use this name. An expectation

value of a hamiltonian is the energy as a functional of the wavefunction, c; each well-behaved

function c is associated with a single expectation value of the energy.

Our use of the word functional

refers to a mathematical

prescription for assigning a

number to a given function.

As an example of a functional in

classical mechanics, suppose a

particle moves in the xy plane from

point C to point D with velocity

v(x,y). Then the time the particle

takes to move from C to D is a

functional of the velocity. A good

reference on the theory of

functionals is I.M. Gelfand and

S.V. Fomin (revised English

edition translated and edited by

R.A. Silverman), Calculus of

variations, Prentice-Hall, Inc.

Englewood Cliffs, New Jersey

(1963).
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9.13 Kohn–Sham orbitals and equations

The concept of a density functional for the energy was the basis of some early

but useful approximate models such as the Thomas–Fermi method (which

emerged from work in the late 1920s by E. Fermi and L.H. Thomas) and

the Hartree–Fock–Slater or X� method (which emerged from the work of

J.C. Slater in the 1950s). However, it was not until 1964 that a formal proof

was given28 by P. Hohenberg and W. Kohn that the ground-state energy and

all other ground-state electronic properties are uniquely determined by the

electron density. Unfortunately, the Hohenberg–Kohn theorem does not tell

us the form of the functional dependence of energy on the density: it proves

only that such a functional exists. The next major step in the development of

DFT came with the derivation of a set of one-electron equations from which

the electron density r could be obtained.29

We consider systems in which paired electrons are described by the same

spatial one-electron orbitals (as in restricted Hartree–Fock theory). W. Kohn

and L.J. Sham showed that the exact ground-state electronic energy E of an n-

electron system can be written as

E½r� ¼ � �h2

2me

Xn

i¼1

Z
c
i ðr1Þr2

1ciðr1Þ dr1 � j0
XN
I¼1

ZI

rI1
rðr1Þ dr1

þ 1
2j0

Z
rðr1Þrðr2Þ

r12
dr1dr2 þ EXC½r�

ð9:48Þ

where the one-electron spatial orbitals ci (i¼1, 2, . . . , n) are the Kohn–Sham

orbitals, the solutions of the equations given below. The exact ground-state

electron density is given by

rðrÞ ¼
Xn

i¼1

jciðrÞj
2 ð9:49Þ

where the sum is over all the occupied Kohn–Sham (KS) orbitals; r is known

once these orbitals have been computed. The first term on the right in eqn 9.48

represents the kinetic energy of the electrons; the second term represents the

electron–nucleus attraction where the sum is over all N nuclei with index I

and atomic number ZI; the third term represents the Coulomb interaction

between the total charge distribution (summed over all KS orbitals) at r1 and

r2; the last term is the exchange–correlation energy of the system, which is also

a functional of the density and takes into account all non-classical electron–

electron interactions. Of the four terms, EXC is the one we do not know how

to obtain exactly. Although the Hohenberg–Kohn theorem tells us that E and

therefore EXC must be functionals of the electron density, we do not know the

latter’s exact analytical form and so are forced to use approximate expres-

sions for it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28. P. Hohenberg and W. Kohn, Phys. Rev., 864, B136 (1964).

29. W. Kohn and L.J. Sham, Phys. Rev., 1133, A140 (1965).
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The KS orbitals are found by solving the Kohn–Sham equations, which are

derived by applying the variational principle to the electronic energy E[r]

with the charge density given by eqn 9.49. The KS equations for the one-

electron orbitals ci(r1) have the form

� �h2

2me
r2

1 � j0
XN
I¼1

ZI

rI1
þ j0

Z
rðr2Þ
r12

dr2 þ VXCðr1Þ
( )

ciðr1Þ ¼ eiciðr1Þ

ð9:50Þ

where ei are the KS orbital energies and the exchange–correlation potential,

VXC, is the functional derivative of the exchange–correlation energy:

VXC½r� ¼
dEXC½r�

dr
ð9:51Þ

If EXC is known, then VXC can be obtained. The significance of the KS orbitals

is that they allow the density r to be computed from eqn 9.49. The KS

equations are solved in a self-consistent fashion. Initially, we guess the elec-

tron density r, typically by using a superposition of atomic densities. By using

some approximate form (which remains fixed during all iterations) for the

functional EXC[r], we next compute VXC as a function of r. The set of KS

equations is then solved to obtain an initial set of KS orbitals. This set of

orbitals is then used to compute an improved density from eqn 9.49, and

the process is repeated until the density and exchange–correlation energy

have converged to within some tolerance.30 The electronic energy is then

computed from eqn 9.48.

The KS orbitals can be computed numerically or they can be expressed in

terms of a set of basis functions; in the case of the latter, solving the KS

equations amounts to finding the coefficients in the basis set expansion.

As in the HF methods, a variety of basis set functions can be used (including

STOs and GTOs) and the wealth of experience gained in HF calculations

can prove to be useful in the choice of DFT basis sets. The computation time

required for a DFT calculation formally scales as the third power of the

number of basis functions; as a result, DFT methods are computationally

more efficient (though not necessarily more accurate) than HF-based

formalisms, which scale as the fourth power of the number of basis func-

tions. However, for large systems such as proteins, even this third-

power scaling makes computational investigations impractical and much

effort these days is devoted to the development of DFT algorithms with

lower-power scaling.31

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30. Often, using the newly found density to start the next iteration will not lead to convergence

but rather to oscillatory behaviour. One simple procedure to enhance convergence is to use,

for iteration iþ 2, the average of the densities from iterations i and iþ 1.

31. See G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C.F. Guerra, S.J.A. van Gisbergen,

J.G. Snijders, and T. Ziegler, J. Comput. Chem., 931, 22 (2001) and references therein.

Consider a functional G[f]

that depends on the function

f(r). When r undergoes an

arbitrarily small change dr and

the function changes to fþ df,

the functional undergoes

a corresponding change to

G[fþ df]. We then define the

functional derivative dG/df as

dG

df
¼ lim
jdf j!0

G½f þ df � �G½f �
jdf j

where the manner in which

jdf j!0 must be specified

explicitly.
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9.14 Exchange–correlation functionals

Numerous schemes have been developed for obtaining approximate forms for

the functional for the exchange–correlation energy; the search for more

accurate functionals is an active area of current research efforts. The main

source of error in DFT usually stems from the approximate nature of EXC.

This functional is often separated into an exchange functional (representing

exchange energy) and a correlation functional (representing dynamic

correlation energy). In the local density approximation (LDA), the exchange–

correlation functional is

EXC ¼
Z

rðrÞeXC½rðrÞ�dr ð9:52Þ

where eXC[r(r)] is the exchange–correlation energy per electron in a homo-

geneous electron gas of constant density. In a hypothetical homogeneous

electron gas, an infinite number of electrons travel throughout a space of

infinite volume in which there is a uniform and continuous distribution of

positive charge to retain electroneutrality.32 Although eqn 9.52 is clearly an

approximation (neither positive charge nor electronic charge is uniformly

distributed in actual molecules), the computationally convenient LDA is

surprisingly accurate, especially for predicting structural properties. The

accuracy decreases with varying electron density in the system and for many

molecules, the LDA (for which the exchange functional and correlation

functional depend only on r but not on any derivatives of r) was found to

yield values for binding energies that were significantly larger than experi-

ment. To account for the inhomogeneity of the electron density, a non-local

correction involving the gradient of r is often added to the exchange–

correlation energy given in eqn 9.52. A number of different gradient-correct

functionals have been proposed; in general, the LDA with gradient correc-

tions, which is called the generalized gradient approximation (GGA), yields

ground-state bond distances accurate to within 0.03a0 (1.5 pm) and binding

energies accurate to within about 20 kJ mol�1. The GGA-DFT procedure is an

accurate and efficient method for calculations involving d-metal complexes.

Table 9.4 compares calculated and experimental values of M–CO bond

strengths for several d-block metals.

A variety of exchange–correlation functionals, having names such as

mPWPW91, B3LYP, MPW1K, PBE1PBE, BLYP, BP91, and PBE, have been

developed for use in DFT calculations; the names designate a particular

pairing of an exchange functional and a correlation functional. For example,

the popular BLYP functional is a combination of the gradient-corrected

exchange functional developed by A.D. Becke33 and the gradient-corrected

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32. Several forms for eXC[r] have been proposed in the literature; an accurate expression can be

found in R.G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford

University Press, Oxford (1989).

33. A.D. Becke, J. Chem. Phys., 4524, 84 (1986); Phys. Rev. A, 3098, 38 (1988).

Table 9.4 Calculated and
experimental metal–ligand mean
bond energies


Calculated Observed

Cr(CO)6 107 110

Mo(CO)6 126 151

W(CO)6 156 179


 Energies are in kilojoules per mole of M–L

bonds (kJ mol�1).
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correlation functional developed by C. Lee, W. Yang, and R.G. Parr.34

Some of the functionals, such as B3LYP, represent ‘hybrid’ DFT calculations

that use Hartree–Fock corrections in conjunction with density functional

correlation and exchange. In a recent publication,35 a variety of DFT-based

calculations were performed to compute barrier heights for six small-

molecule reactions and atomization (complete dissociation) energies for six

different molecules. The results for a variety of DFT functionals and basis sets

were compared with each other and with results of Hartree–Fock-based

techniques.

Density functional theory has also been applied to the study of open-shell

atoms and molecules. The extension of LDA to open-shell systems yields

the local spin-density approximation (LSDA). The spin density refers to the

difference between the spin-up electron density and the spin-down electron

density, and in the LSDA the exchange–correlation energy depends on the

spin density as well as the total electron density. The LSDA has been used in

DFT investigations of the magnetic structures of metals and alloys.

Time-dependent density functional theory (TD-DFT) is useful for the

investigation of the response of molecular systems to electric and magnetic

fields (recall the discussion of time-dependent hamiltonians in Chapter 6).

Therefore, TD-DFT can be used to determine polarizabilities and hyper-

polarizabilities (Chapter 12) as well as excitation energies and electronic

absorption spectra. The time-dependent Kohn–Sham equations in TD-DFT

resemble those of eqn 9.50:

� �h2

2me
r2

1 � j0
XN
I¼1

ZI

rI1
þ j0

Z
rðr2, tÞ

r12
dr2 þ VextðtÞ þ VXCðr1, tÞ

( )
ciðr1, tÞ

¼ i�h
q
qt

ciðr1, tÞ

rðr, tÞ ¼
Xn

i¼1

jciðr, tÞj2

where the external potential Vext (for example, the oscillating electromagnetic

field), the exchange–correlation potential, the KS orbitals and the density are

all time-dependent. Although the functional dependence of VXC(r, t) on r(r, t)

need not match the functional dependence of the time-independent exchange–

correlation potential on the time-independent density (of conventional DFT),

the same functional dependence is often assumed. The latter assumption is

called the adiabatic approximation. The goal of TD-DFT is to find how the

density changes in response to the varying external potential. It can be shown,

based on perturbation theory arguments, that excitation energies and

polarizabilities depend on only the first-order change in density.36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B, 785, 37 (1988).

35. B.J. Lynch and D.G. Truhlar, J. Phys. Chem., 8996, 107 (2003).

36. Interested readers should see the reference cited in footnote 31 as well as the Further

reading.
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Gradient methods and molecular properties

Once the electronic energy is obtained by solving the electronic Schrödinger

equation, a number of molecular properties, perhaps the most important

being the equilibrium molecular geometry, can be determined. The calcula-

tion of molecular structures is a valuable supplement to experimental data

in areas of structural chemistry such as X-ray crystallography, electron

diffraction, and microwave spectroscopy. Calculation of derivatives of the

potential energy with respect to nuclear coordinates is crucial to the efficient

determination of equilibrium structures. The derivatives can be computed

numerically by calculating the potential energy at many geometries and

determining the change in energy as each nuclear coordinate is varied.

However, gradient methods, which determine energy derivatives analytically,

are computationally faster and more accurate than numerical differentiation.

9.15 Energy derivatives and the Hessian matrix

Since 1969, when P. Pulay wrote the first computer program for determining

first derivatives of SCF energies analytically, gradient methods have devel-

oped into one of the most vigorously studied areas of modern quantum

chemistry. First applied to closed-shell SCF calculations, gradient methods

were later generalized to open-shell RHF and UHF calculations. In addition

to the development of gradient methods for ab initio techniques based on

Slater determinants, analytical expressions have also been derived for DFT.

In general, analytical first and second energy derivatives are now available for

a number of levels of ab initio calculations.

For a diatomic molecule, the molecular potential energy, E, depends only

on the internuclear distance, R; therefore, to find the potential minimum

(more generally, any stationary point) we need to locate a zero in dE/dR.37

The search is more complicated for polyatomic molecules because the

potential energy is a function of many nuclear coordinates, qi. At the equi-

librium geometry, each of the forces fi exerted on a nucleus by electrons and

other nuclei must vanish:

fi ¼ �
qE

qqi
¼ 0

Therefore, in principle, the equilibrium geometry can be found by computing

all the forces at a given molecular geometry and seeing if they vanish. If they do

not, the geometry is varied until one is found that corresponds to zero forces,

a gradient vector of zero length. Computationally, the forces will not vanish

identically, but we can stop the iterative search for the equilibrium geometry

when the magnitudes of the forces are sufficiently close to zero (that is, when

the magnitudes are smaller than a predetermined tolerance level). Typically,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37. In this section, the nucleus�nucleus repulsion term is included in the potential energy.

The gradient of a scalar function

f(x,y,z) is defined as

rf ¼ qf

qx


 �
iþ qf

qy


 �
jþ qf

qz


 �
k

where i, j, and k are unit vectors

in the x-, y-, and z-directions,

respectively. Some properties of

the gradient are given in

Further information 22.
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to obtain bond and torsional angles and bond distances within 1� and 0.002a0

(0.1 pm), respectively, of their optimal computed equilibrium values, all forces

should be below about 10 pN. Such tolerances typically require between N

and 2N cycles, where N is the number of atoms in the molecule.

Before optimizing the equilibrium geometry, a coordinate system must be

chosen to represent the potential surface and molecular structure. This choice

is important because it affects the ease of optimization, and internal coordin-

ates (bond lengths, bond angles, and torsional angles) are often used.

Additionally, it is important to recognize that experimental data usually refer

to averaged molecular quantities. Therefore, when comparing experimental

and theoretical molecular geometries, vibrationally averaged bond lengths

and bond angles should be computed. The differences between experimental

and computed equilibrium geometries for a series of related compounds

are often found to be very consistent. For instance, in an HF-SCF study of

30 organic compounds using a 4-21G basis set, the optimized C–H bond

distance was consistently about 0.07a0 smaller than the experimental value.38

This consistency makes it possible in many cases to construct a set of

empirical corrections for ab initio geometries yielding absolute accuracies of

about 0.02a0.

A zero gradient characterizes a stationary point on the surface but does not

differentiate between minima, maxima, and saddle points.39 Therefore, the

searching procedure allows us to locate not only an equilibrium geometry of

a stable molecule but also the transition state of a chemical reaction, the

latter corresponding to a saddle point on the potential energy surface.

To distinguish the types of stationary points, it is necessary to consider

the second derivatives of the energy with respect to the nuclear coordinates.

The quantities q2E/qqi qqj comprise the Hessian matrix. Whereas a minimum

(maximum) of a one-dimensional potential curve corresponds to a positive

(negative) second derivative, a minimum (maximum) of a multidimensional

potential energy surface is characterized by the eigenvalues of the Hessian

matrix all being positive (negative). A transition state (a first-order saddle

point) corresponds to one negative eigenvalue and all the rest positive.

9.16 Analytical derivatives and the coupled
perturbed equations

There are a number of algorithms available for finding stationary points on

a potential surface. In general, the stability, reliability, and computational

cost of the algorithm as well as its speed of convergence need to be considered.

The algorithms can be broadly classified into three groups. Those using only

the energy are the slowest to converge but are useful if analytical derivatives

are unavailable. Those using both the energy and its analytical first derivatives

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38. An extensive comparison of theory and experiment is made in W.J. Hehre, L. Radom,

P.V.R. Schleyer, and J.A. Pople, Ab initio molecular orbital theory, Wiley, New York (1986).

39. A (first-order) saddle point is a potential maximum along one nuclear coordinate and

a potential minimum along all others.
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are significantly more efficient (by almost an order of magnitude). Further-

more, their rate of convergence can be improved if a good initial estimate of

the Hessian matrix is available, perhaps obtained from lower level ab initio

calculations (for example, ones that use smaller basis sets). Algorithms that

use the energy together with its analytical first and second derivatives are the

most accurate and efficient methods. Whichever algorithm is used, all nuclear

coordinates should be optimized; this optimization is especially important for

transition states where optimizing a subset of all the nuclear coordinates

might locate a saddle point that changes significantly when all coordinates are

optimized.

Energy derivatives are also useful for determining other molecular

properties. The second derivatives of the energy with respect to nuclear

coordinates (the Hessian matrix elements) are the force constants for normal

mode frequencies within the harmonic approximation (Section 10.13). The

third, fourth, and higher derivatives give anharmonic corrections to vibra-

tional frequencies (Section 10.16). Energy derivatives need not be limited to

nuclear coordinates; for example, it is sometimes useful to consider deriva-

tives with respect to electric field components. Mixed second derivatives with

respect to one nuclear coordinate and one electric field component yield

dipole moment derivatives that are used to determine infrared intensities

within the harmonic approximation (see Section 10.10).

To calculate analytical derivatives of the energy with respect to nuclear

coordinates it is necessary to compute derivatives of one- and two-electron

integrals over the basis functions. Because the basis functions are centred on

atomic nuclei, when derivatives of the integrals are determined we need the

derivatives of the basis set functions with respect to nuclear coordinates.

Whether or not derivatives of various expansion coefficients are also required

depends on whether they were determined variationally and on the order of

the energy derivative under consideration.

As an example, consider derivatives of a general expansion coefficient

denoted cj. The first derivative of the energy with respect to nuclear coordinate

qi is given by

dE

dqi
¼ qE

qqi
þ
X

j

qE

qcj

qcj

qqi

However, for variationally determined expansion coefficients, the term

(qE/qcj) vanishes; therefore, we have the important result that to evaluate

the gradient (first derivative) of the energy, we do not need derivatives of

variationally determined coefficients. As a result, in HF and MCSCF, the

analytical determination of the energy gradient requires derivatives of only

the one- and two-electron integrals. Similarly, the second derivative of the

energy is given by

d2E

dq2
i

¼ q2E

qq2
i

þ
X

j

q2E

qqiqcj

qcj

qqi
þ qE

qcj

q2cj

qq2
i

 !

As the term (qE/qcj) vanishes, evaluation of the second derivative of the

energy does not require the second derivative of the variationally determined
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coefficients. However, it does require their first derivatives, (qcj/qqi), which

are computed by solving the coupled perturbed Hartree–Fock equations

(CPHF) for those ab initio methods that use a single reference CSF (for

instance, SDCI and MP2) or by solving the coupled perturbed MCSCF

equations (CPMCSCF) for those using multiple reference CSFs (for instance,

MCSCF and MRCI).40 In general, to compute energy derivatives of order

(2nþ 1) requires derivatives of variationally determined coefficients of

order n.41 Therefore, the third derivative of the energy requires first deriva-

tives of variational coefficients. An efficient method for solving the CPHF

equations was first developed by J.A. Pople and co-workers in 1979 that made

energy second-derivative calculations practicable for RHF and UHF.

Analytical first derivatives of the energy do require, however, deter-

mination of the first derivatives of non-variationally determined coefficients.

The latter derivatives are obtained by solving the appropriate coupled

perturbed equations. However, a significant simplification of the solution of

the coupled perturbed equations was discovered by N.C. Handy and

H.F. Schaefer in 1984, who showed that instead of solving all the CPHF or

CPMCSCF equations, it is in fact necessary to solve only a much smaller set of

equations. This simplification is also applicable to higher energy derivatives;

for example, when determining second derivatives of the energy, the full set of

coupled perturbed equations for the second derivatives of the non-variational

coefficients can also be reduced to a smaller set.

To calculate analytical derivatives of the energy, it is necessary to evaluate

the derivatives of the one- and two-electron integrals; this in turn requires

evaluation of derivatives of the basis set functions with respect to the nuclear

coordinates of their centres. For Gaussian-type orbitals (eqn 9.28), the

derivatives of the basis functions may be computed analytically and result in

other GTOs. For example, the first derivative of an s-type Gaussian with

respect to xc yields a p-type GTO; the first derivative of the p-type GTO y100

yields an s- and a d-type GTO (see Problem 9.25).

Example 9.6 Analytically computing the derivatives of Gaussian-type orbitals

Show that the first derivative an of s-type Gaussian with respect to one of the

Cartesian coordinates yields a p-type Gaussian.

Method. The general form of a GTO is given in eqn 9.28. Differentiate y000

with respect to the Cartesian coordinate xc and compare the result to the

p-type Gaussian y100.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40. When the expansion coefficients are constrained, for example by orthonormality

considerations, appropriate Lagrangian multipliers must be introduced into the coupled perturbed

equations.

41. The analogy to perturbation theory (Section 6.6) should be noted. In fact, the connection

between PT and gradient methods runs deeper than may be apparent; early investigations of SCF

derivatives were often couched in the language of PT.
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Answer. The s-type GTO is given by eqn 9.28 with i¼ j¼ k¼ 0. As jr1� rcj2¼
(x1� xc)

2þ (y1� yc)
2þ (z1� zc)

2,

y000 ¼ e�aðx1�xcÞ2 e�aðy1�ycÞ2 e�aðz1�zcÞ2

and differentiation with respect to xc yields

qy000

qxc
¼ 2aðx1 � xcÞy000 ¼ 2ay100

where y100 is a p-type GTO.

Self-test 9.6. What result is obtained if the first derivative of the s-type GTO is

taken with respect to yc or zc?

[2ay010 or 2ay001]

Much work has gone into the efficient evaluation of integral derivatives

(see Further reading). The efficiency can be increased by using translational

and rotational invariance properties and by using molecular symmetry.

Semiempirical methods

There are clearly computational limitations to treating molecular systems

with large numbers of electrons accurately. Even with increases in com-

puter speed and memory and the development of efficient algorithms,

ab initio methods are not applied routinely to molecules with several

dozen atoms. On the other hand, semiempirical methods are fast enough

to be applied routinely to larger systems and, thus, make electronic

structure calculations available for a wider range of molecules. Ab initio

methods represent a more theoretically ‘pure’ approach, and one of the

limitations to the accuracy of the semiempirical methods in addition

to the approximations inherent in their formulation is the accuracy of

experimental data used to obtain the parameters. However, in large part

because adjustable parameters are optimized to reproduce a number of

important chemical properties, semiempirical methods have become widely

popular.

The optimization of parameters is, in general, a difficult task for several

reasons. First, accurate experimental data are often not available. Second, the

simultaneous optimization of several parameters for a large number of

molecules is very time-consuming. The parameters are interconnected in the

sense that a significant variation in the value of one parameter in a nearly

optimal parameter set must be accompanied by variations in several other

parameters too. Successively optimizing each parameter is not feasible.

Semiempirical methods were first developed for conjugated p-electron systems

and we shall therefore begin our discussion with them and later describe more

general methods.
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9.17 Conjugated p-electron systems

Consider the case of a conjugated p-system with a total of np p-electrons. The

p-electrons are treated separately from the s-electrons partly because their

energies are so different and partly on account of the different symmetries of

their orbitals. The effective p-electron hamiltonian Hp is given by

Hp ¼ �
�h2

2me

Xnp

i¼1

r2
i þ

Xnp

i¼1

Vp;eff
i þ 1

2j0
Xnp

i;j

1

rij
ð9:53Þ

where the first term is the kinetic energy operator for the p-electrons, Vp;eff
i is

the effective potential energy for p-electron i resulting from the potential field

of the nuclei and all s-electrons, and the final term represents the repulsive

potential energy due to interactions betwen p-electrons. The core hamiltonian

hi
p for p-electron i is defined by

hp
i ¼ �

�h2

2me
r2

i þ Vp;eff
i ð9:54Þ

so we can write

Hp ¼
Xnp

i¼1

hp
i þ 1

2j0
Xnp

i;j

1

rij
ð9:55Þ

The analogy with eqn 7.46 should be apparent. The hamiltonian Hp is

approximate because the p- and s-electrons have been treated separately and

the effect of the latter in Hp appears only in the effective potential Vp;eff
i . The

use of an approximate form for the hamiltonian of eqn 9.2 is characteristic of

semiemipirical methods.

The most famous semiempirical p-electron theory is the Hückel molecular

orbital theory (HMO). As this method has already been described in some

detail in Section 8.9, here we point out only some of the features of this

method that characterize it as semiempirical. In the HMO method, Hp is

approximated as a sum of one-electron terms:

Hp ¼
Xnp

i¼1

hp;eff
i ð9:56Þ

where hp;eff
i is an effective hamiltonian for p-electron i. The form of h

p, eff
i is

left unspecified; only its matrix elements appear in HMO. Because Hp is a sum

of one-electron terms, the wavefunction Cp can be written as a product of

one-electron (molecular) orbitals ci, each of which is a solution of the

eigenvalue equation

hp;eff
i ci ¼ Eici ð9:57Þ

where Ei is the energy associated with the molecular orbital labelled i. Each

molecular orbital is written as a linear combination of atomic orbitals

(LCAO). For example, in an HMO treatment of a conjugated hydrocarbon

(such as benzene), the molecular orbitals are linear combinations of C2pz
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atomic orbitals. The variation principle is then applied, and gives rise to a set

of secular equations, which have non-trivial solutions only if

detjhp;eff � ESj ¼ 0 ð9:58Þ

where hp;eff
rs is the matrix element of hp,eff between the atomic orbitals of the

conjugated atoms r and s and Srs is their overlap integral. This expression is

the analogue of the Roothaan equations, eqn 9.21, but differs in the restric-

tion of the hamiltonian to a sum of one-electron terms and the orbitals to

p-orbitals. Solution of the secular determinant yields the set of molecular

orbital energies Ei as well as the expansion coefficients of the LCAO.

As described in Section 8.9, HMO makes some severe assumptions about the

values of the matrix elements hp;eff
rs and Srs:

1. For all overlap integrals, Srs¼ drs.

2. Diagonal elements hp;eff
rr ¼ a.

3. Off-diagonal elements hp;eff
rs ¼b if atoms r and s are neighbours and 0

otherwise.

The setting of selected matrix elements to zero and the parametrizing of

non-zero matrix elements are common features in semiempirical methods.

Because Hp is written as a sum of one-electron terms with explicit forms left

unspecified, the HMO method treats repulsions between the p-electrons very

poorly (if at all!). As a result, it is useful only for qualitative discussions of

p-conjugated systems.

The Pariser–Parr–Pople method (PPP) is a much more substantial

procedure than HMO, but nevertheless it is quite primitive when compared

with current semiempirical procedures. It starts with the hamiltonian Hp of

eqn 9.55 and writes the p-electron wavefunction Cp as a Slater determinant of

p-electron spinorbitals fp
i :

Cp ¼ kfp
að1Þfp

bð2Þ . . .fp
z ðnpÞk ð9:59Þ

The optimal spinorbitals are determined by using the variation principle, and

satisfy

f p1 f
p
að1Þ ¼ epaf

p
að1Þ ð9:60Þ

where epa is the orbital energy of spinorbital fp
a and

f p1 ¼ hp
1 þ

X
u

f Juð1Þ � Kuð1Þg ð9:61Þ

The Coulomb (Ju) and exchange (Ku) operators are defined as in eqn 9.10.

At this stage, the calculation is following the ab initio route described in

Sections 9.1 and 9.2. Indeed, proceeding as in Section 9.4 for the closed-shell

case, we can write the p-electron spinorbital as a product of a spin function

and a space function and expand the latter in a basis of known functions.

The space functions are the p molecular orbitals and the basis functions are

atomic orbitals yi centred on each p-conjugated atom i. For example, in a

conjugated hydrocarbon, a basis set consisting of C2pz atomic orbitals

is typically employed. The use of the basis set results in a set of equations
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analogous to the Roothaan equations (eqn 9.19), with Fij in the latter replaced

by the matrix elements Fp
ij:

Fp
ij ¼

Z
y
i ð1Þf p1 yjð1Þ dr1 ð9:62Þ

and with ea replaced by epa . We simplify the notation by defining the

one-electron integral

hp
ij ¼

Z
y
i ð1Þhp

1yjð1Þdr1 ð9:63Þ

and using the notation of eqn 9.24 for the two-electron integrals, we can write

the matrix element Fp
ij as

Fp
ij ¼ hp

ij þ
X
l, m

PlmfðijjlmÞ � 1
2ðimjljÞg ð9:64Þ

where Plm is defined in eqn 9.27.

At this point the PPP method makes some approximations beyond

the separation of p and s orbitals. First, we set Sij¼ dij, as in HMO theory.

Then we set some of the two-electron integrals

ðab j cdÞ ¼ j0

Z
y
að1Þybð1Þ

1

r12
y
cð2Þydð2Þ dr1dr2

to zero, but in a more subtle way than in HMO. The product yi

(1)yj(1) with

i 6¼ j is called a differential overlap (it is the integrand of an overlap integral,

so can formally be obtained from an overlap integral by differentiation; hence

the name). In the zero differential overlap approximation (ZDO approxi-

mation), the two-electron integral is set to zero unless a¼ b and c¼d. In other

words, we set the product of atomic orbitals

y
að1Þybð1Þ ¼ 0 if a 6¼ b ð9:65Þ

As a result, the two-electron integrals are given by

ðab j cdÞ ¼ dabdcdðaajccÞ ð9:66Þ

and the integral (aajcc), which could be computed theoretically, is treated as

an empirical parameter. In the ZDO approximation, all three-centre and

four-centre two-electron integrals are neglected.

In addition, in the PPP method the integrals hp
ij are usually not calculated

theoretically but instead are set to zero or are treated as empirical parameters.

In particular, for atomic orbitals yi and yj centred on atoms i and j that

are not bonded together, hp
ij is set to zero; for atomic orbitals centred on

atoms that are bonded together, the matrix element is taken to be an

empirical parameter bij that varies with the nature of the atoms i and j. The

diagonal elements hp
ii are usually set to an empirical parameter ai. (Note the

resemblance to HMO theory at this point.)

If all the two-electron integrals (abjcd) are set to zero and the matrix

elements hp
ij replaced by the matrix elements hp;eff

ij , then the PPP method

(an SCF treatment) ‘reduces’ to the HMO method (a non-SCF treatment).
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9.18 Neglect of differential overlap

The development of semiempirical methods to treat general molecular

systems has made significant progress due in large part to the efforts of

J.A. Pople and M.J.S. Dewar and their co-workers. These methods explicitly

treat valence electrons and the names of the various methods are suggestive of

which two-electron integrals are set to zero in the treatment. We shall set up

the general equations for the treatment of the valence electrons and describe

some of these semiempirical methods without going into detail.42 One point

to keep in mind in the following discussion is that (except for hydrogen) there

will be several basis functions (atomic orbitals) on each atom; this was not the

case for conjugated systems and it makes the bookkeeping of neglected and

non-neglected two-electron integrals more complicated.

Consider a closed-shell molecule with nV valence electrons. The valence-

electron hamiltonian HV is given by

HV ¼
XnV

i¼1

hV
i þ 1

2 j0
XnV

i;j

1

rij
ð9:67Þ

where hi
V is the core hamiltonian for valence electron i given by

hV
i ¼ �

�h2

2me
r2

i þ VV;eff
i ð9:68Þ

and Vi
V,eff is the effective potential energy for valence electron i resulting from

the potential field of the nuclei and all of the inner-shell electrons. We proceed

exactly as we did for PPP in Section 9.17, and so obtain a set of equations

identical to those of eqns 9.59–9.64 but with all the quantities previously

labelled p now labelled V. This procedure results in a set of equations ana-

logous to the Roothaan equations (eqn 9.19) to be solved in a self-consistent

fashion with Fij in eqn 9.26 replaced by

F V
ij ¼ hV

ij þ
X
l;m

PlmfðijjlmÞ � 1
2ðimjljÞg ð9:69Þ

In the most primitive approach, known as the complete neglect of differ-

ential overlap (CNDO), we use the zero differential overlap approximation

and write

ðijjlmÞ ¼ dijdlmðiijllÞ ð9:70Þ

The two-electron integral is set to zero even when different atomic orbitals yi

and yj belong to the same atom. The surviving integrals are often taken to

be parameters with values that are adjusted until the results of the CNDO

calculations resemble those of HF-SCF minimal basis set calculations.

To discuss the next level of approximation, which is not as drastic as CNDO,

we need to introduce some terminology. The ‘exchange integral’ was defined

in eqn 7.37 in terms of the spatial parts of the spinorbitals; here we shall refer to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42. For details, see J.A. Pople and D.L. Beveridge, Approximate molecular orbital theory,

McGraw-Hill, New York (1970).
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the two-electron integrals over basis functions yi as exchange integrals if they

are of the form (ijjij) (which is equal to (ijjji) if the basis functions are real).

In the level of approximation known as intermediate neglect of differential

overlap (INDO), we retain exchange integrals (ijjij) for which atomic orbitals yi

and yj belong to the same atom. These one-centre exchange integrals are

important for explaining the splitting between electronic states that come from

the same electronic configuration; thus INDO will give vastly improved results

over CNDO when spectroscopic terms are of interest.

We now ask which two-electron integrals are retained in INDO. Consider a

diagonal element FV
ii in eqn 9.69. The first integral in the summation (ijjlm)

becomes (iijlm) and the only contribution comes from the integral with l¼m.

This integral (iijll) would also be retained in CNDO. The second integral in

the summation (imjlj) becomes (imjli), and there are two contributions to it.

One contribution comes from i¼ l¼m giving the integral (iijii); the other

contribution comes from m¼ l with the stipulation that atomic orbital m

belongs to the same atom as atomic orbital i. This one-centre exchange

integral (imjmi) would not be retained in CNDO.

Example 9.7 Identifying non-zero two-electron integrals in INDO

What two-electron integrals should be retained in the off-diagonal elements of

FV
ij if atomic orbitals i and j are centred on the same atom?

Method. We need to examine eqn 9.69 and consider each term in the

summation separately. We retain one-centre exchange integrals (ijjij) in

addition to those two-electron integrals (iijll) retained in CNDO.

Answer. The two-electron integral (ijjlm) contributes when i¼ l and j¼m, or

i¼m and j¼ l, giving one-centre exchange integrals. The second term in the

summation (imjlj) contributes (1) when i¼m and j¼ l, giving an integral (iijll)
that is also retained in CNDO, or (2) when i¼ l and m¼ j, giving the one-

centre two-electron integral (ijjij).

Self-test 9.7. What two-electron integrals contribute to the off-diagonal

elements FV
ij when atomic orbitals i and j belong to different atoms?

[First term (ijjlm) never contributes; second term (imjlj)
contributes only when i¼m and l¼ j.]

As in CNDO, parameters are chosen in INDO to give as close agreement

as possible to the results of minimal basis set HF-SCF calculations. Thus,

although CNDO and INDO give reasonable equilibrium geometries when

compared to experiment, they give poor results (as do HF-SCF methods)

when compared with experimental quantities such as standard enthalpies of

formation. Dewar and his co-workers developed a variety of semiempirical

methods with the aim of reproducing not HF-SCF wavefunctions but rather

four gas-phase molecular properties, namely molecular geometries, enthal-

pies of formation, dipole moments, and ionization energies. The hope was to

achieve this goal by careful selection (that is, optimization) of the values of the

parameters.
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Dewar first used the INDO approach and produced several versions of a

semiempirical method he termed modified intermediate neglect of differential

overlap (MINDO). The first two versions were called MINDO/1 and

MINDO/2; a much improved version, which has proved to be useful for

studies of hydrocarbons, is MINDO/3.43 Another semiempirical method

based on INDO was developed by M.C. Zerner and denoted ZINDO/1.

Its parametrization was optimized for calculating energies and geometries of

molecules containing first or second series d-metals; it does not fare as well for

organic molecules. ZINDO/S has been designed for computing electronic

spectroscopic properties of d-metal complexes.

A much less severe approximation than INDO is the neglect of diatomic

differential overlap (NDDO) in which only diatomic differential overlap is

not retained: that is, the differential overlap yi

(1)yj(1) is neglected only when

the basis functions belong to different atoms. Therefore, in the NDDO

formalism, we retain all one-centre two-electron integrals and not just the

one-centre exchange integrals; for example, (imjli) is retained where i, l, m are

different basis functions on the same atom as well as retaining two-centre

integrals of the form (abjcd) where a and b are different orbitals on one atom

and c and d are different orbitals on a second atom.

The NDDO method was proposed by Pople in the mid-1960s; however,

it was not until Dewar developed the modified neglect of differential overlap

method (MNDO) based on the NDDO formalism that the latter became more

widely used as a predictive semiempirical method. In general, the MNDO

method gives substantially better agreement with experiment than does

MINDO/3. For example, in a study of 138 closed-shell molecules,44 the mean

absolute error in enthalpies of formation decreased from about 50 kJ mol�1 in

MINDO/3 to 30 kJ mol�1 in MNDO. Molecules were deliberately included

in the study that had presented difficulties in earlier calculations and therefore

the reported errors are larger than they would have been for a randomly

selected set of molecules. Similarly, in a treatment of 80 different molecules

and a total of 228 bonds,44 the mean absolute error in equilibrium bond

length decreased from 2.2 pm in MINDO/3 to 1.4 pm in MNDO.

Although MNDO was a significant improvement over MINDO/3, there

remained deficiencies in the MNDO method, in particular an inadequate

description of systems with hydrogen bonds. In 1985, Dewar developed an

improved version of MNDO called Austin model 1 (AM1; the procedure is

named after the University of Texas at Austin), which overcomes the major

weaknesses of MNDO without any significant increase in computing time.

AM1 also provides more accurate enthalpies of formation and (through

the application of Koopmans’ theorem, Section 7.15) ionization energies

than MNDO. However, there are instances in which AM1 can result in the

prediction of some very peculiar geometries for hydrogen bonds.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43. For a discussion of the parametrization of MINDO/3, see R.C. Bingham, M.J.S. Dewar, and

D.H. Lo, J. Am. Chem. Soc., 1285, 97 (1975) and Section 2.4.1 of D.M. Hirst, A computational

approach to chemistry, Blackwell Scientific Publications, Oxford (1990).

44. M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 4907, 99 (1977).
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Semiempirical methods continue to be developed because there is always

room for improvement of the parametrization scheme and the use of

experimental data. A third parametrization, designated PM3, of the MNDO

method (MNDO and AM1 being versions 1 and 2, respectively) has been

developed,45 and in general has been found to give better bond lengths,

ionization energies, and enthalpies of formation than the two other MNDO

schemes. However, despite this progress, there are cases where PM3 is

much worse than MNDO. The three semiempirical methods MNDO, AM1,

and PM3 do not use d-orbitals in their basis sets and therefore do not give

very accurate results for most d-metal compounds nor for those main group

elements where, from ab initio studies, d-orbitals are known to be of

importance. The MNDO formalism has been extended to d-orbitals and the

resulting MNDO/d parametrization scheme46 is much better at predicting

properties of organometallic compounds. Furthermore, the AM1 scheme

has been extended to include d-orbitals in a very similar manner to the

creation of MNDO/d. This extension of AM1, which is parametrized

for molybdenum and denoted AM1/d,47 gives identical results to AM1 for

main-group atoms. For a series of Mo compounds, AM1/d resulted in mean

absolute errors in bond distances of 4.4 pm and in enthalpies of formation of

30 kJ mol�1.

Another recent parametrization scheme is PM5, which yields results that

are more accurate by up to a factor of four compared to PM3 and AM1; for

example, the average error in absolute enthalpies of formation compared to

experiment fell from 70 kJ mol�1 using AM1 and 85 kJ mol�1 using PM3 to

20 kJ mol�1 using PM5. Other recently developed semiempirical methods

include MSINDO, NDDO/MC, and PM3/tm. It is important to keep in

mind that because the agreement between theoretical and experimental results

does not necessarily improve for all chemical systems as a new para-

metrization scheme is introduced, it is essential to compare the outcome of

several methods.

Molecular mechanics

For very large systems, as in biochemical applications, it is not computa-

tionally practicable to use solely quantum mechanical approaches to compute

potential energies. For these applications, often a mixture of quantum

mechanics and molecular mechanics is employed, the latter using potential

functions from classical mechanics to compute the potential energy for a

specified arrangement of atoms.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45. J.J.P. Stewart, J. Comput. Chem., 209, 10 (1989); idem., 221, 10 (1989).

46. W. Thiel and A.A. Voityuk, J. Phys. Chem., 616, 100 (1996).

47. A.A. Voityuk and N. Rösch, J. Phys. Chem. A, 4089, 104 (2000).
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9.19 Force fields

In molecular mechanics (MM), the electrons in the system under study are not

considered explicitly but rather each atom (the atomic nucleus and the asso-

ciated electrons of the atom) is treated as a single particle. Therefore, MM is

not very useful for chemical problems that involve bond-breaking or bond-

forming since electronic effects are critical in such cases. Rather, MM is com-

monly used in large systems for predicting the potential energy of a particular

molecular conformation (that is, arrangement of atoms). The absolute values of

the potential energies are not particularly meaningful in such calculations;

instead it is energy differences between conformations that are significant.

The atomic particles are treated as charged spheres with diameters deter-

mined from experiment or theory and charges (or partial charges) taken from

theory. The interactions between the atoms are based on models of springs

and on other classical potentials. The total potential energy is typically taken

to be the sum of the bond stretching energy Estr, the bending energy Ebend, the

twisting (or torsion) energy Etor, and the energy of interaction between non-

bonded atoms Enb. The last contribution includes van der Waals, steric, and

electrostatic interactions between atoms not chemically bound. (Other energy

contributions such as stretch–bend coupling interactions and special treat-

ment of hydrogen bonding might also appear in MM.) The equations for the

potential energy terms contain parameters and the specified set of equations

and parameters is called the force field.

Numerous force fields have been developed for MM, the most common

ones for studies of proteins and nucleic acids being AMBER and CHARMM.

A popular force field for small organic molecules is N.L. Allinger’s MM2,48

part of the MMx set of force fields which also includes MM3 and MM4.

Typical expressions for the potential energy terms are:

Estr ¼
P

1
2kbðr� r0Þ2 ð9:71aÞ

Ebend ¼
P

1
2kyðy� y0Þ2 ð9:71bÞ

Etor ¼
P

Af1þ cosðnt� fÞg ð9:71cÞ

Enb ¼
X
i>j

�Cij

r6
ij

þDij

r12
ij

þ qiqjj0
errij

( )
ð9:71dÞ

The sum in eqn 9.71a is over all bonds in the molecule and the harmonic

oscillator parameters kb (an empirical force constant) and r0 (the equilibrium

bond length) are assigned for each kind of bond (C–C, C–H, N–H, . . . ). The

sum in eqn 9.71b extends over all angles and the values of ky (which controls

the stiffness of the ‘angular’ spring) and y0 (the equilibrium angle) are

assigned to each kind of angle (CCC, OCH, COH, . . . ). The sum in eqn 9.71c

is over all torsional motions with A the amplitude, n the periodicity factor,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48. N.L. Allinger, J. Am. Chem. Soc., 8127, 99 (1977).
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and f the displacement in the rotation angle t. The rotation angle is usually

taken to be zero for the cis conformation of the quartet of atoms. The value of

n reflects the symmetry of the torsional motion (for example, the HC–CH

torsional motion in ethane has n¼ 3 and periodicity 2p/3). Values of A, n,

and f are assigned to each kind of torsional motion (CC–CC, CO–CC,

CC–CN, . . . ). The sum in eqn 9.71d extends over all distinct pairs of inter-

acting non-bonded atoms i and j. The first two terms in the equation represent

van der Waals and repulsion interactions parametrized by empirical coeffi-

cients Cij and Dij which are assigned to each kind of non-bonded pair (C and

H, C and C, C and O, . . . ). The last term in the sum is the Coulombic

interaction of particles of charges qie and qje in an environment of local

relative permittivity er. These charges (or partial charges) are often computed

using ab initio or semiempirical methods. Because a given atom is surrounded

by a small number of bonded atoms but can have non-bonded interactions

with many atoms in the molecule, most of the computer time in MM is spent

on computing Enb, and performing calculations on parallel and vector

machines has been invaluable.

The MM procedure is used to compute the potential energy for systems

with large numbers, often thousands, of atoms, including biomolecules (such

as proteins and nucleic acids), organic compounds, and polymers; both gas-

phase and solution-phase systems can be studied. The energy is computed for

numerous molecular geometries so that the lowest energy conformation for

the system can be located. Finding conformations corresponding to local

minima in energy is a relatively easy task; determining the conformation

associated with the global minimum is often a challenging undertaking due to

the large number of degrees of freedom in macromolecules.

9.20 Quantum mechanics–molecular mechanics

Calculations using MM take significantly less computer time than quantum

mechanical methods; however, because the former do not provide descrip-

tions in terms of electrons or orbitals, they are of limited use in systems where

quantum mechanical effects are important. Therefore, an active area of

current research efforts is the development of approaches that treat certain

parts of the system accurately (that is, quantum mechanically) while treating

other parts of the system with much faster methods of lower accuracy. One

such approach is quantum mechanics–molecular mechanics (QM/MM).

The QM/MM procedure is applicable when the system can be partitioned

into two regions; one region (the ‘active site’) requires an accurate QM cal-

culation of its potential and the second region (the rest of the system) acts as a

perturbation on the active site and can be treated with an approximate and

fast MM calculation of its potential. By using a quantum mechanical calcu-

lation, we can treat bond-breaking and bond-forming accurately at the active

site yet still take into account the role of the surrounding atoms using MM.

A QM/MM calculation is usually performed in an iterative manner.

The conformation of the atoms in the active site (the QM subsystem) is fixed

and the MM calculation is performed on the MM subsystem; in this latter

calculation, the effects (for example, non-bonded interactions Enb) of the QM
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subsystem on the MM subsystem potential are taken into account by treating

the QM atoms as fixed MM atoms. Then the QM method is applied to the

active site utilizing, for example, a self-consistent field calculation that

includes the potential energy of the MM subsystem. From the QM calcula-

tion, a preferred (lower energy) geometry of the QM subsystem is located.

Then with this new active site conformation, the entire process is repeated

until the geometry of all atoms in the system is converged.

The critical challenge in a QM/MM calculation is to devise an accurate

interface between QM and MM when the boundary between the two sub-

systems intersects covalent bonds. Various approaches have been developed

in this active area of research;49 one common approach employs ‘capping’

atoms. As an example, suppose we are interested in an enzyme that contains a

nitrogen atom in its active site which is bonded to a substituted benzene ring.

If the QM/MM boundary is taken as intersecting the nitrogen–carbon

covalent bond, the nitrogen atom is part of the QM subsystem and the sub-

stituted ring is part of the MM subsystem. In such an arrangement, the

benzene ‘ligand’ is ‘removed’ and replaced with a capping atom, typically

hydrogen, and the QM calculation is performed on the model subsystem with

an N–H bond in the active site.

The QM/MM procedure was first introduced in 1976 by Warshel and

Levitt50 but a practical implementation was not given until a decade later

by Singh and Kollman.51 One QM/MM scheme is integrated molecu-

lar orbitalþmolecular mechanics (IMOMM), which was developed by

Morokuma and co-workers and combines a high-level molecular orbital

calculation with an MM calculation.52 The QM/MM procedure has been

applied to a variety of large systems including nucleic acids, proteins,

metalloenzymes and organometallic, catalysts. Three recent biomolecular

applications are described briefly below.

(1) Much of the ATP in the cells of living organisms is produced by the

enzyme F1F0-ATP synthase. The F1 part of the enzyme, which is water

soluble, can also catalyse the hydrolysis reaction converting ATP to ADP.

A QM/MM investigation53 of the ATP hydrolysis occurring in the bTP site

of F1 found the reaction to be endothermic, suggesting that the bTP site

supports ATP synthesis rather than ATP hydrolysis in the specific enzyme

conformation studied.

(2) Cytochrome P-450 is an enzyme critically important in metabolism

and modelling this (iron centre) enzyme is very useful to the pharmaceu-

tical industry. The minimum-energy conformations of two cytochrome

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49. A discussion of some of these approaches can be found in Chapter 13 of C.J. Cramer,

Essentials of computational chemistry: theories and models, Wiley & Sons, Chichester (2002).

50. A. Warshel and M. Levitt, J. Mol. Biol., 227, 103 (1976).

51. U.C. Singh and P.A. Kollman, J. Comput. Chem., 718, 7 (1986).

52. IMOMM is a subset of the ONIOM method (‘Our own N-layered Integrated molecular

Orbital molecular Mechanics method’) described in R.D.J. Froese and K. Morokuma, Chem. Phys.

Lett., 419, 305 (1999).

53. M. Dittrich, S. Hayashi, and K. Schulten, Biophys. J., 2253, 85 (2003).
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P-450 containing species were located and the relative energies of

doublet and quartet spin states determined in a QM/MM study employ-

ing DFT.54

(3) An important process in glucose fermentation is the enolase-catalysed

proton transfer of 2-phospho-D-glycerate (2-PGA) to phosphoenol-

pyruvate. The potential energy surface for the reaction was computed

using QM/MM.55 The QM subsystem consisted of 2-PGA and a ten-atom

portion of the Lys345 side chain of the enolase enzyme (the Lys345

enzyme residue having been identified in previous activity assays as the

general catalyst for proton abstraction). The 25-atom QM subsystem was

characterized using AM1; the MM calculation included a CHARMM

force field.

Software packages for electronic
structure calculations

Sophisticated software packages have been developed over the past four

decades to perform electronic structure calculations using the methods we

have described. These packages are widely available and are becoming

increasingly easy to use. They are often accompanied by sophisticated gra-

phical user interfaces (GUIs) that allow visualization of results of calcula-

tions. Many packages can be used to compute both potential energies and

analytic derivatives, and so are useful for determining equilibrium geometries,

transition state geometries, and vibrational frequencies. We mention here

some of the available packages and emphasize methods we have discussed in

this chapter. See the Further reading section for a more complete discussion.

Several widely used software packages capable of electronic structure

calculations include Gaussian, GAMESS (General Atomic and Molecular

Electronic Structure System), and CADPAC (Cambridge Analytical

Derivatives Package). Gaussian utilizes a wide variety of ab initio, DFT,

semiempirical, and MM methods (including solvation models). GAMESS

(and its United Kingdom counterpart GAMESS-UK) uses CI, MP2, CC, and

DFT for electron correlation corrections; it also has semiempirical cap-

abilities. CADPAC (part of the UniChem software package) is capable of HF,

MPPT, CC, and CI calculations. Other quantum mechanical software

packages are ACES-II (with strengths in MBPT, CC, and DFT calculations)

and Dalton QCP (Quantum Chemistry Program), which can compute electric

and magnetic properties using SCF, MP2, CC, and MCSCF. Several packages

designed for highly accurate computations on relatively small molecules by

focusing on accurate multiconfiguration and multireference treatments of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54. R.B. Murphy, D.M. Philipp, and R.A. Friesner, J. Comput. Chem., 1442, 21 (2000).

55. C. Alhambra, J. Gao, J.C. Corchado, J. Villà, and D.G. Truhlar, J. Am. Chem. Soc., 2253,

121 (1999).
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electron correlation are MOLCAS, MOLPRO, and COLUMBUS. MELDF

uses MRCI and multireference MP2 methods. NWChem and MPQC

(Massively Parallel Quantum Chemistry Code) are designed for peak efficiency

on machines capable of parallel computing. Other ab initio software packages

are Jaguar (which can treat large systems such as molecular clusters), Q-Chem

(which treats solvation using the CHEMSOL package), Turbomole (which

uses Gaussian basis sets), and HONDO (a semiempirical molecular orbital

program with SCF, MCSCF, and CI wavefunctions).

Software packages designed for density functional theory calculations

include deMon, DMol, DGauss, and ADF (Amsterdam Density Functional).

The last is popular for work in catalysis, spectroscopy, inorganic chemistry,

biochemistry (using QM/MM), and heavy elements (using relativistic methods).

DGauss, part of UniChem, uses Gaussian-type orbitals for computational

efficiency. The DMol program can handle molecular clusters and periodic

systems.

Two widely used semiempirical packages are MOPAC and AMPAC.

MOPAC, which is the most popular semiempirical software package,

includes MNDO, MINDO/3, AM1, PM3, MNDO/d, and PM5 para-

metrization schemes. It can characterize properties and reactivity of large

systems (hundreds of atoms) in the gas phase and in solution as well as in the

solid state. AMPAC and the UniChem software program called MNDO also

include a variety of semiempirical methodologies. Other packages include

VAMP, which is designed for organic and inorganic systems, and ZINDO,

which uses a parametrization for molecular spectroscopic properties. The

semiempirical package AMSOL includes a variety of solvation models (pri-

marily based on the AM1 and PM3 methods) for computing Gibbs energies of

solvation in water and numerous organic solvents. Be aware, however, that

because the semiempirical methodologies are parametrization-dependent,

AM1 in one software package, for example, need not be the same as AM1 in

another software package.

Software packages for molecular mechanics include CHARMM (Chemistry

at Harvard Macromolecular Mechanics), AMBER (Assisted Model Building

with Energy Refinement), SIFBA (Sum of Interactions Between Fragments

Ab initio computed), QuanteMM, and TINKER. CHARMM uses potential

energy functions parametrized for proteins, nucleic acids (DNA and RNA),

and lipids. Energies can be evaluated once parameters (such as force con-

stants, equilibrium geometries, and van der Waals radii) are specified; the

values of parameters are obtained from a combination of experimental and

quantum mechanical studies. The commercial version of CHARMM, called

CHARMm, is capable of QM/MM computations by interfacing to several

different QM programs. SIFBA focuses on inter- and intramolecular inter-

actions of organic and biological molecules. QuanteMM is capable of

studying a diverse range of systems including biomolecules and inorganic

catalysts. It undertakes QM/MM studies by using DMol, Turbomole,

or MOPAC on one part of the system and molecular mechanics on the

‘surrounding’ atoms. AMBER provides efficient and accurate biomolecular

force fields for MM. TINKER uses numerous force fields including AMBER

and CHARMM parameter sets; it has special features for biopolymers.
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The availability of all of these software packages, together with other

popular commercial versions such as SPARTAN and HyperChem (which has

ZINDO/1 and ZINDO/S semiempirical capabilities), has made electronic

structure calculations accessible to a wide range of scientists.

Box 9.1 Acronyms for electronic structure calculations

Acronym Name/Description

AMBER assisted model building with energy refinement
AM1 Austin model 1 (version 2 of MNDO)
CASSCF complete active-space self-consistent field
CC coupled-cluster
CCD coupled-cluster doubles
CCSD coupled-cluster singles and doubles
CCSDT coupled-cluster singles, doubles, and triples
CHARMM chemistry at Harvard Macromolecular Mechanics
CI configuration interaction
CNDO complete neglect of differential overlap
CPHF coupled perturbed Hartree–Fock
CPMCSCF coupled perturbed MCSCF
CSF configuration state function
DCI CI including doubly excited Slater determinants
DFT density functional theory
DZ double-zeta basis set
DZP double-zeta plus polarization basis
GGA generalized gradient approximation
GTO Gaussian-type orbital
HF Hartree–Fock
HF-SCF Hartree–Fock self-consistent field
HMO Hückel molecular orbital
IMOMM integrated molecular orbitalþmolecular mechanics
INDO intermediate neglect of differential overlap
KS Kohn–Sham
LCAO linear combination of atomic orbitals
LDA local density approximation
LSDA local spin density approximation
MBPT many-body perturbation theory
MCSCF multiconfiguration self-consistent field
MINDO modified intermediate neglect of differential overlap
MM molecular mechanics
MMx set of force fields for MM studies
MNDO modified neglect of differential overlap
MPn Møller–Plesset perturbation theory including nth-order energy

correction
MPPT Møller–Plesset perturbation theory
MRCI multireference configuration interaction
NDDO neglect of diatomic differential overlap
ONIOM our own N-layered Integrated molecular Orbital molecular Mechanics

method
PMx parametrization model x (version x of MNDO)
PPP Pariser–Parr–Pople
PT perturbation theory
QM/MM quantum mechanics–molecular mechanics
RASSCF restricted active-space self-consistent field
RHF restricted Hartree–Fock
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SCF self-consistent field
SDCI CI including singly and doubly excited Slater determinants
SDTQCI CI including singly, doubly, triply, and quadruply excited Slater

determinants
STO Slater-type orbital
STO-NG representation of STO as linear combination of N primitive Gaussians
SV split-valence basis
TD-DFT time-dependent density functional theory
TZ triple-zeta basis
UHF unrestricted Hartree–Fock
ZDO zero differential overlap
ZINDO semiempirical INDO-based method developed by M.C. Zerner
m-npG one contracted Gaussian composed of m primitives for each inner-shell

atomic orbital; two contracted Gaussians of n and p primitives,
respectively, for each valence-shell atomic orbital

m-npG
 m-npG basis plus d-type polarization functions for non-hydrogen atoms
m-npG

 m-npG
 basis plus p-type polarization functions for hydrogen atoms

P R O B L E M S

9.1 Confirm that the product in eqn 9.5 of one-electron
wavefunctions is an eigenfunction of the hamiltonian H(0)

of eqn 9.3 and determine its corresponding eigenvalue.

9.2 Show that (1/n!)1/2 is the correct normalization factor
for a single Slater determinant consisting of n orthonormal
spinorbitals.

9.3 Show that the Slater determinant
F ¼ ð1=6Þ1=2detjca

1sð1Þc
b
1sð2Þc

a
1sð3Þj for the He� ion

is identically zero.

9.4 Show that in the closed-shell restricted Hartree–Fock
case the general spinorbital Hartee–Fock equation
(eqns 9.8 and 9.9) can be converted to HF eqn 7.47 for the
spatial wavefunction c. (Hint. To convert from spinorbitals
to spatial orbitals, you will need to integrate out the spin
functions. Begin with eqn 9.8 and let fa(1)¼ca(1)a(1); an
identical result will be obtained if you assume that
fa(1)¼ca(1)b(1).)

9.5 Give an example of a restricted Hartree–Fock
wavefunction and an unrestricted Hartree–Fock
wavefunction for the aluminium atom.

9.6 In a Hartree–Fock SCF calculation on the chlorine
atom using 20 (spatial) basis functions, how many virtual
orbitals are determined?

9.7 Consider the two-electron integrals over the basis
functions defined in eqn 9.24. If the basis functions are
taken to be real, a number of the integrals are equivalent;
for example, (abjcd)¼ (bajcd). Find the other integrals that
are equal to (abjcd).

9.8 Show that the product of an s-type Gaussian centred at
RA with exponent aA and an s-type Gaussian centred at RB

with exponent aB can be written in terms of a single s-type
Gaussian centred between RA and RB.

9.9 In an electronic structure calculation on
chloromethane, CH3Cl, describe briefly what would be
meant by (i) a minimal basis set, (ii) a split-valence basis
set, (iii) a DZP basis set. How many basis functions are
needed in each case?

9.10 In a Hartree–Fock calculation on atomic hydrogen
using four primitive s-type Gaussian functions (S. Huzinaga,
J. Chem. Phys., 1293, 42 (1965)), optimized results were
obtained with a linear combination of Gaussians with
coefficients cji and exponents a of 0.509 07, 0.123 317;
0.474 49, 0.453 757; 0.134 24, 2.013 30; and 0.019 06,
13.3615. Describe how these primitives would be utilized in
a (4s)/[2s] contraction scheme.

9.11 Determine the number of basis set functions in
a molecular electronic structure calculation on ethanol,
CH3CH2OH, using (i) a 6-31G; (ii) a 6-31G
;
(iii) a 6-31G

 basis.

9.12 Determine the total number of different Slater
determinants for an electronic structure calculation
on ethanol, CH3CH2OH, that can be formed from
a 6-31G

 basis set.

9.13 A single Slater determinant is not necessarily
an eigenfunction of the total electron spin operator.
Therefore, even within the Hartree–Fock approximation,
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for the wavefunction F0 to be an eigenfunction of S2,
it might have to be expressed as a linear combination of
Slater determinants. The linear combination is referred
to as a spin-adapted configuration. As a simple example,
consider a two-electron system with four possible Slater
determinants:

F1 ¼
�

1
2

1=2
detjc1ðr1Það1Þc2ðr2Það2Þj

F2 ¼
�

1
2

1=2
detjc1ðr1Það1Þc2ðr2Þbð2Þj

F3 ¼
�

1
2

1=2
detjc1ðr1Þbð1Þc2ðr2Það2Þj

F4 ¼
�

1
2

1=2
detjc1ðr1Þbð1Þc2ðr2Þbð2Þj

First, show that the Slater determinants F1 and F4

are themselves eigenfunctions of S2 with eigenvalue 2�h2

(corresponding to S¼ 1). Then, from F2 and F3,
determine two linear combinations, one of which
corresponds to S¼ 1, MS¼ 0 and the other of which
corresponds to S¼ 0, MS¼ 0.

9.14 In a CI calculation on the ground 2S state of lithium,
which of the following Slater determinants can contribute to
the ground-state wavefunction? (a) kca

1sc
b
1sc

a
2sk;

(b) kca
1sc

b
1sc

b
2sk; (c) kca

1sc
b
1sc

a
2pk; (d) kca

1sc
a
2pc

b
2pk;

(e) kca
1sc

a
3dc

b
3dk; (f) kca

1sc
a
2sc

a
3sk.

9.15 In a CI calculation on the excited 3Sþu electronic state
of H2, which of the following Slater determinants can
contribute to the excited-state wavefunction? (a) k1sag1sauk;
(b) k1sag1pauk; (c) k1sau1pbgk; (d) k1sbg2sbuk;
(e) k1pau1pagk; (f) k1pbu2pbuk.

9.16 Consider a configuration interaction calculation
which employs three orthonormal n-electron Slater
determinants F1, F2, and F3. Write out the secular
determinant from which the three lowest energies
would be found.

9.17 Prove Brillouin’s theorem; that is, show that
hamiltonian matrix elements between the HF
wavefunction F0 and singly excited determinants
are identically zero.

9.18 Hamiltonian matrix elements between two n-electron
Slater determinants can be conveniently expressed in terms of
integrals over the orthonormal spinorbitals of which the
determinants are comprised. This was first done by Condon
and Slater and the resulting expressions are sometimes
referred to as the Slater–Condon rules. Consider two Slater
determinants F1 and F2 that differ by only one spinorbital;
that is,

F1 ¼ ð1=n!Þ1=2detj . . .fmfi . . . j
F2 ¼ ð1=n!Þ1=2detj . . .fpfi . . . j

Derive the following Slater–Condon rule.

hF1jHjF2i ¼ hfmð1Þjh1jfpð1Þi
þ Sif½fmfpjfifi� � ½fmfijfifp�g

where we have used the notation (see Further
information 11)

½fafbjfcfd�

¼
Z

f
að1Þfbð1Þ
e2

4pe0r12


 �
f
cð2Þfdð2Þdr1dr2

9.19 Using the notation [fafbjfcfd] given in the
preceding problem for a two-electron integral over the
spinorbitals, show that (a) [fafbjfcfd]¼ [fcfdjfafb]
and (b) [fafbjfcfd] ¼ [fbfajfdfc]


.

9.20 (a) For a CASSCF calculation of the ground-state
wavefunction of diatomic C2, describe a reasonable choice
for the distribution of s and p molecular orbitals into active,
inactive and virtual orbitals. (b) How many inactive and
active electrons are there in the calculation? (c) In an
RASSCF calculation, how might the set of active orbitals
be further divided?

9.21 Show that the Møller–Plesset perturbation H(1)

can be written in terms of the Coulomb and exchange
operators as

Hð1Þ ¼
Xn

i;j¼1

e2

8pe0rij
� JjðiÞ þ KjðiÞ

� �

9.22 Use Møller–Plesset perturbation theory to obtain an
expression for the ground-state wavefunction corrected to
first order in the perturbation.

9.23 (a) Which of the following methods are capable of
yielding an energy below the exact ground-state energy?
(b) Which of the following methods are not assured of
being size-consistent? (i) HF–SCF; (ii) full CI; (iii) SDCI;
(iv) MP2; (v) MRCI; (vi) MP4; (vii) CCSD.

9.24 In an SDCI calculation using gradient methods to
compute the force constants of NH3, which analytical
derivatives are needed to calculate the required energy
derivatives?

9.25 Show that the derivative of an s-type GTO with
respect to the nuclear coordinate xc yields a p-type GTO
and that the derivative of the p-type Gaussian y100 yields
a sum of s- and d-type Gaussians. (The GTO is given in
eqn 9.28.)

9.26 Demonstrate explicitly the relation between the PPP
and the HMO methods described in the last paragraph of
Section 9.17.

9.27 Which of the following two-electron integrals
(over real basis functions) are not neglected in (i) CNDO;
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(ii) INDO; (iii) MNDO? (a) (iijjj) with yi and yj belonging to
different atoms; (b) (ijjji) with yi and yj belonging to the
same atom; (c) (ijjji) with yi and yj belonging to different
atoms; (d) (ijjki) with yi, yj, and yk belonging to the same
atom; (e) (ijjkl) with yi and yj belonging to one atom and yk

and yl belonging to another; (f) (iijii).

9.28 Using appropriate electronic structure software,
perform HF–SCF calculations for the ground electronic
states of H2 and F2 using (a) 6-31G and (b) 6-31G

 basis
sets. Determine ground-state energies and equilibrium
geometries.

9.29 Repeat Problem 9.28 with the indicated basis sets
but, rather than HF–SCF, perform calculations using
(i) SDCI, (ii) MP2, (iii) DFT (B3LYP functional).

9.30 Repeat Problems 9.28 and 9.29 for the triatomics
H2O and CO2. In addition, compute the vibrational
frequencies in each case.

9.31 Use the AM1 and PM3 semiempirical
methods to compute the equilibrium bond lengths
and enthalpies of formation of (a) ethanol,
(b) 1,4-dichlorobenzene.
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Molecular spectra are more complex than atomic spectra and convey richer

information. Their greater complexity arises from the more complicated

structures of molecules, for whereas the spectra of atoms are due only to their

electronic transitions, the spectra of molecules arise from electronic, vibra-

tional, and rotational transitions. These modes are not independent of one

another, and the complexity of the spectra is enriched by the interactions

between them. We shall see that an interpretation of molecular spectra yields

a great deal of information about the shapes and sizes of molecules, the

strengths and stiffnesses of their bonds, and other information that is needed

to account for chemical reactions.

The energy associated with rotational transitions is usually less than for

vibrational transitions, and the energy of vibrational transitions is usually less

than for electronic transitions. Therefore, although it is possible to observe

pure rotational transitions, a vibrational transition is normally accompanied

by rotational transitions. Electronic transitions are accompanied by both

vibrational and rotational transitions and are correspondingly more com-

plicated. Because of this hierarchy, we shall deal with transitions in order of

increasing size of the quanta involved.

Spectroscopic transitions

There are certain features that are common to all forms of spectroscopy,

particularly relating to the intensities of lines. The background to this

material was presented in Chapter 6.

10.1 Absorption and emission

We saw in Chapters 6 and 7 that the most intense transitions are induced by

the interaction of the electric component of the electromagnetic field with the

electric dipole associated with the transition. We also saw that the intensity

of the transition between an initial state j ii and a final state j fi is proportional

to the square (more precisely, the square modulus) of the electric dipole

transition moment, �fi, where

�fi ¼ hfj�jii ð10:1Þ
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in which � is the electric dipole moment operator (a vector). We decide

whether or not a particular transition can occur in the spectrum by examining

this integral and formulating a selection rule. The selection rules for

absorption and emission of radiation are based on the criteria for this electric

dipole transition moment being non-zero, as explained in Section 5.16.

However, we need to distinguish between gross selection rules, which are

statements about the properties that a molecule must possess in order for it to

be capable of showing a particular type of transition, and specific selection

rules, which are statements about the changes in quantum numbers that may

occur during such a transition. The physical interpretation of the electric

dipole transition moment is that it is a measure of the magnitude of the

dipolar migration of charge that accompanies the transition (Fig. 10.1).

Molecular collisions obey different selection rules, and may induce a wide

variety of transitions. Their effect is usually to establish thermal equilibrium

populations of rotational, vibrational, and electronic states. Collisions

affect the appearance of spectra, because spectral intensities depend on the

populations of the states involved in the transition, and lifetime broadening

(Section 6.18) affects their widths.

Once an electric dipole transition moment has been calculated it can be

used in the expressions derived in Section 6.17 for the rates of transitions:

Simulated: W ¼ BrradðEÞ Spontaneous: W ¼ A ð10:2Þ
with

A ¼
8phn3

fi

c3
B B ¼ mfij j2

6e0�h2
ð10:3Þ

If it is safe to ignore spontaneous emission (which is the case for transition

frequencies of less than about 1 THz, or when considering systems in which

only the ground state is significantly populated), the net rate of absorption

of energy is the difference between the rate of absorption and the rate of

stimulated emission multiplied by the energy change that accompanies each

transition (hn¼E):

dE

dt
¼ NlhnWu l �NuhnWu!l ¼ Nl �Nuð ÞhnBrradðEÞ ð10:4Þ

where Nu is the population of the upper state and Nl is the population of

the lower state. That is, the net rate of energy extraction from the incident

radiation is proportional to the population difference between the two states. If

the sample is at thermal equilibrium at a temperature T, the relative popu-

lations of the upper and lower states are given by the Boltzmann distribution:

Nu

Nl

¼ e�ðEu�ElÞ=kT ¼ e�hn=kT ð10:5Þ

For electronic transitions and most vibrational transitions the upper state is

virtually unpopulated at normal temperatures, so only absorption processes

are significant and we can write

dE

dt
¼ NhnBrradðEÞ ð10:6Þ

where N is the total number of molecules in the sample.

�i �f

Charge

Fig. 10.1 In order for a transition

to be electric-dipole allowed, it

must possess a degree of dipolar

character. A purely spherically
symmetrical (or some other

non-dipolar) redistribution of

charge cannot interact with

the electric field vector of the
electromagnetic field.
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10.2 Raman processes

The process that gives rise to Raman spectra is the inelastic scattering of a

photon by a molecule. The photon loses some of its energy to the molecule or

gains some from it, and so departs from the molecule with a lower or a higher

frequency, respectively. The lower frequency components of the scattered

radiation are called the Stokes lines and the higher frequency components are

called the anti-Stokes lines.

The selection rules for Raman transitions are based on aspects of the

polarizability, a, of the molecule, the measure of its response to an electric

field (see Section 12.1). Their origin can be appreciated by a classical argu-

ment in which we consider the dipole moment induced in a molecule by a

time-dependent electromagnetic field

mðtÞ ¼ aðtÞeðtÞ ¼ 2aðtÞe0 cosot ð10:7Þ
If the polarizability of the molecule changes between amin and amax at a fre-

quency oint as a result of its rotation or vibration, we can write

mðtÞ ¼ 2ðaþ 1
2Da cosointtÞe0 cosot

where a is the mean polarizability and Da¼ amax� amin is its range of

variation. This product expands to

mðtÞ ¼ 2ae0 cosot þ 1
2Dae0fcosðoþ ointÞt þ cosðo� ointÞtg ð10:8Þ

This induced dipole moment has three components. One (the first on the

right) has the incident frequency and gives rise to the unshifted Rayleigh line in

the spectrum. The other two components are shifted in frequency by the

frequency at which the molecular motion causes the polarizability to oscillate

and give rise to the Stokes and anti-Stokes lines with frequencies o�oint and

oþoint, respectively. It is clear that these Raman frequencies will be observed

only if Da 6¼0, so rotational Raman transitions require the molecule to have

an anisotropic polarizability. Vibrational Raman transitions require the

polarizability to change as the molecule vibrates. The above requirements

are examples of gross selection rules.

Molecular rotation

The strategy for each section of this chapter will be to establish the energy

levels of molecules for each mode of motion, and then to apply the selection

rules to determine the appearance of the relevant spectrum. We begin here

with the rotation of molecules. The treatment is considerably simplified by

drawing on the properties of angular momentum obtained in Chapter 4.

We need the concept of the moment of inertia, I, of a body, a property first

introduced in connection with rotational motion in Chapter 3. The moment

of inertia about an axis q set in the molecule is defined as

Iqq ¼
X

i

mix
2
i ðqÞ ð10:9Þ

We have used the

trigonometric relation

cos A cos B¼ 1
2 cos(AþB)

þ 1
2 cos (A�B).
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where xi(q) is the perpendicular distance of the atom i of mass mi from the

axis q (Fig. 10.2). The double subscript is used on I for technical reasons,

but broadly speaking it echoes the presence of the distances xi(q) as their

squares. The moment of inertia of a diatomic molecule with bond length R

and atomic masses mA and mB is particularly simple and will be useful later.

For rotation about an axis perpendicular to the bond and through the centre

of mass it is:

I ¼ mR2 1

m
¼ 1

mA
þ 1

mB
ð10:10Þ

where m is the reduced mass of the molecule. A molecule with heavy atoms

well away from its centre of mass has a large moment of inertia and, in

classical physics, accelerates only slowly when subjected to a torque (a

turning force), t:

do
dt
¼t

I

where o is the angular velocity (the rate of change of orientation). In this

respect, the moment of inertia plays in rotational motion the same role as

inertial mass plays in linear motion (for which the acceleration is equal to

F/m). The expressions for the moments of inertia of other molecules are

more complex (Table 10.1).

10.3 Rotational energy levels

According to classical physics, the kinetic energy of rotation of a body of

moment of inertia Iqq about an axis q is the following analogue of 1
2mv2 for

linear motion:

EK ¼ 1
2

X
q

Iqqo2
q ¼

X
q

J2
q

2Iqq
ð10:11Þ

Here oq is the angular frequency about the axis and we have used the classical

expression for the component of angular momentum around each axis,

Jq¼ Iqqoq (the analogue of p¼mv).There is no contribution to free rotation

from the potential energy, so the hamiltonian for the problem is

H ¼ J2
x

2Ixx
þ

J2
y

2Iyy
þ J2

z

2Izz
ð10:12Þ

with each Jq to be interpreted as an operator for the q-component of angular

momentum.

Consider first a symmetric rotor, which is a rigid body with one symmetry

axis Cn with n� 3.1 Examples include NH3, CH3Cl, CH3C�CH, and C6H6.

xi

mi

Fig. 10.2 The basis of the definition

of the moment of inertia about a

selected axis in terms of the mass
of a particle and its vertical

distance from the axis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Asymmetric rotors, which are rigid bodies with three different moments of inertia, are too

difficult to treat by elementary methods, and we shall not consider them. For an account, see the

references in Further reading.
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Table 10.1 Moments of inertia�

1. Diatomic molecules

R
mA mB

I ¼ mR2 m ¼ mAmB

m

2. Triatomic linear rotors

R'

mA mB mC

R
I ¼ mAR2 þmCR02 � mAR�mCR0ð Þ2

m

mA mB

R R

mA

I ¼ 2mAR2

3. Symmetric rotors

mC

mB mA

mA

mA
R

R �

�

Ik ¼ 2mAð1� cosyÞR2

I? ¼ mAð1� cos yÞR2 þmA

m
ðmB þmCÞð1þ 2 cosyÞR2

þmC

m
ð3mA þmBÞR0 þ 6mAR½13 ð1þ 2 cos yÞ�1=2
n o

R0

mB mA

mA

mA
R

�

Ik ¼ 2mAð1� cos yÞR2

I? ¼ mAð1� cos yÞR2 þmAmB

m
ð1þ 2 cos yÞR2

mB

mC

mC

mA mA

mA mA

RR'
Ik ¼ 4mAR2

I? ¼ 2mAR2 þ 2mCR02

4. Spherical rotors

mB mA

mA

mA
R

mA

I ¼ 8
3mAR2

mB

mA mA

mA mA

R

mA

mA

I ¼ 4mAR2

� In each case, m is the total mass of the molecule.
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As a consequence of this symmetry, two of the moments of inertia are the

same, and we write Ik ¼ Izz and I? ¼ Ixx ¼ Iyy;where z is the figure axis of the

molecule (the axis parallel to Cn). It follows that

H ¼
J2
x þ J2

y

2I?
þ J2

z

2Ik

This hamiltonian can be expressed in terms of the operator J2 ¼ J2
x þ J2

y þ J2
z

for the square of the magnitude of the total angular momentum, when it

becomes

H ¼ J2

2I?
þ 1

2Ijj
� 1

2I?

� �
J2
z ð10:13Þ

To establish the eigenvalues of this hamiltonian, we import the eigenvalues of

the operators J2 and Jz that were established in Chapter 4, recalling that the

eigenvalues of the operator J2 are J( Jþ 1)�h2 and those of Jz are an integral

multiple of �h. It is conventional to use K for the quantum number specifying

the component of angular momentum on the internal figure axis of a molecule

and to reserve MJ for its component on the laboratory-fixed Z-axis (laboratory-

fixed axes are commonly upper case). Then it follows that the eigenvalues of

the hamiltonian in eqn 10.13 are

Eð J, K, MJÞ ¼
Jð J þ 1Þ�h2

2I?
þ 1

2Ik
� 1

2I?

� �
K2�h2 ð10:14Þ

with

J ¼ 0, 1, 2, . . . K ¼ J, J � 1, . . ., � J MJ ¼ J, J � 1, . . ., � J

It is important to note that although the component of angular momentum on

the laboratory axis does not appear explicitly in the energy, it is nevertheless

required to specify the complete state of angular momentum of the molecule

(Fig. 10.3). Its absence from the expression for E is consistent with the fact

that in the absence of external fields, the rotational energy of the molecule is

independent of the orientation of its angular momentum in space; that is,

states differing only in values of MJ are degenerate. The significance of the

quantum number K is that it tells us how the total angular momentum of the

molecule is distributed over the molecular axes: when jK j � J, then almost

the whole of the molecule’s angular momentum is around its figure axis;

if jK j �0, then most of its angular momentum is about an axis perpendicular

to the figure axis (Fig. 10.4); opposite signs of K correspond to opposite

directions of rotation. Note that the energy depends on K2, so the energy is

independent of the direction of rotation about the figure axis, as is physically

plausible.

It is a further convention in the discussion of molecular rotation to express

the energy in terms of the rotational constants A and B:

A ¼ �h

4pcIk
B ¼ �h

4pcI?
ð10:15Þ

JMJ

K

z

Z

Fig. 10.3 The physical significance

of the quantum numbers J, K, and

MJ for a rotating non-linear
molecule.

K = 0

K ≈ J 
z

z

Fig. 10.4 When K¼0 the rotation
of the molecule is entirely about an

axis that is perpendicular to its figure

axis. When K has its maximum

value (of J), most of the rotational
motion is around the figure axis.
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For a prolate (cigar-shaped) top, A>B; examples are NH3 and CH3C�CH.

For an oblate (pancake-shaped) top, A<B; an example is C6H6.2 Then, with

E( J,K,MJ)¼ hcF( J,K,MJ), where F is a wavenumber,

Fð J, K, MJÞ ¼ BJð J þ 1Þ þ ðA� BÞK2 ð10:16Þ

The degeneracy of each level with K 6¼ 0 is gJ¼2(2Jþ 1), because MJ can take

2Jþ1 different values for a given value of J, and K can be either positive or

negative. If K¼ 0, gJ¼ 2Jþ1 because K then has only a single value.

When K¼ 0, the motion is entirely around an axis perpendicular to the

figure axis, and

Fð J, 0, MJÞ ¼ BJð J þ 1Þ ð10:17Þ

As expected, the energy of rotation now depends solely on the moment of

inertia about that perpendicular axis. When jK j ¼ J, its maximum value,

Fð J,� J, MJÞ ¼ AJ2 þ BJ ð10:18Þ

Now the main contribution (the term proportional to J2) comes from the

moment of inertia about the figure axis. The perpendicular component con-

tinues to contribute because the component J�h of angular momentum about

the figure axis is always less than the magnitude {J( Jþ 1)}1/2�h of the angular

momentum, so even if jK j ¼ J, provided J> 0 the molecule continues to

rotate at least slowly around the perpendicular axis.

There are two special cases of eqn 10.16 to consider. A spherical rotor is a

rigid molecule that belongs to a cubic (tetrahedral and octahedral) or icosa-

hedral point group. Examples are CH4, SF6, and C60. Such molecules have all

three moments of inertia equal, so A¼B. It follows that

Fð J, K, MJÞ ¼ BJð J þ 1Þ ð10:19Þ

and the rotational energy of the molecule is independent of both K and MJ.

However, as both quantum numbers are still needed to specify the precise

state of angular momentum of the molecule, each level is now (2Jþ1)2-fold

degenerate (Fig. 10.5). The K-degeneracy reflects the fact that it is now

immaterial what component the angular momentum has on the now arbitrary

molecular z-axis. A linear rotor is a rigid linear molecule, one that belongs to

the point group C1v or D1h. In such molecules, which include all diatomic

molecules, CO2, and HC�CH, the angular momentum vector is necessarily

perpendicular to the axis of the molecule, so K� 0 in all states. Substitution of

this value in eqn 10.16 gives

Fð J, MJÞ ¼ BJð J þ 1Þ ð10:20Þ

This equation resembles the last one, but note that K does not appear in the

specification of the state as it is identically zero. One implication of the

absence of K is that the degeneracy of a linear rotor is only gJ¼ 2Jþ1, for

now only MJ can range over a series of values and K is fixed at zero (Fig. 10.6).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. By convention, for an oblate top, A would be replaced by C; to keep the notation simple, we

use A for both types of top.
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Fig. 10.5 The rotational energy levels

and their degeneracies of a spherical

rotor. Note the very rapid increase in

degeneracy (which at high values of J
is proportional to J2).

348 j 10 MOLECULAR ROTATIONS AND VIBRATIONS



10.4 Centrifugal distortion

The treatment of a molecule as a rigid rotor is only an approximation. As the

degree of rotational excitation increases, the bonds are put under stress and

are stretched. The increase in moment of inertia that accompanies this

centrifugal distortion results in a lowering of the rotational constants, so the

energy levels are less far apart at high J than expected on the basis of the rigid

rotor assumption. We show in Appendix 10.1 that a first approximation to

the effect of centrifugal distortion on the energy levels of a linear rotor is

obtained by writing

Fð J, MJÞ ¼ BJð J þ 1Þ �DJ2ð J þ 1Þ2 ð10:21Þ

where D is called the centrifugal distortion constant. For diatomic molecules,

D ¼ �h3

4pkcm2R6
0

ð10:22Þ

Here k is the force constant of the bond (an indication of its stiffness), m is the

reduced mass, and R0 is the equilibrium bond length.

The centrifugal distortion constant is larger for molecules with bonds that

have low force constants, for then the centrifugal distortion caused by a given

angular momentum is large. However, because a small force constant is often

associated with long bond lengths and high reduced mass, the effect of the

latter terms may overcome the effect of changes in k itself.

10.5 Pure rotational selection rules

First we establish the gross selection rule and then the specific selection rules.

Consider a linear molecule in the state j e, J, MJi, where e is a label for the

electronic (and possibly vibrational) state of the molecule. The electric transi-

tion dipole matrix element that we need to consider to establish the rotational

selection rules is he, J 0, MJ
0 j� j e, J, MJi, where � is the electric dipole moment

operator. According to the Born–Oppenheimer approximation (Section 8.1),

we can separate the rotation of the molecule as a whole from the motion of

the electrons, and presume that because the vibrations are so much faster

than the rotations, we may also separate them too. Therefore, we write the

overall wavefunction of the molecule as the product j eij J, MJi. The transition

matrix element then factorizes into

he, J0, MJ
0j�je, J, MJi ¼ h J0, MJ

0jhej�jeij J, MJi ¼ h J0, MJ
0j�ej J, MJi ð10:23Þ

where�e is the permanent electric dipole moment of the molecule in the state e.
In other words, the transition matrix element is the matrix element of the

permanent electric dipole moment between the two states connected by the

transition. We can immediately conclude that:

Only polar molecules can have a pure rotational spectrum.

To establish the specific selection rules governing rotational transitions, we

have to investigate the values of J 0 and MJ
0 for which the matrix element
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Fig. 10.6 The rotational energy

levels and their degeneracies of a

linear rotor. Note that the
degeneracy increases more slowly

(at high values of J the number is

proportional to J) than for a

spherical rotor, and the rotational
states are much more sparse.
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h J0, MJ
0j�ejJ, MJi is non-zero for given values of J and MJ. For a linear

molecule, the rotational wavefunctions are eigenfunctions of the operators J2

and JZ (where Z denotes the laboratory axis). As we established in Section 4.7

in connection with orbital angular momenta, these eigenfunctions are the

spherical harmonics YJMJ
(y,f). It follows that for a component Q (where

Q¼X, Y, or Z in the laboratory-fixed axes)

J0, M0
J meQ
��� ���J, MJ

D E
¼
Z p

0

Z 2p

0

Y�J0M0
J
ðy,fÞmeQYJMJ

ðy,fÞ sin y dydf

ð10:24Þ
The most efficient way to evaluate this integral is to recognize that the

components of the dipole moment operator may themselves be written in

terms of spherical harmonics (by using the information in Table 3.1):

meX ¼ me sin y cosf ¼ �1
2

8p
3

� �1=2

me Y1,þ1 � Y1,�1


 �

meY ¼ me sin y sinf ¼ i12
8p
3

� �1=2

me Y1,þ1 þ Y1,�1


 �

meZ ¼ me cos y ¼ 4p
3

� �1=2

meY1, 0

ð10:25Þ

So, to evaluate the matrix elements we need to evaluate integrals of the form

IM ¼
Z p

0

Z 2p

0

Y�J0M0
J
ðy,fÞY1,Mðy,fÞYJMJ

ðy,fÞ sin ydydf ð10:26Þ

with M¼0, �1.

The integral IM is in an ideal form for the application of group theoretical

arguments. We saw in Section 5.19 that YJMJ
is a member of the basis that

spans the irreducible representation G( J) of the full rotation group. The integ-

rand therefore has a component that spans the completely symmetric irre-

ducible representation only if

Gð J
0Þ � Gð1Þ � Gð JÞ ¼ Gð0Þ þ � � � ð10:27Þ

which it does only if J 0 ¼ J, J�1, excluding J 0 ¼ J¼0 (Fig. 10.7). Therefore,

one selection rule is DJ¼ � 1. (The integral with J 0 ¼ J does not correspond to

an observable transition in pure rotational spectroscopy.) The integral over f
has the form

IM /
Z 2p

0

ei MJþM�M0J


 �
fdf

This integrand is completely symmetric (that is, independent of f) only if

MJ þM�M0
J ¼ 0, so we can conclude that the selection rule for MJ is

DMJ¼ 0, �1. The joint selection rules are therefore:

Pure rotational transitions (linear rotor):

DJ¼�1 DMJ¼ 0, �1 for a polar linear rotor.

For symmetric rotors we need to consider the possibility of transitions that

involve changes in the quantum number K. Because in a symmetric rotor any

permanent electric dipole moment must lie parallel to the Cn axis, there is no

J

1

1

1

J J

J �= J

J �= J + 1

J �= J –1

Fig. 10.7 The vector basis of the

selection rule for rotational

transitions of polar molecules.
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component perpendicular to the principal axis. Hence, the electromagnetic

field cannot couple to transitions that correspond to changes in the component

of angular momentum around the principal axis, and hence to changes in K.

In a sense, there is no ‘handle’ perpendicular to the principal axis on which

an electric field can exert a torque. The selection rules for polar symmetric

rotors are therefore:

Pure rotational transitions (symmetric rotor):

DJ¼�1 DMJ¼ 0,�1 DK¼0

Spherical rotors do not have permanent dipole moments (by symmetry), so

they do not show pure rotational transitions.

When the selection rules are applied to the expressions of Section 10.3 for

the energy levels of linear and symmetric rotors, we find the following

expressions for the wavenumbers of the transitions Jþ1 J:

~nnJ ¼ Fð J þ 1, K, MJÞ � Fð J, K, MJÞ ¼ 2Bð J þ 1Þ ð10:28Þ
with J¼0, 1, 2, . . . . The separation of neighbouring lines is

~nnJþ1 � ~nnJ ¼ 2Bð J þ 2Þ � 2Bð J þ 1Þ ¼ 2B ð10:29Þ
A pure rotational spectrum therefore consists of a series of lines, which in the

absence of centrifugal distortion have uniform spacing 2B (Fig. 10.8). Such

transitions typically lie in the microwave region of the electromagnetic

spectrum and in the far infrared for molecules with a small moment of inertia

(such as HCl). For a diatomic linear rotor that displays centrifugal distortion

we would use eqn 10.21 to write

~nnJ ¼ Fð J þ 1, MJÞ � Fð J, MJÞ � 2Bð J þ 1Þ � 4Dð J þ 1Þ3 ð10:30Þ
and now the lines converge as J increases. Note that because

~nnJ

J þ 1
¼ 2B� 4Dð J þ 1Þ2 ð10:31Þ

B and D can be determined by plotting ~nnJ=ð J þ 1Þ against ð J þ 1Þ2, which

should give a straight line of slope�4D and intercept 2B at Jþ1¼0 (Fig. 10.9).

10.6 Rotational Raman selection rules

Only molecules with anisotropic electric polarizabilities can show pure

rotational Raman lines. The selection rules are now

Rotational Raman:

DJ¼�2, �1 DK¼0 but K¼ 0!0 is forbidden for DJ¼�1

Note that the restriction on transitions between states with K¼0 rules out

DJ¼�1 for linear molecules.

There are several ways of understanding the occurrence of 2 in the selection

rule for J. In the first place, we saw in Section 10.2 that the classical origin of

the Raman effect depends on the polarizability of a molecule changing with

time as

aðtÞ ¼ aþ 1
2Da cosointt

where oint is some ‘internal’ frequency of the molecule. For rotation,

the polarizability returns to its original value twice per revolution

0

1
2

3

4

5

6

7

Wavenumber, �~

Fig. 10.8 The first few rotational

transitions of a linear molecule.

The pale lines indicate the effect of
centrifugal distortion, which leads

to a reduction in the separation of

the energy levels at high rotational
quantum numbers.

(J + 1)2

� J
/J

(J
+

1)

0

2B

Slope = –4D

Fig. 10.9 A plot of the wavenumber

of a rotational transition from J to
Jþ 1 against the value of ( Jþ 1)2

is a straight line: the slope is �4D
and the extrapolated intercept at

Jþ 1¼0 is 2B.
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Fig. 10.10 Whereas the electric

dipole moment of a molecule

requires a rotation through 2p to

restore it to its initial value, the
polarizability requires a rotation of

only p. Thus, the polarizability

tensor appears to rotate at twice the
rate of the electric dipole.
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X
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Fig. 10.11 The quantities used to

relate the component of electric
dipole moment in the laboratory

axes to the component in the

molecular axes.

(Fig. 10.10), so we should interpret oint as 2orot. From the point of view of the

polarizability, the molecule appears to be rotating twice as fast as its mechanical

motion. As a result, lines at o�2orot are observed in the scattered radiation.

For symmetric tops the possibility of angular momentum around the figure

axis complicates the analysis and allows for transitions with DJ¼�1 also.

The more formal procedure for establishing the selection rules is to

recognize that the anisotropy of the polarizability has components that

vary with angle as Y2,M(y,f). To see that this is so, we consider a diatomic

molecule with polarizabilities a k and a? and an electric field e applied in the

laboratory Z-direction. The induced dipole moment is parallel to the Z-axis,

so we can write mZ¼ aZZe. In the molecular frame, the components of the

dipole moment will be mx, my, and mz, and from Fig. 10.11 we see that

mZ ¼ mx sin y cosfþ my sin y sinfþ mz cos y

ex ¼ e sin y cosf ey ¼ e sin y sinf ez ¼ e cos y
ð10:32Þ

Because the molecular component of the induced electric dipole moment

is related to the molecular component of the electric field by mq¼ aqqeq, it

follows that

mZ ¼ axxex sin y cosfþ ayyey sin y sinfþ azzez cos y

¼ a?e sin2 y cos2 fþ a?e sin2 y sin2 fþ ake cos2 y

¼ a?e sin2 yþ ake cos2 y ð10:33Þ

where we have identified a? ¼ axx ¼ ayy and ajj ¼ azz:The mean polarizability

is a ¼ 1
3 ðajj þ 2a?Þ; therefore, with Y2,0 ¼ ð5=16pÞ1=2ð3 cos2 y� 1Þ from

Table 3.1 and Da ¼ ajj � a?, it follows that

mZ ¼ aþ 4
3

p
5

� 1=2
DaY2;0ðy,fÞ

� �
e ð10:34Þ

The first term does not contribute any off-diagonal elements, but the second

term gives a contribution to the electric dipole transition moment of the form

h J0, MJ
0jmZjJ, MJi ¼ 4

3

� p
5

1=2

Daeh J0, MJ
0jY2;0jJ, MJi ð10:35Þ

The integral that determines whether or not this matrix element vanishes is

I ¼
Z p

0

Z 2p

0

Y�J0M0
J
ðy,fÞY2;0ðy,fÞYJMJ

ðy,fÞ sin ydydf ð10:36Þ

By the same argument as before, and as illustrated in the following example,

the integral is zero unless J 0 ¼ J�2.

Example 10.1 The deduction of the rotational Raman selection rules

Show that the rotational Raman selection rules for a linear rotor are DJ¼�2.

Method. We have to investigate the conditions under which the integral I in
eqn 10.36 is non-zero. Group theory is the tool: we need to decide the conditions
under which the integrand has a component that is a basis for the totally symmetric
irreducible representation of the full rotation group. Some care must be taken to
take into account the full symmetry of the system.
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Answer. The irreducible representation spanned by the integrand is
Gð J

0 Þ � Gð2Þ � Gð JÞ; this direct product includes G(0) if J 0 ¼ J, J� 1, J� 2. However,
J 0 ¼ J� 1 is excluded by the fact that the spherical harmonics change phase by
(�1)J when y is increased by p, so the overall change in the integrand under this
symmetry operation is a change of phase by (�1)J

0 þ 2þ J, which is þ1 only if Jþ J 0

is an even number, which rules out J 0 ¼ J� 1. The contribution J 0 ¼ J is also
excluded for rotational Raman spectra because it does not correspond to a change
in energy of the system.

Self-test 10.1. Establish the selection rules on MJ for pure rotational Raman
transitions.

It follows from the selection rule DJ¼�2 that rotational Raman lines can

be expected at the following wavenumbers (ignoring centrifugal distortion):

Stokes lines ðDJ ¼ þ2Þ: ~nnJ ¼ ~nn0 � 4Bð J þ 3
2Þ J ¼ 0, 1, 2, . . .

Anti-Stokes lines ðDJ ¼ �2Þ: ~nnJ ¼ ~nn0 þ 4Bð J � 1
2Þ J ¼ 2, 3, . . .

where ~nn0 is the wavenumber of the incident radiation (Fig. 10.12).

10.7 Nuclear statistics

The rotational Raman spectra of certain molecules show a peculiar alter-

nation in intensity. A linear molecule of C1v symmetry, such as HCl or OCS,

displays the intensity distribution that would be expected on the basis of a

Boltzmann distribution of populations over the rotational states:

NJ

N
¼ 2J þ 1

q
e�hcBJð Jþ1Þ=kT ð10:37Þ

NJ is the total population of a rotational energy level J, which consists of

2Jþ1 individual, degenerate states, and q is the rotational partition function;

N is the total number of molecules. Although the transition matrix elements

depend on J, the dependence is not very strong and to a good approximation

the intensity distribution in the spectrum follows the distribution of popu-

lations (Fig. 10.13). The population, and hence the intensity, passes through

a maximum at (see Problem 10.13)

J � 1

2

2kT

hcB

� �1=2

�1

( )
ð10:38Þ

In contrast to this behaviour, a linear molecule of D1h symmetry, such as H2

or CO2, shows an alternation in intensity. Indeed, in CO2 alternate lines are

completely missing, and there are no transitions from states with J odd. We

shall now see in fact that certain states of symmetrical molecules are dis-

allowed and hence make no contribution to the spectra.

The key to understanding the absence of certain rotational states is the

Pauli principle (Section 7.11) and the fact that the rotation of a molecule

may interchange identical nuclei. Nuclei have spin (denoted by the quantum

number I, the analogue of s for electrons), which may be integral or half

integral depending on the specific nuclide. According to the Pauli principle
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Fig. 10.12 The rotational Raman
transitions of a linear molecule.
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Fig. 10.13 A representation of the

Boltzmann distribution of

populations in the rotational energy
levels of a linear rotor. The

populations pass through a

maximum on account of the

increasing degeneracy of the levels.
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the interchange of the labels of identical fermions (fractional-spin particles,

such as protons or carbon-13 nuclei, each with I¼ 1
2) or bosons (integral-spin

particles, such as carbon-12 or oxygen-16 nuclei, each with I¼0) must obey

the following relation:

Bosons: Cð2, 1Þ ¼ þCð1, 2Þ
Femions: Cð2, 1Þ ¼ �Cð1, 2Þ

Consider CO2 first. The two 16O nuclei are bosons, so the total wave-

function of the molecule must be unchanged when their labels are inter-

changed. However, rotation of the molecule by p about a perpendicular axis,

which results in the interchange of the two nuclei, results in a change in phase

of the rotational wavefunction by (�1)J (Fig. 10.14):

YJ;MJ
ðyþ p,fÞ ¼ ð�1ÞJYJ;MJ

ðy,fÞ ð10:39Þ

Therefore, to be consistent with the Pauli principle, only even values of J are

allowed. This argument accounts for the absence of alternate lines in the

rotational Raman spectrum of CO2 as that molecule can exist only in the

rotational states J¼0, 2, 4, . . . .

The discussion of CO2 that we have just given is in fact somewhat

simplistic and does not apply to molecules with nuclei having spin greater

than 0; nor does it apply to molecules with incomplete shells or in vibra-

tionally excited states. To see what is involved in a slightly more general case,

consider 1H2, in which the two nuclei are spin-1
2 protons. The interchange of

the labels of two protons (which are fermions) must result in a change in sign

of the overall wavefunction of the molecule. But ‘overall wavefunction’ does

not mean simply the rotational component: it means the entire wavefunction

for all the modes of motion:

c ¼ cEcVcRcN

where E, V, R, and N denote the electronic, vibrational, rotational, and

nuclear spin degrees of freedom, respectively. When the molecule is rotated

by p the labels of the nuclei are interchanged and the rotational wavefunction

is multiplied by (�1)J. However, the rotation also rotates the electronic

wavefunction and interchanges the spin states of the nuclei as well as their

labels, whereas we want only to interchange the labels of the nuclei

(Fig. 10.15). As shown in the illustration, the electronic wavefunction can be

returned to its original position by an inversion (iE) followed by a reflection

ðsE
hÞ in a plane perpendicular to the rotation. As we saw in Section 8.4, the

outcome of the first operation is �1 according to whether the molecular state

is g or u; similarly, the outcome of the second operation is �1 according to

whether the state is S� (see Section 8.6). For H2, which has a 1Sþg ground

state, both operations give a factor of þ1. The rotation of the molecule also

changes the relative displacement coordinate of the atoms into the negative of

itself. However, we know from the discussion of harmonic oscillator wave-

functions in Section 2.16 that under a change x!�x the vibrational wave-

function changes by a factor of (�1)v, where v is the vibrational quantum

number (recall Fig. 2.27, which shows the parity of the oscillator wave-

functions). For a vibrational ground state, v¼ 0, so this factor is also þ1

0

2

1

Fig. 10.14 A representation of the

(real parts of the) rotational

wavefunctions of a rotor for J¼ 0, 1,
2; these wavefunctions are in fact

the spherical harmonics

encountered in Chapter 3.
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�h
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A
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Fig. 10.15 The sequence of
transformations involved in the

examination of the role of nuclear

statistics in the existence of
rotational states. The symbol pnuc

denotes the permutation of nuclear

spin states.
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(but care must be taken to take the vibrational parity into account when

considering excited vibrational states of molecules).

So far, only factors ofþ1 have occurred in H2 other than the factor of (�1)J

for the rotational wavefunction. However, we now need to consider cN, the

nuclear spin state, because the rotation has interchanged spins as well as the

labels of the nuclei. There are four possible spin states for two spin-1
2 nuclei:

að1Það2Þ

Parallel spins(""):sþð1, 2Þ ¼ 1
2


 �1=2fað1Þbð2Þ þ bð1Það2Þg
bð1Þbð2Þ

Antiparallel spinsð"#Þ: s�ð1, 2Þ ¼ 1
2


 �1=2 að1Þbð2Þ � bð1Það2Þf g

If the spin state is a(1)a(2), interchange of the spin states has no effect, so this

step introduces a further factor of þ1 into the loop for an overall change of

(�1)J. The same is true of the other two ‘parallel’ sþ(1,2) states. However,

when we interchange the spin states in s�(1,2), we change the sign of the spin

wavefunction:

s�ð2, 1Þ ¼ 1
2


 �1=2 bð1Það2Þ � að1Þbð2Þf g ¼ �s�ð1, 2Þ

This step introduces a factor of �1 into the loop, for an overall change of

(�1) Jþ1.

The overall wavefunction must be antisymmetric under the relabelling of

the two nuclei and a factor of�1 must be obtained both directly and by going

round the loop involving molecular rotation. If the spins are parallel, then

because the phase change round the loop is (�1)J, it follows that J can have

only odd values. If the spins are antiparallel, then to obtain an overall factor

of �1, J must be even. This argument therefore leads to the following

remarkable conclusion. Dihydrogen consists of two types of molecule. One,

in which the nuclear spins are parallel, is called ‘ortho-hydrogen’ and can

exist only in rotational states with odd values of J ( J¼1, 3, 5, . . . ). The other,

in which the nuclear spins are antiparallel, is called ‘para-hydrogen’ and can

exist only in rotational states with even values of J ( J¼0, 2, 4, . . . ). Because

there are three ‘parallel’ states and only one ‘antiparallel’ state, in a sample at

thermal equilibrium at high temperatures we should expect ortho-hydrogen

to be three times as abundant as para-hydrogen. This in turn implies that the

Raman lines should show a 3:1 alternation in intensity, with odd J transitions

dominant. Exactly the same conclusions apply to ethyne, H–C�C–H, which

for the current discussion can be regarded as an ‘elongated’ version of H2: it

too exists in two forms, ortho-ethyne and para-ethyne.

At very low temperatures, we would expect only J¼ 0 to be occupied, so

the thermal equilibrium sample should consist of pure para-hydrogen at low

temperatures. However, the conversion of ortho-hydrogen to para-hydrogen

is very slow because it involves the reorientation of one nuclear spin relative

to the other, and nuclear magnetic moments are so small that they interact

only weakly with external perturbations. Therefore, when a sample of

hydrogen gas at room temperature is cooled, the ortho-hydrogen component

settles into its lowest rotational state ( J¼1) but cannot readily undergo

conversion to para-hydrogen. To bring about the conversion more rapidly,

(
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a catalyst may be introduced. The gas chemisorbs on the surface of the catalyst

as atoms, and the atoms, and their nuclear spins, recombine at random; in due

course the equilibrium populations are attained. Interconversion can also be

brought about non-dissociatively by bubbling the gas through a solution of

a paramagnetic species. The species gives rise to a magnetic field that is

inhomogeneous on an atomic scale, and this field can induce the relative

reorientation of nuclear spins (as in singlet–triplet transitions between

electronic states, Section 11.9).

Example 10.2 The nuclear statistics of linear molecules

What rotational states are occupied in the ground state of dioxygen?

Method. We first decide whether relabelling interchanges bosons or fermions.
Then we consider the effect of the sequence of changes round the loop in Fig. 10.15.
The same outcome must be obtained.

Answer. Oxygen-16 nuclei are bosons, so overall the wavefunction must not
change sign when the nuclei are relabelled. The electronic ground state of O2 (as
deduced in Section 8.6) is 3S�g , so the electronic wavefunction changes sign under
sE

h iE. The molecule is in its vibrational ground state, so the vibrational wave-
function contributes a factor ofþ1. The nuclear spin state is necessarily symmetric,
as both nuclei have zero spin and the only spin state is j0,0i. Overall, therefore,
going round the loop in Fig. 10.15 results in a phase factor of (�1) Jþ 1. For this
factor to be even, only odd J states are allowed.

Comment. It follows that in the rotational Raman spectrum of O2, only transi-
tions between odd J states will occur. This is in contrast to CO2 in which only even
J states contribute.

Self-test 10.2. What rotational states may be occupied by (a) 12C2 and (b) 13C2?
Carbon-12 and carbon-13 nuclei have spin 0 and 1

2, respectively. The electronic
ground state of C2 is 1Sþg .

[(a) Even J only, (b) as for H2]

Similar arguments can be applied to molecules with nuclei of general spin I,

and it is quite easy to derive a general rule for Sþg linear molecules in their

vibrational ground states. If both nuclei that are interchanged have spin I,

there are (2Iþ1)2 product functions of the form j I1mI1I2mI2i. Of these

products, 2Iþ1 will have mI1¼mI2 and hence will be symmetric. Of the

remaining states, which number

ð2I þ 1Þ2 � ð2I þ 1Þ ¼ 2Ið2I þ 1Þ
half will be symmetric (and have the form j I1mI1I2mI2iþ j I2mI2I1mI1i) and

half will be antisymmetric ( j I1mI1I2mI2i� j I2mI2I1mI1i). Therefore, the

total numbers of each type are

Nþ ¼ ð2I þ 1Þ þ Ið2I þ 1Þ ¼ ðI þ 1Þð2I þ 1Þ N� ¼ Ið2I þ 1Þ
The ratio of the numbers is

Nþ
N�
¼ I þ 1

I
ð10:40Þ
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Thus, when I¼ 1
2 the ratio is 3:1, as we have already seen. For dideuterium

(2H2), for which I¼1, the ratio is 2:1. Moreover, because deuterium is

a boson, it is the symmetrical states that are associated with even values

of J. The rotational Raman spectrum of 2H2 will therefore show an alterna-

tion of intensities with even-J lines having about twice the intensity of

their neighbouring odd-J lines. The rotation of a mixed isotopomer, such

as HD (that is, 1H2H), does not interchange identical particles, so the

Pauli principle is silent on its rotational states, and all rotational states are

allowed.

These arguments can be applied to molecules containing more than two

identical nuclei (such as NH3 and CH4), but the considerations rapidly

become very complicated. The complications involved in analysing nuclear

statistics and counting the numbers of available states, which are crucial to a

full interpretation of spectra and to the proper implementation of statistical

mechanical calculations of thermodynamic properties, are often readily

overcome by using the permutation–inversion operator P�. This operator is

the product of the permutation operator P, which permutes the coordinates of

identical nuclei in the molecule, and the inversion operator E�, which inverts

the spatial coordinates of all electrons and nuclei through the centre of mass

of the molecule. The operations P, E�, and P�, in conjunction with the

identity operation E, form the elements of the complete nuclear permutation–

inversion (CNPI) group of the molecule. Identification and analysis of the

CNPI group (or, in practice, usually one of its subgroups) provide an elegant

procedure for direct determination of the allowed molecular energy states

and their weights.3

The vibrations of diatomic molecules

Once again, we pursue the strategy of establishing the energy levels of a

molecule, this time of its vibration, and then derive and apply the selection

rules for vibrational and vibrational Raman transitions. However, there are

two main elaborations. One is that we shall need to generalize our conclu-

sions from diatomic molecules, in which there is only one degree of vibra-

tional freedom (the stretching of the bond) to polyatomic molecules, in which

there are more. We shall also need to consider the possibility of rotational

transitions accompanying vibrational transitions.

10.8 The vibrational energy levels of diatomic molecules

The molecular potential energy of a diatomic molecule increases if the nuclei

are displaced from their equilibrium positions. When the displacement

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. A detailed discussion can be found in Chapter 8 of Molecular symmetry and spectroscopy,

P.R. Bunker and P. Jensen, NRC Research Press, Ottawa (1998).

10.8 THE VIBRATIONAL ENERGY LEVELS OF DIATOMIC MOLECULES j 357



x¼R�R0 is small, we can express the potential energy as the first few terms

of a Taylor series:

VðxÞ ¼ Vð0Þ þ dV

dx

� �
0

xþ 1

2

d2V

dx2

 !
0

x2 þ � � � ð10:41Þ

where the subscript 0 indicates that the derivatives are to be evaluated at the

equilibrium bond length (at x¼0). We are not interested in the absolute

potential energy of the molecule for the present purposes, so we can set

V(0)¼0. The first derivative is zero at the equilibrium separation, because

there the molecular potential energy curve goes through a minimum. Provided

the displacement from equilibrium is small, the terms higher than second-

order may be neglected. The only remaining term is the one proportional

to x2, so we may write

VðxÞ ¼ 1
2kx2 k ¼ d2V

dx2

 !
0

ð10:42Þ

and the potential energy close to equilibrium is parabolic (that is, propor-

tional to x2). It follows that the hamiltonian for the two atoms of masses m1

and m2 is

H ¼ � �h2

2m1

d2

dx2
1

� �h2

2m2

d2

dx2
2

þ 1
2kx2 ð10:43Þ

We saw in connection with the discussion of the hydrogen atom in Section 3.9

that when the potential energy depends only on the separation of the par-

ticles, the hamiltonian can be expressed as a sum, one term referring to the

motion of the centre of mass of the system and the other to the relative

motion. The former is of no concern here; the latter is

H ¼ � �h2

2m
d2

dx2
þ 1

2kx2 ð10:44Þ

where m is the effective mass:4

1

m
¼ 1

m1
þ 1

m2
ð10:45Þ

The appearance of m in the hamiltonian is physically plausible, because we

expect the motion to be dominated by the lighter atom. When m1>>m2,

m�m2, the mass of the lighter particle. Think of a small particle attached by a

spring to a brick wall: it is the mass of the particle that determines the

vibrational characteristics of the system, not the mass of the wall.

A hamiltonian with a parabolic potential energy is characteristic of a

harmonic oscillator, so we may immediately adopt the solutions found for the

harmonic oscillator in Section 2.16:

Ev ¼ vþ 1
2


 �
�ho o ¼ k

m

� �1=2

ð10:46Þ

For a smoothly varying

function f(x), the Taylor series

expansion is

f ðxÞ ¼ f ð0Þ

þ df

dx

� �
0

x

þ 1

2!

d2f

dx2

 !
0

x2 þ � � �

¼ f ð0Þ þ
X

n

1

n!

dnf

dxn

� �
0

xn

with all the derivatives evaluated at

x¼ 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. This quantity is termed the ‘reduced mass’ in the hydrogen atom, and most people use that

name in this connection too. There are, however, advantages in the more general term ‘effective

mass’ as will become apparent when we consider polyatomic molecules.
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with v¼0, 1, 2, . . . . These levels lie in a uniform ladder with separation �ho.

The corresponding wavefunctions are bell-shaped gaussian functions multi-

plied by a Hermite polynomial (Section 2.16 and Fig. 2.27). All the remarks

we made about the properties of the solutions of the harmonic oscillator are

applicable to the vibrations of diatomic molecules provided they make no

more than small deviations from their equilibrium bond lengths.

10.9 Anharmonic oscillation

The truncation of the Taylor expansion of the molecular potential energy

after the quadratic term is only an approximation, and in real molecules the

neglected terms are important, particularly for large displacements from

equilibrium. The typical form of the potential energy is shown in Fig. 10.16,

and because at high excitations it is less confining than a parabola, the energy

levels converge instead of staying uniformly separated. It follows that

anharmonic vibration, vibrational behaviour that differs from that of a

harmonic oscillator, is increasingly important as the degree of vibrational

excitation of a molecule is increased.

One procedure for coping with anharmonicities is to solve the Schrödinger

equation with a potential energy term that matches the true potential energy

over a wider range better than does a parabola. One of the most useful, but

still approximate, functions is the Morse potential (Fig. 10.16):

VðxÞ ¼ hcDe 1� e�axf g2 a ¼ k

2hcDe

� �1=2

ð10:47Þ

The parameter De is the depth of the minimum of the curve and x¼R�R0,

the displacement from equilibrium. The Schrödinger equation can be solved

analytically with this potential energy (although the techniques required are

quite advanced), and the quantized energy levels are

Ev ¼ vþ 1
2


 �
�ho� vþ 1

2


 �2
�hoxe ð10:48Þ

with

oxe ¼
a2�h

2m
ð10:49Þ

and o given by eqn 10.46. The quantity xe is called the anharmonicity

constant. The additional term subtracts from the harmonic expression and

becomes more important as v becomes large, resulting in the convergence of

levels at high excitation. One feature of the Morse potential energy is that the

number of bound levels is finite, and v¼0, 1, 2, . . . vmax where

vmax <
hcDe

�ho=2
� 1

2
ð10:50Þ

(See Problem 10.29.) The zero-point energy of a Morse oscillator is

E0 ¼ 1
2 �ho 1� 1

2 xe


 �
ð10:51Þ

and the dissociation energy, hcD0, is related to the depth of the well by

D0 ¼ De � E0=hc ð10:52Þ
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Fig. 10.16 The vibrational energy

levels of a molecular oscillator.

Note the convergence of levels as

the potential becomes less confining.
The curve is a plot of the Morse

potential.
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As we have remarked, the Morse oscillator is only an approximation to an

actual molecular oscillator. The form of its solution suggests that the actual

vibrational energies of a real molecule should be given by a series of the form

Ev ¼ vþ 1
2


 �
�ho� vþ 1

2


 �2
�hoxe þ vþ 1

2


 �3
�hoye þ � � � ð10:53Þ

The spectroscopic constants (o, oxe, oye, . . . ) are best treated as empirical

parameters obtained by fitting eqn 10.53 to the experimentally observed

spectral transitions. Modern computer methods for the treatment of data and

the use of polynomials of this kind are described in the books referred to in

Further reading.

10.10 Vibrational selection rules

The electric dipole transition moment for v 0  v is he, v 0 j� j e, vi because at

this stage we are interested only in transitions within a given electronic state e.
The integration over the electron coordinates can be carried out as before,

because we are assuming the validity of the Born–Oppenheimer approx-

imation and the separability of electron and nuclear motion. The transition

matrix element is therefore �v 0v¼hv 0 j� j vi, where � is the dipole moment of

the molecule when it is in the electronic state e. Because the dipole moment

depends on the bond length R (because the electronic wavefunction depends

parametrically on the internuclear separation) we can express its variation

with displacement of the nuclei from equilibrium as

� ¼ �0 þ
d�

dx

� �
0

xþ 1
2

d2
�

dx2

 !
0

x2 þ � � � ð10:54Þ

where �0 is the dipole moment when the displacement is zero. The transition

matrix element is therefore

hv0j�jvi ¼ �0hv0jvi þ
d�

dx

� �
0

hv0jxjvi þ 1

2

d2
�

dx2

 !
0

hv0jx2jvi þ � � �

¼ d�

dx

� �
0

hv0jxjvi þ 1

2

d2
�

dx2

 !
0

hv0jx2jvi þ � � � ð10:55Þ

The term proportional to �0 is zero on account of the orthogonality of the

states when v 0 6¼ v. The first conclusion we can draw, therefore, is that the

transition matrix is non-zero only if the molecular dipole moment varies

with displacement, for otherwise the derivatives in eqn 10.55 would be zero.

The gross selection rule for the vibrational transitions of diatomic molecules

is that

To show a vibrational spectrum, a diatomic molecule must have a dipole

moment that varies with extension.

It follows that homonuclear diatomic molecules do not undergo electric-

dipole vibrational transitions.

For small displacements, the electric dipole moment of a molecule can be

expected to vary linearly with the extension of the bond. This would be the

case for a heteronuclear molecule in which the partial charges on the two
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atoms were independent of the internuclear distance. In such cases, the

quadratic and higher terms in the expansion can be ignored and

�v0v ¼
d�

dx

� �
0

hv0jxjvi ð10:56Þ

The specific selection rule is established by investigating the conditions under

which the matrix element in this equation is non-zero. The elementary pro-

cedure is to express the matrix element in terms of the harmonic oscillator

wavefunctions, and to use the following property of Hermite polynomials:

2axHvðaxÞ ¼ Hvþ1ðaxÞ þ 2vHv�1ðaxÞ ð10:57Þ

Even without going into details of the calculation, it can be seen that xjvi,
which is proportional to xHv(ax), can be expected to produce two terms, one

proportional to j vþ 1i and the other to j v�1i. That being so, we can

anticipate that the only non-zero contributions to �v 0v will be obtained when

v 0 ¼ v�1, and hence conclude that the selection rule for electric dipole

vibrational transitions within the harmonic approximation is

Vibrational transitions: Dv¼ �1

The detailed calculation is left as an exercise (see Problem 10.17). The

alternative procedure for establishing this selection rule makes use of the

annihilation and creation operators introduced in Further information 6, and

is illustrated in the following example.

Example 10.3 The selection rules for a harmonic oscillator

Use the annihilation and creation operators introduced in Further information 6 to
establish the selection rules for electric dipole transitions of a harmonic oscillator,
and deduce the explicit forms of the electric dipole transition moments.

Method. Express the displacement x in terms of annihilation (a) and creation (aþ )
operators by using eqn 10.3 of Further information 6. The matrix elements of these
operators are given in eqn 10.10 of the same section.

Answer. The displacement x is related to the annihilation and creation operators by

x ¼ �h

2mo

� �1=2

ðaþ aþÞ

where we have used the effective mass m (not the electric dipole moment!) rather
than the mass m. Because a j vi/ j v� 1i and aþ j vi/ j vþ 1i, we know imme-
diately that �v 0v¼ 0 unless v 0 ¼ v� 1. For the explicit form of the matrix elements
we use

ajvi ¼ v1=2jv� 1i aþjvi ¼ ðvþ 1Þ1=2jvþ 1i
to write

�vþ1, v ¼
d�

dx

� �
0

�h

2mo

� �1=2

hvþ 1jaþ aþjvi ¼ ðvþ 1Þ1=2 d�

dx

� �
0

�h

2mo

� �1=2

�v�1, v ¼
d�

dx

� �
0

�h

2mo

� �1=2

hv� 1jaþ aþjvi ¼ v1=2 d�

dx

� �
0

�h

2mo

� �1=2
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Comment. This procedure is readily extended to the evaluation of matrix elements
of higher powers of the displacement, such as those we meet in a moment. Note
that transition matrix elements are proportional to v1=2 or ðvþ 1Þ1=2: this is
another example of the population of a state not being the sole determinant of
the transition intensity in a spectrum.

Self-test 10.3. Evaluate the value of �v� 2,v by taking into account the quadratic
term in eqn 10.55.

From these considerations it follows that the wavenumbers of the transitions

that can be observed by electric dipole transitions in a harmonic oscillator are

~nnvþ1 v ¼
Evþ1 � Ev

hc
¼ �ho

hc
¼ o

2pc
¼ ~nn ð10:58Þ

and that the vibrational spectrum of a heteronuclear diatomic molecule should

consist of a single line of wavenumber �nn¼o/2pc regardless of the initial

vibrational state. However, in practice anharmonicities need to be taken into

account, and different transitions occur with slightly different wavenumbers:

~nnvþ1 v ¼ ~nn� 2ðvþ 1Þ~nnxe þ � � � ð10:59Þ

A further complication is that it may be necessary to use the quadratic (and

higher) terms in the expression for the electric dipole transition moment.

There is no guarantee that the electric dipole moment of the molecule is

proportional to the displacement from equilibrium, and for large displace-

ments the partial charges adjust as the internuclear distance changes. As a

result, contributions to the matrix element arising from terms in x2, etc. play a

role. These electrical anharmonicities permit transitions with Dv¼�2 (for x2

contributions), etc. Transitions with Dv¼�2 are the first overtones or second

harmonics of the vibrational spectrum. Even without electrical anharmoni-

city, overtones can occur if the oscillator is anharmonic, because then the

wavefunctions differ from those of a harmonic oscillator. The selection rules

in the presence of this mechanical anharmonicity then relax and allow

Dv¼�2, etc.

10.11 Vibration–rotation spectra of diatomic molecules

The vibrational transition of a diatomic molecule is accompanied by a

simultaneous rotational transition in which DJ¼�1. The total energy

change, and hence the frequency of the transition, then depends on the

rotational constant, B, of the molecule and the initial value of J. We also need

to note that the rotational constant depends on the vibrational state of the

molecule, because vibrations modify the average value of R�2, so we need to

attach a label to B and write it Bv (and, similarly, we attach a label to the

centrifugal distortion coefficient).

The energy of a rotating, vibrating molecule is

Eðv, JÞ ¼ ðvþ 1
2Þ�ho� ðvþ 1

2Þ
2�hoxe þ � � �

þ hcBvJð J þ 1Þ � hcDvJ2ð J þ 1Þ2 þ � � � ð10:60Þ
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The transitions with Dv¼þ1 and DJ¼�1 give rise to the P-branch of the

vibrational spectrum. The wavenumbers of the transitions are

~nnPðv, JÞ ¼ Eðvþ 1, J � 1Þ � Eðv, JÞf g=hc

¼ ~nn� 2ðvþ 1Þ~nnxe þ � � � � ðBvþ1 þ BvÞJ þ ðBvþ1 � BvÞJ2 þ � � �
ð10:61Þ

A series of lines is obtained because many initial rotational states are occup-

ied. Transitions with DJ¼0 give rise to the Q-branch of the vibrational

spectrum. This branch is allowed only when the molecule possesses angular

momentum parallel to the internuclear axis, so a diatomic molecule can

possess a Q-branch only if L 6¼ 0 (where L is the total orbital angular

momentum of the electrons around the internuclear axis) as in a P electronic

state. The wavenumbers of this branch, when it is allowed, are

~nnQðv, JÞ ¼ Eðvþ 1, JÞ � Eðv, JÞf g=hc

¼ ~nn� 2ðvþ 1Þ~nnxe þ � � � þ ðBvþ1 � BvÞJ þ ðBvþ1 � BvÞJ2 þ � � �
ð10:62Þ

The transitions with DJ¼þ1 give rise to the R-branch of the vibrational

spectrum. The wavenumbers are

~nnRðv, JÞ ¼ Eðvþ 1, J þ 1Þ � Eðv, JÞf g=hc

¼ ~nn� 2ðvþ 1Þ~nnxe þ � � �
þ 2Bvþ1 þ ð3Bvþ1 � BvÞJ þ ðBvþ1 � BvÞJ2 þ � � � ð10:63Þ

When the rotational constants are the same in the upper and lower vibrational

states (Bvþ1¼Bv¼B) and we can disregard the effects of anharmonicity,

these three expressions simplify to

~nnPðv, JÞ ¼ ~nn� 2BJ J ¼ 1, 2, . . .

~nnQðv, JÞ ¼ ~nn J ¼ 0, 1, 2, . . .

~nnRðv, JÞ ¼ ~nnþ 2Bð J þ 1Þ J ¼ 0, 1, 2, . . .

ð10:64Þ

These equations show that the P- and R-branches consist of a series of

lines separated by 2B with an intensity distribution that mirrors the

thermal population of the rotational states (Fig. 10.17). The Q-branch, if

it is present, consists of a series of superposed lines at the vibrational

wavenumber.

When the rotational constants are markedly different in the two vibrational

states, the spacing within the P- and R-branches is no longer regular, and one

of the branches may start to converge. If at high values of J the quantity

(Bvþ1�Bv)J
2 becomes large enough, it may dominate the term linear in J and

the branch may ‘degrade’ and pass through a head, a turning point in the

spectrum, after which successive lines approach the location of the Q-branch

instead of moving away from it. The effect is much more pronounced when

transitions are between different electronic states. At the same time, the lines

in the Q-branch spread out and degrade in the same sense that the P- and

R-branches degrade.

v = 0

v = 1

0

0

1

1

2

2

3

3

4

4

P Q R

Wavenumber, ν~

J

J

Fig. 10.17 The formation of P- and

R-branches in a linear vibrating rotor

and the location of the (usually
invisible) Q-branch.
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10.12 Vibrational Raman transitions of diatomic molecules

The gross selection rule for the observation of vibrational Raman spectra of

diatomic molecules is that

For vibrational Raman spectra, the molecular polarizability must vary

with internuclear separation.

That is universally the case with diatomic molecules regardless of their polar

character, and so all diatomic molecules, including homonuclear diatomic

molecules, are vibrationally Raman active.

The origin of the gross selection rule, and the derivation of the particular

selection rules, is discovered by considering once again the electric dipole

transition moment in much the same way as we did in Section 10.6 but

without, at this stage, troubling about the orientation dependence of the

interaction between the electromagnetic field and the molecule:

�v0v ¼ he, v0j�je, vi ¼ he, v0j�je, vi � E

Within the Born–Oppenheimer approximation we are free to separate the

electronic and vibrational wavefunctions, and hence to evaluate �(x)¼hej�jei
for a series of selected displacements, x, from equilibrium. Then, as in the

treatment of pure vibrational transitions, we can expand the polarizability as

a Taylor series in the displacement:

�v0v ¼ hv0j�0 þ
d�

dx

� �
0

xþ � � � jvi � E ¼ d�

dx

� �
0

�Ehv0jxjvi þ � � � ð10:65Þ

The matrix element �0hv 0jvi is zero on account of the orthogonality of the

vibrational states when v 0 6¼ v.

This equation shows explicitly that the electric dipole transition moment is

zero unless the polarizability varies with the displacement of the nuclei.

Moreover, because the same matrix element occurs on the right as for vibra-

tional transitions, we can also conclude that the specific selection rule is

Vibrational Raman transitions: Dv¼ �1

The selection rule is the same as for vibrational absorption and emission

because the polarizability, like the electric dipole moment, returns to its initial

value once during each oscillation (Fig. 10.18), not twice. So, in the classical

picture presented in Section 10.2, oint¼ovib. The transitions with Dv¼þ1

give rise to the Stokes lines in the spectrum, and those with Dv¼ �1 give the

anti-Stokes lines. Only the Stokes lines are normally observed, because most

molecules have v¼ 0 initially.

In the gas phase, both the Stokes and the anti-Stokes lines of the vibrational

Raman spectrum show rotational branch structure. The selection rules for

diatomic molecules are

Raman vibration–rotation transitions (diatomics): D J¼0,� 2

so that in addition to the Q-branch, there are O- and S-branches for DJ¼�2

and DJ¼þ2, respectively. Note that a Q-branch is observed for all diatomic

molecules regardless of their orbital angular momentum.

�

�

T
im

e

�

�

�

�

Fig. 10.18 The electric dipole and

the polarizability vary with time at

the same rate as a result of a

molecular vibration.
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The vibrations of polyatomic molecules

For a non-linear molecule consisting of N atoms, there are 3N�6 displace-

ments corresponding to vibrations of the molecule. This figure is arrived at as

follows. To specify the locations of N atoms we need to specify 3N coordin-

ates. These coordinates can be grouped together in a physically meaningful

way. Three of them, for instance, can be used to specify the location of the

centre of mass of the molecule, leaving 3N�3 coordinates for the location of

the atoms relative to the centre of mass. The orientation of a non-linear

molecule requires the specification of three angles (Fig. 10.19), so leaving

3N�6 coordinates which, when varied, neither change the location of the

centre of mass nor the orientation of the molecule. Displacements along

these coordinates therefore correspond to vibrations of the molecule. If the

molecule is linear, then only two angles are needed to specify its orientation

(Fig. 10.20), so the number of coordinates that correspond to vibrational

modes of the molecule is 3N� 5.

The first problem we must tackle is the description of vibrations in

molecules. As we shall see, it is possible to express the numerous vibrations

of polyatomic species in a manner that brings out clear analogies with

the material covered so far. We shall also see that group theory is of the

greatest usefulness in deciding which of these vibrational modes are active

spectroscopically.

10.13 Normal modes

In principle, all the atoms participate in the vibrations of a polyatomic

molecule. Thus, if one bond of a triatomic molecule is vibrationally

excited, the energy of vibration will rapidly be transferred to the other bond

through the motion of the central atom. Moreover, the potential energy of

a non-linear polyatomic molecule depends on all the displacements of

the atoms from their equilibrium positions, and instead of eqn 10.41 we

should write

V ¼ Vð0Þ þ
X

i

qV

qxi

� �
0

xi þ
1

2

X
i; j

q2V

qxiqxj

 !
xixj þ � � � ð10:66Þ

As for diatomic molecules, V(0) may be set equal to 0 and the first derivatives

are all zero at equilibrium (all xi¼0). Therefore, for small displacements

from equilibrium,

V ¼ 1
2

X
i; j

kijxixj kij ¼
q2V

qxiqxj

 !
0

ð10:67Þ

Here, kij is a generalized force constant. When there is only one vibrational

displacement, this expression reduces to eqn 10.42. When there is more than

one vibrational displacement, a displacement of one atom may influence the

�

� �

Fig. 10.19 Three angles are needed

to specify the orientation of a

non-linear molecule. In other words,
a non-linear molecule has three

degrees of rotational freedom.

�

�

Fig. 10.20 Only two angles are

needed to specify the orientation of a

linear molecule. In other words, a
linear molecule has two degrees of

rotational freedom.
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restoring force experienced by another: this possibility is reflected in the

occurrence of partial derivatives with respect to two displacements (both xi

and xj) in the definition of kij. The sum in eqn 10.67 is over all 3N dis-

placements of the N atoms, so some displacements (those corresponding to

translation and rotation of the molecule as a whole) will turn out to have zero

force constant. We need to disentangle these zero-force-constant displace-

ments from the true vibrations.

Consider first a set of 3N cartesian displacement coordinates for the N

atoms, with i¼1, 2, . . . , 3N. As a first step in the simplification of the pro-

blem we introduce the mass-weighted coordinates, qi, where

qi ¼ m
1=2
i xi ð10:68Þ

with mi the mass of the atom being displaced by xi. The potential energy then

becomes

V ¼ 1
2

X
i; j

Kijqiqj Kij ¼
q2V

qqiqqj

 !
0

ð10:69Þ

and the kinetic energy of all the atoms is

EK ¼ 1
2

X
i

mi _xx2
i ¼ 1

2

X
i

_qq2
i ð10:70Þ

where the dot signifies differentiation with respect to time. The classical

expression for the total energy is therefore

E ¼ 1
2

X
i

_qq2
i þ 1

2

X
i; j

Kijqiqj ð10:71Þ

The difficult terms in eqn 10.71 are the cross-terms in the potential (those

with i 6¼ j). The question therefore arises as to whether it is possible to find

linear combinations Qi of the mass-weighted coordinates qi such that the

total energy can be expressed in the form

E ¼ 1
2

X
i

_QQ2
i þ 1

2

X
i

liQ
2
i ð10:72Þ

in which there are no cross-terms. Some combinations Q will also turn

out to correspond to translations and rotations, and for them we can

expect l¼0. The linear combinations that achieve this separation of

modes are called normal coordinates. We can suspect that they do exist,

because an alternative picture of the two stretching modes of a molecule

such as CO2 is as the sum and difference of the two displacements

(Fig. 10.21). When the symmetric stretch, the mode in which the O atoms

move away from or towards the C atom in unison, is excited, the central

C atom is buffeted simultaneously from both sides and the antisymmetric

stretch, the mode in which one bond shortens as the other lengthens,

remains unexcited.

The formal procedure for determining normal coordinates is described in

Further information 19. When it is applied to a linear BAB triatomic molecule

(a)

(b)

(c)

(d)

(e)

Fig. 10.21 (a) and (b) show two of

the vibrations of individual CO

bonds in carbon dioxide; (c) and
(d) show two linear combinations

that preserve the location of the

centre of mass of the molecule and

that can be excited independently of
one another. (e) Another

combination of atomic displacements

corresponds to the translation of the

molecule as a whole.

366 j 10 MOLECULAR ROTATIONS AND VIBRATIONS



(like CO2) we find the following expressions for the three normal coordinates

corresponding to displacements parallel to the molecular axis:

Translation: Q1¼
1

m1=2
m

1=2
B q1þm

1=2
A q2þm

1=2
B q3

� 
l1¼0

Symmetric stretch: Q2¼
1

21=2
ðq1�q3Þ l2¼

k

mB

Antisymmetric stretch:

Q3¼
1

ð2mÞ1=2
ðm1=2

A q1�2m
1=2
B q2þm

1=2
A q3Þ l3¼

km

mAmB

ð10:73Þ

where m¼mAþ2mB, the total mass of the molecule, and k is the force

constant of the two identical A–B bonds. These coordinates, and the bending

modes, are illustrated in Fig. 10.22. Note that Q1 has a zero force constant,

and motion along this coordinate corresponds to the translation of the

molecule as a whole; Q2 corresponds to the symmetric stretch and Q3 cor-

responds to the antisymmetric stretch. As the mass of the central atom A is

increased relative to the outer two atoms, the coordinate Q2 and its force

constant remain unchanged. On the other hand, the coordinate Q3 appro-

aches (q1þq3)/21/2 in which the central atom makes no contribution to the

vibration and the force constant changes to k/mB. The same results for Q2,

Q3, l2, and l3 would be obtained for two small masses attached by springs

on opposite sides of a brick. The important point to note is that the relative

masses of the atoms govern both the details of the normal coordinates and,

through their influence on the effective force constants, their vibrational

frequencies. From now on, we shall discard the normal coordinates that

correspond to translation and rotation of the entire molecule, and consider

only the 3N�6 (or 3N�5) vibrational modes. The vibrations that correspond

to displacements along these normal coordinates are called the normal modes

of the molecule.

Because eqn 10.72 is the sum of terms, the hamiltonian operator is also a

sum of terms, and in the position representation is

H ¼
X

i

Hi Hi ¼ �1
2�h2 q2

qQ2
i

þ 1
2liQ

2
i ð10:74Þ

Note that masses implicitly appear in the hamiltonian via the Qi. Because the

hamiltonian is a sum of terms, the vibrational wavefunction of the molecule is

a product of wavefunctions for each mode:

c ¼ cv1
ðQ1Þcv2

ðQ2Þ � � � ¼
Y

i

cvi
ðQiÞ ð10:75Þ

There are 3N�6 factors for a non-linear molecule and 3N� 5 factors for

a linear molecule. Each factor satisfies a Schrödinger equation of the form

�1
2�h

2 q
2cðQiÞ
qQ2

i

þ 1
2liQ

2
i cðQiÞ ¼ EcðQiÞ ð10:76Þ

(c)

(d)

(a)

(b)

Fig. 10.22 The normal modes of

carbon dioxide. (a) Symmetric

stretch, (b) antisymmetric stretch,
(c) and (d) orthogonal bending

modes.
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which is the equation for a harmonic oscillator of unit mass and force con-

stant li. It follows that the energy levels of the ith normal mode are

Evi ¼ vi þ 1
2


 �
�hoi oi ¼ l1=2

i vi ¼ 0, 1, 2, . . . ð10:77Þ

and that the wavefunctions are

cvi
ðQiÞ ¼ Nvi

Hvi
ðaiQiÞe�a

2
i Q2

i =2 ai ¼
oi

�h

� 1=2
ð10:78Þ

where Nvi is a normalization constant (Table 2.2). It follows that the total

vibrational energy of the molecule in the harmonic approximation is

E ¼
X

i

vi þ 1
2


 �
�hoi ð10:79Þ

and that the overall vibrational wavefunction is the product of the factors

given in eqn 10.78. A general vibrational state is j v1v2 . . . i, with v1, v2, . . . the

quantum numbers of the modes 1, 2, . . . .

The vibrational ground state j 0102 . . . i is of some interest. In the first place,

it has a zero-point energy

E ¼ 1
2

X
i

�hoi ð10:80Þ

For a medium-to-large molecule consisting of 50 atoms, there are 144 modes

of vibration, so the total zero-point energy can be substantial. (If the wave-

number of each mode is 300 cm�1, then the total zero-point energy would be

close to 260 kJ mol�1, or about 2.7 eV.) The wavefunction of the vibrational

ground state is a product of gaussian functions because H0(aQ)¼ 1:

c0 ¼ N
Y

i

e�a
2
i Q2

i =2 ¼ Ne�Q
2
=2 Q

2 ¼
X

i

a2
i Q2

i ð10:81Þ

where N is the product of all the normalization constants of the modes. The

important feature of this result is that because the normal coordinates appear

symmetrically and as their squares,

In the harmonic approximation, the ground-state vibrational wavefunction

of a molecule is totally symmetric under all symmetry operations of the

molecule.

The ground-state vibrational wavefunction therefore spans the completely

symmetric irreducible representation (A1, for instance) of the molecular point

group. The great significance of this point will become clear when we consider

the group theoretical aspects of normal coordinates.

10.14 Vibrational selection rules for polyatomic molecules

We have already seen that the selection rules for harmonic oscillators are

Dv¼�1; we shall now see that each normal mode of vibration obeys this

selection rule within the harmonic approximation. Moreover, it is easy

to establish that electric dipole transitions can occur only for normal modes

that correspond to a change in the electric dipole moment of the molecule.

368 j 10 MOLECULAR ROTATIONS AND VIBRATIONS



The molecular dipole moment depends on an arbitrary displacement as

follows:

� ¼ �0 þ
X

i

q�
qQi

� �
0

Qi þ � � � ð10:82Þ

This exprssion is a generalization of eqn 10.54. It follows that the electric

dipole transition moment for the individual excitation of a single mode i,

neglecting the higher order terms for � in eqn 10.82, is

h00 � � � v0i � � � 0j�j00 � � � vi � � � 0i ¼
q�
qQi

� �
0

hv0ijQijvii ð10:83Þ

Consequently, by the same argument as in Section 10.10, v0i ¼ vi � 1. The

fundamental transition of a single mode is the transition from vi¼0 to n0i ¼ 1:

In simple cases it is easy to judge whether � varies with displacement along

the normal coordinate (which in general involves a composite motion of

several atoms) and therefore whether (q�/qQi)0 is non-zero. The displace-

ment of the atoms in CO2 along the normal coordinate corresponding to

the symmetric stretch Q2 leaves the electric dipole moment unchanged, so

(q�/qQ2)0¼ 0 and this mode does not couple to the electromagnetic field. On

the other hand, displacement of the atoms along Q3 does result in a change in

dipole moment, so (q�/qQ3)0 6¼0 and the mode does couple to the electro-

magnetic field. Normal modes for which (q�/qQi)0 6¼ 0 are said to be infrared

active as they can contribute to a vibrational, infrared, absorption, or emis-

sion spectrum. Group theory greatly aids the determination of which modes

are infrared active, as we shall establish shortly.

The corresponding selection rules for vibrational Raman transitions are

based, like eqn 10.65, on the expansion of the molecular polarizability � in

terms of displacements along normal coordinates:

� ¼ �0 þ
X

i

q�
qQi

� �
0

Qi þ � � � ð10:84Þ

It follows that the electric dipole transition moment for a mode, neglecting

higher order terms in eqn 10.84, is

�v0
i
vi
¼ q�

qQi

� �
0

�Ehv0ijQijvii ð10:85Þ

This equation is a generalization of eqn 10.65. It follows that a transition is

Raman active only if the polarizability varies as the atoms are displaced

collectively along a normal coordinate ((q�/qQi)0 6¼ 0), and if that is so, then

the particular selection rule for that mode is Dvi¼ � 1, as for emission and

absorption. Normal modes for which (q�/qQi)0 6¼0 are classified as Raman

active as they can contribute to a vibrational Raman spectrum. It is usually

much harder to judge whether a mode is Raman active, and group theory

becomes almost essential and is certainly much more reliable than intuition.

10.15 Group theory and molecular vibrations

The detailed form of the normal coordinates does not need to be known in

order to decide which normal modes are infrared and Raman active. Thus,
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although the detailed form of the normal coordinates depends on the masses of

the atoms, and different species with the same type of molecular formula (such

as AB2 or AB3, etc.) have different normal coordinates, the symmetries of the

normal coordinates remain the same regardless of the masses of the atoms.

The first step is to establish the symmetry species of the irreducible repres-

entations spanned by the displacement coordinates xi or (because they are

proportional) of the mass-weighted coordinates qi. The procedure has already

been described in Section 5.11 in connection with an arbitrary basis set. Here we

need to see how to apply the same procedure to the explicit problem of atomic

displacements. We shall illustrate the calculation by means of an example.

Example 10.4 The symmetries of normal modes

Determine the symmetry species of the vibrations of H2O.

Method. First, identify the point group of the molecule. Then treat the set of mass-
weighted coordinates qi as a basis, and determine the characters of the irreducible
representations they span by noting how they transform into one another under the
operations of the molecular point group. For a group with only one-dimensional
representations the characters of the operations are best found by counting þ1
whenever a coordinate is left unchanged, �1 when changed into the negative of
itself, and 0 if the operation carries it away from its site in the row. That set of
characters is then used to determine the symmetry species of the irreducible
representations by using eqn 5.24. Three of the symmetry-adapted linear com-
binations correspond to translations, and their symmetry species (which are the
same as those spanned by the displacement coordinates of the centre of mass, x, y,
and z) can be subtracted. Three more (or two for linear molecules) correspond to
rotations and may also be subtracted by reference to the positions occupied by Rx,
Ry, and Rz in the character table. The remaining symmetry species are those
spanned by the vibrational displacements.

Answer. The 3N¼ 9 mass-weighted coordinates are shown in Fig. 10.23. They span
a nine-dimensional reducible representation of the group C2v. As an illustration
of the determination of the characters, consider the effect of the operation C2:

C2ðq1, q2, . . . , q9Þ ¼ ð�q1, �q2, q3, �q7, �q8, q9, �q4, �q5, q6Þ

¼ ðq1, q2, . . . , q9Þ

�1 0 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 1

0 0 0 �1 0 0 0 0 0

0 0 0 0 �1 0 0 0 0

0 0 0 0 0 1 0 0 0

2
666666666666666664

3
777777777777777775

It follows that w(C2)¼�1. The same result can be obtained much more quickly by
inspection of Fig. 10.23. Continuation of this procedure gives the characters 9, �1,
3, 1 for the four operations of the group, which decompose (eqn 5.24) into
3A1þA2þ 2B1þ 3B2. In C2v, translations transform as A1þB1þB2 and rotations
transform as A2þB1þB2. Subtraction of these symmetry species leaves 2A1þB2.

q1

q7 q8

q9

H

q3

O

q2

q4

q5

q6

H

Fig. 10.23 The displacements used

for the discussion of the normal

modes of a water molecule.
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Comment. As we see, there are three normal modes (the special case of 3N� 6
with N¼ 3). An example when rotations of the molecule mix coordinates in a more
complex manner is illustrated in Example 10.5 later in this section.

Self-test 10.4. Determine the symmetry species of the vibrations of a planar AB4

(D4h) molecule.

Once the symmetry species of normal modes have been established, we can

do a great deal with very little additional calculation. The argument is based

on the fact that within the harmonic approximation the ground vibrational

state wavefunction is totally symmetric under all the operations of the group.

This should be obvious for one-dimensional bases because each operation

multiplies Qi by either þ1 or �1, and so Q2
i remains unchanged; because

the wavefunction with vi¼0 is a function of Q2
i , it follows that the wave-

function is totally symmetric and spans, for instance, A1. We also need to note

that because the Hermite polynomial H1(x) is proportional to x, and hence

to the relevant Qi, the symmetry species of the first excited vibrational state

of a mode is the same as that of the normal coordinate for the mode.

The last point provides a powerful method for determining what transi-

tions are allowed. We consider a fundamental transition in which only one

mode is undergoing excitation. The electric dipole transition moment

between the ground state and the first excited state of a normal mode i is

h1i j� j 0ii. This matrix element is zero unless the direct product of the com-

ponents of the integrand contains the totally symmetric irreducible repres-

entation of the molecular point group. But we have seen that c0i is a basis

for A1. Therefore, c1i and � must span the same irreducible representation if

their product is to contain A1. We know that c1i is a basis for the same

irreducible representation as Qi; therefore,

For a fundamental transition to be infrared active, the corresponding

normal mode must belong to the same symmetry species as one of the

components of the electric dipole moment.

The components of the electric dipole moment transform as translations, so to

identify its symmetry species we refer to the character table. In

C2v, for instance, translations span B1(x), B2(y), and A1(z). The three nor-

mal modes of a C2v molecule span 2A1 and B2 (Fig. 10.24). Therefore, all

three modes are infrared active. We can go on to say that the A1 fundamental

modes (and the symmetry species of mz) are excited by radiation that is

z-polarized and the B2 fundamental mode (and the symmetry species of my) is

y-polarized.

As a second example, consider CO2 again. It belongs to the point group

D1h and has four normal modes of vibration. By using the same techniques as

in Example 10.4, we can conclude that the normal coordinates span

Sþg þ Sþu þPu, the last being doubly degenerate (see Fig. 10.22). In D1h,

translations, and hence the components of the dipole moment, span Sþu þPu.

It follows that the fundamental transitions of Sþu and Pu modes are active

but the Sþg mode is inactive. A glance at the illustration confirms that this

(c)

(a)

(b)

Fig. 10.24 The three normal modes

of vibration of a water molecule.
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mode is the symmetric stretch, and that it results in no change in the electric

dipole moment of the molecule.

The same style of argument may be applied to determine which normal

modes are vibrationally Raman active within the harmonic approximation.

Instead of the transformation properties of the electric dipole moment, we

now have to consider the transformations of the polarizability, �. The electric

polarizability transforms in the same way as the quadratic forms x2, xy, etc.

(as will be explained when its origin is established in Section 12.1). The

symmetry species of the irreducible representations spanned by these forms

are also listed in the character tables (see Appendix 1), and so exactly the

same procedure can be followed. Now, though, we use the following rule:

For a fundamental transition to be Raman active, the normal mode must
belong to the same symmetry species as one of the components of the

electric polarizability.

In the group C2v, for instance, the components of the polarizability span all

the symmetry species of the group, so all three normal modes are Raman

active. In D1h, the quadratic forms span Sþg þPg þ Dg. It follows that only

the Sþg mode is Raman active. We see that in CO2 the fundamental modes are

either infrared active or Raman active, but not both.

The following exclusion rule is a generalization of the last remark:

In a molecule with a centre of inversion, a normal mode cannot be both

infrared and Raman active.

(A mode may be inactive for both.) The justification of this rule is that the

components of the electric dipole moment (the translations) have odd parity

under inversion whereas the components of the polarizability (the quadratic

forms) have even parity. Therefore, because the final state in the matrix element

hf jO j ii cannot simultaneously have both odd and even parity under inversion,

the matrix element cannot be non-zero for both types of transition. The

exclusion rule is silent on H2O because the molecule has no centre of inversion,

and the same modes can be both infrared and Raman active, as we have seen.

Example 10.5 The activities of molecular vibrations

Establish the symmetry species of the vibrations of CH4 and decide which
fundamental modes are infrared active and which are Raman active.

Method. We proceed as in Example 10.4, but meet the complication that some of
the operations mix the coordinates in a complicated manner. However, all is not
lost. First, we note that because operations in the same class have the same char-
acter, we need consider only one operation of each class (E, C3, C2, S4, sd). The
only tricky operation is C3, which partially rotates one coordinate into another.
Reference to Section 5.13, though, shows that the character of C3 in the basis
(x,y,z) is 0, so the net effect of this rotation on the C and H atoms through which
the symmetry axis runs is 0 even though individual coordinates are changed in a
more complex manner. With the characters established, subtract the symmetry
species of the translations and rotations, and then apply the two rules above to
determine the activities of the remaining vibrational modes. The character table
for the point group Td is given in Appendix 1.
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Answer. There are 15 displacements to consider (Fig. 10.25). Under E, all 15
remain unchanged, so w(E)¼ 15. Under C3, the six displacements on the axial C
and H atoms contribute 0 to the character overall, as explained above, and all
other displacements are removed completely from their locations in the set (q1,
q2, . . . , q15), so they too make no contribution to the character, giving w(C3)¼ 0.
Under C2, only the displacements on the central C atom contribute: two dis-
placements become the negative of themselves, and the third remains the same;
hence w(C2)¼�1. Under S4, the z-displacement on the central atom is reversed,
and all others move; so w(S4)¼�1. Under sd, the x- and z-displacements on C,
H(3), and H(4) are unchanged, but their y-displacements change sign; all other
displacements are moved. Therefore w(sd)¼ 3þ 3� 3¼ 3. The characters (15, 0,
�1, �1, 3) span A1þEþT1þ 3T2. Translations span T2 and rotations span T1.
When these symmetry species are subtracted, we are left with A1þEþ 2T2 for the
vibrations. Infrared active vibrations have T2 symmetry (the species of transla-
tions), and Raman active vibrations have A1þEþT2 symmetry (the species of
quadratic forms).

Comment. Note that the T2 modes are both infrared and Raman active (the
molecule has no centre of symmetry) and that the T1 modes are inactive in both.
The modes are illustrated in Fig. 10.26 and the physical basis of these conclusions
should be apparent.

Self-test 10.5. Repeat the analysis for SF6, which belongs to the point group Oh.

10.16 The effects of anharmonicity

We need to distinguish between the effects of electrical and mechanical

anharmonicity. We consider the former first.

Symmetry arguments do not yet appear to have ruled out the appearance of

transitions for which Dv> 1. For example, in H2O, because the Hermite

polynomial H2(aQ) is symmetrical under all operations of C2v, the v¼2

states of all the normal modes are symmetric, and as the z-component of the

dipole moment has symmetry species A1, it looks as though the transition

2 0 is allowed, because A1�A1�A1¼A1. It must not be forgotten,

however, that group theory asserts when an integral must be zero, but says

nothing about the values of integrals that are not necessarily zero. It is often

found that there are other reasons why such integrals are in fact either zero

or very small. This is the case with overtones, for when the z-component of

the electric dipole moment has the form

mz ¼ m0z þ
X

i

qmz

qQi

� �
0

Qi ð10:86Þ

the electric dipole transition moment of the first overtone of mode i is

h2ijmzj0ii ¼
qmz

qQi

� �
0

h2ijQij0ii

This matrix element vanishes if the wavefunctions are those of a harmonic

oscillator. However, the overtone becomes weakly allowed for a harmonic

1

C S2 4, 

�d

x y

z
3

2

4

Fig. 10.25 The displacements used in
the discussion of the normal modes of

a tetrahedral methane molecule.

�1 (A1)

�3 (T2)

�4 (T2)

�2 (E)

Fig. 10.26 Representative normal

modes of a tetrahedral molecule.
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oscillator if there is electrical anharmonicity, because then eqn 10.86 is

replaced by

mz ¼ m0z þ
X

i

qmz

qQi

� �
0

Qi þ 1
2

X
i; j

q2mz

qQiqQj

 !
0

QiQj þ � � � ð10:87Þ

and terms of the form h2i jQi
2 j 0ii are not necessarily zero. Group theory tells

us nothing about the stage at which the Taylor series should terminate, but

takes a global view of the symmetry. We need physical information beyond

symmetry to decide whether an individual term, even though it has the

appropriate symmetry, can actually contribute.

Equation 10.87 contains cross-terms proportional to QiQj with i 6¼ j.
These terms can result in combination bands in which more than one mode

is excited simultaneously. The group theoretical possibility of such an event

is quite easy to see. Consider the excitation of an H2O molecule with

y-polarized radiation. The ground vibrational state is A1. The y-component

of the electric dipole moment transforms as B2 in C2v; therefore, the vibra-

tionally excited state must also be B2. Such a symmetry can be achieved either

by the single excitation of the B2 normal mode or by the simultaneous exci-

tation of the B2 and A1 modes because their overall symmetry is B2�A1¼B2.

To determine whether the transition can actually occur, we need to consider

the following electric dipole transition moment:

h1a1bjmyj0a0bi ¼
qmy

qQa

� �
0

h1ajQaj0aih1bj0bi þ
qmy

qQb

� �
0

h1bjQbj0bih1aj0ai

þ
q2my

qQaqQb

 !
0

h1ajQaj0aih1bjQbj0bi þ � � �

(There are two equal contributions of the form QaQb and QbQa.) The first

two terms are zero on account of the orthogonality of the vibrational states.

However, the third is not necessarily zero, so the combination band can

occur.

Combination bands are also observed as a result of mechanical anhar-

monicity. In a polyatomic molecule, the potential energy varies with dis-

placement as

V ¼ 1

2!

X
i; j

q2V

qqiqqj

 !
0

qiqj þ
1

3!

X
i; j;k

q3V

qqiqqjqqk

 !
0

qiqjqk þ � � � ð10:88Þ

The presence of the cubic terms removes the independence of the normal

modes because the transformation that separates the hamiltonian with its

quadratic terms does not simultaneously separate the remaining terms in the

expansion.

Group theory simplifies the description of the mixing of normal modes by

noting that the potential energy, regardless of whether it is harmonic or

anharmonic, must be totally symmetric under every symmetry operation of

the molecular point group. (The hamiltonian, of which the potential energy is

part, always has the full symmetry of the point group: the energy cannot

depend on how the molecule is orientated in field-free space.) Therefore, each
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term in eqn 10.88 must be a basis for the totally symmetric irreducible

representation of the group. It follows that the anharmonic contribution to

the potential mixes states of the same overall symmetry because only then

may its matrix elements be non-zero.

As an example of the interaction caused by anharmonicity, consider the

case in which an overtone of mode a coincides in energy with the fundamental

of mode b, as depicted in Fig. 10.27. We need to investigate whether the

anharmonic contribution to the potential, Vanh, has matrix elements of

the form h2a0bjVanhj0a1bi: if it does, then mixing may occur and it will be

possible to excite the molecule from its ground vibrational state to a final

state in which mode a is doubly excited and mode b is not excited, or in which

mode b is singly excited and mode a is not excited. Suppose that mode b has

symmetry A1; the overtone of mode a will necessarily be A1 also, because its

wavefunctions depend only on Qa
2 (recall the form of the Hermite poly-

nomials, Table 2.1). Therefore, h2a0b jVanh j 0a1bimay be non-zero. Whether

it is actually non-zero depends on the evaluation of the matrix element, which

will be of the form

2a0bh jVanh 0a1bj i ¼ 1

2

q3V

qQ2
aqQb

 !
0

2ah jQ2
a 0aj i 0bh jQb 1bj i ð10:89Þ

(There are three equivalent contributions to the sum, so the factor 1
3!¼ 1

6

becomes 1
2.)

The matrix elements of Q are non-zero (recall Example 10.3), and the

modes will mix provided the third derivative of V is non-zero. This type of

mode mixing, in which the interaction is between a fundamental and a

combination band or overtone, is called a Fermi resonance; it becomes of

particular importance when the wavenumber 2~nna is approximately equal to

ṽb. Fermi resonance can be viewed as the vibrational analogue of con-

figuration interaction (Section 8.5).

The consequence of the interactions that we have just described is that the

energy levels change as a result of their mixing under the influence of a per-

turbation (Vanh). Furthermore, the transitions take on different intensities

because wavefunctions mix and so acquire characteristics of one another.

This is most striking in the case of an allowed fundamental and a forbidden

combination, for the latter may acquire intensity by virtue of the component

of the allowed fundamental that the anharmonicity mixes into it (Fig. 10.28).

We have noted that the presence of the anharmonic terms in eqn 10.88 for

the potential energy removes the independence of the normal modes. In fact,

it has been observed experimentally in some systems that at high vibrational

excitation the local mode description is far more appropriate than the normal

mode picture. For example, the hydrogen-stretching vibrational overtones

observed for H2O and C6H6 occur at the wavenumbers expected for the

diatomic O–H and C–H overtones, respectively. The vibrational excitation

appears to be concentrated within a single bond, corresponding to the exci-

tation of a local mode, rather than excitation of an entire normal mode.

The local mode description appears to arise from the anharmonicity asso-

ciated with the O–H or C–H stretching motion, which causes highly excited

B2 A1

0a

1a

2a

0b

1b

E
n

er
g

y

Fig. 10.27 A Fermi resonance

between an overtone of B2 and

the A1 fundamental.
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(a) (b) (c)

0
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0

1

2

3

0

1

Fig. 10.28 The combination
band (b, c) borrows intensity from

the allowed (a) fundamental.
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vibrational levels to become close in energy (recall the Morse oscillator levels

of Fig. 10.16). This nearly degenerate system of energy levels responds to

the perturbations due to molecular collisions in such a way that steers the

excitation energy into a local mode of the molecule, rather like the behaviour

of a classical particle emerging from the properties of a wavepacket. This

behaviour of vibrational overtones, which is of significance because of the

role high vibrational excitation can have in chemical reactivity, is described

in more detail in Further reading.

10.17 Coriolis forces

Another type of interaction that can affect the appearance of vibrational

spectra is the Coriolis force, the interaction between vibrational and rota-

tional modes of the molecule.5

In classical physics, the Coriolis force is a force that appears to be necessary

to an observer in a rotating system in order to account for the motion of

particles from their point of view. In particular, it is the tangential component

of the force; the radial component is the centrifugal force discussed earlier.

We can appreciate the source of the tangential effective force by considering

the paths taken by balls rolled outwards from the centre of a rotating disk

(Fig. 10.29). An external observer sees the ball roll in a straight line towards

the edge. An observer stationed at the centre of the disc, and rotating with it,

misinterprets this straight line as an arc, and therefore concludes that there

must be a tangential force in operation. A standard illustration of the Coriolis

force is the fact that, because the Earth rotates from west to east, a projectile

fired towards the equator from the north pole seems to drift to the west.

Consider now the rotation of a mass on a spring (Fig. 10.30). As the mass

moves out radially, the rotating observer perceives it as moving in an arc, and

concludes that a Coriolis force has retarded its motion. As the particle moves

in towards the centre, it appears to accelerate in the direction of travel.

Therefore, if it is vibrating, the rotation of the particle is periodically accel-

erated and decelerated.

Now consider how the Coriolis force affects a rotating linear AB2 molecule

when its antisymmetric vibrational mode has been excited (Fig. 10.31). When

one of the bonds stretches, it experiences a retarding Coriolis force; at the

same time, the bond that is shortening experiences an accelerating Coriolis

force. As a result, the molecule tends to bend. As the bonds next contract and

lengthen, respectively, the Coriolis force acts in the opposite way, and the

molecule is forced to bend in the opposite direction. The effect of the rotation

on the antisymmetric stretch, therefore, is to induce one of the bending

modes. Quantum mechanically, we would say that the rotation provides a

perturbation that mixes the antisymmetric stretch with one of the compon-

ents of the doubly-degenerate pair of bending modes. As a result, these two

levels move apart in energy, and the bending mode in the plane of rotation is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. The following discussion is largely qualitative; the Further reading section points the way to

more quantitative classical and quantum mechanical treatments.

(a)

(b)

Fig. 10.29 An external observer
sees (a) motion in a straight line,

but an observer in the rotating frame

sees (b) apparently curving motion

and concludes that a force must be
present.

Fig. 10.30 Coriolis forces on a

rotating, oscillating mass: the
direction of the force (which

accelerates or decelerates the

particle) is colour-coded to the
direction of travel of the oscillator.
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no longer degenerate with the bending mode perpendicular to the plane.

Transitions to these two levels no longer fall at the same energy and so the

lines are doubled by the rotation. This effect is called l-type doubling. The

origin of this name is that when a linear molecule is not rotating, the two

bending modes are degenerate, and we can take any linear combination of

them. Two such combinations correspond to rotations of the bent molecule

around the previous internuclear axis, in opposite directions. These rotations

correspond to an angular momentum of the molecule about its axis

(Fig. 10.32), and is described by the quantum number l. The Coriolis inter-

action removes the degeneracy of the bending modes, and so upsets this

description. ‘Doubling’ is a general term signifying the effect on the appear-

ance of the spectrum of the removal of degeneracy.

10.18 Inversion doubling

Consider a pyramidal (C3v) AB3 molecule. If we were to plot its potential

energy as it is flattened and the pyramid inverted, then we would expect a

curve like that shown in Fig. 10.33. Either the barrier is high and the inversion

very difficult (as for a well-made umbrella), or the barrier is low and the

inversion is easy. In the first case, the molecule vibrates around its AB3

equilibrium conformation, and does not undergo inversion except perhaps at

high excitations. The wavefunctions of these vibrations we denote cL. If

the molecule were to invert, then its vibrations would be those of the species

B3A, which we denote cR. The two ladders of vibrational energy levels for the

two wells match, and so for a given quantum number cL and cR are

(a)

(b)

Fig. 10.31 Normal mode

coupling in a rotating

molecule: (a) and (b) show
different stages of the

antisymmetric stretch.

(a)

(b)

(c)

Fig. 10.32 (a,b) Two

orthogonal bending modes of
a linear triatomic molecule

and (c) a linear combination

with definite angular
momentum about an axis.

M
o

le
cu

la
r 

p
o

te
n

ti
al

 e
n

er
g

y

Displacement

Fig. 10.33 The molecular potential
energy curve for a molecule that

undergoes inversion.
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degenerate. When the barrier is infinite (in practice, very high), as far as AB3

is concerned the wavefunctions cR represent states of an inaccessible other

world and it is completely oblivious of them. The interesting case, however, is

when the barrier is so low that AB3 can invert and become B3A.

For simplicity, suppose that there is only one level on the left and one on the

right (Fig. 10.34). The wavefunction of the (almost) harmonic oscillator on

the left seeps through the barrier and has non-zero amplitude where cR is also

non-zero. The two levels therefore perturb one another and, being degener-

ate, affect each other strongly. The two wavefunctions mix to form the

combinations cL � cR and their energies move apart. Where initially there

were two degenerate states, there are now two non-degenerate states that are

delocalized over both wells. This removal of degeneracy is called inversion

doubling.

In a more realistic case, there are several levels in each well, but the

matching pairs of degenerate states interact with one another most strongly

and we can think of the inversion doubling as involving each pair separately

(at least to a first approximation). This doubling results in the levels shown in

Fig. 10.35. The difference in energy depends on the energies of the states

relative to the height of the barrier, and penetration from one well to the other

is greatest at high energies, as we saw in Section 2.10. The magnitude of the

splitting depends on the state and the identity of the molecule: for the lowest

energy states of NH3 it corresponds to 0.79 cm�1 or 24 GHz; the latter figure

is known as the inversion frequency. The origin of this name can be traced

back to the discussion of time-dependent behaviour in a two-level system

(Section 6.11). We saw there that if initially the system is in one state, then

it periodically visits another degenerate state with a frequency determined

by the strength of the perturbation that couples them (Fig. 6.10). In the

present case, an NH3 molecule in its ground vibrational state could be

pictured as oscillating between the two inversion-related wells at a frequency

of 24 GHz.

The combinations cL � cR are respectively even and odd under the inversion

of the molecule, and so electric dipole transitions can take place between them.

This transition in NH3 is strongly allowed, and is the most intense microwave
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Fig. 10.35 The effect of inversion
doubling. The dotted lines are the

energy levels of the independent-

well oscillators; the full lines are

the levels in which inversion
through the barrier has removed the

degeneracy.

Fig. 10.34 (a) To a first

approximation, the molecule

oscillates like a harmonic oscillator in

either of the two wells: the
wavefunctions shown correspond to

the ground state of each oscillation.

(b) When inversion is allowed, the

wavefunctions of the molecule can be
modelled as linear combinations of

the two independent-well oscillators.
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transition known for any molecule; it is the basis of ‘maser action’, the early

forerunner of lasers. The ammonia maser operates at 0.79 cm�1 (wavelength

13 mm, frequency 24 GHz), in the microwave region of the spectrum.

Appendix 10.1 Centrifugal distortion

Consider a diatomic molecule of reduced mass m (see eqn 10.10) and bond

length R. If it is rotating at an angular velocity o, it will experience a cen-

trifugal force of magnitude mRo2 that tends to stretch the bond. A bond acts

like a spring, and to a good approximation the restoring force obeys Hooke’s

law, that it is proportional to the displacement from equilibrium, R0. We

write the magnitude of this restoring force k(R�R0) where k is the force

constant. At equilibrium the centrifugal and restoring forces are in balance,

and from the condition

mRo2 ¼ kðR� R0Þ ðA10:1Þ

we can deduce that

R ¼ kR0

k� mo2
¼ 1

1� mo2=k

� �
R0 � 1þ mo2

k

� �
R0 ðA10:2Þ

This approximation holds for mo2/k�1, which corresponds to small

displacements; that is, jR�R0 j �R0. The classical hamiltonian for the

molecule is

H ¼ J2

2mR2
þ 1

2k R� R0ð Þ2 ðA10:3Þ

where the first term is the rotational kinetic energy and the second is the

potential energy arising from the stretching of the bond (recall that

F¼ �dV/dR). It follows from the introduction of eqn A10.1 into this

equation and the use of J¼ mR2o that

H ¼ J2

2mR2
þ J4

2km2R6
ðA10:4Þ

Now we confine attention to small displacements and use eqn A10.2 in

the form

1

R2
¼ 1

R2
0

1� mo2

k

� �2

� 1

R2
0

1� 2mo2

k

� �

which, with J¼ mR2o and R�R0, is equivalent to

1

R2
¼ 1

R2
0

1� 2J2

kmR4

� �
� 1

R2
0

� 2J2

kmR6
0

ðA10:5Þ

With this expression substituted into the first term of eqn A10.4 and R6 in the

second term approximated by R6
0, we obtain

H ¼ J2

2mR2
0

� J4

km2R6
0

þ J4

2km2R6
0

¼ J2

2mR2
0

� J4

2km2R6
0

ðA10:6Þ
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We can now interpret the J2 and J4 terms as operators and immediately write

down the eigenvalues:

Eð J;MJÞ ¼
Jð J þ 1Þ�h2

2mR2
0

� J2ð J þ 1Þ2�h4

2km2R6
0

ðA10:7Þ

It follows that the wavenumbers of the rotational terms have the form given

in eqns 10.21 and 10.22.

P R O B L E M S

10.1 What is the moment of inertia of (a) a solid disc of
mass m, radius R, about its axis, (b) a solid sphere of mass
m, radius R, about its centre?

10.2 Find expressions for the moments of inertia of an AB3

molecule that is (a) planar, (b) trigonal pyramidal.

10.3 Express the moment of inertia of an octahedral AB6

molecule in terms of its bond lengths and the masses of the B
atoms.

10.4 Show that the moment of inertia I 0 about an axis
parallel to an axis that passes through the centre of mass of a
molecule and at a distance R from it is related to the
moment of inertia I about the latter axis by I 0 ¼ IþmR2,
where m is the total mass of the body.

10.5 Show that for a planar lamina (a two-dimensional
sheet) in the xy-plane, the moments of inertia parallel and
perpendicular to the plane satisfy

Ixx þ Iyy ¼ Izz:

10.6 Show that the rotational energy levels of a square-
planar AB4 molecule may be expressed solely in terms of the
rotational constant B.

10.7 Show that if a time-dependent electric field e0 cos ot
can induce a non-linear response, then the scattered light
may contain a frequency-doubled (2o) component. Hint.
Write mðtÞ ¼ aeþ 1

2be
2, and consider an argument like that

relating to eqn 10.8.

10.8 Show that the moment of inertia of a diatomic
molecule formed from atoms of masses mA and mB and
bond length R is given by I¼ mR2, where m¼
mAmB/(mAþmB). Calculate the moments of inertia of
(a) 1H2, R¼ 75.09 pm, (b) 2H2, R¼ 75.09 pm, (c) 1H35Cl,
R¼ 127.5 pm. [m(1H)¼ 1.0078 u, m(2H)¼ 2.0141 u,
m(35Cl)¼ 34.9688 u.]

10.9 The microwave spectrum of 1H127I consists of a series
of lines separated by 12.8 cm�1. Compute its bond length.
What would be the separation in the spectrum of 2H127I?
[m(127I)¼ 126.9045 u.]

10.10 The Jþ 1 J rotational transitions of 16O12C32S
and 16O12C34S occur at the following frequencies (n/GHz):

J 1 2 3 4

16O12C32S 24.32592 36.48882 48.65164 60.81408
16O12C34S 23.73223 47.46240

Find the rotational constants, the moments of inertia, and the
CS and CO bond lengths. Hint. Begin by finding expressions
for the moment of inertia I through
I ¼ mAR2

A þmBR2
B þmCR2

C, where RX is the distance
of atom X from the centre of mass. The easiest procedure is to
use the result established in Problem 10.4, which leads to
I ¼ ðmAmC=mÞðRAB þ RBCÞ2þðmB=mÞ ðmAR2

AB þmCR2
BCÞ.

The lengths RAB and RBC may be found only if two values of I
are known. Assume the bond lengths are the same in
isotopomeric molecules.

10.11 In PCl3 the bond length is 204.3 pm and the ClPCl
angle is 100.1�. Predict the form of (a) its microwave
spectrum, (b) its rotational Raman spectrum, including the
general structure of the line intensities. Ignore the effects of
nuclear spin statistics. Hint. Establish that
I? ¼ mBR2ð1� cos yÞ þ ðmAmB=mÞR2ð1þ 2 cos yÞ for AB3,
with m¼mAþ 3mB, and Ik¼ 2mBR2(1� cos y). Suppose
that the intensities are governed predominantly by the
Boltzmann distribution.

10.12 The square of the electric transition dipole moment
depends on J as jmJþ 1, J j 2¼ m2(Jþ 1)/(2Jþ 1). Predict the
form of the 1H35Cl spectrum at 300 K (a) without taking
account of this dependence, (b) taking this dependence into
account. Estimate the values of J in each case corresponding
to the most intense transition. Hint. Only relative intensities
are important. Find the relative populations from the
Boltzmann factor and the degeneracies. For (a) examine
(2Jþ 1)e� hcBJ(Jþ 1)/kT; for (b) examine (Jþ 1)/(2Jþ 1) times
this factor.
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10.13 Confirm that Jmax, the value of J corresponding to the
maximum in the rotational Boltzmann distribution, is given
by eqn 10.38.

10.14 In general, a diatomic molecule does not possess a
zero-point rotational energy. However, in the case of
molecular hydrogen, there is an effective zero-point
rotational energy. Explain why.

10.15 The ethyne molecule (HC�CH) consists of two
fermions (1H) and two bosons (12C). What are the
implications for the statistical weights of the levels of
various J? What are the implications of replacing (a) one 12C
by 13C, (b) both 12C by 13C. (The 13C nucleus is a fermion,
I¼ 1

2.)

10.16 Calculate the effective vibrational masses of (a) 1H2,
(b) 1H19F, (c) 1H35Cl, (d) 1H81Br, (e) 1H127I. The
wavenumbers of the vibrations of these molecules are
(a) 4400.39 cm�1, (b) 4138.32 cm�1, (c) 2990.95 cm�1,
(d) 2648.98 cm�1, (e) 2308.09 cm�1; calculate the force
constants of the bonds. Predict the vibrational wavenumbers
of the deuterium halides. [m(19F)¼
18.9984 u, m(81Br)¼ 80.9163 u; more data are available in
Problems 10.8 and 10.9.]

10.17 One way of establishing the harmonic oscillator
selection rules is described in Example 10.3. Another way is
to use the recursion relation for the Hermite polynomials,
eqn 10.57. Calculate the transition moment for transitions
commencing in the state with quantum number v. Hint. The
integral

R
cn 0wcndx can be evaluated very simply by using the

orthonormality of the oscillator functions that arise from
using the recursion relation.

10.18 The rotational constant of 1H35Cl is 10.4400 cm�1 in
the ground vibrational state and 10.1366 cm�1 in the state
v¼ 1. Plot the wavenumbers of the P-, Q-, and R-branches
against J as a representation of the structure of the 1–0
transition. Take ~nn¼ 2990.95 cm�1 and neglect
anharmonicity. (The Q-branch is not observed.)

10.19 The Q-branch line of the fundamental transition of a
diatomic molecule lies at 3142.3 cm�1. The first line in the
P-branch (that is, the P-branch line closest to the Q-branch)
is displaced in magnitude by 21.2 cm�1 from the Q-branch.
(a) Neglecting the effects of anharmonicity and centrifugal
distortion, compute ~nn and B. Assume that the rotational
constant is independent of the vibrational level. (b) Predict
the wavenumber of the next P-branch line. (c) Predict the
wavenumber of the R-branch line closest to the Q-branch.
(d) If centrifugal distortion is considered, will the first P-
branch line be found at a higher, lower, or the same
wavenumber as in part (a)?

10.20 A diatomic molecule is found to have the following
vibrational and rotational spectroscopic constants (all in
cm� 1): ~nn¼ 1525.25, ~nnxe¼ 21.74, Be¼ 8.295, ae¼ 0.186,

D¼ 0.325; the rotational constant depends on vibrational
level as Bv¼Be� (vþ 1

2)ae. If the diatomic molecule is
initially in the state (v¼ 0, J¼ 1), compute the wavenumbers
of the R- and P-branch lines associated with the
fundamental vibrational transition.

10.21 A diatomic molecule for which ~nn¼ 4401.2 cm�1 and
B¼ 121.3 cm�1 is initially in the state (v¼ 1, J¼ 2). In a
Raman experiment utilizing 15 873.0 cm�1 incident
radiation, determine the wavenumber of the scattered
radiation for (a) the Q-branch Stokes line, (b) the O-branch
Stokes line, (c) the Q-branch anti-Stokes line. How will the
wavenumber computed in part (a) change if the effects of
anharmonicity are included?

10.22 The effect of vibrational excitation on the
rotational constant can be modelled as follows. First,
interpret B¼ �h/4pcmR2 as the expectation value
(�h/4pcm)h1/R2i. Model the vibrational wavefunction by
a rectangular probability amplitude, a constant
from Re� 1

2dR to Reþ 1
2dR, and zero elsewhere. Evaluate

h1/R2i, and explore the approximation dR2�4Re
2. The

magnitude of dR2 can be estimated from h(R�Re)
2i

calculated from harmonic oscillator wavefunctions, and
expressed in terms of v. Hence arrive at B in terms of v.
Compare the latter expression to that of Bv in Problem
10.20 and deduce an expression for ae.

10.23 The three fundamental vibrations of CO2 are
observed at 1340 cm�1, 667 cm�1, and 2349 cm�1, the
second being the bending mode. Determine the force
constant of the CO stretching. Hint. Compute k for each
stretching mode and take the mean value.

10.24 Show that the vibrations of any non-linear AB2

molecule span 2A1þB2 in C2v. Which vibrations are
(a) infrared, (b) Raman active?

10.25 Establish the symmetries of the vibrations of the
ethene molecule, and classify their activities.

10.26 Determine all of the symmetry species spanned by the
normal modes of chlorofluoromethane.

10.27 Consider a two-dimensional harmonic oscillator with
displacements in the x- and y-directions, the force constants
being the same for each direction (the two bending modes of
CO2 is an example). Show that the state resulting from the
excitation of the oscillator to its first excited state can be
regarded as possessing one unit of angular momentum about
the z-axis. Hint. Show that c(x)c(y) / eif.

10.28 Identify the conditions for the existence and
locations of heads in the P- and R-branches of a diatomic
molecule.

10.29 Confirm that a Morse oscillator has a finite number
of bound states, and determine the value of vmax for the
highest bound state.
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The complexity of the electronic spectra of molecules, which occur in the

visible and ultraviolet regions of the electromagnetic spectrum, arises in part

from the stimulation of simultaneous vibrational and rotational transitions.

An electronic transition changes the distribution of the electrons, and the

nuclei respond to the new force field by breaking into vibration. In turn, the

stimulation of vibration results in rotational transitions, just as ice skaters

change the speed of their rotation by pulling in or throwing out their arms.

We shall pick our way through this forest of complication by concentrating

initially on diatomic molecules, and then seeing how the concepts generalize

to polyatomic molecules.

The states of diatomic molecules

A complication in addition to those already mentioned is that in molecules

there are several sources of angular momentum, and to make headway it is

necessary to understand how they couple together. The coupling of angular

momenta enables us to construct term symbols that specify the symmetry of

the wavefunction of the state, and then to use those term symbols to express

the selection rules.

11.1 The Hund coupling cases

If initially we disregard nuclear spin, then there are three sources of angular

momentum in a diatomic molecule: the spin of the electrons (S), their orbital

angular momenta (L), and the rotation of the nuclear framework (R). There

are interactions that couple these momenta together to varying extents with

the resultant being the total angular momentum J. For example, the electric

field arising from the nuclear charge couples the orbital angular momentum

of the electrons to the internuclear axis, in the sense that only that component

of L is well defined and is denoted by the quantum number L. In highly

excited rotational states, however, the nuclear framework may be moving so

fast that electrons may be unable to follow the nuclear motions precisely, and

the orbital angular momentum is decoupled from the internuclear axis.

This decoupling is a breakdown of the Born–Oppenheimer approximation

(Section 8.1). When the spin–orbit interaction (Section 7.4) is strong, the spin
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angular momentum of the electrons S is coupled to the orbital angular

momentum; if the latter is coupled to the internuclear axis, then indirectly the

spin is coupled to the axis too, and we speak of the component of electron

spin (S) on the axis. On the other hand, if the spin–orbit coupling is weak,

then the dominant coupling may be between the spin and the magnetic

moment arising from the rotation of the molecule as a whole.

If there are contributions from nuclear spin (I), then the overall total

angular momentum is denoted F. The nuclear spin may couple to the mag-

netic field arising from any of the other angular momenta, or it may couple to

any of their resultants: this coupling gives rise to nuclear hyperfine effects.

The nuclear hyperfine structure of electronic spectra is typically very small

and we shall not consider it further. Consequently, we shall ignore the role of

I and refer to J as the ‘total angular momentum’.

The spectroscopist F. Hund attempted to impose order on the discussion of

all these possibilities by focusing attention on four basic types of coupling.

Hund’s case (a) is depicted in Fig. 11.1; it is appropriate when the orbital

angular momentum is coupled strongly to the internuclear axis. The total

angular momentum of the molecule J has magnitude { J( Jþ1)}1/2�h. It has a

component of magnitude R�h perpendicular to the internuclear axis, which

arises from the rotation of the nuclear framework. It also has a component

O�h parallel to the internuclear axis arising from the electronic angular

momentum around the axis; this component is related to the components of

orbital and spin angular momenta by

O ¼ Lþ S ð11:1Þ

As remarked above, the electron orbital angular momentum is pinned to the

axis by the Coulombic field of the nuclei, and the spin angular momentum is

brought into line with the orbital angular momentum by the spin–orbit

coupling. For the 2P ground state of NO, for instance, for which L¼�1 and

S¼�1
2, O can take the values �3

2 and �1
2.

We shall confine most of our attention to Hund’s case (a). In particular, the

validity of this coupling scheme means that we can describe the electronic

state of a molecule by giving the term symbol constructed on the basis of the

point group C1v or D1h, as already explained in Section 8.6. For example,

for a complete specification of the ground 2P term of NO, we need to report

the value of O, and then decide which term, the one with O¼�3
2 or O¼�1

2,

lies lower in energy. If the rules described for atoms in Section 7.17 are

applicable, we can predict that the two states with O¼�1
2 lie lower because

the spin and orbital angular momenta, and hence the associated magnetic

moments, are opposed (Fig. 11.2). This prediction turns out to be true, and

the two levels with jOj ¼ 1
2 lie about 121 cm�1 lower than the two levels with

jOj ¼ 3
2.

In Hund’s case (b) (Fig. 11.3), the spin–orbit coupling is so weak that the

spin is not coupled to the orbital angular momentum, but the latter is still

coupled to the internuclear axis. The rotation of the nuclear framework R

couples to L�hk (k being a unit vector parallel to the internuclear axis) to form

the resultant angular momentum denoted N. Then, the coupling of S and N

gives J. Although L is a good quantum number, that is no longer true of O.

R

L

S

�

N

J

Fig. 11.3 A vector diagram for

Hund’s case (b).

J

R

L

S

�

�

�

Fig. 11.1 The orbital and spin

angular momenta and their

projections in Hund’s case (a).

(a)

(b)

L
S

Fig. 11.2 The arrows show the

components of magnetic moment
that survive after precession: (a) a

state of high jOj corresponds to high

energy and (b) a state of low jOj
corresponds to low energy.
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In Hund’s case (c) (Fig. 11.4), the spin–orbit coupling is so strong that

the electron spin and orbital angular momenta couple to give a resultant E.

This angular momentum has a component O�h on the internuclear axis, so O is

again a good quantum number whereas L and S are not.

The final case, Hund’s case (d) (Fig. 11.5), is rare in practice, arising when

the coupling between the electrons and the molecular axis is so weak that the

electrons do not follow the molecular rotation strongly. Now the axial

symmetry of the molecule is barely noticed by the electrons, and so the orbital

angular momentum, L, is well defined. It couples to the angular momentum

R to give the resultant N. Then the electron spin S couples to that resultant,

so forming the overall angular momentum J. This coupling is appropriate to

the Rydberg levels of diatomic molecules, in which an electron has been

excited from the valence-shell orbitals of the atoms into orbitals of higher

principal quantum number. For instance, an electron in H2 may be excited

from the 1sg-orbital into a molecular orbital formed from H2s-orbitals.

Rydberg orbitals are very diffuse, and the electron is so far from the nuclei of

the molecule that it experiences a potential similar to that of a single point

charge. As a result, the shape of the molecule is not transmitted to the excited

electron and the rotation of the molecule is barely noticed.

11.2 Decoupling and �-doubling

Hund’s cases represent limiting schemes in the sense that no molecule can be

described perfectly by one of the cases. In principle, any scheme could be used

to characterize any molecule. The ‘correct’ scheme is the one for which the

hamiltonian of the molecule, with all the interactions included, has the

smallest off-diagonal elements. No molecule has a hamiltonian matrix that is

exactly diagonal in any one of these schemes, and so if we use one scheme, we

can expect it to be contaminated by at least a small admixture of the features

of the other schemes. The tendency of one coupling scheme to be con-

taminated by another is called the decoupling of the angular momenta.

Decoupling often increases as J increases because the electrons become

increasingly incapable of following the motion of the nuclear framework: this

is the phenomenon of electron slip.

As an illustration of electron slip, consider a 1P term of a diatomic

molecule in case (a), such as an excited state of C2 (1sg
2 1su

2 1pu
3 2sg

1 1Pu).

In the stationary molecule, the two states L¼�1 are degenerate because they

differ only in the sense of rotation of the electrons about the internuclear

axis. The degeneracy is lost, however, when the molecule rotates and the

energy levels ‘double’ (Fig. 11.6).1 A qualitative interpretation is suggested in

Fig. 11.7. This effect is called L-doubling. It can be regarded as the outcome

of the contamination of case (a) by case (d).

The quantitative treatment of L-doubling depends on setting up the

appropriate perturbation hamiltonian and then using perturbation theory;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. It can be shown (see Fig. 11.6) that one linear combination of the two orbital angular

momentum states mixes with a nearby 1Sþ term, but the other linear combination of the L¼�1

states remains unaffected.

P
±

Σ +

P

P

Fig. 11.6 The interaction between
states that results in L-doubling

as a result of the rotation of the

molecule.

�

E

S

L

Fig. 11.4 A vector diagram for
Hund’s case (c), in which the spin–

orbit coupling is very strong.

R

N
J

S
L

S

Fig. 11.5 A vector diagram for
Hund’s case (d).
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we shall see that the first-order correction to the energy is zero so second-

order perturbation theory (Section 6.5) will be used. The hamiltonian for the

rotation of the nuclear framework is expressed in terms of the moment of

inertia I of the molecule and the angular momentum of the nuclear frame-

work, R. This angular momentum has no z-component in the molecular

frame (where z is the internuclear axis), and for singlet states (S¼0) is related

to the overall angular momentum by Rx¼ Jx�Lx and Ry¼ Jy�Ly (Fig. 11.8).

It follows that the rotational hamiltonian is

H ¼ 1

2I
R2

x þ R2
y

� �
¼ 1

2I
ð Jx � LxÞ2 þ ð Jy � LyÞ2
n o

¼ 1

2I
J2 � J2

z þ L2
x þ L2

y

� �
� 2 JxLx þ JyLy

� �n o
ð11:2Þ

The term proportional to L2
xþL2

y is independent of the rotational state of the

molecule and can be ignored for the present purposes. The term proportional

to JxLxþ JyLy can be expressed in terms of raising and lowering operators

(Section 4.3):

JxLx þ JyLy ¼ 1
2 ð JþL� þ J�LþÞ

and is plainly off-diagonal in L on account of the shift operators.2 These off-

diagonal terms, which result in the S state removing the degeneracy of the

L¼�1 states, can be regarded as the perturbation terms in the rotational

hamiltonian and we write

Hð0Þ ¼ 1

2I
ð J2 � J2

z Þ Hð1Þ ¼ � 1

2I
ð JþL� þ J�LþÞ ð11:3Þ

The eigenvalues of H(0) for a singlet molecular term with quantum numbers J

and L are

Eð J,LÞ ¼ hcBf Jð J þ 1Þ � L2g ð11:4Þ

and, at this stage, the states �jLj are degenerate. However, we now allow

for the perturbation. The first-order correction to the energy of the state

jJ,Li is given by hJ,L jH(1)j J,Li, which vanishes because H(1) is off-diagonal

in L. The second-order contribution to the energy is calculated by using

eqn 6.24, and is

Eð2Þ J,Lð Þ ¼ J,LjJþL� þ J�LþjJ0,L0h ij j2

ð2IÞ2fEð J,LÞ � E J0,L0ð Þg
ð11:5Þ

x
y

z

J

Rx
Ry

L

Lx
Ly

J  = R  + Ly y yJ  = R  + Lx x x

R

Fig. 11.8 The components of
angular momentum that are used

to express the hamiltonian for

a rotating molecule.

(a)

(b)

Motion
in nodal
place

Motion
away from
nodal
plane

Fig. 11.7 A pictorial interpretation
of the effects of molecular rotation

and electron ‘slip’. In (a), the nuclei

slip in the node of the orbital,

whereas in (b) they slip into a
region of high electron density. The

latter corresponds to the partial

admixture of S character into the

electronic wavefunction,
as indicated in Fig. 11.6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. There is a subtlety here. In the rotating molecular framework, Jþ is a lowering operator and

J� is a raising operator. This reversal of the normal roles follows from the fact that although we

know the commutation relations of angular momentum in a laboratory frame, we need to

transform them into a rotating frame before we can draw any conclusions from them. When this

transformation is carried out, it turns out that [Jx,Jy]¼�i�hJz. This change of sign compared to the

fixed frame interchanges the roles of the shift operators. For more information, see B.R. Judd,

Angular momentum theory for diatomic molecules, Academic Press, New York (1975).
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This expression can be used to evaluate the correction to the energies of the P
states (or, more precisely, the two linear combinations of the L¼�1 states),

and it turns out that the difference in energy of the two combinations is

DEð2Þ ¼ 2ðhcBÞ2LðLþ 1ÞJð J þ 1Þ
EðPÞ � E

�
Sþg
� ð11:6Þ

We see that it is indeed the Sg
þ term that is mixed.

11.3 Selection rules

Chapters 8 and 9 showed how the electronic energies of diatomic molecules

can be calculated. Now that we have some idea of how these energy levels are

modified by rotation, we can move on to the prediction of the appearance of

electronic spectra by imposing the selection rules. These selection rules have

already been introduced in various parts of the text, and may be summarized

(and slightly elaborated) as follows:

g! u but not g! g, u! u

Sþ ! Sþ,S� ! S� but not Sþ ! S�,S� ! Sþ

DL ¼ 0, � 1 DO ¼ 0, �1

DS ¼ 0,DS ¼ 0 for weak spin--orbit coupling

DJ ¼ 0, �1 but not J¼0! J¼0, and for O¼0! O¼0,DJ 6¼0

All these rules are established by detailed consideration of the symmetry

properties of the electric dipole transition moment.

Vibronic transitions

Whenever an electronic transition occurs in a molecule the nuclei are subjected

to a change in Coulombic force as a result of the redistribution of electronic

charge. In other words, the molecular potential energy surface, which governs

nuclear motion, changes as the electronic state changes during the transition.

As a result, the nuclei respond by breaking into more vigorous vibration and

the absorption spectrum shows a structure characteristic of the vibrational

energy levels of the molecule. Simultaneous electronic and vibrational transi-

tions are known as vibronic transitions. We shall begin this section by seeing

to what extent the vibrational structure can be predicted and explained.

11.4 The Franck–Condon principle

The analysis of vibronic transitions is based on the Franck–Condon principle

that, because nuclear masses are so much larger than the mass of an elec-

tron, an electronic transition occurs within a stationary nuclear framework.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Note the similarity to the Born–Oppenheimer approximation, Section 8.1.
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As a result, the nuclear locations remain unchanged during the actual

transition, but then readjust once the electrons have adopted their final

distribution.

The qualitative implications of the principle are illustrated in Fig. 11.9,

which shows two molecular potential energy curves for two electronic

states of a diatomic molecule. The upper curve is typically displaced to the

right relative to the lower curve because excitation of electrons generally

introduces more antibonding character into the molecular orbitals and

the equilibrium bond length increases. The force constants of the two states

also differ, for the same reason. We shall confine our attention to the

fundamental progression, the transitions starting in the ground vibrational

state of the lower electronic state. Classically, the transition occurs when

the internuclear separation is equal to the equilibrium bond length Re of

the lower electronic state, when the nuclei are stationary, and that inter-

nuclear separation and state of motion are preserved during the transition.

As a result, the transition terminates where a vertical line cuts through the

upper molecular potential energy curve. At the point of intersection, the

excited molecule is at a turning point of a vibration, so the nuclei are sta-

tionary, and the internuclear separation is the same as it was initially. Such a

transition is called vertical. Once the electronic transition is complete,

however, the molecule begins to vibrate at an energy corresponding to the

intersection.

The quantum mechanical description of the process echoes the classical

description (Fig. 11.10). Qualitatively, the transition occurs from the ground

vibrational state of the lower electronic state to the vibrational state that it

most resembles in the upper electronic state. In that way, the vibrational

wavefunction undergoes least change, which corresponds to the preservation

of the dynamical state of the nuclei as required by the Franck–Condon

principle. The vibrational state with a wavefunction that most resembles

the original bell-shaped gaussian of the vibrational ground state is one with

a peak immediately above the ground state, that is a wavefunction with

large amplitude at Re. As can be seen from the illustration, this wavefunction

corresponds to an energy level that lies in much the same position as in the

vertical transition of the classical description.

The justification of the quantum mechanical description is based on the

evaluation of the electric dipole transition moment between the ground

vibronic state jevi and the upper vibronic state je 0v 0i. In a molecule,

the electric dipole moment operator depends on the locations and charges of

the electrons, ri and�e, and the locations and charges of the nuclei, which we

denote Rs and Zse, respectively:

� ¼ �e
X

i

r i þ e
X

s

ZsRs ¼ �e þ �N ð11:7Þ

Within the Born–Oppenheimer approximation, the vibronic state jevi is

described by the wavefunction ce(r; R)cv(R), where r and R denote, respec-

tively, the electronic and nuclear coordinates collectively. Note that the

electronic wavefunction depends parametrically on the nuclear coordinates

R 'e
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Fig. 11.9 The classical basis of the

Franck–Condon principle in which
the molecule makes a vertical

transition that terminates at the

turning point of the excited state.

The nuclei neither change their
locations nor accelerate while the

transition is in progress.
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(that is, there is a different electronic wavefunction for each nuclear

arrangement). The transition moment is therefore

e0v0j�jevh i ¼
Z

c�e0 r; Rð Þc�v0 Rð Þð�e þ �NÞceðr; RÞcvðRÞ dtedtN

¼
Z

c�v0 ðRÞ
Z

c�e0 ðr; RÞ�eceðr; RÞ dte

	 

cvðRÞ dtN

þ
Z

c�v0 ðRÞ�N

Z
c�e0 ðr; RÞceðr; RÞ dte

	 

cvðRÞ dtN

The integral over the electron coordinates in the final term is zero because the

electronic states are orthogonal to one another for each selected value of R.

The integral over the electron coordinates in the remaining integral is the

electric dipole moment for the transition when the nuclei have coordinates R.

To a reasonable first approximation,4 this transition moment is independent

of the locations of the nuclei so long as they are not displaced by a large

amount from equilibrium, and so the integral may be approximated by

a constant �e0e. Therefore, the overall electric dipole transition moment is

he0v0j�jevi ¼ �e0e

Z
c�v0 ðRÞcvðRÞ dtN ¼ �e0eSðv0, vÞ ð11:8Þ

where

Sðv0, vÞ ¼
Z

c�v0 ðRÞcvðRÞ dtN ð11:9Þ

is the overlap integral between the two vibrational states in their respective

electronic states. The electric dipole transition moment is therefore largest

between vibrational states that have the greatest overlap. This is the quant-

itative version of the previous qualitative discussion, where we looked for the

upper vibrational state that had a local bell-shaped region above the gaussian

function of the ground vibrational state of the lower electronic state.

Significant values of the overlap integral S(v 0,v) are generally found for a

progression of vibrational states v 0 rather than for a single value of v 0, so

transitions occur with varying probabilities to all of them. Thus, a progres-

sion of transitions, a series of vibrational transitions, is observed in the

electronic spectrum. The relative intensities of the lines are proportional

to the square of the electric dipole transition moments and hence to the

Franck–Condon factors, jS(v 0,v)j2.

Example 11.1 The calculation of Franck–Condon factors

Consider a case in which two electronic states have the same force constant

but in which the equilibrium bond lengths differ by DR. Find an expression for

the relative intensity of the 0–0 transition as a function of DR.
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Fig. 11.10 The quantum mechanical

version of the Franck–Condon

principle. The molecule makes a
transition from the ground

vibrational state to the state with a

vibrational wavefunction that most
strongly resembles the initial

vibrational wavefunction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. In more rigorous treatments, this transition moment must be considered a function of R.
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Method. We need to evaluate the Franck–Condon factor jS(0,0)j2. To do so we

calculate the overlap integral S(0,0) using harmonic oscillator wavefunctions

(Table 2.1), one centred on x¼ 0 and the other on x¼DR. We shall need the

following integral:Z þ1
�1

e�ax2

dx ¼ p
a

� �1=2

Answer. The wavefunctions for the two states are

c0 ¼
a

p1=2

� �1=2
e�a

2x2=2 c00 ¼
a

p1=2

� �1=2
e�a

2ðx�DRÞ2=2

where a¼ (mk/�h2)1/4 and the wavefunctions are normalized in the senseZ þ1
�1
jc0j

2dx ¼ 1

It then follows that

Sð0, 0Þ ¼ a
p1=2

� �Z þ1
�1

e�a
2x2=2�a2ðx�DRÞ2=2dx

¼ a
p1=2

� �Z þ1
�1

e�a
2x2=2�a2x2=2þa2xDR�a2DR2=2dx

¼ a
p1=2

� �
e�a

2DR2=4

Z þ1
�1

e�a
2x2þa2xDR�a2DR2=4dx

¼ a
p1=2

� �
e�a

2ðDR=2Þ2
Z þ1
�1

e�a
2ðx�DR=2Þ2 dx

¼ e�a
2ðDR=2Þ2

The Franck–Condon factor for the transition is therefore

jSð0, 0Þj2 ¼ e�a
2ðDRÞ2=2

This function is plotted in Fig. 11.11, and the strong dependence on DR should

be noticed.

Self-test 11.1. Show that the sum of all Franck–Condon factors for transitions

from a given state v is equal to 1.

X
v0
jSðv0, vÞj2 ¼ 1

" #

11.5 The rotational structure of vibronic transitions

Superimposed on the vibronic transitions are rotational transitions that occur

according to the selection rules set out in Section 10.5. The DJ¼�1, 0, and

þ1 transitions give rise, respectively, to the P-, Q-, and R-branches of

the spectrum, and their appearance (for gas-phase species) is similar to the

structure of vibration–rotation spectra discussed in Section 10.11. There is,

however, one important exception. Because the rotational constants of the

upper and lower electronic states are likely to be so different from one another

0
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0.8

1

–4 –2 0 2 4

S
(0

,0
)2

� ∆R1/2

Fig. 11.11 The variation of the

Franck–Condon factor with
displacement of the minimum of

the upper electronic state. Note that

the factor is a maximum (1) when the

two curves lie exactly over one
another.
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(because the equilibrium bond lengths are so different in the two states), head

formation is likely to occur. It is commonly found, for instance, that the

spectrum has the appearance shown in Fig. 11.12, with the R-branch

showing a head at high frequencies.

The presence of L-doubling affects the spectrum in a subtle way. In a
1P 1S transition, the P- and R-branches arise from the transition between

the ground term and one of the components of the P term whereas the

Q-branch arises from a transition to the other component of the P term.

A consequence is that the Q-branch is slightly shifted relative to the other two

branches to an extent that is proportional to J( Jþ1). The upper states of the

Q-branch have slightly different B values from the upper states of the P- and

R-branches and the magnitude of the difference gives the magnitude of the

L-doubling.

Further complications arise when one state is perturbed by another, and

perturbations can be very effective in shifting the energy levels. A particular

phenomenon that tends to obscure regions of the spectrum is predissociation,

in which the vibrational structure is blurred in one region of the spectrum,

but resumes at higher frequencies before the true dissociation and its associ-

ated structureless absorption begin. The mechanism of predissociation is

illustrated in Fig. 11.13. As shown there, the upper electronic state A is

perturbed by a dissociative state C, and a molecule excited to a vibrational

state close to the intersection of the two electronic states may take on dis-

sociative character, and fly apart. This probability of dissociation reduces

the lifetime of molecules in energy levels close to the intersection, and due to

the lifetime-broadening effect (Section 6.18), spectral linewidths are often

significantly increased. The coupling of the discrete states to the continuum

also results in small shifts in the energies of the states.

The electronic spectra of polyatomic molecules

We have seen the complexity of electronic spectra of diatomics, and can

therefore imagine the complexity that sets in when we examine polyatomic

molecules. However, there is often a simplification. Many polyatomic

molecules are studied in solution, and as a result of the collisions that occur

between solvent and solute species, the rotational structure of the bands is

blurred. In weakly interacting solvents, such as hydrocarbons, the vibrational

structure of bands may still be present, but in interacting solvents even that

may be lost. Therefore, mainly we shall be concerned with spectra in which

most of the details of the vibrational and rotational structure have dis-

appeared. Another simplification, especially useful in considerations of the

spectra of organic molecules, is that often the absorption in a particular

region of the spectrum may be ascribed to a transition involving a particular

group of atoms in the molecule. Such a group, which is called a chromophore,

may occur in a number of different types of molecule, and gives rise to an

absorption band at about the same wavenumber. Thus, an introductory
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Fig. 11.12 The formation of P- and

R-branches for a vibronic
transition, showing the formation

of a head in the R-branch.

X

A

M
o

le
cu

la
r 

p
o

te
n

ti
al

 e
n

er
g

y

B C

Internuclear separation

Fig. 11.13 The processes of

dissociation (in the B X transition)

and predissociation (in the A X

transition).
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discussion of the spectra of molecules may be based on their chromophores

and the perturbations caused by other groups in the molecules.

11.6 Symmetry considerations

For small molecules, the transitions are discussed in terms of the entire

molecule rather than identifiable chromophores because electronic excitation

involves the entire structure. Therefore, the selection rules for the transitions

must be expressed in terms of the point group of the whole molecule rather

than a localized group of atoms. This is in fact a simple task, because if

the irreducible representations spanned by the electric dipole moment

operator are known (as they are, by a quick reference to the character

table), then the selection rules can be formulated by using the results of

Section 5.16.

As an example, consider the NO2 molecule. Its point group is C2v and its

ground-state configuration is

NO2 . . . b2
2a2

2a1
1

2A1

The three highest energy orbitals are illustrated in Fig. 11.14. In C2v, the

electric dipole moment operator spans B1(x)þB2(y)þA1(z). It follows that

transitions may be stimulated from the ground state to excited states of

symmetry species B1, B2, and A1 by irradiation with x-, y-, and z-polarized

light, respectively. The axes refer to the molecular system, and so the

polarizations are relevant only if the NO2 is trapped in a solid in a well-

defined orientation. Because excitation involves a considerable reorgan-

ization of the distribution of the electrons, each electronic transition is

accompanied by extensive vibrational structure. For example, the transition

. . . b2
2a2

2b1
2

2B2  . . . b2
2a2

2a1
1

2A1 excites the electron that can be regarded as

responsible for holding the molecule in its angular shape in the ground state.

As illustrated by this example, it is conventional to write the upper term first

and the lower second; then the direction of the arrow indicates emission

(A!X) or absorption (A X). The ground state is usually labelled X (unless

its full symmetry designation is given), and the excited states of the same spin

multiplicity are labelled A, B, C, . . . .

11.7 Chromophores

The spectra of larger molecules may often be discussed in terms of their

chromophores. Among the most common chromophores are the carbonyl

and nitro groups and the carbon–carbon double bond. The transitions

responsible for their absorptions are typically classified as p�  n (‘n-to-pi

star’) and p�  p (‘pi-to-pi star’), where n represents a non-bonding orbital

(Fig. 11.15). An p�  n transition of the carbonyl group, which occurs near

290 nm, involves the transfer of some electron density from the O atom to the

C atom, because the n orbital is largely confined to the O atom whereas the

antibonding p�-orbital spreads over both atoms. This migration of charge

also helps to explain the shift to higher absorption frequencies that occurs

when the chromophore is immersed in a polar or hydrogen-bonding solvent.

a2

b2

a1

x

y
z

z
y

z
y

Fig. 11.14 Three of the molecular

orbitals of a C2v species.

n

π*

π

π*

(a)

(b)

Fig. 11.15 The orbitals involved in
(a) the p�  n transition of a carbonyl

group and (b) the p�  p transition of

a carbon–carbon double bond.
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In such an environment, the ground state of the molecule favours a particular

arrangement of solvent molecules. However, the electronic transition occurs

too rapidly for the complete reorientation of the solvent molecules to adjust

to the new electron distribution, and so whereas the ground state is stabilized,

the upper state is stabilized to a lesser extent. Consequently, the energy

separation of the two states is larger than in a non-polar solvent.

There is, however, one difficulty: the p�  n transition is forbidden. To see

that this is the case, we note that the non-bonding orbital, which is mainly

confined to the O atom, is to a good approximation O2py; so, if cp� ¼
c 0f(C2px)þ cf(O2px), as illustrated in Fig. 11.15a, we have (for real c)

hp�j�jni � chO2pxj�jO2pyi ð11:10Þ

This matrix element is zero for each component mq, as may easily be verified,

and so the transition is forbidden. However, as is always the case with for-

bidden transitions, their ‘forbidden’ character is a result of adopting a sim-

pified hamiltonian, and the presence of additional terms in the hamiltonian

may relax the constraints on the transitions. In this case, intensity may be

acquired by the transition because the non-bonding orbital is not strictly

localized and is not purely O2py. Another source of intensity is the coupling

of the electronic and vibrational modes of the molecule as discussed in detail

in the following section.

The p�  p transition in ethene is allowed and the transition dipole

moment is directed along the internuclear axis (Fig. 11.15b). The transition

reduces the strength of the carbon–oxygen bond because a bonding electron

is transferred into an antibonding orbital. This reduction in strength may

be so great that the bonded groups twist about the bond direction in order

to minimize the antibonding effect. Thus, in ethene, the CH2 groups are

perpendicular in the s2p1p�1 excited state.

The benzene molecule, C6H6, is an interesting but complex example of

transitions that involve the p-electrons of a molecule. There are three major

bands. The one at about 260 nm, which is called the benzenoid band, is weak

because it is symmetry-forbidden. A second, at 185 nm, is symmetry-allowed

and is reasonably intense. There is also a band at 200 nm. The ground state of

the D6h molecule is 1A1g. The electric dipole moment operator spans

A2u(z)þE1u(x,y) in the group D6h, where the z-axis lies perpendicular to the

molecular plane. Therefore, the allowed transitions are expected to be
1E1u 1A1g and 1A2u 1A1g. The strong transition at 185 nm has been

identified as the former, with the 1E1u upper term arising from the config-

uration a2
2ue3

1ge1
2u. This assignment has been confirmed by checking the

polarization of the transition moment in a crystalline sample. The config-

uration a2
2ue3

1ge
1
2u (see Fig. 8.30) also gives rise to the terms B1u and B2u and the

band at 200 nm is 1B1u 1A1g whereas the benzenoid band at 260 nm has

been ascribed to the transition 1B2u 1A1g. However, there is a problem that

we need to address, for these two transitions are forbidden, yet somehow they

manage to obtain intensity. The configuration a2
2ue3

1ge
1
2u can also give rise to

triplet terms, but the intercombination transitions, the transitions between

terms of different multiplicity, are weak in a molecule built from light atoms

in which the spin–orbit coupling is small.
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11.8 Vibronically allowed transitions

The forbidden transitions in the carbonyl chromophore and in benzene

acquire intensity by coupling to the vibrations of the molecule. They are

therefore classified as vibronic transitions.

The potential energy of an electron in a molecule depends on the locations

of the nuclei. Therefore, the electronic hamiltonian also depends on nuclear

coordinates and may be expressed in terms of a Taylor expansion with respect

to displacement along the normal coordinates:

H ¼ Hð0Þ þ
X

i

qH

qQi

 �
0

Qi þ � � � ð11:11Þ

The eigenfunctions of H(0) are denoted ce and their energies are Ee. The

presence of the additional terms in the hamiltonian mixes these eigenstates

together, and to first order in the perturbation a particular electronic eigen-

function ce 0 becomes (see eqn 6.22)

c ¼ ce0 þ
X
e

0
aece ae ¼

hej
P

iðqH=qQiÞ0je0iQi

Ee0 � Ee
ð11:12Þ

where the matrix element in the expression for ae is an integral over electronic

coordinates and, within the Born–Oppenheimer approximation, depends

parametrically on the nuclear coordinate Qi. As usual, the prime on the

summation means that the state with e 0 ¼ e is omitted. Suppose now that only

the upper state of the transition is perturbed; then the electric dipole transi-

tion moment for e 0  e00 is

�e0;e00 ¼ he0j�je00i þ
X
e

0
a�e hej�je00i

If the transition between the unperturbed levels e 0 and e00 is forbidden, the first

matrix element is zero, and we are left with

�e0;e00 ¼
X
e

0
a�e hej�je00i ð11:13Þ

When transitions between e00 and e are allowed, and the perturbation can mix

the states e 0 and e, then the transition e 0  e00 can ‘borrow’ intensity from the

allowed transitions.

The next step is to see which states can be mixed. The hamiltonian

transforms as A1 (or the equivalent totally symmetric irreducible repres-

entation); therefore, so too must each term in its expansion. In particular,

the second term in eqn 11.11 must transform as A1. However, one factor in

that term is the normal coordinate Qi, which transforms as G(i); therefore, the

term (qH/qQi)0 must also transform as G(i) if its product with Qi is to be

totally symmetric. This partial derivative term is that part of the hamiltonian

acting as the perturbation and mixing the electronic states, so we can con-

clude that the matrix element in eqn 12 is non-zero only if G(e)�G(i)�G(e 0)

contains the totally symmetric irreducible representation (such as A1).

One final important point can be made before we give an example.

The presence of the factor Qi in the perturbation implies that when the

perturbation acts, it leaves its footprint on both the electronic and the
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vibrational states. Therefore, a more complete form of eqn 11.12 for the first-

order perturbation to a particular vibrational electronic eigenfunction ce 0v 0 is

c ¼ ce0v0 þ
X
e;v

0
aevcev aev ¼

P
ihejðqH=qQiÞ0je0ihvjQijv0i

Ee0v0 � Eev
ð11:14Þ

and the more complete version of eqn 11.13 is

�e0v0;e00v00 ¼
X
e

0
a�evhevj�je00v00i ð11:15Þ

The implication of this more complete formulation is that, in a vibronically

allowed transition, a vibrational excitation accompanies the electronic tran-

sition. The interpretation of the borrowing of intensity can now be expressed

in a new light: we need to apply symmetry selection rules to entire vibronic

states, not simply to electronic states.

It is time for an example. Consider the forbidden B2u A1g band in ben-

zene. Suppose an E2g vibration can be excited at the same time as an electronic

transition. Then, because the overall symmetry of the upper vibronic state is

E2g�B2u¼E1u and the transition E1u A1g is electric-dipole allowed, the

vibronic transition is allowed even though the pure electronic B2u A1g

transition is forbidden. In other words, the B2u A1g transition acquires

intensity through its coupling to the E2g vibrations of the molecule.

Example 11.2 Intensity borrowing in vibronic systems

Account for the intensity of the p�  n transition in the carbonyl group in

terms of a vibronic process, as observed, for instance, in (CH3)2CO.

Method. First, identify the local point group symmetry of the chromophore

and the symmetry species of the electronic states involved in the transition.

Then decide what transitions are in fact allowed by considering the symmetry

species of the components of the electric dipole moment operator. Proceed to

identify the symmetry species of the vibration that, when mixed with the upper

state, leads to an allowed transition.

Answer. We shall treat the CO group as locally C2v and for simplicity regard

the non-bonding orbital as O2py (Fig. 11.16) and the p�-orbital as built from

2px-orbitals. The p�  n transition is n1p�1 A2 n2 A1 in the coordinate

system shown in the illustration (we have used B1�B2¼A2 to work out the

symmetry species of the upper state). Because the electric dipole moment

operator transforms as B1(x)þB2(y)þA1(z), the only purely electronic transi-

tions from the A1 ground state are to B1(x)þB2(y)þA1(z), which does not

include A2. However, if this electronic state couples with a vibration of B1

symmetry, then its overall symmetry is B1�A2¼B2, which is an accessible

state for y-polarized radiation. Similarly, if it couples with a vibration of B2

symmetry, then the overall symmetry is B2�A2¼B1, which is accessible with

x-polarized radiation. The vibrations mentioned are illustrated in Fig. 11.17.

Comment. It should not be forgotten that there are other reasons why a

transition acquires intensity, including the departure from the assumed local

point group symmetry as a result of the presence of substituents.

x

y

z

C
O

Fig. 11.16 The shift in electron

distribution associated with

an p�  n transition in the

carbonyl group.

B1

B2

Fig. 11.17 The vibrations of the

molecular framework involved in

the vibronic transitions of

a carbonyl group.
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The intensities of d–d transitions in d-metal octahedral complexes also

arise from vibronic effects. It is easy to see that some such mechanism is

necessary, because an octahedral complex, such as [Cr(CN)6]3�, has a centre

of inversion, and g g transitions are forbidden by the Laporte selection rule

(Section 7.2). However, if there is a coupling of the electronic transition to a

vibrational mode that destroys the centre of inversion, then the transition may

acquire intensity. One way of interpreting this acquisition of intensity is to

imagine that the loss of inversion symmetry permits the mixing of d- and

p-orbitals, which are g and u respectively, and p d transitions are allowed.

11.9 Singlet–triplet transitions

Intercombination bands, which include transitions between singlet and triplet

terms, are observed when the spin–orbit coupling is significant, such as when

a heavy atom is present in the molecule. In this section, we shall see how the

spin–orbit coupling term in a molecular hamiltonian can act as a perturba-

tion that mixes states of different multiplicity.

The spin–orbit interaction (Section 7.4) is

Hso ¼
X

i

xili � si ð11:16Þ

where the sum is over all the electrons in the molecule. For two electrons, this

operator takes the form

Hso ¼ x1l1 � s1 þ x2l2 � s2

¼ 1
2ðx1l1 þ x2l2Þ � ðs1 þ s2Þ þ 1

2ðx1l1 � x2l2Þ � ðs1 � s2Þ

The x-, y-, and z-components of the operator s1þ s2 commute with S2, the

total spin operator, and so that term in Hso cannot mix states of different

multiplicity. However, the x-, y-, and z-components of the operator s1� s2

do not commute with S2, and so this term in the spin–orbit operator is the

one that is responsible for singlet–triplet mixing:

h1, MSjHsoj0,0i ¼ 1
2h1, MSjðx1l1 � x2l2Þ � ðs1 � s2Þj0, 0i ð11:17Þ

For the z-component of the spin–orbit coupling, the spin operator is s1z� s2z

and its effect is

ðs1z � s2zÞj0,0i ¼ ðs1z � s2zÞ
1ffiffiffi
2
p fað1Þbð2Þ � bð1Það2Þg

¼ �h
1ffiffiffi
2
p fað1Þbð2Þ þ bð1Það2Þg

¼ �hj1, 0i

Consequently, the remaining orbital operator part of the spin–orbit coupling

hamiltonian is

h1,0jHsoj0, 0i ¼ 1
2�hðx1l1z � x2l2zÞ ð11:18Þ

(The bra and ket on the left simply integrate out the spin operators, leaving

an orbital operator.) This operator has components that transform as rota-

tions about the z-axis. The x- and y-components transform analogously.
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Because the transformation properties of rotations are listed in the character

tables (such as those in Appendix 1), it is a simple task to decide which terms

the spin–orbit coupling can mix together.

Example 11.3 State mixing by spin–orbit coupling

Show that spin–orbit coupling in a C2v molecule can provide intensity to

a 3B2 1A1 transition.

Method. Decide which states can be mixed into the ground and excited states

by noting how rotations transform in the group. Then decide whether any

transitions between the contributing states of the same multiplicity are electric-

dipole allowed.

Answer. In C2v, rotations transform as B2(Rx)þB1(Ry)þA2(Rz). Therefore,

the spin–orbit coupling can mix 3B2, 3B1, and 3A2 terms into the 1A1 ground

state. It can also mix 1A1, 1A2, and 1B1 terms into the 3B2 excited state. The

electric dipole moment operator transforms as B1(x)þB2(y)þA1(z), and so

the transitions shown in Fig. 11.18 are allowed. Thus, the 3B2 1A1 transition

acquires intensity from these allowed components.

Self-test 11.3. Identify a mechanism for the 3B1u 1A1g transition in benzene.

[Spin–orbit coupling mixes 3B1u with 1B2u and 1E2u, then vibronic

coupling makes these states accessible from 1A1g.]

The fate of excited species

Electronically excited states discard or utilize their excess energy in a number

of ways including dissipation as heat and the rather more interesting pro-

cesses of fluorescence and phosphorescence. Chemical reactions also often

ensue after an initial electronic transition, and interesting phenomena are

often observed. We shall look briefly at each of these processes.

11.10 Non-radiative decay

The most common mode is thermal decay, in which the energy is dissipated as

thermal motion in the surroundings. The mechanism of this relaxation to

equilibrium is a sequence of radiationless transitions, in which energy is

transferred from the excited species to the molecules in its immediate vicinity.

The initial transfer of energy is typically into the vibrational modes of the

surrounding medium, and the efficiency of the transfer, because it involves

the perturbation and mixing of the states of the two systems, depends on

how closely the energy separations of the excited molecules match those of

the surroundings. As a result, the lifetime of an excited state may be affected

quite considerably by varying the solvent. Water has rather high vibrational

wavenumbers (1595, 3652, and 3756 cm�1 for its three normal modes), and

its higher harmonics coincide with a range of typical electronic excitation

A1

A2B1

B2y

y

x x

zz

z z

Fig. 11.18 The allowed transitions

and their polarizations for electric

dipole transitions in a C2v species.
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energies; hence, lifetimes are often short in water. A solvent such as selenium

oxochloride, SeOCl2, on the other hand, for which the wavenumber of

the highest fundamental is only 995 cm�1, acts as only a poor receptor for

electronic energy transfer.

Example 11.4 Modelling non-radiative energy transfer

Consider the following mode of a non-radiative transition. Let the initial state

be jii, and let there be a uniform ladder of states jvi of spacing e that acts

as a thermal reservoir (Fig. 11.19). Take the matrix elements of the pertur-

bation that mixes the states of the two systems to be real and equal to a for all

values of v. Calculate the probability using first-order perturbation theory that

the system has undergone energy transfer from the initial state of energy Ei to

the thermal reservoir.

Method. First-order perturbation theory (Section 6.4) tells us that the prob-

ability amplitude for finding the system in the state jvi of the reservoir is

a/(Ei�Ev) (see eqn 6.21). The probability is the square of this amplitude, and

the total probability is the sum over all v. Set Ev¼Efþ ve with v¼ 0, �1,

�2, . . . (see the illustration). We shall write DE¼Ei�Ef.

Answer. It follows from eqn 6.21 that the total probability is

P ¼
X

v

a2

ðEi � EvÞ2
¼
X

v

a2

ðEi � Ef � veÞ2

¼
X

v

a2

e2fðEi � EfÞ=e� vg2
¼ a

e

� �2X
v

1

fðDE=eÞ � vg2

¼ ap
e

� �2

cosec2 pDE

e

 �

(For the sum, see M. Abramowitz and I.A. Stegun, Handbook of mathematical

functions, Dover (1965), eqn 4.3.92.) The variation of P with the parameters

is illustrated in Fig. 11.20.

Comment. The model is a greatly simplified version of the Bixon–Jortner

theory of radiationless transitions.5 The quantity r¼ 1/e is the density of states

in the reservoir, so an alternative version of the result is

P ¼ ðaprÞ2cosec2ðprDEÞ

If Ei lies halfway between the v¼ 0 and v¼ 1 levels, then DE¼ 1
2e, and

P¼ (apr)2. Although P appears to be infinite for DE¼ 0, that is an artefact of

first-order perturbation theory.

11.11 Radiative decay

Decay by a radiative process in which the excess energy is discarded as a

photon may also occur. There are two main types of process, fluorescence and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. M. Bixon and J. Jortner, J. Chem. Phys., 3284, 50 (1969).
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Fig. 11.19 The model used for the

discussion of non-radiative energy
transfer into a system with a high

density of states.
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Fig. 11.20 The probability of

energy transfer for the model in the
previous illustration as a function of

the energy separation DE. The

numbers labelling the curves are the
values of a/e. Perturbation theory

fails unless P�1.
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phosphorescence. The distinction between the two processes was originally

made on the basis of the lifetime of the radiation: in fluorescence, the

radiation ceased as soon as the exciting radiation was removed, but in

phosphorescence it continues for at least a short time. The distinction is now

made on the basis of their mechanisms. In fluorescence, the radiation is

generated in the course of transitions between states of the same spin multi-

plicity. In phosphorescence, the radiation is generated in a sequence of steps

that involve changes in spin multiplicity.

The steps that give rise to fluorescence are shown in Fig. 11.21. The initial

absorption is 1A 1X (here, A is not a symmetry designation, just a label; X is

the ground state). The transitions are governed by the Franck–Condon

principle, and so in general a range of vibrationally excited states of the upper

electronic state is populated. Intermolecular collisions result in vibrational

de-excitation, but the solvent may be such that the excess electronic excita-

tion energy cannot easily be discarded on account of the mismatch of energy

separations. The molecules persist in the lowest vibrational states of the

excited singlet, and if their lifetime is long enough, spontaneous emission may

occur as the molecule generates a photon. The photon emission also occurs

in accord with the Franck–Condon principle, and the emission spectrum

will show vibrational structure characteristic of the electronic ground state.

The fluorescence spectrum will also be shifted to longer wavelengths than the

absorption spectrum, because some of the initial excitation energy has been

discarded into the surroundings during vibrational de-excitation. It follows

that fluorescence spectra can be used to gather valuable information about the

shape of the ground-state molecular potential energy surface, and from the

variation of the overall intensity with solvent, to investigate the mechanism of

energy transfer between species.

The transitions leading to phosphorescence are illustrated in Fig. 11.22.

The first step, as in fluorescence, is the absorption 1A 1X. Thermal degra-

dation within the state 1A then occurs, and if it is not too fast, the spin–orbit

coupling in the molecule might succeed in causing an intersystem crossing,

a radiationless transition involving a change of multiplicity, into a nearby

triplet state (perhaps arising from the same configuration as the excited singlet

state), which we shall denote 3A. The crossing occurs in accord with the

Franck–Condon principle, at the intersection of the molecular potential

energy surfaces for the two electronic states, which is where the vibrational

wavefunctions of the two electronic states match one another best. (In clas-

sical terms, at the intersection the oscillators share the same turning point.)

This intersystem crossing will occur most rapidly if spin–orbit coupling is

large, and so it is favoured by the presence of heavy atoms in the molecule.

If intersystem crossing takes place, thermal degradation will continue, but

now the molecule is lowered down the stack of vibrational states of the triplet
3A and becomes trapped in the vibrational ground state. There is now little

that the molecule can do. It cannot return to the ground state because singlet–

triplet transitions are forbidden. It cannot return to 1A because it has insuf-

ficient energy. However, it is not quite true that the molecule can do nothing

because the fact that intersystem crossing has occurred implies that the

spin–orbit coupling is strong enough to mix states of different multiplicity,
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Fig. 11.21 The mechanism of

fluorescence. The vibrational

relaxation is non-radiative.
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Fig. 11.22 The mechanism of

phosphorescence. The vibrational

relaxation is non-radiative; ISC
stands for intersystem crossing, and

is induced by spin–orbit coupling.
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and hence the forbidden 3A! 1X transition is in fact weakly allowed.

It follows that the system can slowly radiate its excess energy as the spin–orbit

coupling enables this transition, and the photons produced are the radiation

we call phosphorescence.

11.12 The conservation of orbital symmetry

The final fate of energetically excited molecules that we shall consider is their

chemical reaction, when they change their identity. A knowledge of the way in

which electron distributions are reorganized in the course of reactions is

essential for understanding these processes, and we shall see in this section how

the interplay of ideas stemming from molecular orbital theory, electron transi-

tion processes, and group theory account for a range of organic reactions.

We shall consider a pericyclic reaction, which is a concerted process (that is,

a reaction in which bond breaking and bond formation occur simultaneously)

that takes place by the reorganization of electron pairs within a closed chain

of interacting atomic orbitals. We shall concentrate on two types of pericyclic

reactions. In an electrocyclic reaction, ring closure or opening occurs in a

single molecule. In a cycloaddition reaction, two or more molecules condense

to form a ring and form new s-bonds at the expense of old p-bonds.

An example of an electrocyclic reaction is the ring-opening of cyclobutene

(1) to form butadiene (2), and vice versa. An example of a cycloaddition

reaction is the Diels–Alder reaction, which includes the reaction of ethene and

butadiene to form cyclohexene (3). Each of these types of reaction has

interesting features that can be explained very readily on the basis that

orbital symmetry is conserved (in a sense we shall explain) as it takes place.

11.13 Electrocyclic reactions

Consider the electrocyclic reaction butadiene! cyclobutene. The four

butadiene p-orbitals were derived in Section 8.9 and are drawn again on the

left in Fig. 11.23. As a result of the formation of a ring, a p-bond turns into

a s-bond, and the orbital scheme for cyclobutene is shown on the right in the

illustration. Next, we note that the two molecules have symmetry elements

in common. For instance, both have a C2 axis, and both have mirror planes

(Fig. 11.24). Therefore, it should be possible to keep track of the molecular

orbitals as they change from one molecule to the other by keeping an eye on

their symmetries with respect to the common symmetry elements. In other

words, we should be able to set up a correlation diagram showing how the

orbitals of butadiene change into the orbitals of cyclobutene. When that has

been done, we should be in a position to describe the orbitals of the transition

state, the state through which the molecule must pass as it changes from

reactants to products.

There is, however, a crucial complication; but it is this complication that

makes pericyclic reactions so interesting. We see from Fig. 11.25 that there

are two pathways for the reaction. In one, the conrotatory path, the CH2

groups rotate in the same sense as one another. In the disrotatory path they

rotate in opposite senses. Neither transition state (for each path) possesses
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Fig. 11.23 A schematic

representation of the molecular
orbitals of (a) butadiene and

(b) cyclobutene.
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Fig. 11.24 The common symmetry
elements of (a) butadiene and

(b) cyclobutene.
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the full common symmetry of the reactants and products. The conrotatory

path preserves the C2 axis throughout the reaction with the mirror planes

present only at the beginning and end. The disrotatory path preserves one of

the mirror planes but the C2 axis and the other plane are present only at the

beginning and end. It follows that, to construct the correlation diagram, we

must examine the evolution of the orbitals in these two different reduced

point groups.

We deal first with the conrotatory path, the path that preserves C2. The

four orbitals 1p, . . . ,4p of butadiene have characters �1,1,�1,1 under C2

(see Fig. 11.23). In the application of group theory to organic reaction

mechanisms it is conventional to be less formal with the notation, and orbitals

are classified as S (for symmetric, character þ1) or A (for antisymmetric,

character �1). We shall use this notation from now on. The classification of

the molecular orbitals of butadiene in this way is shown in the middle of the

correlation diagram in Fig. 11.26 and the classification of the cyclobutene

orbitals is shown on the left. Because the C2 symmetry element is common to

the reactant, the transition state, and the product, the symmetry labels S and

A are applicable throughout the course of the reaction: they are ‘good

quantum numbers’. It follows that the S orbitals of the reactants correlate

with the S orbitals of the products, and likewise for the A orbitals. The

ambiguity about which S orbital correlates with which S orbital, and which

A orbital correlates with which A orbital, is resolved by the non-crossing rule

(Section 6.1), which forbids the crossing of states of the same symmetry. It

follows that the correlation diagram for the conrotatory electrocyclic reaction

is as shown on the left in Fig. 11.26.

A similar argument may be applied to the disrotatory path and the pre-

servation of the single mirror plane. The orbital classification of butadiene is

shown in the middle of Fig. 11.26, and the classification for cyclobutene is

shown on the right. Once again, we can use the non-crossing rule to construct

the correlation diagram shown in the right half of the illustration.

It should now be clear that there is a substantial difference between the two

pathways. Suppose that there is insufficient energy available for the electrons

to be excited out of the ground state of the reactant molecule. That is the case

in a thermal reaction pathway, when the reaction is induced by heating. In a

conrotatory process, the ground configuration 1p22p2 of butadiene goes

smoothly over into the ground configuration 1s21p2 of cyclobutene and the

energy demands of the reaction are minimal. On the other hand, in a dis-

rotatory path, one of the electron pairs ends up in a high energy orbital, and

the product is the excited configuration 1s22p2. There is insufficient energy

available for this process to occur, and so we can conclude that in the thermal

cyclization of butadiene, only the conrotatory path is taken. Likewise, in the

thermal ring-opening reaction of cyclobutene, similar arguments lead to the

conclusion that the conrotatory path will be taken because it has low energy

demands; the disrotatory path evolves into the excited state 1p23p2. It should

also be noticed that the HOMO dominates the conclusions, for it correlates

strongly upwards in energy in the thermally forbidden reaction. This is a

general feature, and accounts for the importance of the frontier orbitals, the

HOMO and LUMO, in reaction mechanisms.

�
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Conrotatory

Disrotatory

Fig. 11.25 The conrotatory and

disrotatory ring closures of
butadiene. The small spheres serve

merely to identify protons; they do

not necessarily correspond to

substituents.
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Fig. 11.26 The correlation diagram

for (a) the conrotatory and (b)
disrotatory butadiene–cyclobutene

interconversion.
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There are two experimentally verifiable predictions that come from the

above discussion. In the first place, we expect the activation energy for ring

opening to be quite small because it can occur without the promotion

of electrons to excited states. The experimental value is in fact only about

80 kJ mol�1. It can be ascribed largely to changes in the s-framework of the

molecule and changes in orbital composition, which are effects ignored in

the correlation scheme. Second, the conrotatory path has specific stereo-

chemical implications. Take, for example, the analogous six p-electron

reaction shown in Fig. 11.27. Substituents rarely perturb the symmetry of a

molecule sufficiently to upset orbital correlation arguments, and so they may

be treated as labels. An analysis of the relevant correlation diagram shows

that the thermally feasible reaction takes place along the disrotatory path,

and gives stereochemically distinct products from the thermally forbidden

conrotatory path. This difference is confirmed experimentally. The alter-

nation conrotatory, disrotatory, . . . for the thermally feasible reaction as the

number of electrons in the p-system changes along the series 4, 6, . . . is a

general prediction for electrocyclic reactions, and is one of the Woodward–

Hoffmann rules devised by R. Hoffmann and R.B. Woodward.

11.14 Cycloaddition reactions

The same kind of argument can be used to explain the stereochemical con-

sequences of cycloaddition reactions. We shall investigate the contrast

between the negligibly slow thermal dimerization of ethene to cyclobutane

and the much faster Diels–Alder addition of ethene to butadiene. We shall

see that the difference can be expressed in terms of symmetry arguments. In

other words, chemical reactions, like spectroscopic transitions, obey selection

rules.

Consider the face-to-face approach of two ethene molecules. In the

arrangement shown in Fig. 11.28, the two mirror planes are preserved

throughout the reaction: they occur in the initial encounter and in the tran-

sition state. They can therefore be used for the symmetry analysis of the

orbitals. The bonding and antibonding orbitals of the ethene molecule are A

or S with respect to each of the two mirror planes, and their joint classification

is shown on the left in Fig. 11.29. The designation SA, for example, signifies a

joint molecular orbital that is S with respect to s and A with respect to s 0. The

s bonds they form may also be classified as A or S with respect to each plane,

and their order of energies can be assessed by judging the importance of their

nodes. This assessment can often be done intuitively, and by supposing that

there is very little interaction between different s-bonds across a cyclobutane

ring. The correlation diagram is then constructed by connecting orbitals

of the same symmetry but by avoiding crossings. It is quite clear that

the HOMO of the reactants rises steeply in energy and the dimerization leads

to a cyclobutane molecule in an excited state if the populations migrate

adiabatically (that is, along the connecting lines, without making transitions

between them). Therefore, we conclude that the ethene–ethene cycloaddition

reaction (and the reverse cycloreversion reaction) with face-to-face geometry

is thermally forbidden. This conclusion is in accord with observation.

Disrotatory

Conrotatory

R

R

R

R

R

R

Fig. 11.27 The stereochemical

consequences of different
reaction paths.
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(a)
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Fig. 11.28 The common symmetry

elements of (a) an ethene dimer

and (b) cyclobutane.

11.14 CYCLOADDITION REACTIONS j 401



Now we apply the same argument to the ethene–butadiene reaction, which

is the prototype of the wide class of Diels–Alder reactions. We continue

to consider the face-to-face approach of the molecules, which preserves

the mirror plane shown in Fig. 11.30 throughout the course of the reaction.

The orbitals of the cluster of molecules is depicted on the left in Fig. 11.31,

and are classified with respect to the preserved mirror plane. The left side of

the diagram is simply the superposition of the butadiene (1p, 3p, 4p, 6p) and

ethene (2p, 5p) energy levels with the disregarded s-framework indicated

throughout. In the course of the reaction, two new s-bonds are formed at the

expense of two p-bonds and one p-bond is relocated. The orbitals and energy

levels of the product, cyclohexene, are shown on the right of the illustration,

and have been classified with respect to the same mirror plane.

At this point we can construct the correlation diagram by using the non-

crossing rule, and then trace the evolution of the bonding electron pairs of the

reactants as they change adiabatically into products. The obvious feature is

that the ground-state configuration of the reactants correlates with the

ground-state configuration of the products. The activation energy for the

reaction can therefore be expected to be sufficiently low for it to be thermally

feasible. This is in accord with the readiness with which Diels–Alder reactions

are known to take place: they are thermally allowed reactions. Another

Woodward–Hoffmann rule is exemplified by the two reactions we have

described: a 4þ 2 p-electron cycloaddition reaction is thermally allowed,
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Fig. 11.29 The correlation

diagram for the dimerization

of ethene to cyclobutane. The

(SA, SS) pair is degenerate when the
ethene molecules are far apart; the

same is true of the (AA, AS) pair. The

symmetry classification refers to

the elements ss 0 illustrated in the
preceding diagram.
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Fig. 11.30 The common symmetry

elements of (a) an ethene and

butadiene pair and (b) cyclohexene.
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interconversion.

whereas a 2þ 2 p-electron reaction is thermally forbidden in the same face-

to-face geometry.

11.15 Photochemically induced electrocyclic reactions

Reactions are thermally allowed when there is a transfer of electron pairs

from bonding orbitals in the ground state of the reactant molecules to

bonding orbitals in the products. A reaction that is thermally forbidden may

become photochemically allowed when electrons are excited into higher

energy orbitals. Excitation permits reaction not only because more energy is

available to overcome activation barriers but also because the consequences

of orbital symmetry are different. In other words, because the initially

occupied orbitals are different, the same selection rules permit the exploration

of different reaction channels.

We shall illustrate this feature by considering once again the ring closure of

butadiene. This time, though, we shall consider a photochemical mechanism

in which the absorption of a photon has led to the excitation of a single

electron (Fig. 11.32). The disrotatory adiabatic correlation of the excited

butadiene configuration leads to an excited cyclobutene configuration of

similar energy to the starting point whereas the conrotatory path involves a

significant increase in energy. Hence, in contrast to the thermal electrocyclic

reaction, the disrotatory path is open to the photochemically induced reaction

and the conrotatory path is closed. The reversal of the thermal prediction is

another general feature of electrocyclic reactions, and is another one of the

Woodward–Hoffmann rules. The photochemical ring-closure of butadiene

is known, and it does in fact proceed by the predicted disrotatory path.

Nevertheless, there are complications (as in most photochemical processes),

for the cyclobutene is produced in its electronic ground state, not the excited

state the correlation diagram suggests. We need to resolve this discrepancy.

A problem with the correlation diagrams presented so far is that they focus

attention on the individual orbitals. We should in fact be considering the overall

states of molecules, and apply our arguments to them. To illustrate what is

involved, we consider the first few excited states of butadiene and cyclobutene.

Their symmetry species are obtained in the normal way, by taking the direct

product of the symmetry species of the individual, occupied orbitals, all doubly

occupied orbitals being totally symmetric. Because the disrotatory path pre-

serves the single mirror plane, the relevant state classification is in terms of S

and A with respect to the plane. To work out the direct products, we use

S� S ¼ S S� A ¼ A A� A ¼ S ð11:19Þ
which follow from the characters þ1 and �1 for S and A, respectively.

The ground states are S (they are closed-shell species). The first excited

configuration of butadiene is 1p22p13p1, which has symmetry species

A� S¼A. Because the two outermost electrons occupy different orbitals this

configuration can give rise to both singlet and triplet terms, with the triplet

lower in energy than the singlet. The next higher energy configuration is

1p23p2, which is S overall and necessarily a singlet. The cyclobutene states

are set out in the diagram in Fig. 11.33. The correlation diagram in Fig. 11.26

can be used to simplify the construction of the state correlations; because

butadiene(1p,2p) correlates with cyclobutene(1s,2p), it follows that butadiene
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(1p22p2,1S) correlates with cyclobutene(1s22p2,1S). This connection lets

us draw the lines in Fig. 11.33. Now we see an important point: overall states

of the same symmetry have incorrectly crossed. Such crossing is forbidden by

the non-crossing rule, so the light lines in the illustration should be replaced

by the heavy lines.6

Now consider the disrotatory ring closure in terms of the overall states of

the molecule. If the butadiene molecule is in its ground state and we are

considering a thermal reaction, then although in principle the ground state of

cyclobutene can be reached without electronic excitation, the reaction

involves a considerable activation energy and is therefore forbidden. This

conclusion modifies the earlier discussion, where we decided that it is because

the disrotatory path leads to an excited state of the product that it is for-

bidden. We now see that the forbidden nature of the reaction stems from the

activation barrier, and that that barrier exists for two reasons: the rise in

energy is a consequence of orbital correlation (so that remains an important

part of the argument), and the existence of the peak is a consequence of the

non-crossing of states of the same overall symmetry.

If the butadiene molecule is initially in a triplet excited state, then

disrotatory motion moves it to the point P1 on the correlation diagram in

Fig. 11.33. There is sufficient spin–orbit coupling to induce intersystem

crossing, and so it switches to the lower 1S curve. It cannot go forward to

cyclobutene because that would require a further injection of energy to

overcome the barrier at P4. Therefore, the molecule loses its energy non-

radiatively and converts back to ground-state butadiene. This behaviour is

actually observed. Now suppose that absorption results in the population of

the first singlet excited state of butadiene. Then the simple conclusion would

be that it can pass over into the first excited singlet state of cyclobutene, as we

concluded from the individual orbital analysis. The crossing at P2, however,

plays a significant role because there may be a strong enough perturbation pre-

sent (such as rapid nuclear motion and the failure of the Born–Oppenheimer

approximation) to induce an internal conversion between curves at P2.

In other words, the 1A state can convert into the 1S state when its geometry

corresponds to the point P2. As the reaction proceeds, the state of the

molecule moves on to P3 where it is sufficiently close to the lower curve for

nuclear motion to induce a second internal conversion to the lower 1S curve.

This curve-jumping is an example of a non-adiabatic process (see footnote 1

of Section 8.1). The second internal conversion results in the molecule at

point P4. Now it needs no activation energy to go on to ground-state cyclo-

butene (or back to ground-state butadiene). Hence, ground-state cyclobutene

appears in the products of singlet excited butadiene, exactly as observed.

11.16 Photochemically induced cycloaddition reactions

The same kind of analysis accounts for the characteristics of photochemically

induced cycloaddition reactions. The strategy is to use the orbital correlation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. The interaction of two states of the same overall symmetry is another example of the

configuration interaction introduced in Section 8.5.
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diagrams to construct first approximations to the state correlation diagrams

for the lowest few configurations. Then we allow for interaction between states

of the same symmetry so that crossings are eliminated from the diagrams.

Finally, we recognize that all the intersections and the non-crossings are leaky

on account of the presence of ignored perturbations, such as spin–orbit

coupling (which mixes states of different multiplicity) and the breakdown

of the Born–Oppenheimer approximation (which gives rise to interaction

between states of the same multiplicity).

To see the strategy in action, consider the dimerization of ethene once

again. The orbital correlation diagram lets us construct the state correla-

tion diagram shown in Fig. 11.34. The ground states of the ethene pair and

the cyclobutane are each of SS symmetry with respect to the two preserved

mirror planes, and the forbidden character of the thermal reaction can be

ascribed to the existence of the high activation barrier. On the other

hand, the first excited configuration (1p22p13p1) correlates, with little

change of energy, with the first excited state (1s22s13s1) of cyclobutane.

A simple analysis would lead us to expect the dimerization to be photo-

chemically allowed (which it is) and the products to be excited (which they

are not).

To explain the last point we need to consider the conversions that can occur

at intersections of the lines in the state correlation diagram. The intersection

at P1 permits one internal conversion, and the close approach of the two

interacting curves near P2 allows a second conversion to the lower curve to

take place. With that accomplished, the molecule can slide down to either

reactant or product, each being produced in its ground state, as observed.

The face-to-face dimerization of ethene is thermally forbidden but

photochemically allowed. This reversal of cycloaddition behaviour is a

general feature of such reactions, and is yet another one of the Woodward–

Hoffmann rules. The Diels–Alder ethene–butadiene cycloaddition is

thermally allowed. We can see that it is photochemically forbidden by

reference to the state correlation diagram (Fig. 11.35), which has been

constructed by using the orbital correlation diagram in Fig. 11.31. The

most obvious feature is the absence of any energy barrier in the correlation

of the two ground-state configurations: the reaction is therefore predicted

to be thermally allowed. The first excited configuration (1p22p23p14p1)

correlates with a highly excited configuration (1s22s21p12p1) of the

addition product, and so on simple grounds we do not expect it to

occur. To some extent interaction between configurations alleviates the

energy requirements because there is a crossing with a configuration

(1s22s11p23s1) of the same symmetry, and so the adiabatic evolution of

the first excited state ends up in the first excited state of the cyclohexene.

Nevertheless, this still leaves a barrier, and so the photochemical process

remains forbidden, as observed.

The consequences of orbital correlation diagrams, and of their more

sophisticated interpretation in terms of state correlations, has led to a much

deeper understanding of some aspects of organic chemistry. Indeed, orbital

correlation is a prime example of how much theory can contribute to

experimental chemistry.

1 2 3 5  π π π π2 1 2 1 A

1 2 3 4  π π π π2 2 1 1 A

1 2 1 2  � � π π2 2 1 1 A

1 2 1 3  � � π �2 1 2 1 A

1 2 3  π π π2 2 2 S 1 2 1  � � π2 2 2 S

(Ethene,
butadiene) Cyclohexene

Fig. 11.35 The state correlation

diagram for the cycloaddition of

ethene to butadiene.

P1

P2

1 3π π2 2 SS

1 2 3π π π2 1 1  AA

1 2  π π2 2 SS

1 3  � �
2 2 SS

1 2 3  � � �
2 1 1 AA

1 2  � �
2 2 SS

Fig. 11.34 The state correlation

diagram for the dimerization of
ethene.
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P R O B L E M S

11.1 Consider the Rydberg state of Hþ2 that arises from
the overlap of two H2s-orbitals as resembling a single
2s-orbital of Heþ centred on the mid-point of the bond.
What is (a) the mean radius of the orbital and
(b) the radius of the 90 per cent boundary surface?
For comparison, the bond length of the ground state of
the molecule–ion is 106 pm.

11.2 For all four Hund’s cases, (i) discuss which of the
quantum numbers are ‘good’ quantum numbers and
(ii) determine the degeneracy of a rotational energy level.

11.3 Which of the following transitions are electric-dipole
allowed: ðaÞ 2P! 2P, ðbÞ 1S! 1S, ðcÞ S!D,
ðdÞ Sþ ! S�, ðeÞ Sþ ! Sþ, ðfÞ 1Sþg ! 1Sþu ,
ðgÞ 3S�g ! 3Sþu ?

11.4 The Franck–Condon principle and the
Born–Oppenheimer approximation have an important
qualitative feature in common. What feature do they
share that to a large extent justifies their usefulness?

11.5 Show that in the carbonyl group the p�  p transition
is allowed, its transition dipole moment lying along the
bond. Hint. Consider the carbonyl group to be of C2v

symmetry with the C¼O bond along the z-axis.

11.6 Show that the transition 1A2 1A1 is electric-dipole
forbidden in H2O but may become allowed as a vibronic
transition involving one of the molecule’s vibrational
modes.

11.7 Assess the polarization of the 1A2 1A1 transition
in H2CO and of the 1B2u 1Ag transition in CH2¼CH2.
Hint. Use C2v and D2h respectively; consider the role of
vibrational coupling.

11.8 In a diamagnetic octahedral complex of Co3þ,
two transitions can be assigned to 1T1g 1A1g and
1T2g 1A1g. Are these transitions forbidden? If they are
forbidden, what symmetries of vibrations would provide
intensity? Can the intensities be ascribed to the admixture of
configurations involving p-orbitals?

11.9 Consider the molecular potential energy curves of
two electronic states; let their force constants be the
same, but the minima offset by a distance DR. Find
an expression for the Franck–Condon factors Sv0

2

for v¼ 0, 1, 2 as a function of DR. What value of DR is
needed for the transition intensity to v¼ 1 to dominate
the other two?

11.10 Deduce the effect of the operator Hso in
eqn 11.17 on a two-electron singlet state. Hint. Proceed
as in the discussion following eqn 11.17 but include
sþ and s�.

11.11 At time t¼ 0 a molecule is known to be in a
singlet state. The energy separation of the singlet and
triplet states is hJ. Deduce an expression for the time
dependence of the probability that the system is in any of
the three states of the triplet at some later time as a result
of the spin–orbit interaction. Suppose that the sample
consists of a large number of molecules that are excited
photochemically to a singlet state over a range of time
0� t0�T with equal probability. What is the probability
that any molecule is in a triplet state at some time later than
T? Hint. The basic equation to use is eqn 6.56.
For the second part, average this equation over a uniform
distribution of starting times in the range 0� t0�T
(that is, multiply by dt/T and integrate between the
appropriate limits).

11.12 Which states of benzene may be mixed with
3B1u and 3B2u by spin–orbit coupling?

11.13 In an aromatic molecule of D2h symmetry the lowest
triplet term was identified as 3B1u. What is the polarization
of its phosphorescence? Hint. Decide which singlet terms
can mix with 3B1u and assess the polarization of the light
involved in the return of that state to
the 1Ag ground state.

11.14 The broadening of a spectral line due to
predissociation can be quantitatively characterized
by Fermi’s golden rule. According to first-order
perturbation theory, the spectral width (in hartrees)
is given by 2pjVfij2 where Vfi is the coupling matrix
element between the bound and dissociative states
involved in the predissociation. What magnitude
of Vfi gives rise to a predissociative lifetime of
(i) 1.0 ms, (ii) 5.0 ns?

11.15 The Bixon–Jortner approach to radiationless
transitions was sketched in a very simplified form in
Example 11.4. The following is a slightly more
elaborate version. Let c, an eigenstate of the system
hamiltonian H(sys) with eigenvalue E, be the state populated
initially, and let fn, an eigenstate of the bath hamiltonian
H(bath) with eigenvalue En, be a state of the bath. Let
C¼ acþSnbnfn be an eigenstate of the true hamiltonian H
with energy e. Let hcjfni¼ 0 and H 0 ¼H�H(sys)�H(bath)

have constant matrix elements hfnjH 0jci¼V for all n.
Show that HC ¼ eC leads to Vaþ ðEn � eÞbn ¼ 0 and
ðE� eÞaþ VSnbn ¼ 0. Hence find an expression for
a and bn. Letting e� En ¼ ge� ne and using
S1n¼�11=ðg� nÞ ¼ �p cot pg and r¼ 1/e, show
that E� e� prV2 cot pg ¼ 0, an equation for e.
Go on to show on the basis that a2þSnbn

2¼ 1, that
a2 ¼ V2=fðE� eÞ2 þ V2 þ ðpV2rÞ2g. Hint. See M. Bixon
and J. Jortner, J. Chem. Phys., 3284, 50 (1969).
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This chapter explores the properties of molecules exposed to an electric field.

The source of the field may be external or, when considering intermolecular

forces, another molecule. The field may be either constant in time or oscil-

latory. A knowledge of the influence of an electric field will enable us to

discuss a variety of related molecular properties, which includes the relative

permittivity (dielectric constant) of a bulk sample, refractive index, optical

activity, and intermolecular forces. Throughout the chapter we shall draw on

the material on perturbation theory developed in Chapter 6.

The response to electric fields

The electric polarizability, �, of a molecule is a measure of its ability

to respond to an electric field and acquire an electric dipole moment, �.

The perturbation caused by an electric field E is

Hð1Þ ¼ ���E � ¼
X

i

qir i ð12:1Þ

where qi is the charge of the particle i at the location ri. We shall suppose that

the field is uniform over the molecule, and so avoid having to deal with its

interaction with higher multipoles (the quadrupole moment, for instance,

interacts with the field gradient). To keep the notation simple, we suppose

that the electric field is applied in the z-direction, and write E ¼ ek, where k is

a unit vector in the z-direction. Then

Hð1Þ ¼ �mze ð12:2Þ

This chapter explores the consequences of this simple perturbation.

12.1 Molecular response parameters

In Chapter 6, we set up time-independent perturbation theory to provide

expressions for the energy in powers of the perturbation. Our first task in this

chapter is to adapt those expressions to give expressions for properties other

than the energy. There are two approaches. One is to set up an operator for

the property of interest and then to evaluate its expectation value by using the

perturbed wavefunctions. An alternative approach is to find a way of deriving

a molecular property from the perturbation expression for the energy.

The electric properties of
molecules

The response to electric fields

12.1 Molecular response

parameters

12.2 The static electric polarizability

12.3 Polarizability and molecular

properties

12.4 Polarizabilities and molecular

spectroscopy

12.5 Polarizabilities and dispersion

forces

12.6 Retardation effects

Bulk electrical properties

12.7 The relative permittivity and

the electric susceptibility

12.8 Polar molecules

12.9 Refractive index

Optical activity

12.10 Circular birefringence and

optical rotation

12.11 Magnetically induced

polarization

12.12 Rotational strength

12



The key to the extraction of the polarizability from the perturbation

expression for the energy is the Hellmann–Feynman theorem (eqn 6.42):

dE

dP
¼ qH

qP

� �
ð12:3Þ

In the present case, the parameter P is the electric field strength e, so we need

to use

dE

de
¼ qH

qe

� �
ð12:4Þ

The partial derivative of the hamiltonian is simply

qH

qe
¼ qHð0Þ

qe
þ qHð1Þ

qe
¼ qHð1Þ

qe
¼ q

qe
ð�mzeÞ ¼ �mz

because the electric field is not present in the zero-order hamiltonian, H(0).

It follows that the variation of the energy with the electric field strength is

given by

dE

de
¼ �hmzi ð12:5Þ

In the next step, we note that the energy, E, of the molecule in the presence

of the electric field can be developed in terms of a Taylor expansion relative to

its energy E(0) in the absence of the field:

E ¼ Eð0Þ þ dE

de

� �
0

eþ 1

2!

d2E

de2

 !
0

e
2 þ 1

3!

d3E

de3

 !
0

e
3 þ � � � ð12:6Þ

where the subscript 0 indicates that the derivative is evaluated at e ¼ 0.

It then follows from eqn 12.5 that

hmzi ¼ �
dE

de

� �
0

� d2E

de2

 !
0

e� 1

2

d3E

de3

 !
0

e
2 � � � � ð12:7Þ

The expectation value of the electric dipole moment in the presence of the

electric field is the sum of a permanent dipole moment and the contribution

induced by the field, so we can also write

hmzi ¼ m0z þ azzeþ 1
2bzzze

2 þ � � � ð12:8Þ

In this expression, azz is the polarizability in the z-direction and bzzz is the

first hyperpolarizability in the z-direction. There are higher-order hyper-

polarizabilities too, but we shall not consider them.

Before going further, it is appropriate to explain why there are two sub-

scripts on azz. The polarizability is properly regarded as a matrix (or, more

loosely, as a second-rank ‘tensor’). When a field is applied along the z-axis,

a dipole may be induced with components mx, my, and mz (Fig. 12.1), where

mq ¼ aqze q ¼ x, y, z ð12:9Þ

The three components axz, ayz, and azz of the matrix � therefore relate the

magnitude of each induced component to the strength of the field in the

z-direction. Normally, the diagonal element (azz) dominates the other two,

x
y

z

mz

x my

m

Fig. 12.1 An applied field induces a

dipole moment that might not be
parallel to the field. The off-diagonal

components of the polarizability

tensor determine the non-parallel
components of the induced dipole

moment.

The general expression for a

Taylor expansion is given in

Section 10.8.
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because the induced moment is usually almost parallel to the applied field.

There are in general three directions relative to the molecule that, when the

field is applied along them in turn, give rise to strictly parallel induced dipole

moments. These directions are called the principal axes of the polarizability.

For similar reasons � is written with three subscripts: bqzz is its contribution to

the q-component of the electric dipole when the electric field is applied along

the z-axis. A field with both x- and y-components would lead to components

of the dipole moment equal to bqxyexey, etc.

By comparing eqns 12.7 and 12.8 we can make the following identifications:

m0z ¼ �
dE

de

� �
0

azz ¼ �
d2E

de2

 !
0

bzzz ¼ �
d3E

de3

 !
0

ð12:10Þ

and so on. These expressions are the links we need between the properties

we want to calculate and the energy of the system, which we can calculate

by using perturbation theory. With these relations established, we can write

eqn 12.6 in terms of molecular properties:

E ¼ Eð0Þ � m0ze� 1
2 azze

2 � 1
6bzzze

3 þ � � � ð12:11Þ

12.2 The static electric polarizability

From now on we confine our attention to the calculation of the polarizability

of a molecule. To implement eqn 12.10 we need the perturbation expression

for the energy, which in Sections 6.3 and 6.5 was found to be as follows for

the state j0i:

E0 ¼ E
ð0Þ
0 þ h0jHð1Þj0i þ h0jHð2Þj0i þ

X
n

0 h0jHð1ÞjnihnjHð1Þj0i
E
ð0Þ
0 � E

ð0Þ
n

þ � � �

ð12:12Þ

There is no second-order hamiltonian in the present problem, so the third

term on the right makes no contribution. Substitution of Hð1Þ ¼ �mze gives

E0 ¼ E
ð0Þ
0 � h0jmzj0ieþ

X
n

0 h0jmzjnihnjmzj0i
E
ð0Þ
0 � E

ð0Þ
n

( )
e

2 þ � � � ð12:13Þ

At this point we can use the first relation in eqn 12.10 to write

m0z ¼ �
dE0

de

� �
0

¼ h0jmzj0i ð12:14Þ

because only the second term on the right survives after taking the first

derivative with respect to e and then setting e ¼ 0. This relation tells us

nothing new: it states that the permanent electric dipole moment of the

molecule is the expectation value of the dipole moment operator in the

unperturbed state of the system. Of more interest is the second derivative,

which gives the following result after setting e ¼ 0:

azz ¼ �2
X

n

0 h0jmzjnihnjmzj0i
E
ð0Þ
0 � E

ð0Þ
n

ð12:15Þ
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This equation is an explicit expression for the polarizability of the molecule

in terms of integrals over its wavefunctions. It is clear from eqn 12.15 that

because mz transforms as z, azz transforms as z2; in general, aqq 0 transforms

as qq 0. We made use of this transformation property in the discussion of

selection rules for Raman spectroscopy (Section 10.15).

To make progress, we writeDEn0 ¼ E
ð0Þ
n � E

ð0Þ
0 , which is a positive quantity

when the subscript 0 denotes the ground state of the molecule. We shall also

write the matrix elements hmjmzjni as mz,mn; then eqn 12.15 becomes

azz ¼ 2
X

n

0 mz;0nmz;n0

DEn0
ð12:16Þ

Similar expressions for the polarizability when the field is applied along

the x- and y-axes can be written down by analogy. The mean polarizability,

a, is the property observed when a molecule is rotating in a fluid and presents

all orientations to the applied field:

a ¼ 1
3ðaxx þ ayy þ azzÞ ¼ 2

3

X
n

0 jmn0j2

DEn0
ð12:17Þ

where

jmn0j2 ¼ �0n ��n0 ¼ mx;0nmx;n0 þ my;0nmy;n0 þ mz;0nmz;n0 ð12:18Þ
A final point concerns the units of polarizability. With the dipole moment

operators expressed in coulomb metre (C m) and the energy differences

in joule (J), the polarizability is expressed in (coulomb metre)2 per joule

(C2 m2 J�1). These units are disagreeably cumbersome, and it is common to

introduce the polarizability volume, a 0, which is defined as

a0 ¼ a
4pe0

ð12:19Þ

where e0 is the vacuum permittivity (e0¼8.854�10�12 J�1 C2 m�1). The

polarizability volume has the dimensions of volume and its units are metre

cubed (m3); as we shall see, its magnitude is approximately equal to

the volume of the molecule. The use of the polarizability volume also sim-

plifies some expressions and we shall use it when it is convenient to do so.

Example 12.1 The polarizability of a harmonic oscillator

Calculate the polarizability axx of a one-dimensional system of two charges, e

and �e, bound together to form a harmonic oscillator by a spring of force

constant k, with the electric field applied parallel to the x-axis (the inter-charge

direction).

Method. Use eqn 12.16 with z replaced by x. Let the equilibrium distance

between the charges be R and the extension x. The dipole moment operator for

the system is m¼ e(Rþ x). When evaluating the sum in eqn 12.16 we use the

fact that the only non-zero matrix elements of x are between jvi and jv� 1i (see

Example 10.3), so there are only two terms in the sum. Consequently, the sum

may be written down and evaluated term by term. For the energies, use E
ð0Þ
v ¼

ðvþ 1
2Þ�ho0 with o0¼ (k/m)1/2, where m is the effective mass of the oscillator.
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Answer. The matrix elements we require were evaluated in Example 10.3

and are

hvþ 1jmxjvi ¼ ehvþ 1jxjvi ¼ eðvþ 1Þ1=2 �h

2mo0

� �1=2

hv� 1jmxjvi ¼ ehv� 1jxjvi ¼ ev1=2 �h

2mo0

� �1=2

In each case, the matrix elements of eR are zero. The polarizability parallel to

x is therefore

axx ¼ 2
X

v0

0 jhvjmxjv0ij2

ðv0 � vÞ�ho0
¼ 2

�ho0
jhvjmxjvþ 1ij2 � jhvjmxjv� 1ij2
n o

¼ e2

mo2
0

fðvþ 1Þ � vg ¼ e2

k

Comment. The polarizability is independent of the state of the oscillator and

of its mass. The mass independence arises from the fact that the static (zero-

frequency) polarizability is a response to a stationary electric field and does not

depend on the inertial properties of the oscillator (the rate at which it responds

to a changing force). For comparison, see later (Example 12.3), where the

dynamic problem is treated. This calculation models the distortion contribu-

tion to the polarizability of a molecule, the contribution to the polarizability of

a distortion of the molecular geometry.

12.3 Polarizability and molecular properties

To use the expressions we have derived, it is in principle necessary to know

the wavefunctions and energies of all the excited states of the molecule, for

only then can the sum in eqn 12.17 be evaluated. Usually this formidable task

is impossible, and it is necessary to resort to an approximate procedure. Such

additional approximations should not be scorned: they can provide valuable

pointers to the variation of molecular properties with a variety of parameters,

such as molecular size, and can provide links between observables. The

numerical values they suggest, however, must be viewed with great caution.

One way forward is to invoke the closure approximation (Section 6.7).

If the excitation energies are replaced by a mean value DE, we obtain

a � 2

3DE

X
n

0
�0n ��n0 ¼

2

3DE

X
n

�0n ��n0 � �00 ��00

( )

� 2ðhm2i � hmi2Þ
3DE

On writing Dm¼ {hm2i� hmi2}1/2, we obtain

a � 2Dm2

3DE
ð12:20Þ
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We shall refer to Dm as the fluctuation in the electric dipole moment: it is the

root mean square deviation of the dipole moment from its mean value. Even a

non-polar molecule with a zero permanent electric dipole moment (hmi¼ 0)

has a non-zero dipole fluctuation. To some extent, we can guardedly think of

the fluctuation as arising from an actual classical fluctuation of the electron

density in the molecule about its average value. As we see from eqn 12.20, the

polarizability of a molecule is proportional to the square of the magnitude of

these fluctuations. This result is consistent with the view that the molecule can

be easily distorted by an applied electric field if its electrons are not under the

tight control of the nuclei. Indeed, there is a much deeper result lurking

beneath this physically plausible remark, for the fluctuation–dissipation

theorem establishes a proportionality between the response of a system and

the square of the magnitude of the fluctuations that occur in the unperturbed

system (see Further reading for more information).

If we continue with this line of argument, we can expect the polarizability

to increase with the radius of the molecule and the number of electrons it

contains, because in each case we can expect the nuclei to have less control

over their electrons. To illustrate this conclusion, consider a one-electron

atom. Because the electric dipole moment operator is then �¼�er, and the

unperturbed species is non-polar, we can conclude from eqn 12.20 that

a � 2e2hr2i
3DE

ð12:21Þ

where hr2i is the mean square radius of the electron’s orbital. This expression

confirms that the polarizability increases as the radius increases. This con-

clusion is consistent with a progressive loss of control by the nucleus over its

electron as the orbital expands. Because hr2i � R2
a, where Ra is the radius of

the atom, it follows that

a � 2e2R2
a

3DE
� e2R2

a

I
ð12:22Þ

In the second step we have made yet another approximation: that the mean

excitation energy is approximately the same as the ionization energy, I. This

approximation is so questionable that we have also discarded the factor of 2
3.

It follows that as the size of the atom increases the polarizability increases too.

As ionization energies generally follow the opposite trend, the presence of I in

the denominator reinforces this trend.

The development can be taken one stage further by approximating I by the

(negative of the) potential energy of an electron at a distant Ra from the

nucleus, I� e2/4pe0Ra, then

a � e2R2
a

e2=4pe0Ra
� 4pe0R3

a ð12:23Þ

Therefore, the polarizability volume is a0 � R3
a, which is approximately the

volume of the atom.
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12.4 Polarizabilities and molecular spectroscopy

We can in fact develop another line of argument in a similar way.

First, we note that the polarizability depends on the square of transition

dipole moments. But we have already met such squares in the context of

the intensities of spectroscopic transitions. Specifically (see Further infor-
mation 17), a useful measure of absorption intensity is the oscillator strength,

which for the transition n 0 is

fn0 ¼
4pme

3e2�h

� �
nn0jmn0j2 ð12:24Þ

It follows that

a ¼ �h2e2

me

X
n

0 fn0

DE2
n0

ð12:25Þ

This simple expression provides a link between spectroscopy and the pre-

diction of polarizabilities, because the oscillator strengths of the transitions of

a molecule can be determined from band intensities (Further information 17)

and their energies can be determined from their locations on a frequency

scale. The expression indicates that large contributions to the polarizability

come from low-energy, high-intensity transitions; high-energy or weak

(including forbidden) transitions make little contribution (Fig. 12.2).

An implication of this conclusion is that if a molecule has intense, low-

frequency transitions in its absorption spectrum, then it can be expected to be

highly polarizable. Hence, intensely coloured molecules should be highly

polarizable. In contrast, molecules that absorb only weakly or at high fre-

quencies (such as the colourless hydrocarbons, which absorb only in the

ultraviolet and then only weakly) are expected to be only weakly polarizable.

The exact expression in eqn 12.25 can be developed by making the

approximation that all excitation energies are equal and replacing DE2
n0

by DE2. Then

a ¼ �h2e2

meDE2

X
n

0
fn0

The sum over oscillator strengths is a standard result known as the

Kuhn–Thomas sum rule:X
n

0
fn0 ¼ Ne ð12:26Þ

where Ne is the number of electrons in the molecule. It is proved in Further

information 18; in practice, interpreting Ne as the number of valence elec-

trons, Nv, tends to give better results for the sum of measured oscillator

strengths. Therefore,

a � �h2e2Nv

meDE2
ð12:27Þ

This expression shows that the polarizability increases as the number

of (valence) electrons increases and as the mean excitation energy decreases.
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Fig. 12.2 (a) A strong absorption

at low energy gives a large

contribution to the polarizability of

a molecule. (b) A weak absorption
at low energy and (c) a strong

absorption at high energy each give

small contributions to the

polarizability.
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The two effects generally reinforce one another, so we can expect molecules

composed of heavy atoms to be strongly polarizable.

12.5 Polarizabilities and dispersion forces

There are many contributions to the forces between molecules. In this section

we consider the dispersion force, which in the absence of hydrogen bonding is

the dominant attractive interaction between uncharged species. The strength

of the dispersion force is closely related to the polarizability of molecules,

so we shall be able to draw on the material of the previous section to assess

its relation to various molecular parameters. The dispersion force, which

is also called the London force, arises from the coupling of instantaneous

fluctuations in the charge distribution on two neighbouring molecules. Thus,

there may be a fluctuation in the electron distribution on one molecule which

gives rise to an instantaneous dipole. That dipole may induce a dipole in

the neighbouring molecule, and provided the orientations of the two are

appropriate, there will be an attractive interaction between them. Because we

have already seen that the polarizability is related to the charge fluctuation in

a molecule, we can expect the dispersion interaction to be related to the

polarizabilities of the two molecules. That is the relation we establish here.

We shall use perturbation theory to calculate the lowering in energy when

two closed-shell atoms are brought to a separation R. The perturbation

hamiltonian is the interaction of two electric dipole operators based on the

two atoms. It follows from classical electrostatics that such an interaction for

the orientation shown in Fig. 12.3 is

Hð1Þ ¼ 1

4pe0R3
�A ��B �

3ð�A �RÞðR��BÞ
R2

� 
ð12:28Þ

It is simplest to select as the z-axis the axis that joins the centres of the two

atoms, then with the axes arranged as in Fig. 12.3 the perturbation is

Hð1Þ ¼ 1

4pe0R3
mAxmBx þ mAymBy � 2mAzmBz

n o
ð12:29Þ

The total hamiltonian of the system is

H ¼ Hð0Þ þHð1Þ Hð0Þ ¼ HA þHB

The unperturbed states of the pair of atoms are jnAnBi, with

Hð0ÞjnAnBi ¼ Eð0ÞnA
þ Eð0ÞnB

� �
jnAnBi

We write E
ð0Þ
nAnB ¼ E

ð0Þ
nA
þ E

ð0Þ
nB and consider interactions between the atoms in

their ground states, j0A0Bi.
It is quite easy to show that the first-order correction to the energy is zero:

Eð1Þ ¼ h0A0BjHð1Þj0A0Bi / h0A0BjmAxmBx þ � � � j0A0Bi
¼ h0AjmAxj0Aih0BjmBxj0Bi þ � � � ¼ 0

because every matrix element is the ground-state expectation value of the

electric dipole moment operator, which is zero for a non-polar species.

�A

�B

R

x

y

z

Fig. 12.3 The coordinate system used

for setting up the dipole–dipole

interaction hamiltonian for the

discussion of dispersion forces.
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Because the first-order terms are zero, we have to consider the second-order

contribution. Physically, this means that we must allow for the distortion of

the wavefunction of each atom as a result of the presence of the second atom.

That corresponds, in the classical picture, to the correlation of the fluctuat-

ing instantaneous dipole moments when one dipole drives the other into

existence. The second-order contribution to the energy is

Eð2Þ ¼
X
nA;nB

0 h0A0BjHð1ÞjnAnBihnAnBjHð1Þj0A0Bi
E
ð0Þ
0A0B
� E

ð0Þ
nAnB

ð12:30Þ

As before, we express the denominator in terms of excitation energies, and this

time write

Eð0ÞnAnB
� E

ð0Þ
0A0B
¼ Eð0ÞnA

þ Eð0ÞnB
� E

ð0Þ
0A
þ E

ð0Þ
0B

n o

¼ Eð0ÞnA
� E

ð0Þ
0A

n o
þ Eð0ÞnB

� E
ð0Þ
0B

n o

¼ DEnA0A
þ DEnB0B

The perturbation hamiltonian, H(1), is a sum of three terms, so the second-

order energy expression, which is proportional to H(1)2, has nine terms.

Happily, though, most of them vanish. Consider, for instance, one of the

cross-terms h0A0BjmAxmBxjnAnBihnAnBjmAymByj0A0Bi. This term includes the

factor h0AjmAxjnAihnAjmAyj0Ai. To see that this term is zero, we make use of

the fact that we are free to choose an alternative coordinate system on A with

the y-axis pointing in the opposite direction but with the x-axis unchanged

(Fig. 12.4). This product of matrix elements then changes sign. However,

a contribution to the energy cannot depend on the choice of axes, so the

contribution must be zero. The same argument applies to all the cross-

terms in eqn 12.30, so only the three terms of the form h0A0BjmAqmBqjnAnBi�
hnAnBjmAqmBqj0A0Bi survive. For atoms, these three terms are all the same

(by spherical symmetry of each atom). Moreover, by spherical symmetry,

h0AjmAxjnAihnAjmAxj0Ai ¼ h0AjmAyjnAihnAjmAyj0Ai

¼ h0AjmAzjnAihnAjmAzj0Ai

from which it follows that any one is one-third the sum of the three, and hence

h0AjmAxjnAihnAjmAxj0Ai ¼ 1
3h0Aj�AjnAi�hnAj�Aj0Ai

and likewise for the other two components for A and for all three components

for B. Therefore, the entire expression reduces to

Eð2Þ ¼ �2
3

1

4pe0R3

� �2X
nA;nB

0 �A;0AnA
��A;nA0A

� �
�B;0BnB

��B;nB0B

� �
DEnA0A

þ DEnB0B

ð12:31Þ

This expression confirms that there is a non-zero interaction energy that is

attractive (E(2)<0) and inversely proportional to the sixth-power of the

separation (E(2)/ 1/R6).

�A

�B

R

x

y

z

Fig. 12.4 Reversal of the direction of
the y-axis must leave the calculated

interaction energy unchanged.
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Example 12.2 Dispersion interactions between oscillators

Calculate the energy of the dispersion interaction between two electrons

oscillating harmonically and isotropically in three dimensions about centres

separated by a distance R, and express the answer in terms of their polariz-

abilities.

Method. We base the answer on eqn 12.31. For the matrix elements, we use

the values in Example 12.1, but we need to distinguish the frequencies and

force constants by subscripts A and B for the two ‘atoms’. The selection rules

result in the restriction of the sum in eqn 12.31 to only four terms, so it may be

evaluated explicitly. For the relation to the polarizabilities, use the results

obtained in Example 12.1.

Answer. The sum we require has the following four non-zero terms:

Eð2Þ ¼ �2
3

1

4pe0R3

� �2 jhvAjmAjvA þ 1ij2jhvBjmBjvB þ 1ij2

�hðoA þ oBÞ

(

þ jhvAjmAjvA þ 1ij2jhvBjmBjvB � 1ij2

�hðoA � oBÞ

þ jhvAjmAjvA � 1ij2jhvBjmBjvB þ 1ij2

�hð�oA þ oBÞ

þ jhvAjmAjvA � 1ij2jhvBjmBjvB � 1ij2

�hð�oA � oBÞ

)

Then, with the matrix elements from Example 12.1,

Eð2Þ ¼ �2
3

1

4pe0R3

� �2 3�he2

2mAoA

� �
3�he2

2mBoB

� �

� vA þ 1ð Þ vB þ 1ð Þ
�h oA þ oBð Þ

�
þ vA þ 1ð ÞvB

�h oA � oBð Þ �
vA vB þ 1ð Þ
�h oA � oBð Þ �

vAvB

�h oA þ oBð Þ



We have used the relation

vh jm vþ 1j ij j2¼ vh jmx vþ 1j ij j2þ vh jmy vþ 1j i
�� ��2þ vh jmz vþ 1j i

�� ��2

¼ 3
�he2

2mo0

� �
vþ 1ð Þ

and its analogues. It then follows that

Eð2Þ ¼ �3
2

1

4pe0R3

� �2 �he4

mAmBoAoB

� �
1þ 2vBð ÞoA � 1þ 2vAð ÞoB

o2
A � o2

B

� 

At this stage we can replace m by k/o2 for each oscillator, and use the results

from Example 12.1 and eqn 12.19 that a 0 ¼ e2/4pe0k, to obtain

Eð2Þ ¼ �3
2

a0Aa0B
R6

� �
�hoAoB

1þ 2vBð ÞoA � 1þ 2vAð ÞoB

o2
A � o2

B

� 
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When the two oscillators are in their ground states (vA ¼ vB ¼ 0), this

expression simplifies to

Eð2Þ ¼ �3
2

a0Aa
0
B

R6

� �
�hoAoB

oA þ oB

� �

Comment. Keep this exact result in mind and compare it with the approximate

London formula that we derive below: the two expressions have identical

structures. In this case only a very limited number of transitions are allowed,

and the closure approximation on which the London formula is based is exact.

We can obtain an approximate, revealing, and useful form of eqn 12.31 by

making use of the closure approximation.1 To do so, we replace DEnA0A
by its

mean value DEA, and likewise for B, and obtain

Eð2Þ ��2
3

1

4pe0R3

� �2 1

DEAþDEB

� �X
nA;nB

0
�A;0AnA

��A;nA0A

� �
�B;0BnB

��B;nB0B

� �

�� 1

24p2e2
0R6

� �
1

DEAþDEB

� �
m2

A

� �
m2

B

� �
ð12:32Þ

where hm2
Ai¼ h0Ajm2

Aj0Ai, and similarly for B. The terms hmAi2 and hmBi2 are

both zero for non-polar species. This expression can be taken further by using

the relation between the mean square dipole moment and the polarizability

(eqn 12.20), which for non-polar species simplifies to hm2
Ai� 3

2aADEA, and

likewise for B. On substitution of this term, we obtain

Eð2Þ �� 3

32p2e2
0

� �
DEADEB

DEA þ DEB

� �
aAaB

R6

��3
2

DEADEB

DEA þ DEB

� �
a0Aa

0
B

R6

ð12:33Þ

A general indication of the magnitudes of the mean excitation energy is the

ionization energy of each atom, and if we write DEA� IA, and likewise for B,

we arrive at the London formula:

Eð2Þ � �3
2

IAIB

IA þ IB

� �
a0Aa

0
B

R6
ð12:34Þ

The London formula, although only approximate, reveals the essential

character of the dispersion energy and may be used to make rough estimates

of its magnitude. We see, for instance, that the interaction is greatest between

atoms of high polarizability. We have already seen how the polarizability is

related to the structures of atoms, and the remarks made in Sections 12.3 and

12.4 may be extended to the interactions between atoms and molecules. Thus,

we expect intensely coloured, large, many-electron species to have strong

dispersion interactions. One consequence of this dependence of dispersion

interactions on polarizability is the high volatility of low molar mass

hydrocarbons, which have low polarizabilities.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Other interesting forms can be obtained by using the oscillator strengths.
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12.6 Retardation effects

At this point it is appropriate to admit that the starting point of Section 12.5,

the hamiltonian in eqn 12.28, is only an approximation. The true description

of the interaction between two atoms should be expressed in terms of their

joint interaction with the electromagnetic field. Thus, when a fluctuation

in electron density occurs on A, it generates a photon that travels through

the vacuum at the speed of light. It stimulates a fluctuation on B, and that

fluctuation in turn generates a photon that travels back to A. The interaction

therefore takes place by an exchange of photons between the two atoms.

Figure 12.5 shows an example of a Feynman diagram that contributes to the

dispersion interaction.

It takes a time R/c for the photon from A to arrive at B, and the response

takes the same time to return to A. The fluctuations on the atoms occur at a

frequency of approximately DE/h and therefore on a time-scale of about

h/DE, where DE is a typical excitation energy. If the time it takes for the round

trip, 2R/c, is longer than the fluctuation time, the dipole on A will have

migrated to a new position. As a result of this retardation, or finite travel time

for signals, the dispersion interaction is weakened. Only when the atoms are

so close that 2R/c� h/DE will the correlation of the dipoles be perfect and the

interaction have the full strength represented by eqn 12.34. When 2R/c�
h/DE (typically, when R exceeds about 10 nm), the weakening effect of

retardation is so great that the 1/R6 form of the interaction changes to a more

rapidly decaying 1/R7 form. Specifically, at such distances

Eð2Þ � � 23�hc

4p

� �
a0Aa

0
B

R7
ð12:35Þ

(For a derivation of this expression, see Further reading.) The formula is much

more complicated when 2R/c�h/DE because the conventional 1/R6 expres-

sion is then in the middle of turning into a 1/R7 expression. Retardation effects

are important for colloids and macromolecules.

Bulk electrical properties

Now that we have an expression for the polarizability of an individual

molecule, we can move on to a discussion of some of the properties of

dielectric media, non-conducting bulk substances. These properties include

relative permittivity and refractive index. A property related to the refractive

index is optical activity; so we shall also investigate its origin.

12.7 The relative permittivity and the electric susceptibility

In a vacuum, the Coulomb potential due to a charge q at a distance r is

fðrÞ ¼ q

4pe0r
ð12:36Þ

0 nB 0

nA

B

A

Time

Fig. 12.5 One of the Feynman

diagrams that contribute to

the dispersion interaction.

The interaction is mediated by
photons that are generated

by transition dipoles on each

molecule.
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where e0 is vacuum permittivity. In a dielectric medium, the same charge gives

rise to a potential

fðrÞ ¼ q

4per
ð12:37Þ

where e is the permittivity of the medium. The dimensionless ratio

er ¼
e
e0

ð12:38Þ

is called the relative permittivity of the medium; its older name is ‘dielectric

constant’. In practice, the relative permittivity is measured as the ratio of the

capacitances of a capacitor with and without the dielectric between the plates.

Now consider the electric field between two plates each of area A, each one

with a charge density of magnitude s, so the total charge on one plate is sA

and on the other is �sA. A result from electrostatics is that the electric field

strength between the plates is s/e0 if the intervening medium is a vacuum but

e ¼ s
e

ð12:39Þ

if it is a dielectric medium. There is another way of representing this reduction

of the electric field: we could think of it instead as arising from the presence of

an opposing surface charge on the medium itself (Fig. 12.6). This induced

surface charge density is called the polarization, P, of the medium. From this

point of view, the electric field between the plates would be written

e ¼ s� P

e0
ð12:40Þ

Because eqns 12.39 and 12.40 are two different ways of expressing the same

electric field, we can equate them to find an expression for P:

P ¼ e� e0

e

� �
s ¼ e� e0

e

� �
ee ¼ er � 1ð Þe0e ð12:41Þ

The electric susceptibility, we, of a medium is defined through

P ¼ wee0e ð12:42Þ
so it follows (by comparing the last two equations) that the electric

susceptibility is related to the relative permittivity by

we ¼ er � 1 ð12:43Þ
The next stage in the argument involves relating the polarization of the

medium to the polarizability of its molecules. To do so, we need to know that

as well as being the induced surface charge density, P is also the dipole-

moment density of the medium, the dipole moment divided by the volume of

the sample. This interpretation is established by referring again to Fig. 12.6,

which shows that the sample can be regarded as having charges PA and �PA

separated by a distance l, and hence a dipole moment PAl. However, as the

volume of the sample is Al, the dipole moment divided by the volume is

PAl/Al¼P, as we set out to show.

Now that we know that the polarization is the dipole-moment density,

we can relate it to molecular properties, because the dipole-moment density

is the mean dipole moment of a molecule in the medium, hmi, multiplied by

++++++

+++++

++++

+++

+
+

+

l

Charge
density, �

Area, A

Charge
density, P

Charge
density, –�

Charge
density, –P

Fig. 12.6 The relation between the

polarization of a medium and the

mean dipole-moment density.
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the number density of molecules, n ¼ N=V. If we suppose that the molecules

are non-polar, then hmi is the induced dipole moment. At this point, though,

we cannot simply write hmi ¼ ae because the molecule experiences the local

electric field, e�, not the applied field. The local electric field is the total field

arising from the applied field and the electric dipoles that that field stimulates

in the medium (Fig. 12.7). It follows that

P ¼ ane
� ð12:44Þ

The Lorentz local field is an approximate relation between e
� and

the applied field e, which is based on the assumption that the medium is

a continuous dielectric:2

e
� ¼ eþ P

3e0
ð12:45Þ

This expression can be used in eqn 12.44 to give

P ¼ 3an
3e0 � an

� �
e0e ð12:46Þ

Comparison of this equation with eqn 12.42 lets us identify the electric

susceptibility as

we ¼
an=e0

1� an=3e0
ð12:47Þ

It immediately follows from eqn 12.43 that the relative permittivity is related

to the polarizability of the molecules by

er ¼
1þ 2an=3e0

1� an=3e0
ð12:48Þ

Before discussing this result, we shall develop equations that are applicable

when the molecules have permanent dipole moments too.

12.8 Polar molecules

Although molecules may be tumbling in their fluid environment, the orient-

ating effect of the external field will favour particular orientations and as a

result the net dipole moment density will differ from zero. The magnitude of

the effect can be calculated from the Boltzmann distribution, because the

most favoured orientations are the ones with lowest energy. The energy of

a dipole in a local electric field e
� directed along the z-axis is

EðyÞ ¼ �m0ze
� ¼ �m0e

� cos y ð12:49Þ
where y is the angle the dipole moment of magnitude m0 makes to the

direction of the local field. At a temperature T, the proportion of N molecules

in the orientation range y to yþ dy is

dNðyÞ
N

¼ e�EðyÞ=kT sin y dyR p
0 e�EðyÞ=kT sin ydy

¼ em0e
�cos y=kT sin ydyR p

0 em0e
�cos y=kT sin y dy

+
++

+

+
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+
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Fig. 12.7 The polarization of the

surroundings by the polarized

molecule contributes to the total

electric field experienced by the
molecule.

The volume element in spherical

polar coordinates

is r2 sin ydydfdr, so the

proportion of molecules

with an orientation between

y and yþ dy is proportional

to sin y dy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. For the derivation of this field, consult texts on electrostatics (see Further reading).
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The denominator can be evaluated quite readily if we write x ¼ m0e
�=kT and

note that sin y dy¼�d cos y:Z p

0

em0e
� cos y=kT sin y dy ¼

Z 1

�1

ex cos yd cos y ¼ ex � e�x

x

Then the Boltzmann distribution is

dNðyÞ
N

¼ xex cos y sin ydy
ex � e�x

ð12:50Þ

The dipole-moment density is the average of m0 cos y weighted by the

Boltzmann factor and divided by the volume, V, of the sample:

P ¼
Nxm0

R p
0 cos y ex cos y sin y dy
V ex � e�xð Þ ¼ m0nlðxÞ ð12:51Þ

where the function lðxÞ is the Langevin function:

lðxÞ ¼ ex þ e�x

ex � e�x
� 1

x
ð12:52Þ

This function is plotted in Fig. 12.8.

When m0e
� � kT, which corresponds to x� 1, and is the case at all

normal temperatures and field strengths,

lðxÞ � 1
3x ¼

m0e
�

3kT
ð12:53Þ

It follows that the permanent dipole moments of the molecules contribute

P � m2
0ne

�

3kT
ð12:54Þ

The total polarization of a medium composed of polarizable polar molecules

is therefore

P ¼ aþ m2
0

3kT

� �
ne

� ð12:55Þ

1.0
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0
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x
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(

)x

Fig. 12.8 The Langevin function and

the linear approximation when
x�1.

To obtain this limit, we have used the expansions ez¼ 1þ zþ z2/2!þ z3/3!þ � � � and

(1þ z2)�1¼ 1� z2þ � � � (to these orders) as follows:

lðxÞ ¼
1þ xþ 1

2x
2 þ 1

6x
3 þ � � �

� �
þ 1� xþ 1

2x
2 � 1

6x
3 þ � � �

� �
1þ xþ 1

2x
2 þ 1

6x
3 þ � � �

� �
� 1� xþ 1

2x
2 � 1

6x
3 þ � � �

� �� 1

x

¼ 2þ x2 þ � � �
2xþ 1

3x
3 þ � � �

� 1

x
¼

1þ 1
2x

2 þ � � �
x 1þ 1

6x
2 þ � � �

� �� 1

x

¼
1þ 1

2x
2 þ � � �

� �
1� 1

6x
2 þ � � �

� �
x

� 1

x

¼
1þ 1

2x
2 � 1

6x
2 þ � � �

x
� 1

x
¼ 1

x
þ x

3
þ � � � � 1

x

¼ x

3
þ � � �

When establishing limits, always ensure that all terms of a given magnitude are included.
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The development that led to eqns 12.47 and 12.48 can now be repeated, but

the simplest (and equivalent) procedure is simply to add in the additional terms

representing the contribution of the polar molecules. In this way we obtain

we ¼
aþ m2

0=3kT
� �

n=e0

1� aþ m2
0=3kT

� �
n=3e0

ð12:56Þ

er ¼
1þ 2 aþ m2

0=3kT
� �

n=3e0

1� aþ m2
0=3kT

� �
n=3e0

ð12:57Þ

We obtain a practical form of these expressions by replacing the number

density, n ¼ N=V, by the mass density, r¼m/V:

n ¼ N

V
¼ NAðm=MÞ

V
¼ NAr

M

In this expression m is the mass of the sample, M is the molar mass of the

molecules, and NA is Avogadro’s constant. Then, converting at the same time

to polarizability volume (eqn 12.19), we find

er ¼
1þ 2b
1� b

b ¼ 4prNA

3M
a0 þ m2

0

12pe0kT

� �
ð12:58Þ

We are now in a position to discuss the dependence of the permittivity of a

medium on the characteristics of the molecules of which it is composed in the

same way as before, because we know how they determine the polarizability.

Thus, we expect a medium to have a high relative permittivity if a is large and,

if the molecules are polar, if their permanent dipole moment is large. Hence,

media composed of molecules in which the electrons are relatively mobile

(atoms with large numbers of electrons with low-lying energy levels) can be

expected to have high relative permittivities.

12.9 Refractive index

The refractive index, nr, is the ratio of the speed of light in a vacuum, c, to its

speed in a medium, cmed:

nr ¼
c

cmed

ð12:59Þ

It follows from Maxwell’s equations (which describe the propagation of

electromagnetic radiation, Further information 20), that

nr ¼ er
1=2 ð12:60Þ

Because we have an expression for the relative permittivity in terms of the

molecular polarizability (eqn 12.48), we should now be in a position to

calculate nr and relate it to molecular properties. There is one simplification

we can make, and one unavoidable complication.

The simplification is that the permanent electric dipole moment of

a molecule is too sluggish to respond to the high-frequency alternation

in the direction of the electric field in a light ray. A molecule needs about 1 ps

(10�12 s) to tumble into a significantly new orientation, but the electric vector

changes direction every 1 fs (10�15 s) for visible light. It follows that we can
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ignore the contribution of the permanent electric dipole to the permittivity,

and use eqn 12.48 for both polar and nonpolar molecules. We shall suppose

that the refractive index does not differ much from 1, in which case

nr ¼
1þ 2an=3e0

1� an=3e0

� 1=2

� 1þ an
2e0

ð12:61Þ

On making the same substitutions that led to eqn 12.58 we obtain

nr � 1þ 2prNA

M

� �
a0 ð12:62Þ

This expression shows that the refractive index increases linearly with the

polarizability volume and linearly with the density of the medium.3

The complication is rather deeper and will take more work to resolve. The

refractive index is a property relating to the response of the sample to an

oscillating electric field. Therefore, we cannot use eqn 12.17 directly, because

it was derived by using time-independent perturbation theory. We need to

calculate the dynamic polarizability, a(o), the polarizability of a molecule

exposed to an electric field oscillating at a frequency o, and to do so we have

to use time-dependent perturbation theory.

At this point we use the alternative approach to the calculation of mole-

cular properties mentioned in the introduction to this chapter and calculate

the expectation value of the electric dipole moment operator using the first-

order perturbed wavefunctions. The calculation runs as follows.

The perturbation due to a field that lies in the z-direction and is oscillating

at a frequency o is

Hð1ÞðtÞ ¼ �2mze cosot ð12:63Þ

The factor of 2 is included by convention with an eye on future convenience.

The expectation value of the z-component of the electric dipole moment is

hmzi ¼
Z

C�ðtÞmzCðtÞdt ð12:64Þ

where the time-dependent wavefunction is given by eqn 6.59 as

CðtÞ ¼ cð0Þ0 e�iE
ð0Þ
0

t=�h þ
X

n

0
anðtÞcð0Þn e�iE

ð0Þ
n t=�h ð12:65Þ

As usual, the prime signifies the omission of the term with n¼ 0 and to first

order, a0(t)¼ 1. It is notationally convenient to replace the wavefunctions cð0Þn

by the states jni, and we do so in the following. Because we are looking for the

field-induced contribution to the electric dipole moment, we need to evaluate

hmzi to first-order in e, which means that we must evaluate

hmzi ¼ h0jmzj0i þ
X

n

0 h0jmzjnianðtÞe�ion0t þ hnjmzj0ia�nðtÞeion0t
� �

¼ m0;z þ
X

n

0
mz;0nanðtÞe�ion0t þ mz;n0a�nðtÞeion0t
� �

We have used the expansions

(1� x)�1� 1þ xþ � � � and

(1þ x)1/2� 1þ 1
2xþ � � � truncated

at the linear term (which is valid

if x�1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. More precisely, the refractive index increases not with the mass density but with the number

density, because r/M/n.
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where �hon0 ¼ E
ð0Þ
n � E

ð0Þ
0 . Because we are working only to first order in the

perturbation, quadratic terms such as ana�m have been ignored.

One problem with this approach, as in all time-dependent perturbation

calculations, is that when the perturbation is applied, it may result in the

generation of transient oscillations of the electron density, which confuses the

analysis. Therefore, we ensure that all transients have died away by switching

on the oscillating field long ago and allowing it to rise to full strength very

slowly. We adopted the same procedure in Section 6.14, where we switched

on a static perturbation; here we modify eqn 12.63 to

Hð1ÞðtÞ ¼ �2mzeð1� e�t=tÞ cosot

¼ �mzeð1� e�t=tÞðeiot þ e�iotÞ ð12:66Þ

where t is the time-constant for switching on the perturbation. The early

moments of this perturbation are illustrated in Fig. 12.9. Because we are

interested in times that are very long compared with the switching time t,
we can set t� t when we evaluate eqn 6.62 for the coefficients an(t).

We can also suppose that the perturbation is switched on very slowly in

the sense that jt(o�on0)j� 1. Then we obtain

anðtÞ ¼
1

i�h

Z t

0

H
ð1Þ
n0 ðtÞe

ion0tdt ¼
mz;n0e

�h

eiðoþon0Þt

oþ on0
� e�iðo�on0Þt

o� on0

� 
ð12:67Þ

It then follows, after some straightforward algebra, that

hmzi ¼ m0z þ
2

�h

X
n

0 on0jmz;n0j2

o2
n0 � o2

( )
� 2e cosot ð12:68Þ

At this point we can compare this expression with

hmzi ¼ m0z þ azzðoÞ � 2e cosot þ � � �

(see eqn 12.8) and so derive an expression for the dynamic polarizability:

azzðoÞ ¼
2

�h

X
n

0 on0jmz;n0j2

o2
n0 � o2

ð12:69Þ

The mean dynamic polarizability, a(o), is the average of axx, ayy, and azz:

aðoÞ ¼ 2

3�h

X
n

0 on0jmn0j2

o2
n0 � o2

ð12:70Þ

where jmn0j2¼�0n��n0. Notice how this expression reduced to the static

polarizability (eqn 12.17) when o!0. Furthermore, when the incident

radiation has such a high frequency that o2 � o2
n0, we find

aðoÞ � 2

3�h

X
n

0 on0jmn0j2

ð�o2Þ ¼ �
e2

meo2

X
n

0
fn0 ¼ �

e2Ne

meo2
ð12:71Þ

According to this expression for the polarizability of a free electron gas, the

polarizability goes to zero as o!1 because the electrons cannot contribute

to the induced moment if the field changes direction too quickly for them to

follow. At high frequencies the polarizability is negative, which implies that

the induced dipole moment is in the opposite direction to the instantaneous

electric field (Fig. 12.10). This behaviour is an echo of the classical behaviour

�

Fig. 12.10 When the frequency of

the incident radiation is greater than

the transition frequency of the

molecule, the induced electric dipole
moment is out of phase by 180�.

H
t

(1
) (

)/
2�

z

–1

–0.5

0

0.5

1.0

Time, t

Fig. 12.9 The early stages of

an exponentially switched oscillating
perturbation.
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of a forced oscillator, which shifts in phase by 180� in advance of the driving

force when the latter’s frequency exceeds the natural frequency of the driven

oscillator (Fig. 12.11).

Example 12.3 The dynamic polarizability of an oscillator

Calculate the dynamic polarizability of the oscillator used in Example 12.1

when it is exposed to a field of frequency o applied along the x-axis of the

oscillator.

Method. We need to use eqn 12.69 with z replaced by x. All the matrix

elements are the same as in Example 12.1, and there are still only two terms in

the sum. As in that example, we develop the equation for a general state of the

oscillator; so the label 0 becomes v and n becomes v 0. The frequency differ-

ences are ov 0v¼ (v 0 � v)o0, with o0¼ (k/m)1/2 (k being the force constant and

m the effective mass of the oscillator).

Answer. Substitution of the matrix elements into eqn 12.69 gives

axxðoÞ ¼
2

�h

X
v0

0 ov0vjmx;v0vj2

o2
v0v � o2

¼ 2

�h

o0jmx;vþ1;vj2

o2
0 � o2

�
o0jmx;v�1;vj2

o2
0 � o2

( )

¼ 2

�h

o0

o2
0 � o2

� �n
jmx;vþ1;vj2 � jmx;v�1;vj2

o

¼ e2

mðo2
0 � o2Þ

¼ e2

k�mo2

Comment. This calculation is exact and reduces to the static polarizability

calculated in Example 12.1 when o¼ 0. The dynamic polarizability depends

on the mass of the oscillator because the inertial mass determines how rapidly

it responds to the changing direction of the applied field. If the effective

mass of the oscillator is infinite, then the dynamic polarizability is zero at

all frequencies greater than zero, but it still has a static polarizability.

The polarizability is very small for finite-mass oscillators when o�o0.

The frequency dependence is shown in Fig. 12.12.

We can now complete the calculation of the refractive index. All we need

do is substitute eqn 12.70 into eqn 12.62, which is now

nr � 1þ 2prNA

M

� �
a0ðoÞ

where a 0(o) is the dynamic polarizability volume, and obtain

nr ¼ 1þ rNA

3�he0M

X
n

0 on0jmn0j2

o2
n0 � o2

ð12:72Þ

When the term (2prNA/M)a(o) is not small enough for the approximations

that led to eqn 12.61 to be used, we should use

n2
r ðoÞ ¼

1þ 2aðoÞn=3e0

1� aðoÞn=3e0
ð12:73Þ

� (/ / )k m 1/2
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Fig. 12.12 The frequency

dependence of the polarizability

of a harmonic oscillator close to

resonance; note that the natural
frequency is o0¼ (k/m)1/2.
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Fig. 12.11 The variation of

the phase of a driven, damped

harmonic oscillator as the driving

frequency passes through resonance
at the natural frequency of the

oscillator. Note the change in

phase by p.
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This expression is a version of the Lorenz–Lorentz formula:

n2
r � 1

n2
r þ 2

¼naðoÞ
3e0

ð12:74Þ

The right-hand side can be replaced by 4pa 0(o)rNA/3M in practical

applications. The Lorenz–Lorentz formula is normally expressed as

Rm ¼
M

r
n2

r � 1

n2
r þ 2

� �
¼ Vm

n2
r � 1

n2
r þ 2

� �
ð12:75Þ

where Vm is the molar volume and the molar refractivity, Rm, is

Rm ¼ 4
3pNAa0ðoÞ ð12:76Þ

The dimensions of the molar refractivity are the same as those of molar

volume.

The advantage of concentrating on the molar refractivity is that it

eliminates the molar mass and mass density dependence of the refractive

index itself and focuses attention on the molecular property, the dynamic

polarizability volume, a 0(o). This property is more likely to be additive than

the refractive index, in the sense that the refractivity of a molecule may be

expressed, approximately at least, as the sum of the refractivities of its

component atoms or groups. To some extent, this additivity is confirmed, and

tables of molecular refractivities have been compiled. The molar refractivity

of the molecule as a whole is approximately the sum of its component

refractivities, and the refractive index is then obtained by the appropriate

manipulation of eqn 12.75.

Now consider the dispersion characteristics of the refractive index. We shall

suppose that the density is always small enough for eqn 12.72 to be applicable

as this simplifies the discussion. Suppose that o is so close to one of

the electronic transition frequencies of the molecule that its contribution

dominates the frequency dependence as a whole (because the terms in the sum

in eqn 12.72 are proportional to 1=ðo2
n0 � o2Þ). In this case

nr � 1þ Aon0

o2
n0 � o2

A ¼ rNAjmn0j2

3�he0M
ð12:77Þ

The frequency dependence of this expression is sketched in Fig. 12.13. We see

that provided o2<o2
n0, the refractive index is greater than 1 and increases as

o increases. This behaviour is a reflection of the effective degeneracy brought

about by an oscillating perturbation, as described in Section 6.15, in which

the overall difference in energy of the molecule and the field is close to zero.

The increase of refractive index with frequency means that blue light is

refracted more than red light. As a result, white light is ‘dispersed’ into

its constituent colours when it passes through a prism. The term dispersion

is borrowed from this behaviour and generalized to mean the frequency

dependence of any property. The underlying cause of dispersion is the

effective-degeneracy effect. At resonance, when o¼on0, eqn 12.77 appears

to indicate an infinite refractive index. However, perturbation theory breaks

down at this point and close to it, and the dispersion curve will be more like

that shown as the pale blue line in Fig. 12.13.

1 �
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Fig. 12.13 The refractive index of a

molecule close to a transition

frequency.
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It should be observed that nr<1 when o>on0. This conclusion appears to

suggest that the radiation propagates at greater than the speed of light.

However, a detailed analysis shows that it is the phase of the wave that

propagates faster than c, and information cannot be propagated by phase

alone. Hence, a refractive index nr<1 is not in conflict with special relativity.

The origin of this very speedy propagation of phase of the radiation is related

to the phase shift of the induced dipole moment when o>on0, which was

described above. In the present case, the incident radiation drives an induced

dipole in a molecule, and that dipole has an advanced phase if o>on0; that

dipole generates a phase-advanced wave, and stimulates its neighbours. As a

result, the phase of the incident wave propagates rapidly through the medium.

Optical activity

Optical activity is the rotation of the angle of polarization of plane-polarized

electromagnetic radiation as it passes through a medium. This behaviour can

be traced to the circular birefringence of the medium, its possession of

different refractive indices for left- and right-circularly polarized radiation.

Circular birefringence is a special case of the property of optical birefrin-

gence, the possession of different refractive indices for radiation with

different polarizations.

12.10 Circular birefringence and optical rotation

First, we establish the relation between the angle of rotation of the plane of

polarization and the circular birefringence of the medium. Then we relate the

circular birefringence to molecular properties by using perturbation theory.

Figure 12.14 shows how a plane-polarized ray can be expressed as the

superposition of two counter-rotating components e
þ (left-circularly polar-

ized light) and e
� (right-circularly polarized light). The components in terms

of the time (t) and the location along the propagation direction (z) are

E� ¼ ei cosf� � ej sinf� ð12:78Þ

with i and j unit vectors perpendicular to the propagation direction and

f� ¼ ot � 2pz

l�
l� ¼

v�
n
¼ c

n�n
ð12:79Þ

The relation between the wavelength and frequency in eqn 12.79 allows for

the possibility that light of different senses of circular polarization propagates

through the medium with different speeds, and so has different refractive

indices nþ and n� . Because o¼2pn, we can write

f� ¼ f� ozDn

2c

f ¼ ot � noz=c
n ¼ 1

2 ðnþ þ n�Þ
Dn ¼ nþ � n�

8<
: ð12:80Þ

+ –

+ –

–+

Fig. 12.14 The resolution of a plane-

polarized wave into two counter-
rotating circularly polarized

components.
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When the medium is not circularly birefringent, Dn¼0; then

E� ¼ ei cosf� ej sinf

and the superposition of the two components gives a ray with electric vector

E ¼ Eþ þ E� ¼ 2ei cosf ð12:81Þ
This field oscillates in the plane defined by the direction of propagation

and the unit vector i. When the ray enters a circularly birefringent medium,

one of the components propagates faster than the other and their phases

diverge from one another. The superposition is now

E ¼ Eþ þ E� ¼ efðcosfþ þ cosf�Þiþ ðsinfþ � sinf�Þjg

¼ 2e i cos
zoDn

2c

� �
� j sin

zoDn

2c

� �� 
cosf ð12:82Þ

This ray is still plane-polarized, but its plane of polarization is rotated by

Dy ¼ zoDn

2c
ð12:83Þ

from the original direction (Fig. 12.15). The sample is dextrorotatory, Dy>0,

if nþ>n�, and laevorotatory, Dy<0, if nþ< n�.

The fundamental reason why the refractive indices are different for left-

and right-circularly polarized radiation lies in the spatial variation of the

electromagnetic field over the extent of the molecule. Because enantiomeric

(mirror-image) pairs of chiral molecules sample the electric fields slightly

differently, they have different polarizabilities and hence different refractive

indices. To picture this difference, we can think of the molecule as a helix:

a helical molecule of a given handedness responds differently to left- and

right-circularly polarized radiation passing over it, for one type of radiation

follows the helix but the other does not. To establish this difference quanti-

tatively, we need to note that according to Maxwell’s equations (Further

information 20), the spatial variation of the electric field (qE=qx) is propor-

tional to the time variation of the magnetic field (qE=qx / qB=qt). Therefore,

the contribution to the electric polarization, P, due to the spatial variation of

the electric field (P / qE=qx) is proportional to the time variation of the

magnetic field (P / qB=qt ¼ _BB). It follows that when the spatial variation of

the electric field is taken into account, the total polarization of the medium

should be written4

P ¼naE �nb _BB ð12:84Þ
where b is a molecular characteristic (not the hyperpolarizability). We confirm

later that the polarization does indeed have a term proportional to the rate of

change of the magnetic field.

We can see that we are on the right track. In the first place, the magne-

tic component of an electromagnetic field is perpendicular to the electric

To obtain this result, we have

used the trigonometric identities

cos(AþB)¼ cos A cos B� sin A

sin B and sin(AþB)¼ sin A cos B

þ cos A sin B.

(a)

(b)

∆�

+

+
–

–

Fig. 12.15 (a) If the two circularly

polarized components travel at the

same speed through a medium, then
their resultant remains plane-

polarized in the original direction.

(b) However, if one component is

faster than the other, then the
resultant rotates away from the plane

of polarization of the incident ray.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. In this formulation, we are ignoring the fact that the effective electric field experienced by the

molecules differs from the applied field, for that introduces a considerable complication: in other

words, we are dealing with the optical activity of an isolated molecule.
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component. Therefore, whereas the term aE corresponds to the induction of

an electric dipole moment in the same plane as the electric vector, the term

b _BB corresponds to the induction of an electric moment in a plane parallel to

B and hence perpendicular to E. The resultant of these two dipole moments

lies in a plane that is rotated from the direction of E, with the result that the

plane of polarization of the propagating ray is rotated. This conclusion is

confirmed by solving the Maxwell equations for a medium with a polariza-

tion given by eqn 12.84 (see Further information 20): the calculation shows

that in the presence of the b term the refractive indices of the medium are

n� ¼ 1þna
2e0
�nob

2ce0
ð12:85Þ

It follows that the difference in refractive indices is

Dn ¼nob
ce0

ð12:86Þ

and therefore, from eqn 12.83, that the angle of rotation after the radiation

has passed through a length l of the medium is

Dy ¼nlo2b
2c2e0

¼ 1
2nlm0o

2b ð12:87Þ

In the second equality we have used e0m0¼ 1/c2, where m0 is the vacuum

permeability.

12.11 Magnetically induced polarization

The calculation of the angle of rotation now reduces to the calculation of b.

That is, we must calculate the polarization of a medium in response to the

changing magnetic component of the electromagnetic field. The strategy

involves adapting the calculation of nr, which was based on the perturbation

Hð1Þ ¼ ���EðtÞ, to the case in which

Hð1ÞðtÞ ¼ ���EðtÞ �m�BðtÞ ð12:88Þ

where m is the magnetic dipole moment operator for the molecule. For all

cases of interest to us, m¼ gel (Section 7.3), where ge is the magnetogyric ratio

of the electron and l is the orbital angular momentum operator. The precise

form of the perturbation depends on which component of circular polariza-

tion we are considering, so we write

H
ð1Þ
� ðtÞ ¼ ���E�ðtÞ �m�B�ðtÞ ð12:89Þ

with

E�ðtÞ ¼ eði cosot� j sinotÞ B�ðtÞ ¼ bð�i sinot� j cosotÞ ð12:90Þ

The magnetic field vector is in step with the electric vector, but perpendicular

to it and the propagation direction k, as may be verified by noting that

E��B� ¼ 0 and E� �B� / k (because i� j¼k).
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The adiabatically switched hamiltonian is obtained by inserting the

expressions for the fields into eqn 12.89 and including a factor 1� e�t/t to

represent the switching:

H
ð1Þ
� ðtÞ ¼� 1

2eð1� e�t=tÞfðeiot þ e�iotÞmx � iðeiot � e�iotÞmyg

� 1
2bð1� e�t=tÞf�ðeiot þ e�iotÞmy � iðeiot � e�iotÞmxg ð12:91Þ

From now on, we proceed just like in Section 12.9. The coefficients in the

perturbed wavefunctions are

a�n ðtÞ ¼
1

i�h

Z t

0

H
ð1Þ
�;n0ðtÞeion0t dt

and the induced electric dipole moment is the expectation value of the

operator using these perturbed wavefunctions. The result of the calculation is

h��i ¼ �0 þ
X

n

0
�0na�n ðtÞe�ion0t þ �n0a��n ðtÞeion0t
� �

¼ 2

�h
re
X

n

0
�0n emx;n0 �bmy;n0

� � on0 cosot � io sinot

o2
n0 � o2

� ��

� i�0nðemy;n0 þbmx;n0Þ
ion0 sinot � o cosot

o2
n0 � o2

� �

where re signifies the real part of the following expression. In the second line,

we have supposed that the unperturbed molecule is non-polar and have set

�0¼ 0. All the unperturbed wavefunctions may be taken as real; therefore all

the matrix elements �n0 are real (� is a real operator) whereas all the mn0 are

imaginary (because l is an imaginary operator). The real part of the last

expression is therefore

��
� �

¼ 2

�h
re
X

n

0 eon0

o2
n0 � o2

� �
�0n mx;n0 cosot � my;n0 sinot
� �

� 2

�h
im
X

n

0 bo
o2

n0 � o2

� �
�0n my;n0 sinot �mx;n0 cosot
� �

¼ 2

�h
re
X

n

0 eon0

o2
n0 � o2

� �
�0n�n0 � i cosot � j sinotð Þ

� 2

�h
im
X

n

0 bo
o2

n0 � o2

� �
�0nmn0 � j sinot � i cosotð Þ

¼ 2

�h
re
X

n

0 on0

o2
n0 � o2

� �
�0n�n0 �E�ðtÞ

� 2

�h
im
X

n

0 1

o2
n0 � o2

� �
�0nmn0 � _BB�ðtÞ ð12:92Þ

where im signifies the imaginary part of the following expression. When this

expression is compared with eqn 12.84 (after multiplication by n), we obtain

� ¼ 2

�h
im
X

n

0 �0nmn0

o2
n0 � o2

ð12:93Þ
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We can now readily pick out the bxx, byy, and bzz components of �, and hence

arrive at an expression for the rotational average in solution:

b ¼ 2

3�h
im
X

n

0 �0n �mn0

o2
n0 � o2

ð12:94Þ

We are now at the end of the calculation, because we have seen how to

express the angle of optical rotation in terms of b (eqn 12.87). By combining

that equation with eqn 12.94 we obtain the Rosenfeld equation:

Dy ¼nlm0

3�h

X
n

0 o2Rn0

o2
n0 � o2

ð12:95Þ

where Rn0 is the rotational strength of the n 0 transition:

Rn0 ¼ im �0n �mn0 ð12:96Þ

It follows that, to discuss the optical activities of molecules, we need to

investigate the properties of their rotational strengths.

12.12 Rotational strength

The rotational strength of a transition is zero if the molecule possesses an axis

of improper rotation (Sn, Section 5.1). The symmetry argument is based on the

fact that the electric dipole operator transforms as translations whereas the

magnetic moment operator transforms as rotations. In groups that have an Sn

symmetry element, no component of translation and rotation belongs to the

same symmetry species, so the product of matrix elements in the definition of

rotational strength does not transform as the totally symmetric irreducible

representation of the group, and hence must be zero. The special cases of

improper rotations are S1, which is equivalent to a mirror plane, and S2, which

is equivalent to an inversion. Under a reflection, mq and mq have different

symmetries (Fig. 12.16), so the rotational strength changes sign. Similarly,

under inversion, translations change sign but rotations do not; so in this case

too, the rotational strength changes sign. Because the rotational strength

cannot change sign under a symmetry transformation of a molecule, it must be

equal to zero for molecules with a mirror plane or a centre of inversion.

The second property of the rotational strength that stems from symmetry

is that an enantiomeric pair of chiral molecules have equal and opposite

rotational strengths. As a result, they will rotate light of a given frequency in

equal but opposite directions. When a reflection operation is applied to the

rotational strength, it changes sign (as we have seen). However, the same

reflection converts one enantiomer into the other.

A third property stems from the following sum rule:X
n

Rn0 ¼ im
X

n

�0n �mn0 ¼
X

n

0h j� nj i� nh jm 0j i ¼ 0h j��m 0j i ¼ 0

ð12:97Þ

The last equality stems from the vector relation

��m / r �l / r �ðr � pÞ ¼ ðr � rÞ�p ¼ 0

(a)

(b)

Fig. 12.16 (a) Under reflection, an

electric dipole moment changes sign

but (b) a magnetic dipole moment

(which can be treated as a rotation)
does not.

We have used the property of

a vector triple product that

a�b� c¼ a� b�c and the fact that

the vector product of a vector

with itself is identically zero:

a� a¼ 0.
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This sum rule has the important consequence that the angle of optical rota-

tion tends to zero at both high and low frequencies. At very high frequencies

ðo2 � o2
n0Þ, the rotation angle is

Dy �nlm0

3�h

X
n

0 o2Rn0

�o2
¼ �nlm0

3�h

X
n

0
Rn0 ¼ 0

Although the sum omits n¼ 0, the omitted term R00¼ 0 because it is the

imaginary part of the scalar product of two expectation values (�00 and m00),

which are real (a property of hermitian operators, Section 1.8). At the other

extreme of frequency, when o2 � o2
n0, we have

Dy �nlm0

3�h

X
n

0 o2Rn0

o2
n0

¼ 0

on account of the vanishing of the o2 factor in the numerator as o!0.

The variation of the angle of rotation with frequency is called optical

rotatory dispersion (ORD). A typical ORD curve is shown in Fig. 12.17. The

rotation is close to zero at frequencies far from absorption bands, but may

become quite large close to an absorption where o2
n0 � o2 approaches zero.

The rotation does not actually rise to infinity as eqn 12.95 suggests because

perturbation theory fails in this region and special techniques have to be used

instead. When the incident frequency is close to an absorption frequency

(for the k 0 transition, for instance), that transition’s contribution to the

optical rotation dominates and the angle of rotation is given by

Dy � nlm0o
2Rk0

3�h o2
k0 � o2

� � ð12:98Þ

The area under the dispersion curve in this region can then be used to estimate

the value of Rk0 in much the same way as the area under an absorption curve

is used to determine the oscillator strength (see Further information 17).

Much work has been put into the estimation of rotational strengths

of molecular transitions and the transitions of chromophores in chiral

environments. The carbonyl group has received a lot of attention, and we

shall consider it briefly to illustrate the basic ideas and difficulties. We saw

in Section 11.7 that the transition in the region of 290 nm in carbonyl

compounds can be ascribed to the p�  n transition of the carbonyl

chromophore. The non-bonding orbital n is almost pure O2py and the

p�-orbital is built from 2px-orbitals on the C and O atoms. The transition is

electric-dipole forbidden in a pure C2n environment, but it is magnetic-dipole

allowed because the rotation of O2px into O2py can be brought about by the

operator mz/ lz, which transforms as a rotation about the z-axis. The motion

of the electron density during the transition can be thought of as describing

a circle around the z-axis. Because it is electric-dipole forbidden, the transi-

tion has no rotational strength because �0k�mk0¼0. However, we should

take into account the possibility that the local environment of the carbonyl

group may distort its orbitals. If the environment causes the migration of

electrons to follow a helical path (Fig. 12.18), then it can acquire a rotational

strength.
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Fig. 12.17 Optical rotatory

dispersion in the vicinity of two
absorption bands.

(a)

(b)

Fig. 12.18 (a) The rotational

character of an p�  n transition and
(b) its helical character when the

chromophore is perturbed by the

adjacent groups in a chiral molecule.
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One way to achieve a helical transition is for the p�-orbital to possess some

dyz-character. The p�-orbital is then formed between a C2px-orbital and a

mixture of O2px- and O3dyz-orbitals:

cðp�Þ ¼ c1fðC2pxÞ þ c2fðO2pxÞ þ c3fðO3dyzÞ

Now the transition has some electric-dipole character parallel to the z-axis as

well as some magnetic dipole character around that axis:

hp�jmzjni ¼ c�3hO3dyzjmzjO2pyi hp�jmzjni ¼ c�1hO2pxjmzjO2pyi ð12:99Þ

and both matrix elements may be non-zero. The rotational strength is now

proportional to c1
�c3
�, and so the helically distorted carbonyl group is optically

active. Note too that the presence of the d-orbital component removes the

plane of symmetry of the group, so the group becomes chiral and potentially

optically active.

Example 12.4 The estimation of rotational strengths

Suppose that there is a single centre to which an electron is confined, and

that in the ground state it occupies a pure 2py-orbital but in the upper state

the orbital is a mixture of the form j1i¼ j2pxi cos zþ j3dyzi sin z, where z
is a parameter (we encountered this parametrization of normalized two-

component superpositions in Section 6.1) and the orbitals are Slater

orbitals (Section 7.14). Evaluate the rotational strength of the transition as

a function of z.

Method. The expression for the rotational strength is given in eqn 12.96. In

this model, only the z-components contribute. For the matrix elements of

mz¼ gelz we use lz/ q/qf and recognize that px/ cos f and py/ sin f. For the

matrix elements of mz¼�ez, write z¼ r cos y and use the form of the STOs

specified in Section 7.14.

Answer. For the matrix elements of lz we use

lzc2py
¼ �h

i

q
qf

f ðrÞ sin y sinf ¼ �i�hf ðrÞ sin y cosf ¼ �i�hc2px

or lzj2pyi¼ � i�hj2pxi. From this relation, it follows that

h1jmzj0i ¼ ge h2pxjlzj2pyi cos zþ h3dyzjlzj2pyi sin z
� �

¼ geð�i�hÞh2pxj2pxi cos z ¼ imB cos z

(We have introduced the Bohr magneton through mB¼ � ge�h.) For the electric

transition dipole we need the explicit form of the orbitals, and use

c2py
¼ 3

4p

� �1=2

sin y sinf
25z5

p

4!

 !1=2

r e�zpr zp ¼
Z�p

npa0

c3dyz
¼ 1

2

15

4p

� �1=2

sin 2y sinf
27z7

d

6!

� �1=2

r2e�zdr zd ¼
Z�d

nda0
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The matrix element evaluates to

0h jmz 1j i ¼ �e 2py

� ��r cos y 3dyz

�� �
sin z ¼ �ea0

26 6z5
pz

7
d

� �1=2

zp þ zd

� �7

8><
>:

9>=
>; sin z

Therefore, from eqn 12.96 with 2 sin z cos z¼ sin 2z, we find

R10 ¼ �ea0mB

25 6z5
pz

7
d

� �1=2

zp þ zd

� �7

8><
>:

9>=
>; sin 2z

Comment. The rotational constant is greatest when z¼ p/4 or 5p/4. For an O

atom, zp¼ 2.25/a0 and zd¼ 0.33/a0, and then

R10 ¼ ð1:30� 10�54 C2 m3 s�1Þ � sin 2z

The principal difficulty with this kind of calculation is the estimation of the

extent of distortion induced in a chromophore by the asymmetry of its

environment. This delicate problem can be explored in the references in

Further reading.

P R O B L E M S

12.1 The polarizability volume of tetrachloromethane is
1.05� 10�29 m3. Calculate (a) the magnitude of the
dipole moment induced by an electric field of strength
10 kV m�1, (b) the change in molar energy.

12.2 Model an atom by an electron in a one-dimensional
box of length L. (Assume there to be an ‘invisible’ positive
charge at the centre of the box which provides the positive
end of the dipole but does not affect the wavefunctions.)
Calculate the polarizability of the system parallel to its
length. Hint. Use eqn 12.15; the wavefunctions are given
in eqn 2.31. The procedure and results of Problems 6.4
and 6.5 can be used.

12.3 Repeat the calculation in Problem 12.2, but use the
closure approximation. What value of DE will reproduce
the result in Problem 12.2? Is this value of DE smaller
than, equal to, or greater than the values of DE of
Problems 6.10 and 6.11?

12.4 Evaluate the polarizability and polarizability volume
of a hydrogen atom; for simplicity, confine the perturbation
sum to the 2p-orbitals.

12.5 Estimate the polarizibility of the hydrogen atom
using eqn 12.27. What is the per cent difference between
your answer and the result of Problem 12.4?

12.6 Devise a variational calculation of the polarizability of
the hydrogen atom. Hint. A simple procedure would be to
take as an unnormalized trial function the linear
combination c1sþ ac2pz

(the basis could be enlarged in
a more sophisticated treatment) with a the variation
parameter. The hamiltonian is H ¼ H0 þ eze. Find the
optimum value of a and identify azz. The experimental value
of a0zz ¼ 6:6� 10�31 m3.

12.7 Establish a perturbation theory expression for
the components of the first hyperpolarizability bzzz of
a non-polar molecule. Hint. Refer to eqn 12.10. You will
need to use the following expression for the third-order
correction to the energy, which can be derived following the
discussion in Chapter 6:

Eð3Þ ¼
X
m;n

0 H
ð1Þ
0mH

ð1Þ
mnH

ð1Þ
n0

E
ð0Þ
m � E

ð0Þ
0

� �
E
ð0Þ
n � E

ð0Þ
0

� �

�H
ð1Þ
00

X
n

0 H
ð1Þ
0n H

ð1Þ
n0

E
ð0Þ
n � E

ð0Þ
0

� �2

12.8 Derive the expression for the third-order correction
to the energy given in Problem 12.7.
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12.9 Show group theoretically that in a tetrahedral
molecule (a) the mean hyperpolarizability is zero,
(b) the only non-zero components are bxyz and the
permutations of its indices. Hint. The mean is defined
as 3

5 ðbxxz þ byyz þ bzzzÞ; and so (b) implies (a).
For (b) consider the symmetry characteristics of
E ¼ �ð1=3!ÞSa;b;cbabceaebec, the generalization of
eqn 12.11.

12.10 Evaluate the first hyperpolarizability bxxx of a
one-dimensional system of two charges þe and �e bound
together by a spring of force constant k, the electric field
being applied parallel to the x-axis. Hint. Use the matrix
elements set out in Example 10.3; the result can be obtained
by inspection.

12.11 Prove the sum rule
Sf xmf xfmofn ¼ ð�h=2meÞdmn þ 1

2omnðx2Þmn. Hint.
Consider the matrix elements of the commutator [H,x2].

12.12 Use the closure expressions to estimate the
contribution to the polarizability of a carbon atom of one of
its 2p-electrons when the field is applied (a) parallel,
(b) perpendicular to the axis. Assess the contributions of the
ls-electrons and the 2s-electrons, and estimate the total
mean polarizability by adding all the contributions. Hint.
Use Slater atomic orbitals and eqn 12.21 (for the mean
value). The 2s, 2p energy separation is about 7. 5� 104

cm�1; the first ionization energy corresponds to 11.264 eV.
The energies of the 1s-electrons can be estimated by
regarding them as hydrogenic.

12.13 The oscillator strength of a transition at about
160 nm in ethene is about 0.3. Estimate the mean
polarizability volume of the molecule. (The experimental
value is 4.22� 10�30 m3.)

12.14 Deduce an expression for the refractive index of a
gasof free electrons. Hint. Take the limit of the equation
preceding eqn 12.72 when o2

fi � o2
n0 and refer to eqn 12.71.

This calculation leads to the Thomson formula for the
refractive index.

12.15 A region of interstellar space contained a diffuse gas
of hydrogen atoms at a number density of 1� 105 m�3.
What is the refractive index for visible (590 nm) light in the
region? Hint. Use eqn 12.72 and information in the solution
of Problem 12.4.

12.16 Consider two particles, each in a one-dimensional
box, with the centres of the boxes separated by a distance R.
Each system may be regarded as a model of an atom in the
same sense as in Problem 12.2. Calculate the dispersion
energy when the boxes are (a) in line, (b) broadside on.
Hint. Base the calculation on eqn 12.30, noting that the
dipole moment operators have only one component in a
one-dimensional system. Much of the calculational work
has been done in Problem 12.2.

12.17 Investigate the usefulness of the closure
approximation in the calculation of the dispersion
energy of the system described in Problem 12.16. What
values of DEA and DEB should be used?

12.18 Estimate the dispersion energy between two
hydrogen atoms using the London formula. Use the
experimental value for a 0 given in Problem 12.6.

12.19 Devise a variational calculation of the dispersion
interaction between two hydrogen atoms. Start by using
the trial functions suggested in Problem 12.6, but note
that the dipolar hamiltonian also introduces distortions
perpendicular to the line of centres of the atoms; ignore this
distortion. The hamiltonian to use in the evaluation of
the Rayleigh ratio is HAþHBþH(1), where H(1) is given
in eqn 12.28.

12.20 Evaluate the rotational strength of a transition of
an electron from a 2px-orbital to a 2pz,3dxy-hybrid
orbital. Assume the orbitals are on a carbon atom.
Estimate the optical rotation angle for 590 nm light.
Hint. Follow Example 12.4, with changes of detail.
For carbon, take zp¼ 1.57/a0 and zd¼ 0.33/a0 and use
lk0¼ 200 nm.

12.21 An electron is bound to a nucleus and undergoes
harmonic vibrations in three dimensions, the frequencies
being ox, oy, and oz. It is subjected to a perturbation of the
form H(1)¼Axyz. Calculate the rotational strength and the
optical rotation angle to first order in the parameter A. Hint.
Base the answer on eqn 12.96, evaluating the matrix
elements using the first-order perturbed wavefunctions, eqn
6.22. Hint: Use eqn 4.3 for the angular momentum
operators and the matrix elements provided in Problem
1.23.
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The difference between electric and magnetic perturbations is that whereas

the former stretch a molecule, the latter twist it (as will be demonstrated

explicitly in due course). The effect of a twisting perturbation is to induce

electronic currents that circulate through the framework of the molecule.

These currents give rise to their own magnetic fields. One effect is to modify

the magnetic flux density in the material. If the flux density is increased

beyond that due to the applied field alone, then the substance is classified as

paramagnetic. If the flux density is reduced, then the substance is classified as

diamagnetic. The latter is the much more common property. If there are

unpaired electrons present in the molecule, then those spins may interact with

the local currents induced by the applied field, and give rise to the g-value of

electron spin resonance (ESR or EPR). Similarly, magnetic nuclei can also

interact with the induced electronic currents, and this interaction is respons-

ible for the chemical shift of nuclear magnetic resonance (NMR). A nuclear

spin can itself give rise to electronic currents in a molecule, and the interaction

of this nucleus-induced current with another magnetic nucleus is responsible

for the fine structure in NMR.

We shall introduce a number of ways of discussing the magnetic properties of

materials, and then apply them to the calculation of some of these properties.

The descriptions of magnetic fields

We shall assume that the description of the magnetic field is largely unfamiliar

and introduce some of the concepts involved. One of these concepts,

the ‘vector potential’, is of the greatest importance for this chapter, because it

is at the root of the formulation of the perturbation hamiltonians we need.

13.1 The magnetic susceptibility

The electric properties discussed in Chapter 12 have analogues in magnetism.

In particular, a molecule may possess a permanent magnetic dipole moment, m0.

It may also acquire a contribution to its total magnetic moment by virtue

of an applied magnetic field; this contribution will be of the form xb where

x (xi) is the magnetizability and b is the magnetic induction (which is usually

expressed in tesla, 1 T¼ 1 V s m�2). Just as a dielectric medium acquires
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a polarization in an electric field, a bulk sample subjected to a magnetic field

acquires a magnetization,

M ¼ B=m0 �H ð13:1Þ
where m0 is the vacuum permeability (by definition, m0¼ 4p�10�7 N A�2)

and H is the magnetic field strength (typically in A m�1). The induction and

field strength are related by

B ¼ mH ð13:2Þ
where m is the permeability. Just as it is convenient in the description of

electrical properties to introduce the relative permittivity and electric sus-

ceptibility, here we introduce the dimensionless relative permeability

mr ¼ m=m0 ð13:3Þ
and the magnetic susceptibility

w ¼ mr � 1 ð13:4Þ
and hence obtain

M ¼ wH ð13:5Þ
There are a number of advantages obtained by expressing the susceptibility as

the molar magnetic susceptibility, wm:

wm ¼ wVm ð13:6Þ
where Vm is the molar volume of the sample. The units of molar susceptibility

are the same as those of molar volume.

The magnetic susceptibility may be either positive or negative. When w<0,

the magnetization opposes the applied field and the magnetic induction in the

medium is lower than it would be in a vacuum; such materials are classified as

diamagnetic. When w>0, the magnetization adds to the applied field and

increases the magnetic induction inside the material. Such substances are

called paramagnetic.1

13.2 Paramagnetism

The magnetization of a medium is its magnetic-dipole density (recall the analogous

interpretation of the polarization in Section 12.7). Therefore, we can write

M ¼nhmi ð13:7Þ

where n is the number density of molecules and hmi is the mean magnetic

dipole. There are two contributions to the latter. One is a contri-

bution from the permanent magnetic dipole moments m0 of the molecules.

Their contribution depends on the orientating effect of the applied field

as expressed through the Boltzmann distribution. For a field in the

z-direction, the energy of interaction of a magnetic dipole is �mzb. It follows

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The names ‘diamagnetic’ and ‘paramagnetic’ come from the behaviour of a long, thin

cylinder of the material that if supported in the field of a magnet, tends to lie across (dia means

across in Greek) the field so as to minimize its energy. A paramagnetic substance would tend to lie

parallel to the field (para means beside or along in Greek).
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from exactly the same argument as we presented in Section 12.8 that the

Boltzmann-weighted average of mz in a sample at a temperature T is

hmzi ¼ m0lðxÞ x ¼ m0b

kT
ð13:8Þ

where l is the Langevin function (eqn 12.52). The magnetic induction b is

playing the role here of the total effective electric field e

 in the electrical case.

The magnetization of the sample is therefore

m ¼ m0nlðxÞ �nm2
0b

3kT
ð13:9Þ

where we have assumed that m0b� kT, which implies x� 1(which is almost

always true). Then, by combining eqns 13.1 and 13.5, we obtain

m ¼ 1

m0

w
1þ w

� �
b � w

m0

b ð13:10Þ

provided that w�1. It follows that the permanent moment contributes

w ¼ m0m2
0n

3kT
ð13:11Þ

to the magnetic susceptibility. This contribution is positive, so the permanent

moments contribute to the paramagnetic susceptibility.

The last expression depends on the number density of the sample. However,

if we note that

nVm ¼
NVm

V
¼ nNAVm

nVm
¼ NA

where NA is Avogadro’s constant and n is the amount of substance, then we

see that the molar susceptibility is simply

wm ¼
m0m2

0NA

3kT
ð13:12Þ

independent of the number density. This independence is the reason

for introducing the molar susceptibility. This expression has the form of

the Curie law for the magnetic susceptibility of paramagnetic substances:

wm ¼
C

T
C ¼ m0m2

0NA

3k
ð13:13Þ

All that remains now is to estimate the magnitude of the permanent magnetic

moment. That is easy when there is no orbital contribution, for then we have

spin-only paramagnetism, with the magnetic moment arising solely from the

electron spin. If the spin quantum number is S, the spin magnetic moment is

given by

m2
0 ¼ SðSþ 1Þg2

em
2
B ð13:14Þ

where mB is the Bohr magneton (Section 7.3). The spin-only paramagnetic

susceptibility is therefore given by eqn 13.13 with

C ¼ SðSþ 1Þg2
em0m

2
BNA

3k
ð13:15Þ

For S¼ 1
2, we have C�4.7� 10�6m3 K mol�1, so at 300 K, wm�

1.6�10�8 m3 mol�1 (or 16 mm3 mol�1).
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The spin-only formula is applicable when the orbital angular momentum of

the electrons makes no contribution: we say that the orbital angular

momentum is quenched. This is the case when the electrons are described by

real wavefunctions: if the wavefunctions are real, then by hermiticity, for any

component lq of orbital angular momentum

h0jlqj0i ¼ h0jlqj0i
 ¼ �h0jlqj0i

because l
q ¼ �lq. This relation implies that the expectation value of lq is zero.

Because the wavefunctions of electrons in orbitally non-degenerate states may

be chosen to be real (Section 2.6), it follows that orbitally non-degenerate

systems have quenched orbital angular momentum and display spin-only

paramagnetism.

13.3 Vector functions

Our initial task is to formulate the perturbation hamiltonian. It turns out that

we cannot simply argue by analogy with the electric susceptibility and use a

perturbation of the form �mzb. To find the actual hamiltonian, we need to

dig deeper into the description of the electromagnetic field.

The electric field E can be expressed as the gradient of a potential f. Indeed,

in the theory of electromagnetism, a ‘potential’ is perhaps so called because it

is potentially capable of telling us the magnitude and direction of the electric

field, so long as we know how to derive that information from it, that is, to

evaluate some kind of derivative. The Schrödinger equation for a charged

particle in an electric field (such as the electron in a hydrogen atom)

is expressed in terms of the potential f that describes the electric field (for

a hydrogen atom it is the Coulomb potential). Similarly, we need to identify a

potential that describes a magnetic field if we are to formulate the Schrödinger

equation for a particle in a magnetic field, and then see how to derive the

field from it.

The idea of a scalar function should be familiar: it is a function that

associates a single number with each point in space. The Coulomb potential is

an example of a scalar function, and in general the electric potential is called a

scalar potential. For this chapter, though, we shall also need to consider a

vector function, a function that attaches three numbers to each point in space.

We can think of these numbers as being the three components of a vector, and

a vector function associates a vector of a certain magnitude and direction with

each point in space. The electric and magnetic vectors of a plane-polarized

light ray are examples of vector functions (Fig. 13.1).

Vector functions are more difficult to represent diagrammatically than

scalar functions because we have to display direction as well as magnitude at

each point. As an illustration, consider the vector function

V ¼ �yiþ xj ð13:16Þ

where i and j are unit vectors in the (x,y)-plane. This function is drawn in

Fig. 13.2. It can be constructed by concentrating first on the values it takes at

points along the line y¼ 0, for then V¼ xj. Along this line, the magnitude of

the vector increases in proportion to x and it points in the direction of j for

E or H  

Fig. 13.1 The variation of the

electric (or magnetic) field in an

electromagnetic wave is an example
of a vector field, with a vector

associated with each point in space.

y

x

j
i

Fig. 13.2 Equal-magnitude contours

of the vector function V¼�yiþ xj;
this function has non-zero curl but

zero divergence.
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x>0 and along � j for x< 0. These values are denoted by the arrows

sprouting from the x-axis. Next, take x¼0, when V¼�yi. The magnitude of

the vector increases in proportion to jyj, and the function points along � i for

y>0 but along i for y<0. The same technique can be used to find the

function at any point in the plane, and overall the function can be represented

in terms of a series of contours carrying directional arrows. The function V

obviously represents a circulation of some kind around the unit vector k that

points parallel to the z-axis. In contrast, the vector function

V 0 ¼ xiþ yj ð13:17Þ
which is illustrated in Fig. 13.3, suggests a radial flow away from a

central point.

13.4 Derivatives of vector functions

We shall need the derivatives of a general vector function

F ¼ fxiþ fyj þ fzk ð13:18Þ

where each of the fq is in general a function of x, y, and z. There are two

derivatives of importance for us. The divergence of a vector function is

defined as

r � F ¼ qfx

qx

� �
þ qfy

qy

� �
þ qfz

qz

� �
ð13:19Þ

The origin of the name ‘divergence’ can be appreciated by evaluating the div-

ergences of the two vector functions V and V 0 in eqns 13.16 and 13.17. We find

r � V ¼ 0 r � V 0 ¼ 2

These values reflect the appearances of the functions in the diagrams: V does

not diverge but V 0 does. Note that the divergence of a vector function is a

scalar function (or a constant).

The other derivative we require is the curl of a vector function F, which is

defined as follows:

r� F ¼
i j k

q=qx q=qy q=qz
fx fy fz

������
������ ð13:20Þ

The origin of the name ‘curl’ can also be understood by evaluating the curl of

the two vector functions in the illustrations. Even before we evaluate the

curls, we can anticipate that V has non-zero curl because it circulates around

the z-axis, whereas the curl of V 0, which does not circulate, is zero. To verify

these intuitions we perform the following two calculations:

r� V ¼
i j k

q=qx q=qy q=qz
�y x 0

������
������ ¼ 2k ð13:21aÞ

r � V 0 ¼
i j k

q=qx q=qy q=qz
x y 0

������
������ ¼ 0 ð13:21bÞ

y

x

j
i

Fig. 13.3 Equal-magnitude contours
of the vector function V 0 ¼xiþ yj;

this function has non-zero divergence

but zero curl.

The expansion of the determinant

of a 3� 3 matrix is given in

Section 3.2.

440 j 13 THE MAGNETIC PROPERTIES OF MOLECULES



A

i

j
k

B

Fig. 13.4 The relation between the

vector potential and the magnetic

field to which it corresponds.
A uniform magnetic field is described

by a vector potential like the one

illustrated that extends throughout

the region of non-zero field. A
non-uniform field has a vector

potential that is like this one over

an infinitesimal region.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. The relations needed to evaluate derivatives of vector functions are set out in Further

information 22.

Note that the curl of a vector function is a vector. Moreover, the curl conveys

the sense of rotation according to the right-hand screw rule (the same as for

angular momentum, Section 3.4).

13.5 The vector potential

We are now at the point where we can introduce the vector potential, A, the

vector function from which the magnetic field is derived. The vector potential

corresponding to a magnetic induction B is defined such that

B ¼ r� A ð13:22Þ
For example, suppose that we are given the vector potential

A ¼ 1
2bV ¼ 1

2bð�yiþ xjÞ ð13:23Þ

then the induction to which it corresponds is

B ¼ 1
2br� V ¼ bk ð13:24Þ

In other words, the vector potential 1
2bV describes a uniform magnetic field

of induction B pointing in the direction k (Fig. 13.4). It is quite easy to

generalize this important result and to show that

A ¼ 1
2 B� r ð13:25Þ

corresponds to a uniform induction b.2 Therefore, we can always set up the

vector potential for a uniform field by forming 1
2B� r.

Example 13.1 Setting up a vector potential

Construct a vector potential for a uniform magnetic field that points in the

direction shown in Fig. 13.5a.

Method. The key to setting up the vector potential is eqn 13.25: all we need do

is to form the vector of magnitude b orientated towards the corner of a unit

cube. So, we begin by constructing a unit vector in the direction required, and

then use eqn 13.25.

Answer. The unit vector in the direction shown in the illustration is (1
3)

1/2�
(1,1,1). Therefore, the magnetic induction is (b/31/2)(1,1,1) and the vector

potential is

A ¼ b

2ð31=2Þ

i j k
1 1 1
x y z

������
������ ¼

b

2ð31=2Þ ðz� yÞiþ ðx� zÞj þ ðy� xÞkf g

Comment. The vector potential is a function like V, but now swirling about

the (1,1,1) direction (as in Fig. 13.5b).

Self-test 13.1. Confirm that the vector function 1
2B� r has zero divergence, and

show that the magnetic induction is indeed that specified.

[r �A¼0; r�A¼B]

i = (1,0,0)

j = (0,1,0)

k = (0,0,1)

(1,1,1)/ 3√

(a)

(b)

Fig. 13.5 (a) The unit vectors used to

describe the field in Example 13.1.
(b) The vector potential for the field is

like the function V but it swirls

around the direction of the field, the

direction of the vector (1,1,1).
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Two points now need to be made. The first is that not all magnetic fields are

uniform, and then the vector potential takes on a more complicated form.

Locally, however, a vector potential can always be imagined as resembling

those we have already seen, but the direction of swirl and the closeness of the

contour lines change from place to place. We shall see an example in Section

13.8. The second point is that the choice of vector potential corresponding to

a given field is not unique. It is always possible to add to a given vector potential

a vector function of the form rf, where f is an arbitrary scalar (ordinary)

function, and leave the field unchanged. This property of gauge invariance

stems from the vector identity r�rf � 0 and hence that for any constant l,

B ¼ r� ðAþ lrf Þ ¼ r � A ð13:26Þ

The vector function V 0 is a special case of rf:

V 0 ¼ xiþ yj ¼ 1
2rðx2 þ y2Þ

Therefore, all vector potentials of the form

A ¼ 1
2bV þ lV 0 ð13:27Þ

correspond to the same uniform induction B regardless of the value of l
(Fig. 13.6). Later we shall make use of the fact that it is always possible to

select a gauge (that is, choose the gradient of a scalar function to add to a

given vector potential) that ensures that the vector potential has zero diver-

gence. In the present case, V has zero divergence already, so we do not need to

make any gauge transformation to it. A gauge that corresponds to zero

divergence of a vector potential is called the Coulomb gauge.

Magnetic perturbations

The point of introducing the vector potential was to enable us to set up the

perturbation hamiltonian for molecules exposed to magnetic fields. With the

form of the perturbation established, we shall be able to develop expressions

for the magnetic susceptibility and related properties.

13.6 The perturbation hamiltonian

We show in Further information 2 that there is a simple rule for constructing

the hamiltonian of a system in the presence of a magnetic field from its

hamiltonian in the absence of the field: wherever p occurs in the hamiltonian,

it should be replaced by pþ eA, where A is the vector potential for the field.

This prescription is valid in classical and quantum mechanics: in the latter we

have to be careful to take into account the possible non-commutation of

operators.

To see the rule in action, consider a hamiltonian for an electron with

a potential energy V (which may vary with position):

Hð0Þ ¼ p2

2me
þ V

y

x

j
i

Fig. 13.6 The vector function Vþ lV 0

with non-zero divergence and curl.

The change from Fig. 13.2 to this
illustration corresponds to a gauge

transformation.
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In the presence of a magnetic field described by a vector potential A, the term

p2¼p � p is replaced by

ðpþ eAÞ � ðpþ eAÞ ¼ p2 þ eðp � Aþ A � pÞ þ e2A2 ð13:28Þ

Some care is needed with the term p �A because in the position representation

the linear momentum is a differential operator and it operates on the function

A and the unwritten wavefunction on which the hamiltonian operates. When

that wavefunction is included, we have

p � Ac ¼ �h

i

� �
r � Ac ¼ �h

i

� �
fðr � AÞcþ A � ðrcÞg

However, if we adopt the Coulomb gauge, then the term (r �A) is zero, and

p � Ac ¼ �h

i

� �
A � ðrcÞ ¼ A � pc

In this gauge, the vector potential and the linear momentum commute, and

eqn 13.28 can be written

ðpþ eAÞ � ðpþ eAÞ ¼ p2 þ 2eA � pþ e2A2 ð13:29Þ

It follows that the hamiltonian in the presence of the field is

H ¼ p2

2me
þ V þ e

me
A � pþ e2

2me

� �
A2 ð13:30Þ

This hamiltonian differs from the original hamiltonian by the presence of two

terms, one of which is first order in the magnetic induction (via A, which is

proportional to B), and the other of which is second order (via A2). We shall

therefore write

H ¼ Hð0Þ þHð1Þ þHð2Þ
Hð1Þ ¼ e

me
A � p

Hð2Þ ¼ e2

2me
A2

8>><
>>:

ð13:31Þ

The first-order term can be written in a more familiar form by considering

a uniform magnetic field and replacing the vector potential by eqn 13.25:

Hð1Þ ¼ e

2me
B� r � p ¼ e

2me
B � r � p ¼ e

2me
B � l

For the second equality we have used the vector identity a�b � c¼ a � b� c,

and in the final step we have recognized the orbital angular momentum

operator l¼ r� p. Finally, because the magnetogyric ratio (Section 7.3) is

defined as ge¼�e/2me, we can conclude that

Hð1Þ ¼ �geB � l ¼ �B �m ð13:32Þ

where m¼ gel. It should be noted that spin does not appear in this expression:

for spin to appear naturally, we would need to work from the (relativistic)

Dirac equation.
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The second-order perturbation hamiltonian can also be expressed very

simply when the field is uniform. Suppose it lies in the z-direction; then we can

use the vector potential in eqn 13.23 and obtain

A2 ¼ 1
4b

2ð�yiþ xjÞ � ð�yiþ xjÞ ¼ 1
4b

2ðx2 þ y2Þ

Therefore, for such a field,

Hð2Þ ¼ e2
b

2

8me

� �
ðx2 þ y2Þ ð13:33Þ

For a uniform field in a general direction, it follows from eqn 13.25 that

Hð2Þ ¼ e2

8me

� �
fb2r2 � ðB � rÞ2g ð13:34Þ

13.7 The magnetic susceptibility

Because the total hamiltonian has both first- and second-order contributions,

we must use the full expression given in Section 6.5 to calculate properties to

second order in the field:

Eð2Þ ¼ h0jHð2Þj0i þ
X

n

0 h0jHð1ÞjnihnjHð1Þj0i
E
ð0Þ
0 � E

ð0Þ
n

ð13:35Þ

The first-order contribution h0jH(1)j0i is zero for a species in a non-

degenerate state using an argument similar to that given at the end of

Section 13.2. For a uniform field in the z-direction, this expression becomes

Eð2Þ ¼ e2

8me

� �
h0jx2 þ y2j0ib2 þ eb

2me

� �2X
n

0 h0jlzjnihnjlzj0i
E
ð0Þ
0 � E

ð0Þ
n

¼ e2

8me

� �
hx2 þ y2i � e

2me

� �2X
n

0 lz;0nlz;n0

DEn0

( )
b

2 ð13:36Þ

where lz;n0¼hnjlzj0i and DEn0 ¼ E
ð0Þ
n � E

ð0Þ
0 . It should be noted that the first

term is positive, and increases the energy of the molecule as the field is

increased; the second term is negative, and decreases the energy.

We now construct the relation between the energy in the presence of a field

and molecular properties. We could have used the same approach as in

Chapter 12, but it is instructive to see that there is an alternative.

The energy of a magnetic dipole in a region of magnetic induction is�mzb,

but we cannot simply write Eð2Þ ¼ �hmzib because hmzi changes as the

field is increased from zero. This variation is expressed in terms of the

magnetizability, x, through

hmzi ¼ xzzbþ � � � ð13:37Þ

where the unwritten terms are of higher order in the field strength. Because

an infinitesimal increase in induction, db, results in an infinitesimal increase

We have also used the vector

relation (a� b) � (a� b)¼
a2b2� (a �b)2.
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in energy dEð2Þ ¼ �hmzidb, the total change in energy when the induction

is increased from 0 to its final value b is

Eð2Þ ¼ �
Z

b

0

hmzi db ¼ �
Z

b

0

ðxzzbþ � � �Þ db

¼ �1
2xzzb

2 þ � � �
ð13:38Þ

All we need now do is to compare this result with eqn 13.36, which gives

xzz ¼ �
e2

4me

� �
hx2 þ y2i þ e2

2m2
e

� �X
n

0 lz;0nlz;n0

DEn0
ð13:39Þ

The mean magnetizability of a freely rotating molecule is

x ¼ 1
3ðxxx þ xyy þ xzzÞ

To evaluate this mean from the expression in eqn 13.39 we use

hðx2 þ y2Þ þ ðy2 þ z2Þ þ ðz2 þ x2Þi ¼ 2hx2 þ y2 þ z2i ¼ 2hr2i
lx;0nlx;n0 þ ly;0nly;n0 þ lz;0nlz;n0 ¼ l0n � ln0 ¼ jl0nj2

It then follows that

x ¼ � e2

6me

� �
r2
� 
þ e2

6m2
e

� �X
n

0 l0nj j2

DEn0
ð13:40aÞ

and therefore provided w� 1 (so that m�m0)

w � m0nx ¼ � e2m0n

6me

� �
r2
� 
þ e2m0n

6m2
e

� �X
n

0 l0nj j2

DEn0
ð13:40bÞ

The molar magnetic susceptibility, using eqns 13.6 and 13.40b, is then given by

wm � m0nxVm ¼ m0NAx ð13:41Þ

from which it follows that

wm � �
NAe2m0

6me

� �
r2
� 
þ NAe2m0

6m2
e

� �X
n

0 l0nj j2

DEn0
ð13:42Þ

The expression for the molar susceptibility apparently (we shall say why

‘apparently’ shortly) falls into two contributions, one positive and the other

negative. Therefore, we express it as the sum of a negative diamagnetic

susceptibility, wd
m, and a positive paramagnetic susceptibility, wp

m:

wm ¼ wd
m þ wp

m

wd
m ¼ �

NAe2m0

6me

� �
r2
� 

wp
m ¼

NAe2m0

6m2
e

� �X
n

0 l0nj j2

DEn0

8>>><
>>>:

ð13:43Þ

It should be emphasized that this paramagnetic contribution to the suscept-

ibility has nothing to do with electron spin and, unlike spin paramagnetism,

is independent of the temperature. Hence, it is known as temperature-

independent paramagnetism (TIP). The diamagnetic contribution is often

called the Langevin term.
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Example 13.2 The calculation of magnetic susceptibility

Consider a model system in which one electron occupies a 2px-orbital and

where the 2py-orbital lies at an energy DE above it (Fig. 13.7). Calculate the

molar magnetic susceptibility in the z-direction.

Method. Use eqn 13.39 with the expression for xzz rather than the mean

magnetizability, eqn 13.40. For the expectation value hx2þ y2i, use Slater-

type orbitals as specified in Example 12.4, but replace the term sin y sinf in

the expression for c(2py) in that example with sin y cosf for c(2px). There is

only one non-zero term in the sum for the paramagnetic contribution, and the

matrix elements of lz may be evaluated as in Example 12.4. Then use eqn 13.41

to compute wm from xzz.

Answer. It follows from lz cosf¼ i�h sinf that lzpx¼ i�hpy. Therefore,

X
n

0 lz;0nlz;n0

DEn0
¼ jhpyjlzjpxij2

DE
¼ �h2

DE

hx2 þ y2i ¼
Z
ðx2 þ y2Þjcð2pxÞj2dt ¼

Z
r2jcð2pxÞj2 sin2 y dt

¼ 3

4p

� �
25z5

p

4!

 !Z 2p

0

cos2 f df
Z p

0

sin5 y dy
Z 1

0

r6e�2zprdr

¼ 3

4p

� �
25z5

p

4!

 !
� p� 16

15

� �
� 6!

27z7
p

 !

¼ 6

z2
p

¼
6a2

0n2
p

Z
2p

where the Slater orbital exponent zp ¼ Z
p=npa0. It follows from eqn 13.41 that

wm ¼ �
3NAe2m0a2

0n2
p

2meZ

2

p

þNAe2m0�h2

2m2
eDE

Comment. The susceptibility is paramagnetic if DE<Z
2p �h2=3n2
pmea

2
0:

The observed susceptibility of a sample depends on the competition

between the diamagnetic and paramagnetic contributions. In free atoms,

the paramagnetic contribution is zero because we are free to choose the

z-direction as the axis of quantization of the z-component of magnetization;

as a result, j0i and jni are eigenstates of lz, and hence all off-diagonal elements

of lz are zero. The total molar susceptibility of a sample of atoms is therefore

wm ¼ �
NAe2m0

6me

� �
hr2i ð13:44Þ

provided that there are no unpaired spins. For a typical atom with

hr2i�R2, where R is the radius of the atom, and R� 0.15 nm, wm��8�
10�11 m3 mol�1. If an unpaired spin is present on each atom, the spin-only

molar susceptibility at 300 K is 1.6�10�8 m3 mol�1 (Section 13.2), which

overwhelms the diamagnetic contribution. In the absence of spin all atoms

have a non-zero but small net diamagnetic susceptibility.

py

py

px

px

∆E

x
y

z

Fig. 13.7 The model system used

for a number of illustrative

calculations in this chapter: the
degeneracy of the p-orbitals is

removed (for instance, by the

presence of neighbouring atoms).
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In the case of molecules, the axis of quantization of the orbital angular

momentum is no longer necessarily the direction of the applied field (unless

the two happen to align). Now the susceptibility is the sum of diamagnetic

and paramagnetic (TIP) terms.3 In most molecules the former dominates, and

most molecules without unpaired electron spins are diamagnetic, with molar

susceptibilities proportional to hr2i. Only when there are low-lying excited

electronic states may the orbital paramagnetic term dominate the Langevin

term and the molecule be weakly paramagnetic. If the closure approximation

(Section 6.7) is used in eqn 13.42, we obtain

wm � �
NAe2m0

6me

� �
hr2i þ NAe2m0

6m2
eDE

� �
lðl þ 1Þ�h2

� � NAe2m0

6me

� �
hr2i � lðl þ 1Þ�h2

meDE

( )

where DE is the mean excitation energy, and we have used the fact that

h0jlqj0i¼0. The paramagnetic term dominates the diamagnetic when

DE <
lðl þ 1Þ�h2

meR2
ð13:45Þ

where R2¼hr2i. With l� 1 and R�0.3 nm the right-hand side evaluates to

about 2 eV (16 000 cm�1), which corresponds to very low-lying energy levels.

One of the pitfalls in the interpretation of magnetic susceptibilities in terms

of diamagnetic and paramagnetic (TIP) contributions is that the division of the

total susceptibility into two contributions depends on the gauge of the vector

potential. It is even possible to choose a gauge that eliminates the para-

magnetic term completely! The only physically meaningful quantity is the

total magnetic susceptibility, which remains constant as the gauge is changed.

It follows that, because the gauge of the vector potential is arbitrary, so is the

division of the susceptibility into two components. The choice of gauge,

which is effectively the choice of origin of a coordinate system, is less arbit-

rary in atoms, where the nucleus is the natural centre. However, there is no

such natural centre in molecules, and so the discussion of the individual

contributions must be treated with great caution. We refer to Further reading

for a discussion of this important but subtle point.

13.8 The current density

We can obtain more insight into the nature of the two contributions to the

magnetic susceptibility by investigating the electronic currents that are

induced by the applied field. Here we shall build the discussion on the concept

of the current density, j, which is essentially the flux density introduced in

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Classical mechanics cannot account for the magnetic susceptibilities of molecules. This is the

content of a theorem courteously referred to by van Vleck as ‘Miss van Leeuwen’s theorem’, which

demonstrates that the diamagnetic and paramagnetic contributions cancel in a classical mechanical

calculation. This is a late but interesting illustration of the inadequacy of classical physics.

13.8 THE CURRENT DENSITY j 447



Section 2.7 for the flow of particles in scattering processes (eqn 2.11), but

multiplied by the electric charge:

j0 ¼ �
e

2me

� �
ðc
pcþ cp
c
Þ ð13:46Þ

(The subscript 0 signifies zero magnetic field.) To recapitulate the justification

in Section 2.7: the velocity of an electron is related to its linear momentum by

v¼p/me, and the current is �e times this velocity, or �ep/me. The current

density is obtained by weighting this expression by the probability density

of the electron at each point in space, which results in terms of the form

�ec
pc/me; the addition of the complex conjugate ensures that the current

density is real. The precise definition in eqn 13.46 ensures that (as demon-

strated for flux in Problem 2.31) the current density obeys a continuity

equation characteristic of an incompressible fluid.

In the presence of a magnetic field, the linear momentum p is replaced

wherever it occurs by pþ eA, where A is the (real) vector potential corre-

sponding to the field. Then the appropriate expression for the current density,

with (pþ eA)
 ¼�pþ eA, is

j ¼ � e

2me

� �
ðc
pc� cpc
Þ � e2

me

� �
Ac
c ð13:47Þ

We shall analyse this expression for various cases.

Consider first the current density in a molecule in which the single electron

of interest is described by a real wavefunction and there is no magnetic field

present. In this case eqn 13.46 becomes

j0 ¼ �
e

2me

� �
ðcpc� cpcÞ ¼ 0

There is zero current density at every point in the molecule. It will be recalled

that we have already seen that a molecule in an orbitally non-degenerate state

is described by a real wavefunction (or, at least, by a wavefunction that may

be chosen to be real), and that its electrons have zero orbital angular

momentum. This zero-current-density result is another way of visualizing

that lack of motion.

Now consider an electron in an orbitally degenerate state, but still with no

applied magnetic field. In this case, the wavefunction is not necessarily real. For

example, suppose the electron occupies a p-orbital in a linear molecule; then if

it has a well-defined component of orbital angular momentum about the z-axis,

its wavefunction has the form f(r,z)eilf in the cylindrical coordinates shown in

Fig. 13.8, with f a real function. For the state with l¼�1, the current density is

j0 ¼ i
e�h

2me

� �
f eifrf e�if � f e�ifrf eif� �

¼ i
e�h

2me

� ��
f eifðrf Þe�if � if eifðrfÞf e�if

�f e�ifðrf Þeif � if e�ifðrfÞf eif�

¼ e�h

me

� �
f 2ðrfÞ

x y

z

�
r

Fig. 13.8 The cylindrical coordinates

used to discuss the current density in
a molecule.
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The gradient of f is evaluated most easily by noting that f¼ arctan (y/x),

for then

rf ¼ qf
qx

� �
iþ qf

qy

� �
j þ qf

qz

� �
k ¼ �yiþ xj

x2 þ y2
¼ V

x2 þ y2
ð13:48Þ

where V is the swirling vector function of eqn 13.16 and Fig. 13.2. It follows

that the current density has the form

j0 ¼
e�h

me

� �
f 2

x2 þ y2

� �
V ð13:49Þ

This current density is proportional to V, but it varies in a more complicated

way with distance from the origin (Fig. 13.9). The flow lines of the current

density are obvious from the illustration, and they are closest together in the

region of greatest density of the orbital (after allowing for the x2þ y2 term in

the denominator). The flow lines are clockwise seen from below (from a point

z< 0), opposite in sense to the orbital angular momentum: the difference

reflects the negative charge of the electron, so charge and mass flow in

opposite directions.

Finally, we consider an orbitally non-degenerate molecule in a uniform

magnetic field. Because the vector potential is non-zero and the wavefunc-

tions are distorted by the applied field (and, as we shall see, are no longer real),

the current density is in general non-zero. We shall carry out the perturbation

to first order in b.

In the presence of a field, the wavefunctions are distorted from c0 to

c0þc(1), where

cð1Þ ¼
X

n

0
anc

ð0Þ
n an ¼ �

H
ð1Þ
n0

DEn0
ð13:50Þ

as we deduced in Section 6.4 (see eqn 6.22). The coefficients an are now

proportional to the off-diagonal matrix elements of lz (recall eqn 13.32),

which are imaginary, and so the overall wavefunction is now complex,

which is what we need for a non-zero current density. (This acquisition of

an imaginary component to the wavefunction is another example of how

the character of the perturbation is impressed on the system.) To calculate

the first-order correction to the current density, we need the distortion of the

wavefunction only to first order in the perturbation, and so for this

calculation we do not need to trouble about the role of H(2). Similarly,

because the vector potential is already first order in the induction b, in the

expression Ac
c we can replace the wavefunctions by c0. It follows that to

first order,

j ¼ � e

2me

� �
ðc0 þ cð1ÞÞ
pðc0 þ cð1ÞÞ � ðc0 þ cð1ÞÞpðc0 þ cð1ÞÞ

n o

� e2

me

� �
Ac2

0

¼ � e

2me

� �
c0pcð1Þ þ cð1Þ
pc0 � c0pcð1Þ
 � cð1Þpc0

n o
� e2

me

� �
Ac2

0

C
u

rr
en

t 
d

en
si

ty
, j

Fig. 13.9 The current density in the

xy-plane for a system like that shown
in Fig. 13.7 but for degenerate

orbitals.
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In the final line, we have used the fact that c0 is real ðc
0 ¼ c0Þ and have

retained only first-order terms. Because the cð0Þn are also real (but the coeffi-

cients an are not), this expression becomes

j ¼ �i
e�h

2me

� �X
n

0ðan � a
nÞðcð0Þn rc0 � c0rcð0Þn Þ �
e2

me

� �
Ac2

0 ð13:51Þ

The natural apparent division of this expression is into a diamagnetic current

density, jd, which depends only on the ground-state wavefunction, and a

paramagnetic current density, jp, which depends on the admixture of excited

states:

j ¼ jd þ jp
jd ¼ � e2

me

� �
Ac2

0

jp ¼ �i
e�h

2me

� �X
n

0ðan � a
nÞðc
ð0Þ
n rc0 � c0rcð0Þn Þ

8>>><
>>>:

ð13:52Þ

However, we stress again that, while this might seem a natural division of the

current density, it is only natural for the gauge of the vector potential that

we happen to have chosen. A gauge transformation of the kind specified in

eqn 13.27 will result in a change in the diamagnetic current density by the

addition of a term proportional to lðrf Þc2
0, and so this contribution to the

current density can be varied almost at will. Only the overall current density

has a real physical significance, and any division of it into contributions, while

convenient, is arbitrary.

13.9 The diamagnetic current density

When the applied field lies in the z-direction, the vector potential in the

Coulomb gauge is given by eqn 13.23, so

jd ¼ � e2
b

2me

� �
c2

0V ð13:53Þ

Although this current density has the characteristic swirling form of V, it is

swirling in the opposite direction (note the negative sign in this expression)

and its shape is modified by the presence of the factor c2
0. If, for example,

the ground-state wavefunction is a hydrogen 1s-orbital, the explicit form of

this current density is

jd ¼ � e2
b

2pmea3
0

� �
ð�yiþ xjÞe�2r=a0 ð13:54Þ

This current density is sketched in Fig. 13.10. The magnitude of the current

density is proportional to the magnetic induction b, and its magnitude is

greatest in the equatorial plane of the atom and at a radius of 1
2a0. On this circle

even a field as small as 1� 10�4 T produces a current density of 80 MA m�2.

This enormous current density is brought into perspective when expressed

on an atomic scale, for it corresponds to about 0.5 electrons pm�2 ms�1.

When the magnetic field is applied perpendicular to the axis of a p-orbital,

the shapes of the contours are more complicated. For a hydrogenic

B

Fig. 13.10 The current density in
the xy-plane for a ground-state

hydrogen atom in a magnetic field.
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2px-orbital of the form c0¼Nr sin y cosf e�r/2a0, the diamagnetic current

density is

jd ¼ � e2
b

2pmea3
0

� �
ð�yiþ xjÞN2r2 sin2 y cos2 f e�r=a0 ð13:55Þ

The direction of the current density at each point is still determined by the

factor (�yiþxj), but the details are much more complicated (Fig. 13.11).

The point to note is that the current density is zero at the angular node of

the wavefunction, so there is no flow from one lobe of the orbital to the other.

In summary, the central feature of the diamagnetic current density is that

it is a circulating distortion confined to the zone occupied by the orbital, and it

vanishes where the orbital amplitude vanishes (at its nodes).

13.10 The paramagnetic current density

We can discover the principal features of the paramagnetic current density by

focusing on a simple model system consisting of two p-orbitals with their

degeneracy removed (as in Fig. 13.7). The magnetic field is applied along the

z-axis, and we shall need the following matrix elements (see Example 13.2):

hpyjlzjpxi ¼ i�h hpxjlzjpyi ¼ �i�h ð13:56Þ

The coefficient in the perturbation expression for the admixture of the

2py-orbital into the 2px-orbital is therefore

aðpyÞ ¼
gelz;n0b

DE
¼ �i

mBb

DE
ð13:57Þ

where, as usual, ge is the magnetogyric ratio of the electron and mB is the Bohr

magneton. The paramagnetic current density therefore consists of a single

term:

jp ¼� i
e�h

2me

� �
aðpyÞ � aðpyÞ

� �

pyrpx � pxrpy

� �

¼� e�hmBb

meDE

� �
pyrpx � pxrpy

� �

The remaining work is to evaluate the gradients:

pyrpx � pxrpy ¼ f sin y sinf rf sin y cosf� f sin y cosf rf sin y sinf

¼ f 2sin2yðsinf rcosf� cosf r sinfÞ
¼ f 2sin2yð�sin2f rf� cos2f rfÞ ¼ �f 2sin2y rf

Therefore, because we have already evaluated rf (eqn 13.48), the current

density is

jp ¼ e�hmBb

meDE

� �
f 2 sin2 y
x2 þ y2

 !
V ð13:58Þ

and the ubiquitous swirling vector function V is back on stage again. This

expression is the same as that for the current density in the degenerate case,

Fig. 13.11 The diamagnetic current

density in the xy-plane for an

electron in a hydrogenic 2px-orbital

with a magnetic field applied in the
z-direction.
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eqn 13.49, apart from the presence of the factor mBb=DE and

sin2y. Therefore, for the xy-plane we can write

jp ¼ mBb

DE

� �
j0 ð13:59Þ

We can now construct a picture of the induced paramagnetic current

density. Its form is exactly the same as the current density that exists when the

orbitals are degenerate and the electron is in a state of well-defined orbital

angular momentum, the only difference being the magnitude of the current

density. The factor mBb=DE represents the degree to which the perturbation

(of strength mBb) can successfully overcome the energy separation (DE),

which tends to lock the electron in its original location. For b � 1 T, the ratio

works out to be about 0:5=ð~nn=cm�1Þ, where the energy separation has been

expressed as a wavenumber. Hence, the ratio is very small for most systems

and the paramagnetic current density is very much smaller than the dia-

magnetic current density.

It should be noted that the diamagnetic and paramagnetic current densities

are in opposite directions around the direction of the applied field. This dif-

ference accounts for the opposite signs of the corresponding susceptibilities.

The diamagnetic current acts as a source of magnetic field that opposes the

applied field and so reduces the induction within the sample. The para-

magnetic current generates a magnetic field that augments the applied field.

Magnetic resonance parameters

Much interest in the magnetic properties of molecules centres on the para-

meters encountered in magnetic resonance. In this section we indicate how

these parameters, which include shielding constants, g-values, spin–spin

coupling constants, and hyperfine coupling constants, are related to a variety

of molecular characteristics and, to some extent, can be rationalized in terms

of the currents induced in the electronic distributions of molecules. The basic

principles of magnetic resonance will be assumed to be known.

13.11 Shielding constants

Different groups of nuclei in a molecule have resonance frequencies that

reflect the fact that they experience different local magnetic fields, B loc. To a

good approximation, the difference between the local and applied fields is

proportional to the applied field, so we can write

Bloc ¼ B� sB ð13:60Þ

where s is called the shielding constant. Our task in this section is to see how

the currents induced by the applied field modify the local field and hence

give rise to the chemical shift. The strategy is to set up the perturbation

hamiltonian that describes a system in which there are two sources of
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magnetic field (the applied field and the field arising from the magnetic

nucleus of interest), then to calculate the energy of the system in the presence

of both fields, and finally to express the energy in terms of a local field.

Consider a molecule containing a single magnetic nucleus (and any number

of other non-magnetic nuclei). The uniform, applied magnetic field is

described by the vector potential Aex ¼ 1
2B� r (where the subscript ‘ex’

denotes an externally applied field). The magnetic field arising from the

nucleus is described by a vector potential Anuc. Our first task is to determine

the latter’s form.

The classical expression for the magnetic field generated by a magnetic

dipole is4

B ¼ � m0

4pr3

� �
m� 3r r �mð Þ

r2

� �
ð13:61Þ

This field is not uniform (Fig. 13.12). We can therefore expect the corres-

ponding vector potential to be more complicated than those we have con-

sidered so far. Nevertheless, it is not much more complicated, and we confirm

in Further information 21 that

Anuc ¼
m0

4pr3

� �
m� r ð13:62Þ

The magnetic moment of a nucleus is related to its spin angular momentum

I by m¼ gNI, where gN is the magnetogyric ratio of the magnetic nucleus

(an empirical quantity related to the internal structure of the nucleus).

Therefore, the vector potential for a nuclear dipole field is

Anuc ¼
gNm0

4pr3

� �
I � r ð13:63Þ

The divergence of this vector potential is zero (see Problem 13.18).

The hamiltonian for the molecule in a magnetic field is constructed in

the usual way by replacing p wherever it occurs by pþ eA, where now

A¼AexþAnuc because the electrons are exposed to both sources of mag-

netic field. It proves sensible to proceed in two stages, first to consider the

molecule with no applied field, and then to switch on the field. Therefore,

we begin by replacing p by pþ eAnuc. The hamiltonian becomes (by analogy

with eqn 13.31)

H ¼ Hð0Þ þHð1Þ þHð2Þ
Hð1Þ ¼ e

2me
p � Anuc þ Anuc � pð Þ

Hð2Þ ¼ e2

2me
A2

nuc

8><
>: ð13:64Þ

We shall disregard the contributions to the energy that are quadratic in the

nuclear magnetic moment, and therefore ignore H(2). Moreover, because the

vector potential has zero divergence, p �Anuc¼Anuc � p; so the first-order

hamiltonian is

Hð1Þ ¼ e

me

� �
Anuc � p ð13:65Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. See Further reading for references.

z

B

Fig. 13.12 The magnetic field

arising from a point magnetic

dipole.
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Now we calculate the first-order correction to the energy:

Eð1Þ ¼ h0jHð1Þj0i ¼ e

me

� �Z
c
Anuc � pc dt

For reasons that will shortly become clear, we shall express the integral as the

sum of two identical terms:Z
c
Anuc � pc dt ¼ 1

2

Z
c
Anuc � pc dtþ 1

2

Z
c
Anuc � pc dt

¼ 1
2

Z
Anuc � c
pc dtþ 1

2

Z
Anuc � c
pc dt

The second term can be manipulated by invoking the hermiticity of the linear

momentum operator and the reality and zero divergence of the vector

potential. There are three steps:

(1) Because p is hermitian, we can writeZ
Anuc � c
pc dt ¼

Z
ðp
 � Anucc


Þc dt

(2) Because p is a differential operator, and d(fg)/dx¼ (df/dx)gþ f(dg/dx),Z
ðp
 � Anucc


Þc dt ¼
Z
ðp
 � AnucÞc
c dtþ

Z
Anuc � ðp
c
Þc dt

(3) Finally, because r �A¼0, the first term on the right is zero.

Overall, therefore,Z
Anuc � c
pc dt ¼

Z
Anuc � ðp
c
Þc dt

It follows that the first-order correction to the energy is

Eð1Þ ¼ e

2me

� �Z
Anuc � ðc
pcþ cp
c
Þ dt

However, we can now recognize the current density (eqn 13.46), and so we

can write this expression in the very succinct form

Eð1Þ ¼ �
Z

Anuc � j0 dt ð13:66Þ

When the external field is applied, the prescription to replace p by pþ eAex

results in the conversion of j0 into j, the current density in the presence of the

applied field. Then

Eð1Þ ¼ �
Z

Anuc � j dt ð13:67Þ

This result shows very clearly how shifts in the energy of a magnetic

nucleus arise from the coupling of its magnetic dipole (which occurs

in the vector potential) with the currents that may exist in the

electronic distribution (which may have been induced by an applied magnetic

field).
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Insertion of the explicit form for the nuclear vector potential (given

in eqn 13.63) and use of the vector identity (a� b) � c¼ a � (b� c) turns

eqn 13.67 into

Eð1Þ ¼ � m0gN

4p

� �Z I � rð Þ � j
r3

dt ¼ � m0gN

4p

� �
I �
Z

r � j

r3
dt ð13:68Þ

Because the energy of a magnetic dipole in a magnetic field B is �m �B, we

can interpret this energy as the interaction of a nuclear dipole gNI with a local

contribution to the magnetic field given by

Bloc ¼
m0

4p

� �Z r � j

r3
dt ð13:69Þ

Example 13.3 The evaluation of a coupling energy

A beam of electrons of number density n travels in the z-direction with linear

momentum k�h at a perpendicular distance b from a neutron (Fig. 13.13).

Calculate the energy of interaction between the neutron magnetic moment and

the electron beam.

Method. This is a one-dimensional problem, so dt¼ dz. The flux density of a

particle beam was calculated in Section 2.7, and it may readily be converted

into a current density by multiplication by �e. For normalization, suppose

that the beam lies in the range � 1
2L< z< 1

2L, and let L ! 1 at the end of the

calculation. The number density of electrons is related to their actual number

by n ¼ Ne=L. Note from Fig. 13.13 that only the x-component of r� k is

non-zero.

Answer. The flux density is Nek�hjAj2=me; for the normalization in a region of

length L, jAj2¼ 1/L. The current density is therefore

jz ¼ �
eNek�h

meL
¼ �nek�h

me

Then, by making use of the relation k� r¼�ir siny (see Fig. 13.13),

we find

Eð1Þ ¼ � nek�hgNm0

4pme

� �
Ix

Z
sin y
r2

dz

To evaluate the integral we write sin y¼ b/r and r¼ (b2þ z2)1/2, which implies

that

Eð1Þ ¼ � nek�hgNm0

4pme

� �
Ixb

Z L=2

�L=2

ðb2 þ z2Þ�3=2dz

¼ � nek�hgNm0

4pme

� �
Ixb

b2

L

ðb2 þ 1
4L

2Þ1=2

(To evaluate the integral we have used a standard form.) Finally, we take the

limit L ! 1; the last factor becomes 2 and the final result is

Eð1Þ ¼ � nek�hgNm0

2pmeb

� �
Ix

–L /2
0

L /2 k
z

b

�

r

i

i

Fig. 13.13 The coordinates used
in the calculation in Example 13.3

in which a beam of electrons

travels from the left to the right.
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Comment. If the energy of interaction is written as Eð1Þ ¼ �gN I �B, then we

can interpret the interaction as arising between the magnetic moment of the

neutron and a field of induction b in the x-direction, where

b ¼nek�hm0

2pmeb

A neutron has been used in setting up the calculation to avoid the effects of

charge on the path of the electron beam.

The effect of the external magnetic field is to induce a current density in the

electron distribution that is given by

j ¼ � e

2me

� �
c
pc� cpc
ð Þ � e2

me

� �
Aexc
c ð13:70Þ

where the wavefunctions are those in the presence of the external field,

and this current density is the source of the local magnetic field in eqn 13.69.

If we identify the contribution to the local field with �sb, as in eqn 13.60,

and identify a term proportional to the applied field b, then we shall be able

to identify an expression for the shielding constant s.

To make progress with this programme, we decompose the current density

into diamagnetic and paramagnetic contributions (this division is arbitrary,

on account of the arbitrary character of the gauge, as explained earlier), and

make a corresponding (arbitrary) division of the shielding constant:

s ¼ sd þ sp
sd
b ¼ � m0

4p

Z
r � jd

r3
dt

sp
b ¼ � m0

4p

Z
r � jp

r3
dt

8>><
>>:

ð13:71Þ

We have seen that the two components of current density travel in opposite

directions, and so the two components of the shielding constant will have

opposite signs.

13.12 The diamagnetic contribution to shielding

The diamagnetic contribution to the current density is given by eqn 13.52.

For a field applied in the z-direction,5

r � jd ¼ � e2

me

� �
r � Aexc

2
0

¼ � e2
b

2me

� �
c2

0

i j k

x y z

�y x 0

�������

�������
¼ � e2

b

2me

� �
c2

0 �xzi� yzj þ ðx2 þ y2Þk
� �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Great care should be taken with the application of these formulae because they apply to a

single choice of gauge in which the r that appears in the vector potential for the external field

originates from the same location as the r for the vector potential of the nuclear field. Refer to the

technical literature for a discussion of this point.
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The local field therefore has components in all three directions. We are

interested only in the component along the z-direction (the coefficient of k),

and so

sd
zzb ¼

e2m0b

8pme

� �Z
x2 þ y2

r3

� �
c2

0 dt

It follows that we can identify the shielding constant in the z-direction as

sd
zz ¼

e2m0

8pme

� �Z
x2 þ y2

r3

� �
c2

0 dt ð13:72Þ

The mean shielding constant for a freely rotating molecule is

s¼ 1
3(sxxþ syyþszz), and because (x2þ y2)þ (y2þ z2)þ (z2þ x2)¼2r2, we

arrive at the Lamb formula:

sd ¼ e2m0

12pme

� �
1

r

� �
ð13:73Þ

The magnitude of the diamagnetic contribution to the shielding therefore

depends on the average distance of the electrons from the nucleus in question,

which is an easy quantity to estimate for atoms. For the ground state of the

hydrogen atom, for instance, h1/ri¼1/a0, and insertion of the numerical

values gives sd¼1.8� 10�5.

Example 13.4 The calculation of shielding constants

In a model of a benzene molecule, an electron is confined to a two-dimensional

disc-like region of radius R with an approximately uniform probability dis-

tribution. A magnetic dipole lies vertically above the centre of the disc at a

height h (Fig. 13.14). Calculate the diamagnetic contribution to the shielding

constant when the field is applied perpendicular to the disc.

Method. For a field in the z-direction, we use eqn 13.72 with x2þ y2¼ a2 and

r2¼ h2þ a2. The probability density is uniform, so c0
2¼ 1/pR2.

Answer. Substitution of these relations into eqn 13.72 gives

sd
zz ¼

e2m0

8pme

� �
1

pR2

� �Z 2p

0

df
Z R

0

a2

a2 þ h2ð Þ3=2

( )
a da

¼ e2m0

8pme

� �
1

pR2

� �
ð2pÞ R2 þ 2h2

R2 þ h2ð Þ1=2
� 2h

( )

¼ e2m0

4pmeR2

� �
R2 þ 2h2

R2 þ h2ð Þ1=2
� 2h

( )

The behaviour of this function as h increases is shown in Fig. 13.15 .

Comment. When h¼ 0 and the nucleus lies in the centre of the disc,

the shielding constant is

sd
zz ¼

e2m0

4pmeR

h

R

r

a
x

y

Fig. 13.14 The model used in the

calculation in Example 13.4: the
tinted disc represents the region of

uniform electron density.
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�d zz
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e
2 �

0/
4π

m
eR

)

Fig. 13.15 The diamagnetic

shielding constant for the system

illustrated in the preceding diagram
and its variation with height above

the plane of the disc.
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Substitution of numerical values gives sd
zz ¼ 2:8� 10�6/(R/nm), so a disc the

radius of an atom (about 0.1 nm) gives a shielding constant of about 3� 10�5;

for benzene, R� 0.13 nm, sd
zz � 2� 10�5. Note that the shielding constant

decreases as R increases because the currents induced by the applied field are

increasingly far from the nucleus.

13.13 The paramagnetic contribution to shielding

The paramagnetic contribution to the shielding constant arises from the

interaction of the nucleus with the field generated by the paramagnetic cur-

rents like those illustrated in Fig. 13.9, and therefore it depends on the ability

of the applied field to mix excited states into the ground state. It follows from

the earlier discussion that in free atoms and atomic ions there will be no

paramagnetic contribution because the orbital angular momentum operator

lz is diagonal in the eigenstates of the atom. In molecules, however, there can

be a paramagnetic contribution (except parallel to the axis of linear mole-

cules), and in many cases it is dominant.

The strategy for a model calculation involves substituting an expression for

the paramagnetic current density into eqn 13.71 for the shielding constant,

and then extracting the term that is both linear in the applied field and parallel

to it. The coefficient of b is then identified as �sp
zz. For instance, if we use

the first-order perturbation expression derived in eqn 13.52, we would obtain

�spB ¼ em0

8pme

� �X
n

0
an � a
n
� � Z r � ðcð0Þn pc0 � c0pcð0Þn Þ

r3
dt

We recognize that r�p¼ l occurs in the integrand, so a simpler version of this

expression is

�spB ¼ em0

8pme

� �X
n

0
an � a
n
� �

n
l

r3

����
����0

� �
� 0

l

r3

����
����n

� �� �

At this point we make use of the fact that the orbital angular momentum

operator is hermitian and imaginary and that its off-diagonal elements

between real states are imaginary. Then6

0
l

r3

����
����n

� �
¼ n

l

r3

����
����0

� �

¼ � n

l

r3

����
����0

� �

and so

spB ¼ � em0

4pme

� �X
n

0
an � a
n
� �

n
l

r3

����
����0

� �
ð13:74Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. You might worry about the possible lack of commutation of r�3 and lq, and hence the

ambiguity in the meaning of lq/r3: is it lqr�3 or r�3lq? However, we have seen that lq is a generator of

infinitesimal rotations about the q-axis, and as r is invariant under rotations, it follows that lq
commutes with r and consequently with any function of r. If you do not believe that argument,

evaluate [lq,r] explicitly.
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Now we introduce the mixing coefficients an¼�Hn0
(1)/DEn0, where H(1) is

the perturbation due to the applied field. Because the field lies in the

z-direction, we have H
ð1Þ
n0 ¼ �gelzb, so

an � a
n ¼
geb

DEn0

� �
lz;n0 � l
z;n0

� �
¼ � 2geb

DEn0

� �
lz;n0

We have used hermiticity to write lz;n0¼ l
z;0n and then the imaginary

character of lz to write l
z;0n¼�lz;0n.

Finally, we can tie everything together. We require the z-component of the

local field, so we can write

sp
zz ¼

egem0

2pme

� �X
n

0 lz;0nðr�3lzÞn0

DEn0

Then, with ge¼�e/2me, this expression becomes

sp
zz ¼ �

e2m0

4pm2
e

� �X
n

0 lz;0nðr�3lzÞn0

DEn0
ð13:75Þ

and the mean value for a freely tumbling molecule is

sp ¼ � e2m0

12pm2
e

� �X
n

0 l0n � ðr�3lÞn0

DEn0
ð13:76Þ

This, at last, is the expression we have been seeking.

The sign of sp is negative, which reflects an increase in flux density at the

nucleus (bloc>b). A simple interpretation of the form of the expression is

that the factor gelzb/DE represents the extent to which a current is induced by

the applied field, and the other factor, lz/r
3, represents the transmission of the

current magnetically to a dipole at a distance r away. If we apply the closure

approximation, with l � l replaced by l(lþ 1)�h2 and l�1, a very approximate

form of eqn 13.76 is

sp � � e2m0�h2

6pm2
eDE

1

r3

� �
� � e2m0�h2

6pm2
e R3DE

ð13:77Þ

where we have replaced h1/r3i by 1/R3. It follows that

sp

sd

����
���� � 2�h2

meR2DE

With DE equivalent to about 30 000 cm�1 and R�0.5 nm, this ratio works

out to about 16, which suggests that paramagnetic contributions to shielding

are of greater importance than diamagnetic contributions when low-lying

excited states are available because the 1/r3 term magnifies the effects of

currents when they lie close to the nucleus, but there is no such magnification

effect for an external observer measuring magnetic susceptibility.

13.14 The g-value

The g-value in ESR (EPR) plays a similar role to the shielding constant in

NMR, for it takes into account the presence of local fields induced by the
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applied field. The perturbation hamiltonian is changed from its ‘vacuum’

value of �gege s �B to

Hð1Þ ¼ �gges �B ð13:78Þ

Although we could proceed in much the same way as for the shielding

constant, it is instructive to take a different route to find the relation between

g and molecular parameters, and to introduce the concept of a spin hamiltonian,

a concept widely used in ESR. The rationale behind introducing the spin

hamiltonian is that whereas the true hamiltonian for an electron involves

a lot of different operators, it may be possible to express it as an effective

hamiltonian in which the effects of all the operators other than the spin have

been collected into a few parameters. For example, the true hamiltonian for

a radical in a magnetic field includes the following terms:

Hð1Þ ¼ �geges �Bþ ll � s� gel �B ð13:79Þ

representing the effect of the applied field on the spin and orbital angular

momenta (the first and third terms) and the spin–orbit coupling (the second

term). We are simplifying the treatment of the spin–orbit interaction, which

should be written as in eqn 7.17 with a strength that depends on r, by

replacing the true operator with a parameter l that expresses the strength

of the interaction; in the notation of Section 7.4 (see eqn 7.19), l¼ hcz/�h2.

The spin hamiltonian absorbs the effects of the second and third terms into

the single parameter g, and eqn 13.78 is an example of a spin hamiltonian.

To see how this works in practice, suppose that the eigenstates of the

unperturbed hamiltonian H(0) are denoted jni, with n¼0 the ground state.

The first-order correction to the energy is the expectation value of H(1) within

the orbitally non-degenerate (real) ground state with the field parallel to z:

Eð1Þ ¼ �gegeh0jszj0ibþ lh0jl � sj0i � geh0jlzj0ib
¼ �gegems�hb

ð13:80Þ

The second and third terms are zero because the expectation value of lq is zero

for real states. The same expression can be obtained for the first-order cor-

rection to the energy by introducing a hamiltonian

H
ðspinÞ
1 ¼ �gegeszb

and operating on the spin states alone. The spin hamiltonian is starting to

emerge.

Now consider the energy correction to second order in the perturbation.

The starting point is the perturbation expression

Eð2Þ ¼
X

n

0 0h jHð1Þ nj i nh jHð1Þ 0j i
E
ð0Þ
0 � E

ð0Þ
n

When the three-term perturbation hamiltonian (eqn 13.79) is inserted, there

will be nine terms. However, we are looking for a contribution that can be

expressed like eqn 13.78, and therefore are interested only in terms that

are bilinear in the spin and applied field (that is, of the form s . . . B). Only the

cross-terms between the spin–orbit coupling and the orbital interaction with
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the applied field have the right form, and so we can confine attention to the

following expression:

Eð2Þ ¼ �lgeb

X
n

0 h0jlzjnihnjl � sj0i þ h0jl � sjnihnjlzj0i
E
ð0Þ
0 � E

ð0Þ
n

(In a more precise calculation, the spin–orbit coupling parameter x(r), which

is related to z and therefore to l, would still be inside the integrals that appear

in the numerator.) Furthermore, in this simple introduction, we are interested

only in an effective hamiltonian containing the operator sz for the spin,

because we are assuming that the local field is parallel to the applied field

(in advanced work that assumption is not made). Therefore, with DEn0¼
En

(0)�E0
(0), this expression simplifies to

Eð2Þ ¼ lgeb

X
n

0 lz;0nlz;n0ms�hþms�hlz;0nlz;n0

DEn0

¼ 2lgebms�h
X

n

0 lz;0nlz;n0

DEn0

Exactly the same contribution to the energy is obtained if we use the

following operator on the spin states:

HðspinÞ ¼ 2lgeb

X
n

0 lz;0nlz;n0

DEn0

 !
sz ð13:81Þ

This is the second-order contribution to the spin hamiltonian.

It follows from the preceding discussion that the total spin hamiltonian is

the effective operator

HðspinÞ ¼ H
ðspinÞ
1 þH

ðspinÞ
2 þ � � �

¼ �gegebsz þ 2gelb
X

n

0 lz;0nlz;n0

DEn0

 !
sz þ � � �

¼ �gzzgebsz

ð13:82Þ

with

gzz ¼ ge � 2l
X

n

0 lz;0nlz;n0

DEn0

 !
ð13:83Þ

The quantity of interest for rapidly tumbling species in fluid solution is the

mean value g¼ 1
3(gxxþ gyyþ gzz), which is

g ¼ ge þ dg dg ¼ �2
3l

X
n

0 l0n � ln0

DEn0

 !
ð13:84Þ

Example 13.5 The estimation of a g-value

Consider the model system illustrated in Fig. 13.7, in which a single unpaired

electron occupies a px-orbital and there is an unoccupied py-orbital an energy

DE above it. Calculate the g-value when the magnetic field is applied in the

z-direction.
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Method. We use eqn 13.83. The matrix elements required have already

been evaluated (in Example 13.2): they are hpyjlzjpxi¼ i�h and its hermitian

conjugate.

Answer. Substitution of the matrix elements into eqn 13.83 gives

gzz ¼ ge � 2l
pxh jlz py

�� 
py

� ��lz pxj i
DE

¼ ge �
2l�h2

DE

Comment. When the field is applied along the x-axis, the off-diagonal matrix

elements of lx are zero, and the g-value has its free-spin value.

Self-test 13.5. Calculate the shift when an electron occupies a dxy-orbital with

an empty dx2�y2 -orbital at an energy DE above it. What difference would

there be if there were also p-orbitals at a similar energy above the ground-state

orbital?

The extent of the deviation of the g-value from the free-spin value increases

with increasing spin–orbit coupling constant and with decreasing excita-

tion energy. The factor b/DE (in eqn 13.81) represents the ease with which the

applied field can mix in excited states and therefore provide a pathway for the

electron to circulate through the molecule and acquire orbital angular

momentum (Fig. 13.16). This orbital angular momentum is then transmitted to

the spin as an effective magnetic field through the agency of spin–orbit coupling

(the term l in eqn 13.81). As the excitation energy decreases, the currents can be

stirred up more effectively by a given magnetic field, and as the spin–orbit

coupling increases, a given current is experienced by the spin as a stronger

magnetic field.

13.15 Spin–spin coupling

There are three types of spin–spin coupling in molecules:

1. Electron–electron coupling, which gives rise to the fine structure of

triplet-state ESR spectra.

2. Electron–nucleus coupling, which gives rise to the hyperfine structure of

ESR and (much less importantly) of electronic spectra.

3. Nucleus–nucleus coupling, which gives rise to the fine structure of NMR

spectra.

We shall deal briefly with the first of these topics, and then introduce

electron–nucleus coupling, largely as a foundation for the principal topic of

this section, which is spin–spin coupling in NMR.

One mechanism for the interaction between electron spins is the direct

dipole–dipole interaction of their magnetic moments. The hamiltonian for the

interaction has the form �m �B with B given in eqn 13.61. If the electron

spins are aligned along the z-direction, the interaction simplifies to

H ¼ m0g2
eg

2
e

4pr3

� �
ð1� 3 cos2 yÞs1zs2z ð13:85Þ

B

�

s

l

Fig. 13.16 Two steps are involved
in the deviation of the electron g-

factor from its free-spin value: the

applied magnetic field induces orbital

angular momentum in the electron,
and that orbital angular momentum

is transmitted to the spin by the

spin-orbit coupling (denoted l here).
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where r is the separation of the electrons. The energy of their interaction is

therefore

E ¼ m0g2
em

2
B

4p

� �
1� 3 cos2 y

r3

� �
ms1ms2 ð13:86Þ

In a rapidly tumbling molecule in fluid solution, only the average value

of this expression would be observed. However, the average value of

(1�3 cos2 y)/r3 over a sphere of radius r is zero, and so there is no net

dipole–dipole interaction energy in a rapidly tumbling molecule. The

interaction energy does not average to zero in a solid, and so investigating

the energy of interaction by solid-state triplet ESR is a way of exploring the

distribution of two electrons.

Another mechanism of interaction between electron spins has the same

directional dependence as the dipolar interaction. Each of the two electrons

interacts with its own orbital angular momentum through a spin–orbit

coupling term of the form xisi � li. When these perturbations are used in

second-order perturbation theory, they give rise to a second-order contribu-

tion that can be modelled by a term in the spin hamiltonian that is bilinear

in the two spin operators (s1 . . . s2). This term turns out to have the form

s1 � s2� 3(s1 � r)(s2 � r)/r2, exactly as for the direct magnetic dipole interaction

(but not with the latter’s simple 1/r3 dependence). It can be thought of as

expressing the energy of interaction of two electron spins that are commu-

nicating via their orbital angular momenta: a spin stirs up its own orbital

angular momentum, which is experienced by the other electron, which in turn

transmits its induced orbital angular momentum to its spin via its own spin–

orbit coupling (Fig. 13.17). The direct dipole–dipole mechanism dominates

this indirect route in most inorganic species.

13.16 Hyperfine interactions

The term ‘hyperfine interaction’ denotes any interaction between electrons

and nuclei other than the Coulombic interaction between their point elec-

tric charges. The interaction may be electric or magnetic. The former

includes the interaction between an electric quadrupole moment of the

nucleus and the electric field gradient arising from anisotropies in the

electron distribution in the molecule. The latter includes the magnetic

interactions, such as that between the magnetic dipole moments of the

nucleus and the surrounding electrons. We shall concentrate on these

magnetic interactions.

There are two types of magnetic interaction between electron and nuclear

spins. One is a direct dipolar interaction between the two magnetic moments

(Fig. 13.18). The hamiltonian describing this interaction has the form that by

now should be familiar:

Hhf ¼
m0gegegN

4pr3

� �
s � I � 3ðs � rÞðr � IÞ

r2

� �
ð13:87Þ

The average value of a function

f(y) over a sphere is proportional toR p
0 f ðyÞsin y dy.

� �H (1)
dip-dip

Fig. 13.17 One contribution to

electron spin–spin coupling in triplet
molecules arises from the spin–orbit

coupling, which converts spin

angular momentum into orbital

angular momentum, and the
coupling of these two orbital

moments by a dipole–dipole

interaction.

s

I

r

(a)

sz

Iz

�
r

(b)

Fig. 13.18 (a) The general relative
orientation of two spin angular

momenta (and their associated

magnetic moments) used in the
formulation of the dipolar interaction

hamiltonian and (b) the simplified

version when the two angular

momenta are parallel.

13.16 HYPERFINE INTERACTIONS j 463



where r is the electron–nucleus distance. When the electron and nuclear spins

are so strongly aligned by an external field that only their z-components are

of interest, this expression simplifies to

Hhf ¼
m0gegegN

4pr3

� �
ð1� 3 cos2 yÞszIz ¼ �

m0gemBmNgN

�h24pr3

� �
ð1� 3 cos2 yÞszIz

where the Bohr magneton mB is

mB ¼
e�h

2me
¼ �ge�h

and the analogous nuclear magneton mN is

mN ¼
e�h

2mp

(Both are positive quantities.) The first-order contribution to the energy is the

expectation value of this hamiltonian for the ground-state wavefunction:

Ehf ¼ �
m0gemBmNgN

4p

� � 1� 3 cos2 y
r3

� �
msmI ð13:88Þ

and �hgN¼ gNmN. If the orbital occupied by the electron is an s-orbital, the

angular integration can be performed immediately, with the result that the

integral over 1�3 cos2y vanishes:Z p

0

ð1� 3 cos2 yÞ sin ydy ¼
Z 1

�1

ð1� 3x2Þdx ¼ ðx� x3Þj1�1 ¼ 0

We can conclude that an electron in an s-orbital has no net magnetic

interaction with its nucleus. However, if the electron occupies some other

type of orbital, then its interaction is non-zero. For instance, if it occupies

a pz-orbital, then it has the form

c ¼ 3

4p

� �1=2

RðrÞ cos y

In this case,

1� 3 cos2 y
r3

� �
¼ 3

4p

� �Z 2p

0

df
Z p

0

ð1� 3 cos2 yÞ cos2 y sin y dy

�
Z 1

0

1

r3

� �
RðrÞ2r2dr

¼ 3

4p

� �
� 2p� � 8

15

� �
� 1

r3

� �
¼ � 4

5

1

r3

� �
ð13:89Þ

where

1

r3

� �
¼
Z 1

0

1

r3

� �
R2r2dr ¼

Z 1
0

R2

r
dr ð13:90Þ

The radial integral, the expectation value of 1/r3, can be evaluated by

substituting the appropriate expressions for the atomic orbitals (see, for

example, Table 3.2 for hydrogenic orbitals or Table 7.1 for STOs).

Although the dipolar interaction is non-zero for a specific orientation of

the field with respect to the orbital, when the molecule is tumbling we have
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to take an orientational average to obtain the mean interaction energy.

This mean is zero. So, for rapidly tumbling radicals in solution, there is no net

dipolar hyperfine interaction energy.

The second hyperfine interaction mechanism we should consider is the

Fermi contact interaction. It is only an approximation that the magnetic field

arising from a nucleus is that of a point magnetic dipole. In reality, the nucleus

has a finite extent, and it can be treated as a point dipole only when the point

of observation is far away. This approximation is valid for all orbitals

other than s-orbitals, because electrons in orbitals with l 6¼0 are never found

at the nucleus itself. However, an electron in an s-orbital can be found at the

nucleus, and consequently the point dipole approximation is invalid. That

there is a non-zero average magnetic field in this case is illustrated in

Fig. 13.19. A quantitative demonstration that there is a non-zero field is

developed in Further information 21, which takes the vector potential in

eqn 13.62 and shows that it implies that the hamiltonian contains the term

Hhf ¼ �2
3 gegegNm0dðrNÞs � I ð13:91Þ

where d(rN) is the �-function, a function that has the following property:Z
f ðxÞdðxÞdx ¼ f ð0Þ ð13:92Þ

That is, it picks out of f(x) its value at x¼0. It follows that when we evaluate

the first-order correction to the energy, we find

Eð1Þ ¼ �2
3gegegNm0

�Z
c
dðrNÞc dt

�
h0js � Ij0i

¼ �2
3gegegNm0jcð0Þj2msmI�h

2

where jc(0)j2 is the probability density for finding the electron at the nucleus

and the ket j0i now refers only to the spin state. The same first-order energy is

obtained by adding to the spin hamiltonian a term

HðspinÞ ¼ �2
3gegegNm0jcð0Þj2s � I ð13:93Þ

For a 1s-orbital of hydrogen, jc(0)j2¼1/(pa0
3). If the external field is also so

strong that only the z-components of the spins are important (which is the

case if the off-diagonal matrix elements of the term in eqn 13.93 are much

smaller than the energy separations of the spin states in a strong externally

applied field), this term becomes

HðspinÞ ¼ � 2

3pa3
0

� �
gegegNm0Izsz ð13:94Þ

The eigenvalues of this effective operator (in the sense that it operates only on

the spin states of the system) are

Eð1Þ ¼ 2

3pa3
0

� �
gegNmBmNm0msmI

Insertion of the numerical values gives E(1)/h� (1423 MHz) msmI. This energy

contribution corresponds to the electron experiencing a magnetic field of

about 0.5 mT.

z

B

Nucleus

Fig. 13.19 The origin of the Fermi

contact interaction is the deviation

of the magnetic field pattern from
the form it takes on the assumption

that the moment can be treated as a

point. Note that within the

spherical region, loosely denoting
the extent of the nucleus, all the

lines of force run in the same

direction and the angular average

is non-zero.
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At this point we have arrived at the stage where we can express the total

spin hamiltonian as

HðspinÞ ¼ �ggebsz þ ðA=�h2ÞIzsz þ ðC=�h2ÞIzsz ð13:95Þ
where g is given by eqn 13.84 and

A ¼ � m0gemBmNgN

4p

� � 1� 3 cos2 y
r3

� �

C ¼ 2
3 m0gemBmNgNjcð0Þj2

ð13:96Þ

The first-order energies are therefore

Eð1Þ ¼ gmBbms þ ðAþ CÞmsmI ð13:97Þ
The anisotropic term (A) averages to zero if the molecule is tumbling rapidly

in solution.

Example 13.6 The estimation of the magnitude of the anisotropic hyperfine

coupling

Use STOs to estimate the magnitude of the dipolar hyperfine interaction

between a 14N nucleus and an electron in an N2pz-orbital when the spins are

(a) parallel, (b) perpendicular to the orbital’s axis.

Method. The STOs are specified in Section 7.14 and Table 7.1; according to that

table, Z
 ¼ 3.8340. Nuclear data are given in Table 13.1. We need to evaluate

eqn 13.96 with gN¼ 0.40356. The only tricky point is to ensure that the angle y is

Table 13.1 Nuclear spin properties

Nuclide Natural
abundance,
per cent

Spin, I Magnetic
moment,
�/�N

g-value �N/(107 T�1 s�1)

1n
 1
2 �1.9130 �3.8260 �18.324

1H 99.9844 1
2 2.792 85 5.5857 26.752

2H 0.0156 1 0.857 45 0.857 45 4.1067
3H
 1

2 2.9788 5.9576 28.533

13C 1.108 1
2 0.7023 1.4046 6.7272

14N 99.635 1 0.403 56 0.403 56 1.9328
17O 0.037 5

2 �1.893 �0.757 20 �3.627

19F 100 1
2 2.628 35 5.2567 25.177

31P 100 1
2 1.1317 2.2634 10.840

33S 0.74 3
2 0.6434 0.4289 2.054

35Cl 75.4 3
2 0.8218 0.5479 2.624

37Cl 24.6 3
2 0.6841 0.4561 2.184


Radioactive.
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defined appropriately. When the field lies parallel to the orbital’s axis, the y in

1� 3 cos2 y is the same as the y in pz / cos y. When the field lies perpendicular

to the axis, we can let the form of the interaction remain the same, but we need to

interpret the orbital as a px-orbital instead, in which case we use px / sin y cosf.

Answer. (a) The STO to use is

c ¼ Z
5

32pa5
0

� �1=2

r cos y e�Z
r=2a0

The expectation value in eqn 13.96 is therefore

1� 3 cos2 y
r3

� �
¼ Z
5

32pa5
0

� �Z 2p

0

df
Z p

0

ð1� 3 cos2 yÞ cos2 y sin ydy

�
Z 1

0

1

r3

� �
r2e�Z
r=a0 r2dr

¼ Z
5

32pa5
0

� �
� 2p� �8

15

� �
� a2

0

Z
2
¼ � Z
3

30a3
0

(b) In this case we use

c ¼ Z
5

32pa5
0

� �1=2

r sin y cosf e�Z
r=2a0

The same integration as before gives

1� 3 cos2 y
r3

� �
¼ Z
3

60a3
0

Therefore,

ðaÞ A ¼ gegNmBmNm0Z
3

120pa3
0

ðbÞ A ¼ � gegNmBmNm0Z
3

240pa3
0

The numerical values (expressed as frequencies by dividing by h) are

(a) 72 MHz and (b) �36 MHz.

Comment. The values obtained by using SCF orbitals are (a) 134 MHz and

(b) �67 MHz. Slater orbitals are not very accurate close to the nucleus, where

1/r3 is important.

Self-test 13.6. Show analytically that the magnitude of the hyperfine inter-

action parallel to the axis of a p-orbital is exactly twice the value perpendicular

to the axis.

13.17 Nuclear spin–spin coupling

There are several interactions in molecules that can contribute to the coupling of

nuclear spins. One mechanism is the direct magnetic dipole–dipole interaction of

the kind discussed for electrons. This interaction is important for solid samples,

but in mobile liquids it averages to zero as a result of the rapid tumbling of the

molecules. The mechanisms of importance in fluid samples are those stemming

from indirect coupling mediated by the electrons. We shall concentrate on

these mechanisms in this section. Note, however, that there are several other
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Fermi FermiPauli

1

1

2

2

Fig. 13.20 The chain of interactions

responsible for nuclear spin–spin
coupling.

interactions that contribute to the overall interaction, including the interaction

of the nuclear moments with the electronic orbital angular momentum.

One indirect mechanism is illustrated in Fig. 13.20. The first step is a

hyperfine interaction between one nucleus and an electron. This interaction

has the effect of favouring one orientation of the electron spin rather than the

other. The other electron in the bond must have the opposite spin (by the

Pauli principle), and is most likely to be found near the other nucleus (because

it tends to keep well away from its partner in the bond to minimize electron–

electron repulsion). This second electron has a hyperfine interaction with the

second nucleus, and consequently one orientation of that nucleus is favoured

over the other orientation. As a result, there is an energy difference between

the relative orientations of the two nuclear spins. Intuitively, we can suspect

that there will be a contribution to the spin hamiltonian of the form I1 � I2,

because the scalar product is a measure of the angle between the two spins.

Example 13.7 The evaluation of the expectation value of a scalar product

Evaluate the expectation value of the operator I1 � I2 for the triplet (I¼ 1) and

singlet (I¼ 0) states of two spin-1
2 nuclei and hence find the angles between the

spins in the two states.

Method. The scalar product of the two operators should first be expressed in

terms of operators with known expectation values: a good starting point is to

express it in terms of I¼ I1þ I2, because the expectation values of the mag-

nitudes of I, I1, and I2 are known. For the second part, use the expression for a

scalar product in terms of the angle (y) between two vectors, a � b¼ ab cos y.

Answer. We first note that

I1 � I2 ¼ 1
2ðI1 þ I2Þ � ðI1 þ I2Þ � 1

2I1 � I1 � 1
2I2 � I2 ¼ 1

2I
2 � 1

2I
2
1 � 1

2I
2
2

The expectation values we require can therefore be calculated from

hIMIjI1 � I2jIMIi ¼ 1
2fIðI þ 1Þ � I1ðI1 þ 1Þ � I2ðI2 þ 1Þg�h2

Note that the expectation values are independent of MI. It follows that with

I1¼ I2¼ 1
2,

h1, MIjI1 � I2j1, MIi ¼ 1
4�h

2 h0, 0jI1 � I2j0, 0i ¼ �3
4�h

2

To calculate the angles, we use

I1 � I2 ¼ jI1jjI2j cos y ¼ 3
4�h

2 cos y

It follows that for the triplet state,

y ¼ arccos
ð1=4Þ
ð3=4Þ ¼ arccos 1

3 ¼ 70:5�

and for the singlet state,

y ¼ arccos
ð�3=4Þ
ð3=4Þ ¼ arccosð�1Þ ¼ 180�

Comment. Note that the expectation values of the scalar products have

opposite signs in each case, so if the energy is written as proportional to the

scalar product, in one case it rises and in the other case it falls.
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The explicit calculation runs as follows. First, we need to decide which

hyperfine mechanism to use. In many cases the contact interaction is the most

important, and we shall confine our attention to it.7 The contact interaction

for the two nuclei is

Hð1Þ ¼ �2
3m0gege gA

X
i

IA � sidðr iAÞ þ gB

X
i

IB � sidðr iBÞ
( )

ð13:98Þ

where the sum over i is over all the electrons in the molecule and riA is the

vector from nucleus A to electron i (and likewise for B). When this

operator is integrated over all the spatial variables of the electrons, the

d-functions pick out the value of jc(0)j2 at each nucleus for each electron,

and so we get the familiar form of the spin hamiltonian for the contact

interactions of the electrons with each nucleus. For simplicity of notation

we write

A ¼
X

i

sidðr iAÞ B ¼
X

i

sidðr iBÞ

Then the hamiltonian becomes

Hð1Þ ¼ �2
3m0gege gAIA � Aþ gBIB � Bf g ð13:99Þ

The first-order correction is zero because in a singlet-state molecule the

expectation values of the electron spin operators are zero.

When the first-order perturbation hamiltonian is used to calculate the

second-order correction to the energy, it gives rise to four terms of the form

I . . . I. We are interested in the contribution to the spin hamiltonian of

the form JIA � IB, and so we need retain only two of these four terms, those

proportional to IA . . . IB and IB . . . IA. The second-order contribution to the

spin hamiltonian then has the form

HðspinÞ ¼ �8
9m

2
0g2

eg
2
egAgB

X
n

0 IA � h0jAjnihnjBj0i � IB

E
ð0Þ
n � E

ð0Þ
0

We make the usual replacement DEn0 ¼ E
ð0Þ
n � E

ð0Þ
0 .

Upon taking the spherical average, we can write8

hðIA � AÞðB � IBÞi ¼ 1
3ðIA � IBÞðA � BÞ

Consequently

HðspinÞ ¼ JIA � IB ð13:100Þ

with

J ¼ � 8
27m

2
0g2

eg
2
egAgB

X
n

0 h0jAjni � hnjBj0i
DEn0

ð13:101Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. The dipolar interaction can make a contribution, even in fluids, because it occurs as its square

in second-order perturbation theory, and (1� 3 cos2 y)2 does not vanish when averaged over a

sphere.

8. See Further reading.
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Equation 13.101 is the basic expression for the calculation of the spin–

spin coupling constant J, but it obviously needs to be simplified if we

are to give it a physical interpretation. The major difficulty lies in the effects

of the operators A and B. If we confine our attention to a two-electron

system (such as a chemical bond between the two nuclei), the operator A

would be

A ¼ s1dðr1AÞ þ s2dðr2AÞ
¼ 1

2ðs1 þ s2Þfdðr1AÞ þ dðr2AÞg þ 1
2ðs1 � s2Þfdðr1AÞ � dðr2AÞg ð13:102Þ

and likewise for the operator B. The antisymmetric parts of these operators

(the ones with minus signs) have the same general form as the spin–orbit

operator in Section 11.9, where we saw that its effect was to mix in triplet

excited states into a singlet ground state. Because the triplet state of an excited

configuration can be expected to lie lower in energy than the corresponding

singlet, we can expect the triplet to dominate in the perturbation expression.

That implies that in an application of the closure approximation, we should

use the mean triplet excitation energy DE(T). In that case, under closure we

obtain

J � � 8
27m

2
0g2

eg
2
egAgB

h0jA � Bjni
DEðTÞ

ð13:103Þ

For two electrons,

A � B ¼ fs1dðr1AÞ þ s2dðr2AÞg � fs1dðr1BÞ þ s2dðr2BÞg
¼ s1 � s1dðr1AÞdðr1BÞ þ s2 � s2dðr2AÞdðr2BÞ þ s1 � s2dðr1AÞdðr2BÞ
þ s2 � s1dðr2AÞdðr1BÞ

The first two terms give zero when integrated over the wavefunction,

because an electron cannot simultaneously be at two different nuclei. The

action of s1 � s2 has already been established in Example 13.7, where we saw

that (with change of detail, writing the operator for electrons rather than

nuclei)

s1 � s2 ¼ 1
2ðS

2 � s2
1 � s2

2Þ

The expectation value of this operator in the singlet ground state of the

molecule is � 3
4�h2. It follows that (introducing the Bohr magneton mB¼�ge�h)

J � 2
9m

2
0g2

em
2
BgAgB

h0jdðr1AÞdðr2BÞ þ dðr2AÞdðr1BÞj0i
DEðTÞ

At this point we shall suppose that the electrons occupy an orbital of the

form c¼ cAfAþ cBfB where the fs are atomic orbitals on the two nuclei and

the coefficients are real. It follows that

J � 4
9m

2
0g2

em
2
BgAgBjfAð0Þj

2jfBð0Þj
2 c2

Ac2
B

DEðTÞ

� �
ð13:104Þ

Because only s-orbitals have non-zero amplitudes at their nucleus, the

coefficients that appear in this expression must be those of s-orbitals in

the molecular orbital.
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P R O B L E M S

13.1 Calculate the spin contribution to the molar magnetic
susceptibility of hydrogen atoms at 298 K.

13.2 Consider a molecule in which there is an excited
state at an energy DE above the non-degenerate ground
state. Show that the angular momentum is no longer
completely quenched when a magnetic field is present.
Hint. Review the argument in Section 13.2 and
consider how it is modified when the ground state is
perturbed.

13.3 Calculate the expectation values of S2
z , SxSz, and S4

z

for a state with spin quantum number S and with all MS

states equally occupied. Hint. Use

Xn

r¼1

r2 ¼ 1
6nðnþ 1Þð2nþ 1Þ

For the sum over higher powers, see M. Abramowitz
and I.A. Stegun, Handbook of mathematical functions,
Dover (1965), Chapter 23, especially Section 23.1.4, or
use mathematical software.

13.4 The average value of S2
z can also be evaluated

very simply by noting that in the absence of fields
hS2

xi ¼ hS2
yi ¼ hS2

z i. Find the average value of S2
z in this

way for the system described in Problem 13.3.

13.5 Sketch the form of the vector function V¼ xk� zi and
calculate its divergence and curl.

13.6 Confirm that the vector potential A ¼ 1
2 B� r

describes a uniform magnetic field B and show that it has
zero divergence.

13.7 Find expressions for vector potentials corresponding to
a uniform magnetic field (a) parallel to the x-axis, (b) along
the direction of the unit vector (1,1,1). Find an expression
for A2 for the vector potential A, and evaluate it for the two
special cases.

13.8 Take a vector potential of the form in eqn 13.27 and
find expressions for the hamiltonian in the presence of the
corresponding magnetic field but for general values of
the gauge transformation parameter l. Is it possible to
choose a value of l such that H(2) is absent (that is, such
that H is linear in b)?

13.9 Show that the Schrödinger equation is
invariant under the gauge transformation A!Aþrw,
f!f� qw/qt, where w is an arbitrary scalar function,
provided that the wavefunction is also multiplied by
e�iew/�h. Hint. Begin with 1/(2me)(pþ eA)2Cþ
(V� ef)C¼ i�hqC/qt.

13.10 Calculate the contribution to the molar
susceptibility of (a) a 1s-electron, (b) a 2s-electron,

taking Slater orbitals. Specialize to (i) the hydrogen atom,
(ii) the carbon atom.

13.11 Estimate the contribution to the molar diamagnetic
susceptibility of a 2p-electron when the field is (a) parallel,
(b) perpendicular to the axis. Use Slater orbitals, and
then specialize to the carbon atom. What is the mean
value?

13.12 An electron occupies one of a doubly degenerate pair
of d-orbitals, and its orbital angular momentum
corresponds to L¼ þ 2. Compute an expression for the
current density and plot it for a 3d Slater atomic orbital on
carbon (take Z
 � 1).

13.13 Plot contour diagrams of the type shown in Fig. 13.10
for planes parallel to the equatorial plane of the hydrogen
atom at heights 0, a0, and 2a0 above the nucleus.

13.14 Calculate the form of the diamagnetic and
paramagnetic contributions to the current density induced
by a magnetic field in the z-direction when the electron
occupies (a) a 3dxy-orbital, (b) a 3dx2�y2 -orbital. Suppose
that all the degeneracies have been removed by a crystal
field. Sketch the form of the current density in the equatorial
plane. Hint. For the diamagnetic contribution, follow
Section 13.9, and for the paramagnetic, follow Section
13.10.

13.15 Sketch the form of the diamagnetic and paramagnetic
current densities for an electron in
(a) a 2s-orbital, (b) a 3pz-orbital.

13.16 Consider a nitrogen monoxide molecule (nitric oxide,
NO) in which the unpaired electron occupies a 2pp
-orbital
formed from a linear combination of the nitrogen and
oxygen 2p-orbitals. For simplicity, take the molecular
orbital to be (1/21/2)(cN�cO); we have ignored the overlap
integral. Consider a plane containing both nuclei. Plot
contours of the magnitude of the diamagnetic current
density taking the p-orbitals to be Slater atomic orbitals:
note that this produces a broadside view of the current
density.

13.17 Suppose that the NO molecule treated in Problem
13.16 is trapped in a matrix that removes the degeneracy of
the p
-orbitals and separates them by 1.0 eV. What magnetic
flux density is needed to restore 10 per cent of the original
current density?

13.18 Show that the divergence of the vector potential
given in eqn 13.63 is zero.

13.19 Find an expression for the energy of interaction
of the current density computed in Problem 13.16 with
the magnetic moment of the nitrogen nucleus. To what
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magnetic flux density does the current give rise? Hint.
Use eqn 13.68; g(14N)¼ 0.403 56 and I(14N)¼ 1.

13.20 Calculate the diamagnetic contribution to the
mean shielding constant of an electron in (a) a 2s-orbital,
(b) a 2p-orbital. Take Slater orbitals, and then specialize
to an electron of a carbon atom.

13.21 Calculate the magnitude of the paramagnetic
contribution to the mean shielding constant for the
same species as in Problem 13.20. Assume that the field
mixes in an orbital lying about 5.0 eV above the orbital
of interest.

13.22 The ground state of the NO2 molecule is 2A1, and
that of the ClO2 molecule is 2B1. What states contribute
to the deviations of the g-value of the radicals from ge?
Hint. The perturbation transforms as a rotation; both
molecules are C2v.

13.23 Long ago, in Problem 8.12, the structure of H2O was
investigated. Take the same molecular orbitals for the
molecular ion H2Oþ and estimate its g-values.

13.24 In tetrahedral complexes of Ti3þ (configuration d1), a
tetragonal distortion removes the degeneracy of the
d-orbitals almost completely. The lowest energy orbital
is dz2, and the dxz- and dyz-orbitals, which remain
degenerate, are at an energy DE above it. Find an expression
for the g-values when the field is applied along the x-, y-,
and z-axes of the complex, and estimate their values. Take
DE/(hc)� 1.0� 104 cm�1 and z¼ 154 cm�1.

13.25 Show that the energy of dipolar interaction of two
electron spin magnetic moments may be expressed as
S �D � S, where S¼ s1þ s2 and S �D � S¼Si,jSiDijSj with
i,j¼ x, y, and z. Hint. The energy is proportional to
s1 � s2� 3s1 � (rr/r2) � s2. Expand this expression in terms of its

Cartesian components and employ relations such as
s2
1x ¼ 1

4 �h2, S2
x ¼ 2s1xs2x þ 1

2 �h2, etc.

13.26 A Slater 2s-orbital has a node at the nucleus.
Adopt the orthogonalization procedure mentioned in
Problem 7.16, which also removes the node, and find a
relation for the Fermi contact interaction first for general
Z
, and then for 14N.

13.27 Find an expression for the dipolar hyperfine
interaction constant for an electron in a Slater 3dz2-orbital
when the field is (a) parallel, (b) perpendicular to the
axis. Hint. Use eqn 13.96 for both (a) and (b) but for the
latter, interpret 3dz2 as 3dx2, the same orbital rotated
through 90� and now lying along the x-axis.

13.28 Estimate the spin–spin coupling constant for the
molecule 1H2H. Hint. Use eqn 13.104 with a simple
LCAO-MO. Take DE(T)¼ 10 eV. Express J as a frequency.
The experimental value is 40 Hz.

13.29 Write the NMR spin hamiltonian for a molecule
containing two protons, one in an environment with
chemical shift dA and the other with chemical shift dB.
Let them be coupled through a constant J. Evaluate
the matrix elements of the hamiltonian for the states
jmIAmIBi, and construct and solve the 4� 4 secular
determinant for the eigenvalues and eigenstates.
Determine the allowed magnetic dipole transitions (they
correspond to matrix elements of IAxþ IBx), and find their
relative intensities. Draw a diagram of the spectrum
expected when (a) J¼ 0, (b) J� (dA� dB)n0, (c)
J¼ (dA� dB)n0, (d) dA¼ dB, where n0 is the spectrometer
frequency. Hint. Construct the matrix of the hamiltonian
and evaluate its eigenvalues and eigenvectors. Intensities are
proportional to the squares of the matrix elements of
IAxþ IBx.
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Scattering experiments are the focus of many experimental and theoretical

studies in chemical physics. An early example of their use is the formulation

by Rutherford of his nuclear model of the atom, which resulted from his

famous experiments with a-particles scattered by platinum and gold foils.

These experiments can provide a wealth of information on the nature of the

interactions between a variety of particles. In addition, the techniques pre-

sented here enable us to compute rate constants for chemical reactions from

theoretical potential surfaces obtained by using techniques like those descri-

bed in Chapter 9.

Collision events come in a variety of flavours. In elastic scattering, the total

translational kinetic energy of the particles remains unchanged as transla-

tional kinetic energy is transferred between the two particles. In inelastic

scattering, the total translational kinetic energy changes and some of it is

used to excite internal modes of the projectile or the target. In both cases

the composition of the particles remains unchanged, so they are examples

of non-reactive scattering. In reactive scattering, the composition of the

particles does change as old bonds are broken and new bonds form. For

example, the collision of A with BC may result in the formation of AC and the

release of B.

The formulation of scattering events

We shall direct most of our attention at elastic scattering, which will intro-

duce many of the basic ideas important for understanding the more complex

inelastic and reactive scattering events. Although classical and semi-classical

treatments of collision events are often quite informative, we shall focus

almost exclusively on the quantum mechanical treatment of collision pro-

blems and confine the discussion to non-relativistic processes based on the

Schrödinger equation.

14.1 The scattering cross-section

One of the most important quantities determined in any type of scattering

experiment is the scattering cross-section. The cross-section comes in two

varieties, differential and integral, and we define them in this section.

Scattering theory

The formulation of scattering

events

14.1 The scattering cross-section

14.2 Stationary scattering states

Partial-wave stationary scattering

states

14.3 Partial waves

14.4 The partial-wave equation

14.5 Free-particle radial

wavefunctions and the

scattering phase shift

14.6 The JWKB approximation and

phase shifts

14.7 Phase shifts and the scattering

matrix element

14.8 Phase shifts and scattering

cross-sections

14.9 Scattering by a spherical

square well

14.10 Background and resonance

phase shifts

14.11 The Breit–Wigner formula

14.12 Resonance contributions to

the scattering matrix element

Multichannel scattering

14.13 Channels for scattering

14.14 Multichannel stationary

scattering states

14.15 Inelastic collisions

14.16 The S matrix and multichannel

resonances

The Green’s function

14.17 The integral scattering

equation and Green’s

functions

14.18 The Born approximation

Appendix 14.1 The derivation of

the Breit–Wigner formula

Appendix 14.2 The rate constant

for reactive scattering

14



Consider the arrangement shown in Fig. 14.1 in which a beam of incident

particles is directed towards the target particles. A detector far from the area

of interaction of the incident and target particles presents an ‘eye’ of area r2dO
at the orientation (y,f), where dO¼ sin ydydf is the solid angle subtended by

the ‘eye’. Suppose that the incident flux of particles, the number of particles

passing through an area in a given interval divided by the area and the

duration of the interval, is Ji, and that the detection frequency, the number of

particles falling on the detector in that interval divided by the duration of the

interval, is dZdet(y,f), then we can write

dZdetðy,fÞ ¼ sðy,fÞJi dO ð14:1Þ

where the constant of proportionality s is called the differential cross-section.

Like the detection frequency, the differential cross-section varies with the

orientation of the detector to the incident beam. A minor inconvenience is

that because we cannot distinguish experimentally between a particle that is

not scattered and a particle scattered in the forward direction (y¼0), the

differential cross-section in the forward direction is not a directly experi-

mentally observable quantity. However, in many cases, it can be determined

by extrapolation of the experimental results close to the forward direction.

The integral scattering cross-section, stot, is the total cross-section for

scattering over all angles. It is obtained by integrating the differential cross-

section:

stot ¼
Z p

0

Z 2p

0

sðy,fÞ sin y dydf ð14:2Þ

The integral scattering cross-section is the constant of proportionality

between the total detection frequency Zdet and the flux of incident particles:

Zdet ¼ stotJi ð14:3Þ

Because the dimensions of Zdet are [number][time]�1 and those of Ji are

[number][area]�1[time]�1, the dimensions of stot are those of area (for

instance, m2). Cross-sections are often expressed as multiples of a0
2 where a0 is

the Bohr radius. They represent the effective area presented to the incident

beam for a particular kind of scattering. The non-SI, and faintly jocular

unit, the ‘barn’, with 1 barn¼10�28 m2, is also encountered, particularly in

particle physics.

There are a number of hidden assumptions in the interpretation of the

cross-sections that need to be brought into the open. One assumption is that

the collisions are independent events between a given incident particle and

a single target particle. For this condition to be realized experimentally,

the incident beam must not be so intense that the incident particles interact

with one another. Another assumption is that multiple scattering of one

incident particle by several target particles does not occur. A third is that there

is no interference between the waves scattered by each of the target particles.

In many experiments, these assumptions are valid, although there are notable

exceptions. One such exception is the Davisson–Germer experiment, in which

an electron beam is scattered off a nickel crystal and an extensive interference

pattern is observed.

��

dV z

r

Target

Incident
beam

Fig. 14.1 The definition of the

scattering cross-section.
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14.2 Stationary scattering states

We consider first the case of elastic scattering between two structureless

particles of masses mA and mB. We assume that their interaction is described

by a time-independent potential energy, V(r), that depends only on

the relative location r¼ (r, y, f) of the two particles. As demonstrated in

Further information 4, which was first used for the discussion of the hydrogen

atom, a two-particle problem can be expressed in terms of the motion of the

centre of mass (which does not concern us here) and the relative motion of a

particle of reduced mass m, where

1

m
¼ 1

mA
þ 1

mB
ð14:4Þ

We shall also limit consideration to potentials that approach zero more

rapidly than 1/r as r!1. This restriction rules out scattering by a Coulomb

potential.1

The time-dependent Schrödinger equation for the problem is

HCðr, tÞ ¼ i�h
qCðr, tÞ

qt
H ¼ � �h2

2m
r2 þ VðrÞ ð14:5Þ

where C(r, t) is the wavefunction describing the evolution in time of a particle

of mass m. However, because the potential energy is independent of time, the

equation can be separated in the usual way and written in terms of solutions

of the form

Cðr, tÞ ¼ cðrÞe�iEt=�h

where the time-independent wavefunction is the solution of

HcðrÞ ¼ EcðrÞ ð14:6Þ

Another reason for using the time-independent rather than time-dependent

Schrödinger equation is that we desire wavefunctions that represent an infi-

nite stream of particles (of mass m). It is possible to seek wavepacket solutions

of eqn 14.5 (that is, superpositions of plane waves of different linear

momenta) but the use of single-momentum plane waves for eqn 14.6 greatly

simplifies the mathematics yet gives almost identical results.2

Because there is an infinite number of solutions c(r) with E> 0, we must

find the particular solution that satisfies the boundary conditions for the

problem of interest. The asymptotic form of the solutions, the form of the

functions as r!1, is thus a very important quantity because it enables us

to pin down the solutions by referring to their form when the particles are

far apart. At large distances from the target, the wavefunction consists of

three components. One is a plane wave of definite momentum directed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. For a discussion of Coulomb scattering, see A. Messiah, Quantum mechanics, Vol. 1,

North Holland, Amsterdam (1961), which remains an excellent source despite its age.

2. For a discussion of the rigorous quantum treatment invoking wavepackets, see R.G. Newton,

Scattering theory of waves and particles, Springer, New York (1982).
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towards the target. Another is a wave that corresponds to transmission

through the target without scattering; this component is a continuation

of the incident plane wave. The third component is a scattered wave

(Fig. 14.2).

We now construct these various components. The wavefunction for a

particle with linear momentum p¼ k�h, where k is the wavevector of the

motion, is

cðrÞ ¼ eik
r

(We ignore normalization questions at this stage.) This form of wavefunction

was discussed in Section 2.6. It is customary to choose the z-direction for the

incident plane wave, in which case the single-momentum wavefunction is

given by

cðrÞ ¼ eikz ð14:7Þ

The magnitude, k, of the wavevector k is related to the kinetic energy of the

projectile by

E ¼ k2�h2

2m
ð14:8Þ

Because the transmitted wave is a continuation of the incident wave, the plane

incident wave is also the form of the component corresponding to trans-

mission. In the region of the target molecule, the wavefunction is distorted

from this simple form, perhaps in a very complicated manner. However, we

are interested only in the shape of the function far from the target where

V’ 0.3 At these great distances, the wavefunction will have the form of an

outgoing wave with an amplitude that varies with angle; such a function has

the following form:

fkðy,fÞ e
ikr

r

The angle-dependent function will also depend on the energy, so we have

included an index k on f. It follows that the asymptotic form of the total

wavefunction, allowing for incident, transmitted, and scattered components,

will be of the form

cðrÞ ’ eikz þ fkðy,fÞ e
ikr

r
ð14:9Þ

The function c(r) that has this asymptotic form is called a stationary scat-

tering state. The scattering amplitude, fk(y,f), reflects the anisotropy of the

scattering event and has the dimensions of length. The normalization of the

wavefunction in eqn 14.9 is of no concern because only the relative magni-

tudes and phases of the two terms on the right-hand side of the equation are

important.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. The symbol ’ means ‘asymptotically equal to’ and should be distinguished from �, which

means ‘approximately equal to’.

Incident
wave

Transmitted
wave

Scattered
wave

Target

Fig. 14.2 In a scattering experiment,

an incident plane wave gives rise to a

transmitted wave in the same
direction (with the same linear

momentum) and a scattered wave.
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Example 14.1 The asymptotic form of the total scattering wavefunction

Confirm that the asymptotic form of the scattering wavefunction (eqn 14.9)

satisfies the time-independent Schrödinger equation 14.6 in the limit r!1.

Method. In the limit r!1, the potential energy V!0 and only the kinetic

energy contribution to the hamiltonian need be retained. We need to show

that the terms eikz and f(y,f)eikr/r are eigenfunctions of the kinetic energy

operator with the eigenvalue E given by eqn 14.8. If both terms are eigen-

functions with the same eigenvalue, then the sum of terms (eqn 14.9) is also an

eigenfunction with the same eigenvalue. Express the laplacian operator in

Cartesian coordinates for analysis of eikz and in spherical polar coordinates for

f(y,f)eikr/r; use r!1 as needed.

Answer. In the limit r!1, V!0 and eqn 14.6 becomes

HcðrÞ ¼ � �h2

2m
r2cðrÞ ¼ EcðrÞ

By using the first term in the asymptotic form (eqn 14.9) and Cartesian

coordinates for the laplacian, we obtain

� �h2

2m
r2eikz ¼ � �h2

2m
d2

dz2
eikz ¼ k2�h2

2m
eikz

The first term of eqn 14.9 is an eigenfunction of H with an eigenvalue given by

eqn 14.8. Now we consider the second term in the asymptotic form (eqn 14.9)

and use spherical polar coordinates for the laplacian (see eqn 3.18)

� �h2

2m
r2fkðy,fÞ e

ikr

r
¼ � �h2

2m
1

r

q2

qr2
rþ 1

r2
L2

 !
fkðy,fÞ e

ikr

r

where the legendrian L2, given in eqn 3.19, is a function of y and f. Because in

the limit r!1 the term (1/r2)L2(feikr/r) approaches zero faster than does 1/r,

we have

� �h2

2m
r2fkðy,fÞ e

ikr

r
¼ � �h2

2m
1

r

q2

qr2
r

 !
fkðy,fÞ e

ikr

r
¼ k2�h2

2m
fkðy,fÞ e

ikr

r

The second term of eqn 14.9 is also an eigenfunction of H with an eigenvalue

given by eqn 14.8. Therefore, the wavefunction given by the sum in eqn 14.9 is

an eigenfunction of H with eigenvalue given by eqn 14.8, as we needed to

demonstrate.

Self-test 14.1. Show that, in the limit of r!1, the asymptotic form of the

total wavefunction given by eik 
 rþ fkeikr/r satisfies eqn 14.6.

We now need to establish the link between the asymptotic form

of the wavefunction and the outcome of observations as expressed by the

scattering cross-section. Indeed, we shall now show that the differential cross-

section is related to the scattering amplitude by

sðy,fÞ ¼ jfkðy,fÞj2 ð14:10Þ
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and therefore that the integrated cross-section is

stot ¼
Z p

0

Z 2p

0

jfkðy,fÞj2 sin ydydf ð14:11Þ

To confirm these relations, we need to consider the flux density, J, which was

first introduced in Section 2.7 and is defined as

J ¼ 1

2m
ðcpcþ cpcÞ ¼ �h

2mi
ðcrc� crcÞ ð14:12Þ

We use the cartesian form of grad to calculate the flux density corresponding

to a plane wave in the z-direction:

J ¼ �h

2mi
e�ikz q

qz
eikz � eikz q

qz
e�ikz

� �
¼ k�h

m
ð14:13Þ

The flux density is essentially the velocity of the particle (its momentum

divided by its mass).5 For the scattered wave, it is easier to use the spherical-

polar form of the operator, and to consider each component separately. The

radial component of the flux density for a wavefunction like that in eqn 14.9 is

Jr ¼
�h

2mi
f k ðy,fÞfkðy,fÞ e�ikr

r

q
qr

eikr

r
� eikr

r

q
qr

e�ikr

r

� �

¼ k�hjfkðy,fÞj2

mr2

ð14:14Þ

When the same calculation is performed for the angular components of J (see

Problem 14.5), the resulting expressions are proportional to r�3. As we are

interested in only the asymptotic contributions, we need retain only the radial

component, which survives out to greater distances than the angular com-

ponents. Note that the radial flux depends on the angle of scattering relative

to the incident direction as well as the distance r from the target.

We now evaluate the differential cross-section by using eqn 14.1

(dZdet¼sJidO). The incident flux Ji is given by eqn 14.13. The detection fre-

quency is the scattered radial flux multiplied by the area of the detector, r2dO:

dZdet ¼ Jrr
2 dO ¼ k�hjfkðy,fÞj2

m
dO

Equation 14.10 now follows by comparing this expression with eqn 14.1.

In this analysis we have neglected the contribution to the flux that results

from the interference between the transmitted and scattered waves. For

example, we have ignored terms in eqn 14.12 such as

f k ðy,fÞ e
�ikr

r
reikz

The operator r (‘grad’) in

cartesian coordinates is

r ¼ x̂x
q
qx
þ ŷy

q
qy
þ ẑz

q
qz

where x̂x; ŷy, and ẑz are unit

vectors in the x, y, and z

directions,4 and in spherical

polar coordinates is

r ¼ r̂r
q
qr
þ �̂� 1

r

q
qy
þ �̂� 1

rsin y
q
qf

where r̂, �̂�, and f̂f are the unit

vectors shown in Fig. 14.3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. We have previously denoted the unit vectors as i, j, and k but in this chapter k is reserved for

the wavevector.

5. By ignoring the normalization constant, J is a velocity rather than a velocity density. For the

general plane wave eik 
 r, the flux density is J¼ k�h/m.

r̂

^

^

�

�

Fig. 14.3 The unit vectors r̂, �̂�,

and f̂f appropriate to spherical
polar coordinates.
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These interference terms are important only for scattering in the forward

direction; provided the detector is not positioned at y¼ 0, we do not need

to consider them.

Partial-wave stationary scattering states

We now focus on scattering by a central potential, V(r), a potential that

depends only on the distance, r, between the incident and target particles and

not on the angles (y,f). It follows from the cylindrical symmetry of the system

(and by an argument similar to one we shall use in Example 14.5), that the

scattering amplitude and the asymptotic form of the stationary scattering

state depend only on k, r, and the angle between the incident wavevector k

and scattering direction r̂. (The scattering direction r̂¼ r/r is the unit vector in

the radial direction.) Because we have chosen k to lie along the z-axis, the

scattering amplitude depends on y but is independent of f.

14.3 Partial waves

The asymptotic form, eqn 14.9, of the stationary scattering state can be

written as

cðr,yÞ ’ eikr cos y þ fkðyÞ
eikr

r
ð14:15Þ

For elastic scattering by a central potential, the orbital angular momentum l

of the incident particle relative to the target particle is conserved during the

collision because there are no external torques present to accelerate it.

Therefore, we should be able to decompose the scattering problem into a set

of smaller problems, each characterized by a unique value of l.

The separation is accomplished by expanding the stationary scattering state

c(r,y) and scattering amplitude fk(y) in a complete set of basis functions.

The natural choice for this central-field problem are the spherical harmonics, but

because the states are independent of f and have cylindrical symmetry about

the direction k, we need consider only the spherical harmonics with ml¼0.

The spherical harmonics Yl,0(y,f) are proportional to the Legendre poly-

nomials, Pl(cos y), which are reasonably simple polynomials in cos y, such as

P0ðcos yÞ ¼ 1

P1ðcos yÞ ¼ cos y

P2ðcos yÞ ¼ 1
2 ð3 cos2 y� 1Þ

and so on. (These functions will be recognized as components of atomic

orbitals with ml¼ 0; see Table 3.1.) It then follows that we can expand the

scattering amplitude and the wavefunction as

fkðyÞ ¼
X

l

flPlðcos yÞ cðr,yÞ ¼
X

l

RlðrÞPlðcos yÞ ð14:16Þ

where, here and in the equations that follow, all sums over l range over the

complete set of values, from 0 to 1.
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Each product RlPl in eqn 14.16, which we denote cl, is called the partial-

wave stationary scattering state, and our first task is to find the equation these

products satisfy. Each one is the solution of a Schrödinger equation, and after

we have solved these individual equations, we can reconstruct the overall

wavefunction by adding their individual solutions together. This approach is

called a partial-wave analysis of the stationary scattering state. Likewise, the

decomposition of fk(y) is a partial-wave analysis of the scattering amplitude.

The contribution with l¼ 0 is called S-wave scattering, that with l¼1 is called

P-wave scattering, and so on by analogy with atomic orbitals (Fig. 14.4).

14.4 The partial-wave equation

We now derive the differential equation and boundary conditions satisfied by

each cl. This analysis will lead us to the concept of the scattering ‘phase shift’,

and, by making use of that concept, to an expression for the scattering

amplitude and cross-section.

To construct the partial-wave equation we insert the partial-wave expan-

sion into eqn 14.6. The effect of the Laplacian,r2, in spherical coordinates is

r2RlPl ¼ Pl
1

r

d2

dr2
rRl þ Rl

1

r2
L2Pl ð14:17Þ

where L2 is the legendrian operator (eqn 3.19). It should be recalled from

Section 3.5 (see eqn 3.22) that

L2Yl;ml
¼ �lðl þ 1ÞYl;ml

, which implies that L2Pl ¼ �lðl þ 1ÞPl

because Yl,0 is proportional to Pl. Equation 14.6 becomes

X
l

� �h2

2m
Pl

1

r

d2

dr2
rRl þ

lðl þ 1Þ�h2

2mr2
RlPl þ VRlPl

( )
¼ E

X
l

RlPl

Multiplying both sides of the above equation by Pl 0, integrating over the

angular coordinate y, and using the orthogonality of the Legendre poly-

nomials, we obtain for each value of l 0

� �h2

2m
1

r

d2

dr2
rRl0 þ

l0ðl0 þ 1Þ�h2

2mr2
Rl0 þ VRl0 ¼ ERl0

To simplify the appearance of this equation we replace l 0 by l and introduce

the function ul¼ rRl, which turns it into

� �h2

2m
d2ul

dr2
þ lðl þ 1Þ�h2

2mr2
ul þ Vul ¼ Eul ð14:18Þ

When we need to reconstruct the partial-wave scattering state, we use

clðr, yÞ ¼ r�1ulðrÞPlðcos yÞ ð14:19Þ

We need the boundary conditions on ul. First, consider the value of ul at

r¼0. Because the radial wavefunction Rl(0) is finite, it follows that ul(0)¼0.

Next, we need to consider the asymptotic behaviour as r!1. This step

requires a discussion of states of the free particle.

z

S-wave
P-wave

D-wave

Target

z

S-wave
P-wave

D-wave

Target

Fig. 14.4 A representation of the

S-, P-, and D-wave contributions to

the total scattered wave. Note that
they differ in their angular

distribution but have cylindrical

symmetry around the direction of
propagation of the incident particles

(the z-direction).

480 j 14 SCATTERING THEORY



14.5 Free-particle radial wavefunctions and
the scattering phase shift

Consider the case of the free particle for which V(r)¼0 for all values of r. The

free-particle radial wavefunction ul
0(r) satisfies the equation

� �h2

2m
d2u0

l

dr2
þ lðl þ 1Þ�h2

2mr2
u0

l ¼ Eu0
l

This Schrödinger equation has a term proportional to l(lþ1)/r2 as its effective

potential energy (Fig. 14.5), which represents the repulsive centrifugal effect

of the orbital motion of the particle around the target: the higher the orbital

angular momentum, the more difficult it is for the projectile to approach the

target. A small manipulation of the last equation, and writing k¼ (2mE)1/2/�h,

turns it into

d2u0
l

dr2
þ k2 � lðl þ 1Þ

r2

	 

u0

l ¼ 0 ð14:20Þ

First we consider eqn 14.20 for S-wave scattering. The most general

solution u0
0(r) of

d2u0
0

dr2
þ k2u0

0 ¼ 0 ð14:21Þ

is the linear combination

u0
0ðrÞ ¼ A00 sinðkrÞ þ B00 cosðkrÞ

However, the boundary condition at the origin, u0
0(0)¼ 0, requires B00¼ 0, so

u0
0ðrÞ ¼ A00 sinðkrÞ ð14:22Þ

In the presence of the potential V(r), the S-wave scattering radial wave-

function u0(r) satisfies the equation (see eqn 14.18)

d2u0

dr2
þ k2 � 2mV

�h2

	 

u0 ¼ 0 ð14:23Þ

Because in the limit r!1, eqn 14.23 reduces to eqn 14.21, we can imme-

diately write down the asymptotic form of the S-wave radial wavefunction:

u0ðrÞ ’ A0 sinðkrÞ þ B0 cosðkrÞ ð14:24Þ

Although u0(r) must vanish at r¼ 0, this condition does not require B0¼0,

because eqn 14.24 is applicable only in the limit r!1. We now write

eqn 14.24 in the form

u0ðrÞ ’ C0 sinðkrþ d0Þ ð14:25Þ

where

A0 ¼ C0 cos d0 B0 ¼ C0 sin d0 ð14:26Þ

Therefore, all the information necessary to discuss the asymptotic form of

the S-wave scattering radial wavefunction is carried by the scattering phase

shift, d0. The introduction of the potential V has the effect of shifting the

1
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0.5 1.0 1.5
r

l
l

r
(

+1
)/
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20
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40

50

Fig. 14.5 A fragment of the

repulsive potential energy arising
from the centrifugal effect of orbital

angular momentum. The numbers

labelling the curves are the values of l.

We have used the trigonometric

identity

sin A cos Bþ cos A sin B
¼ sin ðAþ BÞ
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asymptotic phase of the radial wavefunction; this conclusion is seen most

easily by comparing eqns 14.22 and 14.25. From eqn 14.26, it would appear

that we can calculate the phase shift from the coefficients A0 and B0 by using

the relation

tan d0 ¼
B0

A0
ð14:27Þ

However, because tan A and tan(Aþnp) have the same value, this relation

leaves the phase shift unspecified up to the addition of an arbitrary integral

multiple of p. This ambiguity is referred to as the modulo-� ambiguity in the

scattering phase shift. Fortunately, the modulo-p ambiguity affects neither the

differential nor the integrated cross-section computed from the phase shift

(see below).

We now expand this discussion to include general values of l and return

to eqn 14.20 for the free-particle radial wavefunction u0
l ðrÞ. This differential

equation is well known to mathematicians. Its general solution is a linear

combination of a Riccati–Bessel function, ĵl(z), and a Riccati–Neumann

function, n̂l(z), with z¼ kr:

u0
l ¼ A0l ĵjlðkrÞ þ B0ln̂nlðkrÞ ð14:28Þ

Although these functions (which we shall refer to jointly as the ‘Riccati

functions’) might be unfamiliar, there is nothing particularly mysterious

about them, and a few of them are listed in Table 14.1 and plotted in Fig. 14.6;

any properties we need we shall develop.6 In particular, we shall make use

of their relationship to the spherical Bessel functions jl(z) and spherical

Neumann functions nl(z) through

ĵjlðzÞ ¼ zjlðzÞ n̂nlðzÞ ¼ znlðzÞ

We shall need their asymptotic behaviour as z!1:

ĵjlðzÞ ’ sinðz� 1
2 lpÞ n̂nlðzÞ ’ cosðz� 1

2 lpÞ ð14:29Þ

That is, at large values of z (in our application, at large distances from the

origin as kr!1) the Riccati functions are sine and cosine functions that are

shifted in phase by 1
2lp. We shall also find it useful to note that the Riccati–

Bessel function ĵl(z) behaves like zlþ 1 as z!0, whereas the Riccati–Neumann

function n̂l(z) behaves like z�l.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. For a summary of their more important properties, see R.G. Newton, Scattering theory of

waves and particles, Springer, New York (1982). Some authors, including Newton, define n̂l(kr)

with the opposite sign.

Table 14.1 Riccati functions

ĵ0(z)¼ sin z n̂0(z)¼ cos z

ĵ1(z)¼ 1
z sin z� cos z n̂1(z)¼ sin zþ 1

z cos z

ĵ2(z)¼ð 3
z2 � 1Þsin z� 3

z cos z n̂2(z)¼ 3
z sin zþð 3

z2 � 1Þcos z1.5

1

0.5

0
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–1

–1.5
0 5 10 15

kr
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2

1

0

–1

–2
0 5 10

0 1 2

15
kr

n
kr
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)
^

(a)

(b)

3
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^ j
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l(
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Fig. 14.6 Three examples of

(a) Riccati–Bessel functions and

(b) Riccati–Neumann functions.
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We proceed in a similar manner as above for S-wave scattering. The free-

particle radial wavefunction satisfies the boundary condition u0
l ð0Þ ¼ 0,

which requires B0l ¼ 0:

u0
l ðrÞ ¼ A0l ĵjlðkrÞ ð14:30Þ

In the presence of the potential V(r), the l-wave scattering radial wavefunc-

tion ul(r) satisfies (see eqn 14.18)

d2ul

dr2
þ k2 � lðl þ 1Þ

r2
� 2mV

�h2

	 

ul ¼ 0

As r!1, if V(r)! 0 faster than 1/r2! 0, then the above equation asymp-

totically is identical to eqn 14.20. Therefore, we can immediately write down

the asymptotic form of the radial wavefunction:

ul ’ Al̂jjlðkrÞ þ Bln̂nlðkrÞ

Using eqn 14.29, we find for the asymptotic forms of ul and ul
0:

u0
l ðrÞ ’ A0l sin ðkr� 1

2 lpÞ ð14:31aÞ

ul ’ Al sin ðkr� 1
2lpÞ þ Bl cos ðkr� 1

2lpÞ ð14:31bÞ

Upon comparing eqns 14.31b and 14.24, we see that �lp/2 is the shift in

phase due to the presence of the centrifugal (l 6¼ 0) potential. We can now

introduce the l-wave scattering phase shift dl by expressing eqn 14.31b as

ul ’ Cl sin ðkr� 1
2lpþ dlÞ ð14:32Þ

with

tan dl ¼
Bl

Al
ð14:33Þ

and where, as before, there is a modulo p-ambiguity in dl.
7 The scattering

phase shift, dl, will prove to be of critical importance, for we shall see that it

contains all the information necessary to compute cross-sections for elastic

scattering. For elastic scattering off a central potential, it can be demonstrated

(see Problem 14.13) that attractive (V<0 for all r) and repulsive (V> 0 for

all r) potentials result in positive and negative phase shifts, respectively

(Fig. 14.7). In effect, the attractive potential traps the outgoing wave and

retards its progress to increasing r, and the repulsive potential advances its

progress.

We see above that when the potential V(r)¼0 for all r (that is, for a free

particle), the phase shift dl is identically zero. Similarly, in the limit of

large orbital angular momentum (l!1), the repulsive centrifugal barrier

�h2l(lþ 1)/2mr2 dominates the potential V(r) at all distances r and the

incident particle does not interact with the target particle. As a result, dl!0

as l!1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. We will not mention this modulo-p ambiguity again in this chapter but do keep it in the back

of your mind whenever the scattering phase shift is encountered. This ambiguity is eliminated by

requiring that dl be a smooth function of the energy that vanishes as the energy becomes infinite.

(a) Attractive potential
(b) Repulsive potential

Fig. 14.7 The phase shifts far

from the scattering centre for

(a) an attractive potential,
(b) a repulsive potential.

The phase shifts correspond to

a trapping and boosting of the

wave, respectively, by the centre.
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14.6 The JWKB approximation and phase shifts

Scattering phase shifts dl can be obtained by solving the radial eqn 14.18 for

the function ul(r) numerically and using the asymptotic form given in

eqn 14.32. Phase shifts can also be determined using the semiclassical

approximation attributed to H. Jeffreys, G. Wentzel, H. Kramers, and

L. Brillouin and called the JWKB approximation.

We consider S-wave scattering by a central potential V(r), and set l¼0.

Equation 14.18 can be written in the form

�h2 d2u0

dr2
þ p2ðrÞu0 ¼ 0 ð14:34Þ

where p(r) is the classical position-dependent linear momentum:

pðrÞ ¼ f2mðE� VÞg1=2

Because for the free-particle (V¼ 0 and p¼ k�h) the radial solutions are

exp(�ipr/�h), it is reasonable to try a solution to eqn 14.34 of the form

u0ðrÞ ¼ cauaðrÞ þ cbubðrÞ ð14:35Þ

where

uaðrÞ ¼ eiSaðrÞ=�h ð14:36aÞ
ubðrÞ ¼ e�iSbðrÞ=�h ð14:36bÞ

The form for the functions Sa and Sb will be considered below. Substitution of

eqn 14.36a into eqn 14.34, followed by cancellation of ua(r), yields

� dSa

dr

� �2

þ i�h
d2Sa

dr2

 !
þ p2 ¼ 0 ð14:37aÞ

and similarly, from eqn 14.36b,

� dSb

dr

� �2

� i�h
d2Sb

dr2

 !
þ p2 ¼ 0 ð14:37bÞ

Up to this point, the expressions are exact. We now expand Sa and Sb in

powers of �h:

Sa ¼ S0a þ �hS1a þ �h2S2
2a þ 
 
 


Sb ¼ S0b þ �hS1b þ �h2S2
2b þ 
 
 


followed by substitution of the above expressions for Sa and Sb into eqns 14.37

and collection of terms that have the same powers of �h:

�h0 � dS0a

dr

� �2

þp2

( )
þ �h1 �2

dS0a

dr

� �
dS1a

dr

� �
þ i

d2S0a

dr2

 !( )
þ 
 
 
 ¼ 0

�h0 � dS0b

dr

� �2

þp2

( )
þ �h1 �2

dS0b

dr

� �
dS1b

dr

� �
� i

d2S0b

dr2

 !( )
þ 
 
 
 ¼ 0
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In the JWKB approximation, the coefficient of each power of �h is set to zero. In

the first-order JWKB approximation, we consider only terms up to �h1, yielding

From �h0: � dS0a

dr

� �2

þp2 ¼ 0 implying S0a ¼
Z

pðrÞdr

From �h1: �2
dS0a

dr

� �
dS1a

dr

� �
þ i

d2S0a

dr2

 !
¼ 0

implying S1a ¼ 1
2i ln

dS0a

dr

� �
¼ 1

2i ln pðrÞ

Likewise,

From �h0: � dS0b

dr

� �2

þp2 ¼ 0 implying S0b ¼
Z

pðrÞdr

From �h1: �2
dS0b

dr

� �
dS1b

dr

� �
� i

d2S0b

dr2

 !
¼ 0

implying S1b ¼ �1
2i ln

dS0b

dr

� �
¼ �1

2i ln pðrÞ

Substitution of the above expressions into eqns 14.36 and using exp(a ln x)¼ xa

results in the first-order JWKB wavefunction

u0ðrÞ ¼
1

pðrÞ1=2
ca exp

i

�h

Z
pðr0Þdr0

� �
þ cb exp � i

�h

Z
pðr0Þdr0

� �	 


ð14:38aÞ
This oscillatory solution is applicable in classically allowed regions where

p(r)2> 0. In classically forbidden regions, where p(r)2<0, or p(r)¼ ijp(r)j, the

first-order JWKB solution is

u0ðrÞ ¼
1

jpðrÞj1=2
da exp � 1

�h

Z
jpðr0Þjdr0

� �
þ db exp

1

�h

Z
jpðr0Þjdr0

� �	 


ð14:38bÞ
and consists of a linear combination of exponentially decaying and increasing

functions. Both wavefunctions in eqn 14.38 diverge at a classical turning

point r1 because p(r1)¼0. It is therefore critically important to match the

forms of the two wavefunctions in the vicinity of the turning point. In par-

ticular, for a scattering energy E such that r1 is the classical left-hand turning

point (that is, V>E for r< r1, and E>V for r> r1) it is necessary to connect

at r1 the oscillatory solution 14.38a to the decreasing exponential term in

solution 14.38b. An asymptotic analysis8 can be performed to provide this

connection and to determine the relative phases of the coefficients ca and cb

in the limit r!1 of the solution 14.38a. This analysis yields the standard

r!1 asymptotic form for u0(r):

u0ðrÞ ’ A sin ðkrþ dÞ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. See M.S. Child, Semiclassical mechanics with molecular applications, Clarendon Press, Oxford

(1991), for this asymptotic analysis as well as other details about the JWKB approximation.
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where the JWKB scattering phase shift is given by

d ¼ lim
r!1

p
4
þ 1

�h

Z 1
r1

pðr0Þdr0 � pð1Þr
� �	 


¼ p
4
� pð1Þr1

�h
þ 1

�h

Z 1
r1

½ pðr0Þ � pð1Þ�dr0
� �

ð14:39Þ

with p(1) the asymptotic value of the momentum.

Example 14.2 Determining the JWKB phase shift

Find an expression for the JWKB phase shift for S-wave scattering at an energy

E by a central potential of the form V¼Ae�ar.

Method. The momentum is given by p(r)¼ {2m(E�V)}1/2 and the asymptotic

momentum is p(1)¼ (2mE)1/2 because V(1)¼ 0. The turning point r1 is

found by setting V(r1)¼E. The scattering phase shift is given by eqn 14.39; the

integral is most easily evaluated by using symbolic mathematical software.

Answer. At the classical turning point, V(r1)¼E, implying

r1 ¼
1

a
ln

A

E

� �

The scattering phase shift, from eqn 14.39, is given by

d ¼ p
4
� ð2mEÞ1=2

a�h
ln

A

E

� �
þ 1

�h

Z 1
lnðA=EÞ=a

f½2mðE� VÞ�1=2 � ½2mE�1=2gdr0

 !

¼ p
4
� ð2mEÞ1=2

a�h
ln

A

E

� �
� ð2mEÞ1=2

�h

Z 1
lnðA=EÞ=a

f1� ½1� V=E�1=2gdr0

 !

The integral required (with b¼A/E) isZ 1
ðlnbÞ=a

f1� ½1� be�ar0 �1=2gdr0 ¼ 2� ln 4

a

so that

d ¼ p
4
þ ð2mEÞ1=2

a�h
ln 4� ln

A

E

� �
� 2

	 


Self-test 14.2. Repeat the above with the screened Coulombic potential

V¼ (a/r)e�r/b.

14.7 Phase shifts and the scattering matrix element

Once we know the values of the scattering phase shift dl, we also know the

asymptotic form of the stationary state c(r,y) as r!1, because substitution

of eqn 14.32 into eqn 14.19 gives

cðr,yÞ ’
X

l

Cl

r
Plðcos yÞ sin ðkr� 1

2lpþ dlÞ ð14:40Þ
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However, this expression must be consistent with eqn 14.15, which in terms

of partial waves is

cðr,yÞ ’ eikr cos y þ fkðyÞ
eikr

r
¼ eikr cos y þ

X
l

fl
eikr

r
Plðcos yÞ

To bring the two expressions into a form in which they can be compared,

we need the following expansion:9

eikr cos y ¼
X

l

ilð2l þ 1ÞjlðkrÞPlðcos yÞ ð14:41Þ

This expansion expresses a plane wave corresponding to linear momentum

along the z-axis (the wavefunction eikz, where z¼ r cos y) as an infinite

superposition of orbital angular momentum states with ml¼ 0. The asymp-

totic form of this expansion as r!1 is obtained by substituting the

asymptotic form of the spherical Bessel functions, and is

eikr cos y ’
X

l

ilð2l þ 1Þ
sin ðkr� 1

2lpÞ
kr

Plðcos yÞ ð14:42Þ

It follows that the asymptotic form of the scattering state is

cðr,yÞ ’
X

l

ilð2l þ 1Þ
sin ðkr� 1

2lpÞ
kr

þ fl
eikr

r

	 

Plðcos yÞ ð14:43Þ

By comparing this equation with eqn 14.40, we see that the two are

equivalent if

Cl

r
sin ðkr� 1

2lpþ dlÞ ¼ ilð2l þ lÞ
sin ðkr� 1

2lpÞ
kr

þ fl
eikr

r

We can manipulate this expression into something much simpler by making

use of the relations

sin x ¼ eix � e�ix

2i
il ¼ eilp=2

and collecting terms with a common factor of e�ikr (see Problem 14.10). This

procedure leads to the identification

Cl ¼
ilð2l þ 1Þ

k
eidl ð14:44Þ

Similarly, when we equate terms with a common factor of eikr we find

fl ¼
2l þ 1

2ik
ðe2idl � 1Þ ¼ 2l þ 1

k
eidl sin dl ð14:45Þ

The factor e2idl that appears in eqn 14.45 plays a special role and is called

the scattering matrix element for elastic scattering; it is denoted Sl. This

matrix element (in fact it is a scattering matrix of dimension one) is a special

case of a scattering matrix element that we first encountered at the end of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. See C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum mechanics, Vol. 2, Wiley,

New York (1977).
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Chapter 2. However, as we shall soon see, the scattering matrix takes on its

full generality when we discuss inelastic and reactive scattering.

We can obtain insight into the significance of the scattering matrix element

Sl¼ e2idl by comparing the asymptotic forms of the stationary scattering state

c and the wave eikr cos y. For the former, eqns 14.40 and 14.44 imply that

cðr, yÞ ’
X

l

il�1ð2l þ 1Þ
2kr

Plðcos yÞf�e�iðkr�lp=2Þ þ eiðkr�lp=2ÞSlg ð14:46Þ

For the latter, eqn 14.42 implies that

eikr cos y ’
X

l

il�1ð2l þ 1Þ
2kr

Plðcos yÞf�e�iðkr�lp=2Þ þ eiðkr�lp=2Þg

Comparison of the components with the same angular momentum l shows

that both this wave and the stationary scattering state are superpositions of

incoming and outgoing spherical waves.10 The incoming waves are identical in

each case, but the outgoing waves differ by a factor equal to the scattering

matrix element; that is, by a factor of e2idl. Thus, the effect of the potential is to

shift the phase of each outgoing partial wave. This effect is the origin of the

name ‘scattering phase shift’ for dl. Moreover, we see from eqn 14.46 that, for

elastic scattering, the scattering matrix element is the ratio of the amplitudes of

the outgoing and incoming waves; this result is a general feature of scattering

theory for the scattering matrix and is not restricted to elastic scattering.

14.8 Phase shifts and scattering cross-sections

Now at last we can find an expression for the scattering amplitude in terms of

the phase shift and the scattering matrix element, the quantities central to the

computation of physical observables. According to eqn 14.16, all we need to

do is to add together the partial-wave contributions (fk¼SlflPl):

fkðyÞ ¼
X

l

2l þ 1

k
eidl sin dlPlðcos yÞ ¼

X
l

2l þ 1

2ik
ðSl � 1ÞPlðcos yÞ

ð14:47Þ

This important formula is exactly what we need to relate the scattering cross-

section to the phase shift, which is simply11

sðy,fÞ ¼ 1

k2

X
l

ð2l þ 1Þeidl sin dlPlðcos yÞ
����

����
2

¼ 1

k2

X
l;l0

ð2l þ 1Þð2l0 þ 1Þeiðdl�dl0 Þ sin dl sin dl0Plðcos yÞPl0 ðcos yÞ

ð14:48Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10. An incoming spherical wave is of the form (1/r)e�ikr and an outgoing spherical wave is of the

form (1/r)eikr.

11. Although s is independent of f for a central potential, we continue to write s(y, f): that will

remind us to integrate over both angles when determining stot.

488 j 14 SCATTERING THEORY



Because P0(cos y)¼ 1, the contribution with l¼ l 0 ¼ 0 to the differential cross-

section is isotropic:

sðy,fÞ ¼ sin2 d0

k2

This equation implies that if the experimental differential cross-section is

anisotropic, then partial waves with l> 0 are almost certainly important in

the scattering.

To obtain the expression for the integral cross-section we make use of the

following orthogonality property of the Legendre polynomials:Z p

0

Plðcos yÞPl0 ðcos yÞ sin ydy ¼ 2

2l þ 1
dll0

where dll 0 is the Kronecker delta (Section 1.6). This integration, when applied

to eqn 14.47, eliminates all terms for which l 0 6¼ l, and enables us to write the

integrated cross-section as a sum of partial-wave cross-sections, sl:

stot ¼
X

l

sl with sl ¼
4p
k2
ð2l þ 1Þ sin2 dl ¼

p
k2
ð2l þ 1ÞjSl � 1j2 ð14:49Þ

The k in the denominator shows that sl is small for very high energies. The

proportionality of sl to sin2 dl shows that as the phase shift increases from

zero the cross-section increases; the factor 2lþ 1 plays the role of a degen-

eracy factor that magnifies this effect.

We see that the phase shifts dl and their variation with angular momentum l
and energy (effectively k) are indispensable for a calculation of elastic scattering

cross-sections. If the phase shift dl rapidly increases by p as the energy increases,

then the partial-wave cross-sectionsl will vary rapidly with energy. For example,

if dl increases rapidly from 0 to p over a small energy range, then the partial-

wave cross-section rises rapidly from 0 to a maximum value (when dl¼p/2) of

sl;max ¼
4p
k2
ð2l þ 1Þ ð14:50Þ

and then rapidly falls back to 0. This rapid variation in dl (or sl) with energy is

often associated with a phenomenon known as ‘resonance’, and we encounter

it again in Section 14.10. Depending on the behaviour of the other phase

shifts at this energy, this maximization of sl may result in a maximum in the

integral cross-section stot.

For the sum stot¼Slsl to converge, sl must vanish in the limit of large l.

However, sl is proportional to 2lþ 1, so the sine function in eqn 14.49 must

vanish as l grows large. The latter behaviour is in fact the case because, as we

have discussed above, dl!0 as l!1.

Example 14.3 Scattering by a hard sphere

As an example of determining scattering phase shifts, consider the case of

S-wave scattering by a hard sphere, where V(r) takes the form

VðrÞ ¼ 1 if r � a
0 if r > a
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The constant a represents the distance of closest approach. Calculate s0 for

this system.

Method. Classically, we would expect a collision to occur if the incident

particle (treated as structureless) approaches the target particle to within a

distance a. The classical cross-section is thus pa2 (Fig. 14.8). For S-wave

scattering the centrifugal potential is zero at all distances, so the equations are

easier to solve than when the centrifugal potential is non-zero. We must first

establish the appropriate boundary conditions for the problem. Because the

potential energy is infinite for r� a, the radial wavefunction u0 must vanish

for r� a.

Answer. The potential energy is zero for r> a, so the solution u0 for r> a is of

the form

u0 ¼ A sin krþ B cos kr ¼ C sinðkrþ d0Þ

This equation is consistent with the asymptotic form given in eqn 14.25.

Because the radial wavefunction must be continuous, the following condition

must be satisfied at r¼ a:

C sinðkaþ d0Þ ¼ 0

This condition implies that d0¼�ka. The partial-wave scattering amplitude

f0 is given by eqn 14.45 as

f0 ¼ �
1

k
e�ika sin ka

It then follows from eqn 14.10 that the S-wave differential cross-section is

(sin2 ka)/k2; as expected, it is isotropic. The partial-wave cross-section from

eqn 14.49 is

s0 ¼
4p
k2

sin2 ka

For ka�1, which corresponds to very low energies, we can write (sin x)/x� 1,

so s0 is to an excellent approximation 4pa2.

Comment. At low energies, the S-wave scattering cross-section is independent

of energy and four times the classical cross-section.

Self-test 14.3. Consider the case of P-wave scattering by a hard sphere. By

imposing the condition that the radial wavefunction is continuous at r¼ a,

find an expression for the l¼ 1 phase shift d1.

[tan d1¼�ĵ1(ka)/n̂1(ka)]

14.9 Scattering by a spherical square well

We now consider a central potential with the characteristics of a spherical

square well:

VðrÞ ¼ �V0 if r � a
0 if r > a

	

a

Fig. 14.8 The classical collision
cross-section for two hard spheres

of diameter a.
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We note that this potential might be able to support bound states; that is, there

may be solutions of eqn 14.18 for discrete energies E<0. The existence of

quantized energy levels will depend on the values of V0, a, m, and l. Here,

however, we shall consider the solutions ul corresponding to continuum or

scattering states with E>0. We solve this problem by writing down the solution

ul of eqn 14.18 in the two regions inside and outside the well and then requiring

that the radial wavefunction and its first derivative be continuous at r¼ a.

We consider only S-wave scattering by the spherical square well. (The

solution for a general value of l is treated in Problem 14.19.) First consider

the region inside the well, r� a. The equation to solve is

d2u0

dr2
þ K2u0 ¼ 0

where

�h2K2 ¼ 2mðEþ V0Þ
The general solution u0 is a linear combination of a sine function and a cosine

function:

u0 ¼ A0 sinðKrÞ þ B0 cosðKrÞ ð14:51Þ

To ensure that c is not infinite at the origin, we require u0(0)¼0. Therefore,

we must have B0¼0 and inside the well the solution is of the form

u0 ¼ A0 sinðKrÞ ð14:52Þ
In the outer region, r> a, the potential has no direct influence and eqn 14.18

reduces to the free-particle equation, eqn 14.21, and we can immediately

write down the solutions

u0 ¼ C0 sinðkrÞ þD0 cosðkrÞ
where, as usual, k is related to the energy by E¼k2�h2/2m. As in the general

case, we introduce the constant d0 by the relations

C0 ¼ B0 cos d0 D0 ¼ B0 sin d0

(Here we are taking advantage of the fact that the letter B is no longer

required for the interior solutions and can be used in this different context.)

Then

u0 ¼ B0 sinðkrÞ cos d0 þ B0 cosðkrÞ sin d0 ð14:53Þ
We require continuity of the wavefunction and its first derivative at r¼ a.

From eqns 14.52 and 14.53 we obtain from the continuity of u0

A0 sin ðKaÞ ¼ B0 sinðkaÞ cos d0 þ B0 cosðkaÞ sin d0

¼ B0 sinðkaþ d0Þ ð14:54Þ

and for the continuity of the slope at r¼ a,

KA0 cosðKaÞ ¼ kB0 cos ðkaÞ cos d0 � kB0 sin ðkaÞ sin d0

¼ kB0 cos ðkaþ d0Þ ð14:55Þ

Division of eqn 14.55 by eqn 14.54 gives

K cot Ka ¼ k cot ðkaþ d0Þ

We have used the trigonometric

identities

sin A cos Bþ cos A sin B

¼ sin ðAþ BÞ
cos A cos B� sin A sin B

¼ cos ðAþ BÞ
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and solving for d0 yields

d0 ¼ �kaþ arctan
k

K
tan Ka

� �
ð14:56Þ

Therefore, for a given energy (and corresponding K and k), we can determine

the phase shift d0 and, subsequently, the scattering amplitude, differential

cross-section, and partial-wave cross-section.

If we set B0¼1 (the solution u0 is determined uniquely to within an

arbitrary ‘normalization’ constant), we can obtain an expression for A0 and

subsequently expressions for u0 inside the well (eqn 14.52) and outside the

well (eqn 14.53). From eqn 14.56, we find

sinðd0 þ kaÞ ¼ sin arctan
k

K
tan Ka

� �	 

¼ sin arctan

k sin Ka

K cos Ka

� �	 


¼ k sin Ka

ðk2 sin2 Kaþ K2 cos2 KaÞ1=2
ð14:57Þ

It follows from the eqns 14.57 and 14.54 (with B0 set equal to 1) that

A0 ¼
k

ðk2 sin2 Kaþ K2 cos2 KaÞ1=2
¼ k

ðk2 þ K2
0 cos2 KaÞ1=2

ð14:58Þ

where

K2
0 ¼ K2 � k2 ¼ 2mV0

�h2
ð14:59Þ

Therefore, the solution u0 is given by

for r � a : u0ðrÞ ¼ A0 sin Kr

for r> a : u0ðrÞ ¼ sinðkrþ d0Þ ð14:60Þ

Inside the well, the solutions are harmonic with a wavelength determined by

K; outside the well, they are also harmonic, but their wavelength depends on

k and they have undergone a phase shift.

14.10 Background and resonance phase shifts

We continue with the analysis of the scattering phase shift for S-wave scat-

tering by the spherical square well. To do so, we divide the phase shift d0 into

two parts, one denoted dbg (bg for ‘background’) and the other dres (res for

‘resonance’); these terms will be explained shortly. We then show that dres

exhibits a rapid variation with energy that is associated with the type of

resonance phenomenon mentioned in Section 14.8. However, for scattering

by a spherical square well, the background term dbg also varies rapidly with

energy, with the net result that d0 does not demonstrate resonance behaviour.

Nonetheless an analysis of the resonance term dres will lead to expressions

that are very useful for investigations of resonances in other, more realistic

systems.

We begin by writing eqn 14.56 as

d0ðEÞ ¼ dbgðEÞ þ dresðEÞ ð14:61Þ

We have used the trigonometric

identity

sin2 xþ cos2 x ¼ 1

with x¼Ka.
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with

dbgðEÞ ¼ �ka dresðEÞ ¼ arctan
k

K
tan Ka

� �
ð14:62Þ

With this notation, the l¼0 partial-wave cross-section (eqn 14.49) can be

written

s0ðEÞ ¼
4p
k2

sin2ðdbg þ dresÞ ð14:63Þ

For energies in the range 0�E�V0, k/K� 1, which implies that dres(E)�0

for most of the energy range. (There will be certain energies and corre-

sponding values of K in the energy range where dres changes rapidly from

zero; see below.) Therefore the partial-wave cross-section s0(E) is dominated

by the contribution from dbg. In other words, over most of the energy range,

the spherical square-well potential has virtually the same effect as a hard-

sphere potential (Example 14.3). From eqns 14.58 and 14.60, we see that the

incident particle penetrates very little into the region r� a for most of the

energy range; A0 is very small on account of K0 being large.

However, even for a very deep square well, there are particular energies

at which s0 is not dominated by the hard-sphere scattering phase shift. If we

look more closely at dres (Fig. 14.9), we see that it jumps by p as the energy

increases in the vicinity of Eres, where Eres is the energy corresponding to

Kres ¼
ð2nþ 1Þp

2a
ð14:64Þ

with n a non-negative integer. At these energies, which are

Eres ¼
ð2nþ 1Þ2p2�h2

8ma2
� V0

the phase shift dres(Eres) is 1
2p and this shift contributes to the partial-wave

cross-section s0 of eqn 14.63. Note that it is only at energies E in the vicinity

of Eres that dres will contribute, but when it does, the rapid increase with

energy by p in dres(E) can be responsible for a rapid variation in s0.

Furthermore, note that A0 in eqn 14.58 reaches its maximum value of 1 at

E¼Eres (because cos Kresa¼ 0). We conclude that it is only in the vicinity of

Eres that the incident particle will have appreciable intensity in the region

r� a. These observations are characteristically associated with resonance

phenomena (Section 14.8), which we introduce more formally shortly. For

now, we note that Eres is referred to as the (real part of the) resonance energy

and dres as the resonance phase shift. The contribution dbg is called the

background phase shift. The background phase shift makes the dominant

contribution to d0 over most of the energy range; however, superimposed on

this background may be contributions from dres due to resonances.

We now have to admit that the above discussion has been somewhat

misleading for the reason mentioned at the beginning of this section. For

S-wave scattering by a spherical square well, the background phase shift

dbg¼�ka in fact decreases with energy at least as fast as the resonance phase

shift dres increases as the energy passes through Eres. The net result is rapid

π/2

0

– /2π
0 2 4 6

� r
es

E V/ 0

Fig. 14.9 Resonance phase shifts as

a function of the energy of
the incident particles for S-wave

scattering by a spherical square-well

potential. The illustration is based

on a(2mV0)1/2/�h¼ 1.
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variation in neither d0 nor s0! However, in many types of potential (for which

eqn 14.18 is typically solved numerically), it is in fact the case that dbg is either

very close to zero or very slowly varying in energy. In these cases, rapid

changes in the resonance phase shift dres(E) do produce rapid variations in the

partial-wave cross-section.

Because the concepts introduced by considering S-wave scattering by a

spherical square well are commonly observed for other potentials even

though they are not in fact observed for that actual case, we continue our

discussion. We define a resonant part of sl analogous to eqn 14.49:

sres ¼
4p
k2
ð2l þ 1Þ sin2 dres

It is easy to show (see eqn 14.57) that, for S-wave scattering by a spherical

square well,

sin2 dres ¼
k2

k2 þ K2 cot2 Ka
ð14:65Þ

We see that sin2 dres is a maximum at K¼Kres and increases from 0 to 1 as the

energy approaches Eres and then decreases from 1 to 0 as the energy leaves the

vicinity of the resonance (Fig. 14.10).

14.11 The Breit–Wigner formula

We can now make a connection between the expression for sin2 dres in

eqn 14.65 and a formula originally derived by G. Breit and E.P. Wigner. It

is shown in Appendix 14.1 that for energies E in the vicinity of Eres (such that

jE�Eresj�EresþV0) the expression

tan dresðEÞ ¼
k

K
tan Ka ð14:66Þ

can be written in the simplified form

tan dresðEÞ ¼
G=2

Eres � E
G ¼ 2�h2kres

ma
ð14:67Þ

where kres is related to Eres in the normal way through E¼ k2�h2/2m. As can

be seen by reference to Fig. 14.11, eqn 14.67 can be rewritten as the Breit–

Wigner formula for the resonance phase shift:

sin2 dres ¼
ðG=2Þ2

ðG=2Þ2 þ ðEres � EÞ2
ð14:68Þ

The quantity G is called the resonance width.

Equation 14.68 is a general expression for the behaviour of the resonance

phase shift near Eres. Although we have derived it for S-wave scattering by

a square-well potential, it is in fact applicable to partial-wave scattering from

a wide variety of potentials. The formula shows that sin2 dres peaks at

E¼Eres, is zero at energies where jEres�Ej�G and has a full width at

half-maximum equal to G (Fig. 14.12).

The Breit–Wigner formula has very important implications for scattering

experiments. If the form of the potential energy V(r) is such that the

si
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Fig. 14.10 The function sin2 dres as a

function of energy for S-wave

scattering from a spherical square
well. The illustration shows the effects

of three resonances. For the purposes

of the plot, we have set Kres equal

to 3p/2a.
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Fig. 14.11 The construction required
for the derivation of eqn 14.68.
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Fig. 14.12 The phase shift according
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background phase shift dbg is insignificant, then the partial-wave cross-section

will be dominated by dres (that is, by sres) and will be given by

slðEÞ ¼
4p
k2
ð2l þ 1Þ ðG=2Þ2

ðG=2Þ2 þ ðEres � EÞ2
ð14:69Þ

Thus, the partial-wave cross-section will vary rapidly with energy and show a

peak in the vicinity of Eres. A resonance that produces this kind of behaviour

for sl(E) is called a Breit–Wigner resonance. Furthermore, if there is a reso-

nance of angular momentum l with its associated Eres and all other phase

shifts (of all other angular momenta) are slowly varying in the neighbourhood

of Eres, then the peak in sl will also result in a rapid variation of the total

integral cross-section stot. Of course, we should be mindful of the fact that if

dbg is non-zero or is varying significantly with energy, then a Breit–Wigner

resonance will not be apparent and we should not expect the partial-wave

cross-section to vary in the simple way given by eqn 14.69.

14.12 Resonance contributions to the scattering
matrix element

The scattering matrix element (Sl¼ e2idl) for elastic scattering was introduced

in Section 14.7. We shall now explore the relation between Sl and a resonance

of angular momentum l. We have already seen that a resonance is char-

acterized by Eres and a width G, and that the phase shift dl can be written in

general as a sum of two contributions:

dlðEÞ ¼ dl;bgðEÞ þ dl;resðEÞ ð14:70Þ

where dl,bg and dl,res are, respectively, the background and resonance phase

shifts for the partial wave with orbital angular momentum l. It follows that

we can write the scattering matrix element as a product of two factors:

Sl ¼ e2idl;bg e2idl;res ð14:71Þ

and hence that

Sl ¼ e2idl;bgðcos dl;res þ i sin dl;resÞ2

¼ e2idl;bgðcos2 dl;res � sin2 dl;res þ 2i cos dl;res sin dl;resÞ

We now utilize eqn 14.67 (as illustrated in Fig. 14.11), which is valid for

E�Eres, to obtain

Sl ¼ e2idl;bg
ðEres � EÞ2 � ðG=2Þ2 þ 2iðEres � EÞðG=2Þ

ðEres � EÞ2 þ ðG=2Þ2

( )

¼ e2idl;bg
½ðE� EresÞ � iG=2�½ðE� EresÞ � iG=2�
½ðE� EresÞ þ iG=2�½ðE� EresÞ � iG=2�

	 


¼ e2idl;bg
E� Eres � iG=2
E� Eres þ iG=2

	 

ð14:72Þ

In a scattering experiment, we are interested in measurements and calcula-

tions at real scattering energies E. However, this expression for Sl is valid
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mathematically at both real and complex energies in the vicinity of Eres. If we

think of it as extended into real and imaginary energies (Fig. 14.13), then we

see that Sl has a pole (a point at which a function becomes infinite) at the

complex energy E given by

E ¼ Eres � iG=2 ð14:73Þ

The complex energy E is called the resonance energy; its real component is

Eres and its negative imaginary part is G/2. From now on, we shall take the

existence of a pole in the scattering matrix element as the definition of a

resonance. From what we have already seen about the physical significance of

resonances, we now know that a pole in the scattering matrix element for the

orbital angular momentum l signifies the likelihood of a rapid variation of

partial-wave cross-section close to the real part of E, and the rapidity of the

variation is determined by the imaginary part of E (provided the background

phase shift is well-behaved).

Consider now the nature of the state associated with the resonance energy.

From eqn 14.46, we see that at E�E because Sl is so large close to a resonance,

cðr; yÞ ’
X

l

il�1ð2l þ 1Þ
2kr

Plðcos yÞSlðEÞeiðkr�lp=2Þ ð14:74Þ

and cl(r, y) has no incoming wave; it is purely an outgoing wave. We can

think of this state as the solution of the time-independent Schrödinger

equation for a particular value l with complex energy Eres� iG/2; the wave-

function decays with time because

e�itE=�h ¼ e�itEres=�he�tG=2�h ð14:75Þ

Thus, the intensity of the resonance state wavefunction, which is given

by jC(r,y,t)j2 (for a particular l), decays exponentially with time as e�Gt/�h.

If we define the mean lifetime, t, of the resonance state as the time at which

its intensity has decreased to 1/e of its intensity at t¼0, then we immediately

see that

t ¼ �h

G
ð14:76Þ

It follows that the mean lifetime of the resonance state is inversely propor-

tional to its width G, in accord with the general principles of lifetime

broadening (Section 6.18). At this point, we can make a connection with the

discussion of predissociation in Section 11.5. In the language of scattering

theory, a predissociating state of finite lifetime t is a resonance of finite

width G.

We now possess several equivalent descriptions of the resonance. We can

characterize the resonance by a state at the complex energy E¼Eres� iG/2

with a mean lifetime �h/G. To characterize the resonance at real physical

energies E, we must regard it as having an imprecise energy. This imprecision

is associated with the resonance width G. In a range of real energies about Eres

the resonance may have physically observable effects. These descriptions of

the resonance are also applicable to inelastic and reactive scattering although

we shall need to generalize our definition of a resonance.

re E

im E

Eres– /2�

Fig. 14.13 The interpretation of a

pole in the complex energy plane.

The real coordinate is the real part of
the resonance energy and the

complex coordinate is proportional

to the width of the resonance.
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Multichannel scattering

In the previous sections, we have limited the discussion to elastic scattering

between two structureless particles. We shall now consider some of the

fundamental concepts pertinent to inelastic and reactive scattering. Most of

the concepts are generalizations of the findings for elastic scattering.

14.13 Channels for scattering

In an informal sense, a ‘channel’ refers to each possible grouping of the

various particles involved in the scattering event.12 Consider, for example, the

scattering of an incident atom A off a target diatomic molecule BC. There are

many possible outcomes of the collision even if we restrict the discussion to

the electronic ground states of all atomic and diatomic species. For example,

some possibilities are

ð1Þ Aþ BC! Aþ BC ð5Þ Aþ BC! ACþ B

ð2Þ Aþ BC! Aþ BC ð6Þ Aþ BC! AC þ B

ð3Þ Aþ BC! ABþ C ð7Þ Aþ BC! Aþ Bþ C

ð4Þ Aþ BC! AB þ C

where  indicates a vibrationally or rotationally excited state of the molecule.

Each grouping on the right or left of the arrow represents a channel; in this

case we can have seven different channels, so the collision of A and BC is an

example of a multichannel process.

Process 1 represents an elastic scattering event, in which the relative

translational energy of A and BC is unchanged by the collision, and the energy

of the internal modes of motion of the diatomic molecule (its vibration and

rotation) remain the same. Process 2 represents an inelastic scattering process

in which the internal state of BC is changed by the process. Processes 3–6

represent reactive scattering events. Process 7 involves the dissociative

channel AþBþC. Which processes are actually possible depends on the total

energy E. Channels that are energetically accessible are called open channels

and channels that are not energetically accessible are called closed channels.

For example, if the total energy E is less than the energy of the internal state

AB, then the channel AB þC is closed and process 4 cannot occur.

In theory, if the scattering event begins with the particles in some incident

channel, and if there are N open channels, then there are N possible processes.

However, in principle, each of the N channels can be the incident channel and

thus there are N2 qualitatively different processes that can be considered, one

of the N possible incident channels resulting in each of the N final channels.

The multichannel process will be described by an N�N matrix, called the

scattering matrix, or S matrix. Each element of the S matrix, Sji, conveys

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12. We give a more precise definition in Section 14.15.
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information about the process connecting incident channel i and final

channel j. The S matrix plays a critical role in scattering theory.

14.14 Multichannel stationary scattering states

As discussed above, depending on the total collision energy there may be

many open channels and in a complete treatment we need to consider elec-

tronic, vibrational, and rotational states of all the species. However, the total

angular momentum, represented by the quantum number J, is conserved

during the collision (provided there are no external fields present that can

exert torques on the system), and the scattering problem can be decomposed

into sets of smaller problems, each one referring to one value of J.

For simplicity we shall consider only the specific case of an atom A that

collides with a diatomic molecule BC. The initial internal state of the mole-

cule is designated by a set of quantum numbers a0 and the multichannel

stationary scattering state (the solution of eqn 14.6) is denoted ca0
(rA,rBC),

where rA is the vector from A to the centre of mass of BC and rBC is the

vector from B to C (Fig. 14.14). As in elastic scattering, we are interested in

the asymptotic behaviour of ca0
(rA,rBC), but now different asymptotes

correspond to different channels. The asymptotic behaviour as rA!1
corresponds to final channels in which A is moving infinitely far away from B

and C; that is, elastic, inelastic, and dissociative processes (for example,

processes 1, 2, and 7 in the preceding section). The asymptotic behaviour

as rBC!1 corresponds to channels in which B is moving infinitely far

away from AC or likewise C is moving infinitely far away from AB; that is,

it corresponds to the reactive and dissociative processes (processes 3–7).

14.15 Inelastic collisions

We concentrate here on inelastic scattering. (Some comments on reactive scat-

tering are made in Appendix 14.2.) The various internal states of the diatomic

molecule BC are labelled by the index a with a corresponding wavefunction

wa(rBC) and energy Ea. For example, wa may represent a vibration–rotation state

of BC. Because the total collisional energy is E, if the diatomic molecule has

energy Ea, then the relative translational energy of atom A with respect to BC

is E�Ea and the corresponding wavevector has magnitude ka, with

E� Ea ¼
k2
a�h2

2m
ð14:77Þ

where m is the reduced mass of AþBC:

1

m
¼ 1

mA
þ 1

mB þmC
ð14:78Þ

If the total collision energy E is less than Ea, then that internal state of BC is

not energetically accessible and it cannot be an initial or final state in the

scattering process; in this case, k2
a would be negative and ka imaginary.

The wavefunction that describes the system long before the collision is

a product of a plane wave representing the (relative) translational motion

A

B

C

rA

rBC

Fig. 14.14 The vectors used to

specify the location of particles in

an example of multichannel
scattering.
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(along the z-axis) of A with respect to the centre of mass of BC and the

wavefunction representing the internal state of BC:

c ¼ wa0
ðrBCÞeika0

z ð14:79Þ

We specify a channel by a particular set of quantum numbers l, ml, and a,

collectively denoted l; the labels l and ml describe the orbital motion of A

relative to BC. The incident channel l0 is specified by l0, ml0, and a0. It is

important to recognize that the initial state a0 (denoting the internal state of

the molecule), which is experimentally accessible, is different from the incid-

ent channel l0, which includes the orbital angular momentum l0 and its

component ml0 relative to the target and therefore is not well defined

experimentally. We can observe transitions experimentally between initial

and final states. Scattering theory will allow us to analyse transitions between

initial and final channels that then must be related to state-to-state processes.

The asymptotic expression for the multichannel stationary scattering state

as rA!1 is the generalization of the elastic scattering result, but instead

of eqn 14.9,

cðrÞ ’ eikz þ fkðy,fÞ e
ikr

r

we write

c ’ eika0
zwa0
ðrBCÞ þ

X
a

faa0
ðr̂rAÞ

eikarA

rA
waðrBCÞ ð14:80Þ

where faa0
is the scattering amplitude into the final state a from the incident

state a0 and r̂A is the unit vector in the direction of rA. Each term in the sum in

this expansion is the product of a scattering amplitude, an outgoing spherical

wave for A with wavevector of magnitude ka, and an internal state wave-

function for BC with energy Ea. As remarked earlier, if E<Ea, then ka is

imaginary, in which case eikarA is an exponentially decreasing function of rA

and vanishes as rA!1. Therefore, states of BC that are closed (that is,

energetically inaccessible) do not contribute to the sum in eqn 14.80 and we

need consider only the open states a and their scattering amplitudes faa0
.

Differential cross-sections can be expressed in terms of the scattering

amplitudes in a manner entirely analogous to that in Section 14.2 by con-

sidering flux densities (see Problem 14.25). The differential cross-section for

scattering into the solid angle dO in the direction r̂rA for an initial state a0 and

final state a is given by a generalization of eqn 14.10 that takes into account

the possibility that the incident and emergent wavevectors have different

magnitudes:

saa0
ðr̂rAÞ ¼

ka

ka0

jfaa0
ðr̂rAÞj2 ð14:81Þ

The integral cross-section is obtained from this differential cross-section by

integration over all orientations r̂A.

To determine the scattering amplitudes we must solve the appropriate

Schrödinger equation. The first step (as in eqn 14.16) is to expand the scattering

amplitude faa0
as a sum over partial waves (l0,ml0), which introduces the
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partial-wave scattering amplitudes. The multichannel stationary scattering

state c (for initial state a0) is expanded as a sum over partial waves:

ca0
ðrA, rBCÞ ¼

X
l0;ml0

ca0l0ml0
ðrA, rBCÞ ð14:82Þ

where ca0l0ml0
is the partial-wave multichannel stationary scattering state. The

latter wavefunction can itself be expanded in a basis of known functions and

the Schrödinger equation solved numerically for the coefficients of the basis

functions. However, the calculation is simplified by taking advantage of the

fact that during the scattering process, both the total angular momentum J

and its z-component MJ are conserved. This conservation of total angular

momentum allows us to decompose the problem into independent equations,

each one relating to one value of J. Therefore, before expanding ca0l0ml0
in a

basis set, we first expand it as

ca0l0ml0
ðrA, rBCÞ ¼

X
J;MJ

cðJMJ; a0l0ml0Þc
JMJ

a0l0ml0
ðrA, rBCÞ ð14:83Þ

where J ranges from 0 to infinity and MJ¼ J, J�1, . . . ,� J. The c(JMJ;a0l0ml0)

are vector coupling coefficients (Section 4.12) for the construction of

the coupled angular momentum state (J,MJ) from its component angular

momenta. These coefficients are known from tables, and we do not have to

calculate them separately in this problem.

The expansion of cJMJ

l0
(recall that the incident channel l0 is labelled by the

set a0,l0,ml0) is the generalization of eqn 14.19,

clðr, yÞ ¼ r�1ulðrÞPlðcos yÞ

and takes the form

cJMJ

l0
ðrA, rBCÞ ¼ r�1

A

X
l

uJ
ll0
ðrAÞF

JMJ

l ðr̂rA, rBCÞ ð14:84Þ

where the basis function FJMJ
l (r̂A,rBC) is the product of a BC vibrational–

rotational wavefunction (a function of (rBC) and a spherical harmonic

(a function of r̂A). The function uJ
ll0

(rA) is an as yet unknown radial function

that depends on J but is independent of MJ due to the isotropy of space. The

sum runs over an infinite number of channels; that is, it includes channels in

which the bound state of BC is energetically open, channels in which the

bound state of BC is energetically closed, and also channels involving con-

tinuum states of BC. Although the closed channels can not contribute to the

asymptotic form (rA!1) of the partial-wave multichannel scattering state,

both open and closed channels can, at least in theory, contribute at other

distances rA.

Substitution of the expansions in eqns 14.82–14.84 into Schrödinger

eqn 14.6 results in an infinite set of coupled differential equations for the

radial functions uJ
ll0

(rA) for each value of J;13 however, radial functions with

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13. The derivation and presentation of the set of coupled equations is beyond the scope of this

chapter. For rotationally inelastic scattering, see Section 7.4.2 of D.M. Hirst, A computational

approach to chemistry, Blackwell Scientific Publications, Oxford (1990).
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different values of J are decoupled. As may be suspected, this infinite set of

coupled differential equations is of little practical utility. However, in many

cases it is possible, to a very good approximation, to retain only a small finite

set of channels l in the expansion in eqn 14.84. If we let P be the number of

channels retained in the expansion, we will have a set of P coupled differential

equations for each value of J. This truncation is known as the close-coupling

approximation or the coupled-channel approximation. It is common to take

P�N, where N is the number of open channels, the expectation being that

although the closed states do not play a role in the asymptotic form of

the multichannel stationary scattering state, some closed channels may

be necessary to represent the multichannel scattering state accurately at all

values of (rA, rBC).

To obtain expressions for the scattering amplitudes and cross-sections we

need the rA!1 asymptotic form of the radial functions uJ
ll0

(rA). The

asymptotic form of the solutions of the close-coupled equations is given by a

generalization of eqn 14.46:

uJ
ll0
’ dll0

e�iðka0
rA�l0p=2Þ � ka0

ka

� �1=2

SJ
ll0

eiðkarA�lp=2Þ ð14:85Þ

where SJ
ll0

is an element of the (complex) scattering matrix SJ. The scattering

matrix element represents the ratio of the amplitude of the outgoing wave (in

channel l) to the amplitude of the incoming wave (in channel l0). The

probability of a transition (for total angular momentum J) from initial

channel l0 to final channel l, which is given by the ratio of the outgoing and

incoming flux, is jSJ
ll0
j2. Note, from eqn 14.85, that only the elastic scattering

term (l¼ l0) will have an incoming wave contribution; also, if l is a closed

channel, then the second term on the right of eqn 14.85 vanishes on account

of ka being imaginary and hence of the exponential term becoming zero as

rA!1. Therefore, for N open channels, the scattering matrix is a square

matrix of dimension N. The scattering amplitude f J
aa0

(and thus the differ-

ential cross-section via eqn 14.81) can be written in terms of the scattering

matrix elements by comparing the asymptotic forms in eqns 14.80 and 14.85

and using the expansions in eqns 14.82–14.84.

14.16 The S matrix and multichannel resonances

We mention here some of the properties of the scattering matrix and give its

connection to resonances.14 One extremely important property of S is that it

is unitary, which means that

SyS ¼ SSy ¼ 1 ð14:86Þ
Therefore,X

k

SyikSkl ¼ dil

X
k

SkiSkl ¼ dil

X
k

jSkij2 ¼ 1

Here, 1 is the unit matrix and

Sy is the adjoint of S, the complex

conjugate of its transpose:

(Sy)ij¼ Sij
 (see Further

information 23 for information on

the properties of matrices).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14. The full S matrix is a block-diagonal matrix, with blocks consisting of the smaller matrices

SJ and Sji being identically zero for channels j and i that correspond to different total angular

momenta.
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This set of equations is the mathematical expression for the conservation of

flux during the scattering event; that is, for a given initial channel i, the sum of

transition probabilities to all possible (open) channels k is 1. Furthermore, the

scattering matrix is often also symmetric:

Sij ¼ Sji ð14:87Þ
(To be precise, if the scattering system is time-reversal invariant, then the S

matrix is symmetric.)

We conclude this section by giving the relation between the S matrix and

resonances. Recall for elastic scattering, resonances of partial wave l corre-

spond to poles in Sl at complex energies E¼Eres� iG/2. For multichannel

scattering, a general form of the scattering matrix is

SJ ¼ S
J
bg �

iCJ

E� EJ
res þ iGJ=2

ð14:88Þ

where S
J
bg is a unitary background scattering matrix and CJ is another N�N

matrix with properties that do not concern us here. Thus, a pole will occur in

the scattering matrix SJ at complex energies E
J¼ EJ

res� iGJ/2. These poles

correspond to resonances, the properties of which we have already described.

Note that at EJ, a pole will appear in each scattering matrix element S
J
ji.

However, resonances need not occur for different values of J. For example,

there may be a scattering resonance for J¼0 but none for J>0. Therefore, the

effect of a resonance may not be observed experimentally, because experi-

ments reflect averages over all total angular momenta.

When resonances are found, they usually occur in multichannel systems (as

opposed to the one-channel elastic case). They can have very important effects

on cross-sections and state-to-state transition probabilities at real energies in

the vicinity of the real part Eres of the resonance energy. As such, they play a

very important role in understanding the dynamics of scattering processes,

and their study is one of the current growth points of modern molecular

quantum mechanics.

The Green’s function

We conclude this chapter by introducing the concept of ‘Green’s functions’,

which are widely used throughout scattering theory (elastic, inelastic, and

reactive). We focus entirely on elastic scattering and return to the discussion

in Section 14.2. The introduction of the Green’s functions allows us to

express in a compact way a commonly used approximation for elastic scat-

tering, the ‘Born approximation’. This latter approximation is useful for the

elastic scattering of electrons off atoms.

14.17 The integral scattering equation and Green’s functions

We shall now show that the Schrödinger equation (eqn 14.6) and its

asymptotic boundary condition (eqn 14.9) can be combined into a single
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equation that, although difficult to solve, is ideally suited to the formulation

of approximations.

The Schrödinger equation 14.6 combined with the expression for the

energy in eqn 14.8 (E¼k2�h2/2m) is

ðr2 þ k2ÞcðrÞ ¼ UðrÞcðrÞ ð14:89Þ

where U(r)¼2mV(r)/�h2. A Green’s function, G(r,r 0), is a solution of the fol-

lowing equation:

ðr2 þ k2ÞGðr, r 0Þ ¼ �4pdðr � r 0Þ ð14:90Þ

where d(r� r 0) is the Dirac �-function (Fig. 14.15). This function can be

pictured as being zero everywhere except at r 0 ¼ r, and has the following

effect:Z
gðrÞdðr � r 0Þdr ¼ gðr 0Þ

A d-function picks out of a function g its value at one particular point.

It follows that a contribution to the solution of eqn 14.89 is

cðrÞ ¼ � 1

4p

Z
Gðr; r 0ÞUðr 0Þcðr 0Þ dr 0 ð14:91Þ

To verify that this function is a solution, we proceed as follows:

ðr2 þ k2ÞcðrÞ ¼ � 1

4p

Z
ðr2 þ k2ÞGðr, r 0Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{�4pdðr�r 0Þ

Uðr 0Þcðr 0Þ dr 0

¼
Z

dðr � r 0ÞUðr 0Þcðr 0Þdr 0 ¼ UðrÞcðrÞ

as required. However, eqn 14.91 is not the complete solution, because if there

is a function c(0)(r) that satisfies

ðr2 þ k2Þcð0ÞðrÞ ¼ 0 ð14:92Þ

then this function could be added to the previous solution and the sum would

still satisfy eqn 14.89. Therefore, the complete general solution of eqn 14.89 is

cðrÞ ¼ cð0ÞðrÞ � 1

4p

Z
Gðr, r 0ÞUðr 0Þcðr 0Þ dr 0 ð14:93Þ

There are several different Green’s functions (that is, solutions of eqn 14.90),

and the choice of which one to use depends on the boundary conditions.

We need the Green’s function that results in an asymptotic solution of the

form given in eqn 14.9. Such a function is called an outgoing Green’s function

and denoted G(þ)(r, r 0). It is demonstrated in Further information 12 that

GðþÞðr, r 0Þ ¼ eikjr�r 0 j

jr � r 0j ð14:94Þ

It then follows that a formal solution of the Schrödinger equation for this

scattering problem is

cðrÞ ¼ cð0ÞðrÞ � 1

4p

Z
eikjr�r 0 j

jr � r 0jUðr
0Þcðr 0Þdr 0 ð14:95Þ

As usual, the three-dimensional

volume element, here denoted dr,

is equal to r2sin y drdydf, with r

ranging from 0 to infinity, y from 0

to p, and f from 0 to 2p.

Fig. 14.15 A Dirac d-function can

be regarded as the limit of a
rectangular function that shrinks in

width and increases in height in such

a way as to preserve unit area.
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We have achieved the conversion of a differential equation (the

Schrödinger equation) together with its boundary conditions into a single

integral scattering equation, eqn 14.95, an expression that contains, impli-

citly, the boundary conditions. Integral equations are in general much harder

to solve than differential equations, so it may appear that we are moving

away from finding solutions. However, we shall soon see that integral

equations are well formed for finding approximate solutions.

Example 14.4 Green’s functions and boundary conditions

Confirm that c(r) as given by eqn 14.95 is consistent with the asymptotic

form of the solution established in eqn 14.9.

Method. Whenever dealing with asymptotic expressions, we retain terms that

decay most slowly (as the smallest power of 1/r). We can also make use of the

fact (as asserted earlier) that V decays more rapidly than 1/r, and that it may

therefore be considered to be negligibly small for r 0 larger than a certain small

value. That in turn implies that the only terms in the integrand that contribute

have r 0 � r.

Answer. For r 0 � r, we can write

jr � r 0j2 ¼ ðr � r 0Þ 
 ðr � r 0Þ ¼ r2 þ r02 � 2r 
 r 0 � r2ð1� 2r̂r 
 r 0=rÞ
where r̂¼ r/r is a unit vector in the radial direction. Then,

jr � r 0j � rð1� 2r̂r 
 r 0=rÞ1=2 � rð1� r̂r 
 r 0=rÞ

Because we are considering the asymptotic form of the stationary scattering

state (r!1), we keep only the first term (r) in the expansion of jr� r 0j in the

denominator of eqn 14.95, but we keep both terms in the exponent, which

becomes

eikjr�r 0 j � eikrð1�r̂r
r 0=rÞ ¼ eikre�ikr̂r
r 0

We then obtain

cðrÞ ¼ cð0ÞðrÞ � 1

4p
eikr

r

Z
e�ikr̂r
r0Uðr 0Þcðr 0Þdr 0

This expression is identical to eqn 14.9 if we take the free particle state c(0)(r)

to be eikzand equate the scattering amplitude to

fkðy,fÞ ¼ � 1

4p

Z
e�ikr̂r
r0Uðr 0Þcðr 0Þ dr 0

Self-test 14.4. Evaluate the scattering amplitude if the stationary scattering

state c(r) is approximated by eikr̂ 
 r 0 and the potential V(r)¼ e� ar3

, where a is a

constant. [fk¼�2m/3a�h2]

14.18 The Born approximation

We promised that the integral scattering equation would be easier to

solve by approximation than the Schrödinger equation itself. To see that
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this is indeed the case, we shall now begin to solve eqn 14.93 iteratively.

The equation itself is

cðrÞ ¼ cð0ÞðrÞ � 1

4p

Z
Gðr, r 0ÞUðr 0Þcðr 0Þ dr 0

The problem with this equation is that we do not know the value of c(r 0),

so we cannot evaluate the integral to find c(r). However, we can form

an equation for c(r 0) by changing r 0 to r00 and r to r 0, for the equation then

becomes

cðr 0Þ ¼ cð0Þðr 0Þ � 1

4p

Z
Gðr 0, r 00ÞUðr 00Þcðr 00Þ dr 00

This expression can now be substituted into the integrand in the preceding

equation, which results in

cðrÞ ¼ cð0ÞðrÞ � 1

4p

Z
Gðr, r 0ÞUðr 0Þcð0Þðr 0Þdr 0

þ 1

4p

� �2ZZ
Gðr, r 0ÞUðr 0ÞGðr0, r 00ÞUðr 00Þcðr 00Þdr 0dr 00

ð14:96Þ
Now the first two terms on the right-hand side of this equation are known and

only the third (final) term contains the unknown function c. We can repeat

this procedure, and substitute the equation for c(r00) into the integrand of the

third term, and so successively generate terms of the Born expansion of c(r).

The utility of the Born expansion stems from the fact that each successive

term has one higher power in U and so, if the potential is weak, successive

terms get smaller and smaller. We can normally assume that the expansion

converges and that for very weak scattering potentials that it does so quite

rapidly.15

The structure of the Born expansion can be seen by writing it symbolically.

Thus, if we write eqn 14.93 as

c ¼ cð0Þ þGUc ð14:97Þ

where we have not shown the integrations explicitly (nor the numerical

factor), then eqn 14.96 would be

c ¼ cð0Þ þGUcð0Þ þGUGUc

and continuation of this series gives

c ¼ cð0Þ þGUcð0Þ þGUGUcð0Þ þ 
 
 
 ð14:98Þ

A purely symbolic summary of this result, which is useful for formal manipula-

tions, is obtained by noting that because 1þxþx2þ 
 
 
 ¼ (1� x)�1, we can

write eqn 14.98 as

c ¼ ð1�GUÞ�1cð0Þ ð14:99Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15. See E. Merzbacher, Quantum mechanics, Wiley, New York (1970), p229 and M. Rotenberg,

Ann. Phys., 579, 21 (1963) for a discussion of the convergence of the Born expansion.
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We are now in a position to round off the calculation by substituting the

Born expansion for the stationary scattering state into the result derived in

Example 14.4, which was

fkðy,fÞ ¼ � 1

4p

Z
e�ikr̂r
r 0Uðr 0Þcðr 0Þ dr 0 ð14:100Þ

This procedure generates the Born expansion of the scattering amplitude.

The so-called Born approximation is the result of keeping only the first term,

and neglecting all terms higher than first order in U:

fkðy,fÞ � � 1

4p

Z
e�ikr̂r
r 0Uðr 0Þcð0Þðr 0Þ dr 0

¼ � 1

4p

Z
e�ikr̂r
r 0Uðr 0Þeikz0 dr 0 ð14:101Þ

In short, the Born approximation replaces the stationary scattering state by a

plane wave in the expression for the scattering amplitude.

Example 14.5 How to use the Born approximation

Calculate the differential cross-section for scattering from a ‘Yukawa potential’,

a potential of the form:

VðrÞ ¼ V0
e�ar

r

where V0 and a are constants. The Yukawa potential is an example of a central

potential, one that depends only on r and not (y, f); it was originally intro-

duced to represent the interaction between fundamental particles.

Method. The first step is to insert the Yukawa potential into the Born

approximation for the scattering amplitude, and then to evaluate the integral.

Then, with fk determined, the differential scattering cross-section can be

determined by using eqn 14.10.

Answer. Within the Born approximation, we have

fkðy,fÞ ¼ � 1

4p
2mV0

�h2

� �Z
e�ikr̂r
r 0 e

�ar0

r0
eikz0dr 0

Because

�kr̂r 
 r 0 þ kz0 ¼ �kr̂r 
 r 0 þ k 
 r 0 ¼ ðk� kr̂rÞ 
 r 0 ¼ jk� kr̂rjr0 cos y0

and dr 0 ¼ r 02sin y 0dr 0dy 0df 0, this expression is

fkðy,fÞ ¼ � 1

4p
2mV0

�h2

� �Z 1
0

Z p

0

Z 2p

0

e�ar0

r0
eijk�kr̂rjr0 cos y0r02 sin y0dr0dy0df0

Integration over f 0 gives a factor of 2p. The integral over y 0 is
Z p

0

eijk�kr̂rjr0 cos y0 sin y0dy0 ¼
Z 1

�1

eijk�kr̂rjr0 cos y0d cos y0

¼ eijk�kr̂rjr0 � e�ijk�kr̂rjr0

ijk� kr̂rjr0 ¼ 2 sinðjk� kr̂rjr0Þ
jk� kr̂rjr0
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Therefore,

fkðy,fÞ ¼ � 2mV0

�h2

� �Z 1
0

e�ar0 sinðjk� kr̂rjr0Þ
jk� kr̂rj dr0

¼ � 2mV0

�h2

� �
1

a2 þ jk� kr̂rj2

To obtain this result we have used the standard integralZ 1
0

e�ax sin bx dx ¼ b

a2 þ b2

Because y is the angle between the incident wavevector k and the unit vector r̂

in the scattered direction (see Fig. 14.16), it follows that

jk� kr̂rj ¼ 2k sin 1
2y

and therefore that

fkðy,fÞ ¼ � 2mV0=�h2

a2 þ 4k2 sin2 1
2y

Note that the scattering amplitude (and consequently the differential cross-

section) is independent of the angle f.16 This independence is a general result

for elastic scattering by a central potential. It follows from eqn 14.10 that the

differential cross-section is

sðy,fÞ ¼ 4m2V2
0=�h4

ða2 þ 4k2 sin2 1
2yÞ

2

Comment. The differential cross-section varies with k, so it also varies with

energy E. In the limit of zero energy (k! 0),

sðy,fÞ ¼ 4m2V2
0

�h4a4

and is independent of y as well as of f. Except at zero energy, s peaks

in the forward direction (y¼ 0) and decreases monotonically as y varies

from 0 to p (Fig. 14.17). Note that, within the Born approximation,

the differential cross-section is independent of the sign of V0, and gives the

same result if the Yukawa potential is attractive (V0< 0) or repulsive

(V0> 0).

Self-test 14.5. Use the Born approximation to calculate the differential

cross-section for scattering from the central potential V(r)¼ a/r2, where a is

a constant. A useful definite integral isZ 1
0

sin x

x
dx ¼ 1

2p

s ¼ ðp2m2a2Þ= 4k2�h4 sin2 1
2y

� �h i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16. We continue to denote the scattering amplitude fk(y,f) and the cross-section s(y,f) even if

they are independent of f.

�

k

r̂

kr̂
k – kr̂

Fig. 14.16 The vectors used in the

calculation in Example 14.5.
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Fig. 14.17 The differential
scattering cross-section for a Yukawa

potential as a function of scattering

angle. The numbers labelling the
curves are the values of 4k2/a2.
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Appendix 14.1 The derivation of the
Breit–Wigner formula

The confirmation that eqn 14.66 is equivalent to eqn 14.67 close to resonance

is an exercise in making approximations. We can expect to use DE¼E�Eres

as a parameter, and invoke jDE/Eresj�1. The art of approximation is to

express all factors in terms of DE and then to expand them to first order in DE.

The following relations will be helpful:

sinðAþ BÞ ¼ sin A cos Bþ cos A sin B

cosðAþ BÞ ¼ cos A cos B� sin A sin B

and to first order in x:

sin x ¼ xþ 
 
 
 cos x ¼ 1� 
 
 
 ð1þ xÞ1=2 ¼ 1þ 1
2xþ 
 
 


Close to resonance we can set

k�h ¼ ð2mEresÞ1=2 1þ DE

Eres

� �1=2

� �hkres 1þ DE

2Eres

� �

K�h ¼ 2mðEres þ V0Þf g1=2 1þ DE

Eres þ V0

� �1=2

� �hKres 1þ DE

2ðEres þ V0Þ

� �

Now consider tan Ka¼ sin Ka/cos Ka. First, we expand the sine and

cosine terms, and use eqn 14.64, which implies that cos Kresa¼ 0 and

sin Kresa¼�1:

tan Ka �
sin Kresa
zfflfflfflfflffl}|fflfflfflfflffl{�1

cos KresaDE
2ðEresþV0Þ

� �
þ cos Kresa
zfflfflfflfflffl}|fflfflfflfflffl{0

sin KresaDE
2ðEresþV0Þ

� �

cos Kresa|fflfflfflfflffl{zfflfflfflfflffl}
0

cos KresaDE
2ðEresþV0Þ

� �
� sin Kresa|fflfflfflfflffl{zfflfflfflfflffl}

�1

sin KresaDE
2ðEresþV0Þ

� �

� �
cos KresaDE

2ðEresþV0Þ

� �

sin KresaDE
2ðEresþV0Þ

� � � �2ðEres þ V0Þ
KresaDE

Then, with k/K �kres/Kres (any correction to this expression results in a DE in

the numerator, which is close to zero), we obtain

tan dresðEÞ �
kres

Kres

� �
� 2ðEres þ V0Þ

KresaDE

� �
¼ �kres�h

2

maDE

This result coincides with eqn 14.67.
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Appendix 14.2 The rate constant for
reactive scattering

Although the focus of this chapter has been on elastic scattering, a concept of

the greatest significance in chemistry is the rate constant for a chemical

reaction, the function k(T) in the rate law

Aþ BC! ABþ C rate ¼ kðTÞ½A�½BC�

The reactants will be characterized by various quantum numbers including

the orbital angular momentum of A relative to the diatomic molecule BC,

rotational and vibrational quantum numbers for BC, and quantum numbers

for the electronic states of A and of BC. The set of quantum numbers will

specify a reactant channel, denoted l. Similarly the products will be char-

acterized by a set of quantum numbers that will specify the product channel,

denoted g. At a fixed total reaction energy E, we need concern ourselves only

with those channels l and g that are energetically accessible (that is, open

channels). The probability that a ‘transition’ (that is, a chemical reaction)

occurs from reactant channel l to product channel g is related to a matrix

element of the scattering (S) matrix, the latter being one of the fundamental

concepts in scattering theory. For a given energy E, the transition probability is

given by

PglðEÞ ¼
X

J

ð2J þ 1ÞjSJ
glðEÞj

2

where J designates the total angular momentum J of the system. At a reaction

energy E, there are usually many reactant and product channels open and the

sum over all possible channel-to-channel reactive transition probabilities is

called the cumulative reaction probability P(E):

PðEÞ ¼
X
g;l

PglðEÞ

The temperature-dependent rate constant for the chemical reaction is given by

kðTÞ ¼
R1

0 PðEÞe�E=kT dE

hQrðTÞ

where Qr(T) is the partition function density (the partition function divided

by the volume) occupied by the reactants at the temperature T. The latter

expression provides a critical link between an experimentally measurable

quantity (a rate constant) and a theoretically calculable quantity, P(E),

and thus illustrates an example of the connection between ‘bulk’ data and

scattering theory.
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P R O B L E M S

14.1 Characterize each of the following scattering
processes as either elastic, inelastic, or reactive. (Note
that j is the rotational quantum number; in this chapter,
J denotes the total angular momentum.)

ðiÞ Oð3PÞþOð3PÞ!Oð3PÞþOð1DÞ

ðiiÞ Oð3PÞþOð3PÞ!Oð3PÞþOð3PÞ

ðiiiÞ Clð2PÞþHFðv¼0,j¼0Þ!Clð2PÞþHFðv¼1,j¼0Þ

ðivÞ Clð2PÞþHFðv¼0,j¼0Þ!Fð2PÞþHClðv¼0,j¼0Þ

ðvÞ Clð2PÞþHFðv¼0,j¼0Þ!Clð2PÞþHFðv¼0,j¼0Þ

14.2 Given that the scattering amplitude has the simple
analytical form fk(y,f)¼sinycosf, find an expression for
the differential cross-section.

14.3 Evaluate the integral scattering cross-section for a case
in which the differential cross-section is a constant
C independent of the angles y and f.

14.4 The first two (l¼ 0,1) Riccati–Bessel functions are

ĵ0j0ðkrÞ ¼ sin kr ĵ1j1ðkrÞ ¼ sin kr

kr
� cos kr

Confirm that they are solutions of the free-particle radial
wave equation, eqn 14.20.

14.5 Calculate the angular components of the flux density,
Jy and Jf, for the scattered wave

c ¼ fkðy,fÞ e
ikr

r

and confirm that in the limit r!1, only the radial
component Jr given in eqn 14.14 needs to be retained.

14.6 The incoming Green’s function is given by

Gð�Þðr, r 0Þ ¼ e�ikjr�r 0 j

jr � r 0j

Show that G(�) is a solution of eqn 14.89. Hint. Use an
analysis similar to that given in Further information 12.
Although the incoming Green’s function does not yield the
desired asymptotic form of the stationary scattering state
(eqn 14.9), G(�) appears in some of the formal expressions
of scattering theory. (See Chapter 19 of A. Messiah,
Quantum mechanics, Vol. II, North-Holland Publishing
Company, Amsterdam, 1965.)

14.7 The differential cross-section for the Yukawa potential
using the Born approximation is given in Example 14.5. Plot
it as a function of the angle y for (i) zero energy, (ii)
moderate energy (k� a), and (iii) high energy (k� a).

For the plots, choose the range of the y-axis to be 0 to
{(2mV0)/(�h2a2)}2. For moderate energy, take k¼ a/2; for
high energy, take k¼ 10a.

14.8 Use the Born approximation to calculate the
differential cross-section for scattering from the
spherical square-well potential (Section 14.9). Hint. Use
integration by parts to determine the scattering
amplitude.

14.9 Consider the scattering of an electron by an atom
of atomic number Z. The interaction potential energy can
be approximated by the screened Coulomb potential
energy V(r)¼�(Ze2/4pe0r)e� r/a, where a is the screening
length. (i) Use the Born approximation to calculate the
differential cross-section for scattering from the screened
Coulomb potential. Go on to evaluate the integral
scattering cross-section. (ii) In the limit a!1, V(r)
becomes exactly the Coulomb potential energy. Evaluate
the differential cross-section obtained in part (i) in this
limit. The expression obtained is the same as the
Coulomb scattering cross-section and is the celebrated
Rutherford formula. It is interesting that, although the
Born approximation gives only an approximate
differential cross-section and, in addition, does not apply
to the Coulomb (1/r) potential, the result obtained here is
precisely Rutherford’s formula.

14.10 Derive the expressions given in eqns 14.44 and
14.45.

14.11 Consider the differential cross-section for elastic
scattering given in eqn 14.48. At a given energy, sketch its
dependence on the scattering angle y when the l¼ 1 partial
wave dominates the scattering. Do the same for the l¼ 0 and
l¼ 2 partial waves.

14.12 Show for the elastic scattering of a particle by a
central potential V(r) that approaches zero more rapidly
than 1/r as r!1 that the integrated cross-section can be
written as

stot ¼
4p
k

im fkð0Þ

where im fk(0) is the imaginary part of the forward
scattering amplitude (y¼ 0). This is the so-called optical
theorem. Hint. The Legendre polynomials are required
to satisfy Pl(1)¼ 1 for all values of l.

14.13 For elastic scattering off a central potential, it is
possible to show analytically that if the potential is
repulsive, with V(r)> 0 for all r, then the scattering phase
shift dl(E) is negative; likewise, if the potential is
attractive, with V(r)< 0 for all r, then the phase shift dl is
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positive. (See pp 404–5 of A. Messiah, Quantum mechanics,
Vol. I, North-Holland Publishing Company, Amsterdam,
1965.) Explain this result qualitatively by considering the
effect of a repulsive (or attractive) potential on the
wavelength of the scattered particle.

14.14 Derive an expression for the scattering phase shift dl

for l-wave scattering by a hard sphere, where V(r) is given in
Example 14.3.

14.15 Show that in the limit of low energies, the scattering
phase shift for P-wave scattering by a hard sphere is
proportional to (ka)3 and therefore is negligible compared to
the S-wave scattering phase shift.

14.16 A particle of mass m is scattered off a central
potential V(r) of the form

VðrÞ ¼
1 if r ¼ 0
V0 if 0< r< a
0 if r � a

8<
:

where V0 is a positive constant. For energies E>V0, find an
expression for the S-wave scattering phase shift d0. Hint.
Require that the wavefunction and its first derivative be
continuous at r¼ a.

14.17 A particle of mass m is scattered off a central
potential V(r) of the form

VðrÞ ¼
1 if r ¼ 0
0 if 0< r< a
V0 if a< r< b
0 if r � b

8><
>:

where V0 is a positive constant. For energies E>V0, find an
expression for the S-wave scattering phase shift d0. Hint.
Require the wavefunction and its first derivative to be
continuous at r¼ a and at r¼ b.

14.18 For scattering by a spherical square-well potential
(Section 14.9), show that the S-wave cross-section can be
written at low energies (that is, ka�1) as

s0 ¼ 4pa2 tan Ka

Ka
� 1

� �2

14.19 Derive an expression for the scattering phase
shift dl for l-wave scattering by a spherical square-well
potential.

14.20 In the Ramsauer–Townsend effect it is observed that
when electrons are scattered off some noble gas atoms, there
is a nearly complete transmission of the bombarding
electrons at low energies around 0.7 eV. For energies above
and below 0.7 eV, the scattering cross-section is significantly
greater than zero. Model the interaction between the
bombarding electrons and the inert gas atom as a spherical
square-well potential and give an explanation for the
Ramsauer–Townsend effect on the basis of the expression

given in Problem 14.18. Conjecture as to why this effect
is not observed for non-noble gas atoms.

14.21 For elastic scattering off a central potential, the
scattering phase shift for partial wave l can be written
as dl(E)¼ dbg(E)þ dres(E), where the resonant part of the
phase shift is given by

tan dresðEÞ ¼
G

2ðEres � EÞ

and the background phase shift is often a slowly varying
function of energy. (a) Sketch the behaviour of dl as a
function of energy in the vicinity of Eres if dbg is taken to
be independent of energy with a constant value of (i) 0;
(ii) p/4; (iii) p/2; (iv) 3p/4. (b) The partial wave cross-section
sl(E) is proportional to sin2 dl(E). Sketch the dependence
of the latter on energy in the vicinity of Eres for the four
values of dbg given in part (a). Note that for dbg¼ 0,
sin2 dl(E) has the Breit–Wigner form (eqn 14.68).

14.22 In a scattering experiment, Breit–Wigner
resonances give rise to peaks in the cross-section having
full widths at half-maxima of (i) 0.05 cm�1, (ii) 3.5 cm�1,
(iii) 45 cm�1. What are the mean lifetimes of the resonances?

14.23 When low kinetic energy neutrons collide with 123Te
atoms, two processes are possible: (i) elastic scattering and
(ii) production of gþ 124Te. The scattering cross-sections for
both processes show Breit–Wigner peaks at the same energy
and of the same width. Explain this observation.

14.24 At a total collision energy E1, the products of
the scattering process involving atom A and diatomic
molecule BC include AþBC, ABþC, and ACþB. It is
known that there are eleven AþBC channels, six ABþC
channels, and sixteen ACþB channels that are energetically
accessible at energy E1. What is the dimension of the
scattering matrix at this scattering energy?

14.25 Explain the appearance of the factor ka/ka0
in

eqn 14.81 for the differential cross-section for scattering
from an initial state a0 to a final state a.

14.26 The reactance matrix, K, defined in relation to the
scattering matrix through K¼ i(1� S)(1þ S)�1, also appears
in scattering theory. Show for elastic scattering off a central
potential with partial wave l that K is a 1� 1 matrix with
element Kl¼ tan dl.

14.27 Consider a scattering process in which there are
two possible channels, denoted 1 and 2. According to
the principle of microscopic reversibility (also called
the principle of detailed balance), the probability
of being incident in channel 1 and ending up in
channel 2 is equal to the probability of being incident
in channel 2 and ending up in channel 1. Discuss
this principle in light of the properties of the scattering
matrix.
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14.28 During a scattering process, a system in incident
channel i undergoes a transition to final channel j. It is
possible to define a channel-to-channel delay time Dtji in
terms of the scattering matrix element Sji by

Dtji ¼ im
�h

Sji

dSji

dE

	 


The delay time represents the time difference between
starting in channel i and ending in channel j, relative to the
time difference in the absence of the potential V. Because
a resonance represents a metastable state with a finite

lifetime, one would expect that at real energies near Eres, the
scattered particle should experience a significant delay time.
Demonstrate the latter statement by showing that the
maximum in �tji occurs precisely at E¼Eres and, in
addition, that the product of the maximum �tji and the
resonance width equals 2�h, reminiscent of the lifetime
broadening relation (Section 1.18). Hint. Begin with
eqn 14.88 for the scattering matrix element Sji and assume
that the background contribution Sji,bg is negligible and that
Cji is independent of energy. (See R.S. Friedman,
V.D. Hullinger, and D.G. Truhlar, J. Phys. Chem., 3184, 99

(1995).)
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Equation numbers without an FI prefix refer to eqn x of Chapter X in the text.

Classical mechanics

1 Action

Hamilton’s principle asserts the following:

The path taken by a particle is the one that involves the least action.

The action, S, can be expressed as an integral over the lagrangian, L, which

depends on the position (x) and speed (ẋ) of the particle at each point along its

path:

S ¼
Z t2

t1

Lðx, _xxÞdt ðFI1:1Þ

The function L is formulated so that Hamilton’s principle results in a path

that agrees with observation. We illustrate what this means in the following

paragraphs.

Suppose that x and ẋ are varied a little at each point of the particle’s path

except the end points. As a result of this modification, the lagrangian changes

by dL and the action changes by

dS ¼
Z t2

t1

dL x, _xxð Þdt

Because L is a function of x and ẋ, changes in these quantities result in a

change in L given by

dL ¼ qL

qx

� �
dxþ qL

q _xx

� �
d _xx

Therefore, on integration by parts,

dS ¼
Z t2

t1

qL

qx

� �
dxdt þ

Z t2

t1

qL

q _xx

� �
ddx

dt

� �
dt

¼
Z t2

t1

qL

qx

� �
dxdt þ qL

q _xx

� �
dxjt2

t1
�
Z t2

t1

d

dt

qL

q _xx

� �
dxdt

� �
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Because the end points of the path are fixed, the middle term in this expression

is zero (dx is zero at the end points). Therefore, the change in S is

dS ¼
Z t2

t1

qL

qx

� �
� d

dt

qL

q _xx

� �� �
dxdt

According to Hamilton’s principle, the action is a minimum for the actual

path; hence any small variation of the path corresponds to dS¼0, the usual

condition for an extremum (a maximum or minimum) of a function. In this

case, dS¼ 0 is achieved for small but otherwise arbitrary variations dx only

if the factor multiplying dx vanishes everywhere. Thus, we arrive at the

Euler–Lagrange equation of motion:

qL

qx

� �
� d

dt

qL

q _xx

� �
¼ 0 ðFI1:2Þ

This equation should correspond to the equations of motion obeyed by the

particle, so the lagrangian should be modified until that is so.

As an illustration, suppose we propose that the lagrangian for a particle of

mass m is

L ¼ 1
2m _xxð Þ2�V xð Þ ðFI1:3Þ

then the Euler–Lagrange equation is constructed from

qL

qx

� �
¼ � dV

dx
¼ F

d

dt

qL

q _xx

� �
¼ dðm _xxÞ

dt
¼ m€xx

It follows that the Euler–Lagrange equation is

F �m€xx ¼ 0 ðFI1:4Þ

which should be recognized as Newton’s second law of motion. Hence, for a

particle that obeys Newtonian mechanics, the lagrangian given above is

appropriate. It should be noted that the lagrangian has the form

L ¼ T � V ðFI1:5Þ

where T is the kinetic energy and V is the potential energy.

Consider now the total derivative of the action with respect to the

time t2. This calculation tells us how the action changes as the end point

is varied:

dS

dt2
¼ qS

qt2
þ qS

qx2

� �
qx2

qt2

� �

It follows from eqn FI1.1 that

dS

dt2
¼ L evaluated at the end point
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Moreover, by using eqn FI1.2 we can write

qS

qx2
¼
Z t2

t1

qL

qx2

� �
dt ¼

Z t2

t1

d

dt

qL

q _xx2

� �
dt ¼ qL

q _xx2

evaluated at the same end point. Because we know that qL/qẋ¼mẋ for the

lagrangian of eqn FI1.3, we arrive at

L ¼ qS

qt2

� �
þm _xx2

2 ¼
qS

qt2

� �
þ 2T

Then, as T�V¼L, it follows that

T þ V ¼ � qS

qt2

� �

The sum of T and V is the total energy of the system, E; and so we can

conclude that

E ¼ � qS

qt2

� �
ðFI1:6Þ

as used in the text (see eqn 1.51).

2 The canonical momentum

‘Canon’ means rule. The following are rules for finding the momentum and

constructing the hamiltonian of any system of particles.

1. Choose a lagrangian L such that the Euler–Lagrange equations (Further

information 1) correspond to the known equations of motion.

2. Form the canonical momentum, which is defined as

pq ¼
qL

q _qq
ðFI2:1Þ

3. Form the hamiltonian, which is defined as

H ¼ p � _rr � L ðFI2:2Þ
and express it in terms of p and r as variables.

As an example of each step, we shall construct the expression for the linear

momentum in the presence of electric and magnetic fields.

Step 1 The equation of motion of an electron in the presence of electric and

magnetic fields is given by the Lorentz force law:

me€rr ¼ �eðE þ _rr �BÞ ðFI2:3Þ
This equation of motion is reproduced by the Euler–Lagrange equations if we

take as the Lagrangian the expression

L ¼ 1
2me _rr2 þ ef� e _rr � A ðFI2:4Þ

where f is the scalar potential and A is the vector potential describing the

fields (see Further information 20). To confirm that this lagrangian is suitable,

we note that

qL

qx
¼ e

qf
qx
� e

q
qx
ð _rr � AÞ
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so that in three dimensions

rL ¼ erf� erð _rr � AÞ ¼ erf� e _rr � rA� e _rr � ðr � AÞ

To derive this result, we have used the vector relations listed in Further

information 22; note that F � rG should be interpreted as (F � r)G. Likewise,

d

dt

qL

q _xx

� �
¼ d

dt
ðme _xx� eAxÞ ¼ me€xx� e

dAx

dt

¼ me€xx� e
qAx

qt

� �
� e

qx

qt

� �
qAx

qx

� �
þ � � �

� �

where the dots indicate the analogous terms with y and z in place of x,

and in three dimensions (in a notation that should be self-explanatory by

comparison with the expression above)

d

dt

qL

q _rr

� �
¼ me€rr � e _AA� eð _rr � rÞA

It follows that the Euler–Lagrange equation is

erf� e _rr � rA� e _rr � ðr� AÞ ¼ me€rr � e _AA� eð _rr � rÞA

which reduces to the Lorentz expression by using eqns FI20.3 and FI20.5.

Hence, the lagrangian in eqn FI2.4 is acceptable.

Step 2 From the Lagrangian developed above, it follows that

px ¼ me _xx� eAx

and hence in three dimensions

p ¼ me _rr � eA ðFI2:5Þ

Step 3 Because ṙ¼ (pþ eA)/me we obtain

H ¼ 1

me
p � ðpþ eAÞ � 1

2me
ðpþ eAÞ2 � efþ e

me
ðpþ eAÞ � A

¼ 1

2me
ðpþ eAÞ2 � ef

ðFI2:6Þ

The same expression would be obtained by replacing p, wherever it occurs in

the hamiltonian, by pþ eA, which is the rule used in the text.

3 The virial theorem

In classical mechanics, the proof of the virial theorem (Section 2.17) is based

on the disappearance of the time average of the time derivative of the product

p � r, where p is the linear momentum and r is the position of a particle. The

proof is similar in quantum mechanics, but it makes use of the time derivative

of the expectation value of the operator p � r.
From the equation

d Oh i
dt
¼ i

�h
½H;Oh i
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(this is eqn 1.35), we can write

d

dt
p � rh i ¼ i

�h
H, p � r½ h i ðFI3:1Þ

For simplicity, we shall consider only a one-dimensional system, but the

extension to more dimensions is straightforward. We need the following

relations:

H, pxx½  ¼ H, px½ xþ px H; x½ 

H, px½  ¼ � �h2

2m

d2

dx2
þ V,

�h

i

d

dx

" #
¼ i�h

dV

dx

H, x½  ¼ � �h2

2m

d2

dx2
, x

" #
¼ �2

�h2

2m

 !
d

dx
¼ � i�h

m
px

The first of these relations is a special case of the general result that

A, BC½  ¼ A, B½ Cþ B A, C½ 
Then, because the kinetic energy operator T can be identified with the

operator px
2/2m, it follows that

d

dt
hpxxi ¼ 2hTi � x

dV

dx


 �

The time average of this expression is

1

t

Z t

0

d

dt
pxxh idt ¼ 1

t

Z t

0

2 Th i � x
dV

dx


 �� �
dt

Therefore, because the expectation values on the right are independent of

time,

1

t
pxxh ijt0 ¼ 2 Th i � x

dV

dx


 �

The term on the left is zero, for if the motion is periodic we may choose t to be

the period, and if the motion is not periodic, then we may choose t to be

infinite. In the latter case, the value of hpxxit�hpxxi0 is finite in a bounded

system and t is infinite. Therefore,

2 Th i ¼ x
dV

dx


 �
ðFI3:2Þ

The force experienced by the particle is Fx¼ �dV/dx, so this equation may be

written

2 Th i ¼ � xFxh i ðFI3:3Þ

and in three dimensions this expression is the virial theorem:

2 Th i ¼ � r � Fh i ðFI3:4Þ
If the potential energy of the particle has the form V¼ axs, then eqn 3.2 gives

Th i ¼ 1
2s Vh i ðFI3:5Þ

as used in the text. The theorem may be extended to operators other than p � r;
then, different choices lead to a variety of hypervirial theorems.
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4 Reduced mass

Here we show that the motion of two particles may be separated into the

motion of their centre of mass and their relative motion. Let the masses be m1

and m2, their locations r1 and r2, and the total mass be m¼m1þm2. Their

separation is

r ¼ r1 � r2 ðFI4:1Þ
and the location of the centre of mass is

R ¼ m1r1 þm2r2

m
ðFI4:2Þ

The hamiltonian for a system in which the potential energy depends only on

their separation is

H ¼ � �h2

2m1
r2

1 �
�h2

2m2
r2

2 þ V r1 � r2j jð Þ ðFI4:3Þ

We want to show that this operator can be transformed into

H ¼ � �h2

2m
r2

R �
�h2

2m
r2

r þ VðrÞ ðFI4:4Þ

in what should be an obvious notation. If this transformation can be achieved,

then it follows that the wavefunction can be expressed as the product

CðRÞcðrÞ.
The transformation of the potential energy contribution is trivial; the

work we have to do resides in the derivatives. To analyse them, we consider

the x-components, which are

x ¼ x1 � x2 X ¼ m1x1 þm2x2

m
ðFI4:5Þ

It follows that

q
qx1
¼ qX

qx1

� �
q
qX
þ qx

qx1

� �
q
qx
¼ m1

m

q
qX
þ q
qx

q
qx2
¼ qX

qx2

� �
q
qX
þ qx

qx2

� �
q
qx
¼ m2

m

q
qX
� q
qx

Therefore, the x-component of the sum of the two laplacians is

1

m1

q2

qx2
1

þ 1

m2

q2

qx2
2

¼ 1

m1

m1

m

q
qX
þ q
qx

� �2

þ 1

m2

m2

m

q
qX
� q
qx

� �2

¼ 1

m

q2

qX2
þ 1

m1
þ 1

m2

� �
q2

qx2

The y- and z-components are dealt with similarly; and when added together

we obtain

1

m1
r2

1 þ
1

m2
r2

2 ¼
1

m
r2

R þ
1

m
r2

r ðFI4:6Þ

with m as defined earlier. Substitution of this expression into eqn FI4.3

gives eqn FI4.4, as required.
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Solutions of the Schrödinger equation

5 The motion of wavepackets

The time-dependent form of the wavefunction of a particle of mass m in

a state of linear momentum p ¼ k�h is given by eqn 2.12 as

Ck x, tð Þ ¼ Aeikx�iE kð Þt=�h E kð Þ ¼ k2�h2

2m

Such a particle is regarded as having a phase velocity, vp, given by

vp ¼
p

m
¼ k�h

m
¼ h

lm
ðFI5:1Þ

The wavefunction of an imprecisely prepared system is the superposition

C x, tð Þ ¼
Z

g kð ÞCk x, tð Þdk

We suppose that the shape function, g(k), peaks sharply around k0 and falls to

zero for values of |k – k0|�G, the width parameter. For example, g(k) might

be the normalized gaussian function

gðkÞ ¼ Ne�ðk�k0Þ2=2G2

N ¼ 1

G
ffiffiffiffiffiffi
2p
p ðFI5:2Þ

If we write

GðxÞ ¼ N

Z
e�ðk�k0Þ2=2G2þiðk�k0Þx dk¼ e�x2G2=2

then it follows that the probability density for finding the particle at t¼ 0 is

Cðx, 0Þj j2¼ AGðxÞeik0x
 2¼ Aj j2e�x2G2 ðFI5:3Þ

which is a gaussian function centred on x¼ 0 with a width dx� 1/G.

Now consider the shape of the packet at later times. Because g peaks

sharply around k0, the only values of E(k) that contribute significantly to the

integral are those near E(k0). Therefore, we expand E(k) as a Taylor series

and discard all but the first few terms:

EðkÞ ¼ Eðk0Þ þ ðk� k0Þ
dE

dk

� �
k0

þ 1

2
ðk� k0Þ2

d2E

dk2

 !
k0

þ � � �

¼ Eðk0Þ þ ðk� k0Þvg�hþ 1

2
ðk� k0Þ2wg�hþ � � �

where the group velocity, vg, is

vg ¼
1

�h

dE

dk

� �
k0

¼ k0�h

m
¼ p0

m
ðFI5:4Þ

and

wg ¼
1

�h

d2E

dk2

 !
k0

¼ �h

m
ðFI5:5Þ
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The wavepacket therefore has the form

Cðx, tÞ ¼ AN

Z
e�ðk�k0Þ2=2G2þikx�iEðk0Þt=�h�iðk�k0Þvgt�1

2iðk�k0Þ2wgtþ���dk

If we wait for only short times, in the sense G2wgt� 1, we can neglect the

term 1
2(k – k0)2wgt relative to (k – k0)2/2G2, and write

Cðx; tÞ � ANeik0x�iEðk0Þt=�h

Z
e�ðk�k0Þ2=2G2þiðk�k0Þðx�vgtÞdk

� Aeik0x�iEðk0Þt=�hGðx� vgtÞ

and its probability density is

Cðx, tÞj j2� AGðx� vgtÞ
 2¼ Aj j2e�ðx�vgtÞ2G2

This expression is the same function as in eqn FI5.3, but centred on x¼ vgt.

That is, the packet has moved without change of shape from x¼ 0 to x¼ vgt,

and is therefore travelling uniformly with the group velocity vg ¼ p0/m, the

classical velocity of the particle.

The conclusion is valid provided that G2wgt� 1, or �hG2t/m�1. When

sufficient time has elapsed for this condition to be invalid, we may no longer

neglect terms in wg. These additional terms result in the spreading of the

packet. For example, G(x) becomes

GðxÞ ¼ N

Z
e�ðk�k0Þ2=2G2þiðk�k0Þðx�vgtÞ�1

2iðk�k0Þ2wgtdk

so that

GðxÞj j2¼ 1

g
e�ðx�vgtÞ2G2=g2

g2¼ 1þw2
gt2G4 ðFI5:7Þ

This function has the same exponential dependence as before with G replaced

by G/g. Therefore, the width of the packet increases as time passes (as G/g
decreases), and if its initial uncertainty in location is dx0¼1/G, then at a time

t its spread has become

dx ¼ g
G
¼ 1

G
ð1þw2

gt2G4Þ1=2 ¼ 1þ
w2

gt2

dx4
0

 !
dx0 ðFI5:8Þ

Because wg¼ �h/m, we find

dx ¼ 1þ t2�h2

m2dx4
0

 !1=2

dx0 ðFI5:9Þ

It follows that the time for the uncertainty in location to spread from dx0

to dx is

t ¼ m

�h
dx0 dxð Þ2� dx0ð Þ2
n o1=2

ðFI5:10Þ

If dx� dx0 this expression simplifies to

t � m

�h
dx0dx ðFI5:11Þ

This result means that the location even of an apparently stationary particle

spreads with time, but the effect is negligible for most macroscopic objects.
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For instance, if m ¼ 1 g and dx0 ¼ 1 nm, then the uncertainty in location

reaches 1mm after an interval of 1016s, or about 300 million years. On the

other hand, for an electron localized to within 1 pm initially, an uncertainty

in position of 0.1 nm (the radius of an atom) is reached in only 1 as

(1 as ¼ 10–18s).

6 The harmonic oscillator: solution by factorization

The Schrödinger equation for the harmonic oscillator is specified in eqn 2.39.

Its appearance is greatly simplified by making the following substitutions:

l ¼ E

�ho=2
y ¼ mo

�h

� �1=2
x o ¼ k

m

� �1=2

ðFI6:1Þ

The equation then becomes

d2

dy2
� y2

 !
c ¼ �lc ðFI6:2Þ

The left-hand side of this equation is factorized by noting that

d

dy
þ y

� �
d

dy
� y

� �
c ¼ d2

dy2
� y2 � 1

 !
c

d

dy
� y

� �
d

dy
þ y

� �
c ¼ d2

dy2
� y2 þ 1

 !
c

We now introduce the following operators:

a ¼ 1

21=2
yþ d

dy

� �
aþ ¼ 1

21=2
y� d

dy

� �
ðFI6:3Þ

so that the operators a and aþ are each other’s hermitian conjugate (Section

4.6). Then because the two preceding results may be expressed as

d2

dy2
� y2

 !
c ¼ �ð2aaþ � 1Þc ¼ �ð2aþaþ 1Þc ðFI6:4Þ

the Schrödinger equation may be written in either of the following forms:

aaþcl ¼ 1
2ðlþ 1Þcl

aþacl ¼ 1
2ðl� 1Þcl

ðFI6:5Þ

where cl is the wavefunction corresponding to the energy equivalent to l. It

follows that

ðaaþ � aþaÞcl ¼ cl

This equation is true for any value of l, so it can be expressed as the operator

identity

aaþ � aþa ¼ 1 ðFI6:6Þ

or, equivalently, as the commulator [a,aþ ] ¼ 1.

To derive these relations we

have used the relation

(d/dx)fg¼ (df/dx)g þ f(dg/dx).

In this case, as (d/dy)yc ¼
cþ y(dc/dy).
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We shall now see what can be developed from this commutation relation.

From the second line of eqn 6.5, multiplication from the left with a produces

aaþacl ¼ 1
2ðl� 1Þacl

Use of eqn FI6.6 in the form aaþ¼ aþaþ 1 turns this equation into

aþaacl ¼ 1
2ðl� 3Þacl

However, it follows from the second line of eqn FI6.5 that the Schrödinger

equation for a state of energy equivalent to l� 2 is

aþacl�2 ¼ 1
2ðl� 3Þcl�2

Hence, by comparison of the last two equations,

acl / cl�2 ðFI6:7Þ

This proportionality is valid only for non-degenerate states; but by symmetry,

all the states of a one-dimensional oscillator are non-degenerate. We conclude

that the wavefunction corresponding to the energy l� 2 is generated from the

wavefunction corresponding to the energy l by operating on the latter with a.

This process may be continued, and wavefunctions corresponding to the

energies l� 4, l�6, . . . may be constructed similarly. In the same way, it is

easy to show that successive operations with aþ on the wavefunction cl

generate the wavefunctions corresponding to lþ 2, lþ4, . . . . The fact that a

steps wavefunctions down a ladder of energy levels is the origin of its name,

the annihilation operator. Similarly, aþ is called a creation operator.

The generation of states of lower energy by repeated application of a

cannot be continued indefinitely because the energy of a harmonic oscillator

is non-negative (it is the eigenvalue of a hamiltonian that is the sum of

the squares of two hermitian operators, Example 1.9). Therefore, there

must exist a certain minimum value of l, which we shall call lmin. Because

there is no wavefunction corresponding to a lower energy, it follows that

aclmin
¼0. If both sides of this equation are operated on by aþwe obtain

aþaclmin
¼ 0. Then, by using eqn FI6.5, this expression becomes

0 ¼ aþaclmin
¼ 1

2ðlmin � 1Þclmin

Consequently, lmin¼1 and the allowed values of are 1, 3, 5, . . . , or l¼2vþ1

with v¼ 0, 1, 2, . . . . We conclude that the allowed energy levels are

E ¼ ð2vþ 1Þð�ho=2Þ ¼ ðvþ 1
2Þ�ho v ¼ 0, 1, 2, . . . ðFI6:8Þ

which are the values quoted in Section 2.16.

The wavefunction for a state of any energy can be found by applying at the

appropriate number of times to the wavefunction corresponding to v ¼ 0

(that is, l¼ 1). From now on, we shall label the wavefunctions with v in place

of l. It follows that we need to determine the form of c0. Because we know

that ac0¼ 0, it follows that

1

21=2

�
d

dy
þ y

�
c0 ¼ 0
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This first-order differential equation rearranges into

dc0

c0

¼ �y dy

and its solution is

c0 ¼ N0e�y2=2 ðFI6:9Þ

where N0 is a normalization constant. Successive applications of aþ (with

the constants of proportionality absorbed into normalization constants)

then yield

c1 ¼ N1ye�y2=2

c2 ¼ N2ð2y2 � 1Þe�y2=2

and so on. Each wavefunction has the form of a gaussian function multiplied

by a Hermite polynomial, as was asserted in Section 2.16 and as is demon-

strated explicity in Further information 7.

The following matrix elements are consistent with the commutation rules

in eqn FI6.6:

vþ 1 aþj jvh i ¼ vþ 1ð Þ1=2 v� 1 aj jvh i ¼ v1=2 ð6:10Þ

All other matrix elements of aþ and a are zero.

7 The harmonic oscillator: the standard solution

The Schrödinger equation for the harmonic oscillator is

d2c
dy2
� y2c ¼ �lc ðFI7:1Þ

where we have made the substitutions described at the start of the preceding

section. In the conventional approach to solving such an equation, we first

establish the solutions for y!1. (This approach will be used a number of

time in the text: see particularly Chapter 14.) In such a limit, the term in y2

dominates the term in l, so the asymptotic form of the equation is

d2c
dy2
� y2c ’ 0

where the ’ symbol means ‘asymptotically equal to’ in the limit of a variable

(in this case y) becoming infinitely large. The solutions have the form

c ’ e�y2=2

as may be verified as follows:

d2c
dy2
� y2c ’ y2e�y2=2 � y2e�y2=2 ’ 0

The solution with þ in the exponent is not square-integrable, so we discard it

and write

c ’ e�y2=2
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The next stage is to set up an equation for the entire function by writing

c ¼ f ðyÞe�y2=2 ðFI7:2Þ
where f(y) is a polynomial in y. Substitution of this solution into the full

Schrödinger equation (eqn FI7.1) produces the following equation:

ðf 00 � 2yf 0 þ y2f � f Þe�y2=2 � y2f e�y2=2 ¼ ðf 00 � 2yf 0 � f Þe�y2=2

¼ �lf e�y2=2

That is, we need to solve

f 00 � 2yf 0 þ ðl� 1Þf ¼ 0 ðFI7:3Þ
To solve eqn FI7.3 we suppose that the polynomial f has the form

f ¼
X

n

anyn

To ensure that the wavefunction (eqn FI7.2) is square-integrable, the poly-

nomial cannot go to infinity more rapidly than ey2=2, for otherwise the

wavefunction would become infinite as jyj!1. Substitution of this poly-

nomial solution into the differential eqn FI7.3 for f produces the following

expression:X
n

an nðn� 1Þyn�2 � 2nyn þ ðl� 1Þyn
� �

¼ 0

Inspection of the expression on the left shows that the coefficient of yn is

ðnþ 1Þðnþ 2Þanþ2 þ ðl� 2n� 1Þan

Therefore, for the sum to vanish for any value of y, this coefficient must itself

be equal to zero for all values of n. It follows that

anþ2 ¼
2nþ 1� l
ðnþ 1Þðnþ 2Þ

� �
an ðFI7:4Þ

This expression is a recursion formula for the coefficients, for it enables all an

with n even to be expressed in terms of a0 and all an with n odd to be

expressed in terms of a1. Notice that it implies that all the powers of y that

appear in f are either even or odd, not a mixture (symmetry considerations

also require the same conclusion).

For the function f to be a polynomial rather than an infinite series, the

coefficients must vanish after some value of n, which we shall call v. By

eqn FI7.4, termination is ensured if l¼ 2vþ 1. It follows from eqn FI6.1 that

the allowed values of the energy are

E ¼ lð�ho=2Þ ¼ ð2vþ 1Þ�ho=2 ¼ ðvþ 1
2Þ�ho v ¼ 0, 1, 2 . . . ðFI7:5Þ

which is the result quoted in the text and derived in the preceding section. The

recursion relation in eqn FI7.4 enables us to write down the polynomial for

any value of v and the procedure develops the polynomials in Table 2.1,

which are termed the Hermite polynomials.

The following definition of the Hermite polynomials is sometimes more

useful than their definition in terms of the recursion relation:

HvðyÞ ¼ ð�1Þvey2 dv

dyv
e�y2 ðFI7:6Þ
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8 The radial wave equation

The radial component of the Schrödinger equation for a hydrogenic atom of

atomic number Z and reduced mass was given in eqn 3.40 as

d2u

dr2
þ 2m

�h2

Ze2

4pe0r
� lðl þ 1Þ�h2

2mr2

( )
u ¼ � 2mE

�h2
u ðFI8:1Þ

where u¼ rR, with R the radial wavefunction. We can simplify the appearance

of this equation by introducing the following parameters:

a ¼ 2m

�h2

� �
Ze2

4pe0
b ¼ lðl þ 1Þ l2 ¼ 2mjEj

�h2
ðFI8:2Þ

and henceforth consider only bound states (E < 0). Then

u00 þ a

r
� b

r2

� �
u ¼ l2u ðFI8:3Þ

where u00 ¼d2u/dr2. Guidance towards the solutions is obtained, as for the

harmonic oscillator in Further information 7, by considering the asymptotic

form of the equation as r!1. When r is large, eqn FI8.3 becomes

u00 ’ l2u ðFI8:4Þ

The solutions of this equation are

u ’ e�lr ðFI8:5Þ

We can discard the positive exponential because it gives a function that is not

square-integrable. Hence, u’ e�lr.

To find the full solution, we write

u ¼ LðrÞe�lr ðFI8:6Þ

where L(r) is a polynomial in r. Substitution of this expression into eqn FI8.3

gives

L00 � 2lL0 þ a

r
� b

r2

� �
L ¼ 0 ðFI8:7Þ

To solve this equation, we write

LðrÞ ¼
X

n

cnrn ðFI8:8Þ

which implies thatX
n

cn ½nðnþ 1Þ � brn�2 � ð2nl� aÞrn�1
� �

¼ 0

For this sum to be zero for all values of r, each coefficient of rn must be zero, so

fðnþ 2Þðnþ 1Þ � bgcnþ2 � f2ðnþ 1Þl� agcnþ1 ¼ 0

or, equivalently,

fnðnþ 1Þ � bgcnþ1 � f2nl� agcn ¼ 0
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This expression give a recursion relation for the coefficients:

cnþ1 ¼
2nl� a

nðnþ 1Þ � b

� �
cn ðFI8:9Þ

For this series to terminate at a given value n (so that u is square-integrable), it

must be the case that

2nl ¼ a

which, by using the definitions in eqn FI8.2, rearranges to

jEj ¼ Z2e4m

32n2p2e2
0�h2

ðFI8:10Þ

which is the expression given in the text (with the identification of E as a

negative quantity). The polynomials developed by applying the recursion

formula for the coefficients are the associated Laguerre functions, which are

used to construct the hydrogenic radial functions listed in Table 3.2.

9 The angular wavefunction

The wavefunctions for rotation in three dimensions are solutions of

L2c ¼ �kc k ¼ 2IE=�h2 ðFI9:1Þ

We have indicated (Section 3.5) that the equation is separable with solutions

of the form c¼Y(y)F(f), and that the latter factor has the form

Fm
l
ðfÞ ¼ 1

2p

� �1=2

eimlf ml ¼ 0, �1, �2, . . . ðFI9:2Þ

Our concern in this section is to determine the solutions Y, which satisfy

1

sin y
d

dy
sin y

dY
dy
�

m2
l Y

sin2 y
þ kY ¼ 0 ðFI9:3Þ

To solve this equation, we introduce z¼ cos y, with �1� z�1 and

henceforth (to bring the equations into line with standard notation) denote

Y(y) by the function P(z). Because sin2 y¼ 1� cos2 y¼ 1� z2 and

dY
dy
¼ dP

dz

dz

dy
¼ � dP

dz
sin y

the equation to solve is

d

dz
1� z2
� �dP

dz

� �
þ k�

m2
l

1� z2

� �
P ¼ 0 ðFI9:4Þ

It turns out to be fruitful to try a substitution of the form

PðzÞ ¼ ð1� z2Þjml j=2GðzÞ ðFI9:5Þ

which leads to the following equation for G:

ð1� z2ÞG00 � 2ðjmlj þ 1ÞzG0 þ fk� jmljðjmlj þ 1ÞgG ¼ 0 ðFI9:6Þ
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with G 0 ¼dG/dz and G00 ¼d2G/dz2. We try a polynomial solution of the form

G ¼
X

n

anzn ðFI9:7Þ

and after substitution into the differential equation FI9.6, collect coefficients

of zn. For a general value of n,

ðnþ 1Þðnþ 2Þanþ2 þ ½k� jmljðjmlj þ 1Þ � 2nðjmlj þ 1Þ � nðn� 1Þf gan ¼ 0

which implies the following recursion formula:

anþ2 ¼
nþ jmljð Þ nþ jmlj þ 1ð Þ � k

ðnþ 1Þðnþ 2Þ

� �
an ðFI9:8Þ

An infinite series based on this relation between coefficients diverges for

z¼�1, so there must be a restriction that ensures that the series terminates

after a finite number of terms. This restriction implies that there must be a

value of n¼ 0, 1, 2, . . . for which

k ¼ ðnþ jmljÞðnþ jmlj þ 1Þ

We now introduce the quantum number l¼nþ jmlj, and write this

restriction as

k ¼ lðl þ 1Þ with l ¼ jmlj, jmlj þ 1, . . . ðFI9:9Þ

At this stage we have demonstrated that the original equation may be written

L2c ¼ �lðl þ 1Þc ðFI9:10Þ

as claimed in eqn 3.22 and know the coefficients in the expansion of G, which

identify P(z) as the associated Legendre functions. The specific relation

between the normalized functions Y and the associated Legendre functions is

YðyÞ ¼ 2l þ 1

2

� �
ðl � jmljÞ!
ðl þ jmljÞ!

� �1=2

P
jml j
l ðcos yÞ ðFI9:11Þ

The products of Y in eqn FI9.11 and F in eqn FI9.2 are called spherical

harmonics and denoted Ylml
ðy,fÞ:

10 Molecular integrals

In the case of the MO description of H2
þ, the energy is given by the

expression quoted in eqn 8.25, with

j0

j0
¼
Z

a2ð1Þ
r1b

dt1 ¼
1

R
1� ð1þ sÞe�2s
� �

k0

j0
¼
Z

að1Þbð1Þ
r1b

dt1 ¼
1

a0
ð1þ sÞe�s

S ¼
Z

að1Þbð1Þdt1 ¼ 1þ sþ 1

3
s2

� �
e�s

where j0¼ e2/4pe0 and s¼R/a0. We have taken 1s-orbitals on each atom, and

have denoted them a and b.
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For the MO description of H2, the energy is given by eqn 8.28,

E ¼ 2E1s þ
j0
R
� 2j0 þ 2k0

1þ S
þ jþ 2kþ 4l þm

2ð1þ SÞ2

The following integrals are required in addition to those given above:

j

j0
¼
Z

a2ð1Þb2ð2Þ
r12

dt1dt2

¼ 1

R
� 1

2a0

2

s
þ 11

4
þ 3

2
sþ 1

3
s2

� �
e�2s

k

j0
¼
Z

að1Þbð1Það2Þbð2Þ
r12

dt1dt2 ¼
AðsÞ � BðsÞ

5a0

l

j0
¼
Z

a2ð1Það2Þbð2Þ
r12

dt1dt2

¼ 1

2a0
2sþ 1

4
þ 5

8s

� �
e�s � 1

4
þ 5

8s

� �
e�3s

� �

m

j0
¼
Z

a2ð1Þa2ð2Þ
r12

dt1dt2 ¼
5

8a0

with

AðsÞ ¼ 6

s
ðgþ ln sÞS2 � E1ð4sÞS02 þ 2E1ð2sÞSS0
� �

BðsÞ ¼ �25

8
þ 23

4
sþ 3s2 þ 1

3
s3

� �
e�2s

S0ðsÞ ¼ Sð�sÞ ¼ 1� sþ 1

3
s2

� �
es

where g is Euler’s constant (g¼ 0.577 22 . . . ) and E1(x) is one version of the

tabulated function known as the exponential integral:1

E1ðxÞ ¼
Z 1

x

e�z

z
dz

These equations give some of the idea of the complexity of integrals that arise

in analytical treatments of molecules.

11 The Hartree–Fock equations

The normalized Hartree–Fock (HF) ground-state wavefunction F0 is given by

the n-electron Slater determinant

F0 ¼ ðn!Þ�1=2det fað1Þfbð2Þ . . .fzðnÞ
  ðFI11:1Þ

and the ground-state HF electronic energy is given by

E ¼ hF0jHjF0i ðFI11:2Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. See M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover,

New York (1965).
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where H is given in eqn 7.46. We seek the set of orthonormal spinorbitals f
that yield a minimum energy E: this condition leads to the HF equations.

As a first step, we derive an expression for E in terms of the spinorbitals.

From eqns FI11.2 and 7.46 (of Chapter 7),

E ¼ F0

X
i

hi þ
1

2

X
ij

0 e2

4pe0rij

� �
F0

* +
ðFI11:3Þ

For the first term, we can write

F0

X
i

hi


F0

* +
¼ F0 h1 þ h2 þ � � � þ hnj jF0h i ¼ n F0 h1j jF0h i ðFI11:4Þ

The second equality follows from the fact that all the electrons are indis-

tinguishable in the determinant and therefore the matrix elements of all the

hi are equal. Expansion of the Slater determinant F0 in eqn FI11.4, using

eqn FI11.1 and the orthonormality of the spinorbitals, gives

F0

X
i

hi


F0

* +
¼
Xn

i¼1

Fið1Þ h1j jFið1Þh i ðFI11:5Þ

which can be rewritten using the one-electron notation

½Fi hj jFi ¼ hFið1Þ h1j jFið1Þi ðFI11:6Þ

F0

X
i

hi


F0

* +
¼
Xn

i¼1

½FijhjFi ðFI11:7Þ

The second sum in H is over all 1
2n(n� 1) unique pairs of electrons. Each

term in the sum gives the same result because the electrons are indis-

tinguishable, so

F0
1

2

X
ij

0 e2

4pe0rij


F0

* +
¼ 1

2nðn� 1Þ F0
e2

4pe0r12


F0


 �

The expansion of F0 in terms of its spinorbitals in eqn FI11.1 turns this

expression into

1

2

X
ij

0
Z

f�i ð1Þf�j ð2Þ
e2

4pe0r12

� �
fið1Þfjð2Þ � fjð1Þfið2Þ
n o

dx1dx2

ðFI11:8Þ

Then, with

½fafbjfcfd ¼
Z

f�að1Þfbð1Þ
e2

4pe0r12

� �
f�cð2Þfdð2Þdx1dx2 ðFI11:9Þ

and eqns FI11.3, FI11.7, and FI11.8, we have

E ¼
Xn

i¼1

½fijhjfi þ 1
2

Xn

ij

f½fifijfjfj � ½fifjjfjfig ðFI11:10Þ

(Note that we do not have to exclude i 6¼ j in the second sum because the term

with i¼ j is identically zero.) Equation FI11.10 is an expression for the energy
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as a functional of the spinorbitals; that is, for every set of functions f, there is

associated a single value E. We shall use this equation shortly.

To derive the HF equations, we introduce and use the technique of func-

tional variation. The energy E is a functional of the Slater determinant F in

eqn FI11.2. To find the particular determinant F for which E is a minimum

(that is, F0), we find F for which a small change F!Fþ dF yields no change

in the value of E to first order in dF.2 For an infinitesimal change dF, we have

E½Fþ dF ¼ hFþ dFjHjFþ dFi ¼ hFjHjFi þ dhFjHjFi ðFI11:11Þ
where

dhFjHjFi ¼ hdFjHjFi þ hFjHjdFi ¼ dE

We seek the determinant F for which dE¼ 0. We use the expression for E as

given in terms of the spinorbitals in eqn FI11.10. However, because we have

an additional constraint that the spinorbitals be orthonormal, we must use

the technique of undetermined multipliers.3

We must satisfy the conditionZ
f�i ð1Þfjð1Þdx1 ¼ dij ðFI11:12Þ

where dij is the Kronecker delta. The constraint is of the form

g ¼
Xn

i;j¼1

fijfj

D E
� dij

n o
¼ 0

When the spinorbitals are changed by an arbitrary infinitesimal amount df,

then because dij is a constant, g changes by

dg ¼
Xn

i;j¼1

d fijfj

D E
¼
Xn

i;j¼1

dfijfj

D E
þ fijdfj

D En o

At this stage we take the constraint into account by introducing the set of

undetermined multipliers lji, and then look for the condition for which

dE�
Xn

i;j¼1

lji dfijfj

D E
þ fijdfj

D En o
¼ 0 ðFI11:13Þ

We now examine this condition.

From eqn FI11.10, we get the following expression for dE:

dE¼
Xn

i¼1

f½dfijhjfiþ½fijhjdfig

þ 1
2

Xn

i;j

½ðdfiÞfijfjfjþ½fiðdfiÞjfjfjþ½fifijðdfjÞfjþ½fifijfjðdfjÞ
�½ðdfiÞfjjfjfi�½fiðdfjÞjfjfi�½fifjjðdfjÞfi�½fifjjfjðdfiÞ

� �

ðFI11:14Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. This step is analogous to what is done in finding a minimum in a one-dimensional function

f ðxÞ: we seek the value of x such that f 0ðxÞ ¼ 0; in other words an infinitesimally small change dx

yields no change df .

3. See, for example, Further information 1.8 in P.W. Atkins annd J. de Paula, Physical

chemistry, 7th edn, Oxford University Press and W.H. Freeman, New York (2002).
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At this point we substitute eqn FI11.14 into eqn FI11.13, recognize complex

conjugates of terms, and obtain

Xn

i¼1

½dfijhjfi þ
Xn

i;j

½ðdfiÞfijfjfj � ½ðdfiÞfjjfjfi � ljihdfijfji
n o

þ cc ¼ 0

ðFI11:15Þ

where cc stands for the complex conjugate of all the terms explicitly shown

in eqn FI11.15. Now we factor out the common term dfi
� and use eqns FI11.6

and FI11.9 and the definitions in eqn 9.10 (of Chapter 9) for the Coulomb

and exchange operators, and obtain

Xn

i¼1

Z
df�i ð1Þ h1fið1Þþ

Xn

j¼1

Jjð1Þfið1Þ�Kjð1Þfið1Þ�ljifjð1Þ
n o !

dx1

þcc¼0

As the variation dfi
� is arbitrary, each term in the parentheses must be

identically zero. Therefore, for each spinorbital,

h1fið1Þ þ
Xn

j¼1

Jjð1Þfið1Þ � Kjð1Þfið1Þ
� �

¼
Xn

j¼1

ljifjð1Þ ðFI11:16Þ

When the definition of the Fock operator (eqn 9.9) is used in eqn FI11.16, the

equations for the spinorbitals become

f1fið1Þ ¼
Xn

j¼1

l jifjð1Þ ð11:17Þ

Equation FI11.17 is not quite the standard form of the HF equations as given

in eqn 9.8 because the set of spinorbitals f is not unique; it is possible to form

a new set of spinorbitals, each a linear combination of the f, without chan-

ging the minimum energy E. In particular, it is possible to transform the

original set into a new set of orthonormal canonical spinorbitals, f 0, such that

the transformed Fock operator f1
0 is the same as f1 and the matrix composed of

the multipliers lji is transformed into a diagonal matrix with elements ei
0.4 The

canonical spinorbital f0i solves the equation

f1f
0
ið1Þ ¼ e0if

0
ið1Þ ðFI11:18Þ

At this point, we discard the primes and obtain the HF equations as given in

eqn 9.8. The HF equation, eqn FI11.18, for the spinorbital fi can be con-

verted to an equation for the spatial function ci by writing it as a product of a

spatial and spin function and using the orthonormality of the latter. For

the closed-shell case, where all spatial functions are doubly occupied, this

procedure results in the set of equations given in eqn 7.47.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. See A. Szabo and N.S. Ostlund, Modern quantum chemistry: introduction to advanced

electronic structure, Macmillan, New York (1982).

11 THE HARTREE–FOCK EQUATIONS j 531



12 Green’s functions

We saw in Example 14.1 that insertion of the outgoing Green’s function

GðþÞðr, r 0Þ ¼ eikjr�r 0 j

jr � r 0j ðFI12:1Þ

into eqn 14.20 results in the correct asymptotic form (eqn 14.9) for the

stationary scattering state c(r). In this section, we show that G(þ)(r,r 0) is

a solution of the equation

ðr2 þ k2ÞGðr, r 0Þ ¼ �4pdðr � r 0Þ ðFI12:2Þ
where d(r� r 0) is the Dirac d-function. Equivalently, we demonstrate that

GðþÞðrÞ ¼ eikr

r
ðFI12:3Þ

is a solution of

ðr2 þ k2ÞGðrÞ ¼ �4pdðrÞ ðFI12:4Þ
First, consider the term r2G(þ)(r). Because r2¼r �r, we can use the

properties of differential operators acting on a product of functions to obtain

r2GðþÞ ¼ r � ðrGðþÞÞ

¼ r � 1

r
reikr

� �
þr � eikrr 1

r

� �

¼ 1

r
r2eikr þ eikrr2 1

r
þ 2 r 1

r

� �
� reikr

ðFI12:5Þ

Two standard properties introduced in Further information 21, which will

be very handy here, are

r 1

r
¼ � r

r3
r2 1

r
¼ �4pdðrÞ ðFI12:6Þ

We need to consider the effects of r and r2on eikr. As a first step we write

reikr ¼ ikeikrrr ðFI12:7Þ

and we need to evaluate rr where, as usual, r¼ xiþ yjþ zk, r¼ (x2þ
y2þ z2)1/2;. It follows that

rr ¼ qr

qx

� �
iþ qr

qy

� �
j þ qr

qz

� �
k

¼ 2xiþ 2yj þ 2zk

2ðx2 þ y2 þ z2Þ1=2
¼ xiþ yj þ zk

ðx2 þ y2 þ z2Þ1=2
¼ r

r

ðFI12:8Þ

We obtain from eqns FI12.7 and FI12.8

reikr ¼ ikreikr

r
ðFI12:9Þ

We must now evaluate r2eikr. From r2¼r �r and eqn 12.9, we obtain

r2eikr ¼ r � ikreikr

r

� �
¼ ikr � ðreikrÞ

r
þ ikeikrr � r

r
ðFI12:10Þ
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The type of analysis that led to eqn FI12.8 leads to

r � r
r
¼ 2

r
ðFI12:11Þ

and therefore, from eqns FI12.9–FI12.11

r2eikr ¼ �k2eikr þ 2ikeikr

r
ðFI12:12Þ

Then, by using eqns FI12.3, FI12.5, FI12.6, FI12.9, and FI12.12, we obtain

ðr2 þ k2ÞGðþÞ ¼ �4peikrdðrÞ ¼ �4pdðrÞ
The last equality follows from the fact that because d(r) is non-vanishing only

at the origin (r¼ 0), then eikr¼1.

13 The unitarity of the S matrix

Here, we demonstrate that the S matrix for scattering off an arbitrary one-

dimensionalpotential,V(x),isunitary. TheonlyrequirementisthatV! 0asx!
�1. The finite-width barrier of Section 2.10 is an example of such a potential.

As x!�1, the general time-independent solution c(x) approaches the

solution of the free-particle, V¼0, Schrödinger equation. Therefore, the

asymptotic form of c(x) can immediately be written as

c ’ Aeikx þ Be�ikx as x! �1
c ’ A00eikx þ B00e�ikx as x! þ1

where k�h¼ (2mE)1/2. The scattering matrix is given by eqn 2.49 and relates

the coefficients A00 and B of the outgoing waves to the coefficients A and B00 of

the incoming waves.

We now use the result of Problem 2.31, that the flux density, Jx (eqn 2.11),

associated with a wavefunction of definite energy is independent of location.

EvaluationofJx asx!1yields (�hk/m)(jA00j2� jB00j2)whereasevaluationofJx as

x! �1yields(�hk/m)(jAj2� jBj2). BecauseJxmustbeindependentofx,wehave

jA00j2 � jB00j2 ¼ jAj2 � jBj2

or

jA00j2 þ jBj2 ¼ jB00j2 þ jAj2

This equation can be put into the matrix form

ðA00� B�Þ A00

B

� �
¼ ðB00� A�Þ B00

A

� �

We can now develop the left-hand side of this equation by introducing the S

matrix (eqn 2.49) and using the matrix properties described in Further

information 23:

ðB00� A�Þ
B00

A

� �
¼ ðB00 AÞðSTÞ
n o�

S
B00

A

� �

¼ ðB00 AÞ�ðSTÞ�
n o

S
B00

A

� �

¼ ðB00� A�Þ ðSTÞ�S
n o B00

A

� �
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In the first line, we have used the matrix property that if X¼YZ then XT¼
ZTYT. We see that (ST)�S¼1, so S is unitary.

Group theory and angular momentum

14 The orthogonality of basis functions

In this section we prove the following two theorems:

Theorem 1 Two functions are orthogonal if they are basis functions for

different irreducible representations of a group, or they are members of a

basis of a particular irreducible representation but are in different positions in

the row.

Theorem 2 The integral hfi
(l)jfi 0(l

0)i is independent of the index i.

Proof of Theorem 1

Let the set of functions fi
(l) with i¼ 1, 2, . . . , dl be the basis of an irreducible

representation of symmetry species G(l), and the set fi 0
(l 0) with i 0 ¼ 1, 2, . . . , dl 0

be the basis of an irreducible representation of symmetry species G(l 0). Then for

all the operations R of the group

Rf
ðlÞ
i ¼

X
j

f
ðlÞ
j D

ðlÞ
ji ðRÞ Rf

ðl0Þ
i0 ¼

X
j0

f
ðl0Þ
j0 D

ðl0 Þ
j0 i0 ðRÞ ðFI14:1Þ

The value of an integral is independent of any symmetry operation, so

hf ðlÞi jf
ðl0Þ
i0 i ¼ hRf

ðlÞ
i jRf

ðl0Þ
i0 i ðFI14:2Þ

for all operations R. Therefore, because there are h elements in the group and

each one leaves the integral unchanged

f
ðlÞ
i jf

ðl0Þ
i0

D E
¼ 1

h

X
R

Rf
ðlÞ
i jRf

ðl0Þ
i0

D E

¼ 1

h

X
R

X
j; j0

D
ðlÞ
ji ðRÞ

�D
ðl0Þ
j0i0 ðRÞ f

ðlÞ
j jf

ðl0Þ
j0

D E ðFI14:3Þ

The great orthogonality theorem (Section 5.10) may be used to write this

relation as

f
ðlÞ
i jf

ðl0Þ
i0

D E
¼ 1

dl
dll0

X
j;j0

djj0dii0 f
ðlÞ
j jf

ðl0 Þ
j0

D E

¼ 1

dl
dll0dii0

X
j

f
ðlÞ
j jf

ðl0Þ
j

D E ðFI14:4Þ

Therefore,

f
ðlÞ
i jf

ðl0 Þ
i0

D E
/ dll0dii0 ðFI14:5Þ

which completes the proof of the theorem.
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Proof of Theorem 2

From the preceding theorem we have

f
ðlÞ
i jf

ðlÞ
i

D E
¼ 1

dl

X
j

f
ðlÞ
j jf

ðlÞ
j

D E
ðFI14:6Þ

and the sum on the right is independent of i.

15 Vector coupling coefficients

Vector coupling coefficients are listed in Appendix 2. As an example of their

application, consider the determination of the energy of an atom in a field

of magnetic induction B with magnitude b in the z-direction, its single

p-electron having a spin–orbit coupling constant z. The hamiltonian is

H ¼ ðmBb=�hÞðlz þ 2szÞ þ ðhcz=�h2Þl � s

The matrix elements of this hamiltonian may be expressed in the coupled or

the uncoupled representations. For the latter, it is convenient to express H in

the form

H ¼ ðmBb=�hÞðlz þ 2szÞðhcz=�h2Þ lzsz þ 1
2 ðlþs� þ l�sþÞ

� �
When all the matrix elements are calculated we obtain

where the states are described by the notation jmlmsi. For the coupled

representation it is sensible to write H in the form

H ¼ ðmBb=�hÞðlz þ szÞ þ ðmBb=�hÞsz þ
hcz

2�h2

� �
ðj2 � l2 � s2Þ

In the coupled representation, the states are eigenstates of j2, jz, l2, and s2, and

so most of the elements of the hamiltonian can be calculated very simply. The

difficulty is associated with the effect of sz, for the coupled states are not

þ1,þ 1
2

 �
0,þ 1

2

 �
�1,þ 1

2

 �
þ1,� 1

2

 �
0,� 1

2

 �
�1,� 1

2

 �

þ1,þ 1
2

�  2mBbþ
1
2 hcz

0 0 0 0 0

0,þ 1
2

�  0 mBb 0 hcz=
ffiffiffi
2
p

0 0

�1,þ 1
2

�  0 0 � 1
2 hcz 0 hcz=

ffiffiffi
2
p

0

þ1,� 1
2

�  0 hcz=
ffiffiffi
2
p

0 � 1
2 hcz 0 0

0,� 1
2

�  0 0 hcz=
ffiffiffi
2
p

0 �mBb 0

�1,� 1
2

�  0 0 0 0 0 �2mBbþ
1
2 hcz

15 VECTOR COUPLING COEFFICIENTS j 535



eigenstates of this operator. The effect of sz may be determined by expanding

the coupled states in terms of the uncoupled states by using the vector cou-

pling coefficients. As an example, consider the element (1
2,þ 1

2jszj32,þ 1
2), where

the notation jjmj) implies that we are working in the coupled representation.

From the table of coefficients, we expand both coupled states as linear

combinations of uncoupled states jmlmsi. For instance:

3
2, þ 1

2

 �
¼ 1

3

� �1=2 þ1,�1
2

 �
þ 2

3

� �1=2
0,þ1

2

 �
The effect of the operator sz on this state is

sz
3
2, þ 1

2

 �
¼ �1

2�h
1
3

� �1=2j þ1,� 1
2i þ 1

2�h 2
3

� �1=2j0,þ1
2i

The state j12,þ 1
2) can be expressed as the linear combination

1
2,þ1

2

 �
¼ 2

3

� �1=2j þ1,�1
2i � 1

3

� �1=2j0,þ1
2i

The matrix element we require is therefore

1
2,þ1

2jðmB=�hÞbszj32,þ1
2

� �
¼ �1

3

ffiffiffi
2
p

mBb

The entire matrix can be constructed in this way, and we obtain

The point of the calculation now becomes clear. To determine the energy

levels of the electron, we need to diagonalize the matrix. If the externally

applied field is very weak (in the sense mBb� hcz), then the matrix of H has

much smaller off-diagonal elements in the coupled representation than in the

uncoupled representation: only b occurs in the off-diagonal elements in the

coupled representation whereas z occurs in them in the uncoupled repres-

entation. Conversely, if the field is so strong that mBb� hcz, then the

uncoupled representation has smaller off-diagonal elements and the matrix is

more closely diagonal. Therefore, for practical convenience, it is better to set

up the matrix in a representation that reflects the physics of the problem

because then it is much easier to diagonalize. When the spin–orbit coupling is

3
2 ,þ 3

2

 �
3
2 ,þ 1

2

 �
3
2 ,� 1

2

 �
3
2 ,� 3

2

 �
1
2 ,þ 1

2

 �
1
2 ,� 1

2

 �

3
2 , þ 3

2

�  2mBb

þ 1
2 hcz

0 0 0 0 0

3
2 , þ 1

2

�  0 2
3 mBb

þ 1
2 hcz

0 0 � 1
3

ffiffiffi
2
p

mBb 0

3
2 , � 1

2

�  0 0 � 2
3mBb

þ 1
2 hcz

0 0 � 1
3

ffiffiffi
2
p

mBb

3
2 , � 3

2

�  0 0 0 �2mBb

þ 1
2 hcz

0 0

1
2 , þ 1

2

�  0 � 1
3

ffiffiffi
2
p

mBb 0 0 1
3 mBb

�hcz
0

1
2 , � 1

2

�  0 0 � 1
3

ffiffiffi
2
p

mBb 0 0 � 1
3 mBb

�hcz
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strong, the coupled representation should be used. When the applied field is

strong, the uncoupled representation is more appropriate. The representation

that most nearly diagonalizes the hamiltonian is the closest to the ‘true’

description of the system, and so we conclude that the coupled representation,

with vectors adopting precise relative orientations, is better when the spin–

orbit coupling is strong. The uncoupled representation, in which the vectors

make precise angles with respect to the applied field but not to one another, is

better when the external field is strong.

Spectroscopic properties

16 Electric dipole transitions

Consider a molecule exposed to light with its electric vector lying in the

z-direction and oscillating at a frequency o¼ 2pn. The perturbation is

Hð1ÞðtÞ ¼ �mzeðtÞ eðtÞ ¼ 2e cosot ðFI16:1Þ

The transition rate from an initial state jii to a continuum of final states jfi due

to a perturbation of this form is given by eqn 6.74:

Wi!f ¼ 2p�hjVfij2rðEfiÞ ðFI16:2Þ

and in this instance is

Wi!f ¼
2p
�h
jmz;fij2e2rðEfiÞ ðFI16:3Þ

where r(Efi) is the density of the continuum states at an energy Efi¼ �hofi, with

ofi the transition frequency. In a fluid sample, the z-direction corresponds to

all possible directions in the molecules, so in such a case we should replace

jmz,fij2 by its mean value 1
3jmfij2.

The energy of a classical electromagnetic field is

E ¼ 1
2

Z
e0he2i þ m0hh2i
� �

dt ðFI16:4Þ

where he2i and hh2i are the time-averages of the squared field strengths and, as

usual, dt is the volume element. In the present case, because the period is 2p/o,

he2i ¼ 4e2

2p=o

Z 2p=o

0

cos2 ot dt ¼ 2e2 ðFI16:5Þ

From electromagnetic theory, m0hh2i¼ e0he2i. Therefore, for a field in a

region of volume V,

E ¼ 2e0e
2V or e

2 ¼ E

2e0V

It follows that

Wi!f ¼
p

3e0�h
jmfij2

ErðEfiÞ
V

� �
ðFI16:6Þ
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The expression just derived is for the transition rate from an initial state jii
to a continuum of states jfi. Up to this point, we have treated the radiation as

effectively monochromatic, with o¼ofi. Now we are interested in the tran-

sition rate from a discrete initial state jii to a discrete final state jfi under the

influence of non-monochromatic radiation. To proceed, we need to introduce

the density of radiation states, r0radðEÞ, where r0radðEÞdE is the number of

waves with photon energies in the range E to EþdE. The same analysis

employed in Section 6.16 that led to eqn FI16.6 above can be used here to sum

(integrate) over all the waves present, and results in

Wi!f ¼
1

6e0�h2
jmfij2

Efir0radðEfiÞ
V

� �
ðFI16:7Þ

We now note that the term Er0radðEÞ=V is the product of the energy of a

monochromatic wave and the density of radiation states divided by the

volume; hence it is the energy density of radiation states, and we write it

rrad(E). Therefore,

Wi!f ¼
jmfij2

6e0�h2
rradðEfiÞ ðFI16:8Þ

and we can identify the coefficient of stimulated absorption as

B ¼ jmfij2

6e0�h2
ðFI16:9Þ

It then follows from eqn 6.84 that the coefficient of spontaneous emission is

A ¼ 8ph
nfi

c

� �3 jmfij2

6e0�h2
¼

8p2n3
fi

3e0�hc3
jmfij2 ðFI16:10Þ

17 Oscillator strength

In this section, we establish the relation between the integrated absorption

coefficient (a) of a band and the transition dipole moment (�fi). To do so,

consider a plane of area A at x with radiation incident from the left. All the

photons within a distance cDt, and hence in a volume AcDt, will pass through

the plane in an interval Dt. If the energy density of the field is u, then the total

electromagnetic energy passing through the plane in that time interval is

uAcDt. The energy flux, J, is the energy per unit time per unit area, and so

J¼uAcDt/(ADt)¼ cu. The energy density in the frequency range n to nþ dn is

du¼rrad(E)dn, and so the energy flux in the same range is dJ¼ crrad(E)dn.
We write dJ¼ I(n)dn, where I is the intensity of the radiation; hence I¼ crrad.

Now consider the absorption that occurs within a slab of thickness dl. Let

the number density of molecules able to absorb light of frequency in the range

n to nþdn be n(n)dn, so the total number density of absorbers is n¼
R

n(n)dn.
The rate at which any one molecule absorbs a photon is W¼Brrad(E), and as

each photon has an energy hn, the rate of change of energy density is

du

dt
¼ �hnWnðnÞdn ¼ �nðnÞhnBrradðEÞdn ðFI17:1Þ
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The energy entering the slab at x from the left during the interval dt is

J(x)Adt, and the energy leaving the slab on the right at xþ dl is J(xþdl)Adt.

By the conservation of energy, the difference is the rate of change of energy in

the slab:

dðuAdlÞ
dt

¼ Jðxþ dlÞA� JðxÞA

This expression rearranges into

du

dt
¼ Jðxþ dlÞ � JðxÞ

dl
¼ dJ

dl

This conservation expression is valid for each frequency component, and by

using eqn FI17.1 and noting that

dJ

dl
¼ dI

dl
dn

we obtain

dI ¼ �nðnÞhnBrraddl ¼ �nðnÞhn
c

BIdl

The reduction in intensity when a beam passes through a solution of length

dl when the absorbers A are at a molar concentration [A] is

dI ¼ �eðnÞ½AIdl

where e is the molar absorption coefficient. Comparison of the two expres-

sions leads to

eðnÞ
n
¼ hnðnÞB

c½A

Multiplication of both sides by dn and integration over all the frequencies of

the band leads to Bhn/c[A] on the right; but n¼ [A]NA, where NA is

Avogadro’s constant. Hence,
Z

eðnÞ
n

dn ¼ BhNA

c

For typical absorption bands, the frequency is virtually constant over the

range for which e(n) is non-zero, and so we set n� nfi on the left and recognize

a¼
R
e(n)dn, the integrated absorption coefficient. It then follows that

a ¼ hnfi

c

� �
NAB ðFI17:2Þ

We show in Further information 18 that for electric dipole transitions

B¼ jmfij2/6e0�h2; therefore

a ¼ pnfiNAjmfij2

3e0�hc
ðFI17:3Þ

which is a direct link between a measurable quantity a and a calculated

quantity �fi.
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It is useful to introduce the dimensionless oscillator strength, f, of a

transition:

f ¼ 4pmenfi

3e2�h

� �
jmfij2 ðFI17:4Þ

The relation between this quantity and the integrated absorption coefficient

is obtained by combining the last two equations, and is

f ¼ 4mece0

NAe2

� �
a ðFI17:5Þ

The practical form of this expression is

f ¼ 6:257� 10�19 �a=ðm2 mol�1 s�1Þ
For a one-dimensional harmonic oscillator, f¼ 1

3. For an elecron bound so

that it oscillates harmonically in three dimensions (which was an early model

of a hydrogen atom), f¼1. The observed oscillator strength is therefore the

ratio of the intensity of the transition to the intensity of a harmonically

oscillating electron (in three dimensions). In practice, f�1 for allowed elec-

tric dipole transitions and f �1 for forbidden transitions.

18 Sum rules

In this section, we establish the Kuhn–Thomas sum rule:X
n

fn0 ¼ Ne ðFI18:1Þ

where fn0 is the oscillator strength for the transition n 0 (with n¼0

implicitly excluded from the sum here and throughout), and Ne is the number

of electrons in the molecule.

The first step is to derive the velocity–dipole relation:

pmn ¼ �i
meomn

e

� �
�mn ðFI18:2Þ

where �homn is the transition energy and �mn its transition dipole moment.

To derive this result, we consider the x-component with mx¼�ex:

px;mn ¼ imeomnxmn ðFI18:3Þ

The proof hinges on the evaluation of the commutator of the hamiltonian and

the position operator:

hmj½H, xjni ¼ hmjHxjni � hmjxHjni ¼ ðEm � EnÞhmjxjni ¼ �homnxmn

The commutator may also be written as follows:

½H, x ¼ � �h2

2me

d2

dx2
, x

" #
þ ½VðxÞ, x

¼ � �h2

2me

d2

dx2
x� x

d2

dx2

 !
¼ � �h2

2me
2

d

dx
þ x

d2

dx2
� x

d2

dx2

 !

¼ � �h2

me

d

dx
¼ �h

ime
px
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It follows that

hmj½H, xjni ¼ �h

ime
px;mn ðFI18:4Þ

and eqn FI18.3 follows immediately.

At this point, we develop fn0 in terms of the linear momentum by using the

velocity–dipole relation and on0¼2pnn0:

fn0 ¼
4pmenn0jmn0j2

3e2�h
¼ meon0

3e2�h
ð�0n � �n0 þ �0n � �n0Þ

¼ me

3e2�h

ie

me

� �
ð�0n � pn0 � p0n � �n0Þ

The sum over n produces an expectation value of a commutator:

X
n

fn0 ¼ �
i

3�h
h0jr � p� p � rj0i

For each component of the scalar product the commutator is i�h, so the

outcome is

X
n

fn0 ¼ �
i

3�h
ð3i�hÞh0j0i ¼ 1

This result is for a single electron. If the system consists of Ne electrons, each

one gives the same contribution, so overall we obtain eqn FI18.1, as was to

be proved.

19 Normal modes: an example

Consider a linear triatomic molecule BAB in which the mass of A is mA and

the mass B is mB. For simplicity, we shall confine attention to displacement

along the axis of the molecule, and the displacement of the atoms B, A, and B

will be written x1, x2, and x3, respectively. Because the relative displacements

of the bonded pairs of atoms are x1 � x2 and x3 � x2, and the force constants

of the two bonds are the same, the potential energy is

V ¼ 1
2kðx1 � x2Þ2 þ 1

2kðx3 � x2Þ2 ðFI19:1Þ

The force constant matrix (with matrix elements specified in eqn 10.67) is

k ¼
k �k 0
�k 2k �k
0 �k k

0
@

1
A

We shall work with the mass-weighted coordinates qi:

qi ¼ m
1=2
i xi ðFI19:2Þ

The force constant matrix then turns into K, where

Kij ¼
q2V

qqiqqj

 !
¼ 1

mimj

� �1=2

kij
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Therefore,

K ¼
k=mB �k=ðmAmBÞ1=2 0

�k=ðmAmBÞ1=2 2k=mA �k=ðmAmBÞ1=2

0 �k=ðmAmBÞ1=2 k=mB

0
B@

1
CA ðFI19:3Þ

We seek a linear combination of the coordinates that diagnolizes this

matrix. According to the procedures set out in Further Information 23, we

need to solve the secular equations

jK � l1j ¼
k=mB � l �k=ðmAmBÞ1=2 0

�k=ðmAmBÞ1=2 2k=mA � l �k=ðmAmBÞ1=2

0 �k=ðmAmBÞ1=2 k=mB � l

0
B@

1
CA ¼ 0

The roots of this cubic equation for l are

l1 ¼ 0 l2 ¼
k

mB
l3 ¼

k

m
ðFI19:4Þ

with the effective mass

m ¼ mAmB

mA þ 2mB
ðFI19:5Þ

Note that the effective force constants li depend on the masses of the atoms.

The mode with zero force constant (no restoring force) corresponds to the

translation of the entire molecule parallel to the axis.

The eigenvectors Ql of K are the combinations

Ql ¼
X

i

cilqi ðFI19:6Þ

and are found by solving the set of simultaneous equationsX
j

ðKij � lldjlÞcjl ¼ 0 ðFI19:7Þ

with l¼ 1, 2, 3 in turn. As the simplest example, consider the mode Q1, which

corresponds to l1¼ 0. The equations for ci1 reduce toX
j

Kijcj1 ¼ 0

or, specifically,

K11c11 þ K12c21 þ K13c31 ¼ 0

K21c11 þ K22c21 þ K23c31 ¼ 0

K31c11 þ K32c21 þ K33c31 ¼ 0

The coefficients are given in eqn FI19.3, so

c11 ¼
mB

mA

� �1=2

c21 c31 ¼
mB

mA

� �1=2

c21 ðFI19:8Þ
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We also require

c2
11 þ c2

21 þ c2
31 ¼ 1 ðFI19:9Þ

It follows that

c11 ¼ c31 ¼
mB

m

� �1=2
c21 ¼

mA

m

� �1=2
ðFI19:10Þ

where m ¼ mA þ 2mB, the total mass of the molecule. Therefore,

Q1 ¼
1

m1=2
ðm1=2

B q1 þm
1=2
A q2 þm

1=2
B q3Þ

¼ 1

m1=2
ðmBx1 þmAx2 þmBx3Þ ðFI19:11Þ

The modes corresponding to l2 and l3 are found in a similar way:

Q2 ¼
1

2

� �1=2

ðq1 � q3Þ

Q3 ¼
1

2m

� �1=2

ðm1=2
A q1 � 2m

1=2
B q2 þm

1=2
A q3Þ ðFI19:12Þ

The mode Q2 is a symmetrical mode (the B atoms move in opposite direc-

tions) and involves no motion of the central atom. The mode Q3 involves the

motion of the outer pair of atoms against the central atom, and is the anti-

symmetric mode.

It may be verified that the kinetic energy can be expressed in the form
1
2

P
i

_QQ2
i , so both the kinetic and potential energy contributions are diagonal,

as required.

The electromagnetic field

20 The Maxwell equations

The Maxwell equations describe the properties of the electromagnetic field.

They are expressed in terms of the following six quantities (with their SI units

in parentheses):

E electric field strength (V m�1)

D electric displacement (C m�2)

r charge density (C m�3)

H magnetic field strength (A m�1)

B magnetic induction (T)

J current density (A m�2)

The electric displacement and the magnetic induction are related to the

magnetic and electric field strengths by the polarization, P, and the magne-

tization, M, respectively:

D ¼ e0E þ P B ¼ m0H þ m0M ðFI20:1Þ
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The Maxwell equations are then

ðiÞ r �D ¼ r

ðiiÞ r �B ¼ 0

ðiiiÞ r � E ¼ � qB
qt

ðivÞ r �H ¼ J þ qD
qt

ðFI20:2Þ

The fields B and E may be expressed in terms of two potentials, a scalar

potential f and a vector potential A. Because the divergence of a curl is

identically zero, it follows that the second Maxwell equation (r�B¼0) is

satisfied by writing

B ¼ r� A ðFI20:3Þ

It then follows from the third Maxwell equation that

r� E þ qA

qt

� �
¼ 0

and hence

E ¼ � qA

qt
þ f

where f is a vector function with zero curl. Because the curl of a gradient of

a scalar function is identically zero, we may write f¼�rf, and so obtain

E ¼ � qA

qt
�rf ðFI20:4Þ

When the vector potential is independent of time,

E ¼ �rf ðFI20:5Þ

The Maxwell equations take on special importance in a vacuum, for which

P¼0, M¼0, r¼0, and J¼ 0. Under these conditions, D¼ e0E and

B¼m0H, and the equations become

ðvÞ r � E ¼ 0

ðviÞ r �H ¼ 0

ðviiÞ r � E ¼ �m0

qH
qt

ðviiiÞ r �H ¼ e0
qE
qt

ðFI20:6Þ

On taking the curl of the third of these equations we obtain

r� ðr � EÞ ¼ �m0

qr�H

qt

Then, because r� (r�E)¼r(r �E)�r2E (see Further information 22),

rðr � EÞ � r2E þ m0

qr�H

qt
¼ 0
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The first term in this expression is zero by eqn FI20.6(v), and by

eqn FI20.6(viii) the third term is

m0

qr�H

qt
¼ m0e0

q2E

qt2

Therefore, in free space the electric field satisfies the equation

r2E � e0m0
€EE ¼ 0 ðFI20:7Þ

where €EE ¼ q2E=qt2, which is the equation of a wave propagating with

velocity c¼ 1/(e0m0)1/2.

For electromagnetic radiation propagating in a medium we need to allow

for the polarization. Suppose (see eqn 12.84) that

P ¼naE �nb _BB ðFI20:8Þ

Where _bb ¼ qb=qt. In optically inactive media, the second term on the right is

absent. From eqns FI20.1, FI20.2, and FI20.8, and setting B � m0H,

r�B � m0
_DD ¼ e0m0

_EE þ m0na _EE � m0nb €BB

When the curl is taken of both sides, and the relation r� ðr �BÞ ¼
rðr �BÞ � r2B ¼ �r2B (where the second equality follows from eqn FI20.2)

is used, it follows that

r2B ¼ e0m0 1þ an
e0

� �
€BBþ m0bnr� €BB ðFI20:9Þ

Suppose for the moment that b¼0, then by comparison of this expression

with eqn FI20.7 we see that in a medium the magnetic field propagates at

v ¼ 1

fe0m0ð1þ ðan=e0ÞÞg1=2

and hence the refractive index is

nr ¼
c

v
¼ 1þ an

e0

� �1=2

� 1þ an
2e0

as in eqn 12.61.

When b is non-zero, we can expect birefringence (nþ 6¼n� ). A circularly

polarized electric field with propagation direction z has the form (see

eqn 12.78)

E� ¼ ei cosf� � ej sinf� ðFI20:10Þ
where the amplitude e is assumed here to be time-independent, i and j are

unit vectors perpendicular to the propagation direction, and

f� ¼ ot � k�z ðFI20:11Þ
The wavevector of magnitude k� depends on the sense of polarization because

k¼2p/l and l depends on the refractive index through l¼ v/n¼ c/nrn.
It proves convenient to work with the magnetic component of the electro-

magnetic field, and from Maxwell’s equation r� E� ¼ � _BB�, it follows that

B� ¼ ek�
o
fj cosf� � i sinf�g
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has the correct polarization characteristics. Then, because

r�B� ¼ �k�B
�

and in addition

r2B� ¼ �k2
�B�

and

€BB
� ¼ �o2B�

eqn FI20.9 becomes

k2
� ¼ e0m0o

2 1þ an
e0

� �
� m0bno2k� ðFI20:12Þ

Because e0m0¼1/c2 and k�¼2pvn�/c¼on�/c (from the remark above), it

follows that

n2
� ¼ 1þ an

e0
� obnn�

ce0
ðFI20:13Þ

This is a quadratic equation for n�. The solution to first order in b is

n� � 1þ an
2e0
� obn

2ce0
ðFI20:14Þ

which is the expression used in the text (eqn 12.85).

21 The dipolar vector potential

In this section, we deduce the form of the magnetic field corresponding to the

vector potential

A ¼ a
m� r

r3
a ¼ m0

4p
ðFI21:1Þ

This potential was introduced in Section 13.11 in connection with the dis-

cussion of the field of a magnetic dipole.

First, note that as r(1/r)¼ � r/r3,

A ¼ �am�r 1

r

� �
ðFI21:2Þ

Then, from FI22.8 with F¼m and G¼ (rr� 1),

r�A¼�ar� m�r1

r

� �

¼�a m r�r1

r

� �
�ðr �mÞ r1

r

� �
þ r1

r
�r

� �
m�ðm �rÞ r1

r

� �� �

¼�a m r2 1

r

� �
�ðm �rÞ r1

r

� �� �
ðFI21:3Þ
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because m is a constant and r �r¼r2. The second term may be written

ðm � rÞ r 1

r

� �
¼ �ðm � rÞ r

r3

� �

¼ � mx
q
qx
þmy

q
qy
þmz

q
qz

� �
xiþ yj þ zk

r3

¼ �m

r3
� rm � r 1

r3

� �
¼ �m

r3
þ 3

rðm � rÞ
r5

¼ �m� 3ðm � r̂rÞr̂r
r3

Therefore, this part of the vector potential accounts for the contribution

Bdipolar ¼ �
a

r3
fm� 3ðm � r̂rÞr̂rg ðFI21:4Þ

as in eqn 13.61.

When the system is spherically symmetrical, detailed analysis shows that

the first term of the last line in eqn FI21.3 does not necessarily vanish when it

is averaged over the appropriate wavefunctions. Furthermore, the spherical

average of the second term in the last line produces

ðm � rÞ r 1

r

� �
 �
¼ 1

3
m r2 1

r

� �
ðFI21:5Þ

Therefore, in this case

r� A ¼ �2

3
amr2 1

r
ðFI21:6Þ

A standard property is

r2 1

r
¼ �4pdðrÞ ðFI21:7Þ

where d(r) is the Dirac delta-function (Further information 12). Therefore,

this term contributes

Bcontact ¼
8p
3

� �
amdðrÞ ¼ 2

3
m0mdðrÞ ðFI21:8Þ

Mathematical relations

22 Vector properties

We consider the properties of vectors written as

F ¼ Fxiþ Fyj þ Fzk ðFI22:1Þ

and likewise for G, H, and I.
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1. Vector multiplication

The scalar product of two vectors is defined as

F �G ¼ FxGx þ FyGy þ FzGz ¼
X

r
FrGr ðFI22:2Þ

The scalar product is a scalar quantity. The vector product of two vectors is

defined as

F �G ¼
i j k

Fx Fy Fz

Gx Gy Gz


 ðFI22:3Þ

A vector product, a vector quantity, is also often denoted F ^ G.

The following relations are useful:

F �G ¼ �G� F

F � ðG�HÞ ¼ G � ðH � FÞ ¼ H � ðF �GÞ ¼ ðF �GÞ �H
F � ðG�HÞ ¼ GðF �HÞ �HðF �GÞ
ðF �GÞ � ðH � IÞ ¼ ðF �HÞðG � IÞ � ðF � IÞðG �HÞ ðFI22:4Þ

2. Vector differentiation

The vector differentiation of a scalar function f is denoted r or grad, and is

called the gradient of the function:

rf ¼ qf

qx

� �
iþ qf

qy

� �
j þ qf

qz

� �
k ðFI22:5Þ

The quantity rf is a vector. There are two versions of the differentiation of a

vector. The divergence of a vector is defined as

r � F ¼ qFx

qx

� �
þ qFy

qy

� �
þ qFz

qz

� �
¼
X

q

qFq

qq

� �
ðFI22:6Þ

The divergence is often denoted div F. The curl of a vector is defined as

r� F ¼

i j k

q
qx

q
qy

q
qz

Fx Fy Fz




ðFI22:7Þ

The divergencer �F is a scalar and the curlr�F (which is also often denoted

r^ F or curl F) is a vector.

The following relations are useful:

rðfgÞ ¼ frgþ grf

r2f ¼ r � rf

r� ðrf Þ ¼ 0

r � ðfFÞ ¼ f ðr � FÞ þ F � ðrf Þ
r � ðfFÞ ¼ f ðr � FÞ þ ðrf Þ � F

r � ðF �GÞ ¼ G � ðr � FÞ � F � ðr �GÞ
r � ðr � FÞ ¼ rðr � FÞ � r2F

r� ðF �GÞ ¼ Fðr �GÞ �Gðr � FÞ þ ðG � rÞF � ðF � rÞG
rðF �GÞ ¼ Fð�rÞGþ ðG � rÞF þ F � ðr�GÞ þG� ðr � FÞ

ðFI22:8Þ
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23 Matrices

A matrix is an array of numbers. Matrices may be combined together by

addition or multiplication according to generalizations of the rules for

ordinary numbers (which are 1�1 matrices). Most numerical matrix

manipulations are now carried out computationally.

Consider a square matrix M of n2 numbers arranged in n columns and

n rows. These n2 numbers are the elements of the matrix, and may be specified

by stating the row, r, and column, c, at which they occur. Each matrix

element is therefore denoted Mrc. For example, in the matrix

M ¼ 1 2
3 4

� �

the elements are M11¼1, M12¼ 2, M21¼ 3, and M22¼4. The determinant,

jMj, of this matrix is

jMj ¼ 1 2
3 4


 ¼ 1� 4� 2� 3 ¼ �2

Note that if P¼MN, then jPj ¼ jMj jNj.
Two matrices M and N may be added to give the sum S¼MþN, according

to the rule

Src ¼Mrc þNrc ðFI23:1Þ

(that is, corresponding elements are added). Thus, with M given above and

N ¼ 5 6
7 8

� �

the sum is

S ¼ 1 2
3 4

� �
þ 5 6

7 8

� �
¼ 6 8

10 12

� �

Two matrices may also be multiplied to give the product P¼MN according to

the rule

Prc ¼
X

n

MrnNnc ðFI23:2Þ

This rule is illustrated in Fig. FI23.1. For example, with the matrices given

above,

P ¼ 1 2
3 4

� �
5 6
7 8

� �
¼ 1� 5þ 2� 7 1� 6þ 2� 8

3� 5þ 4� 7 3� 6þ 4� 8

� �
¼ 19 22

43 50

� �

It should be noted that in general MN 6¼NM, and matrix multiplication is in

general non-commutative.

A diagonal matrix is a matrix in which the only non-zero elements lie on

the major diagonal (the diagonal from M11 to Mnn). Thus, the matrix

D ¼
1 0 0
0 2 0
0 0 1

0
@

1
A

Fig. FI23.1 A schematic
illustration of matrix

multiplication. The product of the

elements linked by lines is taken,

and then the sum of these products
is placed at the intersection of the

row and column.
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is diagonal. The condition may be written

Mrc ¼ mrdrc ðFI23:3Þ

where drc is the Kronecker delta, which is equal to 1 for r¼ c and to 0 for r 6¼ c.

In the above example, m1¼1, m2¼2, and m3¼1. The unit matrix, 1

(occasionally denoted I), is a special case of a diagonal matrix in which all

non-zero elements are 1.

The transpose of a matrix M is denoted MT and is defined by

MT
mn ¼Mnm ðFI23:4Þ

(See Fig.FI23.2.) Thus, for the matrix M we have been considering,

MT ¼ 1 3
2 4

� �

If A¼BC, then AT¼CTBT.

The complex conjugate of a matrix, M�, with complex elements is the

matrix obtained by taking the complex conjugate of each element:

M�
rc ¼ ðMrcÞ� ðFI23:5Þ

If A¼BC, then A� ¼B�C�. The adjoint of a matrix, My, is the complex

conjugate of the transpose:

My
mn ¼M�

nm ðFI23:6Þ
A matrix is hermitian or self-adjoint if it is equal to its own adjoint:

My
mn ¼Mmn that is, M�

nm ¼Mmn

(see the discussion of hermiticity in Section 1.8).

The inverse of a matrix M is denoted M�1, and is defined so that

MM�1 ¼M�1M ¼ 1 ðFI23:7Þ

A matrix is unitary if M�1¼My.

The inverse of a matrix can be constructed using a mathematical software

program, but in simple cases the following procedure can be carried through

without much effort:

1. Form the determinant of the matrix. For example, for our matrix

M, jMj ¼�2.

2. Form the transpose of the matrix. For example,

MT ¼ 1 3
2 4

� �

3. Form M
!
0, where M

!
0
rc is the cofactor of the element Mrc; that is, it is the

determinant formed from M with the row r and column c struck out. For

example,

M
! 0 ¼ 4 �2

�3 1

� �

4. Construct the inverse as M�1 ¼M
!
0=jMj. For example,

M�1 ¼ 1

�2

� �
4 �2
�3 1

� �
¼ �2 1

3
2 � 1

2

� �

(a) (b)

Fig. FI23.2 The transpose of a

matrix is formed by reflecting the
elements across the principal

diagonal.
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A set of n simultaneous equations

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

� � � � � � � � �
an1x1 þ an2x2 þ � � � þ annxn ¼ bn

ðFI23:8Þ

can be written in matrix notation if we introduce the column vectors x and b:

x ¼

x1

x2

..

.

xn

2
6664

3
7775 b ¼

b1

b2

..

.

bn

2
6664

3
7775

For then, with a the matrix of coefficients arc, the n equations are

ax ¼ b ðFI23:9Þ
The formal solution is obtained by multiplying both sides of this matrix

equation by a�1, for then

x ¼ a�1b ðFI23:10Þ

In the special case that b¼ lx, eqn FI23.9 is an eigenvalue equation:

ax ¼ lx ðFI23:11Þ

where l is the eigenvalue and x is the eigenvector. In general, there are n

eigenvalues l(i), and they satisfy the n simultaneous equations

ða� l1Þx ¼ 0 ðFI23:12Þ

There are n corresponding eigenvectors x(i). The matrix equation, eqn FI23.12,

is equivalent to a set of n simultaneous equations, and they have a solution

only if the determinant of the coefficients is zero. However, this determinant

is just ja � l1j, and so the n eigenvalues may be found from the solution of

the secular equation

ja� l1j ¼ 0 ðFI23:13Þ
The n eigenvalues determined from the secular equation may be used to

find the n eigenvectors. These eigenvectors (which are n� 1 matrices) may be

used to form an n�n matrix X. Thus, as

xð1Þ ¼

x
ð1Þ
1

x
ð1Þ
2

..

.

x
ð1Þ
n

2
66664

3
77775 xð2Þ ¼

x
ð2Þ
1

x
ð2Þ
2

..

.

x
ð2Þ
n

2
66664

3
77775 etc.

we may form the matrix

X ¼ ðxð1Þ, xð2Þ, . . . , xðnÞÞ ¼

x
ð1Þ
1 x

ð2Þ
1 . . . x

ðnÞ
1

x
ð1Þ
2 x

ð2Þ
2 . . . x

ðnÞ
2

..

. ..
. ..

.

x
ð1Þ
n x

ð2Þ
n � � � x

ðnÞ
n

0
BBBB@

1
CCCCA
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so that Xrc ¼ x
ðcÞ
r . If further we write Lrc¼ lrdrc, so that � is a diagonal

matrix with the elements l1, l2, . . . , ln along the diagonal, then all the

eigenvalue equations ax(i)¼ lix
(i) may be confined into the single equation

aX ¼ X� ðFI23:14Þ

because this expression is equal toX
n

arnXnc ¼
X

n

XrnLnc

orX
n

arnxðcÞn ¼
X

n

xðnÞr lndnc ¼ lcx
ðcÞ
r

as required. Therefore, if we form X�1 from X, we construct a similarity

transformation

� ¼ X�1aX ðFI23:15Þ

that makes a diagonal (because � is diagonal). It follows that if the matrix X

that causes X�1aX to be diagonal is known, then the problem is solved: the

diagonal matrix so produced has the eigenvalues as its only non-zero ele-

ments, and the matrix X used to bring about the transformation has the

corresponding eigenvectors as its columns.
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Further reading

Where older books have been included, we have

judged them either classics or unique in their coverage.

We have sought to identify texts and articles that

provide a deeper discussion of the topics treated in this

book.
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M. Jammer; McGraw-Hill, New York (1966).
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1894–1912. T.S. Kuhn; Oxford University Press, New York
(1978).

The historical development of quantum theory, Vols 1–5. J.
Mehra and H. Rechenberg (ed.); Springer, New York (1982
et seq).
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meaning of quantum theory. J. Baggott; Oxford University
Press, Oxford (2004).

Chapter 1
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Addison-Wesley, Reading, Mass. (1968).
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Neumann; Princeton University Press, Princeton (1955).
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Wiley, New York (1969).
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Wiley, New York (1986).
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London (1977).
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Wiley, New York (1983).

Chapter 2
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to chemistry. L. Pauling and E.B. Wilson; McGraw-Hill,
New York (1935).
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Hall, London (1980).

Solvable models in quantum mechanics. S. Albeverio;
Springer, New York (1988).

Chapter 3

Atomic structure. E.U. Condon and H. Odabaşi; Cambridge
University Press, Cambridge (1980).

Angular momentum: an illustrated guide to rotational
symmetries for physical systems. W.J. Thompson; Wiley,
New York (1994).

Symmetry and the hydrogen atom. H.V. MacIntosh; Group
theory and its applications, II (ed. E.M. Loebl), Academic
Press, New York (1971).

Group theory and the hydrogen atom. M. Bander and
C. Itzykson; Rev. Mod. Phys., 38, 330 and 346 (1966).

Group theory and the Coulomb problem. M.J. Englefield;
Wiley, New York (1972).

Quantum mechanics, Vol. I. A. Messiah; North-Holland,
Amsterdam (1961).

Quantum mechanics. E. Merzbacher; Wiley, New York
(1970).

Chapter 4

Elementary theory of angular momentum. M.E. Rose;
Wiley, New York (1975).

Companion to angular momentum. V.D. Kleiman,
H.-Kun Park, R.J. Gordon, and R.N. Zare; Wiley,
New York (1998).

Angular momentum in quantum mechanics. A.R. Edmonds;
Princeton University Press, Princeton (1996).

Angular momentum techniques in quantum mechanics. V.
Devanathan; Kluwer, Dordrecht (1999).

Atomic structure. E.U. Condon and H. Odabaşi; Cambridge
University Press, Cambridge (1980).

Operator techniques in atomic spectroscopy. B.R. Judd;
McGraw-Hill, New York (1963).

Angular momentum for diatomic molecules. B.R. Judd;
Academic Press, New York (1975).

Angular momentum in quantum physics: theory and
application. L.C. Biedenharn and J.D. Louck; Addison-
Wesley, New York (1981).



Quantum theory of angular momentum. L.C. Biedenharn
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Angular momentum: Understanding spatial aspects in
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(1988).
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Appendix 1 Character tables and direct products

Character tables

C2v, 2mm E C2 �v �v
0 h¼ 4

A1 1 1 1 1 z, z2, x2, y2

A2 1 1 �1 �1 xy Rz

B1 1 �1 1 �1 x, xz Ry

B2 2 �1 �1 1 y, yz Rx

C3v, 3m E 2C3 3�v h¼ 6

A1 1 1 1 z, z2, x2þ y2

A2 1 1 �1 Rz

E 2 �1 0 (x, y), (xy, x2� y2), (xz, yz) (Rx, Ry)

C4v, 4mm E C2 2C4 2�v 2�d h¼ 8

A1 1 1 1 1 1 z, z2, x2þ y2

A2 1 1 1 �1 �1 Rz

B1 1 1 �1 1 �1 x2� y2

B2 1 1 �1 �1 1 xy

E 2 �2 0 0 0 (x, y), (xz, yz) (Rx, Ry)

C5v E 2C5 2C5
2 5�v h¼ 10, �¼ 72�

A1 1 1 1 1 z, z2, x2þ y2

A2 1 1 1 �1 Rz

E1 2 2 cos � 2 cos 2� 0 (x, y), (xz, yz) (Rx, Ry)

E2 2 2 cos 2� 2 cos � 0 (xy, x2� y2)



C6v, 6mm E C2 2C3 2C6 3�d 3�v h¼ 12

A1 1 1 1 1 1 1 z, z2, x2þ y2

A2 1 1 1 1 �1 �1 Rz

B1 1 �1 1 �1 �1 1

B2 1 �1 1 �1 1 �1

E1 2 �2 �1 1 0 0 (x, y), (xz, yz) (Rx, Ry)

E2 2 2 �1 �1 0 0 (xy, x2� y2)

C1v E 2C�
y 1�v h¼1

A1(Sþ) 1 1 1 z, z2, x2þ y2

A2(S�) 1 1 �1 Rz

E1(P) 2 2 cos � 0 (x, y), (xz, yz) (Rx, Ry)

E2(D) 2 2 cos 2� 0 (xy, x2� y2)
..
.

y There is only one member of this class if �¼�.

D2, 222 E Cz
2 Cy

2 Cx
2 h¼ 4

A1 1 1 1 1 x2, y2, z2

B1 1 1 �1 �1 z, xy Rz

B2 1 �1 1 �1 y, xz Ry

B3 1 �1 �1 1 x, yz Rx

D3, 32 E 2C3 3C02 h¼ 6

A1 1 1 1 z2, x2þ y2

A2 1 1 �1 z Rz

E 2 �1 0 (x, y), (xz, yz) (xy, x2� y2) (Rx, Ry)
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D4, 422 E C2 2C4 2C02 2C002 h¼ 8

A1 1 1 1 1 1 z2, x2þ y2

A2 1 1 1 � 1 �1 z Rz

B1 1 1 �1 1 �1 x2� y2

B2 1 1 �1 �1 1 xy

E 2 �2 0 0 0 (x, y), (xz, yz) (Rx, Ry)

D3h, 6̄2m E �h 2C3 2S3 3C02 3�v h¼ 12

A01 1 1 1 1 1 1 z2, x2þ y2

A02 1 1 1 1 �1 �1 Rz

A001 1 �1 1 �1 1 �1

A002 1 �1 1 �1 �1 1 z

E 0 2 2 �1 �1 0 0 (x, y), (xy, x2� y2)

E00 2 �2 �1 1 0 0 (xz, yz) (Rx, Ry)

D1h E 2C� 1sv i 2iC� 1C02 h¼1

A1gðSþg Þ 1 1 1 1 1 1 z2, x2þ y2

A1uðSþu Þ 1 1 1 �1 �1 �1 z

A2gðS�g Þ 1 1 �1 1 1 �1 Rz

A2uðS�u Þ 1 1 �1 � 1 �1 1

E1gðPgÞ 2 2 cos� 0 2 �2 cos� 0 (xz, yz) (Rx, Ry)

E1uðPuÞ 2 2 cos� 0 � 2 2 cos� 0 (x, y)

E2gðDgÞ 2 2 cos 2� 0 2 2 cos 2� 0 (xy, x2� y2)

E2uðDuÞ 2 2 cos 2� 0 �2 �2 cos 2� 0
..
.

Td, 4̄3m E 8C3 3C2 6�d 6S4 h¼ 24

A1 1 1 1 1 1 x2þ y2þ z2

A2 1 1 1 �1 �1

E 2 �1 2 0 0 (3z2� r2, x2� y2)

T1 3 0 �1 �1 1 (Rx, Ry, Rz)

T2 3 0 �1 1 �1 (x, y, z), (xy, xz, yz)
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O, 432 E 8C3 3C2 6C02 6C4 h¼ 24

A1 1 1 1 1 1 x2þ y2þ z2

A2 1 1 1 �1 �1

E 2 �1 2 0 0 (x2� y2, 3z2� r2)

T1 3 0 �1 �1 1 (x, y, z) (Rx, Ry, Rz)

T2 3 0 �1 1 �1 (xy, yz, zx)

Oh,
m3m

E 8C3 6C2 6C4 3C2 i 6S4 8S6 3�h 6�d h¼ 48

A1g 1 1 1 1 1 1 1 1 1 1 x2þ y2þ z2

A2g 1 1 �1 �1 1 1 �1 1 1 �1

Eg 2 �1 0 0 2 2 0 �1 2 0 (3z2� r2, x2� y2)

T1g 3 0 �1 1 �1 3 1 0 �1 �1 (Rx, Ry, Rz)

T2g 3 0 1 �1 �1 3 �1 0 �1 1 (xy, yz, zx)

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2u 1 1 �1 �1 1 �1 1 �1 �1 1

Eu 2 �1 0 0 2 �2 0 1 �2 0

T1u 3 0 �1 1 �1 �3 �1 0 1 1 (x, y, z)

T2u 3 0 1 �1 �1 �3 1 0 1 �1

Direct products

In general g� g¼ g, g� u¼u, u� u¼ g;

G 0 �G 0 ¼G 0, G 0 �G00 ¼G00, G00 �G00 ¼G 0

For C2, C2v, C2h; C3, C3v, C3h; D3, D3h, D3d; C6, C6v, C6h, D6, S6

A1 A2 B1 B2 E1 E2

A1 A1 A2 B1 B2 E1 E2

A2 A1 B2 B1 E1 E2

B1 A1 A2 E2 E1

B2 A1 E2 E1

E1 A1þ [A2]þE2 B1þB2þE1

E2 A1þ [A2]þE2
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For T, Th, Td; O, Oh:

A1 A2 E T1 T2

A1 A1 A2 E T1 T2

A2 A1 E T2 T1

E A1þ [A2]þE T1þT2 T1þT2

T1 A1þEþ [T1]þT2 A2þEþT1þT2

T2 A1þEþ [T1]þT2

For C1v, D1h:

�þ �� � � . . .

Sþ �þ �� � � . . .

S� �þ � � . . .

P �þþ [��]þ� �þ� . . .

D �þþ [��]þ� . . .

..

.
. . .
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Appendix 2 Vector coupling coefficients

1. j1¼ j2¼ 1
2. jjmji

mj1 mj2 j1,1i j1,0i j0,0i j1,�1i

1
2

1
2 1

1
2 � 1

2
1
2

p
1
2

p
� 1

2
1
2

1
2

p
� 1

2

p
� 1

2 � 1
2 1

2. j1¼ 1, j2¼ 1
2. jjmji

mj1 mj2 j 32 ; 3
2i j 32 ; 1

2i j 12 ; 1
2i j 32 ;� 1

2i j 12 ;� 1
2i j 32 ;� 3

2i

1 1
2 1

1 � 1
2

1
3

q
2
3

q
0 1

2
2
3

q
� 1

3

q
0 � 1

2
2
3

q
1
3

q
�1 1

2
1
3

q
� 2

3

q
�1 � 1

2 1

3. j1¼ 1, j2¼ 1. jjmji

mj1 mj2 j2; 2i j2; 1i j1;1i j2;0i j1; 0i j0; 0i j2;�1i j1;�1i j2;�2i

1 1 1

1 0 1
2

p
1
2

p
0 1 1

2

p
� 1

2

p
1 �1

p
1
6

1
2

p p
1
3

0 0
p

2
3 0 �

p
1
3

�1 1
p

1
6 � 1

2

p p
1
3

�1 0 1
2

p
1
2

p
�1 0 1

2

p
1
2

p
�1 �1 1



Answers to selected problems

0.1 (a) 6.626� 10�19 J, (b) 6.626�10�20 J, (c) 6.626� 10�34 J.

0.4 6000 K. 0.6 (a) 3R(yE/T)2e�yE/T, (b) 3R. 0.8 2.94R, 0.23R.

0.9 3.144R. 0.10 2.97� 1020. 0.11 (a) 8.0�105 m s�1, (b) no

electrons emitted. 0.15 RH¼ 1.097� 105 cm�1, I¼ 13.6 eV¼
hcRH. 0.16 (a) 6.6� 10�29 m, (b) 7.3�10�40 m, (c) 0.145nm, (d)

(i) 1.23nm, (ii) 12.3 pm.

1.3 (a) Eigenfunction is (i); (b) eigenfunctions are (i), (iii), (v), (vi). 1.4

(a)�(�h2/2m)(d2/dx2) in one dimension,�(�h2/2m)r2 in three dimen-

sions, (b) multiplication by (1/x), (c) multiplication by
P

ieiri, (d) (�h/

i){x(q/qy)� y(q/qx)}, (e) multiplication by x2�hxi2,��h2(q2/

qx2)�hpi2. 1.6��h2c2(q2C/qx2)þm2c4C¼ ��h2(q2C/qt2), probabil-

ity is not conserved. 1.10 No. 1.11 (a) 0, (b) 0, (c) i�h, (d) 2i�hx, (e)

n i �hx n �1 . 1 . 1 2 ( a ) �h/ ( i x 2 ) , ( b ) ( 2 �h/ x 3 ) �
(�h� ixpx), (c) i�h(zpx� xpz), (d) 2x2(q2/qxqy)�2xy(q2/qy2).

1.14 �h2lz. 1.17 (a) i�h(qV/qx), (b) (�h/im)px; For (i) (a) 0, (b) (�h/

im)px; For (ii) (a) i�hkx, (b) (�h/im)px; For (iii) (a)�(i�he2/4pe0)(x/r3),

(b) (�h/im)px. 1.21 (d/dt)hxi¼ (1/m)hpxi, (d/dt)hpxi¼�khxi. 1.23

Eigenvalues (vþ 1
2)�ho. 1.24 (�h/2)2(2v2þ2vþ 3). 1.27 N¼ (b3/p)1/2.

1.28 N¼ (1/G p
p

)1/2, 0.8427 . . . . 1.29 �G. 1.30 (a) 2.1�10�6

pm�3, (b) 2.9� 10�7 pm�3; 2.1� 10�6, 2.9� 10�7. 1.31 (a) 0.323,

(b) 141 pm.

2.1 (a) (i) A exp{5.123i(x/nm)}, (ii) A exp{512.3i(x/nm)},

(b) A exp{9.48� 1031i (x/m)}. 2.2 A2¼ 1/L; L!1. 2.8 4g2/

{4g2þ (1� g2)2sin2k 0 L} where g¼ k/k 0 with k2¼ 2mE/�h2 and

k 02¼ 2m(E�V)/�h2. 2.9 (a) 1, (b) {(E�V)1/2�E1/2)}/{(E�V)1/2þ
E1/2)}. 2.10 (a) 1

2 for all n, (b) (1
4){1� (2/pn) sin(np/2)}; 0.09085 for

n¼1, (c) (2/L){dx� (�1)n(L/2pn) sin(2npdx/L)}; (2/L){dxþ
ðL=2pÞ sinð2pdx=LÞ for n ¼ 1: 2.11 lC/ 8

p
. 2.12 (a) n2h2/4mL3,

(b) 0.49 pm. 2.14 Dx¼ (L/2 3
p

){1� (6/n2p2)1/2; as n!1, Dx!L/

2 3
p

. 2.15 hpi¼ 0, hp2i¼ n2h2/4L2, Dp¼ nh/2L. For general n, we

have DxDp¼ (np/ 3
p

){1� (6/n2p2)}1/2(�h/2); For n¼1, we get

DxDp¼ 1.1357(�h/2). 2.19 En¼ n2h2/8meL
2, l/nm¼ 3.297� 10�3

(RCC/pm)2(N� 1)2/(Nþ 1). 2.20 (b) C¼ð2=LÞ3=2�sinðnxpx=LÞ
sinðnypy=LÞsinðnzpz=LÞ, E¼ðn2

xþn2
yþn2

z Þðh2=8mL2Þ; (d) 6. 2.27

4.57� 10�20 J, 4.35�10�6 m. 2.28 (a) 0.171, (b) 0.617. 2.29 (a) 0,

(b) (1
2)�ho/k, (c) 0, (d) (1

2)�hk/o, DxDp¼ �h/2.

3.1 E¼ð1:30�10�22 JÞm2
l ; 1:53mm: 3.5 E¼ (2.2� 10�65 J) m2

l ,

�1.5�1033. 3.7 (a) N¼1/(2pI0(2) )1/2¼ 0.2642, (b) 0, 0, 0.698�h.

3:8 N¼ 1=ð2pI0ð2aÞÞ1=2, lzh i¼ a�hfI1ð2aÞ=I0ð2aÞg 3.9 Y00 sin2yþ
Y 0 sin y cosy� {m2

l � (2IE/�h2)sin2y}Y¼ 0. 3.14 l¼ 0, E¼0, non-

degenerate; l¼ 1, E¼ 2.60� 10�22 J, triply degenerate; l¼2,

E¼7.80�10�22 J, five-fold degenerate; 0.764 nm. 3.15 arccos [ml/

{l(lþ 1)}1/2]; With angles in degrees: For l¼ 1, 45, 90, 135; For l¼ 2,

35.3, 65.9, 90, 114.1, 144.7; For l¼ 3, 30, 54.7, 73.2, 90, 106.8,

125.3, 150. 3.17 hTi¼�E1s, hVi¼ 2E1s, hTi¼ (� 1
2)hVi. 3.19 (a) 2a,

(b) (3�p3)(3a/2). 3.20 For 1s, (a) 3a/2Z, (b) 3(a/Z)2, (c) a/Z; For 2s,

(a) 6a/Z, (b) 42(a/Z)2, (c) 5.24a/Z; For 3s, (a) 27a/2Z, (b) 2.07(a/

Z)2, (c) 13.07a/Z. 3.24 For 1s, (1/p)(Z/a)3; For 2s, (1/8p)(Z/a)3; For

3s, (1/27p)(Z/a)3. 3.25 (1/24)(Z/a)3. 3.26�0.357 kJ mol�1.

4.1 i�hlz. 4.2 (a) �i�hðlzly þ lylzÞ, (b) �i�hðlxlzly þ lxlylz þ lzlylxþ
lylzlxÞ, (c) �h2ly: 4.4 Upon expansion of the determinant,

l� l¼ i(lylz� lzly)þ j(lxlz� lzlx)þ k(lxly� lylx), which is then identi-

fied (term by term) with i�hl. 4.6 (a) ½sx, sy� ¼ i�hsz, (b) eigenvalues of

s2 ¼ s2
x þ s2

y þ s2
z are 3

4�h2 ¼ sðsþ 1Þ�h2: 4.7 (a) i�hsz/2, (b) (�h/2)4sx, (c)

(�h/2)6. 4.9 lþ would be a lowering operator and l� a raising

operator. 4.10 (a) 0, (b) �h
p

6, (c) 2�h2p6, (d) 6�h2, (e) 6�h2, (f) 48�h5.

4.12 (a) �i�h, (b) 0, (c) �i�h, (d) i�h, (e) 0. 4.19 (a) 7, 6, . . . , 1; (b)(i)

2,1,0, (b)(ii) 4,3,2,1,0, (b)(iii) 3,2,1, (c) 2,1,1,1,0,0.

4.25 hG,MLjl1zjG,MLi¼ML �h/2.

5.1 (a) C2v, (b) D1h, (c) D2h, (d) C2v, (e) C2h, (f) D6h, (g) D2h, (h)

C1, (i) C3h. 5.2 (a), (d), and (h). 5.5 3A1þB1þ 2B2; For A1:
1
2(H1sAþH1sB), O2s, O2pz; For B1: O2px; For B2: 1

2(H1sB�H1sA),

O2py. 5.8 A1þT2; For A1: H1sAþH1sBþ H1sCþH1sD; For T2:

H1sA �H1sB �H1sC þH1sD, H1sA þH1sB �H1sC �H1sD,

H1sA�H1sBþH1sC�H1sD. 5.9 (a) A1, (b) E, (c) E2, (d) A1þA2þE2,

2, (e) A1þA2þ2Eþ 2T1þ 2T2. 5.11 A1þA2þB1þB2. 5.13

3A1þ2A2þ 2B1þ3B2. 5.14 A1þB1þE1þE2; In D6h, it is

A2uþB2gþE1gþE2u. 5.16 (a) 1A2,
3A2; (b)(i) 1E, 3E, (ii) 1A1,

3A2,
1E;

(c)(i) 1E, 3E, (ii) 1T1,
3T1,

1T2,
3T2, (iii) 1A2,

3A2,
1E, 3E, 1T1,

3T1,
1T2,

3T2, (iv) 1A1,
1E, 1T2,

3T1, (v) 1A1,
1E, 1T2,

3T1; (d)(i) 1A1,
3A2,

1E, (ii)
1T1,

3T1,
1T2,

3T2, (iii) 1A1,
1E, 3T1,

1T2. 5.20 3 (can be increased by

accidental degeneracies). 5.22 A1þE.

6.1 (a) 25 739.45 cm�1 (99.998% C1), 50 267.29 cm�1 (99.998%

C2); (b) 25 699.16 cm�1 (99.835% C1), 50 307.58 cm�1

(99.835% C2); (c) 25 759.74 cm�1 (96.300% C1), 51 246.99 cm�1

(96.300% C2). 6.2 (a) �74.8 eV, (b) 20.4 eV. 6.4 E(1)¼mgL/2, E(1)/

L¼ 4.47� 10�30 J m�1. 6.5 With a¼mgL/(h2/8mL2), we have

E (2 ) ¼�0.010 83amgL , C(1) ¼ a{0.0600C2 þ0.00096C4 þ
0.000 13C6þ � � �}. 6.8 (a) dxz, (b) dz2, (c) fxyz. 6.9 (a) B1,

(b) B2. 6.11 E(2)¼�0.029 49e2/DE; DE¼ 8.15(h2/8mL2). 6.13

(a) k¼ p/L, E¼h2/8mL2, (b) kL¼ 1.1331, E¼h2/7.9997mL2,

(c) trial function inadmissible as first derivative is discontinuous.

6.14 1
2(sA �

p
2sB þ sC), E ¼ a�b

p
2; 1/

p
2(sA � sC), E ¼ a;

1
2( s A þ

p
2 s B þ s C ) , E ¼ aþ b

p
2 . 6 . 1 6 0 a t a l l t i m e s .

6 . 1 7 P ( t ) � s i n 2 (mBbt / 2 0 0 0 �h) , 3 6 n s . 6 . 2 0 V 2 /o2 .

6. 22 A ¼ ð29=37Þðpa5c=lCÞZ4, rB ¼ ð29=37Þðpa5c=lCÞZ4�
expð�3hcRZ2=4kTÞ: 6.23 A/1/L4, B/L2.

7.1 (4.3889� 105 cm�1)(1/4� 1/n2). 7.3 (1.092� 105 cm�1)

ð1=n2
1 � 1=n2

2Þ. 7.4 (b), (c), and (e). 7.5 B4þ, 3.283� 104 kJ mol�1.

7.9 Eso(j)�Eso(j� 1)¼ jhcznl. 7.10 z3d,mean¼ 95.6 cm�1. 7.12 Li 2S1/

2 ; B e 1 S 0 ; B E ( 2 P 1 / 2 ) <E ( 2 P 3 / 2 ) ; C E ( 3 P 0 ) <

E ( 3 P 1 ) <E ( 3 P 2 ) <E ( 1 D 2 ) <E ( 1 S 0 ) ; N E ( 4 S ) <E ( 2 D ) <

E(2P); O E(3P2)<E(3P1)<E(3P0)<E(1D2)<E(1S0); F E(2P3/2)<

E(2P1/2); Ne 1S0. 7.13 For 1s, E(1)/hc¼�7.299 cm�1. 7.17

� (36/27)hcR; z¼ 1.69/a0; 23.1 eV and 54.4 eV. 7.20 3211

and 814 cm�1, respectively. 7.21 1S0; 2P3/2,1/2; 3P2,1,0; 3D3,2,1; 2D5/

2,3/2; 1D2; 4D7/2,5/2,3/2,1/2;
3P0<

3P1<
3P2<

1P1; 3D1<
3D2<

3D3<
3P0<

3P1<
3P2<

3S1<
1D2<

1P1<
1S0; 3F2<

3F3<
3F4<



3D1<
3D2<

3D3<
3P0<

3P1<
3P2<

1F3<
1D2<

1P1; (a) 1G, 3F, 1D,
3P, 1S, (b) 1I, 3H, 1G, 3F, 1D, 3P, 1S. 7.24 2.14 T. 7.25 (a) 1þ S/

(Lþ S), (b) 1� S/(L� Sþ 1).

8.1 130 pm, 170 kJ mol�1. 8.3 rþ¼ (1.462� 10�6 pm�3) {exp

{ � (ra þ rb) /a} � 0.235(exp{ �2ra /a} þ exp{ �2rb /a)} ; r� ¼
� 2.767rþ. 8.5 2E1 s þ ( j0/R) þ 1

2( j þ 2k þ 4 l þm)/(1 þ S)2 �
2(j

0 þk
0
)/(1þ S). 8.9 (a) 1Sþg , (b) 2Pu, (c) 2Sþg , (d) 2Sþg , (e) 2Pg, (f)

2Pg, (g) 2Sþu . 8.11 (a) 1Sþ, (b) 2P. 8.12 Let D2¼ (aO� aH)2þ4b2;

For A1: E�¼ 1
2(aOþ aH)� 1

2D; For B1: E¼ aO; For B2: Same as for

A1. 8.20 For A2: E¼ aC� b; For B1: E¼ aC� 1.9337b, aC� 0.8410b,

aCþ1.1672b, aCþ 2.1074b; p-electron energy is 6aCþ8.5492b. 8.21

a, a, (a� 2b)/(1� 2S). 8.22 For six equivalent bond lengths,

d e l o c a l i z a t i o n e n e r g y i s �0 . 2 7 4 aþ 1 . 0 3 3 b;

For alternating bond lengths, delocalization energy is � 0.333aþ
0.149b. 8.23 Eðdz2 ; dx2�y2 Þ and T2(dxy, dxz, dyz). 8.24 Free ion!
complex: 1I! 1A1þ 1A2þ 1Eþ 1T1þ 21T2:

3H! 3Eþ23T1þ 3T2:
1G! 1A1þ 1Eþ 1T1þ 1T2:

3F! 3A2þ 3T1þ 3T2:
1D! 1Eþ 1T2:

3P! 3T1:
1S! 1A1. 8.25 (a) For e2

g : 1A1g,
3A2g,

1Eg: For t1
2ge1

g : 1T1g,
3T1g,

1T2g,
3T2g: For t2

2g: 1A1g,
1Eg,

3T1g,
1T2g; (b) 1G!

1A1gþ 1Egþ 1T1gþ 1T2g:
1D! 1Egþ 1T2g:

1S! 1A1g; (c) 1G!
1Aþ 1Eþ 21T: 3F! 3Aþ23T: 1D! 1Eþ 1T: 3P! 3T: 1S! 1A.

9.1 E0
a þ E0

b þ E0
c þ � � � þ E0

z . 9.3 Explicitly expanding the

3� 3 determinant, a value of identically zero is obtained. 9.6 23.

9.7 (abjcd)¼ (bajcd)¼ (abjdc)¼ (bajdc)¼(cdjab)¼ (cdjba)¼
(dcjab)¼ (dcjba). 9.9 (i) 3H1s, C1s, C2s, 3C2p, Cl1s, Cl2s, 3Cl2p,

Cl3s, 3Cl3p; 17 functions; (ii) 6H1s, C1s, 2C2s, 6C2p, Cl1s, Cl2s,

3Cl2p, 2Cl3s, 6Cl3p; 28 functions; (iii) 6H1s, 9H2p, 2C1s, 2C2s,

6C2p, 6C3d, 2Cl1s, 2Cl2s, 6Cl2p, 2Cl3s, 6Cl3p, 6Cl3d; 55 func-

tions. 9.11 (i) 39 basis functions, 90 primitives; (ii) 57 basis

functions, 108 primitives; (iii) 75 basis functions, 126 primitives.

9.12 9.406�1028. 9.14 (a), (b), (d), and (e). 9.15 (a), (d), and (e).

9.17 Use the result of Problem 9.18. 9.20 (a) Inactive (from 1s

atomic orbitals): 1sg, 1su; Active (from 2s and 2p atomic orbitals):

2sg, 2su, 1pu, 3sg, 3su, 1pg; Virtual: 4sg, 4su, . . . ; (b) 4 inactive and

8 active electrons. 9.23 (a) Includes (iv), (vi), and (vii); (b) includes

( i ) , ( i i i ) , a nd (v ) . 9 . 24 N ee d s e c on d d e r i v a t i v e s

of one- and two-electron integrals, second derivatives of non-

variationally determined cji (eqn 9.14), and first derivatives of

variationally determined CJs (eqn 9.32). 9.27 (i) (a) and (f); (ii) (a),

(b) and (f); (iii) (a), (b), (d), (e), and (f).

10.2 See Table 10.1. 10.3 See Table 10.1. 10.6 E¼hcB {J(Jþ1)

� 1
2K

2} as A¼ 1
2B. 10.7 m(t)¼ ae0cosotþ 1

4be0
2(1þ cos 2ot). 10.8 (a)

4.718� 10�48 kg m2, (b) 9.429� 10�48 kg m2, (c) 2.644� 10�47 kg

m2. 10.9 162 pm, 6.46 cm�1. 10.10 16O12C32S:

1.37994� 10�45 kg m2; 16O12C34S: 1.41448� 10�45 kg m2; RCO¼
116.5 pm, RCS¼ 155.8 pm. 10.12 (a) Most intense transition would

be 4 3, (b) most intense transition is 3 2. 10.16 Effective masses

(in atomic mass units, u), force constants (in N m�1); and

wavenumbers (cm�1) of deuterated compounds; (a) 0.5039; 574.9;

3811; (b) 0.9570; 965.7; 3000; (c) 0.9796; 516.3; 2145; (d) 0.9954;

411.5; 1885; (e) 0.9999; 313.8; 1639. 10.17 mv�1,v¼ �e(�h/2mo)1/

2v1/2; mvþ1,v¼ � e(�h/2mo)1/2(vþ 1)1/2. 10.22 h1/R2i � (1/Re
2)

{1þ (dR/2Re)
2}; With Be ¼ �h=4pcmR2

e and gv¼ 12pc (vþ 1
2)Be/o, we

obtain Bv� (1þ gv)Be; gvBe¼� (vþ 1
2)ae. 10.23 Mean value 1555 N

m�1. 10.24 (a) All 3 modes, (b) all 3 modes. 10.25

3Agþ 2B1gþB2gþAuþB1uþ 2B2uþ 2B3u; B1u, B2u, B3u are infrared

active while Ag, B1g, B2g are Raman active.

11.3 (a), (b), (e), and (f). 11.7 In H2CO: 1A2 1A1 is allowed only

if it is vibronic with possible singly excited B1 and B2 vibronic states

of the upper electronic state; In ethene, 1B2u 1Ag is allowed for y-

polarized radiation, and, in addition, singly excited B2u and B3u

vibronic states of the upper electronic state are electric-dipole

allowed. 11.8 Both are forbidden; For the first: T1u, T2u, Eu, A1u;

For the second: T1u, T2u, Eu, A2u; For both: p-orbital admixtures can

account for intensity. 11.9 jS00j2 ¼ exp{ � (mo/2�h)DR2},

jS10j2¼ (mo/2�h)DR2 exp{� (mo/2�h)DR2}, jS20j2¼ 1
8(mo/

�h)2DR4 exp{� (mo/2�h)DR2},
p

(2�h/mo) <DR<
p

(4�h/mo). 11.12
1B2u, 1E2u into 3B1u; 1B1u, 1E2u into 3B2u. 11.13 B2u!A1g (y-

polarized), B3u!A1g (x-polarized).

12.1 3.5�10�6 D, � 3.52�10�11 kJ mol�1. 12.2 0.021 66 e2L2/

(h2/8mL2). 12.4 5.97� 10�41 J�1 C2 m2; 5.37� 10�25 cm3. 12.6

azz¼ 4.88� 10�41 J�1 C2 m2. 12.10 bxxx¼0. 12.12 (a)

1.5� 10�40 J�1 C2 m2, (b) 4.8� 10�41 J�1 C2 m2; 1s contribution is

6.39� 10�44 J�1 C2 m2; 2s contribution is 4.21�10�41 J�1C2m2;

total mean polarizibility for configuration 1s22s12p1
x2p1

y2pz
1 is

2.84�10�40 J�1 C2 m2. 12.13 5�10�31 m3. 12.15 nr� 1�
3.6� 10�25. 12.16 (a) (� 0.375 kJ mol�1)(L/R)6, (b) (� 0.0938

kJ mol�1)(L/R)6. 12.18 (� 4.29� 10�4 kJ mol�1)/(R/nm)6.

12.20 With the upper orbital wavefunction denoted

2pzcos zþ 3dxysin z, R¼ (� 4.39� 10�54 C2 m3 s�1) sin 2z is

obtained; Dy� �0.136 sin 2z.

13.1 1.6� 10�8 m3 mol�1. 13.3 hSz
2i¼ 1

3S(Sþ 1)�h2, hSxSzi¼ 0,

hS4
z i¼ (1/15)�h4{(Sþ 1)/(2Sþ1)}{6(Sþ1)4�15(Sþ 1)3þ10(Sþ 1)2�1}.

13.4 hSz
2i¼ þ 1

3S(Sþ1)�h2. 13.5 r �V¼ 0, r�V¼�2j. 13.7 (a) A¼
1
2b(� zjþ yk), A2¼ 1

4b
2(z2þ y2); (b) A¼ (b/2

p
3){(z� y)i�

(z� x)jþ (y�x)k}, A2¼ 1
4b

2{r2�1
3(xþ yþ z)2}. 13.10 (a) w(H)¼

� 2.99� 10�11 m3 mol�1, w(C)¼� 9.28�10�13 m3 mol�1; (b)

w(C)¼�2.88� 10�11 m3 mol�1. 13.12 With s¼ r/a0, (�5.378�
1013A m�2)s3 sin3y(� i sinfþ j cosf) e�2s/3. 13.15 For a field along

z, there is no paramagnetic contribution. With

s¼ r/a0, (a) jd(2s)¼� (Z3e2
b/16pmea

2
0)s(1� 1

2Zz)2(�isinfþ
j cosf)e�Zs sin y; (b) jd(3pz)¼� (Z5e2

b/729pmea
2
0)s3(2� 1

3Zs)2

(�i sinfþ j cosf)e�2Zs/3cos2ysin y. 13.17 1.7 kT. 13.20

For each type of orbital, sd¼ e2m0Z�/48pmea0. 13.21 The 2s-

orbital gives zero paramagnetic contribution. For a 2p-electron,

sp¼�(e2m0�h2/288pm2
e a3

0)(Z�3/DE). 13.22 For NO2: 2B2, 2B1, 2A2;

For ClO2: 2A2,
2A1,

2B2. 13.24 gzz¼ ge¼ 2.002; gxx¼ gyy¼ ge� 6hcz/
DE¼1.910. 13.27 Let A0¼ gegNmBmNm0/4pa0

3; (a) Ak/

A0¼1.41�10�3 Z�3, (b) A?¼�Ak/2. 13.28 32 Hz.

14.1 (i) Inelastic, (ii) elastic, (iii) inelastic, (iv) reactive, (v) elastic.

14.2 sin2y cos2f. 14.3 4pC. 14.5 Jy¼ (�h/mr3) Re{� ifk
�(qfk/qy)};

Jf¼ (�h/mr3sin y) Re{� ifk
� (qfk/qf)}. 14.8 (2mV0/�h

2q3)2 {sin qa�
qa cos qa}2 with q¼2k sin 1

2y. 14.9 (i) Let q¼ 2ksin 1
2y; s¼ (mZe2/

2pe0�h2q)2{qa2/(q2a2þ 1)}2, stot¼m2Z2e4a2/{p�h4e0
2[4k2þ (1/a2)]}; (ii)

s¼ (m2Z2e4/4p2e0
2 �h4q4). 14.11 For l¼ 0: independent of

y; For l¼ 1: as cos2y; For l¼ 2: as 1
4(3cos2y� 1)2.14.14

tandl ¼�Ĵl(ka)/n̂l(ka). 14.16 With k2¼2mE/�h2, k2
1 ¼ 2m

ðE� V0Þ=�h2, tand0¼ {(k/k1)tan k1a cos ka� sin ka}/{(k/k1)tan k1 asin

kaþ cos ka}. 14.20 s¼ 0 at energies E such that tan (Ka)¼Ka, where

K2¼2m(EþV0)/�h
2. Non-inert gas atoms have a much greater

effective range a and thus the condition ka� 1 is not satisfied.

14.24 33. 14.27 If the scattering system is time-reversal invariant,

then the scattering matrix is symmetric; S12¼ S21 then implies

P12¼P21.
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INDEX

A

ab initio calculation 287

accidental degeneracy 60

action 38, 513
active electron 309

active orbital 309

adjoint 550
allowed transition 209

alternant hydrocarbon 270

AM1 331

AMBER 333
ammonia 269

angular momentum 73, 79

coupled 164

quenched 439
total 112

angular momentum commutation

relations 100

angular momentum eigenfunctions
108

angular momentum eigenvalues 104

angular momentum matrix
elements 106

angular momentum operators 98

position representation 108

angular momentum quantum
number 79

angular node 81

angular wavefunction 526

anharmonic vibration 359
anharmonicity 373, 374

anharmonicity constant 359

annihilation operator 522
anomalous Zeeman effect 243

anti-Stokes lines 344

antibonding orbital 257

antisymmetric 226, 355
antisymmetric stretch 366

antisymmetrized direct product 154

antitunnelling 54

aromatic character 274
associated Laguerre functions 87

associated Legendre function 77, 527

associative multiplication 129
asymptotic form 87, 475

atomic hydrogen spectrum 207

atomic orbital 91

ATP 335
Aufbau principle 231

Austin model 1 331

axis of improper rotation 124

axis of symmetry 123

B

background phase shift 493
Balmer series 5, 208

band gap 280

band theory 278
barn 474

barrier of finite width 52

basis 132

dimension of 132
symmetry-adapted 147

basis function orthogonality 534

basis-set correlation energy 304

basis-set superposition error 301
basis-set truncation error 296

benzene 271, 392

benzenoid band 392

birefringence 427, 545
Bixon–Jortner theory 397

black-body radiation 1

Bloch function 281
Bloch theorem 281

block-diagonal 139

bohr 288

Bohr atom 6
Bohr magneton 213, 464

Bohr radius 88

bond order 285

bonding orbital 257
Born approximation 504, 506

Born expansion 505

Born interpretation 22, 43
Born–Oppenheimer approximation

249

breakdown 382

borrowed intensity 393
boson 226, 353

bound state 46

boundary condition

cyclic 73
boundary surface 91

bra 16

bracket notation 16
Brackett series 208

branch 363

Breit–Wigner formula 494, 508

Breit–Wigner resonance 495

Brillouin, L. 484

Brillouin zone 284

Brillouin’s theorem 306
building-up principle 231

C

calculational accuracy and basis

set 301
canonical momentum 515

canonical spinorbital 531

carbon monoxide 265

central field 84
central potential 71, 479

central-field approximation 230

centre of symmetry 123

centrifugal distortion 349, 379
centrifugal distortion constant 349

channel 497

character 137

invariance of 137
character table 141

charge density 543

CHARMM 333
chromophore 390, 391

CI 259, 304

circular birefringence 427

class 138
classical limit 65, 76

classical motion 51

Clebsch–Gordan coefficient 117

Clebsch–Gordan series 114
close-coupling approximation 501

closed channel 497

closure approximation 179
closure relation 34

cluster operator 313

CNDO 329

coefficient of spontaneous
emission 202, 538

coefficient of stimulated

absorption 201, 538

coefficient of stimulated emission 201
cofactor 550

column vector 551

combination band 374
combination principle 5

commutation relation 20

angular momentum 100

reversal of 385



commutator 13

commute 13

complementarity 6, 26

complementary observable 27
complete active-space self-consistent field

method 309

complete neglect of differential

overlap 329
complete nuclear permutation-inversion

group 357

complete set 10
completeness relation 33

complex conjugate 15, 550

complex orbital 92

composite rotations 162
composite systems 112

composition of direct-product

bases 152

compound doublet 219
compound singlet 116

Compton effect 5, 8

Compton wavelength 5

conduction band 280
configuration 217

configuration interaction 240, 259

configuration state function 303
conical intersection 260

conjugate elements 138

conjugated �-electron system 269, 326

connected contribution 314
conrotatory path 399

conservation laws 30

conservation of orbital symmetry 399

conserved quantity 30
constant

anharmonicity 359

centrifugal distortion 349
fine-structure 215

force 61

Planck’s 2

rotational 347
Rydberg 5, 207

spin–orbit coupling 215

Stefan–Boltzmann 2

constant of the motion 30
contact interaction 465

contracted Gaussian function 298

contraction scheme 299

convergence 177
convergence problem 290

core hamiltonian 234, 288

Coriolis force 376
correlation 228, 302

correlation diagram 277

correlation energy 304

correlation problem 236
correspondence principle 57

Coulomb gauge 442

Coulomb integral 221, 254

Coulomb operator 235, 289

Coulomb potential 84
hidden symmetry 95

Coulson–Rushbrooke theorem 270

counterpoise correction 301

coupled angular momenta 164
coupled cluster singles and doubles 314

coupled perturbed MCSCF

equations 324
coupled picture 113

coupled-channel approximation 501

coupled-cluster method 313

creation operator 522
Curie law 438

curl 440, 548

current density 447, 448, 543

curvature 44
formal definition 45

cyclic boundary condition 73

cyclic polyene 272

cycloaddition reaction 399, 401
cytochrome P 335

D

d orbital 91
transformation of 152

d-type Gaussian 297

�-function 465
Davidson correction 307

Davisson and Germer experiment 7

DCI 306

de Broglie relation 6, 48
Debye temperature 3

Debye theory of heat capacity 3

decoupled 382

decoupling 384
degeneracy 59

accidental 60

and symmetry 159

degree of 160
hydrogenic atom 94

degenerate 11, 160

degenerate state perturbation
theory 180

degree of degeneracy 160

delocalization energy 271

delta-function 465
density

charge 543

current 448, 543

dipole-moment 419
flux 49, 478, 533

overlap charge 257

probability 23

total electron 296

density functional theory 316

density matrix element 296
density of states 199

detailed balance 511

detection frequency 474

determinant 73, 549
Dewar, M.J.S. 329

dextrorotatory 428

DFT 316
diagonal matrix 549

diagonal matrix element 33

diagonalization of hamiltonian 34

diamagnetic 436, 437
diamagnetic contribution to

shielding 456

diamagnetic current density 450

diamagnetic susceptibility 445
diatomic molecule 261

dicarbon 264

dielectric media 418

Diels–Alder reaction 402, 405
differential cross-section 474

differential equation 62

differential overlap 328
diffusion equation 40

dihydrogen 307

dimension of basis 132

dinitrogen 262
dioxygen 262

dipolar interaction 463

dipolar vector potential 546

dipole-moment density 419
Dirac bracket notation 16

Dirac delta-function 503

Dirac, P.A.M. 40, 193
direct product

antisymmetrized 154

symmetrized 154

direct product tables 154
direct-product group 155

direct-product representation 153

reduction of 153

disconnected contribution 314
dispersion force 414

disrotatory path 399

dissociation energy 359

distribution
Planck 2, 202

divergence 548

divergence of vector 440
double-excitation amplitudes 313

double-zeta basis set 299

double-zeta plus polarization basis 299

doublet 217
compound 219
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doubling

inversion 378

l-type 377

L 384, 390
doubly excited determinant

303

duality 6

Dulong and Petit’s law 3
dynamic polarizability 423

dynamic polarizability

volume 425
dynamical correlation 305

E

Eckart potential barrier 55

effect

Compton 5, 8
nuclear hyperfine 383

Paschen–Back 245

photoelectric 4

Ramsauer–Townsend 511
Stark 242

Zeeman 242

effective mass 358

effective nuclear charge 229
effective potential energy 85

Ehrenfest’s theorem 32

eigenfunction 10
angular momentum 108

as a product 220

eigenstate 18

orthogonality of 19
eigenvalue 10, 551

angular momentum 104

reality of 18

eigenvalue equation 10, 551
eigenvector 551

Einstein coefficient

spontaneous emission 202
stimulated absorption 201

stimulated emission 201

Einstein temperature 3

Einstein theory of heat
capacity 3

elastic scattering 473

electric dipole operator 209

electric dipole transition 537
electric dipole transition

moment 342

electric displacement 543

electric field strength 543
electric polarizability 409

electric quadrupole transition 211

electric susceptibility 419
electrical anharmonicity 362

electrocyclic reaction 399, 403

electromagnetic field 537, 543

electron correlation 302

electron density 317
electron slip 384

electron–electron coupling 462

electron–nucleus coupling 462

ellipsoidal coordinate 251
energy

classical electromagnetic field 537

first-order correction 172
harmonic oscillator 62

one-electron orbital 235

quantization 2

rotating, vibrating molecule 362
rotational 345

second-order correction 175

third-order correction 434

vibrational 357, 360
zero-point 57

energy flux 538

energy level

energy–time uncertainty relation 30
equation

differential 62

diffusion 40
eigenvalue 10, 551

Euler–Lagrange 514

Hartree–Fock 289, 528

integral scattering 504
Kohn–Sham 318

Maxwell 543, 544

partial-wave 480

perturbed Hartree–Fock 324
radial wave 525

Roothaan 294

Rosenfeld 431
Schrödinger 23

secular 182, 551

simultaneous 551

time-dependent Kohn–Sham 320
ethene 269

ethene–butadiene cycloaddition 405

Euler–Lagrange equation of

motion 514
Euler’s constant 528

Euler’s relation 25

exchange integral 223, 330

exchange operator 235, 289
exchange–correlation energy 317

exchange–correlation functional 319

exchange–correlation potential 318
excitance 1

excited states of helium 222

exclusion rule 372

expectation value 20
of r and 1/r 94

exponential integral 528

extended Hückel theory 274

F

f orbital 94

factorization 521
FEMO 69

Fermat’s principle of

least time 36

Fermi contact interaction 465
Fermi heap 223

Fermi hole 223, 239

Fermi resonance 375

fermion 226, 353
Fermi’s golden rule 200

Feynman diagram 195

Feynman, R.P. 195
figure axis 347

fine structure 212, 462

fine-structure constant 215

fine-structure of spectra 216
first-order correction to

the energy 172

first overtone 362

first-order correction to
wavefunction 174

first-order JWKB

approximation 485
flow chart 127

fluctuation 412

fluctuation–dissipation theorem 412

fluorescence 398
flux density 478, 533

flux density 49

Fock matrix 294

Fock operator 289
forbidden transition 209

force constant 61

generalized 365
force constant of bond 349

force field 333

force-constant matrix 541

Franck–Condon factor 388
Franck–Condon principle 386

free electron molecular orbital

model 69

free particle 47
frequency offset 198

frontier orbitals 263

full CI 304

full rotation group 161
functional 316

functional derivative 320

fundamental progression 387
fundamental transition 369
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g-factor 213, 244

g-value in ESR (EPR) 459

GAMESS 336
gauge invariance 442

Gaussian basis set 300

Gaussian-type orbital 297, 324

generalized force constant 365
generalized gradient

approximation 319

generator of infinitesimal
rotations 162

geometrical properties 162

gerade 257

GOT 142
Goudsmit, S. 110

gradient 548

gradient approximation 319

gradient method 321
great orthogonality theorem 142

Green’s function 503, 532

gross selection rule 343, 364
group, definition of 129

group multiplication table 130

group theory 130

molecular vibration 369
transition dipole moment 209

vanishing of matrix elements 177

group velocity 519

GTO 297, 324

H

Hamilton, W.R. 14, 36

hamiltonian 72, 76

core 288
diagonalization of 34

invariance of 159

rotational 347

hamiltonian operator 14
Hamilton’s principle 58, 513

Handy, N.C. 324

harmonic oscillator 60
energy 62

matrix element 41, 64

polarizability 410

properties 64
selection rule 361

solution by factorization 521

standard solution 523

wavefunction 62, 64
Hartree, D.R. 234

hartree 288

Hartree–Fock equations 289, 528
Hartree–Fock limit 296

Hartree–Fock method 289

Hartree–Fock orbital 234

Hartree–Fock self-consistent field

method 288

head 363
heat capacity 3

Debye theory 3

Einstein theory 3

Heisenberg, W. 27
Heisenberg uncertainty principle 7

helicity 210

helium 219
excited states 222

spectrum of 224

Hellmann–Feynman theorem 188

Hermann–Mauguin system 124
Hermite polynomial 62, 361

hermitian conjugate 106, 521

hermitian matrix 550

hermitian operator 17
Hessian matrix 322

heteronuclear diatomic molecule 265

hidden symmetry 60, 61

Coulomb potential 95
high-spin complex 276

HMO 326

Hoffmann, R. 401
Hohenberg–Kohn theorem 317

HOMO 263

Hooke’s law 61

horizontal plane 123
Hückel approximation 270, 326

Humphreys series 208

Hund, F. 239

Hund coupling cases 382
Hund’s case (a) 383

Hund’s case (b) 383

Hund’s case (c) 384
Hund’s case (d) 384

Hund’s rule 231

Hund’s rules 239

hydrogen molecule 258
hydrogen molecule–ion 251

hydrogen, spectrum of 218

hydrogenic atom

degeneracy 94
energy 88

radial wavefunction 89

hydrogenic atom 84

hydrogenic radial wavefunction 88
hyperfine structure 462

hyperpolarizability 408

hypervirial theorem 517

I

identity 123

identity operation 123

improper rotation 124

inactive orbital 309

incident flux 474

incoming wave 52
INDO 330

inelastic collision 498

inelastic scattering 473

infinitesimal rotations,
generator of 162

infrared active 369

insulator 281
integral

Coulomb 221, 254

exchange 223, 330

exponential 528
molecular 527

normalization 15

overlap 254

resonance 254
integral scattering cross-section 474

integral scattering equation 504

integrated absorption coefficient 539

integrated molecular orbital þ
molecular mechanics 335

intensity 538

intensity borrowing 394
intercombination band 395

intercombination transition 392

intermediate neglect of differential

overlap 330
International System 124

intersystem crossing 398

inverse 550

inversion 123
inversion doubling 378

inversion frequency 378

ionization energy 208, 232
irreducible representation 141

J

Jahn–Teller theorem 277

Jeffreys, O.H. 484
jj-coupling 241

JWKB approximation 484

K

K-shell 229
ket 16

kinetic energy operator 14

Kohn, W. 317

Kohn–Sham equation 318
Kohn–Sham orbital 317

Koopmans’ theorem 236

Kramers, H. 484

Kronecker � 16, 550
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Kronig–Penney model 282

Kuhn–Thomas sum rule 413, 540

L

L-shell 229

l-type doubling 377

L-doubling 384, 390

laevorotatory 428
lagrangian 513

Lamb formula 457

Lamb shift 218
lambda-doubling 384, 390

Landé g-factor 244

Langevin function 421, 438

Langevin term 445
laplacian 14

laplacian in two dimensions 72

laplacian operator 76

Laporte selection rule 209
law

Curie 438

Dulong and Petit’s 3

Hooke’s 61
Rayleigh–Jeans 2

Snell’s 37

Stefan–Boltzmann 1
Wien displacement 2

LCAO 253

Lee, C 320

Legendre polynomial 479
legendrian 76

lifetime and energy uncertainty 203

lifetime broadening 204, 496

ligand field splitting parameter 274
ligand field theory 274

light, propagation of 36

limit of series 208
limited CI 306

line spectra 207

linear combination 11

symmetry-adapted 147
linear combination of atomic

orbitals 253

linear operator 10

linear rotor 348
linear Stark effect 245

linearly dependent. 12

linearly independent 12

little orthogonality theorem 143
local density approximation 319

local electric field 420

local spin-density approximation 320
London force 414

London formula 417

Lorentz force law 515

Lorentz local field 420

Lorenz–Lorentz formula 426

LOT 143

low-spin complex 276
lower bound 187

lowering operator 102

LUMO 263

Lyman series 208

M

M-shell 229
magnetic dipole field 452

magnetic dipole moment 436

magnetic dipole transition 211

magnetic field strength 543
magnetic induction 543

magnetic perturbation 442

magnetic resonance parameter 452

magnetic susceptibility 437
magnetically induced polarization 429

magnetizability 436

magnetization 437, 543

magnetogyric ratio 213
magneton 464

many-body perturbation theory 310

many-electron atom 229
many-level systems 171

maser action 378

mass-weighted coordinate 366

matrix 32
Fock 294

Hessian 322

overlap 294

matrix element 32, 33, 549
angular momentum 106

harmonic oscillator 41

matrix mechanics 32
matrix multiplication 32

matrix representation 132

matrix representative 132

Maxwell equations 543, 544
mean dynamic polarizability 424

mean lifetime 496

mean polarizability 410

measurement 20
mechanical anharmonicity 362, 374

metallic conductor 280

microstate 238

MINDO 331
minimal basis set 298

minimum basis 268

mirror plane 123
Miss van Leeuwen’s theorem 447

modified intermediate neglect of

differential overlap 331

modulo-n ambiguity 482

molar magnetic susceptibility 437

molar refractivity 426

molecular integral 527
molecular mechanics 333

molecular orbital 252, 253

molecular orbital energy level

diagram 257
Period 2 homonuclear diatomic

molecules 262

polyatomic molecule 266
molecular potential energy curve 249

Møller–Plesset perturbation theory 310

moment of inertia 71, 344

table 346
momentum representation 12

Morse potential 359

motion of wavepacket 519

MPn 312
multichannel process 497

multichannel stationary scattering

state 498

multiconfiguration self-consistent field
method 308

multiple-quantum dipole

transition 212
multiplicity 218

multireference configuration

interaction 309

N

n-fold rotation 123

n-to-�� transition 391

NDDO 331
neglect of diatomic differential

overlap 331

Newtonian mechanics 514
node 57

angular 81

non-adiabatic process 404

non-classical reflection 54
non-crossing rule 170

non-dynamical correlation 305

non-radiative decay 396

non-reactive scattering 473
normal coordinate 366

normal mode 367, 541

symmetry 370

normal Zeeman effect 242
normalization 15, 62

normalization integral 15

nuclear hyperfine effect 383
nuclear magneton 464

nuclear permutation–inversion

group 357
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nuclear screening constant 230

nuclear spin properties 466

nuclear spin–spin coupling 467

nuclear statistics 353
nucleus–nucleus coupling 462

number of symmetry species 144

O

oblate 348

observable 9

complementary 27

simultaneous 25
occupied orbital 291

occupy 91

octahedral complex 274

one-dimensional solid 279
one-dimensional square well 55

one-electron orbital energy 235

open channel 497
operator 9

angular momentum 98

construction of 14

Coulomb 235, 289
exchange 235, 289

Fock 289

hamiltonian 14

hermitian 17
kinetic energy 14

linear 10

lowering 102
permutation–inversion 357

raising 102

shift 101

optical activity 427
optical birefringence 427

optical rotation 427

optical rotatory dispersion 432

optical theorem 510
orbital

antibonding 257

bonding 257

occupied 291
virtual 291

orbital approximation 229

orbital exponent 297
orbital magnetic moment 212

ORD 432

ortho-hydrogen 355

orthogonal 15, 62
orthogonality of basis functions 534

orthogonality theorem 142

orthonormality condition 16

oscillating perturbation 197
oscillator strength 413, 538, 540

outgoing Green’s function 503

outgoing wave 52

overlap charge density 257

overlap integral 254

overlap matrix 294
overlap region 296

P

p-band 280
P-branch 363

p-orbital 91

transformation of 151

p-type Gaussian 297
P-wave scattering 480

�-to-�� transition 391

�-bonding 277

�-line 242
pair 227

para-hydrogen 355

parabola 61
parabolic potential energy 358

paramagnetic 436

paramagnetic contribution to

shielding 458
paramagnetic current density 450, 451

paramagnetic susceptibility 445

paramagnetism 437

spin-only 438
temperature-independent 445

Pariser–Parr–Pople method 327

parity 257
Parr, R.G. 320

partial-wave analysis 480

partial-wave cross-section 489

partial-wave equation 480
partial-wave stationary scattering

state 480

particle in a box 55

particle on a ring 71
particle on a sphere 76

Paschen series 208

Paschen–Back effect. 245

Pauli exclusion principle 227
Pauli matrices 111

Pauli principle 226, 353

Pauli, W. 225
penetration 46, 52, 230

penetration depth 52

pericyclic reaction 399

periodic potential energy 281
periodicity 231

permanent magnetic dipole

moment 436

permeability 437
permittivity 419

permutation–inversion operator 357

perturbation 168

oscillating 197

slowly switched constant 195

perturbation of two-level system 169
perturbation theory 168

time-independent 168

perturbation theory for degenerate

states 180
perturbed Hartree–Fock equation 324

Pfund series 208

phase length 37
phase shift 481, 493

phase velocity 519

phosphorescence 398

photochemically induced electrocyclic
reaction 403

photoelectric effect 4

photon 4

spin angular momentum 210
pi-to-pi� transition 391

pi-bonding 277

pi-line 242

Planck distribution 2, 202
Planck’s constant 2

point group 124

point group flow chart 127
pointer reading 21

polar molecule 420

polarizability 344, 407, 409

and molecular characteristics 412
dynamic 423

harmonic oscillator 410

spectroscopy 413

polarizability volume 410
polarization 419, 543

magnetically induced 429

polyatomic molecule
molecular orbital theory of 266

vibration 365

polynomial

Hermite 62, 361
Legendre 479

Pople, J.A. 324, 329

position representation 12

angular momentum 99
orbital angular momentum

operators 108

postulates 19

potential barrier, Eckart 55
potential energy

effective 85

parabolic 358
periodic 281

potential wall 51

PPP 327

precess 240
predissociation 390

570 j INDEX



primitive Gaussian function 298

principal axis 123, 409

principal quantum number 89

principle
Aufbau 231

building-up 231

combination 5

correspondence 57
Fermat’s 36

Franck–Condon 386

Hamilton’s 38, 513
Heisenberg 7

least time 36

microscopic reversibility 511

Pauli 226
Pauli exclusion 227

Rayleigh–Ritz 5

uncertainty 7

probability, reflection and
transmission 67

probability amplitude 23

probability density 23

product of two Gaussians 298
progression 388

projection operator 147

prolate 348
propagation of light 36

propagation of particles 38

Pulay, P. 321

pure rotational selection rule 349

Q

Q-branch 363
quadratic Stark effect 246

quantization

emergence of 46
energy 2

quantum electrodynamics 213

quantum mechanics, postulates of 19

quantum mechanics–molecular
mechanics 334

quantum number 6, 19, 56, 347

principal 89

quenched angular momentum 439

R

R-branch 363

Rabi formula 192
Racah coefficient 120

radial distribution function 90

radial Schrödinger equation 85

radial wave equation 525
radial wavefunction 85

radiationless transition 396

radiative decay 397

radius of gyration 71

raising operator 102

Raman active 369
Raman spectra 344

Ramsauer–Townsend effect 511

rate constant for reactive scattering 509

rate of transition 343
Rayleigh line 344

Rayleigh ratio 183

Rayleigh–Jeans law 2
Rayleigh–Ritz method 185

reactance matrix 511

reactive scattering 473

real orbital 92
recursion formula 524

recursion relation 62

reduced mass 83, 358, 518

reduced wavevector representation 284
reduction of representation 140, 146

reflection 123

reflection probability 53, 67

refractive index 422, 545
relative permeability 437

relative permittivity 419

Rellich–Kato theorem 177
representation

direct-product 153

irreducible 141

momentum 12
of quantum mechanics 12

position 12

reduced wavevector 284

reduction of 140, 146
vector 74, 80

resonance 198

Fermi 375
scattering 54

resonance energy (scattering) 493, 496

resonance integral 254

resonance phase shift 493
resonance width 494

response to electric field 407

restricted active-space 309

restricted Hartree–Fock 291
restricted open-shell formalism 291

retardation 418

reversal of commutation relation 385

RHF 291
Riccati function 482

Riccati–Bessel function 482

Riccati–Neumann function 482
rigid rotor 82

Ritz combination principle 5

Robertson, H.P. 27

root mean square deviation 27
Roothaan equations 294

Rosenfeld equation 431

rotational constant 347

rotational energy level 345

rotational Raman selection rule 351
rotational strength 431

rotational structure of vibronic

transition 389

rotor 348
rule

4nþ 2 274

exclusion 372
Fermi’s golden 200

Hund’s 231, 239

Kuhn–Thomas sum 413, 540

non-crossing 170
sum 540

Woodward–Hoffmann 401

Russell–Saunders coupling scheme 237

Rutherford formula 510
Rydberg constant 5, 207

Rydberg level 384

S

S matrix 67

unitarity 533
s-band 280

s-electron 91

s-orbital 91
s-type Gaussian 297

S-wave scattering 480

�-orbital 252

�-line 242
SALC 266

scalar function 439

scalar potential 439

scalar product 548
scattering 473

scattering amplitude 476

scattering by spherical square well 490
scattering cross-section 473

scattering matrix 66, 67, 497

scattering matrix element 487

scattering phase shift 481
scattering problem 46

scattering resonance 54

scattering state 476

SCF 234, 290
Schaefer, H.F. 324

Schoenflies system 124

Schrödinger, E. 23

Schrödinger equation 23
hydrogenic atoms 84

plausibility of 36

radial 85
time-independent 24
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SDCI 306

second harmonic 362

second-order correction to

energy 175
secular determinant 182

secular equation 182, 551

selection rule 386

gross 343
group theory 209

harmonic oscillator 361

Laporte 209
pure rotational 349

rotational Raman 351

specific 343

vibrational 360, 368
selection rules 209

self-adjoint matrix 550

self-consistent field 234, 288,

290
semiconductor 281

semiempirical method 287, 325

separable 72

separation 24, 58, 109, 518
centre of mass 83

motion of centre of mass 518

relative coordinates 85
series

Clebsch–Gordan 114

Taylor 358

Sham, L.J. 317
shape function 50, 519

shell 229

shielding 230

diamagnetic contribution 456
paramagnetic contribution 458

shielding constant (NMR) 452

shift operator 101
reversed 385

sigma orbital 252

sigma-line 242

similar 135
similarity transformation

135, 552

simultaneous equations 551

simultaneous observables 25
single-excitation amplitude 313

singlet–triplet transition 395

singly excited determinant 303

size-consistency 307
Slater determinant 227

Slater-type orbitals 297, 233

slowly switched constant
perturbation 195

Snell’s law 37

software packages 336

space group 124
space quantization 80

span an irreducible representation

141

specific selection rule 343

spectral density function 203
spectral line 5

spectroscopic transition 342

spectrum

of atomic hydrogen 207, 218
of helium 224

spherical Bessel function 482

spherical harmonics 77
spherical Neumann function 482

spherical polar coordinates 76

spherical rotor 348

spherical square well 490
spin 110

spin correlation 228

spin hamiltonian 460

spin magnetic moment 212
spin-only paramagnetism 438

spin–orbit coupling 395

spin–orbit coupling constant 215

spin–spin coupling 462, 467
spinorbital 227, 289

split-valence basis set 299

spontaneous emission 202, 538
square well 55

two-dimensional 58

square-integrable 23

Stark 245
Stark effect 242, 245

stationary scattering state 476

stationary state 25

Stefan–Boltzmann constant 2
Stefan–Boltzmann law 1

Stern–Gerlach experiment 110

stimulated absorption 538
STO 233, 297

Stokes lines 344

strong-field case 276

structural correlation 305
subshell 229

sum rule 540

superposition 50

susceptibility 437
symmetric rotor 345

symmetric stretch 366

symmetrized direct product 154

symmetry 59
and degeneracy 159

hidden 60, 61

symmetry element 123
symmetry operation 123

symmetry properties of functions

151

symmetry species 141
number of 144

symmetry-adapted basis 147

symmetry-adapted linear

combination 147

T

Tanabe–Sugano diagram 277
Taylor expansion 393, 408

Taylor series 358

temperature

Debye 3
Einstein 3

temperature-independent

paramagnetism 445

term 5, 217
term symbol 218

construction of 237

theorem
Bloch 281

Coulson–Rushbrooke 270

Ehrenfest’s 32

fluctuation–dissipation 412
great orthogonality 142

Hellmann–Feynman 188

Jahn–Teller 277

Koopmans’ 236
little orthogonality 143

optical 510

Rellich–Kato 177
van Leeuwen’s 447

variation 183

virial 64

thermal decay 396
third-order correction to the

energy 434

Thomas precession 214

Thomson experiment 7
tight-binding approximation 279

time-dependent Kohn–Sham

equations 320
time-independent perturbation

theory 168

time-independent Schrödinger

equation 24
TIP 445

total angular momentum 112

total detection frequency 474

total electron density 296
trace 137

transformation

of d-orbitals 152

of p-orbitals 151
transition

electric dipole 537

electric quadrupole 211
intercombination 392
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magnetic dipole 211

multiple-quantum dipole 212

n-to-�� 391

�-to-�� 391
spectroscopic 342

transition dipole moment 201, 209

transition moment 342

transition rate 200
to continuum 199

translational motion 47

transmission probability 53, 67
transpose 550

trial function 183

triangle condition 115

tridiagonal 271, 279
triple-zeta basis set 299

triplet 116

truncation error 296

tunnelling 54
turning point 65

two-dimensional square well 58

two-level system, time-dependent

behaviour 189

U

UHF 291

Uhlenbeck, G 110
ultraviolet catastrophe 2

uncertainty, lifetime and energy 203

uncertainty principle 7, 27
energy–time 30

periodic variables 75

uncoupled picture 113

unfaithful representation 139
ungerade 257

unit matrix 32

unitarity of S matrix 533

unitary 550

unrestricted open-shell

Hartree–Fock 291

upper bound 184

V

valence band 280

valence theory 249

van Leeuwen’s theorem 447
vanishing integrals 157

variables, separation of 24

variation of constants 193

variation theorem 183
vector coupling coefficient 117, 535

vector function 439

vector model 101, 115

vector potential 441, 544
dipolar 546

vector product 73, 548

vector representation 74, 80
velocity–dipole relation 540

vertical plane 123

vertical transition 387

very weak field 276
vibration

group theory 369

polyatomic molecule 365

vibration–rotation spectra 362
vibrational energy 360

vibrational energy levels 357

vibrational ground state 368
vibrational selection rule 360

vibronic transition 386

rotational structure 389

vibronically allowed transition 393
Vierer group 125

virial theorem 64, 517

virtual orbital 291, 309

virtual transition 174
volume element 15

W

water 266, 396

wave–particle duality 6

wavefunction 19, 74
conditions on 43

first-order correction 174

harmonic oscillator 62

hydrogenic radial 88
radial 85

symmetry properties 75

wavepacket 50, 65, 76, 519
wavepacket spreading 520

wavevector 476

weak-field case 276

Wentzel, G. 484
width of band 279

Wien displacement law 2

Wigner coefficient 117

Woodward, R.B. 401
Woodward–Hoffmann rules 401

work function 4

X

X� method 317

Y

Yang, W. 320

Z

ZDO 328

Zeeman effect 242
zero differential overlap

approximation 328

zero-point energy 57
Zitterbewegung 213
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