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Preface

Knowledge of the atomic scale geometrical structure of matter is a prerequisite
for understanding and predicting the properties of technologically and scienti-
fically important materials. The geometrical structure of a material does not
only consist of the time and space averaged periodic conformation of atoms in
an idealized crystal lattice but also the microstructure caused by imperfections,
dislocations, and all kinds of disorder that often are responsible for interesting
properties of the material under investigation.
The most frequently used technique for the determination of crystal struct-

ures is single crystal analysis. However, if no single crystals of suitable size and
quality are available, powder diffraction is the nearest alternative. Further-
more, single crystal analysis does not provide information on the bulk material
and is not a routinely used technique for the determination of microstructural
properties. Neither is it often used to characterize disorder in materials. Studies
of macroscopic stresses in components, both residual from processing and
in situ under load, are studied by powder diffraction, as is the texture of
polycrystalline samples. Powder diffraction remains to this day a crucial tool in
the characterization of materials, with increasing importance and breadth of
application as instrumentation, methods, data analysis and modeling become
more powerful and quantitative.
The powder diffraction pattern contains a wealth of information in addition

to the pure crystal structure, as can be seen in Figure 1.
Although, the powder method was developed as early as 1916 by Debye and

Scherrer, for more than 50 years its use was almost exclusively limited to
qualitative and semi-quantitative phase analysis and macroscopic stress measur-
ements. The main reason for this can be found in what is known as the
principal problem of powder diffraction: accidental and systematic peak
overlap caused by a projection of three-dimensional reciprocal space on to the
one-dimensional 2y axis, leading to a strongly reduced information content
compared to a single crystal data set. However, despite the loss of angular
information, often sufficient information resides in the 1D dataset to reconstruct
the 3D structure. Indeed, quantitative analysis of the pattern using
modern computers and software yields the wealth of additional information
about the sample structure that is illustrated in Figure 1. Modern
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instrumentation and sources are yielding data of unprecedented quality and
modern analysis methods continue to increase our ability to harvest useful
information from the data. The powder diffraction technique has never contri-
buted to materials research in more diverse and important ways than now as we
approach its centenary.
This book is an advanced introductory text about modern methods and

applications of powder diffraction in research. A strong working knowledge of
diffraction and crystallography is assumed. This book does not present a basic
introduction to crystallography and diffraction from crystals, which is available
in many introductory texts and other books, such as the excellent Fundamentals
of Powder Diffraction by Pecharsky and Zavalij (Kluwer Academic Publishers,
Boston, 2003). This book presents a broad overview of current methods and
applications, including their theory and practice, with useful information on
getting started in these methods. The book is written by renowned experts in
the respective techniques.
The current excitement in powder diffraction is in quantitative analysis of the

data. The book is laid out in a way that facilitates understanding the infor-
mation content of the data, as well as best practices for collecting and analyzing
data for quantitative analysis. After a very brief overview of the basic theory of
diffraction from crystals and powders, data collection strategies are described,
including X-ray, neutron and electron diffraction setups using modern-day
apparatus including synchrotron sources. Data corrections that are essential
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for quantitative analysis are then introduced, before we move to a discussion of
the analysis methods themselves.
The major breakthrough in the value of the powder method as a quantitative

tool was the development of the Rietveld method in 1969, a technique for crystal
structure refinement which, for the first time, made use of the entire powder
pattern instead of analyzing individual, non-overlapped, Bragg reflections
separately. This approach minimizes the impact of overlapped and degenerate
peaks by calculating the entire powder pattern of a crystalline model, including
various experimental and sample dependent peak-broadening effects. Parameters
in the model such as atomic positions, lattice parameters, and experimental
factors that affect peak-shape and background are varied, using a least-squares
approach, until the agreement between the calculated and measured diffraction
profiles are optimized. This is a refinement method: a good initial guess at, or
knowledge of, the structure is required and this model is refined by small
adjustments. The approach has proved to be enormously successful with
rapidly increasing numbers of Rietveld refined structures reported in the
literature. The method was quickly extended from reactor neutron data, with
its nice Gaussian line-profiles and lack of atomic form-factor, to in-house X-ray
powder diffraction, synchrotron powder diffraction and time-of-flight neutron
data from pulsed spallation sources, and to refinements of incommensurate and
magnetic structures.
At each stage, great effort and ingenuity is needed in finding optimal experi-

mental conditions and in understanding and analyzing the resulting line-shapes.
A consequence of this is that the rich informational content of the line-shapes
was recognized, giving birth to modern line-profile fitting of whole-patterns.
Here the line-profile is calculated from first-principles taking into account sample
state such as particle size distributions, inhomogeneous strains and texture, as
well as experimental setup and aberrations. There is a nice feedback effect that
better profile descriptions result in more accurate Bragg-peak intensities resulting
in more detailed structure refinements.
Similar to the line-profile story, the rich information content of the back-

ground has come to be recognized. Rather than subtracting a parameterized
background and discarding it, as is done in a conventional Rietveld refinement,
careful corrections can be made for experimental effects such as Compton
scattering, fluorescence, multiple scattering and scattering from sample environ-
ments. The resulting ‘‘background’’ beneath and between the Bragg peaks of
the corrected data is information-rich diffuse scattering from the sample,
which encodes information about the local structure and how it deviates
from the average crystal structure in the form of defects and correlated lattice
dynamics (phonons). Total scattering methods that include both the Bragg
and diffuse components are only now being fully appreciated with quantitative
analyses in real space using the atomic pair distribution function (PDF) method,
and in reciprocal-space with Monte Carlo simulated annealing type modeling.
Beginning in the early 1980s, roughly 10 years after the development of

Rietveld refinement, some ab initio determinations of crystal structures from

viiPreface



powder diffraction data began to appear. These used single crystal methods but
the Bragg-peak intensities were extracted, with difficulty, from the overlapped
powder data. This is possible for sufficiently simple structures, with sufficiently
high-quality data. Nowadays, with the data quality from synchrotron X-ray
sources coupled with excellent algorithms, either direct methods or global
optimization methods in direct space, determination of even complex crystal
structures from powder diffraction data is becoming a routine method in almost
all branches of natural sciences and engineering. The success rate mainly depends
on three parameters: choice of measurement device, pattern profile description
and structure solving algorithms. It is becoming increasingly evident that the use
of highly monochromatic parallel beam synchrotron radiation is a must to reach
an accuracy in the atomic parameters, which allows for the interpretation of
bonding conditions and reaction mechanisms. In some cases, even details like
rotational disorder can be extracted from powder diffraction data if maximum
entropy methods are combined with high-resolution synchrotron data.
Powder diffraction measurements are generally straightforward to carry out

(there is no sample alignment!) and can be quick, especially with parallel
collection approaches such as 1D and 2D detectors. Parallel data collection
makes non-ambient parametric studies possible, where parameters such as
temperature, pressure, electric or magnetic field or flow-gas compositions are
varied and the state of the sample (including phase composition, structure, local
structure, particle size distribution and strain etc.) is monitored quantitatively
under changing conditions. New two-dimensional detectors in combination
with synchrotron radiation require very short exposure times and enable
structure determinations and refinements in a time-resolved fashion during
chemical reactions in situ, or after a perturbation. These developments are
opening up new fields for the powder method.
The use of synchrotron radiation goes far beyond crystal structure determi-

nation: Quantitative detection of small amounts of polymorphic phases is of
great interest for pharmaceutical research and in the concrete business. The
tunability of wavelength over a large energy range can be used for anomalous
dispersion experiments or for depth profiling of thin films or artificial limbs to
name just a few. The future of powder diffraction is exciting. Rather than the
technique being made redundant, as some people expected, by synchrotron-
based single-crystal studies on micron-sized crystals (microcrystallography),
the ease and broad applicability of structure determination and refinement with
powders is threatening some traditional domains of the single-crystal tech-
nique. Figure 2 illustrates the relationship between single crystal and powder
diffraction in the sphere of structure solution.
In reality, the two techniques are highly complementary, have their own

strengths and weaknesses and domains of applicability, and one will never
supercede the other. However, the domain where powder diffraction is having
an impact is certainly growing and diversifying. We hope that this book will
help students and other researchers participate in this future.
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CHAPTER 1

Principles of Powder Diffraction

ROBERT E. DINNEBIERa AND SIMON J. L. BILLINGEb

a Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1,
D-70569 Stuttgart, Germany; b Department of Physics and Astronomy,
4268 Biomed. Phys. Sci. Building, Michigan State University, East Lansing,
MI 48824, USA

1.1 INTRODUCTION

This chapter presents some very basic results about the geometry of diffraction
from crystals. This is developed in much greater detail in many textbooks but a
concise statement of the basic concepts greatly facilitates the understanding of
the advanced later chapters so we reproduce it here for the convenience of the
reader. Since the results are so basic, we do not make any attempt to reference
the original sources. The bibliography at the end of the chapter lists a selection
of some of our favorite introductory books on powder diffraction.

1.2 FUNDAMENTALS

X-rays are electromagnetic (em) waves with a much shorter wavelength than
visible light, typically on the order of 1 Å (¼ 1� 10 10m). The physics of
em-waves is well understood and excellent introductions to the subject are
found in every textbook on optics. Here we briefly review the results
most important for understanding the geometry of diffraction from crystals.
Classical em-waves can be described by a sine wave that repeats periodically
every 2p radians. The spatial length of each period is the wavelength l. If two
identical waves are not coincident, they are said to have a ‘‘phase shift’’ with
respect to each other (Figure 1.1). This is either measured as a linear shift, D on
a length scale, in the units of the wavelength, or equivalently as a phase shift, df
on an angular scale, such that:

D
l
¼ dj

2p
) dj ¼ 2p

l
D ð1Þ

1



The detected intensity, I, is the square of the amplitude, A, of the sine wave.
With two waves present, the resulting amplitude is not just the sum of the
individual amplitudes but depends on the phase shift dj. The two extremes
occur when dj¼ 0 (constructive interference), where I¼ (A1+A2)

2, and
dj¼ p (destructive interference), where I¼ (A1�A2)

2. In general,
I¼ [A1+A2 exp (idj)]

2. When more than two waves are present, this equation
becomes:

I ¼
X
j

Aj exp ðijjÞ
" #2

; ð2Þ

where the sum is over all the sine-waves present and the phases, fj are measured
with respect to some origin.
X-ray diffraction involves the measurement of the intensity of X-rays scat-

tered from electrons bound to atoms. Waves scattered at atoms at different
positions arrive at the detector with a relative phase shift. Therefore, the
measured intensities yield information about the relative atomic positions
(Figure 1.2).

Figure 1.1 Graphical illustration of the phase shift between two sine waves of equal
amplitude.
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In the case of X-ray diffraction, the Fraunhofer approximation is used to
calculate the detected intensities. This is a far-field approximation, where the
distance, L1, from the source to the place where scattering occurs (the sample),
and then on to the detector, L2, is much larger than the separation, D, of the
scatterers. This is an excellent approximation, since in this case D/L1E
D/L2E 10 10. The Fraunhofer approximation greatly simplifies the mathemat-
ics. The incident X-rays form a wave such that the constant phase wave front is
a plane wave. X-rays scattered by single electrons are outgoing spherical waves
that again appear as plane waves in the far-field. This allows us to express the
intensity of diffracted X-rays using Equation (2).
The phases jj introduced in Equation (2), and therefore the measured

intensity I, depend on the position of the atoms, j, and the directions of the
incoming and the scattered plane waves (Figure 1.2). Since the wave-vectors of
the incident and scattered waves are known, we can infer the relative atomic
positions from the detected intensities.
From optics we know that diffraction only occurs if the wavelength is

comparable to the separation of the scatterers. In 1912, Friedrich, Knipping
andMax von Laue performed the first X-ray diffraction experiment using single
crystals of copper sulfate and zinc sulfite, proving the hypothesis that X-rays are
em-waves of very short wavelength, on the order of the separation of the atoms
in a crystalline lattice. Four years later (1916), Debye and Scherrer reported the
first powder diffraction pattern with a procedure that is named after them.

1.3 DERIVATION OF THE BRAGG EQUATION

The easiest access to the structural information in powder diffraction is via the
well-known Bragg equation (W. L. Bragg, 1912), which describes the principle

Figure 1.2 Scattering of a plane wave by a one dimensional chain of atoms. Wave
front and wave vectors of different orders are given. Dashed lines indicate
directions of incident and scattered wave propagation. The labeled orders
of diffraction refer to the directions where intensity maxima occur due to
constructive interference of the scattered waves.
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of X-ray diffraction in terms of a reflection of X-rays by sets of lattice planes.
Lattice planes are crystallographic planes, characterized by the index triplet hkl,
the so-called Miller indices. Parallel planes have the same indices and are
equally spaced, separated by the distance dhkl. Bragg analysis treats X-rays like
visible light being reflected by the surface of a mirror, with the X-rays being
specularly reflected at the lattice planes. In contrast to the lower energy visible
light, the X-rays penetrate deep inside the material where additional reflections
occur at thousands of consecutive parallel planes. Since all X-rays are reflected
in the same direction, superposition of the scattered rays occurs. From
Figure 1.3 it follows that the second wave travels a longer distance PN before
and NQ after reflection occurs. Constructive interference occurs only if
D¼PN+NQ is a multiple n¼ 0,�1,�2, . . . of the wavelength l:

D ¼ nl ð3Þ

In all other cases, destructive interference results since it is always possible to
find a deeper plane, p, for which the relation pD¼ nl with n¼�1/2,�
3/2, . . . . (i.e., perfect destructive interference) exactly holds. Thus, sharp
intensity maxima emerge from the sample only at the special angles where
Equation (3) holds, with no intensity in between. As can be easily seen from
Figure 1.3, geometrically:

D ¼ 2d sin y ð4Þ

where d is the interplanar spacing of parallel lattice planes and 2y is the
diffraction angle, the angle between the incoming and outgoing X-ray beams.
Combining Equations (3) and (4) we get:

nl ¼ 2d sin y ð5Þ

the famous Bragg equation.

Figure 1.3 Illustration of the geometry used for the simplified derivation of Bragg’s
law.
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This simplified derivation of the Bragg equation, although leading to the
correct solution, has a serious drawback. In reality the X-rays are not reflected
by planes but are scattered by electrons bound to the atoms. Crystal planes are
not like shiny optical mirrors, but contain discrete atoms separated by regions
of much lower electron intensity, and, in general, atoms in one plane will not lie
exactly above atoms in the plane below. How is it then that the simplified
picture shown in Figure 1.3 results in the correct result? A more general
description (Bloss, 1971) shows that Equation (5) is also valid, if the atom of
the lower lattice plane in Figure 1.3 is shifted by an arbitrary amount parallel to
the plane (Figure 1.4).
The phase shift can immediately be deduced from Figure 1.4 as:

nl ¼MN cosð180� � ðaþ yÞÞ þMN cosða� yÞ
¼MN � cosðaþ yÞ þ cosða� yÞ½ �

ð6Þ

From any textbook on trigonometry we know that:

cosðaþ yÞ ¼ cos a cos y� sin a sin y
cosða� yÞ ¼ cos a cos yþ sin a sin y

ð7Þ

Therefore Equation (7) becomes:

nl ¼ MN 2 sin a sin y½ � ð8Þ

with:

d ¼ MN sin a ð9Þ

from which the already known Bragg equation follows:

nl ¼ 2d sin y ð10Þ

Another equivalent, and highly useful, expression of the Bragg equation is:

Ed ¼ 6:199

sin y
with l½Å� ¼ 12:398

E½keV� ð11Þ

with the energy E of the X-rays in keV.

d P

N

Q

M

180-(α+θ)

α

α

α−θ
θ

θ

θ

Figure 1.4 Illustration of the geometry in the general case where scattering takes place
at the position of atoms in consecutive planes.
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To derive the Bragg equation, we used an assumption of specular reflection,
which is borne out by experiment. For crystalline materials, destructive inter-
ference completely destroys intensity in all directions except where Equation (5)
holds. This is no longer true for disordered materials where diffracted intensity
can be observed in all directions away from reciprocal lattice points, known as
diffuse scattering, as discussed in Chapter 16.

1.4 THE BRAGG EQUATION IN THE RECIPROCAL LATTICE

As a prerequisite, the so-called reciprocal lattice needs to be introduced.
Notably, it is not the intention of this book to reproduce basic crystallographic
knowledge but, for completeness, some important formalism that recurs
throughout the book is briefly presented.
The reciprocal lattice was invented by crystallographers as a simple and

convenient representation of the physics of diffraction by a crystal. It is an
extremely useful tool for describing all kinds of diffraction phenomena occurring
in powder diffraction (Figure 1.5).
Imagine that besides the ‘‘normal’’ crystal lattice with the lattice parameters

a, b, c, a, b, g, and the volume V of the unit cell, a second lattice with lattice
parameters of a*, b*, c*, a*, b*, g*, and the volume V*, and with the same
origin, exists such that:

a � b� ¼ a � c� ¼ b � c� ¼ a� � b ¼ a� � c ¼ b� � c ¼ 0w

a � a� ¼ b � b� ¼ c � c� ¼ 1
ð12Þ

This is known as the reciprocal lattice, which exists in so-called reciprocal
space. As we will see, it turns out that the points in the reciprocal lattice are
related to the vectors defining the crystallographic planes. There is one point in
the reciprocal lattice for each crystallographic plane, hkl. For now, just con-
sider h, k and l to be integers that index a point in the reciprocal lattice. A
reciprocal lattice vector hhkl is the vector from the origin of reciprocal space to
the (hkl) reciprocal lattice point:z

hhkl ¼ ha� þ kb� þ lc�; h; k; l 2 Z ð13Þ

The length of the reciprocal base vectors is defined according to:

a� ¼ xðb� cÞ ð14Þ

where the scale factor x can easily be deduced using Equation (12) as:

a�a ¼ xðb� caÞ ¼ xV ) x ¼ 1

V
ð15Þ

wVectors are in bold.
zThe reciprocal lattice is a commonly used construct in solid state physics, but with a different
normalization: a a� 2p:
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leading to:

a� ¼ 1

V
ðb� cÞ; b� ¼ 1

V
ðc� aÞ; c� ¼ 1

V
ða� bÞ; ð16Þ

and vice versa:

a ¼ 1

V� ðb
� � c�Þ; b ¼ 1

V� ðc
� � a�Þ; c ¼ 1

V� ða
� � b�Þ ð17Þ

The relationship between the reciprocal and the real lattice parameters is:

a� ¼ bc sin a
V

;

b� ¼ ac sin b
V

;

c� ¼ ab sin g
V

;

cos a� ¼ cos b cos g� cos a
sin b sin g

;

cos b� ¼ cos b cos g� cos a
sin b sin g

;

cos a� ¼ cos b cos g� cos a
sin b sin g

;

V ¼ abc 1þ 2 cos a cos b cos g� cos2 a� cos2 b� cos2 g
p

ð18Þ

Equation (18) simplifies considerably for higher symmetry crystal systems.

Figure 1.5 Two dimensional monoclinic lattice and its corresponding reciprocal
lattice.
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We now rederive Bragg’s law using vector notation. The wave vectors of the
incoming and outgoing beams are given by s0 and s, respectively (Figure 1.6).
They point in the direction of propagation of the wave and their length depends
on l. For elastic scattering (no change in wavelength on scattering), s0 and s

have the same length.
We define the scattering vector as:

h ¼ ðs� s0Þ ð19Þ

which for a specular reflection is always perpendicular to the scattering plane.
The length of h is given by:

h

s
¼ 2 sin y ð20Þ

Comparison with the formula for the Bragg equation [Equation (5)]:

nl
d

¼ 2 sin y ð21Þ

we get:

nl
d

¼ h

s
ð22Þ

Setting the magnitude of s to 1/l, we get the Bragg equation in terms of the
magnitude of the scattering vector h:

h ¼ n

d
ð23Þ

This shows that diffraction occurs when the magnitude of the scattering vector
h is an integral number of reciprocal lattice spacings 1/d. We define a vector d*

d P

N

Q

M

r

S
-S

0

S0

S0
S

ε0

2θ

ε
θθ

θ

Figure 1.6 Illustration of the important wave and scattering vectors in the case of
elastic Bragg scattering.
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perpendicular to the lattice planes with length 1/d. Since h is perpendicular the
scattering plane, this leads to:

h ¼ nd� ð24Þ

Diffraction can occur at different scattering angles 2y for the same crystallo-
graphic plane, giving the different orders n of diffraction. For simplicity, the
number n will be incorporated in the indexing of the lattice planes, where:

d�
nh;nk;nl ¼ nd�

hkl ð25Þ

e.g., d*222 ¼ 2d*111 and we get an alternative expression for Bragg’s equation:

h ¼ d�hkl ð26Þ

The vector d*hkl points in a direction perpendicular to a real space lattice plane.
We would like to express this vector in terms of reciprocal space basis vectors
a*, b*, c*.
First we define dhkl in terms of real space basis vectors a, b, c. Referring to

Figure 1.7, we can define that:

OA ¼ 1

h
a; OB ¼ 1

k
b; OC ¼ 1

l
c ð27Þ

with h, k, and l being integers as required by the periodicity of the lattice. These
three integers are the Miller indices that provide a unique definition for the set
of parallel planes.
The plane perpendicular vector dhkl originates on one plane and terminates

on the next parallel plane. Therefore, OA � d¼ (OA)dcosa. From Figure 1.7 we
see that, geometrically, (OA)cosa¼ d. Substituting, we get OA � d¼ d2. Com-
bining with Equation (27) leads to:

1

h
a � d ¼ d2 ð28Þ

B

A
O

D
C

a

b

c

d

α

Figure 1.7 Geometrical description of a lattice plane in terms of real space basis
vectors.
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and consequently:

h ¼ a � d
d2

; k ¼ b � d
d2

; l ¼ c � d
d2

ð29Þ

By definition, h, k, and l are divided by their largest common integer to be
Miller indices. The vector d*hkl, from Bragg’s Equation (26) points in the plane
normal direction parallel to d but with length 1/d. We can now write d*hkl in
terms of the vector d:

d�hkl ¼
d

d2
ð30Þ

which gives:

d�hkl ¼ haþ kbþ lc ð31Þ

or written in terms of the reciprocal basis:

d�hkl ¼ ha� þ kb� þ lc� ð32Þ

which was obtained using:

d�hkl � a� ¼ ha � a� þ kb � a� þ lc � a� ¼ h

d�hkl � b� ¼ ha � b� þ kb � b� þ lc � b� ¼ k

d�hkl � c� ¼ ha � c� þ kb � c� þ lc � c� ¼ l

ð33Þ

Comparing Equation (32) with Equation (13) proves the identity of d*hkl and
the reciprocal lattice vectorh hhkl. Bragg’s equation, Equation (26), can be
restated as:

h ¼ hhkl ð34Þ

In other words, diffraction occurs whenever the scattering vector h equals a
reciprocal lattice vector hhkl. This powerful result is visualized in the useful
Ewald construction that is described below.
Useful equivalent variations of the Bragg equation are:

hj j ¼ s� s0j j ¼ 2 sin y
l

¼ 1

d
ð35Þ

and:

Qj j ¼ 4p sin y
l

¼ 2p
d

ð36Þ

The vector Q is the physicist’s equivalent of the crystallographer’s h. The
physical meaning ofQ is the momentum transfer on scattering and differs from
the scattering vector h by a factor of 2p.
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1.5 THE EWALD CONSTRUCTION

The Bragg equation shows that diffraction occurs when the scattering vector
equals a reciprocal lattice vector. The scattering vector depends on the geo-
metry of the experiment whereas the reciprocal lattice is determined by the
orientation and the lattice parameters of the crystalline sample. Ewald’s con-
struction combines these two concepts in an intuitive way. A sphere of radius
1/l is constructed and positioned in such a way that the Bragg equation is
satisfied, and diffraction occurs, whenever a reciprocal lattice point coincides
with the surface of the sphere (Figure 1.8).
The recipe for constructing Ewald’s spherey is as follows (Figure 1.8):

1. Draw the incident wave vector s0. This points in the direction of the
incident beam with length 1/l.

2. Draw a sphere centered on the tail of this vector with radius 1/l. The
incident wave vector s0 defines the radius of the sphere. The scattered
wave vector s, also of length 1/l, points in a direction from the sample to
the detector. This vector is drawn also starting from the center of the
sphere and also terminates at a point on the surface. The scattering vector
h¼ s – s0 completes the triangle from the tip of s to the tip of s0, both lying
on the surface of the sphere.

3. Draw the reciprocal lattice with the origin lying at the tip of s0.
4. Find all the places on the surface of the sphere, where reciprocal lattice

points lie.

This construction places a reciprocal lattice point at one end of h. By definition,
the other end of h lies on the surface of the sphere. Thus, Bragg’s law is only
satisfied, when another reciprocal lattice point coincides with the surface of the
sphere. Diffraction is emanating from the sample in these directions. To detect
the diffracted intensity, one simply moves the detector to the right position.
Any vector between two reciprocal lattice points has the potential to produce a
Bragg peak. The Ewald sphere construction additionally indicates which of
these possible reflections satisfy experimental constraints and are therefore
experimentally accessible.
Changing the orientation of the crystal reorients the reciprocal lattice

bringing different reciprocal lattice points on to the surface of the Ewald
sphere. An ideal powder contains individual crystallites in all possible orientat-
ions with equal probability. In the Ewald construction, every reciprocal lattice
point is smeared out onto the surface of a sphere centered on the origin of
reciprocal space. This is illustrated in Figure 1.9. The orientation of the d

*
hkl

vector is lost and the three-dimensional vector space is reduced to one dimen-
sion of the modulus of the vector d*hkl.
These spherical shells intersect the surface of the Ewald sphere in circles.

Figure 1.10 shows a two-dimensional projection. Diffracted beams emanate

yFor practical reasons, plots of the Ewald ‘‘sphere’’ are circular cuts through the sphere and the
corresponding slice of reciprocal space.
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from the sample in the directions where the thin circles from the smeared
reciprocal lattice intersect the thick circle of the Ewald sphere. A few repre-
sentative reflected beams are indicated by the broken lines.
The lowest d-spacing reflections accessible in the experiment are determined

by the diameter of the Ewald sphere 2/l. To increase the number of detectable
reflections one must decrease the incident wavelength. In the case of an energy
dispersive experiment such as time-of-flight neutron powder diffraction, which
makes use of a continuous distribution of wavelengths from lmin to lmax at
fixed angle, all smeared out cones between the two limiting Ewald spheres can
be detected.
In three dimensions, the circular intersection of the smeared reciprocal lattice

with the Ewald sphere results in the diffracted X-rays of the reflection hkl
forming coaxial cones, the so-called Debye–Scherrer cones (Figure 1.11).
The smearing of reciprocal space in a powder experiment makes the

measurement easier but results in a loss of information. Reflections overlap
from lattice planes whose vectors lie in different directions but which have
the same d-spacing. These cannot be resolved in the measurement. Some of
these overlaps are dictated by symmetry (systematic overlaps) and others
are accidental. Systematic overlaps are less serious for equivalent reflections
[e.g., the six Bragg peaks (100), (� 100), (010), . . . from the faces of a
cube] since the multiplicity is known from the symmetry. For highly crystal-
line samples, accidental overlaps can be reduced by making measurements

Ewald sphere

s

1/ λ

  

0

 θ  θ

d*=s-s0

s 0

Figure 1.8 Geometrical construction of the Ewald circle. The ‘‘0’’ marks the origin of
reciprocal space. The vectors are defined in the text.
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with higher resolution, or by taking data at different temperatures in an
attempt to remove the overlap by differential thermal expansion of different
cell parameters.
To obtain the maximum amount of information, a spherical shell detector

would be desirable, though currently impractical. Often, a flat two-dimensional
detector, either film, image plate, or CCD is placed perpendicular to the direct
beam. In this case, the Debye–Scherrer cones appear as circles as shown in
Figure 1.12a.
For an ideal powder, the intensity around the rings is isotropic. Conven-

tional powder diffraction measurements, e.g., Bragg–Brentano geometry,
take one-dimensional cuts through the rings, either horizontally or vertically
depending on the geometry of the diffractometer. If the full rings, or fractions
of them, are detected with two-dimensional detectors the counting statistics
can be improved by integrating around the rings. If the powder is non-ideal,
the ring intensity is no longer uniform, as illustrated in Figure 1.12b, giving
arbitrary intensities for the reflections in a one-dimensional scan. To improve
powder statistics, powder samples are generally rotated during measure-
ment. However, the intensity variation around the rings can give important

0

Figure 1.9 Illustration of the reciprocal lattice associated with a single crystal lattice
(left) and a large number of randomly oriented crystallites (right). A real
powder consists of so many grains that the dots of the reciprocal lattice
form into continuous lines.
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Figure 1.10 Illustration of the region of reciprocal space that is accessible in a powder
measurement. The smaller circle represents the Ewald sphere. As shown
in Figure 1.9, in a powder the reciprocal lattice is rotated to sample all
orientations. An equivalent operation is to rotate the Ewald sphere in all
possible orientations around the origin of reciprocal space. The volume
swept out (area in the figure) is the region of reciprocal space accessible in
the experiment.

Primary beam

Primary beam

4
 

Reflected beam

Reflected beam

hkl

hkl

hkl

hkl

Θ

Figure 1.11 Comparison between the scattered beams originating from a single
crystal (top) and a powder (bottom). For the latter, some Debye
Scherrer cones are drawn.
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information about the sample such as preferred orientation of the crystallites
or texture.

1.6 TAKING DERIVATIVES OF THE BRAGG EQUATION

Several important relationships in crystallography directly follow from a
derivative of the Bragg equation [Equation (5)]. First we rewrite Bragg’s law
making the d-spacing the subject of the equation:

d ¼ nl
2 sin y

ð37Þ

The uncertainty of the measured lattice spacing is given by the total deri-
vative dd, which can be written according to the chain rule as:

dd ¼ @d

@y
dyþ @d

@l
dl ð38Þ

leading to:

dd ¼ nl
2 sin y

cosy
sin y

dyþ n

2 sin y
dl ð39Þ

and finally:

dd

d
¼ � dy

tan y
þ dl

l
ð40Þ

This equation allows us to discuss several physically important phenomena.

Figure 1.12 Debye Scherrer rings from an ideal fine grained (a, left) and a grainy
(b, right) powder sample.
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When a crystal is strained, the d-spacings vary. A macroscopic strain changes
the interplanar spacing by Ddhkl, giving rise to a shift in the average position of
the diffraction peak of Dy, while microscopic strains give a distribution of
d-spacings Ddhkl which broaden the peak by dy. This is discussed in detail in
Chapters 12 and 13.
A constant angular offset due to misalignment of the diffractometer gives rise

to a nonlinear error in our determination of dhkl, disproportionately affecting
low angle reflections (Figure 1.13). Similarly, our ability to resolve two partially
overlapping reflections separated by Ddhkl is limited by the finite angular
resolution Dy of the diffractometer.
There are many geometrical contributions to the angular resolution

(e.g., angular width of the receiving slit in front of the detector). Another con-
tribution comes from finite wavelength spread of the incident beam Dl. From
Equation (40) we get the angular dispersion to be:

dy
dl

¼ tan y
l

ð41Þ

This is plotted in Figure 1.14, which shows that the resolution due to a finite
spread in l is decreasing at higher angles. In a real experiment the angle
dependence of the resolution function can be complicated. In traditional
modeling programs the Bragg-peak line shapes are modeled using empirical
line-shape functions. More recently, approaches have been developed that
explicitly account for the different physical processes that result in the line

Figure 1.13 Percentage error in measured d spacing as a function of scattering angle
arising from a constant angular misalignment of DY for a well aligned
(0.0011), a typically aligned, (0.011) and a poorly aligned (0.051)
diffractometer.
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shapes. This is called the fundamental parameters approach and is described in
Chapters 5, 6 and 13.

1.7 BRAGG’S LAW FOR FINITE SIZE CRYSTALLITES

Assuming an infinite stack of lattice planes, Bragg’s equation gives the position
of delta-function Bragg peaks. Finite size crystallites give rise to Bragg peaks of
finite width. This size broadening is described by the Scherrer equation. We
now reproduce the simple derivation following Klug and Alexander (1974; see
Bibliography).
Figure 1.15 shows the path length difference versus the depth of the lattice

plane. When the angle between the incoming beam and the lattice plane Y is
different by an amount e from the Bragg condition, it is always possible to find
a lattice plane inside the crystal where the extra path is D¼ l/2 producing
destructive interference. For a thick crystal this is true for arbitrarily small e,
which explains the sharp Bragg reflections. For a crystal with finite dimensions,
for small e the plane for which D ¼ ðnþ 1

2
Þl holds will not be reached. In this

case there is not perfect cancellation of the intensity away from the Bragg
condition, thus leading to an intensity distribution over some small angular
range. We can use this idea to estimate the broadening of a Bragg reflection due
to size effects.
The thickness of a crystallite in the direction perpendicular to p (hkl) planes

of separation dhkl (Figure 1.15) is:

Lhkl ¼ pdhkl ð42Þ

Figure 1.14 Angular dependence of the intrinsic peak width (resolution function) of
the diffractometer due to the wavelength spread between Cu Ka1 and
Cu Ka2 (about 12 eV).
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The additional beam path between consecutive lattice planes at the angle y+ e is:

D ¼ 2d sinðyþ eÞ
¼ 2dðsin y cos eþ cos y sin eÞ
¼ nl cos eþ sin e2d cos y

E nlþ sin e2d cos y

ð43Þ

The corresponding phase difference is then:

dj ¼ 2p
D
l
¼ 2pnþ 4p

l
ed cos y ¼ 4ped cos y

l
ð44Þ

The phase difference between the top and the bottom layer, p is then:

dj ¼ p
4ped cos y

l
¼ 4pLhkle cos y

l
ð45Þ

Rearranging Equation (45) leads to:

e ¼ ldj
4pLhkl cos y

ð46Þ

which gives an expression for the misalignment angle in terms of the crystallite
size Lhkl and the phase difference dj between the reflections between the top and
the bottom plane. Clearly, the scattered intensity is at a maximum for dj¼ 0
(e¼ 0). With increasing e the intensity decreases giving rise to a peak of finite
width. Perfect cancellation of the top and bottom waves occurs a phase difference
of dj¼�p at which point e¼� l/(4Lhkl cosy). On a measured 2y-scale the

d
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Figure 1.15 Path length difference of the scattered ray versus the depth of the lattice
plane in the crystal.
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measured angular width between these points is:

bhkl ¼ 4e ¼ l
Lhkl cos y

ð47Þ

giving us some measure of the peak width in radians due to the finite particle size.
A full treatment taking into account the correct form for the intensity distribution
gives:

bhkl ¼
Kl

Lhkl cos y
ð48Þ

with a scale factor of K¼ 0.89 for perfect spheres. In general K depends on the
shape of the grains (e.g., K is 0.94 for cubic shaped grains) but is always close to
unity. This equation is not valid for crystallitesz that are too large or too small.
With large crystallites the peak width is governed by the coherence of the incident
beam and not by particle size. For nano-scale crystallites, Bragg’s law fails and
needs to be replaced by the Debye equation (see Chapter 16).
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CHAPTER 2

Experimental Setups

JEREMY KARL COCKCROFTa AND ANDREW N. FITCHb

a Department of Chemistry, UCL, Christopher Ingold Laboratories,
20 Gordon Street, London WC1H 0AJ, United Kingdom; b European
Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex, France

2.1 INTRODUCTION

In this chapter we describe commonly used experimental setups that are
currently used for powder diffraction. We concentrate on modern designs.
Excellent descriptions of older setups can be found in books such as Klug and
Alexander (H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures,
John Wiley & Sons, New York, 2nd edn, 1974).
Great diversity is employed in designing and carrying out powder diffraction

experiments, exploiting X-rays from a laboratory generator or from a high-
energy storage ring optimised for the generation of synchrotron radiation, or
neutrons produced in a reactor or spallation source. A typical wavelength used
for a powder diffraction experiment lies in the range 0.1�5 Å, comparable with
the spacings between lattice planes in crystals. The spectrum of the X-rays or
neutrons employed can range from a tightly defined monochromatic envelope
to a wide polychromatic distribution. The object of the experiment being
undertaken dictates the radiation to use. The sample can be a self-supporting
polycrystalline slab or rod, or a fine powder, mounted in a flat-plate sample
holder or contained in a thin-walled glass capillary tube, or are made of
platinum for measurements at very high temperatures. Data can be collected in
transmission or reflection modes, depending on how strongly the sample
absorbs the radiation employed. Sample environments play an important role
in many powder experiments, allowing measurements under a wide range of
conditions of temperature, pressure, applied stress, or chemical environment
(see Chapter 15).
The detector system is a crucial part of any powder diffraction experiment. A

standard laboratory instrument may have a single point counter, or may
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employ a multichannel, one-dimensional position-sensitive detector (PSD),
where the diffracted intensities at many diffraction angles are recorded simul-
taneously. Diffractometers using monochromatic neutrons or synchrotron
X-rays often have several point detectors operating in parallel to increase the
efficiency of use of the valuable beam time. One-dimensional PSDs or two-
dimensional area detectors are also employed, such as those based on charge-
coupled device (CCD) chips or image plates, as these greatly improve the rate of
data acquisition, registering complete (or large fractions of) the individual
Debye–Scherrer cones. Detectors for experiments using polychromatic X-rays
need to be able to distinguish the wavelength of each incoming photon, and
therefore need good energy resolution. Similarly, for neutrons from a pulsed
source, the time of arrival of each neutron needs to be recorded, so that its time
of flight from the source to the detector is known and its speed, and hence
wavelength, can be calculated. With multichannel detector systems equipped
with fast read-out electronics, diffraction patterns can be measured repeatedly
in just a few milliseconds, allowing the investigation of systems that are
evolving rapidly during the measurements.
In the following sections we describe in more detail the basic experimental

procedures that are used for powder diffraction measurements, and consider
important factors that control the performance of the instruments available for
laboratory-based experiments, or found at neutron and synchrotron radiation
facilities.

2.2 SOURCES OF X-RAY RADIATION

2.2.1 Laboratory X-ray Sources

X-Rays used for diffraction experiments are electromagnetic radiation with
wavelengths in the approximate range 0.1�5 Å (equivalent to an energy range
of about 125 keV�2.5 keV). X-Rays were discovered in 1895 by W. C. Röntgen
whilst investigating the effects of high tension electrical discharges in evacuated
glass tubes. In a standard laboratory instrument, the X-rays are still produced
in a sealed-tube source (Figure 2.1), where electrons accelerated by a potential
difference of up to 60 kV bombard a metal anode inside a vacuum tube. The
electrons induce a cascade of electronic transitions in the atoms of the target
material, which emit electromagnetic radiation as they return to the ground
state. Divergent X-rays exit the tube via beryllium windows in the casing. A
typical tube has a power rating of up to 3 kW. Higher power generators exploit
spinning anodes to distribute the higher heat load over the target. Such sources
differ only in the intensity of the radiation produced. Anode materials must be
good conductors of both electricity and heat, and have a suitably high melting
point. The most common target elements are Cu and Mo, with Cr, Fe, Co, Ag,
and W for specialist applications.
Figure 2.2 illustrates a typical X-ray emission spectrum from a Cu anode.

The loss of energy of the electrons by collision with the atoms usually takes
place viamultiple events. The result is the production of a continuous spectrum
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of X-rays known as white radiation. The maximum energy lost, E(max),
determines the shortest wavelength, l(min), that can be obtained according
to the equation E¼ eV¼ hc/l, where e is the charge on the electron, V is the
accelerating voltage, h is Planck’s constant, and c is the speed of light. A more
practical form of this equation is given by:

l ¼ 12:398

V

where V is in kV and l is in Å. Thus, the higher the accelerating voltage of the
X-ray generator, the shorter the minimum wavelength that can be obtained.
The maximum in the intensity of the white radiation occurs at a wavelength

Figure 2.1 Schematic diagram of a sealed laboratory X ray tube with key components
indicated (left), and a photograph of a tube (right). In modern tubes the
clear glass vacuum housing has been substituted by ceramic. Manufactur
ers provide various dimensions for the W filament, leading to ‘‘broad’’,
‘‘normal’’, ‘‘fine’’ and ‘‘long fine’’ focus tubes. The X rays emerge from the
four circular Be windows in the base, two of which are parallel to the
filament, providing a ‘‘line source’’ of X rays, and two of which are
perpendicular, providing a ‘‘point source’’. A line source from a fine or
long fine focus tube is preferred for a modern powder diffractometer.
Historically, point sources were used for Debye Scherrer cameras.
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that is roughly 1.5� l(min). Longer wavelengths are obtained by multiple-
collision processes. The total intensity, I(w), of the white radiation is approx-
imately proportional to the filament current, i, the atomic number of the anode
target, Z, and the square of the accelerating voltage, V.
When the energy of the accelerated electrons is higher than a certain

threshold value (which depends on the metal anode), a second type of spectrum
is obtained superimposed on top of the white radiation. It is called the
characteristic radiation and is composed of discrete peaks. The energy (and
wavelength) of the peaks depends solely on the metal used for the target and is
due to the ejection of an electron from one of the inner electron shells of the
metal atom. This results in an electron from a higher atomic level dropping to
the vacant level with the emission of an X-ray photon characterised by the
difference in energy between the two levels. Figure 2.3 shows the electronic
energy levels for a copper atom. In the copper X-ray spectrum, only two
characteristic lines are seen at low energy resolution. However, at higher
resolution the Ka line is seen to be a doublet, whose components are labelled
as Ka1 and Ka2. The splitting of the 2p orbitals in Cu is very small (0.020 keV)

Figure 2.2 Typical X ray spectra produced by different accelerating voltages from a
Cu anode. No characteristic radiation is produced until the voltage level
reaches a critical value (about 8.5 kV for Cu). Typical operating voltage is
at about 4� the critical voltage: higher voltage levels simply result in an
increase in the intensity of the ‘‘white’’ high energy X ray radiation with a
relatively small increase in the intensity of the characteristic lines.
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and so the two wavelengths Ka1 (1.54056 Å) and Ka2 (1.54439 Å) are very
similar.
The above description is actually a simplified version of reality since a high-

resolution analysis of the spectral lines of Cu Ka shows that both the a1 and a2
peaks are distinctly asymmetric. An understanding of the origin of this asym-
metry is important in implementing the so-called fundamental parameters
approach to the profile fitting of powder diffraction data peaks, described in
Chapters 5, 6, 9 and 13, in which the detailed spectrum of the incident X-rays
must be known. A combination of five Lorentzian functions is commonly used
to model the peak shape of Cu Ka radiation,1,2 though detailed investigations
to characterize the X-ray spectrum continue.3

Table 2.1 lists the approximate wavelengths of the principle emission lines for
various anode targets.
For routine powder diffraction work, a Cu tube is the most common

choice, giving the shortest wavelength above 1 Å and the good thermal
conductivity of copper, allowing a relatively high power to be applied to the
target. The heavier elements give wavelengths too short for most practical use
in the laboratory, though they become important for total scattering and PDF

Figure 2.3 Energy level diagram for a neutral Cu atom. The characteristic peaks
illustrated in Figure 2.2 arise from the electronic transitions shown.

Table 2.1 Approximate principle emission lines for various anode targets.

Anode Cu Mo Cr Fe Co Ag W

l(Ka) (Å) 1.54 0.71 2.29 1.94 1.79 0.56 0.21
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studies (Chapter 16). The longer-wavelength sources are exploited to avoid
fluorescence from samples containing elements excited by Cu radiation, e.g. to
study materials such as steels, Fe and Co tubes are preferred. The disadvan-
tages of such sources are higher absorption by the sample, increased air scatter
and fewer accessible Bragg reflections.

2.2.2 Synchrotron X-ray Sources

The use of synchrotron X-ray radiation has several advantages over laboratory
sources for carrying out high quality powder diffraction measurements. Syn-
chrotron radiation is extremely intense, and is highly collimated in the vertical
sense, permitting the design of instruments with much higher 2y resolution. The
wavelength can be chosen to be optimum for a particular measurement, e.g.
working at short wavelengths to penetrate through absorbing samples, or
tuning to the absorption edge of an element in the sample to exploit anomalous
scattering phenomena. Beam lines at synchrotron radiation sources have a
range of sample environments routinely available. They are staffed by profes-
sionals who often are able to provide extensive experimental help. For openly
published research, beam-time is typically provided for free to external users
following a peer-review of the proposed experiments. Information about gain-
ing access to these facilities can be found at the web-sites of the respective
facilities.
Synchrotron radiation is emitted when charged particles travelling at rela-

tivistic speeds change velocity, such as when they are made to follow a curved
trajectory by a magnetic field. The rapidly spinning neutron star at the centre of
the Crab Nebula, the remnants of a supernova that appeared in July 1054, is a
celestial source of synchrotron radiation. Early particle accelerators also
exhibited synchrotron radiation, which was considered to be a nuisance, as
the energy radiating away from the circulating particles needed to be replaced.
Modern synchrotron radiation sources are dedicated machines, where electrons
or positrons are accelerated to speeds close to that of light and circulate in
ultrahigh vacuum tubes, guided by arrays of magnets. The energy of an electron
moving with speed v is E ¼ mec

2= 1� v2=c2
p

where me is the rest mass
of the electron [9.1093826(16)� 10 31 kg] and c is the speed of light
(299792458m s 1). The term 1= 1� v2=c2

p
is referred to as g and is the factor

by which the mass of the electron increases from its rest mass due to its
relativistic speed. The energy of the electrons in a storage ring is usually quoted
in eV, where 1 eV is 1.60217653(14)� 10 19 J. Thus, in the 6GeV storage ring
of the ESRF in Grenoble, the electrons are travelling with a speed of
0.9999999964c and have an apparent mass of 11742me, equivalent to 6.44
atomic mass units, 7% more than that of the 6Li atom. The circumference of
the ESRF ring is 844.4m so each electron makes a circuit in 2.82 ms, or 355036
circuits per second, corresponding to a current of 5.688� 10 14 A. With
3.516� 1012 electrons stored in the ESRF ring the normal operating current
of 200 mA is attained.
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The electrons are guided in a storage ring by magnetic fields. Storage rings
are made up of several segments, comprising a straight section followed by a
curved section where the electrons are steered via a bending magnet into the
next straight section (Figure 2.4). Synchrotron radiation is emitted in these
curved sections, which can therefore serve as the source of X-rays for experi-
ments. In the straight sections arrays of magnets, generally referred to as
insertion devices, can be positioned to produce alternating magnetic fields that
cause the path of the electrons to oscillate. Each oscillation leads to the
emission of synchrotron radiation and by choosing the number, amplitude,
frequency and direction of the oscillations, radiation can be tailored for many
different applications.
The synchrotron X-ray sources of interest for powder diffraction are the

bending magnets, and the insertion devices known as wigglers and undulators.
These have their magnetic field in the vertical direction causing deflection of the
electrons in the horizontal plane. The radiation is therefore linearly polarised
with the electric component lying in the plane of the synchrotron orbit.
The radiation emitted by a single electron forms a narrow cone of angular

Figure 2.4 Schematic illustration of a synchrotron storage ring. Third generation
machines have many straight sections and are optimised for the exploi
tation of wiggler and undulator insertion devices as X ray sources.

26 Chapter 2



width E1/g radians, leading to the very high vertical collimation of the X-ray
beam. For bending magnets, radiation is emitted tangentially throughout the
whole curved section, resulting in the emission of a broad tangential fan of X-
rays (Figure 2.5a). For insertion devices the magnetic field varies sinusoidally
and each oscillation of the electrons produces tangential bursts of synchrotron
radiation. For wigglers, the oscillations are of relatively large amplitude, and
these add together incoherently, increasing the flux proportional to the number
of magnetic periods (Figure 2.5b). For undulators, deflection of the electrons is
relatively small and comparable to the natural opening angle of the emitted
radiation 1/g. Radiation from different oscillations interferes, and the beam
becomes collimated in the horizontal plane. Thus rather than being spread out
in a horizontal fan, as for a bending magnet or a wiggler, the radiation is
concentrated into a central on-axis cone surrounded by additional weaker rings
(Figure 2.5c). The flux density arriving on a small sample from this central cone
is therefore very high.
The spectrum of synchrotron radiation depends on the energy of the elec-

trons in the storage ring, the curvature of their path, and, for an undulator, the
interference effects. As a general rule, the greater the electron energy in the
storage ring the higher the energy of the emitted X-rays. For bending magnets
and wigglers, the tighter the curvature (i.e. the higher the magnetic field) the
higher the energy of the emitted X-rays. Bending magnets and wigglers have
continuous spectra (Figure 2.6) whereas undulators have a series of peaks at
integer multiples of a fundamental energy with wavelength l1, which depends
on the strength of the magnetic field. The energy of the fundamental and its
harmonics can be tuned by varying the vertical gap between the array of

Figure 2.5 (a) Tangential fan of radiation emitted from a bending magnet. (b) Fan of
radiation emitted by a wiggler. (c) Collimated beam emitted by an
undulator.

27Experimental Setups



Figure 2.6 (a) Photon flux vs. energy emitted per horizontal milliradian from an
ESRF bending magnet with a 0.1% bandwidth (i.e. for Dl/l¼ 0.001).
(b) Photon flux vs. energy through a 1mm2 aperture 30m from the source,
0.1% bandwidth, for an ESRF U35 undulator (magnetic periodicity
35mm, 1.6m long).
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magnets. To produce a high flux at a particular wavelength there may be a
choice of more than one combination of gap and harmonic. Various consid-
erations (such as the relative flux and the total power-handling capabilities of
the beam line) dictate the optimum configuration.

2.3 X-RAY OPTICS

Various optical elements can be placed in the beam path to tailor the charac-
teristics of the X-ray beam. These can work by diffraction (e.g. a mono-
chromator crystal), reflection (e.g. a mirror), or absorption (e.g. a filter or slits).
A monochromator is used to select a particular wavelength, a mirror can focus
the beam or suppress higher harmonics, and filters can be used to remove
unwanted radiation.

2.3.1 Filters

For powder diffraction experiments using a laboratory source diffraction of the
Cu Kb radiation contaminates the powder pattern from Cu Ka. Its intensity
can be greatly attenuated by placing a Ni filter, a uniform thin sheet of nickel, in
the beam path. The energy of the Cu Kb X-rays (l¼ 1.392 Å) is slightly above
the threshold energy of the Ni K absorption edge (l¼ 1.488 Å) which thus
absorbs this wavelength strongly, whereas Ka X-rays (l¼ 1.542 Å) have
insufficient energy to excite this particular transition and are only modestly
absorbed. The optimum thickness has to be a compromise between reducing
the intensity of the unwanted Cu Kb and reducing the intensity of the desired
Cu Ka. Most laboratory setups employing a nickel filter for Cu radiation
choose 15–20 mm thick foils so as to attenuate Kb by a factor of 25–50� more
than Ka, and the overall Ka intensity by a factor of about 2.
At synchrotron sources, attenuators such as graphite, aluminium or syn-

thetic-diamond foils can be inserted into the primary beam path to reduce the
heat load on an optical element, to prevent saturation of the X-ray detector, or
to reduce the rate of radiation damage to the sample.

2.3.2 Monochromators

A monochromator is a large flat single crystal set to a particular orientation,
ym, in the beam that reflects by diffraction only those wavelengths that satisfy
the Bragg condition l¼ 2d sinym, where d is the spacing between the chosen
lattice planes. Typical crystals used include silicon, germanium, quartz,
diamond and graphite. For any material used as an X-ray monochromator
the following properties are desirable: forms large good quality crystal with an
appropriate interplanar distance; mechanically strong and reasonably easy to
cut; stable in the beam; large structure factor for the chosen Bragg reflection;
small coefficient of thermal expansion; low absorption for X-rays. The actual
choice of material also depends on the application, and may take into account
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the thermal conductivity, degree of crystalline perfection, intrinsic breadth of
the Bragg reflection (Darwin width), etc.
In the laboratory, a monochromator may be placed in the incident or the

diffracted beam. Pre-sample monochromators such as quartz or Si 111 are
highly discriminating and can separate Cu Ka1 radiation from Ka2 (and Kb),
though at the expense of overall intensity. Curving the crystal, which therefore
must be thin, to focus the beam on the sample or detector helps counteract this
loss of intensity. Post sample monochromators, because of the motion of the
detector arm, are mechanically less stable, so a less-discriminating crystal such
as graphite is used. This can only remove Kb, but has the additional advantage
of reducing any fluorescence from the sample.
Monochromators for synchrotron-based diffractometers are used to select the

chosen wavelength from the polychromatic source. To preserve the direction of
the incident beam, a double-crystal (‘‘double-bounce’’) arrangement is used
(Figure 2.7). This may be either a channel-cut crystal, or two independently-
aligned crystals. A common choice of crystal is Si because of its very high degree
of crystalline perfection, and its excellent thermal properties in the intense
synchrotron beam. The 111 reflection is a frequent choice, though 220 and
311 are also used when higher energy resolution is desired. Cooling is essential
to maintain a stable temperature for the crystal(s) under the heat load from
the source.

2.3.3 Mirrors

Curved mirrors can be used to collimate or focus a divergent X-ray beam. Still
rather rare on laboratory instruments, graded-multilayer mirrors may be used
to produce a near-parallel incident beam, which may be advantageous when
working with non-flat or irregular samples or with samples under non-ambient
conditions.
At synchrotrons, mirrors can be used to enhance further the collimation of

the already highly collimated beam. This can improve the angular and energy

Figure 2.7 Schematic of a double bounce monochromator as used at synchrotrons.
The first crystal selects a wavelength from the polychromatic source,
which is reflected along the initial direction by the second crystal. The
lattice planes of the latter must be perfectly aligned with the first crystal for
efficient transmission of the beam.
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resolution of the instrument. Alternatively, the beam can be focused onto the
sample if desired. A highly polished silicon substrate with a thin metal coating,
such as Pt or Rh, set at grazing incidence also provides a means to suppress the
high-energy X-rays in the beam. Thus a Rh-coated mirror set at an angle of
0.091 to the incident beam will not transmit photons with a wavelength less
than about 0.3 Å. Mirrors can sometimes have several stripes of different metal
coatings to allow adjustment of the upper-energy cut-off.

2.4 X-RAY DETECTORS

X-Ray detectors may be classified as point, linear or area, depending on
whether they record the diffraction pattern in zero, one or two spatial dimen-
sions. Point detectors must be scanned to measure the diffraction pattern,
whereas linear or area detectors can be fixed. Point detectors are easily
compatible with post-sample optical elements. Linear and area detectors allow
the data to be acquired much faster, but as more open systems they are prone to
detecting parasitic scatter from the air or sample environment. Both linear and
area detectors are types of position sensitive detector (PSD).

2.4.1 Point Detectors

The most common type of detector in the laboratory is a scintillation counter,
which exploits a two-stage process. X-Ray photons collide with a phosphor
screen (or scintillator) such as a thallium-doped sodium iodide crystal. This
emits photons in the blue region of the visible spectrum, which are subsequently
converted to voltage pulses by means of a photomultiplier tube attached
directly behind the scintillator. The number of electrons ejected by the photo-
cathode is proportional to the number of visible photons that strike it, which in
turn is proportional to the energy of the original X-ray photon. Owing to
numerous losses, the energy resolution of the detector is poor, and as such it
cannot be used to resolve Ka and Kb X-ray photons. However, it has high
quantum efficiency and a low dead time, making it the ideal detector for the
point intensity measurements required for step-scanning diffractometers. For
synchrotron applications, faster scintillators are often needed, and materials
such as doped YAP (yttrium aluminium perovskite) or LaCl3 are used as
scintillators, though their light output per incident photon is less. Solid-state
detectors based on Si or Ge are used where better energy discrimination is
required, and avalanche-photodiodes can work at very high count rates but
have poor efficiency at high X-ray energies because Si does not absorb such
photons strongly.

2.4.2 Linear Detectors

Linear detectors may be straight or curved and record the 2y position of arrival
of each X-ray photon. Linear PSDs may be broadly classified into single anode
or multi-anode devices. Single anode devices have a wire or a blade in a
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gas-filled chamber and work on the principle that X-ray photons can ionize
inert gas atoms such as argon or xenon into an electron (e ) and ion (e.g. Ar1)
pair. The ionization energy required to eject an outer electron is low (10–20 eV)
compared to the energy of the X-ray photon (8 keV for a Cu X-ray tube) so that
one X-ray photon can produce several hundred ion pairs. The anode, which is a
relatively poor conductor, is set to a potential of about 1000V. The electrons of
the ion pair accelerate towards the anode causing further ionization and an
enhanced signal by gas amplification. The burst of electrons on the wire is
converted into a charge pulse which travels to both ends of the anode. By
comparing the relative arrival time of the pulse at both ends of the wire or
blade, the position of the detected X-ray photon is obtained. Such ‘‘delay-line’’
detectors can measure only a single X-ray photon at a time and so are relatively
slow and lose their linearity at modest count rates. To minimise the dead time
of the system, a quenching gas such as methane (CH4) is mixed with the inert
gas (e.g. 90% Ar : 10% CH4). For higher count rates, multi-wire or micro-strip
anodes have been developed in which each individual anode element is an
independent detector with a 2y position fixed relative to the other elements.
Such a detector can process many events concurrently.
PSDs record data over a whole range of scattering angles, which can be

useful where speed of acquisition is crucial, e.g. in time-resolved powder
diffraction or thermodiffractometry. PSDs come in various shapes and sizes:
small PSDs can only collect data over a limited range, say, 5–101 2y; large PSDs
are usually curved and collect over a much wider range. Both types tend to have
a similar number of channels of detection (2n, n¼ 9–12) so that the 2y channel
width for the larger PSDs is relatively coarse. PSDs can be used at a fixed
scattering angle or may be scanned to collect data over a wider angular range.

2.4.3 Area Detectors

Historically, area detectors in the form of photographic X-ray film were the
principle method for recording powder diffraction patterns, e.g. using Debye–
Scherrer and Guinier cameras. Modern area detectors for X-rays exploit image
plate and charge-coupled device (CCD) technology. These detectors accumu-
late an image of the diffraction pattern, which then has to be read out and
stored as a subsequent step. Typical read out times vary from 30 s or more for
image plates to 1 s or less for CCDs. Image plates are large area detectors and
record the diffracted X-rays directly, whereas CCD chips are small (e.g. 100 � 100

or 200 � 200) and are coupled to a phosphor screen with a bundle of optical fibres.
Area detectors record part or even whole Debye–Scherrer powder diffraction
rings, enabling effects such as texture, granularity, and preferred orientation to
be observed directly in contrast to linear and point detectors. In addition, the
large solid angle greatly increases the counting efficiency, enabling data to be
more easily recorded from weakly scattering samples. Data corrections to
obtain quantitative intensities from 2D detectors requires special handling, and
this is discussed in detail in Chapter 14.
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2.4.4 Detector Calibration

In contrast to detectors used for point intensity measurements, position
sensitive detectors require careful calibration for both 2y position and efficiency
so that scattering angles and intensities can be accurately determined. For each
channel an exact 2y position is required together with an efficiency coefficient.
The efficiency can be determined using a sample such as an amorphous foil that
fluoresces in the X-ray beam (e.g. Fe in a beam of Cu Ka radiation), producing
a very high flat background and no Bragg peaks. The 2y calibration is achieved
by scanning the different parts of the detector through the Bragg reflection of a
strong peak (or peaks), e.g. the Si 111 peak. For very large curved detectors, the
2y calibration has to be made using many diffraction peaks. The calibration can
be checked by measuring the complete pattern of a reference material. Sealed
gas-filled PSDs should be recalibrated whenever the gas is replenished, in
contrast to detectors with a continuous flow of gas that need checking
regularly.

2.5 LABORATORY INSTRUMENTAL CONFIGURATIONS

There are two principal types of instrument geometry for laboratory powder
diffractometers: reflection and transmission. In reflection geometry, the sample
is in the form of a flat plate, while in transmission geometry a glass capillary or
thin foil is used.

2.5.1 Reflection Geometry

The modern flat-plate powder diffractometer is the most common configura-
tion used in industrial and academic laboratories. It achieves a high diffracted
intensity without sacrificing good resolution by exploiting parafocussing of the
diffracted beam. The divergent incident beam is reflected from the surface of
the sample and converges at a fixed radius from the sample position. This
geometry is commonly referred to as ‘‘Bragg–Brentano’’ (Figure 2.8). The tube
is aligned so that the beam divergent on the sample is at angle x to the anode
surface (which is typically about 61) and the divergence of the beam is
controlled by one or more slits after the source (Figure 2.9). The footprint of
the beam on the sample is proportional to cosy and may overflow the sample at
very low scattering angles. Axial divergence, which is a cause of low-angle peak
asymmetry, is reduced by inserting Söller collimators. To get a good powder
average, the sample is usually spun about an axis normal to the flat plate. An
appropriate filter should be inserted after the X-ray source as shown.
Figure 2.10 shows the X-ray optics when a post-sample graphite mono-

chromator is employed. This is perhaps the most common arrangement. The
X-ray filter is no longer necessary. Again slits are used to control the divergence
of the incident and diffracted beam. With this setup, the source is normally fixed
and the monochromator moved around the 2y circle with the detector arm.
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The Bragg angle for the monochromator, 2yM, is set to satisfy Bragg’s law for
the diffracting planes of the monochromator crystal.
A higher-resolution setup exploits a perfect-crystal pre-sample monochromator

(Figure 2.11) to remove the Ka2 radiation. To achieve this and maintain a
reasonable X-ray intensity, the monochromator crystal is curved so as to satisfy

Figure 2.8 Basic Bragg Brentano geometry. The dotted circle centred on the sample
position represents the goniometer circle on which the image of the
divergent source of X rays is focussed by diffraction from the flat plate
sample. Strictly speaking, true focussing only occurs when the sample
plate has a curved surface. However, given that the footprint of the beam
on the sample plate is considerably smaller than the radius of the focussing
circle, the flat plate approximation works well in practice. The source is
usually fixed and to collect the diffraction pattern the sample and detector
are rotated by y and 2y, respectively. An alternative is to fix the sample
(usually in the horizontal position, e.g. useful for a liquid sample) and to
move both the source and the detector by y and y, respectively.

Figure 2.9 A typical X ray slit is shown in the photograph on the left. The size of the
slit is indicated in degrees here (0.31), though sometimes it is given in mm.
Söller collimators are shown on the right. These consist of a set of fine
parallel foils that prevent angular divergence of the beam out of the y/2y
plane.
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Figure 2.10 Bragg Brentano geometry with a diffracted beam monochromator. The
crystal is usually graphite, which has a low degree of crystalline perfection,
and hence a large acceptance angle (tenths of a degree). Thus a flat crystal
is adequate.

Figure 2.11 Bragg Brentano geometry with a pre sample monochromator. A near
perfect crystal, e.g. quartz or germanium, is required to separate Ka1 and
Ka2.
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the Bragg condition for a divergent source. The path of the Ka2 radiation
after the monochromator deviates slightly from that of the Ka1, and is removed
by the slits before the sample position. Accurate alignment of the optical elements
in such an instrument is therefore crucial (Figure 2.12). Peak widths of around
0.071 (or better) can be obtained using Cu radiation.

2.5.2 Transmission Geometry

The workhorse Debye–Scherrer camera of old has evolved significantly into the
modern transmission powder diffractometer, exploiting a curved perfect-crystal
monochromator (Figure 2.13). The divergent beam from the X-ray source is
focussed not onto the sample but beyond onto the 2y measuring circle of the
detector, which is ideally a curved PSD for efficient data collection. If a straight
PSD is employed, it is positioned significantly beyond the focussing circle. This
avoids having the central part of the detector on the focussing circle and so in
focus with the ends out of focus, which would produce a marked variation in
peak width along the PSD. To obtain a good powder average with this

Figure 2.12 Photograph of a Bragg Brentano diffractometer equipped with a
pre sample monochromator (on left) and scintillation detector (on
right). Sample stage and detector move in the vertical plane about a
horizontal axis in the ratio 1 : 2. The sample is spun about an axis
normal to the flat plate. Although this instrument dates from the early
1990s, the latest generation of laboratory Bragg Brentano diffractome
ters still function in a similar manner to the one shown here.
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geometry, the sample is spun about its axis. Diffraction peak widths of 0.11 (or
better) are readily obtained. Foil samples must be correctly orientated to allow
maximum transmission and to simplify any corrections for absorption made to
the intensities.

2.6 SYNCHROTRON INSTRUMENTAL CONFIGURATIONS

2.6.1 Pre-sample Optics

Whereas laboratory instruments exploit divergent beams of X-rays, synchrotron-
based instruments rely on the highly collimated nature of the radiation. At a
synchrotron beam line the presample optics are designed to deliver to
the sample a highly collimated and monochromatic beam of the desired
wavelength. The optics, which must include at least a double-crystal mono-
chromator, exploit the high degree of vertical collimation (typically in the range
0.003–0.011 at ESRF) of the white beam. Since the vertical divergence of the
beam incident on the sample translates directly into peak width in the diffraction
pattern, very high-resolution angle-dispersive instruments operate in the vertical
plane. In addition, peak widths are affected by the wavelength band pass, Dl/l,
of the monochromatic radiation. The low vertical divergence of the white
radiation, coupled with the perfection of the monochromator’s diffracting
planes, leads to highly monochromatic radiation with a very narrow band pass,
of the order 10 4 for the Si 111 reflection. Although synchrotron radiation
already has a very small natural divergence, the latter may be improved even
further by the use of a collimating mirror in the optical path. For example, on the
high-resolution powder diffraction beam line BM16 at ESRF,4 the residual

Figure 2.13 Parafocussing Debye Scherrer diffractometer with curved monochromator
crystal and capillary sample. Given the intrinsically worse peak to back
ground ratios compared to Bragg Brentano geometry, linear or curved
position sensitive detectors (PSDs) are employed to improve counting
statistics. As with the equivalent Bragg Brentano geometry, the angle x
is optimised at about 61.
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vertical divergence after the collimating mirror was nominally E0.0011. In the
absence of a mirror, the divergence of the monochromatic beam incident on the
sample is limited by the sample size or beam-defining slits, e.g. a 1mm high slit at
40m from the source defines an angle of E0.00151.

2.6.2 Parallel-beam Instruments

High-resolution powder diffractometers at synchrotrons exploit the parallel
nature of the incident radiation and are heavy-duty and designed to have
excellent angular accuracy, working with substantial loads. A high degree of
mechanical accuracy is required to match the high optical accuracy inherent in
the parallel-beam concept. Figure 2.14 shows a photograph of the powder
diffractometer on beam line ID31 at ESRF. Spinning capillary samples are
preferred because they suffer much less from the preferred-orientation prob-
lems that bedevil flat-plate samples. In contrast to laboratory instruments, the
wavelength can usually be tuned to minimise problems of absorption. If strong
absorption cannot be avoided, the sample can be stuck to the outside of the
capillary with grease. When flat plate samples are unavoidable, the parallel-
beam technique can be used without major change in instrumental configura-
tion, since there are no parafocussing requirements with synchrotron radiation.
The highest resolution instruments, typically used for powder crystallograph-

ic studies (e.g. structure solution and refinement) are equipped with an analyser
crystal between the sample and the detector. The analyser crystal (e.g. a perfect
Si or Ge 111 crystal) reflects the scattered radiation into the detector, only when
the scattered radiation falls on the crystal with precisely the correct incidence
angle to fulfil Bragg’s law. Since the crystal has a very narrow acceptance angle
for diffraction, the crystal defines stringently the direction from which the
diffracted radiation must travel to reach the detector. By scanning the 2y circle
on which the analyser crystal and detector are mounted, a complete range of 2y
angles is measured, and a high-resolution powder diffraction pattern may be
obtained. The analyser crystal is extremely selective in the photons it transmits.
Therefore, a large fraction of the diffracted radiation is rejected at a given 2y
position. Even with the high flux of a synchrotron, the measurements may
become slow. Hence to increase the rate of data acquisition, multiple analyser
stages can be employed, using several channels of detection simultaneously,
separated by small angular offsets of 1 or 21. The different channels must be
calibrated with respect to each other, in terms of counting efficiency and exact
angular offset, by comparing regions of the diffraction pattern scanned by
several detectors. The calibration of the incident wavelength and any 2y zero-
point error is best done with a standard sample such as NIST Si 640c, which has
a certified lattice parameter.
Because an analyser crystal defines the diffractometer scattering angle 2y by

its own true orientation with respect to the incident beam, several aberrations,
which can affect diffractometers equipped with a simple receiving slit before the
detector or a PSD, do not occur. (In reality for the latter diffractometers, the 2y
scale is inferred from the position of the slit or the element of the PSD.) Thus, 2y
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resolution is independent of the capillary diameter, so large capillaries can be
used to optimise diffracted intensity, and any modest misalignment of the
sample from the diffractometer axis (or the effects of specimen transparency for
flat-plate samples) does not lead to shifts in the positions of the Bragg peaks.
Neither do movements of the sample with temperature changes in furnaces, etc.
result in peak shift aberrations. Peak positions from these instruments are
therefore highly accurate, and are ideal for indexing the diffraction patterns of
materials of unknown unit cell. Moreover, the y/2y parafocussing condition
does not need to be satisfied to have high-resolution data from flat-plate

Figure 2.14 High resolution powder diffractometer on beam line ID31 at ESRF.
Note the nine channel multianalyser stage on the detector arm. The
balloon contains He gas to reduce background scatter by air in the X ray
flight path.
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samples. The peak width does not, therefore, depend on sample orientation,
which is useful for measurements of residual strain by the sin2c technique.
Similar optical robustness can be obtained by using long, fine Söller colli-

mators instead of an analyser crystal. These give lower 2y resolution than an
analyser crystal, because their acceptance angle is necessarily much larger, but
afford a significant increase in the measured intensity. They are not particularly
suitable for fine capillary specimens, as the separation between foils may be
similar to the capillary diameter, resulting in problems of transmission of the
diffracted beam. They are achromatic, and so do not need to be carefully
reoriented at each change of wavelength, which may have advantages when
performing anomalous scattering studies around an element’s absorption edge.

2.6.3 Debye–Scherrer Geometry Instruments

The simplest optical arrangement is simply to have a fine receiving slit, matched
to the capillary diameter, in front of a point detector. An antiscatter slit near
the sample should also be employed to reduce parasitic background scatter.
The detector arm is scanned and a powder diffraction pattern recorded. This
arrangement can be used for narrow capillary samples on relatively low-flux
sources, thus avoiding the severe loss of intensity that using an analyser crystal
entails. The resolution is largely determined by the angle defined by the
capillary diameter, the slit height, and the distance between them. Despite its
apparent simplicity, high quality high-resolution data can be obtained
with care.
Although methods involving scanning the detector arm produce high quality

high-resolution data, they are nevertheless relatively slow, making them less
suitable for time-resolved studies where the sample is evolving in situ. Much
faster data acquisition can be achieved by using a linear PSD or area detector.
Owing to the high intensities scattered from the sample at the synchrotron,

linear delay-line detectors are unsuitable as they saturate instantly. Currently,
much effort is being devoted to the development of appropriate curved multi-
wire and mutistrip devices. Perhaps the most successful at the time of writing is
the device built at the Swiss Light Source.5 This consists of 12 modules based on
Si-chip technology, each having 1280 independent channels, giving a total of 15
360 channels over about 601 2y. The signal is accumulated in the individual
channels of the modules, then read out in around 250 ms. Another approach has
been adopted at the Australian National Beamline Facility6 located at the
Photon Factory in Japan. Here several image plates are curved around the
inside of an enormous Debye–Scherrer camera (the ‘‘Big Diff’’). The image is
accumulated then read out off-line. For time-resolved studies, the image plates
are translated axially behind a mask defining a vertical strip.
Although image plates have been used as area detectors for powder diffrac-

tion, their long readout times (many seconds) mean that CCD based detectors
are increasingly being preferred, a trend throughout X-ray crystallography.
Coupled with the use of a short wavelength, a significant d-spacing range can be
recorded on the detector, especially if it is positioned off-centre, so that the
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main beam would hit the detector close to its edge. In such a case partial rather
than full Debye–Scherrer rings are recorded. Specific CCD chips can be read
out very quickly, such as the Frelon camera developed at ESRF. An acquisition
rate of 20 images per second is possible, which, coupled with the efficiency of
the large solid angle subtended, means the device can be used to follow very
rapid solid-state reactions, etc.

2.7 MEASUREMENTS

2.7.1 Sample Holders

The choice of sample holder is governed by the choice of instrument geometry
used for the powder diffraction experiment, i.e. reflection or transmission.
Figure 2.15 shows various sample holders for the flat-plate Bragg–Brentano
reflection geometry described earlier. Flat plate sample holders have one very
big advantage over other sample holders: they are easy to fill. Their biggest
disadvantage is that the surface-flattening process induces a preferred orienta-
tion in most samples. Other problems include: the sample can sometimes fall
out especially if spinning, with horizontal diffractometers when the sample is
vertical, or for vertical diffractometers at high y angles; it is difficult to work
with air-sensitive samples; the holder is quite bulky and so less appropriate for
work under non-ambient conditions; peak positions from low-absorbing sam-
ples can suffer from aberrations owing to significant penetration of the beam
below the surface. For very tiny amounts of sample, e.g. for a forensic sample,
flat-plate geometry is in fact probably the method of choice, for the sample can
be dusted over the surface of a Si crystal, cut to avoid Bragg diffraction, and
this gives near-zero background. Block samples can also be mounted in a
suitable, deep flat-plate holder.
For transmission geometry, either a cylindrical or thin flat foil sample holder

is required. The most common cylindrical sample holders are glass capillaries
(Figure 2.16). These come in various nominal sizes: 0.2, 0.3, 0.5, 0.7, 1.0, 1.5,
and 2.0mm are common internal diameter values, but other sizes are available.
In the laboratory, the larger diameters are less useful for most powder diffrac-
tion work because of sample absorption and decreased resolution, but are very
practical for use at synchrotrons given the parallel beam optics and the
availability of hard X-rays. Glass capillary sample holders should be flame,
grease, or glue sealed to prevent sample loss. They are ideal for low-
temperature powder diffraction studies as they are easy to cool with liquid-
N2 cold stream devices and are readily rotated in liquid-He cryostats. Given
their relatively low melting points, soda- or borosilicate-glass capillaries are
usually substituted by quartz-glass ones for high-temperature work.
Capillaries are unpopular for several reasons: firstly, diffuse X-ray scattering

from the glass walls, which are approximately 10 mm thick, adds significantly to
the background count. Secondly, they take considerably longer to fill than the
equivalent flat-plate sample holder. Thirdly, capillaries may require careful
alignment on the diffractometer to ensure that the axis of the capillary is
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Figure 2.15 Sample holders for flat plate Bragg Brentano geometry. All of the large
(50mm Ø) sample holders (A H) are for room temperature work, whilst
the three smaller sample holders (I K) are for high temperature furnace
use. A and B are for stationary samples, A, F, and I are for a light dusting
of a powder on a low background silicon wafer, whereas H is for small
quantities of sample in a shallow well silicon crystal. D is an example of a
solid block sample (e.g. solid quartz as used for diffractometer alignment
work), while C is a deep well sample holder, again for mounting solid
objects (though the d2 coin shown would have too rough a surface for
practical data collection). G is specially designed for back packing,
though even for front packing it is preferable to the plastic holders A

and E. Sample holder J is made of sapphire.

Figure 2.16 Photograph of a 1mmdiameter thin walled (10 mm thick) borosilicate
glass capillary, glued with melted wax into a brass holder for clamping to
a spinner. The sample is a white organic compound, but exposure to an
intense X ray beam turns it yellow. This sample was translated between
successive data collection scans to avoid radiation damage, resulting in
the striped appearance.
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co-linear with that of the diffractometer. Fourthly, for highly-absorbing sam-
ples either fine capillaries have to be used or the sample has to be diluted, and,
additionally, an absorption correction should be employed when the data are
used for crystal structure refinement.
After all these disadvantages, you might wonder why capillaries are used at

all. The huge advantage of capillary geometry is that preferred orientation is
much less of a problem, although it may still occur, e.g. needle-shaped crys-
tallites may align horizontally-rotated capillaries. Capillaries are also a con-
venient way of mounting very air-sensitive samples since they are easily sealed
against exposure to the air. An alternative to the capillary is the use of a thin
glass fibre, or even an empty capillary, thinly coated in silicone grease and then
covered by a fine coating of powder. This latter may be better for highly
absorbing samples.
An alternative method for measuring powder samples in transmission ge-

ometry is to use a very thin and flat sample. This can be achieved by sprinkling
the powder onto an adhesive tape, or by trapping the sample between two
layers of a thin (say 3 mm or thinner) polymer film. Various polymers including
Mylar and Kapton have been used, some of which are better than others: the
choice of material is a compromise between obtaining a low background count
and a peak-free background count.

2.7.2 Standard Samples

It is essential to know that the diffractometer produces data that are reliable
and are not affected by systematic and or other, undiscovered errors. Data
reliability can be considerably enhanced by pre-checking the diffractometer
with a known standard sample. It is good laboratory practice to do this
regularly, and essential when the instrument has been realigned or reconfigured.
A standard sample can usually be measured relatively quickly and will provide
information on instrument calibration, alignment, resolution, background
count, source flux, spurious scattering from sample environment equipment
(if any) and so on. Even when assured by the person responsible for the
instrument that everything is well, a few minutes with a standard sample can
avoid many months of wasted effort later.
A good calibrant for a powder diffractometer should be a material of high

symmetry because the intensity of the diffraction planes is concentrated into
relatively few diffraction peaks. The unit-cell volume, V, should be small since
the intensity of the diffraction peaks is inversely proportional to V. Ideally, the
unit cell should contain only 1 or perhaps 2 crystallographic atoms with large
scattering factors. The thermal vibrations of the atom (or atoms) characterised
by its B value should be as small as possible so that the high-angle peaks have
maximum intensity. For capillary geometry the sample absorption should not
be too high since this can affect, in extreme cases, the position of the powder
lines in addition to reducing their intensity. It must also be possible to obtain
large quantities of the material in high purity and crystallinity together with
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reproducible crystallite size. Obviously, the materials must be air stable and
preferably non-toxic.
Typical standards are powdered Si, LaB6, Ni, ZnO, TiO2, CeO2, Al2O3,

Cr2O3, and Y2O3. These samples can be used as calibrants for both X-ray and
neutron powder diffraction. All the materials listed above as standards have
rigid-lattice structures due to strong chemical bonding with highly charged
cations and anions. Note that a simple material such as NaCl does not make a
good standard because it is hygroscopic and the Na1 and Cl ions have large
thermal parameters due to their single charge. The National Institute of
Standards and Technology (NIST) supplies standard calibrating materials for
many applications.
A standard may be excellent for one purpose (e.g. wavelength calibration)

and less useful for another (e.g. determination of instrumental resolution) so
choose a standard appropriate for the task in-hand. The best samples to check
the performance of the diffractometer at low angles are layer-like: mica is one
such material supplied by NIST, or silver behenate, which has a layer spacing of
58.38 Å.11

2.7.3 Data Acquisition

Before collecting a powder pattern, it is a good idea to know what information
you hope to get out of it, for this will influence the data collection strategy.
Parameters to be considered include angular range, step size, counting time,
statistical quality, wavelength, etc. For example, phase identification generally
requires only a range of 2y containing the strongest reflections from the sample,
whereas meaningful Rietveld refinement of a crystal structure requires high
quality data measured to small d. Variable count time strategies can improve
enormously the statistical quality of the high-angle data, to compensate for the
reduction in scattered intensity with geometric and X-ray form factors, thermal
motion, etc. Studies of a material’s microstructure need precise measurement of
the shape of the diffraction peaks, so a fine step size is desirable, along with
measurement of an appropriate standard, and possibly higher-order reflections.
Absorption or the presence of absorption edges will influence the choice of
wavelength. There are many factors to be considered for optimum data, and
some forethought and planning will make the difference between a successful
investigation, and a waste of effort, as it is not usually worth struggling to
analyse data that is not fit for the purpose.
Despite one’s best efforts, carefully collected data may still suffer from

systematic sample errors, such as preferred orientation, granularity, texture,
inhomogeneity, impurity phases, radiation damage (especially at the synchro-
tron) unexpected sensitivity to air or moisture. Measuring the very-same
sample again can detect sample evolution during the measurement. Measuring
with a different instrumental geometry can reveal some of the other effects. A
critical assessment of the data quality and the data-collection strategy after the
experiment is to be encouraged. In some cases, a new experiment with a revised
strategy may be the optimum course.
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2.8 ENERGY DISPERSIVE POWDER X-RAY DIFFRACTION

Rather than measuring the d-spacings and intensities of a powder X-ray diffrac-
tion pattern by varying the scattering angle, 2y, at a fixed wavelength, l,
according to the Bragg equation l¼ 2d sin y a diffraction pattern can be obtained
by varying the wavelength at a fixed scattering angle. In practice a sample is
illuminated with white radiation (usually from a synchrotron source) and an
energy-dispersive (ED) detector is used to detect the wavelength of the scattered
X-rays (Figure 2.17). The ED detector usually consists of a liquid-N2-cooled Ge
crystal, which is a semiconductor. The energy of an absorbed X-ray photon
promotes electrons to the conduction band in proportion to its energy. By
analysing the magnitude of the charge pulses arriving from the crystal, the energy
of the absorbed photon is determined, and the powder diffraction spectrum is
thus recorded as a function of energy (typically within the range 10–150keV,
depending on the source) with a multi-channel analyser. The ED detector is in
many ways analogous to a linear PSD used in angle-dispersive experiments.
Although recorded as a function of energy, E (keV), the spectrum is frequently
converted into reciprocal d-spacing (Å 1) via 1/d¼ 2Esiny/12.398.
Energy-dispersive detectors require calibration for both energy scale and the

detector’s fixed scattering angle, 2y. Spectra are collected using a multichannel
analyser with typically 4096 channels, the channel number, n, being approxi-
mately proportional to the energy of the measured X-ray photon, E. At very
high energies, nonlinear behaviour is observed so that in practice a quadratic
expression (E¼ a+ bn+ cn2) is used for the relationship between n and E. The
coefficients, a, b, c, are obtained by measuring the channel number for certain
well-defined detected photon energies. For higher energies, g-emitting radio-
active sources, such as 241Am (59.5412keV) or 57Co (122.0607 and 136.4736keV),
may be used. The 241Am source can also be used to stimulate Ka and Kb
fluorescence lines from foils of lighter elements (e.g. Mo, Ag, Ba, and Tb)

Figure 2.17 Schematic representation of the energy dispersive diffraction (EDD)
technique. The energy discriminating detector at fixed scattering angle
determines the wavelength of each detected photon and hence the
d spacing of the diffracting lattice planes.
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whose wavelengths are known precisely. A table of values of these fluorescence
lines is available in the International Tables for Crystallography and other
sources.
The choice of detector angle influences the range of d-spacings accessible. As

the detector angle is decreased, so the range of d-spacings measured by the
detector is also decreased, i.e. fewer reflections are measured. Thus, decreasing
the detector angle in an ED diffraction experiment is analogous to increasing
the wavelength in an angle-dispersive experiment. The d-spacing range of most
interest should be matched to the incident spectrum, taking account also of
sample absorption and fluorescence, to produce optimally resolved peaks with
high intensity. This depends heavily on the choice of detector angle, which is
typically chosen in the range 2–61 2y. Precise calibration of the detector angle is
best done using a standard sample with a large cubic cell parameter, e.g. yttria
(a¼ 10.6039 Å). It is good practice to use many peaks from the data set and to
employ a least-squares fitting procedure to obtain a precise value of 2y via
siny¼ 12.398/2Ed.
For energy-dispersive powder diffraction, the peak widths in energy depend

on the energy resolution of the detector (E2%) and the dispersion in the fixed
2y angle, D2y, which is determined by the post sample collimation. It is therefore
a low-resolution technique that has it uses where a fixed geometry with pene-
trating X-rays is required, e.g. for in situ studies of chemical reactions under
hydrothermal conditions or measurements of residual strain. Owing to the need
to take into account several energy-dependent effects, e.g. absorption and
scattering factors, the shape of the incident X-ray spectrum, and the detector
response, accurate modelling of the intensities of the powder diffraction
pattern is difficult.

2.9 POWDER NEUTRON DIFFRACTION

2.9.1 Properties of the Neutron

Neutrons were discovered by Sir James Chadwick in 1932, though their
existence had been predicted 12 years previously by Ernest Rutherford. The
neutron has a mass mn of 1.67492728(29)� 10 27 kg, a charge of zero within
experimental uncertainty, a spin of 1

2
and a resulting magnetic moment

of –1.04187563(25)� 10 3 mB. From the De Broglie relationship, l¼ h/mnv,
where h is Planck’s constant and v is the velocity of the particle, a neutron
travelling at 2200m s 1 has a wavelength of 1.8 Å and, therefore, is suitable for
structural studies. Neutron properties are often quoted at this wavelength. The
kinetic energy of a neutron with this speed is 25.3meV and roughly comparable
to thermal energies.
The use of neutrons has several advantages for carrying out high quality

powder diffraction measurements. Neutrons scatter predominantly from the
nuclei of atoms via the strong force. For nuclei with spin, there is also an
electromagnetic interaction between the neutron and the nucleus, whose
magnitude depends on the spin state of the nucleus. In 1H (hydrogen) the large
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difference in scattering length between the spin-up and spin-down states of the
proton leads to a very large incoherent scattering cross section, resulting in a
very high background in a powder neutron diffraction pattern from hydrogen-
containing materials. Deuterated materials, if available, are usually used in
preference to protonated samples for this reason. The coherent scattering power
of an atom is characterised by a scattering length, b. The range of the nuclear
scattering potential is of the order 1 fm, very much smaller than the wavelength
of the neutron, so that there is no variation of b with scattering angle, in
contrast to the form factor f of X-rays.
The scattering power of an atom varies with nuclear structure, and can vary

significantly between isotopes of an element. Thus light atoms may scatter
neutrons as strongly as the heavy atoms, which would dominate an X-ray
diffraction pattern, Figure 2.18. Neutrons are uncharged and so highly pene-
trating into most materials. Notable exceptions are samples containing elements
such as Gd, Sm, and isotopes such as 6Li and 10B, which absorb neutrons into
the nucleus with emission of g. Consequently, powder neutron diffraction works
well for large amounts of sample and with complex sample environments.
Sample containers for neutron diffraction can be made from any appropriate
non-absorbing material, so X-ray-standard borosilicate glass is not a good
option, whereas silica glass (‘‘quartz’’ glass, SiO2) is used for construction of
in situ chemical cells. For routine experiments, sample cans made from vanadium
foil are frequently employed, as vanadium gives very little diffraction signal itself
because its coherent scattering cross section is very small.
Neutrons also have spin and a magnetic moment that interacts with unpaired

electrons in a sample allowing studies of magnetic order. Because the

Figure 2.18 Neutron coherent scattering lengths b and coherent cross sections s
shown in the form of a Periodic Table of the elements in which the radius
of the circle is proportional to b and the area is proportional to s. For a
few elements (e.g.H) the value of b is negative: this is indicated by the use
of open circles. Black squares indicate elements with large absorption
cross sections due to the occurrence of nuclear absorption edges.
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wavelength of the neutron and the distribution of the spin density are on
comparable length scales, neutron magnetic scattering, just like X-ray scattering,
has a form-factor fall off. As with synchrotron X-rays, free access to neutron
diffraction instruments is generally through a peer reviewed user system that is
open to everyone. Beam lines at neutron sources are equipped with extensive
special environments and extensive experimental and data analysis help is often
available from professional beam-line staff.

2.9.2 Sources of Neutrons

Intense neutron beams cannot be produced in the laboratory. Currently, there
are two methods for producing neutron beams of sufficient intensity for powder
diffraction, namely, a nuclear reactor and a spallation source. The two methods
are quite different and result in neutron beams with different characteristics.
Both methods involve fission, though with a spallation source it is not necessary
to use a naturally fissile material. The consequences of the two methods in
terms of the design and function of neutron powder diffractometers are
discussed below.
Much of the description that follows is specific to the nuclear reactor at the

Institut Laue Langevin (ILL) in Grenoble, France, which produces the world’s
highest continuous neutron flux for research use. However, the underlying
principles behind the design and operation of the reactor and associated
neutron instruments are quite general. The nuclear reactor uses the fission
reaction of several kilograms of highly enriched 235U to produce an intense flux
of neutrons at the heart of the reactor. One of the by-products of the nuclear
reaction is a lot of heat (57 MW at ILL). The primary coolant uses heavy water
(D2O) at about 35 1C, which also acts as a reflector, concentrating the neutrons
in a small space, and a moderator, slowing the neutrons and equilibrating them
at the ambient temperature. By interacting with the heavy-water the neutrons
attain a Maxwellian distribution of wavelengths, corresponding to the temper-
ature of the D2O. This results in ‘‘thermal’’ neutrons whose wavelengths are
typically in the range 1–2 Å. For some applications, neutrons may be required
where the maximum in the Maxwellian distribution is either at a shorter or
longer wavelength. A cold or hot moderator contained within the heavy water
vessel can be used to produce ‘‘cold’’ and ‘‘hot’’ neutrons, respectively. Most
powder neutron diffractometers at reactor sources use thermal neutrons,
though instruments have been built on cold and hot sources.
At a spallation source a heavy-metal target, such as Pb, W, Ta or Hg, is

bombarded with energetic particles, usually protons accelerated to energies of
up to 1GeV. Neutrons freshly released from an atomic nucleus have high
energies, referred to as ‘‘epithermal neutrons’’, and must be slowed down to be
useful for powder diffraction experiments. This occurs by collisions between the
neutrons and the moderator – such as liquid methane or water – placed in the
path of the neutron beam, which cause the exchange of energy and a trend
towards (partial) thermal equilibrium.
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With both types of source, neutrons are led to the experimental instruments
from the reactor core or spallation target station by means of evacuated guide
tubes, rectangular in cross section, that convey the neutrons by means of total
external reflection from the walls, often made of highly smooth nickel-coated
plate glass. The guides often curve gently to remove the diffractometer from the
direct line of sight of the g-rays that are emitted in the nuclear reactions
producing the neutrons.

2.9.3 Detection of Neutrons

The most common neutron detectors are of the proportional gas type. Since
neutrons themselves have no charge and are non-ionizing, they are harder to
detect than X-rays. Detection relies on the absorption of the neutron by an
atomic nucleus with the simultaneous emission of a g-ray photon, often
referred to as an (n,g) reaction. Since the absorbing material must absorb
neutrons and be capable of existing in gaseous form, the choice of substances is
limited. The most common is 3He gas, which relies on the reaction:

3Heþ 1n ! 4Heþ g

Another suitable gas is BF3, which uses the absorption properties of the isotope
10B, releasing an energetic a particle and 7Li:

10Bþ 1n ! 7Liþ a:

BF3 is usually isotopically enriched as normal boron consists of only 20% of
the strongly absorbing isotope. For thermal neutrons the 3He gas detector is
considered superior, but for long-wavelength neutrons BF3 is preferred, but is
rarely used nowadays because of the corrosive and toxic nature of the gas. Since
the capture cross-section of gases is small, 3He detectors are usually operated
above atmospheric pressure, 5–10 bar. They are typically 10–15 cm long and
2–5 cm in diameter.
Recent developments have led to the production of single-tube 3He detectors

with position sensitivity. This is achieved by measuring the charge developed at
both ends of a resistive anode wire, a larger charge being related to a shorter
distance travelled by the electronic pulse along the wire. Exploited for high-
resolution angle-dispersive powder diffractometers such as D2B (described
later), they allow a greater solid angle to be measured without compromising
instrumental resolution. Furthermore, the low-angle asymmetry due to the
curvature of the Debye–Scherrer diffraction cones can be removed via software,
since the axial position of each detected neutron is known.
Neutron PSDs are also 3He based, though they are also filled with a

quenching gas such as a mixture of xenon (Xe) and methane (CH4). The
original PSDs consisted of an array of vertical wires at fixed intervals chosen to
correspond to a convenient angle, e.g. 0.11. They are very large, can be both
one- and two-dimensional, and can cover a very large solid angle. A recent
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development to improve the spatial resolution has been the development of
microstrips which replace the conventional anode wires.
Scintillation detectors have been developed using, for example, 6Li or Gd as

the absorbing atoms. The latter may be used in the mixed oxide-sulfide
Gd2O3.Gd2S3, which is able to convert the primary g-ray photons directly into
a UV-visible photon. The latter is counted using a conventional photomulti-
plier tube. With scintillation detectors, the neutron is detected in a smaller
volume of physical space compared to a gas detector because of the higher
density of the absorbing material. This has advantages for some applications. A
potential disadvantage is that they may detect sample fluorescence due to (n,g)
reactions within the sample itself.
One of the problems in detecting neutrons is the background from rogue

g-rays from the source, plus those produced by interaction of neutrons with the
monochromator or the sample. The electronics controlling the detector must
therefore be capable of discriminating the energy of the g-ray so that only those
produced in the detector are counted. In addition, the detector must be shielded
from the general cloud of neutrons that surrounds the diffractometer. The
shielding is very thick: many centimetres of polythene are used to slow down
any fast neutrons, the background neutrons then being absorbed by B4C-doped
plastic or rubber.

2.9.4 Monochromatic Techniques

Neutron powder diffractometers that exploit a monochromatic beam are
normally situated at reactors, which have a steady-state output of neutrons,
though the SINQ at the Paul Scherrer Institute in Switzerland is a continuous
spallation source. As with synchrotron X-rays, neutrons of a particular wave-
length are selected from the polychromatic beam using a single-crystal mon-
ochromator, and the diffraction pattern is measured as a function of angle.
Because of the size of neutron beams, very large single crystals are required for

neutron monochromators, e.g. 105mm3. Typical materials used are Cu, Be, C (as
pyrolytic graphite) Ge, and Si. However, since the neutron beams are of relatively
low intensity, perfect Ge and Si crystals have too small a band-pass (Dl/l) to be
of practical use. To improve the transmitted intensity it is necessary to increase
the mosaic spread so that a wider range of neutron wavelengths is reflected. One
method for doing this is to squash the crystals to broaden the mosaicity.
However, in practice this can result in inhomogeneous or broken crystals and,
consequently, poorly monochromated neutron beams. A more recent develop-
ment is to produce fine slices of germanium crystal, and to glue them together
with near-perfect alignment, thus simulating the effect of mosaic blocks.
Since there is no issue of polarisation to consider (unlike synchrotron

X-rays), and given the massive construction of neutron facilities, neutron
diffractometers operate in the horizontal plane, and only a single-bounce mon-
ochromator is necessary. The position of the diffractometer on the floor is
usually fixed, thus defining the monochromator take-off angle 2yM. A wave-
length is selected by rotating the monochromator crystal about its vertical axis
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until a chosen set of lattice planes is aligned correctly to divert neutrons of a
specific wavelength towards the axis of the diffractometer. Since the spacings
between lattice planes in a crystal have specific values, only certain wavelengths
are available, despite the white radiation from the source. In a few instruments,
the whole diffractometer can be rotated on air pads about the monochromator
axis, thus providing a greater choice of 2yM and hence incident wavelengths (and
resolution). On the high-resolution instruments D1A and D2B7 at the ILL, the
Ge monochromator crystals are cut so that the normals to the 110 planes lie
along the vertical rotation axis of the monochromator. Thus planes of the type
hhl are available to monochromate the incident neutron radiation. Owing to the
crystal symmetry and structure, the reflections hhl with non-zero structure
factors are those that have h and l either both odd or both even, with
2h+ l¼ 4n if both are even. Typical planes used therefore are 111, 113, 115,
335, etc., since reflections with odd h values do not diffract the unwanted
harmonic wavelength l/2 (since 4h+2l a 4n for reflection 2h 2h 2l).
Monochromator crystals may be cut asymmetrically so that focussing of the

beam occurs in the horizontal plane, providing a modest increase in flux at the
sample. Vertical focussing is possible by curving the whole monochromator.
Typically, several crystals are required to achieve this (Figure 2.19). One
disadvantage of vertical focussing is increased axial divergence leading to
increased asymmetry in the shape of peaks at low 2y angles. However, the
significant increase in intensity is certainly worthwhile. Neutron fluxes are low
and experiments are typically flux limited.
Filters may be used in conjunction with a monochromator. If the mono-

chromator is designed to select a particular wavelength, l, then it may also
diffract shorter harmonics at the same monochromator angle such as l/2, l/3,
etc. If the incident flux of neutrons is intense for the shorter wavelengths, then
relatively large amounts of the unwanted wavelengths will be present. The
shorter wavelengths can often be eliminated by the use of a neutron filter made

Figure 2.19 Schematic showing vertical focusing with a curved array of monoch
romator crystals.
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of a material such as pyrolytic graphite or beryllium cooled in liquid nitrogen.
Filters work by diffracting the shorter wavelengths out of the main beam into a
neutron absorbing material. The d-spacing of the filter is chosen such that the
ratio l/2dfilter 4 1 so that the desired wavelength passes straight through the
filter without being affected by Bragg diffraction.
Figure 2.20 shows the layout of the high-resolution powder neutron

diffractometer D2B at the ILL. ‘‘High-resolution’’ refers to the fact that the
instrumental resolution function results in narrow peaks at high scattering
angles. This is achieved by having a large monochromator take-off angle, which
for this instrument is 1351. When 2y E2yM, so that the incident, mono-
chromated, and diffracted beams are in a ‘‘Z-shaped’’ configuration, a focussing
effect occurs that produces a minimum in the resolution function (Figure 2.21).
The large value of the monochromator angle is also required so that the

wavelength dispersion, Dl, of the incident beam is kept small, which is neces-
sary for narrow diffraction peak widths. To obtain high resolution, the instru-
ment must also be able to detect neutrons with a well-defined Bragg angle. This
is achieved by the use of Söller collimators placed in front of each detector, to
select the trajectory of the detected neutrons. Finally, given the relatively low
flux available at neutron sources, instrument efficiency is greatly improved by
using many detectors in parallel, e.g.D2B has 64 detectors separated by 2.51, so
scanning by 2.51 records a diffraction pattern over 1601.

Figure 2.20 Schematic of the high resolution powder diffractometer D2B (ref. 7) at
ILL, Grenoble.
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Where rapid count times are desired it is necessary to replace a scanning
detector system with a PSD that covers a wide range of scattering angle, such as
on the D208,9 instrument at ILL. This has a microstrip detector consisting of
1536 channels each of width 0.11. To obtain optimum neutron flux at the sample,
the instrument has a choice of monochromator crystals, including pyrolytic
graphite with a large mosaic spread, and a low take-off angle of 421 to increase
Dl/l. The 002 graphite reflection yields a wavelength of 2.4 Å. In contrast to the
X-ray case, where the absorption of long-wavelength X-rays would be a severe
problem, the long wavelengths are ideal with neutrons since neutrons are not
easily absorbed and the peak-to-background signal is drastically improved as
detected intensity increases as a function of l3. The contaminating l/2 harmonic,
via the 004 reflection of the monochromator, is eliminated by the use of a
graphite filter between the monochromator and the sample.

2.9.5 Time-of-Flight Techniques

Time of flight (TOF) techniques use a polychromatic beam and a pulsed source
of neutrons, and exploit the fact that a neutron’s wavelength is inversely
proportional to its velocity, as indicated by the De Broglie relationship. Thus
long-wavelength neutrons are slower than short-wavelength neutrons and take
more time to travel from the source to the detector. By recording the arrival
time of each neutron of a particular pulse in the detector, its wavelength and the
corresponding d-spacing of the diffracting planes can be calculated since:

l ¼ h=mnv ¼ ht=mnL ¼ 2dsiny

where t is the time of flight and L is the length of the flight path. TOF machines
have no moving detectors, which can be an advantage with complex sample

Figure 2.21 Typical resolution function of a high resolution powder diffractometer.
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environments, such as high-pressure cells, where fixed entrance and exit
windows can be designed into the apparatus. Banks of detectors covering a
large proportion of the volume around the sample are also common.
The pulsed source is usually a spallation source (e.g. ISIS in the UK; KENS

in Japan; IPNS, LANCE, and SNS in the USA), where accelerated protons are
concentrated into tight bunches and are fired at the target with a repetition rate
of up to 60Hz. Note, however, that a 5Hz pulsed reactor exists at Dubna in
Russia, and it is possible to produce pulsed beams from a steady-state source
using choppers.
As with angle-dispersive neutron diffractometers, the design of TOF powder

diffractometers can be optimised for either high resolution or high intensity or
some compromise of both. An understanding of the factors that affect the
resolution is therefore important. The relative uncertainty in d-spacing, dd/d,
may be determined from the equation:

ðdd=dÞ2 ¼ ðdt=tÞ2 þ ðdL=LÞ2 þ ðcoty dyÞ2

where dt, dL, and dy are the uncertainties in time of flight, path length, and
scattering angle, respectively.
From the above equation it may be deduced that high d-spacing resolution

may be achieved by (a) using a long flight path, L, which also increases
the TOF, t, and (b) by positioning the detectors at a high scattering angle,
2y. The uncertainty in scattering angle depends on the size of the sample and
the detector aperture, and can be reduced by increasing the length of the
secondary flight path, i.e. the sample-to-detector distance. However, an
increase in the length of the secondary flight path decreases the solid angle
seen by the detectors (for a fixed number of detectors), so that in practice the
length of the secondary flight path is of the order of 1–2m and the primary
flight path, from the pulsed source to the sample, is considerably longer. One
factor that leads to an uncertainty in the path length is the thickness of neutron
detectors: for very high-resolution instruments, thin scintillation counters are
generally preferable to the fatter gas-filled detectors. The uncertainty in TOF is
largely due to the duration of the initial pulse, which is broadened by the
passage of the beam through the moderator: thus the thickness of the moder-
ator is a compromise between moderating the wavelength spectrum of the
neutron pulse and maintaining its time structure.
The high-resolution powder diffractometer HRPD10 at ISIS has a very long

flight path of about 100m with detectors at low angle, 901, and at back
scattering (Figure 2.22). The instrument has two sample positions, but in
practice the shorter sample-to-detector distance is preferred given the greater
solid angle for the high-angle detectors. The back-scattering detectors provide
data with the highest resolution since coty in the resolution function is then
close to zero. The repetition rate of the ISIS source, 50Hz, and choppers in the
primary flight path prevent the occurrence of ‘‘frame overlap’’, whereby fast
neutrons overtake slower neutrons from a previous pulse before they arrive in
the detector.
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The different detector banks see different ranges of d-spacing. Thus if the
range of useful wavelengths is, say, 0.5–4 Å, then the d-spacings measured by a
detector at 1601 are 0.254–2.031 Å. However, the detectors at 901 will simul-
taneously measure peaks with d-spacings up to 2.83 Å, while those at 301 will
measure d-spacings up to 7.7 Å. Thus, the low-angle detectors can be used to
measure the larger d-spacings, where peak resolution is not so critical given the
lower density of peaks in this region.
Data from TOF machines are conveniently displayed as counts against TOF

(or d-spacing) (Figure 2.23), which is comparable to the X-ray energy-disper-
sive case of counts against energy. With monochromatic radiation one usually
displays counts against angle. Comparison between monochromatic and TOF
powder neutron diffraction techniques shows that each has its advantages.
With TOF, a large proportion of the neutrons of the polychromatic source is
exploited, and, for a high-resolution pattern, all channels are collected simul-
taneously, rather than scanning a detector bank. Peak shapes are, however,
more complicated to model (reflecting the time structure of each neutron pulse,
which is affected by the time spent by neutrons coming to partial thermal
equilibrium in passing through the monochromator) and there are various
energy-dependent factors to be taken into consideration, such as the detailed
intensity distribution of the source, and the effects of absorption by the sample.
With monochromatic techniques, reflections from large d-spacings are usually
easier to measure, and modelling the peak shapes and diffracted intensities is
more straightforward.

Figure 2.22 Schematic of the HRPD TOF diffractometer10 at ISIS. The detector
banks at 1601o 2yo 1761 (backscattering) and 801 1001 are based
on ZnS scintillators. The low angle detector bank 281 321 uses
12mmdiameter 3He gas tubes at a pressure of 10 bar. The three banks
have approximate resolutions Dd/d of 4� 10�4, 2� 10�3, and 2� 10�2,
respectively.
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CHAPTER 3

The Intensity of a Bragg Reflection

R. B. VON DREELEa AND J. RODRIGUEZ-CARVAJALb

a Intense Pulsed Neutron Source/Advanced Photon Source, Argonne
National Laboratory, Argonne, IL, USA; b Institut Laue-Langevin,
Grenoble, France

3.1 INTRODUCTION

Visually, the graph of a powder pattern consists of a sequence of peaks (Bragg
reflections) resting on a slowly varying background or as a pattern of rings
arranged around a common center (Figure 3.1) on a two-dimensional area
detector. To create this pattern, either light in the form of X-rays, or neutrons,
is scattered from a polycrystalline sample containing many small crystallites
and the scattered intensity is recorded.
In this chapter we discuss the intensities of these peaks; other aspects of this

pattern and the experimental procedures for its measurement are considered
elsewhere in this volume.

3.2 SINGLE ATOM SCATTERING THEORY

3.2.1 X-ray Scattering

The scattering of X-rays or neutrons by any material occurs by interaction with
the atoms that make up the substance. In the case of X-rays, the scattering
process occurs between the photon and the electrons surrounding the atomic
nuclei. The classical description1,2 of scattering of the electric wave component
of the photon by an electron gives complete scattering of the perpendicular
component and an angular dependence for the parallel component. Conse-
quently, the scattered intensity at some distance, R, becomes partially polarized,
with the intensity given by:

I

I0
¼ m0

4p

� �2 e4
m2

e

1þ cos2 2Y
2

� �
1

R2
¼ se

1þ cos2 2Y
2

� �
1

R2
ð1Þ
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This is known as the Thompson scattering formula. The value of the factors
containing the constants m0, e, and me is se¼ 7.94� 10 26 cm2 and is the
classical electron scattering cross section. As there is no change in the energy
of the scattered wave, it retains its phase relationship to the incident wave and
this scattering is thus coherent. At a scattering angle of 2Y¼ 901 the polari-
zation is complete with only the electric component perpendicular to the
scattering plane retained.
This classical treatment ignores the requirement that both energy and

momentum must be conserved in a collision between the X-ray photon and
the electron. Application of these rules requires that the X-ray photon loses
energy in the collision that depends on the scattering angle. This is known as
Compton scattering,2 and because the incident and scattered X-rays have
different energies and their phase relations are lost, this is an incoherent scattering
process, and only Compton scattering is possible from an isolated electron.
However, electrons are bound to atoms that are gathered together in, usually,

Figure 3.1 Two dimensional X ray powder pattern from hen egg white lysozyme
(HEWL) crystallized from 1.25M NaCl, pH 4.0, 0.05M phthalate buffer;
taken at 20 keV as a 30 s image plate exposure on beamline 1 BM at the
Advanced Photon Source, Argonne National Laboratory.
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solid materials of interest and so they are not free. Consequently, both coherent
and incoherent scattering of X-rays from these electrons are possible. When the
electron remains bound, there is no change in X-ray energy and so the scattering
is coherent. Alternatively, if the electron is ejected from the atom there is a gain in
its energy and a corresponding loss in the X-ray energy and this is an incoherent
process. The total scattering (coherent+ incoherent) is given by the Thompson
formula; the coherent part gives rise to Bragg scattering and the incoherent part
contributes to the background of a powder measurement.
The quantum mechanical treatment of the electron distribution about an

isolated atom nucleus gives an electron density, r(r), which is peaked at the
nuclear position and falls off smoothly as a function of the distance from the
nucleus.2 Each unit of volume, dv, around this center can scatter X-rays and
those that are scattered coherently will interfere with those scattered from other
unit volumes near this atom, depending on the scattering angle. From Chapter
1 we know that the interference occurs as a phase shift, f, between the scattered
waves parallel to the vector, S, from two unit volumes separated by r by:

j ¼ 2p
l
r � ðS� S0Þ ¼ 2pðr � sÞ ð2Þ

where the incident wave is parallel to S0. Since r is a vector defined in a real
space coordinate system, dimensionally s must be described in a reciprocal
space coordinate system. Consequently, by integrating the interference from all
possible real space vectors around the atom center, the scattering from the
electrons around an atom can be described as:

f ðsÞ ¼
ZN
N

rðrÞ e2p iðr�sÞd r ¼ f ðsÞ ð3Þ

which is the Fourier transform of r(r) and is known as the atomic scattering
factor or form factor. The electron distribution in an isolated atom can be
assumed to be spherically symmetric, thus f(s) only depends on the magnitude
of s (s¼ sinY/l). These are tabulated3 and may be efficiently represented by a
sum of four exponential terms:

f ðsÞ ¼ c0 þ
X4
i¼1

aie
ð bis

2Þ ð4Þ

to sufficient precision for crystallographic calculations. Since r(r) is peaked at
the atomic nucleus and falls off smoothly and monotonically to zero at large
distances then the Fourier transform, f(s), also is peaked at s¼ 0 (forward
scattering angles) and falls off smoothly and monotonically at large s (back
scattering angles). Thus, the maximum at f(0) is just the atomic number, Z,
corrected for valence charge:

f ð0Þ ¼ c0 þ
X4
i¼1

ai ¼ Zð�valenceÞ ð5Þ
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The falloff of f(s) with s is mainly responsible for the general appearance of
an X-ray powder pattern where the highest intensity peaks occur at small
scattering angles (i.e. small s) and the pattern quickly falls off in peak intensity
with increasing scattering angle (i.e. increasing s).
Because the valence electron distributions are found in the outer atomic

orbitals, they are generally smeared out over a larger volume of space around
the atomic nucleus than the inner or core electrons. Consequently, their contri-
bution to the atomic scattering factor is largely confined to the small region of s
near s¼ 0 and the choice of neutral atom or valence charged scattering factor
only affects the lowest angle part of the scattering. Similarly, the nonspherical
electron distributions arising from atomic orbital hybridization (e.g. sp3 in
carbon or silicon) occur over a large volume and the resulting nonspherical
deformation of the atomic scattering factor is also evident only at small s.
When the X-ray energy is nearly coincident with the binding energy of any of

the electrons in an atom, the scattering process is affected by the possible
absorption of the photon and subsequent ejection of the electron. There is a
sharp rise in the X-ray absorption with increasing photon energy at each of the
electron binding energies (hence the term absorption edge). The principal effect
to the coherent scattering is a shift in the phase between the incident wave and
the scattered wave via a resonance effect. This phase shift creates an imaginary
component to the atomic scattering factor as well as a modification of the real
part:

f ðsÞ ¼ f0ðsÞ þ f 0 þ if 00 ð6Þ

where f0(s) is the atomic scattering factor described in Equation (3). As the
effect is largely of concern for absorption via inner shell (K for light elements
and L for heavier ones) electrons that have distributions confined close to the
atomic nucleus, these anomalous or resonance scattering factors are independent
of s, but are strongly dependent on l. Values of f0 and f00 are tabulated3 for the
commonly used characteristic X-ray wavelengths obtained from laboratory
sources and software4 is available to compute values over the range usually
used in synchrotron sources. These values are reasonably accurate for X-ray
energies more than a few eV from an absorption edge but can be seriously in
error very close to an edge due to valence and chemical bonding effects that
both shift the edge and modify its shape.
The incoherent scattering is then found by difference via the Thompson

formula as:

Iincoh

I0
¼ se

1þ cos2 2Y
2

� �
1

R2
1� f 2ðsÞ
� �

ð7Þ

where, by the product of the atom scattering factor and its complex conjugate:

f 2ðsÞ ¼ f ðsÞf �ðsÞ ¼ f0ðsÞ þ f 0½ �2þf 002 ð8Þ

and is both polarized and increases with scattering angle, thus making an
increased contribution to background scattering with angle. Moreover, when
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the photon energy is greater than the appropriate K- or L-electron binding
energy, the empty orbital left after the electron is ejected is immediately refilled,
giving rise to the emission of a new photon. This X-ray fluorescence is isotropic
and can also contribute to the background scattering.

3.2.2 Neutron Scattering

The wave mechanical description5 of a moving neutron implies an associated
wavelength as given by the de Broglie relation:

l ¼ h

mnv
ð9Þ

Given the values of the constants (h¼Planck constant, mn¼ neutron mass), the
wavelength of a neutron moving at 2200m s 1 is l¼ 1.798 Å, which is coin-
cident with the range of interatomic distances as well as the commonly used
X-ray wavelengths used in crystal structure analysis. At this velocity the
neutron has a kinetic energy (E¼ 25.3meV) comparable to typical molecular
and lattice vibrational energy transitions. The set of relations between the
wavelength, wavevector, velocity, energy and temperature of a neutron are then:

lðÅÞ ¼ 2p
1

kðÅ 1Þ
¼ 3:956

1

vðkms 1Þ
¼ 9:045

1

EðmeVÞ
p ¼ 1

TðKÞ
p

E ¼ 0:08617T ¼ 5:227v2 ¼ 81:81
1

l 2
¼ 2:072k2

ð10Þ

A neutron is uncharged but has a magnetic moment (spin of �1/2) so it can
closely approach the atomic nucleus and be scattered by nuclear forces or via
spin–spin interactions with both nuclear magnetic moments and unpaired
electrons in magnetic atoms or ions. There is no polarization comparable to
that of X-rays although neutron beams can be produced where the magnetic
moments are aligned or spin polarized. Because the dimensions over which the
nuclear forces operate are about 104–105� smaller than the neutron wave-
length, nuclear scattering is just point scattering and the observed neutron
scattering factor or scattering length, b, for a given element is independent of s.
A total neutron scattering cross section, sTot, is then given by:

sTot ¼ 4p b2 ð11Þ

The actual values of the atom scattering length depend on the nature of the
neutron–nucleus interaction, which cannot be calculated with sufficient preci-
sion given our current knowledge of nuclear theory. Moreover, they also
depend on the nuclear spin state of the individual atomic nuclei as well as
the different scattering powers of the isotopes and their abundance within the
sample (usually the ‘‘natural’’ abundance). This distribution of scattering
lengths over the individual atoms of a given element gives rise to both coherent
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and incoherent scattering, depending on how the phase relation between the
incident and scattered neutrons is changed. As with the X-ray case:

sTot ¼ scoh þ sincoh ð12Þ

where:

scoh ¼ 4p b2 ð13Þ

and:

sincoh ¼ 4p ðb2 � b2Þ ð14Þ

Note that one term is the average of the squares and the other is the square of
the average. Because of the complexities that determine the observed values of
neutron cross sections and scattering lengths, these must be determined experi-
mentally, and values are tabulated. These change from time-to-time as the
measurements improve; as of writing the most recent values are in ref. 6. The
unit used for these cross sections is the ‘‘barn’’ (10 24 cm2) and scattering
lengths are usually given in units of 10 12 cm or 10 15m (fm). Unlike X-ray
scattering factors which monotonically increase with atomic number, neutron
scattering lengths vary erratically with atomic number and show considerable
variation by isotope. Thus, adjacent elements in the Periodic Table may have
very different neutron scattering lengths, which can facilitate their discrimina-
tion. The values for b are from about �3.7 fm to about +12.1 fm and give
scattering cross sections that are roughly the same order of magnitude as the
corresponding X-ray scattering cross sections. However, for high atomic
number elements the large number of electrons will give X-ray scattering cross
sections that are much larger than the corresponding neutron scattering cross
sections, particularly at low s.

3.3 SCATTERING FROM A CRYSTAL LATTICE

The arrangement of atoms in a crystal is best described as an infinitely repeating
motif or unit cell of atoms in a three-dimensional lattice. The arrangement of
atoms within the unit cell may exhibit its own repetition properties as a
collection or group of symmetry operations; these must conform to one of the
230 possible space groups.7 The usual dimensions of the unit cell (2 – 1001 Å on
a side) are sufficiently small that the infinite lattice approximation is valid for
crystals about 1 mm on a side or larger. Consequently, the scattering density
(electrons for X-ray scattering or neutron scattering lengths) can be represented
by the Fourier series:

rðrÞ ¼ 1

Vc

X
h

Fhe
2p iðh�rÞ ð15Þ

where Vc is the unit cell volume. The Fourier coefficients, Fh, are known as
structure factors and in general are complex quantities. Just as the vectors r

63The Intensity of a Bragg Reflection



cover the real space outlined by the crystal unit cell, the vectors h cover a
reciprocal space coordinate system dimensioned in Å 1 which is filled with
the values of Fh. The infinite lattice approximation ensures that the Fh are
d-functions in this reciprocal space and are located as a reciprocal lattice array
with the dimensions of reciprocal lattice parameters. As discussed in Chapter 1,
if the translation vectors of the crystal lattice are denoted as a, b, c, then the
reciprocal lattice translation vectors are a*, b*, c*, where a* is perpendicular to
the b–c plane, b* is perpendicular to the a–c plane and c* is perpendicular to the
a–b plane. Moreover, their magnitudes are such that:

a� � a ¼ b� � b ¼ c� � c ¼ 1 ð16Þ
From this one can see that the perpendicular distance between the b–c planes
on adjacent unit cells along a is the reciprocal of |a*|. We can denote the stack
of these b–c planes by their respective intercepts on the abc triplet of real space
axes as (a/1, b/0, c/0), or simply (100). Similarly, another stack of planes can be
constructed by selection of reciprocal integer intercepts (a/h, b/k, c/l) and
denote them with just the denominators (hkl). These are the Miller indices for
this stack of planes; they correspond to a lattice point in reciprocal space
coincident with the vector h which has an associated structure factor Fh as
defined in Equation (15). Because of the connection between the real and
reciprocal lattices, the vector h is perpendicular to its respective stack of planes
and the interplanar spacing is the reciprocal of the magnitude of h; this is the
d-spacing for these planes.
The Fourier transform of Equation (15) is:

FðhÞ ¼
Z
V

rðrÞe2p iðh�rÞdr ð17Þ

and gives the structure factor from the scattering density. The integral is over
the real space volume and if confined to the unit cell gives structure factors that
are an ‘‘absolute scale’’. Alternatively, one can postulate that the scattering
density is localized on the atom centers and assign a scattering factor, f(s), to
each one. The integral then becomes a sum over the N atom positions in the
unit cell and if the vector h is the dimensionless indices (hkl) and the vector r
becomes the fractional coordinates, xi, for each of the atoms:

FðhÞ ¼
XN
i¼1

fiðshÞe2p iðh�xiÞ

FðhÞ ¼
XN
i¼1

fiðshÞfcos½2pðh � xiÞ� þ i sin½2pðh � xiÞ�g

FðhÞ ¼ AðhÞ þ iBðhÞ

AðhÞ ¼
XN
i¼1

fiðshÞ cos½2pðh � xiÞ� BðhÞ ¼
XN
i¼1

fiðshÞ sin½2pðh � xiÞ�

FðhÞ ¼ FðhÞj jeifðhÞ

ð18Þ
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The second form of Equation (18) is the expansion of the complex exponential
into its trigonometric form showing the real and imaginary parts of the
structure factor. The last form shows that the structure factor can be expressed
as a magnitude and a phase angle, f(h). A possible simplification of Equation
(18) can occur if the atoms are in positions that are related by an inversion
center. If the unit cell origin is chosen to coincide with the inversion center then
for pairs of atoms related by that inversion the sine terms in Equation (18) are
of opposite sign and cancel to give:

FðhÞ ¼
XN
i¼1

fiðshÞ cos½2pðh � xiÞ� ð19Þ

Thus the structure factor for a centrosymmetric arrangement of atoms, with
appropriate origin choice, can consist of just the cosine terms. Most computer
programs that are used for crystallographic structure factor calculations will
use this time saving simplification. Since f(s) can be complex, F(h) may also be
complex even for a centrosymmetric structure. Also, if the unit cell origin is
chosen so that it does not coincide with an inversion center then Equation (19)
is not valid. Atom arrangements that lack an inversion center are noncentro-
symmetric and their structure factor is given by Equation (18).
The scattered intensity (Bragg scattering) from a small single crystal is

determined by the interference between the individual scattering centers that
make up the crystal structure:

IðhÞ ¼
ZZ
rirj

rðriÞrðrjÞe2p iðh�riÞe 2p iðh�rjÞdridrj

IðhÞ ¼ FðhÞF�ðhÞ
IðhÞ ¼ A2ðhÞ þ B2ðhÞ

ð20Þ

or the self convolution of the structure factors (the * means complex conjugate).
Thus, only the magnitude of the structure factor can be inferred from a
measurement of the scattered intensity and the phase, f(h), is lost. Conse-
quently, one can not directly recover the scattering density via Equation (15);
this is known as the phase problem in crystallography.
As one can see from the forgoing, there is a strong connection between the

Bragg intensities observed in X-ray or neutron scattering and stacks of planes
having reciprocal integral intercepts with the crystal lattice; this is embodied in
the frequent use of the term Bragg reflections for this type of scattering.

3.3.1 Thermal Motion Effects

In the forgoing we have assumed that the atoms are in fixed positions within the
crystal lattice. However, in reality the atoms are not fixed but are in at least an
oscillation about their equilibrium positions that depends on temperature. An
X-ray or neutron diffraction experiment records a time average of the possible
instantaneous atom positions; this smears the scattering density about the
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average position to an extent that depends on this thermal displacement. As a
result Equation (18) becomes:

FðhÞ ¼
XN
i¼1

fiðsÞe2p iðh�xiÞe 8p2s2ou2
i
4 ð21Þ

where ou2i4 is the mean square displacement of the ith-atom from its equili-
brium position, xi. In many cases these factors are not the same in all directions
(e.g. isotropic) but describe an ellipsoidal distribution. These anisotropic ther-
mal displacement factors modify Equation (18) as:

FðhÞ ¼
XN
i¼1

fiðsÞe2p iðh�xiÞe 2p2½u11h2a�2þu22k
2b�2þu33l

2c�2þ2u12hka
�b�þ2u13hla

�c�þ2u23klb
�c��

ð22Þ

In terms of the Debye–Waller factor, B, which is used in some crystallographic
computing codes, Equation (21) is:

FðhÞ ¼
XN
i¼1

fiðsÞe2p iðh�xiÞe Bs2 ð23Þ

Notably, the anisotropic thermal displacement factors form the elements of a
3� 3 symmetric matrix. The physically meaningful form of this matrix when it
is positive-definite is that of an ellipsoidal probability surface centered at the
equilibrium atom position. An alternative form for Equation (22) frequently
used in crystallography:

FðhÞ ¼
XN
i¼1

fiðsÞe2p iðh�xiÞe hTbh ð24Þ

uses the 2nd-rank symmetric tensor form of the thermal displacement, b,
containing the unique elements b11, b22, b33, b12, b13 and b23.

3.3.2 The Lorentz Factor

In an experiment to measure the scattered intensity, Ih, from a small single
crystal the scattering power is spread over a small and non-zero volume of
reciprocal space arising from a combination of slight incident beam angular
and energy divergence, and a mosaic spread within the crystal. To sample this
intensity accurately, a diffraction experiment is devised to scan over this
reciprocal space volume and record the integrated intensity, which can be
directly related to the square of the structure factors given in Equations (18–24)
and be proportional to the illuminated sample volume. The usual means of
scanning over the requisite region of reciprocal space is to rotate the crystal so
that the selected vector h passes through the reflection condition of s¼ h; the
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corresponding integral yields:

Qh ¼ se
1þ cos2 2Y
2 sin 2Y

� �
l3

V2
c

F2
h ð25Þ

for the crystalline X-ray reflecting power,1,2 where the term in l3/sin2Y is
known as the Lorentz factor. From the Thompson Equation (1), the remaining
part in parentheses is the polarization factor for an unpolarized incident X-ray
beam. Together they are referred as the Lorentz-polarization factor.
Most X-ray diffraction experiments are done with an incident beam that is

partially polarized either by use of monochromators or from the nature of the
source itself (e.g. synchrotron radiation). The degree of polarization, P, defined as:

P ¼ I?
I? þ Ijj

ð26Þ

can be 95% or greater for synchrotron radiation. The two terms of the
Thompson formula are then modified by the effect of this incident beam
polarization. Assuming that the perpendicular component of the incident beam
is perpendicular to the diffraction scattering plane then the two terms are
modified as:

Qh ¼ se
Pþ ð1� PÞ cos2 2Y

2 sin 2Y

� �
l3

V2
c

F2
h ð27Þ

In the case of neutron diffraction there is no polarization effect, but the Lorentz
factor applies so that the neutron reflecting power is:

Qh ¼
1

sin 2Y

� �
l3

V2
c

F2
h ð28Þ

3.3.3 Scattering from a Modulated Crystal Lattice

In some crystalline materials a phase transition on lowering the temperature
may produce a modulated structure. This is characterized by the appearance of
‘‘satellite’’ or ‘‘superstructure’’ reflections that are adjacent reflections (called
fundamental reflections) already observed for the high temperature phase. The
superstructure reflections, usually much weaker than fundamental reflections,
can in some cases be indexed by a unit cell that is a multiple of the high
temperature cell. In such a case the term ‘‘commensurate’’ modulated structure
is commonly used. However, the most general case arises when the additional
reflections appear in incommensurate positions in reciprocal space. This dif-
fraction effect is due to a distortion of the high temperature phase normally due
to cooperative displacements of atoms, ordering of mixed occupied sites, or
both. Let us consider the case of a displacive distortion.
The positions of the atoms of the high temperature phase in the whole crystal

can be written as: Rlj¼Rl+ xj, where Rl¼ l1a+ l2b+ l3c is the position vector
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of the origin of the unit cell labeled l¼ (l1, l2, l3) and xj¼ xj a+ yj b+ zj c (with
j¼ 1, 2, . . . N) are the position vectors of the atoms within a unit cell. The fact
that the vector positions xj do not depend on the cell index l is at the origin of
the simplified form of the Bragg intensity [Equation (18–20)] involving only the
content of a single unit cell. In the low temperature structure a modulation
appears as a displacement field ulj, so the positions of the atoms become
Rlj¼Rl+ xj+ ulj with all vectors referred to the unit cell obtained from the
fundamental reflections (‘‘average structure’’). The scattered intensity of a
crystal with this kind of structure cannot be simplified for arbitrary ulj but,
in the situation we are interested in here, a generalized harmonic model, the
displacements can be written as a finite Fourier series:

ulj ¼
X2d
n¼1

Ujqn expf�2pi qnðRl þ f jÞg

¼
Xd
n¼1

½cjn cosf2p qnðRl þ f jÞg þ sjn sinf2p qnðRl þ f jÞg�
ð29Þ

where the vectors qn are called ‘‘modulation vectors’’ and can be referred to the
reciprocal lattice of the high temperature phase. The vectors fj are the phase
reference points and are usually taken as fj¼ xj in the literature of incommen-
surate crystal structures but they can be taken all equal to zero or to a common
vector for a group of atoms.8 In the following we take fj¼ 0 to simplify the
formulas. The Fourier coefficients Ujqn

are complex vectors, verifying
Ujð qnÞ ¼ U�

jqn
, which can be reduced to two real vectors as written in the

second part of the expression. The cosine, cjn, and sine, sjn, vector coefficients
usually have absolute values lower than a fraction of 0.1 Å. Of course the
particular values of their components depend on the choice of the vectors fj.
Notice that the second sum is reduced to half the number of terms because in
the first there exist the terms for q and �q.
More general anharmonic modulations can be considered by extending the

sum in Equation (29) to a higher number of waves, say D; in such a case the D q

vectors are linear combinations of the basic (rationally independent) d q vectors
(doD). In the following we considered only the harmonic model of dimension d.
The scattered amplitude, neglecting thermal vibrations and eventual chemi-

cal disorder for simplicity, by the whole crystal is:

AðsÞ ¼
X
lj

fljðsÞe2pi s�Rlj ¼
X
lj

fjðsÞe2pi s�Rle2pi s�xje2pi s�ulj

¼
X
j

fjðsÞ e2pi s�xj
X
l

e2pi s�Rle2pi s�ulj
ð30Þ

Taking into account the well known Jacobi–Anger expressions:

eiz sinf ¼
XþN

r¼ N

e irfJ rðzÞ; eiz cosf ¼
XþN

r¼ N

e irðfþp=2ÞJ rðzÞ ð31Þ
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where Jr is the Bessel function of order r. An important property of the Bessel
functions is:

J rðzÞ ¼ ð�1ÞrJrðzÞ:

Importantly, for small values of the arguments the Bessel functions behave as:

JrðzÞ ¼
zr

2rr!
þ :::; J0ðzÞ ¼ 1� z2

4
þ ::: ð32Þ

Developing Equation (30) one arrives at the scattered amplitude written in a
more specific form:

AðsÞE
X
j

fje
2pi s�xj

XþN

rc1::rcd ;
rs1::rsd¼ N

Yd
n¼1

fJ rcnð2ps � cjnÞJ rsnð2ps � sjnÞe iprcn=2g

�
X
H

dðs�
X
n

ðrcn þ rsnÞqn �HÞ
ð33Þ

The corresponding intensity is obtained by multiplying Equation (33) by its
complex conjugate. The last sum over reciprocal lattice vectorsH of the average
structure and the delta function, coming from the lattice sum over l, shows that
the intensity in reciprocal space is nearly zero everywhere except for discrete
scattering vectors, s¼ h, given by:

h ¼ Hþ
Xd
n¼1

mnqn ð34Þ

The above expression gives fundamental reflections (h¼H) when all
mn¼ rcn+ rsn¼ 0. For all other cases the Equation (34) corresponds to ‘‘sat-
ellite’’ or ‘‘superstructure’’ reflections.
The structure factor corresponding to a particular reflection h, indexed as in

Equation (34), is given by:

FðhÞ ¼
X
j

fjðhÞe2pi h�xj
XþN

rc1::rcd ;
rs1::rsd¼ N

Yd
n¼1

J rcnð2ph � cjnÞJ rsnð2ph � sjnÞe i prcn=2

¼
X
j

fjðhÞe2pi h�xj gjðhÞ
ð35Þ

The structural parameters characterizing the modulated structure correspond
to the average positions of the atoms, xj, in the average unit cell as well as the
components of the cosine and sine vector terms cjn and sjn. Clearly, the structure
factor is similar to that of a conventional crystal structure but with an atomic
contribution weighted by the rather cumbersome function gj(h) containing the
information about the modulation displacements.
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A further simplification is possible by taking into account the fact that only
the projections along the scattering vector of the vectors cjn and sjn appear in the
amplitude expression. Defining the quantities:

Ujn ¼ ðs � sjnÞ2 þ ðs � cjnÞ2
h i1=2

; sin wjn ¼
s � cjn
Ujn

; cos wjn ¼
s � sjn
Ujn

ð36Þ

The products s � ulj can be written as:

s:ulj ¼
Xd
n¼1

Ujnfsin wjn cosð2p qnRlÞ þ cos wjn sinð2p qnRlÞg

¼
Xd
n¼1

Ujn sinðwjn þ 2p qnRlÞ
ð37Þ

so the structure factor of the reflection h ¼ Hþ
Pd
n¼1

mnqn is also given by:

FðhÞ¼
X
j

fjðhÞe2pi h�xj gjðhÞ ¼
X
j

fjðhÞe2pi h�xj

�
XþN

m1;m2;:::md¼ N

Yd
n¼1

fe imnwjn J mnð2pUjnÞg
ð38Þ

in which the weighting function gj(h) adopts a more compact form.
In practice the infinite sums can be reduced to a maximum number of

harmonics. From Equation (32) it is easily seen that the Bessel functions
diminish rapidly with the order of the satellite. The intensity of a Bragg
reflection, proportional to the square of the structure factor Equation (35) or
Equation (38), is then reduced due to the presence of the Bessel functions.
Let us consider the simplest case. Suppose that we have a pure sinusoidal

(cq¼ 0) wave modulation with a single modulation vector q. The expression of
the structure factor for the satellite reflection h¼H+mq is reduced to:

FðhÞ ¼
X
j

fjðhÞe2pi h�xj J mð2ph � sjÞ

¼
X
j

fjðhÞe2pi ðHþmqÞ�xj J mð2pðHþmqÞ � sjÞ
ð39Þ

One can see that the structure factor for a fundamental reflection is not the
same as that of the non-distorted structure. For the fundamental reflection H

the structure factor is:

FðHÞ ¼
X
j

fjðHÞe2piH�xj J0ð2pH � sjÞ: ð40Þ

In the case of modulated structures having cosine and sine components the
general expressions Equation (35) or Equation (38) should be used and the
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calculation of a particular set of integers {mn¼ rcn+ rsn}n 1,. . .d should be
extended to all integer values rcn and rsn, giving rise to the same set of mn.
Let us consider now a single modulation vector but a structure with cosine and
sine terms in Equation (29), the structure factor Equation (35) for the satellite
h¼H+mq¼H+(rc+ rs)q reduces to:

Fðh ¼ HþmqÞ ¼
X
j

fjðhÞe2pi ðHþmqÞ�xj

�
XþN

rc;rs¼ N

rcþrs¼m

J rcf2pðHþmqÞ � cjgJ rsf2pðHþmqÞ � sjge iprc=2

ð41Þ

The symmetry treatment of incommensurate structures is beyond the scope of
this chapter. From Equation (33) it is readily seen that for indexing, whatever
the reflection of the diffraction pattern of an incommensurately modulated
structure, we need to specify 3+ d integers: (h, k, l, m1, m2 . . .m d). It can be
demonstrated that the observed 3D structure can be considered as a projection
of a periodic structure in 3+ d dimensions over the real 3D space, which is a
hyper-plane not cutting the points of the 3+ d lattice except the origin. The
superspace approach of de Wolff, Janssen and Janner9 is now well established
and has become the routine way of treating the symmetry of the displacive
incommensurate structures. The same approach has been extended to study
general quasiperiodic structures (composite structures and quasicrystals).
We have not considered modulations of the displacement (thermal) param-

eters and occupation parameters. The explicit consideration of these terms,
together with 3+d-dimensional symmetry operators, in the structure factors
gives rise to more complex expressions than those written in this section. The
reader interested in a deeper knowledge of this subject is invited to check
the specialized articles in the existing literature.10,11 An excellent review of the
different structure factor formalisms is provided by Van Smaalen.12

3.3.4 Neutron Magnetic Moment Scattering

The intensity of magnetic Bragg peaks from neutron scattering by magnetically
ordered systems can be calculated in a similar way. The most important
difference is that the scattering amplitude is not a scalar variable. Here we will
give a summary of the most important expressions needed to calculate the
intensity of a Bragg reflection. For more details consult Rossat-Mignod13 and
references therein.
The interaction of neutrons with the magnetic moments of atoms is of

dipolar origin through the magnetic moment of the neutron. The magnetic
moment of atoms is due to the existence of unpaired electrons and it contains,
in general, an orbital and a spin contribution. For our purposes we assume
that there are atoms, in positions R, with magnetic moments that are usually
disordered in the paramagnetic state (8R,hmRit¼ 0, where hit means time
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average) and become frozen (hmRita 0), and eventually ordered, below a
certain temperature. A magnetic structure corresponds to a particular, nearly
static, spatial arrangement of magnetic moments that sets up below the order-
ing temperature. Above the ordering temperature the system is in the para-
magnetic state.
The magnetic structures are commonly represented as a set of arrows

associated with the magnetic moments, with magnitudes and orientations
characteristic of the particular structure.
The magnetic scattering amplitude vector, for a single atom with atomic

moment m, is given by:

aðQÞ ¼ pf ðQÞm? ¼ 1

2
regf ðQÞ m�Qðm �QÞ

Q2

� �

¼ 1

2Q2
regf ðQÞ Q�m�Qð Þ ð42Þ

where re¼ e2/mc2¼ 2.81776� 10 13 cm is the classical radius of the electron, g
(¼ 1.9132) is the gyromagnetic factor, f(Q) is the atomic magnetic form-factor
[Fourier transform of the unpaired electron density, normalized as f(0)¼ 1,
assumed to be spherical], and m> is the component of the atomic moment
perpendicular to the scattering vector Q¼ 2ps. Only the perpendicular com-
ponent of m contributes to the magnetic scattering of neutrons by matter. The
vectorial character of the interaction allows the determination of the magnetic
moment direction with respect to the crystal lattice.
For unpolarized neutrons the nuclear and magnetic intensities are simply

additive and are, in general, of the same order of magnitude. An important
difference between nuclear and magnetic scattering is that the latter is strongly
reduced at high Q. The absence of a ‘‘form factor’’ in the case of nuclear
scattering gives rise to a decrease with Q due only to thermal vibrations,
whereas the magnetic form factor f(Q) in Equation (42) is the Fourier trans-
form of the unpaired electron density having a spatial extension of the order of
magnitude of the neutron wavelength.
The elastically scattered intensity from a crystal, as a function of Q or s, is

proportional to the square of the total amplitude (also called ‘‘magnetic
interaction vector’’):

MT
?ðsÞ ¼

X
lj

pfjðsÞm?lje
2pis�Rlj

¼ p

s2
s�

X
lj

fjðsÞmlje
2pis�Rlj � s¼ 1

s2
s�MTðsÞ � s ð43Þ

The vector MT is the magnetic structure of the whole crystal. The scattered
intensity is calculated by multiplying Equation (43) by its complex conjugate as
usual.
Contrary to most crystal structures, many magnetic structures are incom-

mensurate: the periodicity of the orientation of the magnetic moments is not
commensurate with the underlying crystal structure. This is a consequence of

72 Chapter 3



the existence of competing exchange interactions giving rise to a kind of
frustration in many compounds. We shall develop the Equation (43) using
the formalism of propagation vectors, similar to that of the previous paragraph
on incommensurate crystal structures. This approach has the advantage of
treating commensurate and incommensurate magnetic structures in the same
way. Using this formalism we do not need to use the concept of the magnetic
unit cell even in the case of commensurate structures.

3.3.4.1 Formalism of Propagation Vectors for Describing Magnetic Structures.
Examples of Common Magnetic Structures. If we disregard for the moment
the symmetry properties of the magnetic moment configuration, whatever class
of magnetic structure can be represented by the Fourier series:

mlj ¼
X
kf g

Skj expð�2pi kRlÞ ð44Þ

This defines the magnetic moment of the atom numbered j in the unit cell
having as origin the lattice vector Rl (the atom at Rlj¼Rl+ xj). The k vectors
are defined in reciprocal space and are called propagation vectors of the
magnetic structure. For the description of magnetic structures they can be
restricted to the first Brillouin zone (BZ). The Fourier coefficients Skj are, in
general, complex vectors and must verify the equality Skj¼ S*kj to make the sum
result in a real vector. Even disordered magnetic structures, like that of a spin
glass, may eventually be described with an expression like Equation (44) if
a nearly continuous distribution of k vectors inside the BZ is considered.
In practice, most of the magnetic structures can be described by a small number
(1 to 3) of propagation vectors.
We may have defined Equation (44) in a slightly different manner as is usual

in the literature. Instead of writing Rl in the argument of the exponential
function, one can write Rlj¼Rl+ xj [similarly to fj¼ xj vectors in Equation (29)
for atom displacements]. In such a case the Fourier coefficients, Tkj, of the new
expression are related to those of Equation (44) by a phase factor,
Skj¼Tkjexp(�2 pi kxj), that depends on the atom positions inside the unit cell.
We shall see that the convention we have adopted is more convenient for a
unified description of commensurate and incommensurate magnetic structures.
The formulas above are written in vector form, so they are independent of

the particular frame for describing the magnetic moments, propagation vectors,
atom positions and so on. Atom positions inside the unit cell are normally
referred to on the conventional basis A¼ (a, b, c), so that fractional coordinates
are dimensionless. The Fourier coefficients, Skj, have the same units as mag-
netic moments, usually Bohr magnetons, and their components are given with
respect to the unitary frame of the conventional unit cell U¼ (a/a, b/b,
c/c)¼ (e1, e2, e3). The components of reciprocal lattice vectors of the nuclear
structure, H, and those of the propagation vectors, k, are given with respect to
the reciprocal basis of the conventional unit cell and are also dimensionless.
This is a very important point because in many of the available tables of
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irreducible representations of space groups the k vectors are given with respect
to a primitive basis of the reciprocal lattice b¼ (b1, b2, b3) which coincides with
a*¼ (a1*, a2*, a3*) only for primitive direct lattices. When the Bravais lattice of
the crystal is centered, the set b is obtained from a primitive basis of the direct
cell and not from the Bravais (or conventional) unit cell. Izyumov and colla-
borators14 have introduced a set of vectors B¼ (B1, B2, B3) as a reference frame
for the reciprocal lattice. The set B correspond to the ‘‘Bravais cell’’ of the
reciprocal lattice. This is a frame that is not used by crystallographers and
giving the components of the reciprocal vectors with respect to it is confusing.
We do not recommend the use of this frame for studies of magnetic structures.
The lattice vectors Rl appearing in the argument of the exponential function

are integer linear combinations of the basis vectors of frame A only for
primitive lattices. For centered lattices two formal types of lattice vectors exist:
Rl¼Rn¼ n1a+ n2b+ n3c with ni 2 Z and Rl¼Rn+ tc, where tc is one of the
centering vectors of the lattice with components ti 2 Q. There is nothing special
about these two types of lattice vectors, the different type of components is just
a matter of convention. The minimum set of magnetic atoms to be considered
for describing a magnetic structure, without considering at this stage the
symmetry, should not be related to lattice centering translations. Equation
(44) assures the knowledge of the magnetic moments in the whole crystal when
we know the Fourier coefficients of the elemental set of atoms in the reference
zero-cell R0¼ (0, 0, 0).
Let us describe general types of magnetic structures of increasing degrees of

complexity, using the formalism of propagation vectors through Equation (44).

a. The simplest types of magnetic structures existing in complex crystals
have a single null propagation vector at the centre of the BZ:
k¼ (0,0,0)¼ 0. The Fourier coefficients should be real and can be iden-
tified by the magnetic moments directly:

mlj ¼ S0jexpð�2pi 0RlÞ ¼ S0j ¼ m0j: ð45Þ

This expression tells us that the orientation and magnitudes of the
magnetic moments in all cells of the crystal are identical to those of the
zero-cell. The translational symmetry of the magnetic structure is identical
to that of the crystal structure: the magnetic unit cell is the same as the
chemical cell. This class of magnetic structures may be ferromagnetic,
ferrimagnetic or antiferromagnetic, collinear or non-collinear. The prop-
agation vector at the centre of the BZ does not mean that the magnetic
structure is ferromagnetic. This is only true for Bravais lattices (a single
atom per primitive cell).

Notice that if we had taken the convention for the Fourier series
Equation (44) that puts the global vector position of the atom,
Rlj¼Rl+ xj, in the exponential term the Fourier coefficients Tkj could
not be identified with magnetic moments because of the phase factor
containing the atom positions.

An example of this kind of structure is that of LaMnO3 (Figure 3.2).
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b. The next class of magnetic structures corresponds also to a single propa-
gation vector, in this case of the form: k¼ 1/2H, whereH is a reciprocal lattice
vector. The propagation vectors of this kind correspond to high symmetry
points of the surface of the BZ (Liftchitz points). In this case we have:

mlj ¼Skjexpð�2pi k � RlÞ ¼ Skjexpð�piH � RlÞ
¼Skjð�1ÞH�Rl ¼ Skjð�1Þnl ¼ m0jð�1Þnl

ð46Þ

This expression tells us that the orientation and magnitudes of the
magnetic moments in all cells of the crystal are either identical or opposite
to those of the zero-cell. The translational symmetry is lower than that of
the chemical cell. The magnetic cell can easily be deduced from the

Figure 3.2 Magnetic structure of LaMnO3, space group Pbnm. Mn atoms in position 4b:
1(1/2,0,0), 2(1/2,0,1/2), 3(0,1/2,1/2) and 4(0,1/2,0). Propagation vector k¼ (0, 0,
0). Themagnetic unit cell is identical to the nuclear cell. The magnetic moments
of the four atoms are: 1(u, v, w), 2( u, v, w), 3(u, v, w), 4( u, v, w), with
uE0, v¼ 3.8mB and wE0. The structure is antiferromagnetic with a weak
ferromagnetic component along c and formed by ferromagnetic planes stacked
antiferromagnetically along c. This is the so called A type AF structure in the
perovskite literature.15
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particular values of the propagation vector (see Izyumov, et al.16 for a
classification of magnetic lattices in terms of propagation vectors). The
magnetic structures of this kind are necessarily antiferromagnetic. An
example of this kind of structure is that of Ho2BaNiO5 (Figure 3.3).

The general expression for the Fourier coefficient for the atom j is explicitly
given by:

Skj ¼
1

2
~Rkj þ i~Ikj

n o
expð�2pifkjÞ

¼ 1

2
Rx

kje1 þ R
y
kje2 þ Rz

kje3 þ iðIxkje1 þ I
y
kje2 þ Izkje3Þ

n o
expð�2pifkjÞ

Figure 3.3 Magnetic structure of Ho2BaNiO5, space group Immm. There are only
three magnetic atoms per primitive unit cell. Ni at (0, 0, 0) and Ho at
positions 1(1/2, 0, z), 2( 1/2, 0, z) with z¼ 0.2025. The propagation
vector is k¼ (1/2,0,1/2). The magnetic moments are not in scale, the
amplitude of those of Ho atoms have been arbitrarily multiplied by 0.3 for
representation purposes. The magnetic unit cell doubled along a and c.
The magnetic moments of the three atoms are: Ni(u, 0, w), with
uE 0.59 mB, wE 1.3mB , Ho1(p, 0, q), Ho2(p, 0, q), with pE 0.1 mB
and qE 9mB (ref. 17).
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Only six real parameters define the Skj vectors, so the phase factor fkj is not
generally needed, but it is convenient to use it when particular relations or
constraints between real and imaginary vectors ð~Rkj; ~IkjÞ are given. The mag-
netic moment of the atom j in the unit cell of index l, should be calculated by
using Equation (44), which may be also written in this case as:

mlj ¼
X
kh i

~Rkj cos 2p kRl þ fkj

� �
þ ~Ikj sin 2p kRl þ fkj

� �n o
ð47Þ

where the sum is now extended to half the number of propagation vectors, i.e.
over the total number of pairs (k,�k).
If the magnetic structure represents a helical order the Fourier coefficients

are of the form:

Skj ¼
1

2
m1juj þ im2jvj
� 	

expð�2pifkjÞ; with uj


 

 ¼ vj



 

 ¼ 1;

uj � vj ¼ 0

ð48Þ

where uj and vj are orthogonal unit vectors. If m1j¼m2j the magnetic structure
for the sublattice j corresponds to a classical helix (or spiral) of cylindrical
envelope, if the propagation vector is perpendicular to the plane formed by the
vectors uj and vj. If the propagation vector is within the (u, v) plane, the
structure is called a cycloid. All j atoms have equal magnetic moments. If
m1jam2j the helix (or cycloid) has an elliptical envelope and the moments have
values between min(m1j, m2j) and max(m1j, m2j).
If m2j¼ 0 the magnetic structure corresponds to a modulated sinusoid of

amplitude A¼m1j.
Simple artificial examples of sinusoidal, helical and cycloid magnetic struc-

tures are given in Figure 3.4. In Figure 3.5 there is a real example of
the incommensurate conical structure of DyMn6Ge6: propagation vector
k1¼ (0,0,0) and k2¼ (0,0,d) at the interior of Brillouin Zone.

3.3.4.2 Magnetic Structure Factor. From Equation (43) we can develop in a
compact form the magnetic structure factor of the crystal defined as:

MT ðsÞ ¼ p
X
lj

fjðsÞmlje
2pis�Rlj ¼ p

X
lj

fjðsÞe2pis�Rlj

X
k

Skje
2pik�Rl

¼ p
X
j

fjðsÞe2pis�xj
X
k

Skj

X
l

e2piðs kÞ�RlEp
X
j

fjðsÞe2pis�xj

�
X
k

Skj

X
H

dðs� k�HÞ

ð49Þ

This indicates that the magnetic intensity in reciprocal space occurs at
positions given by:

s ¼ h ¼ Hþ k ð50Þ
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Notice that, contrary to the modulated crystal structures, there is no multiple of
the propagation vector k and no sum within the delta function appearing in
Equation (49) because the absence of the Fourier series included in the
exponential argument. Magnetic diffraction appears like a filter. Each satellite
is decoupled from the rest of the satellites, so if there are different propagation
vectors k there is no interference between them; there is always a phase factor
between the Fourier coefficients Sk corresponding to different propagation
vectors that is not accessible by diffraction methods. Notice also that the
concept of ‘‘fundamental reflections’’ does not apply here because h¼H

corresponds to nuclear reflections. Only when k¼ 0 is there a magnetic contri-
bution on top of the nuclear reflections.
For a particular magnetic reflection indexed as in Equation (50) the magnetic

structure factor of the unit cell is:

MðhÞ ¼ Mh ¼ p
X
j

fjðhÞSkje
2pih�xj ¼ p

X
j

fjð Hþ kj jÞSkje
2piðHþkÞ�xj ð51Þ

(a)

(b)

(c)

b

c

(a)

(c)

(a)

(c)

b

c

b

c

Figure 3.4 Examples of magnetic structures. In all cases the orientation of the lattice
is similar, except in the second view of (b), where the point of view is nearly
along a. (a) Sinusoidal structure with propagation vector k¼ (0,d,0) and
Sk¼ (0,0,w). (b) Helical, or spiral, structure with propagation vector
k¼ (0,d,0) and Sk¼ (ui,0,u). (c) Cycloidal structure with propagation
vector k¼ (0,d,0) and Sk¼ (0,u,ui).
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The constant p¼ reg/2¼ 0.2695 allows the conversion of the Fourier compo-
nents of magnetic moments given in Bohr magnetons into scattering length
units of 10 12 cm.
The intensity of a magnetic Bragg reflection is proportional to the square of

the magnetic interaction vector:

M?h ¼
1

h2
h�Mh � h ¼ e�Mh � e ¼ Mh � ðe �MhÞe ð52Þ

where e is the unit vector along the scattering vector h¼H+ k. For a propa-
gation vector k¼ 0 the intensity of a Bragg reflection for non polarized
neutrons is given by:

Ih ¼ NhN
�
h þM?h �M�

?h; ð53Þ

where Nh¼F(h) is the nuclear structure factor, otherwise only the second term
(pure magnetic scattering) of the sum contributes to the intensity of reflection h.

3.3.4.3 Magnetic Structure Factor when Symmetry is Considered. The sym-
metry properties of the magnetic structures are currently described using two
different approaches: the magnetic Shubnikov groups19,20 and the group
representation analysis.14,16,21 In the general framework for describing mag-
netic structures that we have presented above both approaches can be used. We
stress that the concept of propagation vector(s) of a magnetic structure for
describing their translational symmetry and group representation analysis are

Figure 3.5 Magnetic structure of DyMn6Ge6, space group P6/mmm, aE 5.21 Å,
cE 8.15 Å, propagation vectors k1¼ (0,0,0) and k2¼ (0,0,d) with
d¼ 0.1651. This is a conical structure with a net magnetization along c.
Details can be found in ref. 18.
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more general. The Shubnikov groups can only be strictly used in the special
case of commensurate magnetic structures.
Let us consider that the magnetic atom site j has equivalent atoms labeled as

js (j1, j2, . . . jp) under the application of symmetry operators of the crystal
space group G belonging to the wave vector group Gk. The group Gk is formed
by the set of symmetry operators that leave invariant the propagation
vector: Gk¼ {gAG | gk¼ k’AL*}, where L* is the crystallographic reciprocal
lattice.
The important result of the representation analysis of magnetic structures

is that the Fourier coefficients Sk corresponding to a complete orbit of the
site j are linear combinations of the so-called atomic basis functions of the
relevant active representation.21 The expression of the Fourier coefficients is
given by:

Skjs ¼
X
nl

Cn
nlS

kn
nlðjsÞ ð54Þ

where n labels the active irreducible representation, Gn, of the of the propa-
gation vector group, l labels the component corresponding to the dimension of
the representation Gn, n is an index running between one and the number of
times the representation Gn is contained in the global magnetic representation
GM. Finally the quantities Sk n

nl (js) are constant vectors, in general complex,
obtained by the application of the projection operator formula to axial unit
vectors along the directions of the unit cell axes attached to the site j. These
vectors are similar to the normal modes in lattice dynamics except that they are
axial vectors. An additional sum over n is sometimes necessary when more than
one irreducible representation is involved in the magnetic phase transition. See
ref. 16 for examples and details. In the case where the representation analysis is
fully used the coefficients Cn

nl are the free parameters of the magnetic structure
(they correspond to the order parameters in the Landau theory of phase
transitions) and usually their total number is much lower than the number of
Fourier components of each magnetic atom in the unit cell.
Alternatively, an approach closer to traditional crystallography can be

considered in some cases. The Fourier component k of the magnetic moment
of atom j1, which transforms to the atom js when the symmetry operator gs of
Gk is applied (xjs¼ gsxj1¼ Ss xj1+ ts), is transformed as:

Skjs ¼ MjsSkj1exp �2pifkjs

� 	
ð55Þ

The matrices Mjs and phases fkjs can be deduced from the relations between the
Fourier coefficients and atomic basis functions [Equation (54)]. The matricesMjs

correspond, in the case of commensurate magnetic structures, to the rotational
parts of the magnetic Shubnikov group acting on magnetic moments.
If isotropic thermal motion is considered and if symmetry relations are

established for coupling the different Fourier components, we obtain the
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general expression of the magnetic structure factor:

MðhÞ ¼ p
Xna
j¼1

OjfjðhÞe Bj h=2j j2
X

s¼1;:::p

MjsSkj1exp 2pi Hþ kð Þ S tjf gsxj1 � ckjs

� �� 	
ð56Þ

The sum over j concerns the atoms of the magnetic asymmetric unit for the
wave vector k. So that j labels different sites. The sum over s concerns the
symmetry operators of the wave vector group Gk. The phase factor ckjs has two
components:

ckjs ¼ Fkj þ fkjs ð57Þ

Fkj is a phase factor that is not determined by symmetry. It is a free parameter
and it is significant only for an independent set of magnetic atoms (one orbit)
with respect to another one. The component fkjs is a phase factor determined
by symmetry as shown in Equation (55). The sign of fkjs changes for �k. In the
general case Skj is a complex vector with six components. These six components
per magnetic orbit constitute the parameters that have to be refined from the
diffraction data. Symmetry reduces the number of free parameters per orbit to
be refined. Notice that we have adopted a different phase convention than that
used in ref. 22.
For a commensurate magnetic structure one can calculate the magnetic

structure factor in the magnetic unit cell. In such a case Skj are real vectors
corresponding to the magnetic moment of the atom j, the matrices Mjs are real
and all phases verify fkjs¼ 0. The crystallographic magnetic group theory can
be fully applied in such a case.19,20

In the case when the general decomposition in terms of atomic basis func-
tions [Equation (54)] is used, the magnetic structure factor is written as:

M hð Þ ¼ p
Xn
j¼1

Ojfj hð Þe Bj h=2j j2
X
nl

Cn
nl

X
s

Skn
nl jsð Þexp 2pi ðhs � xj þ h � tsÞ

� 	
ð58Þ

where we have written hs¼ST
s h (superscript T stands here for transpose).

3.3.4.4 Limitations of Neutron Scattering for Determining Magnetic Struc-
tures. If the magnetic structure has several propagation vectors k, it is not
possible to determine unambiguously the spin configuration, because the phase
between the different Fourier components cannot be determined by diffraction
methods. One can see easily what the origin of this problem is; let us rewrite
Equation (44) as:

mlj ¼
X
fkg

Skjexpf�2pið k � Rl þ FkÞg ¼
X
fkg

Sm
kjexpf�2pi k � Rlg ð59Þ

in which we have added an arbitrary phase factor Fk depending only on k. We
can understand easily that the modified Fourier coefficients, Sm

kj, give rise, in
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general, to another kind of magnetic structure. However, the diffraction
pattern obtained with a Fourier series like Equation (59) is identical to that
obtained with Equation (44). This is readily demonstrated because the new
magnetic structure factor [Equation (51)] and the intensity corresponding to the
reflection h¼H+ k are given by:

MmðhÞ ¼ p
X
j

fjðhÞSm
kje

2piðHþkÞ�xj ¼ pe 2piFk

X
j

fjðhÞSkje
2piðHþkÞ�xj

¼ e 2piFkMðhÞ ImagðhÞ ¼ Mm
?ðhÞ �M�m

? ðhÞ
¼ e 2piFkeþ2piFkM?ðhÞ �M�

?ðhÞ ¼ M?ðhÞ �M�
?

ð60Þ

The arbitrary phase factor disappears on calculating the intensity. So, if several
propagation vectors exist in a diffraction pattern, infinitely many structures are
able to explain the observed pattern and diffraction alone is unable to provide a
unique solution. Symmetry constraints and, more importantly, restrictions on
the amplitude of the magnetic moments can reduce the number of solutions. A
study of the different kinds of propagation vectors that can be combined to
provide constant moment structures, among the study of the physical
properties, was performed a long time ago by Nagamiya23 Fortunately, nature
often selects simple solutions and many magnetic structures have a single
propagation vector, or display some symmetry constraints that reduce the
complexity of the periodic magnetic structure given by Equation (44).
Special consideration requires that the sinusoidal structures in which the

single pair (k,�k) of propagation vectors at the interior of the Brillouin Zone
has commensurate components. Here the change of the global phase Fk

modifies the physical properties of the magnetic arrangement. If k is incom-
mensurate the change of phase means only a change of global origin in the
crystal and all the amplitudes of the magnetic moments between extreme values
are realized somewhere in the crystal. If k is commensurate some particular
values of the phases give a picture of the magnetic ordering that is really
different to a conventional sinusoid. Let us consider the simplest case of a single
atom per primitive unit cell and a propagation vector k¼ 1/4H. To be specific,
consider the case described in Figure 3.4(a). The magnetic moment, Equation
(59), in the lattice position Rl¼ (l1, l2, l3) is given by:

ml ¼
X
k; k

Skexpf�2pið kRl þ FkÞg ¼ ð0; 0;wÞ cos 2pð 1=4HRl þ FkÞ

¼ð0; 0;wÞ cos 2pðl2
4
þ FkÞ

ð61Þ

with l2 integer. It is easy to see that when Fk¼ 0 the sequence of magnetic
moment components along c for the lattice points l2¼ (0, 1, 2, 3, 4, 5. . .) are: (w,
0, �w, 0, w, 0. . .). If Fk¼ 1/8 the sequence is: (w0, w0, �w0, �w0, w0, w0, �w0,
�w 0. . .), with w0 ¼ w= 2

p
. Both sequences give exactly the same diffraction

pattern up to the constant factor 1= 2
p

, so they are indistinguishable. In the first
case there are paramagnetic atoms and in the second we have a constant
moment magnetic structure. Other experimental techniques (Mössbauer
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spectroscopy, m-SR, NMR etc.) can help in getting the best choice among a set
of indistinguishable solutions.
For powder diffraction, all the expressions in the following paragraphs

can be applied to magnetic powder diffraction by replacing the expression of
the square of the structure factor by the square of the magnetic interaction
vector.
The problem of the degeneracy of solutions (different magnetic structures

giving rise to the same diffraction pattern) is exacerbated in the case of powder
diffraction. To a particular observed peak there is the contribution of different
Bragg reflections so that the magnetic structure of compounds with symmetry
higher than orthorhombic cannot be determined unambiguously. A paper by
G. Shirane24 examines the case of ‘‘uniaxial’’ (collinear) magnetic structures
and concludes that for cubic symmetry the direction of the magnetic moments
cannot be determined by powder diffraction. In the case of tetragonal,
rhombohedral and hexagonal systems, only the assumed ‘‘common’’ angle of
the magnetic moments with the c-axis can be determined. The diffraction
pattern is not sensitive to the orientation angle in the a–b plane.

3.4 SCATTERING FROM A POLYCRYSTALLINE POWDER

As mentioned at the beginning of this chapter, an ideal polycrystalline powder
sample consists of a very large number (e.g. E109mm 3) of very small crystals
(ideally E1 mm) that are randomly oriented with respect to each other. Inev-
itably, the orientation of some of these crystallites will satisfy the condition that
the scattering vector (s¼S–So) will coincide with some reciprocal lattice vector
h and Bragg scattering will occur per Equation (20) irrespective of the
azimuthal angle of the scattered beam about the incident beam. Thus, the
scattering pattern from a powder sample will consist of rings (cf. Figure 3.1)
centered about the incident beam direction. This is in contrast with diffraction
from a single crystal which requires a specific orientation of the reciprocal
lattice matching h with s. The corresponding construction of reciprocal space
for an ideally random powder is a set of nested spherical shells of uniform
density centered at the reciprocal space origin. Each shell arises from one of the
reciprocal lattice points, h, of the crystal structure and its density is given by the
magnitude of Fh. Consequently, the vector character of h is lost in a powder
pattern and only its magnitude can be determined directly.
Every nonzero structure factor, Fh, where |h|¼ |s| will make a contribution

to the observed intensity in a powder pattern, e.g. when Bragg’s Law is
satisfied. Consequently, scattering from structure factors having identical
values of |h|¼ 1/dh will occur simultaneously so that their respective diffrac-
tion rings will exactly superimpose. Some of these overlaps are coincidental,
i.e. they occur at particular combinations of h and the unit cell dimensions
and the values of the overlapping Fh are not identical. In other cases the
overlaps arise from the symmetry of the unit cell; these cases will be discussed
in turn below.
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3.4.1 Friedel Pair Overlap

The pair of Bragg reflections Fh and F h arise from the same stack of planes but
they are the scattering from the opposite sides; these are a Friedel pair of
reflections. They always exactly overlap in a powder pattern since |h|¼ |�h|,
but they may not have the same value of |F| if the structure is noncentrosym-
metric and there is significant resonant scattering from some of the atoms.
Their average intensity is given by:

F2 ¼ ðA0 þ A0Þ2 þ B002 þ ðB0 þ B0Þ2 þ A002 ð62Þ

where:

A0 ¼
PN
i¼1

fiðshÞ cos½2pðh � xiÞ� B0 ¼
PN
i¼1

fiðshÞ sin½2pðh � xiÞ�

A0 ¼
PN
i¼1

fi
0 cos½2pðh � xiÞ� B0 ¼

PN
i¼1

fi
0 sin½2pðh � xiÞ�

A00 ¼
PN
i¼1

fi
00 cos½2pðh � xiÞ� B00 ¼

PN
i¼1

fi
00 sin½2pðh � xiÞ�

ð63Þ

3.4.2 Reflection Multiplicity

The overlap of Friedel pairs of reflections discussed in the previous section is an
example of symmetry controlled overlap where, in that case, the observed intensity
of a Bragg reflection in a powder pattern is double what would be obtained from
Equations (62) and (63), i.e. the reflection multiplicity is 2 and is true for all
reflections from a triclinic crystal structure. For crystal symmetries other than
triclinic, additional reflections may form exact overlaps of identical structure
factors, depending on how the symmetry is displayed in the reciprocal lattice. For
example, all tetragonal space groups that only have symmetry operators associ-
ated with the c-axis (e.g. P41 or P4/n) will have identical structure factors for Fhkl,
F khl, F h kl, Fk hl, Fhk l, F kh l, F h k l and Fk h l in the absence of resonant
scattering and for nonzero hkl. Since |h| is identical for all eight equivalent
reflections, they will all exactly overlap in a powder pattern, giving an intensity
eight times what would be obtained from Fhkl alone; in other words the reflection
multiplicity is 8. If the lMiller index is zero (i.e. for hk0 reflections) then the set of
equivalent reflections is Fhk0, F kh0, F h k0 and Fk h0, and the reflection multi-
plicity is 4. From this one can see that Equations (62) and (63) need only be used
for just a subset of all possible reciprocal lattice points; these are the unique
reflections. Use of their respective reflection multiplicities will give the observed
result of the reflection overlaps from the remaining equivalent reflections.

3.4.3 Texture Effects

In the foregoing it is assumed that the powder sample is ideally random, i.e. all
crystallite orientations are equally probable so that the diffraction rings are of
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uniform density and independent of the sample orientation (aside from bulk
absorption effects). While this can be experimentally achieved in many cases,
some samples will have some preference for the orientation of the crystallites
with respect to some external sample direction. For example, the flat samples
used in Bragg–Brentano X-ray powder diffraction may have a preferred orien-
tation to either flat platy shaped or needle shaped crystallites in the part of the
sample exposed to the X-ray beam. Both platy crystals and needles would tend
to lie flat on the surface, enhancing the intensities of some reflections while
suppressing the intensities of others. Samples that consist of a polycrystalline
mass and not a loose powder may also have been subject to a process that may
have deformed the material and induced a texture to the crystallite orientations
that will change the Bragg reflection intensities. For example, a metal plate that
was manufactured in a rolling mill frequently displays the effects of rolling
texture on the diffraction intensities.
A complete description of the texture (or preferred orientation) is formulated

as a probability for finding a particular crystallite orientation within the
sample; this is the orientation distribution function (ODF). For an ideally
random powder the ODF is the same everywhere (ODF�1) while for a textured
sample the ODF will have positive values both less and greater than unity. This
ODF can be used to formulate a correction to the Bragg intensities via a four-
dimensional surface (general axis equation) that depends on both the direction
in reciprocal space and the direction in sample coordinates:

O f; b;c; gð Þ ¼ 1þ
XNL

L¼2

4p
2Lþ 1

XL
m¼ L

XL
n¼ L

Cmn
L kmL f; bð ÞknL c; gð Þ ð64Þ

In a diffraction experiment the crystal reflection coordinates (f, b) are deter-
mined by the reflection index (h) while the sample coordinates (c, g) are
determined by the orientation of the sample on the diffractometer. This
formulation assumes that the probability surface is smooth and can be
described by a sum of NL spherical harmonic terms, kL

m and kL
n, that depend

on h and sample orientation, respectively, to some maximum harmonic order, L
(ref. 25). The coefficients CL

mn then determine the strength and details of the
texture. Notably, only the even order, L¼ 2n, terms in these harmonic sums
affect the intensity of Bragg reflections; the odd order terms in the ODF are
invisible to diffraction.
While the general axis equation in Equation (64) can be used to describe the

effect of texture on diffraction intensities in the most general case, most powder
diffraction experiments are performed to simplify the problem. Rotation of
the sample about an axis (normal to the surface in a Bragg–Brentano exper-
iment or about the capillary axis for a Debye–Scherrer experiment) will simplify
Equation (64) via symmetry to:

O f; b; gð Þ ¼ 1þ
XNL

L¼2

4p
2Lþ 1

XL
m¼ L

Cm0
L kmL f; bð Þk0L gð Þ ð65Þ
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with substantially fewer coefficients than the more general case Equation (64).
Notably, spinning the sample does not remove the effect of preferred orientation;
it only simplifies the form of the correction.
A further simplification of the texture correction can be made if the form of

the ODF is assumed to be cylindrically symmetric (e.g. from spinning the
sample) and ellipsoidal.26 If the unique ellipsoid axis is parallel to the diffraction
vector (s) and perpendicular to a flat sample surface as it is in a Bragg–Brentano
experiment, the general axis equation (commonly referred to as the March–
Dollase equation) is:

OðfÞ ¼ 1

M

XM
j¼1

R2
0 cos

2 fj þ
sin2 fj

R0

 ! 3=2

ð66Þ

where the sum is over the set of M equivalent reflections, each at some angle fj

to a particular lattice direction (usually the unique axis, if present, for the space
group). The coefficient R0 is the ellipse axis ratio and determines the amount of
texture; if R0¼ 1.0 the distribution is spherical and there is no texture effect.
For platy crystals tending to lie flat on the sample surface the plate normal
would be coincident with the diffraction vector and would enhance the intensity
of basal reflections (e.g. 00l for hexagonal, trigonal or tetragonal crystal
systems) and R0 would be greater than 1.0. However, needle crystals lying flat
on the sample surface would have the basal planes perpendicular to the sample
surface, thus suppressing the intensity of the basal reflections and R0 is less than
1.0. For relatively large diameter (41mm) cylindrical samples (e.g. those used
in neutron powder diffraction) where the data is collected in a Debye–Scherrer
experiment, platy crystals may lie preferentially with their plate normal parallel
to the cylinder axis. In this case the basal reflection intensities will be suppressed
and R0 is less than 1.0. Similarly, needle crystals would tend to lie with their
long axis perpendicular to the sample cylinder axis, enhancing the basal
reflection intensities and R0 would be greater than 1.0. However, it has
commonly been observed that there is little or no texture effect for very small
(o1mm) diameter Debye–Scherrer samples used for X-ray powder diffraction.

3.4.4 Absorption Effects

In a well-designed Bragg–Brentano X-ray powder diffraction experiment the
sample is of uniform density throughout and is thick enough so that there is no
transmission of the radiation through the sample at all scattering angles.
Additionally the divergence slit is chosen so that the beam foot print covers
only the sample surface (i.e. there is no ‘‘spillover’’ at low scattering angles).
Under these conditions, the absorption is independent of scattering angle and
therefore has no effect on the relative intensities of the Bragg reflections.
However, very highly absorbing samples may have sufficient nonuniform
density at the surface to affect the intensities of Bragg reflections. Usually,
the surface density is lower than the bulk so that at low angles there is
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effectively less material in the beam than at high angles. Consequently, the low
angle (large d-spacing) reflection intensities are suppressed relative to the higher
angle ones. This surface roughness effect will usually reveal itself by systemat-
ically depressing the apparent atom thermal motion parameters. Empirical
correction factors27 have been employed in various Rietveld refinement
programs to describe this systematic Bragg intensity effect.
Absorption in the cylindrical samples used for Debye–Scherrer experiments

with either X-ray or neutron radiation will cause an angle dependent change in
the measured Bragg intensity. In general, the lower angle intensities will be
suppressed more than the higher angle ones and if not corrected can lead to a
systematic downward shift of the apparent atom thermal motion parameters.
Values of the absorption correction for cylinders when the plane containing the
incident and diffracted beams is normal to the cylinder axis (typical Debye–
Scherrer geometry) are tabulated28 and empirical fits to these values are
available for use in computer programs. Generally, these corrections are only
valid for small values of the absorption (mr o 10); when the absorption is
higher one can not assume that the entire sample volume is contributing to the
scattering.
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CHAPTER 4

General Data Reduction

RUDOLF ALLMANN

Im Grund 5, D-35043, Marburg, Germany

4.1 INTRODUCTION

In modern powder diffraction the measurement delivers a raw-file of some
thousand step-scan data of counted X-ray photons per step. This raw file
contains all the needed information to carry out a crystallographic analysis, but
in a way that requires follow up. More informative is a list of distinguishable
reflections that includes the position (mostly in the form of d-values) and
intensity of each reflection. This dif-file (d-values and intensities) contains some
tens to hundreds of reflections. The number of reflections depends on the
complexity of the structure and the crystal symmetry: the more atoms per cell
and the lower the symmetry the more reflections can be identified. But the
number of detectible reflections also depends on the resolving power of the
equipment, best documented by the half-width of the reflections (more accu-
rately: half-width at half-maximum, FWHM). Reflections nearer together than
this half-width (or even two half-widths) cannot be resolved. In a second step,
very often the Miller indices of the originating lattice planes are added to the
dif-file. For this the knowledge of the unit cell is necessary (though not of the
crystal structure itself). The powder diffraction file PDF of the International
Centre for Diffraction Data (ICDD) contains over 100 000 such dif-files for the
identification and discrimination of solid state samples.
The way from the raw-file to the dif-file is called data reduction and consists

of several steps, not all of them may be necessary:

1. Elimination of fake reflections (outliers)
2. Fitting and subtraction of the background
3. Data smoothing (Savitzky–Golay method)
4. Ka2-stripping
5. Peak-searching
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6. Profile-fitting
7. Detection of systematic errors

All steps of these numerical methods use the given advantages of raw-files:
Equal step widths (very often 0.021 in 2y) for the complete pattern and about

equal half-widths of all peaks (for routine measurements 0.1–0.21). A very
powerful method is the application of sliding polynomial fitting procedures,
which rely on a constant step-width and an approximately constant peak form,
and can by used for steps 1, 3, and 5.

4.2 ELIMINATION OF FAKE REFLECTIONS (OUTLIERS)

If the counting electronics for the X-ray pulses are insufficiently screened,
jamming sources like the starter of a neon lamp may contribute to the counting
rate. Also an oscillating circuit of the electronics can be excited to resonance.
This results in excessive counting rates, which may last for one or several
seconds and will simulate a non-existing reflection. Such fake reflections,
however, exhibit smaller half-widths than regular reflections and thus can be
recognized and eliminated. Very often only one step is affected. Because the
count rates of adjacent steps are not independent of each other – all reflections
more or less have the same shape – the count rate of one step can be estimated
from the measured count rates of the adjacent steps by a kind of interpolation.
If this estimated value ŷk differs significantly (e.g. more than 4–5s
with s ¼ ŷ

p
k) from the measured value yk, the measured value probably is a

fake one and should be replaced by the estimation (possibly increased by
approx. 2s).
The value ŷk is best estimated by sliding polynomials (similar to smoothing,

see below), for which the innermost weight or weights are set to 0, e.g.
ŷk ¼ 1=6ð�yk 2 þ 4yk 1 þ 4ykþ1 � ykþ2Þ. Table 4.1 tabulates the coefficients
of polynomials of 2nd order (and, at the same time, for 3rd order) for up to 12
neighbors. On the left only the weight of the central value is set to 0 (for isolated
fake counting rates), on the right the 3 central weights (for 2 or 3 adjacent fake

Table 4.1 Coefficients for the determination of fake reflections. On the left for
isolated fake counting rates, on the right for groups of up to 3 fake
rates ŷk ¼ ðSi ci . . . ykþiÞ/norm (for i¼�n. . .,n – 1, n).

Number of used neighbors 4 6 8 10 12 4 6 8 10

Norm 6 14 172 340 118 10 436 332 1090
i ci
0 0 0 0 0 0 0 0 0 0
�1 4 6 54 84 24 0 0 0 0
�2 1 3 39 69 21 9 237 127 319
�3 2 14 44 16 4 92 82 244
�4 21 9 9 111 19 139
�5 36 0 62 4
�6 11 161
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rates). The sum of the individual weights ci yields the norm or denominator, for
the example above: 6¼�1+4+4�1, by which the weighted sum must be
divided (i is the distance from the central step).
Isolated fake counting rates should be corrected for deviations of approx.

4s and more (i.e. if yk � ŷk44 ŷ
p

k, then ykcor ¼ ŷkþ2: ŷ
p

k), accumulated fake
rates for 5s and more. To better fix the background it is reasonable to correct
in a second run those values that have accidentally been measured too low.
They should be increased if ŷk � yk4ð4� 5Þs. Before such corrections are
accepted definitively, the proposals calculated by the computer should be
manually examined for their plausibility. A copy of the original raw file should
be kept in any case, which holds for the following steps as well.

4.3 FITTING AND SUBTRACTION OF BACKGROUND

Powder patterns always contain statistical noise, which has several sources:
elastic scattering from the sample holder (Figure 4.1), an amorphous part of the
sample, or from air in the beam-path (Figure 4.2); inelastic scattering (i.e. with

Figure 4.1 Diffraction patterns of usual sample holders (0.51 div. slit). For thin
samples, or with a too wide divergence slit, these patterns may be
superimposed on the sample pattern. For a plastic framed ‘‘background
free’’ Si single crystal holder a plastic hump appears in the lower angle
area (for 11 div. slit this starts already at 181). The sharp reflections in 2
originate from the inorganic filler (feldspar?). Normal white Perspex
resembles the given plastic curve (4). A blue Perspex of unknown origin
was found to be almost free of background (3).
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alteration of wavelength) and fluorescence radiation, and extraneous radiation
(e.g. the inevitable cosmic rays). According to the construction of the diver-
gence slit in front of the X-ray tube (fixed or variable to ensure illumination of a
constant sample area) the background decreases more or less with increasing
2y. With amorphous sample holders (e.g. silica glass), wide ‘‘amorphous’’
humps can be found in certain regions of the background if the sample is not
thick enough or too small so that the sample holder itself is illuminated,
especially at small angles. In the upper angular region, especially for sample
material of low crystal symmetry, the numerous individual reflections may
overlap so strongly that the background itself will no longer be reached. In such
a case the background is easily estimated as too high, resulting in the intensities
of these overlapping reflections being determined to be too low.
Sonneveld and Visser (1975) 1 report a method for digitally processed X-ray

films that is easily programmed and which delivers background curves very
much resembling, visually, estimated ones. A similar procedure can be found at
Goehner (1978).2 For this procedure it will be sufficient to take every tenth or
twentieth point of the raw file (possibly also the minimum of some adjacent
points) as base for the background to be evaluated. These points represent the
zero approximation of the background. Because some of the points belong to a
reflection and therefore are too high, they must be pulled down by an iterative
procedure. To do so, for every point (except for the edge points) the average of
both adjacent points is calculated as a new estimation. If this is lower than the
old background in the middle, the old background value is to be replaced by the
calculated average. This ‘‘pulling down’’ must be repeated about 30 times.
In the area of expected amorphous humps (also for very great 2y>1201

the background may increase again) one can admit a minor increase of
the background above that of adjacent points by about 1–2s, i.e. omit the
substitution by the estimated value (or substitution only if the original

Figure 4.2 Influence of the atmosphere in the beam path on the background,
measured with a quartz single crystal sample holder (above: in air, below:
in helium).25
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value 4 average +1–2s). At the end, the total background is linearly
interpolated between the corrected base points and subtracted from the raw
data point by point. If the starting values were not the measured ones
themselves but the minima of 3 or 5 adjacent points, the so-determined
background line is positioned in the lower part of the background noise and
may be enhanced by 1–2s to avoid too many spurious weak reflections in the
following peak search. A manual correction of the preliminary calculated
background may be meaningful in some cases. The base points for the back-
ground may be set manually too. Some authors use cubic splines to connect
these points.
Another method for fitting the background is used by the program EVA of

Bruker AXS. Here parabolas with a variable curvature (set by the user) are
shifted upwards from below the pattern until they touch the background. The
envelope of all these parabolas is then taken as background curve.
The original background also represents a good estimation of the white

noise of the measurement. Only counting rates that significantly [i.e. with.
(2–3)s, s¼Ooriginal background] supersede the background can be taken
as belonging to a peak region. Regions below this level can be completely
neglected in the following peak search procedure.

4.4 DATA SMOOTHING

To improve the signal/noise ratio, noisy measurements often are submitted to a
smoothing procedure, which filters out the wanted information (in our case the
X-ray reflections). Practically, two approaches can be used for smoothing
powder patterns: (1) the sliding polynomial smoothing, which presupposes an
approximately known signal (peak) form, and which was used successfully
for the first time by Savitzky and Golay (1964)3 for processing infrared spectra;
(2) originating from communication technology, the low pass filters, which
in signal processing are used to separate low-frequency signals from high-
frequency noise (e.g. DOLBY to suppress the noise of tape recorders).

4.4.1 Smoothing by Sliding Polynomials (Savitzky–Golay Method)

This method was successfully introduced into spectroscopy and popularized
by Savitzky and Golay.3 Therefore, the best sources for papers on this topic
are not mathematical journals and textbooks, but the chemical journal
Analytical Chemistry. However, the method of sliding polynomials itself has
long been known. As an example, formulas for calculating the necessary
coefficients (see Table 4.2) can already be found in the textbook of Whittaker
and Robinson (1924).4 Only because of the missing computational possibilities
at this time were these formulas not used in practice.
A prerequisite for the application of this method is a set of equally separated

base points, as they are obtained in step scan measurements with a constant
step width, and a signal shape that can be approximated by a polynomial of
nth order. This way, X-ray reflections in the region of their half-width can be
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approximated quite well by a parabola (polynomial of 2nd order) and
shoulders (e.g. a weak peak at the slope of a strong one) by a polynomial of
3rd order.
In m¼ 2n+1 adjacent base points xk n, xk n11, . . , xk 1, xk, xk11, . . ,xk1n

one tries to approximate the measured values yk n . . yk1n by a polynomial of
nth order (e.g. y¼ a+bx+cx2) by means of the method of least squares.
Because the wanted parameters a, b, c appear as linear factors, one deals with a
linear system, which immediately (in one step) delivers the correct solution,
which will be independent of the used step width and of any starting values
(assumed to be 0). The solution for a parabola through m¼ 5 points (n¼ 2)

Table 4.2 Coefficients for a sliding polynomial fit after Savitzky and Golay
(1964, corrected).3 The weighted sum (weights ci) must be divided
by the norm.

Smoothing (2nd and 3rd order) 2nd Derivative (2nd and 3rd order)

m 5 7 9 11 13 15 5 7 9 11 13 15
n 2 3 4 5 6 7 2 3 4 5 6 7
Norm 35 21 231 429 143 1105 7 42 462 429 1001 6188
i ci
0 17 7 59 89 25 167 2 4 20 10 14 56
�1 12 6 54 84 24 162 1 3 17 9 13 53
�2 3 3 39 69 21 147 2 0 8 6 10 44
�3 2 14 44 16 122 5 7 1 5 29
�4 21 9 9 87 28 6 2 8
�5 36 0 42 15 11 19
�6 11 13 22 52
�7 78 91

1st Derivative (1st and 2nd order) 1st Derivative (3rd and 4th order)

m 5 7 9 11 13 15 5 7 9 11 13 15
n 2 3 4 5 6 7 2 3 4 5 6 7
Norm 10 28 60 110 182 280 12 252 1188 5148 24024 334152
i ci
7 7 12922
6 6 6 1133 4121
5 5 5 5 300 660 14150
4 4 4 4 4 86 294 1578 18334
3 3 3 3 3 3 22 142 532 1796 17842
2 2 2 2 2 2 2 1 67 193 503 1489 13843
1 1 1 1 1 1 1 8 58 126 296 832 7506

0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 8 58 126 296 832 7506
2 2 2 2 2 2 2 1 67 193 503 1489 13843
3 3 3 3 3 3 22 142 532 1796 17842
4 4 4 4 4 86 294 1578 18334
5 5 5 5 300 660 14150
6 6 6 1133 4121
7 7 12922
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reads as:

a ¼ 1=35 ð�3yk 2 þ 12yk 1 þ 17yk þ 12ykþ1 � 3ykþ2Þ;

b ¼ 1=10ð�2yk 2 � yk 1 þ ykþ1 þ 2ykþ2Þ and

c ¼ 1=14ðyk 2 � yk 1 � 2yk � ykþ1 þ 2ykþ2Þ:

For the central point with i¼ 0 it holds y(0)¼ a, y0(0)¼ b and y00(0)¼ 2c, i.e. as
smoothed value yk of the central point one just takes the value ‘‘a’’ of the
absolute term: yk ¼ 1=35ð�3yk 2 þ 12yk 1 þ 17yk þ 12ykþ1 � 3ykþ2Þ. With b
and 2c one furthermore gets approximations of the 1st and 2nd derivative at the
position k, i.e. the derivatives of a complete pattern can easily be calculated
without knowing any peak-shape functions. For the next point the polynomial
is just shifted by one step width and exactly the same formulas are applied.
Only those n points both at the beginning and the end of the raw file cannot be
smoothed by these formulas. The easiest way is to leave these few points
unsmoothed or to use a narrower smoothing interval at both ends of the file.
The general expression for (explicit) digital filters reads:

yk ¼ ðSci : ykþiÞ=norm; ði ¼ �n; . . . ;�1; 0; 1; . . . ; nÞ

As during the least-squares refinement, every other coefficient of the normal
equations sums up to 0, the values for the 0th (¼smoothing) and 2nd derivative
hold for polynomials of 2nd and of 3rd order as well. The coefficients for 1st
derivatives are different for 2nd and 3rd order (but equal for 1st and 2nd order,
and for 3rd and 4th order, respectively).
The coefficients of a sliding polynomial fit can be summarized in a simple

formula.5 For smoothing (2nd and 3rd order) one gets for m¼ 2n+1 points:

norm ¼ ð4n2 � 1Þð2nþ 3Þ=3; . . . ci ¼ 3nðnþ 1Þ � 1� 5i2:

Since the X-ray reflections within one pattern mostly are rather uniform, the
Savitzky–Golay smoothing can be optimized for each pattern, namely by
adapting the width of the smoothing interval to the average half-width of the
reflections (at most 20% wider than the half-width) (Figure 4.3). This means the
number m of base points for smoothing should be about the number of
measuring steps per half-width (possibly+20%). If fewer points are used
too much noise will remain. If too many points are used the shape of the
reflection will be affected: the peak becomes wider and less high, i.e. the
resolution gets worse (oversmoothed). As the norm in all cases is equal to
the sum of the weights ci, the integrated intensity (¼peak area) remains
unchanged after any smoothing (cf. ref. 6).
For the 1st and higher derivatives the step width Dx must be taken

into account (but not for smoothing): The exact expression is y0 ¼ b/Dx,
y00 ¼ 2c/(Dx)2. This must be considered, if one wants to compare two patterns
measured with different step widths. For patterns with varying half-widths the
minima of the 2nd derivative (¼peak position) decrease with the squares of the
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half-widths, i.e. broad reflections are recognized less well if the peak search uses
the method of 2nd derivatives (Figure 4.4). Also for this reason the number of
measuring points should not be increased above 10 per half-width.
The low pass characteristics of the Savitzky–Golay method are not

extremely good, because in the frequency domain strong negative regions occur
(cf. Figure 4.4). However, since after the twofold application of a filter (also the
Savitzky–Golay smoothing can be understood as a digital filter) the frequency
domain simply is squared and the negative regions vanish (Figure 4.5). Thus,
the low pass characteristics of the Savitzky–Golay smoothing can be greatly
enhanced by twofold application and, therefore, this method always should be
used twice with the same coefficients (smoothing of smoothed data). For very
noisy signals, possibly a 100-fold repeated smoothing with sliding polynomials
may enhance a weak signal above the noise level (example in ref. 5).

4.4.2 Digital Low Pass Filters

A test series (e.g. a raw file) can be viewed as a superposition of signals plus
noise. Since a Fourier transform is additive, the frequency spectrum of a
measurement is the sum (superposition) of the signal frequency spectrum and
the noise frequency spectrum. If a reflection can be fitted by a Pearson VII
profile (Chap. 4.7) and if the maximum of this even function is put in x¼ 0,

Figure 4.3 Effect of sliding polynomial smoothing. Presented are three noisy,
modified Lorentz peaks of equal height and different half widths of
27, 13, and 7 (points). For smoothing (lines), 13 points were used. The
narrow reflection (right) is somewhat oversmoothened, yielding a light
widening and lowering of the peak. For the central peak the smoothing is
well adjusted and the left reflection could have been smoothed more
aggressively.
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Figure 4.4 Similar to the sliding polynomial smoothing (Savitzky Golay filter, the
coefficients for 2nd order fit to a parabola) is the effect of Bromba Ziegler
filters [Bromba and Ziegler, (1983c),7 coefficients fit to a triangle: upper
figure]. Both have bad low pass filter characteristics, as shown in the lower
figure with the Fourier transforms of filters through 21 points each.
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Figure 4.5 Effect of a low pass filter in the amplitude (left) domain and in the frequency
(right) domain. (A) A noisy Lorentz peak. The left part of its fre
quency spectrum D (low frequencies) is mainly determined by the frequency
spectrum of the noiseless reflection. To the right, only the spectrum of the
(white) noise contributes. If D is multiplied point by point with the low pass
filter E (in the front part¼ 1, in the back part¼ 0 with a transition zone),
one gets F, a spectrum without noise in the upper frequency range. C, the
reverse transform of F, is the desired smoothed curve. In the upper part of C
the difference to A is given, i.e. the eliminated high frequency part of noise.
Instead of the detour through the frequency domain with two time
consuming Fourier transforms one also can convolute the original curve
A with the Fourier transform B of the low pass filters E. For discontinuous
measurements (such as any step scan method) a convolution is a sliding,
weighted mean. The coefficients of this filter are discrete points at the curve
B. For a pure rectangle function (without a transition zone between 1 and 0
as in E) the Fourier transform is shaped like (sinx)/x. (After Cameron and
Armstrong, 1988.8)
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so the Fourier transform is a real function, which steadily approximates 0. The
exact solution for the Fourier transform of:

f ðxÞ ¼ ð1þ ðx=bÞ2Þ m

reads:

gðwÞ ¼ ðð 2p
p

� jbjmþ1=2Þ=ð2m 1 � GðmÞÞ � jwjm 1=2 � BesselKðm� 1=2; jb � wjÞ

especially for

m ¼ 1 : gðwÞ ¼ p � b=½expðb � jwjÞ�

and for

m ¼ 2 : gðwÞ ¼ p � b2 ðjwj þ 1=bÞ=½2 expðb � jwjÞ�:

That is, for a steady signal the share of higher frequencies approximates zero
whereas the frequency response of the noise stays more or less constant.
Therefore, above a certain frequency only the noise will contribute. If one
suppresses this high-frequency part by multiplication with 0, after the reverse
transform into the amplitude domain the signal is kept unchanged, only slightly
disturbed by the low-frequency part of the noise.
Instead of the application of a low pass filter in the frequency domain

itself (multiplication with 1 in the low-frequency range and above that with 0,
i.e. multiplication of the frequency response with a rectangle function), one can
use in the amplitude domain (i.e. for the measurement itself) the mathemati-
cally fully equivalent convolution with the Fourier transform of that rectangle
function.
Numerically the convolution of a step scan is merely the application of a

sliding weighted mean (e.g. like the Savitzky–Golay method). The Fourier
transform of the rectangular function has the shape of sin(nx)/(nx) (whereby n
is inversely proportional to the width of the rectangle) and unfortunately
approaches 0 only very slowly. To make do with a small number of points
for a convolution, one must tolerate a compromise and renounce the ideal
rectangular shape of the low pass filter (in the frequency domain).
According to an algorithm of Hamming (1983)9 for the construction of

monotonous low pass filters a set of coefficients was calculated that can be used
like the Savitzky–Golay coefficients for the smoothing of powder patterns. For
greater ranges, the demand of monotony was renounced, because otherwise the
norm increases very rapidly with 4n. However, the following conditions were
observed: Sci¼ norm, Sci(–1)

i¼ 0, Sci � i2¼ 0 (i.e. a parabola will be reproduced
exactly). The number of points should be about 1/4 larger than the number of
points per half-width. However, one run will suffice. Both end ranges should be
smoothed with 5 points, so only 2 points each at every end remain unsmooth-
ened. Table 4.3 tabulates these new coefficients, together with two low pass
filters of Spencer (1904),10 who used these for smoothing life expectance tables.
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In Table 4.4 some smoothing functions are applied on a modified
Lorentz curve with a half-width of HW¼ 4. At each slope the data run until
5HW (¼20 steps). The results of smoothing a, b, c are insufficient, since the
reflection shapes are deformed too much (as c furthermore changes the position
of the maximum, both slopes are reported; c simulates an old rate meter
recording). Both d and e are single Savitzky–Golay smoothings, whereby d
is adjusted to the half-width whereas e uses too many points (oversmoothing);
f and g are the corresponding results with low pass filters (Figure 4.6).

4.5 Ka2-STRIPPING

Since the Ka-radiation from a conventional source consists of two very narrow
peaks with rather similar wavelengths (for CuK: la2/la1¼ 1.00248), which can
be separated only with great effort, each Ka-spectrum is a superposition of two
slightly shifted spectra. At lower angles this splitting is not resolved. At larger
angles the Ka2-peak appears at somewhat higher angles than, and is about
half the intensity of, the Ka1-peak. The beginning of the visible splitting
depends on the half-width HW of the reflections. For CuKa-radiation and
for HW¼ 0.11 the splitting starts at 2y¼ 391, for HW¼ 0.21 at 701 and for
HW¼ 0.31 at 931 (see Table 4.5). For various reasons the a2-Peaks have about a
20% greater half-width than the a1-peaks.
The splitting D2y¼ 2y(a2)–2y (a1) increases with increasing 2y, as can be seen

in Table 4.5 [for CuKa with l(a2)/l(a1)¼ 1.00248]. Up to 2y¼ 140–1501 the
splitting is quite well approximated by the formula:

D2y ½1� lða1Þ=lða2Þ� � tan yða2Þ � 360�=p

Table 4.3 Coefficients for digital low pass filters.

Digital low pass filter for smoothing Spencer (1904)10

m 5 7 9 11 13 15 17 19 21 23 25 15 21
n 2 3 4 5 6 7 8 9 10 11 12 7 10
Norm 16 32 64 512 512 512 512 512 512 512 1024 320 350
i ci
0 10 16 26 186 154 128 104 96 90 80 152 67 57
�1 4 9 18 139 127 111 96 89 83 75 145 67 57
�2 1 0 4 46 64 72 73 70 68 65 125 46 47
�3 1 2 8 10 29 42 46 47 49 98 21 33
�4 1 11 11 0 16 22 26 32 66 3 18
�5 3 9 9 2 4 9 16 36 5 8
�6 2 8 9 6 2 3 12 6 2
�7 3 8 8 6 4 4 3 5
�8 4 6 7 8 11 5
�9 5 5 7 13 3
�10 2 4 10 1
�11 1 6
�12 2
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For even greater angles, which are measured only rarely, the exact formula:
2y(Ka1)¼ 2arcsin{sin[y(Ka2)].l(Ka1)/l(Ka2)}must be used (exact and approxi-
mated values in Table 4.5).
Ladell et al. (1975)11 have calculated for the 234-reflection of quartz (at

2y¼ 1531) the convolution function, which must be applied to the measured
Ka1-peak to obtain the Ka2-peak (Figure 4.7). Because of the somewhat
greater half-width of the Ka2-peak this convolution is not a simple d-function
at la2/la1, but besides a rather sharp convolution peak at 1.0024536 (experi-
mental value negligibly smaller than the value calculated from tabulated
wavelengths) less sharp satellites appear to the left and to the right, which

Table 4.4 Standard curves with equal height and half-width and the results of
several smoothings, applied to the modified Lorentz curve ML (3rd
column).a

k L ML a b c� c1 d e f g

0 10000 10000 7285 8094 7907 9631 8149 9731 9095
�1 8000 8212 6820 7280 5814 8060 8198 7517 8201 7981
�2 5000 5000 5461 5355 3416 6530 5184 5800 5134 5444
�3 3076 2679 3617 3318 1831 4605 2731 3564 2717 2996
�4 2000 1417 2064 1845 983 3011 1406 1679 1409 1464
�5 1379 776 1118 1001 550 1893 763 689 767 732

�6 1000 447 617 558 324 1170 440 335 442 409
�7 755 271 356 327 200 720 268 206 269 250
�8 588 172 216 201 129 446 170 140 171 162
�9 471 113 138 129 86 280 113 99 113 109
�10 385 78 91 87 60 179 77 70 77 75

�11 320 55 63 60 43 117 54 51 54 53
�12 270 39 45 43 31 78 39 38 39 39
�13 231 29 32 31 23 54 29 28 29 29
�14 200 22 24 23 18 34 22 21 22 22
�15 175 17 18 18 14 27 17 17 17 17

�16 154 13 14 14 11 20 13 13 13 13
�17 137 10 11 11 9 15 10 10 10 10
�18 122 8 9 9 7 11 8 8 8 8
�19 110 7 7 7 6 9 7 7 7 7
�20 99 6 6 6 5 8 6 6 6 6

HW 4 4 5.9 5.3 5.0 4.3 5.5 4.2 4.7

a Columns a g are calculated with the following coefficients from the modified Lorentz curve ML
(HW are the half widths of the current profiles):

a Sliding average over 5 points: (1 1 1 1 1)/5.
b Triangular average over 5 points ( twice sliding average over 3 p.): (1 2 3 2 1)/9.
c Rate meter simulation: implicit:y n (yn+y n 1)/2 explicit.: (1/2n11. 1/8 1/4 1/2 0 0.0).
d Savitzky Golay filter with 5 points: ( 3 12 17 12 3)/35.
e Savitzky Golay filter with 9 points: ( 21 14 39 54 59 54 39 14 21)/231.
f Low pass filter, 5 points: ( 1 4 10 4 1)/16.
g Low pass filter, 9 points: ( 1 2 4 18 26 18 4 2 1)/64.
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Figure 4.6 Fourier transforms of the cited low pass filters through 5 25 points. For 5
and 7 points the filters are monotonous (no oscillation below 0). For such
filters the original curve can be recalculated out of the smoothed one.

102 Chapter 4



together possess about the same area as the central peak. Therefore, within
the amplitude domain the real a2-wavelength must be supplemented by three
pseudo-wavelengths (or even more). The approximation with three wave-
lengths, however, is sufficient in practice. Table 4.6 lists the corresponding
wavelengths-ratios and weights. Beside the original data the sum of the
weights was standardized also to 0.5 (other authors use even smaller values
of 0.49 or 0.48).
R. Ku�zel,12 Prague, uses in his profile fitting program DIFPATAN corre-

sponding values for Co- und Cr-radiation [given as la2/la1 (weight)]:

Co : 1:0020914 ð0:18162568Þ; 1:0021705 ð0:20707717Þ; 1:0022506 ð0:1974514Þ

Cr : 1:0014772 ð0:15847990Þ; 1:0017061 ð0:23304335Þ; 1:0018215 ð0:21635673Þ

As an approximation these values are used to interpolate values for Fe:

Fe : 1:0019560 ð0:17724375Þ; 1:0020351 ð0:21573256Þ; 1:0021152 ð0:20061567Þ:

In practice, a2-stripping runs like opening a zipper. One starts at the low
end and assumes for the first few base points within the splitting range (minor
at small 2y), that 2/3 of the corresponding count numbers belong to a1 and
1/3 to a2 [possibly slightly modified, if I(a1)/I(a2) differs from 2.0]. For all
following points the a2-part at the first non-stripped position 2y(a2) can be
calculated from the already a2-stripped pure a1-values of the preceding points.
The correct positions 2y(a1) can be obtained by the above formulas (exactly or
approximated) for all three wavelengths.
These a1-positions fall into the already stripped range, mostly between two

base points, and the corresponding a1-intensities must be (linearly) interpolated
and multiplied with the above weights. So for each of the three wavelengths one
gets the a2-part to be subtracted from the original count number at the position
2y(a2). Then the next unstripped point is to be cleaned and so on until the very
last measured point is stripped too. Because for every raw data point one has to
calculate one sinus [of y(a2)] and three arcsine-values [of y(a1)], this stripping
procedure takes some time and a floating-point coprocessor is highly recom-
mended. If the given approximation is used, only one trigonometric function
must be calculated per step [the error at 2y¼ 1501 amounts to 0.0181 for the
calculated y(a1)].

Table 4.5 Ka1/Ka2-Splitting for CuKa-radiation.

2y (Ka2) (1) D2y (1) Approx. (1) 2y(Ka2) (1) D2y (1) Approx. (1)

20 0.050 0.050 120 0.489 0.491
40 0.103 0.103 140 0.772 0.779
60 0.164 0.164 160 1.548 1.608
80 0.238 0.238 170 2.839 3.240
100 0.337 0.338 180 8.062 N
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Figure 4.7 Example of the Ka2 stripping for the quartz quintuplet (3 a1/a2 doublets)
at 2y¼ 681. Top: list of raw data (count numbers for 0.021 step width).
Middle: unsmoothened pattern with constructed background. Bottom:
result of Ka2 stripping, background subtraction and 5 point smoothing.
Also drawn is the 2nd derivative, which was used for the peak search
(found positions indicated).
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If the weights are somewhat too large, overcompensation effects will occur.
At the a2-position too much will be subtracted and just beyond the remaining
a1-peaks negative values will give results that, physically, are nonsense. Such
negative values should be raised by the evaluation program to a reasonable
background value, at least to 0. For isolated reflections this, usually, causes no
problems. For superimposed groups of reflections the overcompensation may
be amplified from peak to peak. Mostly, a small reduction of the weight sum
will help (e.g. from 0.50 to 0.48 or, if weak peaks remain at the a2-positions, to
0.52). Figure 4.7 shows the well-known quartz quintuplet at 2y¼ 681 before
and after a2-stripping (the three a1/a2-doublets 212, 203 und 301).

4.6 PEAK SEARCH ALGORITHMS

By eye, it is rather easy to identify even weak peaks that scarcely stand out from
the background, because our brain processes a wider range simultaneously. For
digitally stored powder patterns only individual measurements exist, which are
to be compared with the counting rates of adjacent points. First, one needs the
decision as to whether a measured point belongs to the background or to a
reflection range. If a step rate and its direct neighbors lie significantly above
the background curve it belongs to a reflection range. Differences to the
background are to be considered as ‘‘significant’’ if they surpass 2–3s (back-
ground) with s(background)¼O(uncorrected background). Only if 3 and more
adjacent points surpass this threshold is it reasonable to begin with one of the
following peak search procedures for that range. Another possible threshold is
a certain fraction (e.g. 0.5%) of the absolute maximum of the entire data file
(neglecting outliers).

4.6.1 Trend-oriented Peak Search

In this method one scans the data file (mostly in direction of increasing 2y) until
three adjacent points lie 2–3 s above the background, i.e. until one reaches the
beginning slope of a reflection (e.g. for a mean background of about 25 pulses
per step the counting rates must surpass 35–40 pulses). The following
2–3 points should have even greater rates (4–5 s, ascent of slope). If this is
true, one scans the following points until a local maximum is reached, i.e. until

Table 4.6 Wavelength-ratios and weights for convolution functions a1- a2
after Ladell et al. (1975)11 for CuKa-radiation. Beside the original
weights, also weights with a sum of 0.5 are reported.

la2/la1 Weight (orig.) Weight (sum 0.5)

1.00235350 0.15276646 0.1436781
1.00245360 0.2686876 0.2527031
1.00257883 0.1101731 0.1036188
S 0.53162716 0.5000000
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a counting rate is greater than the average of the two following as well as that of
the two preceding points. This local maximum can be taken as a first
approximation of a reflection. Furthermore, this value should exceed a certain
minimum (e.g. 0.5% of the global maximum of all points) to exclude accidental
background ripples from the list of reflections.
The refinement of a preliminary peak position can easily be obtained by

fitting a parabola a+bx+cx2 into 5 (or more) points around the local
maximum, using the solutions for a, b, and c after Savitzky and Golay.3 The
maximum of this parabola is the wanted refinement of the peak position and is
calculated as the root of the 1st derivative: y0(xmax)¼ 0¼ b+2c.xmax. So far
the 5-point appoximation one gets:

xmax ¼ �b=2c ¼ ð2y 2 þ y 1 � y1 � 2y2Þ=ð2y 2 � y 1 � 2y0 � y1 þ 2y2Þ � 7=10

(referred to the local maximum in xo, yo). Also the height of the maximum (in
first approximation yo) can be calculated by this approach: ymax¼ a+
b.xmax+c.x2max. If one assumes a Lorentzian shape for a peak, the formulas
from Chapter 4.6.3 can be applied.
As additional criterion for the acceptance of an X-ray reflection a certain

minimal size of the 2nd derivative can be used (denominator in the above-
mentioned equation o 0, e.g. 2c o �1 or �2). This is certainly necessary to
avoid a possible division by 0. The points following a maximum must be
discarded as further peaks as long as the 1st derivative stays negative, i.e. as one
remains in the decreasing slope.
After peak recognition both flanks are searched for the half height (above

background, possibly by interpolation) and the difference of the corresponding
x-values is taken as full width at half maximum of this peak (FWHM, short:
half-width). This difference should surpass a certain threshold (e.g. 0.061 in 2y)
to accept a found elevation above background as a true reflection. Thus, one
has a further possibility at this point to eliminate possible outliers because they
cause much narrower ‘‘peaks’’ than real reflections.
The right and left half-widths of a peak should not differ too greatly. If one

half-width is greater than 1.5 or 2-times the other, there probably exists a
shoulder, i.e. a superimposition with a weaker reflection without an individual
local maximum. In such a case the half-width estimated by the half-heights on
both flanks systematically becomes too large and should be corrected using the
smaller of both half-widths only (which hopefully is not affected by a shoulder).
Shoulders cannot be recognized as separate reflections by this method, but

only peaks with individual local maxima in the pattern (roots of the 1st
derivative).
In the case of a missing Ka2-elimination the list of reflections must be

checked for the possibility of a1/a2-split peaks before the list can be stored or
printed. If a d-value, which at first was calculated with l(Ka1), is smaller by
about the factor l(Ka2)/l(Ka1) (¼1.00248� toleranceE 0.0004 for CuKa) and
its intensity amounts to about the half (e.g. 25–75%) of that of the preceding
peak, so it is very probably the Ka2-twin of that stronger Ka1-peak, the d-value
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should be recalculated with l(Ka2). Both d-values for Ka1 and Ka2 of the same
reflection should be equal in the range of the statistical uncertainty.

4.6.2 Peak Search by Second Derivatives

The roots (zeroes) of the 2nd derivative correspond to the points of inflection
and for the central part of a peak between these points the 2nd derivative is
negative with a sharp minimum at the position of the peak maximum (for
asymmetric peaks the minimum is shifted into the direction of the steeper
slope). For Gaussian as well as for Lorentzian shaped peaks (see Section E.2.6)
as limiting shapes of a X-ray peak the half-widths of the minima of the 2nd
derivative are about half as wide as the half-widths of the peaks themselves
(theoretically 53% for Gaussian and 33% for Lorentzian peaks), i.e. the
resolution of the 2nd derivative is twice as good (and better) as that of the
original pattern itself (Figure 4.8). Shoulders in the original pattern possess
their own minima in the second derivative and so can get their own and

Figure 4.8 Left: A simple Lorentz peak with its 1st (middle) and 2nd derivative
(bottom). Dotted lines indicate the positions of the points of inflection,
whose distance is narrower than that of the half heights (lower arrows).
Right: A double peak with the weaker one only showing up as shoulder.
In the 2nd derivative both reflections are clearly separated (after Schreiner
and Jenkins, 1980).

107General Data Reduction



unambiguous reflection position. The numerical calculation of the 2nd deri-
vative occurs by sliding polynomials (see Section E.4.1).
A disadvantage of the 2nd derivative is the considerable enhancement of noise.

Numerical derivatives are calculated via differences and every difference has a
greater relative error than its both constituents since s2(A–B)¼ s2(A)+s2(B).
Therefore, the applicability of this method asks for certain minimal counting
numbers for the individual reflections (Figure 4.9). According to an estimation
of Naidu and Houska (1982)13 these counting numbers should surpass 104 per
reflection (if smoothed, otherwise even more), but in practice total counting
numbers of 103 above background (and even less per reflection) turned out to be
sufficient. Very weak reflections (o1% of the strongest) are poorly recognized by
this method and after the end of an automatic peak search the weak reflections
should be checked visually.
Because of the deterioration of the signal/noise ratio the reproducibility of

the minimum positions within the 2nd derivative are somewhat worse than
those of the roots of the 1st derivative. For asymmetric peaks the minimum of a
2nd derivative is shifted in the direction of the narrow flank (Figure 4.7).
Therefore, for isolated reflections the root of the 1st derivative (maximum of
peak) should be calculated and preferred, after a preliminary position has been
obtained from the minima of the 2nd derivative. For shoulders without a local

Figure 4.9 Superimpositions of two modified Lorentz peaks (ML) of equal FWHM
(E5). Left: Both peaks of equal height (1000). Right: Second peak only
half as high as the first (1000, resp. 500). Top: Distance of both peak
positions¼ 5 (¼1FWHM). Bottom: Distance¼ 3.5 (0.7 FWHM). In every
case the minima of the 2nd derivatives are clearly separated and lie at the
correct positions.

108 Chapter 4



maximum (i.e. without a zero of the 1st derivative) the preliminary position
from the 2nd derivative has to be taken as the final result.
An advantage of the peak search by 2nd derivatives is its insensitivity to a

linearly decreasing or increasing background, which will not shift the minimum
position (Figure 4.10). Because the slope of a stronger peak can be taken in first
approximation as a linear background for an adjacent weak reflection, the
minimum corresponding to a shoulder represents rather accurately the position
of a weak peak, whereas the peaks themselves are shifted in a direction towards
the strong adjacent peak. In theory, the maxima of the 4th derivative exhibit
even better resolution, but, practically, the noise is enhanced so strongly that
nothing can be seen with normal counting rates.
The peak search by 2nd derivatives represents a kind of sharpening (decon-

volution), i.e. a division by the Fourier transform of a certain peak shape in the
frequency domain. This is possible only if this Fourier transform has no zeroes,
i.e. if it monotonically approaches zero. Bromba and Ziegler (1984)7d report
such an algorithm, but its usability for X-ray patterns was not proved until now.
The 2nd derivative can also be used for the estimation of half-widths by

looking for its zeroes at both sides of a minimum. These correspond to the
points of inflexion. As they are placed somewhat higher than the points of half
heights (in 61% of the height of Gaussian peaks and in 75% of Lorentzian
peaks) the distances between both zeroes are smaller than the half widths (for
Gaussian peaks 85% of FWHM, and for Lorentzian peaks 58%). In practice,

Figure 4.10 Error in the determination of the position of a simulated, asymmetrical
reflection (without noise) at 2y¼ 201 and with 0.171 half width (W). Top:
With minimum of 2nd derivative calculated with a polynomial of 2nd/3rd
order.Middle: With zero of the 1st derivative calculated with a polynomial
of 3rd/4th. order (best result as long as the filter width does not
appreciably surpass the half width) Bottom: With zero of 1st derivative
with a polynomial of 1st/2nd order. (After Huang, 1988,28 or Huang and
Parrish, 1984.29)
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adding 25% to the distance between both zeroes of a 2nd derivative gives a
good estimation of FWHM undisturbed by shoulders.

4.6.3 Peak Search with a Predefined Peak Shape

The advantage of X-ray powder patterns over other spectra is the roughly
common shape of the individual reflections (equal half width and equal shape
of the flanks). Therefore, one can use peak search methods that presume a
special peak shape. Sánchez (1991)14 reports a peak search algorithm for
Gaussian peaks with an average half width 2D. This method can be easily
adapted for Lorentzian peaks (y¼A/[1+ ((x� m)/b)2] with FWHM¼ 2b) or
Pearson-VII peaks (y¼A/[1+ ((x� m)/b)2]m with FWHM¼ 2b �O(mO2�1)).
X-ray peaks very often exhibit a peak shape with m between 1.5 and 2.
To scan the pattern for peaks one uses three equally spaced points xi,yi

(i¼ 1,2,3) with distances x2� x1¼ x3� x2¼D, with D about equal to half the
FWHM. The width D should include several steps (at least n¼ 3). That means
that a step width of 0.021 in 2y, which is sufficient for most other methods,
possibly must be reduced to 0.011. The yi are heights above background,
i.e. before the application of this method the background should be subtracted
and the remaining pattern smoothed.
These three points xi, yi are shifted like a sensor along the pattern. If all three

points are placed significantly above the background (E2s) and if the central
value is greater than the edge values y1 and y3, than this sensor is probably
placed within a reflection range. This condition, y24 y1, y3, must hold for
about n adjacent points and the middle of this range corresponds approxi-
mately to the wanted peak position. For a more exact estimation of the peak
position m, the peak height A and the half width 2b, the following formulae are
used, into which the intermediate parameters aik¼ (yi/yk)� 1 are introduced
(resp. aik¼mO(yi/yk)� 1 for Pearson VII). In the central range of a reflection
the parameters a21 and a23 are positive. As a first approximation of the peak
position, x2 and y2 shall be placed at the local maximum of the smoothed
pattern. For the exact peak parameters then the following formulas are to
be used:

m ¼ x2 þD=2 � ða21 � a23Þ=ða21 þ a23Þ; b2 ¼ 2D2=ða21 þ a23Þ � ðx2 � mÞ2

A ¼ y2 þ y2 � ½ðx2 � mÞ=b�2; resp: ðfor Pearson VIIÞA
¼ y2 � ½1þ ððx2 � mÞ=bÞ2�m:

Also, this method does not allow the recognition of shoulders, but of real local
maxima only. If, especially for large step widths, a maximum is placed just
between two grid points, the measured counting rates at both points will be
smaller by several percent than the (unmeasured) maximum itself. Using the
above formula for A permits a rather accurate estimation of the unknown peak
height.
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Reich (1987)15 used the KNN (k-nearest-neighbors) algorithm to recognize
similar ranges (i.e. peaks) by sliding a presumed peak shape along a measured
pattern. As a measure for the distance in a k-dimensional space (corresponding
to the k pairs of values to be compared) for instance, the correlation coefficient
between the k values of the presumed standard peak and k adjacent counting
rates of the pattern can be used. The regions with the greatest correlation
coefficients (40.95) correspond to the wanted peak positions.

4.7 PROFILE FITTING AND PROFILE SHAPE FUNCTIONS

A completely different approach represents the method of profile fitting
in which mathematically simple functions are declared for the individual
reflections (profile shape functions¼PSF, see Howard and Preston, 1989)
(Figure 4.11).16 In this method the reflections are no longer defined by only
2 or 3 parameters (peak position, height and half width), but all approximately
20–40 grid points within one reflection are to be fitted by the model shape using
the method of least squares (or more robust variations of it like the Marquardt
method, 196331). Therefore, a prior smoothing is not necessary and may even
be contradictory. A preceding background subtraction is harmless, provided
not too many reflections overlap so that the proper background is not reached

Figure 4.11 A series of Pearson VII profiles with equal peak position, peak height,
and half width, but with different slope shapes (given by the exponent m),
and area. For m¼ 1: Lorentzian (L), m¼ 1.5: intermediate Lorentzian
(IL), m¼ 2: modified Lorentzian (ML). Already with m¼ 10 a Gaussian
is approximated (exact at m¼N). X ray peaks mostly exhibit m values
between 1.5 and 2. (After Howard and Preston, 1989.16)
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at all for wide ranges. An a2-stripping is superfluous, as it needs rather no extra
effort to construct a profile shape function for a doublet Ka1+Ka2 instead
of a pure Ka1-function. The parameters for the Ka2-peak are derived from those
of the corresponding Ka1-peak and no additional parameters are necessary to
construct the doublet.
The PSF itself is defined by 3–4 parameters: the peak position 2yk or mk, the

peak height yok (above background) or the integral intensity Ik, and the half
width FWHM¼HWk. Important are the widths of the flanks, which for X-ray
peaks are appreciably wider than for a Gaussian peak (normal distribution),
and whose size changes slightly with 2y. Moreover, without a preceding
background subtraction the background must be estimated, which for a small
angular range (under one reflection) can be taken as constant. For wider ranges
the background is fitted by a polynomial of 1st to 3rd order.
The particular strength of profile fitting turns out to be for regions with

overlapping reflections (Figure 4.12). Presuming a certain peak shape, which must
be derived from the non-overlapping reflections of the same pattern, the back-
ground can be estimated when the background is not accessed at any point.
Certainly there exists a strong correlation between background and peak shape,
and by that both entities cannot be refined simultaneously. A too high back-
ground inevitably cuts wide slopes. By that the peaks seem to be not only less high
but narrower too (greater m) and the integral intensities are estimated too low.
Mainly Gaussian and Lorentzian profile shape functions, and intermediates

between these two shapes, are used. The following functions are all

Figure 4.12 Without profile fitting the peaks A and B would get different heights.
Thereby both peaks are equal, but for A the maximum falls onto a grid
point, whereas for B just between two grid points. Using the formulas in
4.6.3 the height can be interpolated exactly. (After Kern, 1992.17)
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standardized to the same integral intensity (area) Ik. With the same half width
HWk and same area a Lorentzian reaches only 68% of the peak height of a
Gaussian because of its wider slopes. The peak position of the kth reflection is
2yk, i is the running number of the grid point and dik¼ (2yi – 2yk) � 2/HWk is
used as an auxiliary parameter. With three parameters (2yk, HWk and Ik) the
following expressions are obtained for yik (elevation above background for the
kth reflection at grid point i, peak maximum at position 2yk¼ Imax,k):
Gaussian (G):

yik ¼ Ik=HWk � 2 ð
p

ln 2Þ= p
p � exp½�ln 2 � d2ik�; . . . 2 ð

p
ln 2Þ= p

p ¼ 0:939

Lorentzian (L):

yik ¼ Ik=HWk � 2=p � ½1þ d2ik�
1; . . . 2=p ¼ 0:637

Intermediate Lorentzian (IL):

yik ¼ Ik=HWk � ð
p

22=3 � 1Þ � ½1þ ð22=3 � 1Þd2ik�
1:5; . . . ð

p
22=3 � 1Þ ¼ 0:766

Modified Lorentzian (ML):

yik ¼ Ik=HWk � 4 ð
p

2
p

� 1Þ=p � ½1þ ð 2
p

� 1Þd2ik�
2; . . . 4 ð

p
2

p
� 1Þ=p ¼ 0:819:

The area Ik of a reflection (integral intensity) is obtained by Ik¼ Imax,k �
HWk/norm (the norm values are given with the above formulas and range
from 0.637 to 0.939). Within one pattern with similar peak shapes relative
integral intensities can approximately be calculated by the simple product
Imax,k �HWk.
IL andML represent already hybrid functions between G and L and simulate

rather well the shape of a symmetrical X-ray reflection. If a variable slope width
is introduced as a 4th parameter one gets the two following, widely used peak
shape functions:
Pseudo-Voigt (PV) (Table 4.7b): With mixing parameter w (or individual wk):

yik ¼ w � Lik þ ð1� wÞ �Gik

Pearson VII (P7) (Table 4.7a): With shape exponent m (or individual mk):

yik ¼ Ik=HWk � 2 ð
p

21=m � 1Þ= p
p � GðmÞ=Gðm� 1=2Þ � ½1þ ð21=m � 1Þd2ik�

m
:

The pseudo-Voigt function is the weighted mean between a Lorentzian and a
Gaussian. For this function the common factor Ik/HWk of L and G can be
factored out, i.e. neither the area Ik nor the halfwidth HWk will change with a
change of the mixing factor wk. L, IL, ML and G are special cases of the
Pearson-VII function with m¼ 1, 1.5, 2 and N (but with m¼ 20 a Gaussian
is approximated already rather accurately). For equal area and half width
the maximum of a Gaussian is 48% higher than that of a Lorentzian. The
complicated and computationally time-consuming Voigt-function is the
convolution of a Gaussian with a Lorentzian.
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Of the functions with three parameters IL is best suited for X-ray reflections.
For Rietveld analyses mostly the four-parameter pseudo-Voigt function is
used, for pure profile fitting (without structure refinement) often the Pearson-
VII function is also used.
It follows from the tables that for the usual X-ray reflections with mE 1.5 at

least three half widths each at the right and left of a peak position must be taken
into account before the slopes drop below 1% of the peak maximum, i.e. for a
half width of 0.1–0.21 in 2y the slopes reach at least 0.3–0.61 to each side and for
peak distances smaller than 0.6–1.21 the background line will not be reached at
all between such reflections. For low-symmetry crystals such a dense peak
sequence occurs rather soon after a few isolated reflections at low angles, and
therefore a correct background fixation and subtraction becomes a problem
(Figure 4.13).
Not all parameters must be refined for every reflection, but only the peak

position and the peak height. The half widths HWk in the 0th approximation
can be considered as constant. For laboratory X-ray sources, a certain tendency
on 2yk mostly is simulated after Cagliotti et al. (1958)34 by the expression:

HW2
k ¼ U � tan2yk þ V � tan yk þW

A similar approach can be applied to the shape parameter, e.g.:
mk¼ a � y2k+b � yk+c.

Table 4.7 (a) Shape of flanks of a Pearson-VII-peak in relation to the slope
parameter (shape exponent) m. Peak height¼ 1. By definition
the elevation at �HWk/2 away from the maximum drops to 0.5.
(b) Shape of flanks of a pseudo-Voigt-peak in relation to the mixing
parameter w (w¼ 1: pure Lorentzian, w¼ 0: pure Gaussian).

(a) Distance |2yi 2yk| as multiple of HWk

m 0.5 1 1.5 2 2.5 3
1 0.5 0.2000 0.1000 0.0588 0.0385 0.0270
1.5 0.5 0.1631 0.0634 0.0298 0.0161 0.0096
2 0.5 0.1417 0.0447 0.0172 0.0078 0.0039
3 0.5 0.1178 0.0269 0.0073 0.0024 0.0009
6 0.5 0.0914 0.0116 0.0015 0.0002 0.0000
N 0.5 0.0625 0.0027 0.0000

(b) Distance |2yi 2yk| as multiple of HWk

w 0.5 1 1.5 2 2.5 3
1.0 0.5 0.2000 0.1000 0.0588 0.0385 0.0270
0.7 0.5 0.1467 0.0620 0.0360 0.0236 0.0165
0.4 0.5 0.1053 0.0325 0.0183 0.0120 0.0084
0.1 0.5 0.0722 0.0088 0.0041 0.0027 0.0019
0.0 0.5 0.0625 0.0027 0.0000
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By doing so, instead of k parameters for HWk (i.e. for each of k reflections)
only three parameters are to be refined. The same is true for the mk. (See
Figure 4.14 with a curve of the parameters of a split-Pearson-VII function vs. 2y.)
The agreement between the observed values yoi and the calculated values yci

is described by the residual R resp. Rw, i.e. by the mean deviation, which mostly
is reported in % (by multiplication with 100):

R ¼ Sijyoi � ycij=Siyoi

Rw ¼ Siwiðyoi � yciÞ2=SiwiðyoiÞ2
h i1=2

The Rw are the quantities that become minimized by the method of least
squares. As weights wi, at best, the reciprocal variances 1/s2 of the measured
values yoi are used. By the statistics of the counting process one obtains wi¼
1/s2(yoi)¼ 1/yoi. By this weighting scheme the slope regions (and the back-
ground) become more important than the peaks themselves (with their high
counting rates). Mostly the R-values after a successful fitting reach 10–20%, for
good fittings even 2–10%. As expectation value for R one can calculate:

Rexp ¼ ½ðN � PÞSiðyoiÞ�1=2

Figure 4.13 For asymmetrical reflections the peak position depends on its definition.
Mostly the position of the maximum (¼ zero of 1st derivative) is
reported. The centers of the secants in 4/5, 2/3 and 1/2 peak height are
shifted in direction of the wide flank, as does the centre of gravity
(centroid). In contrast, the minimum of the 2nd derivative [not given,
but see figure 4.17 (middle)] is shifted to the narrow flank. (After Kern,
1992.17)
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Figure 4.14 Fitting of a measured, asymmetrical Si(111) reflection (points) by a
Gaussian, a Lorentzian, and a split Pearson VII profile (full lines). Besides
the not considered asymmetry (above and middle) the flanks above are too
narrow (Gaussian) and in the middle too wide (Lorentzian. See also figure
4.17. (After Kern, 1992.17)
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with N¼ number of grid points and P¼ number of parameters to be varied.
Rexp approximately corresponds to (mean counting rate per step) 1/2, Si(yoi) is
the total number of measured pulses. For a good refinement Rw should not
supersede Rexp by a factor greater than 2 (Figure 4.15).
A complication is represented by the asymmetry of X-ray peaks, which

mainly is caused by the axial divergence of the X-ray beam. By the installation
of parallel Mo-sheets into the path of rays (Söller-slits) one tries to limit this
divergence. Especially at low angles the flanks at the low side are distinctly
wider than at the high side. Until about 2y¼ 901 this asymmetry vanishes and
at even greater angles a reverse asymmetry shows up. In this central 2y-range
the half width is least and increases to higher and lower angles (Figure 4.16).
A widely used method is the separate handling of the left and the right peak

moieties (split-Pearson VII or SP7). The peak heights and positions are taken as
identical for both halves, but for half widths and slope parameters separate
parameter sets are used (i.e. two additional parameters per reflection, respecti-
vely parameter sets U,V,W and a,b,c for the left and right moieties each).
It was also attempted to use asymmetry parameters in closed, mathematical

expressions. e.g. an asymmetrical pseudo-Voigt function with:

yik ¼ w � Likðx� dÞ þ ð1� wÞ �Gikðxþ dÞ

i.e. both curves L and G are slightly shifted against each other.
Rietveld (1969)19 reported an asymmetry correction for neutron powder

patterns (with Gaussians):

yik;corr ¼ yik � ½1� Pð2yi � 2ykÞ2 � sign=tan yk�

Figure 4.15 Schematic representation of the split Pearson VII profile (SP7) with six
parameters: common peak position 2y and peak height Io, but separate half
widths FWHM and slope parametersm for the left and right peak moieties.
(After Kern, 1992.17)
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with sign¼ 1,0,�1 depending on (2yi� 2yk) being positive, 0 or negative. P is
the asymmetry parameter to be fitted. The expression P(2yi� 2yk)

2 increases
with the distance from 2yk. However, because a Gaussian approaches zero
faster than any power goes to infinity, the given function will converge if yik
follows a Gaussian (which can be assumed for neutron patterns but not so for
X-ray patterns). However, on the narrow slope this convergence to zero
happens from the negative (physically wrong) side.

Figure 4.16 Patterns of the changes of half widths (top) and of slope parameters m
(bottom) for split Pearson VII profiles (SP7), which were taken with a
Guinier camera for a PbNO3 sample. By such curves the number of
profile parameters to be refined can appreciably be reduced (After Brown
and Edmonds, 1980.18)
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With an odd power of (2yi� 2yk) one can avoid the unsteady expression
sign(2yi� 2yk). If by an asymmetry correction the maximum (i.e. the peak
position) must not be shifted, the 1st derivative of the correction curve to be
added must equal zero at the place of the maximum. The following correction
fulfils these prerequisites (see Figure 4.17):

yik;corr ¼ yik � ½1� Pk � ð2yi � 2ykÞ3=½ðHWk=2Þ2 þ ð2yi � 2ykÞ2�1:5�

for

yik ¼ Imax;k=f1þ ½ð2yi � 2ykÞ=ðHWk=2Þ�2gm

For not too asymmetrical reflections this one-parameter correction is sufficient
and as good as the two-parameter correction of SP7. The amount added and
the wide slope is subtracted on the narrow side, i.e. the integral intensity
itself remains unchanged. The corrected curve remains positive, as long as
|Pk|r 1. Up to |Pk|¼ 2, however, a slight sag of the narrow flank into negative
values is tolerable.
Peak fitting is best done in two steps: at first symmetrical curves are fitted.

Only after that does one try to determine the asymmetry parameters Pk, if
possible as a 2yk-dependent function (as for the HWk and mk or wk).
Lauterjung et al. (1985)20 described a peak search program based on the

profile fitting of groups of reflections (originally for Gaussians only), which in a
modified form was used with success for the interpretation of the numerous
samples from the German continental deep-drilling program (KTB).

4.8 DETECTION AND CORRECTION OF SYSTEMATIC ERRORS

As it is rather difficult to mathematically describe all possible errors that lead to
shifts of peak positions during the measurement of a pattern, one tries to
evaluate empirically the total error by measuring substances with known and
very accurate lattice constants (standards) (Table 4.8). The measured 2y-values
2yobs of these standards are compared with the known (tabulated or calculated)
values 2ycalc. For that purpose the differences D2y¼ 2yobs� 2ycalc are plotted
versus 2yobs and these points are to be approximated by a smooth curve,
the calibration curve. As approximation functions, mostly polynomials of
0th–4th order are used. Equally well suited are cubic splines. Mathematically,
polynomials can be extrapolated but in practice such extrapolations mostly
render themselves as nonsense. This is especially true for higher orders (see
Figure 4.19), and therefore the complete measuring range should be covered
by reflections of the standard. Especially at low angles (2yo 101), the systema-
tic errors pile up and the mathematical models are rather inadequate (see
Figure 4.20). For the calculation of lattice constants the use of reflections below
101 should be avoided (but for indexing they are very important).
The calibration curve is used to correct 2y-values of a sample that was

measured under the same conditions as the standard (external standard). Some
errors, especially the sample position and the transparency error, differ from
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Figure 4.17 Example for the one parameter asymmetry correction. Top: a symme
trical ML curve with the correction function added (k¼ 0.8). This is an
odd function that does not change either the integral intensity or the
peak height. Moreover the 1st derivate of the correction is zero at the
central part. Thereby, also the peak position is kept unchanged. Middle:
The sum of both curves yields an asymmetrical peak. The minimum of
the 2nd derivative is slightly shifted to the narrow slope. Bottom:
Application of the asymmetrical profile (in total five parameters) on
the Si(111) reflection from Figure 4.14.
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sample to sample. For the detection of such errors the standard must be mixed
into the sample itself (internal standard). Sometimes, even two different
standards are advisable simultaneously, because standards with simple
structures (elements and simple oxides) have strong reflections in the upper
2y-range, but their foremost reflections only start above 201. Conversely,
compounds with complicated structures and therefore greater lattice constants
show useful reflections in the lower angular region, but they rather rapidly lose
intensity with increasing angles.
Periodical errors originating from the gears for the angle setting cannot be

detected by standards. Often the gears include one cog wheel turning just
one revolution per degree in 2y and which is connected by an axis to a scale for
reading the parts of a degree. Every revolution changes the registration for the
integer angles by �1. For driving the detector and the sample these revolutions
must be reduced by 1 : 360 and 1 : 180 respectively. The mechanical error of
these gears may well reach up to 20–30 seconds of an arc (0.005–0.0081) and it is
rather difficult to measure and correct. The mechanical quality of the gears so
influences essentially the possible accuracy of the measurements. This accuracy
should not be mistaken as the reproducibility. The reproducibility of a
measurement (including the reproducibility of mechanical errors) amounts to
only about 0.00051 (for horizontal measuring circles a little bit better than for
vertical ones), as long as all measurements are done in the same direction
(Jenkins and Schreiner, 198632). The mechanical play between increasing and
decreasing measurement amounts to some 1/10001 and can be easily deter-
mined by measuring a test sample in both directions. For an older, analogously
registering equipment with a rate meter this mechanical play is superimposed

Table 4.8 2y-Values of the Si-standards at 25 1C measured with CuKa1-
radiation (l¼ 1.5405981 Å). Irel,a: Sample stuffed from the side,
Irel,b: Sample firmly pressed from the front side into the sample
holder. The 2y-values for SRM 640 were calculated from the
d-values of PDF 27-1402 (these and the very last value from the
lattice constant). 2yobs after Hubbard (1983)21 for one of the 12
averaged samples.

SRM640a SRM640b SRM 640

hkl 2yobs 2ycalc Irel,a Irel,b 2ycalc
111 28.425 28.442 100 100 28.443
220 47.299 47.303 55 64 47.303
311 56.124 56.122 30 34 56.123
400 69.128 69.130 6 8 69.131
331 76.382 76.376 11 12 76.377
422 88.030 88.030 12 16 88.032
511 94.951 94.953 6 8 94.954
440 106.710 106.709 3 5 106.710
531 114.098 114.092 7 9 114.094
620 127.551 127.545 8 7 127.547
533 136.904 136.893 3 3 136.897
444 158.632 * 3 156.638
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by the systematic shift stemming from analogously averaging the pulse rates.
This shift strongly depends on the chosen half-life time of the rate meter.
For several years the National Institute of Standards and Technology in

Gaithersburg, MD (NIST) has offered standard reference materials (SRM)
in portions of 10 g, which were measured very accurately. Best known for
2y-calibration is a Si-powder (99.9999% pure) named NBS SRM 640 with a
mean grain size of 10mm and a lattice constant of 5.43088(4) Å at 25 1C (PDF
27-1402). After selling out this standard in 1983 the next smaller grain fraction
of the same ground Si-powder with a mean grain size of 5mm was offered as
SRM 640a with a newly refined lattice constant of 5.430825(11) Å at 25 1C. The
Si-standard itself was calibrated against a mixture of Ag [ao¼ 4.08651(2) Å] and
W-powder [ao¼ 3.16524(4) Å]. By doing so the 111-Si-reflection was about 101
below the first Ag-reflection and therefore could not be corrected sufficiently and
was not used for the refinement of the lattice constant. Since 1987 the standard
SRM 640b is delivered with ao¼ 5.43094(4) Å (average of 25 measurements).
For such precise specifications many disturbing influences must be considered,

which for routine measurements may be neglected. First of all the temperature
during the measurement must be recorded, and the measured d-values must be
corrected for expansion with the temperature coefficient to a standard tempera-
ture (mostly 25 1C¼ 293K). For pure Si (99.9999%) the temperature coefficient
amounts to a¼ 2.56� 10 6, i.e. 0.000014 Å change in ao per 1C. For less pure Si
a is somewhat greater. Table 4.8 shows that reflections with great 2y are rather
sensitive to small changes of the lattice constants. For silicon another effect
causes disturbance, which for most other powders can be neglected: the surface
tension of the oxide-skin.
Deslattes and Henins (1973)22 determined, with a large single-crystal, for which

the influence of the oxide-skin can be neglected, the lattice constant of Si as
ao¼ 5.4310628(9) Å at 25 1C. The same measurement was also used for a
refinement of l(CuKa1)¼ 1.5405981 Å, which value was used for all measure-
ments on SRM 640. Taking these results, ao of the single-crystal is greater than
that of the Si-powder by 0.000183 Å. Theoretically, this corresponds to a
temperature difference of 13 1C. The real reason is a difference in pressure caused
by the surface tension of the oxide-skin. For a constant surface tension the
induced pressure increases with decreasing grain size. With a module of com-
pressibility of 1.023.10 6 bar 1 for Si (i.e. a relative linear change of
0.341� 10 6 bar 1 and an absolute change of 1.852� 10 6 Å bar 1 for ao) the
above difference of 0.000183 Å means an induced pressure of about 100bar
within the grains of SRM 640. An accurate long-time measurement with narrow
divergence slits of an older Si-powder (45 years after grinding) with a mean grain
size of 2mm revealed in the front-slope of the 111-Si reflection at 28.471 (integral
intensity 520 930 pulses) a very weak reflection at 26.641 (5072 pulses, only
15% above background), which corresponds to the strongest quartz reflection,
i.e. after some time the at-first amorphous oxide-skin becomes crystallized.
For smaller angles a synthetic fluorphlogopite, KMg3[Si3AlO10/F2], is

available as SRM 675 with d001¼ 9.98104(7) Å at 25 1C (Table 4.9). This mica
material should possibly be oriented parallel to the sample surface (strong
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texture). One can obtain this preferred orientation by the sedimentation of a
suspension of some standard in acetone onto a single-crystal sample holder.
For a good calibration only the first reflections of SRM 675 should be used. If
Ka1+Ka2-radiation is used, for the front reflections both wavelengths cannot
be separated and the reported 2y-values (for Ka1) must be transformed into the
averaged wavelength (for CuKa approximately a multiplication with 1.00083).
If for older PDF-cards 2y-values are to be recalculated from the listed d-values
then the reported (at that time valid) wavelength is to be used.
For powders of rock samples quartz offers itself as a natural standard,

especially because quartz is a rather pure compound with approximately con-
stant lattice constants (Table 4.10). Natural calcite often contains Mg in solid
solution with decreased lattice constants and is less suited as standard. Further-
more, calcite exhibits a negative temperature coefficient in the a-direction.
As secondary standards for the calibration of d-values the following

compounds are used:

W (cub. I, a¼ 3.16524(4) Å, Da/1C¼ 0.000015 Å, PDF 4-806)
Ag (cub. F, a¼ 4.08651(2) Å, Da/1C¼ 0.000078 Å, PDF 4-783)
a-Al2O3 (rhombohedr., a¼ 4.75893(10), c¼ 12.9917(7) Å, SRM 674)
Quartz (trig., a¼ 4.9133(2), c¼ 5.4053(4) Å at 25 1C) (Da/1C¼ 0.000070,

Dc/1C¼ 0.000047 Å, PDF 33-1161)
MgAl2O4 (cub. F, a¼ 8.0831 Å, PDF 21-1152)
Al (cub. F, a¼ 4.04934 Å at 21 1C, Da/1C¼ 0.000093Å, PDF 4-787)
Calcite (rhombohedr.; a¼ 4.990, c: 17.002 Å, PDF 24-27) (Da/1C¼

�0.000030 Å, Dc/1C¼ 0.00044 Å)
Diamond (cub. F, a¼ 3.5667 Å (26 1C), Da/1C¼ 0.00000424, PDF 6-675).

For very small angles the salt of a long-chained carboxylic acid lead myristate,
Pb(C14H27O2)2, with a layer distance of d¼ 40.20 Å (refined 40.26 Å) was
proposed. With CuKa-radiation (l¼ 1.5419 Å) the reflections up to the 13th
order could be observed. The measured 2y-values were: 2.28, 4.47, 6.66, 8.86,
11.06, 13.27, 15.48, 17.69, 19.93, 22.15, 24.40, 26.65, and 28.911 (Schreiner,
1986, see Figure 4.18).

Table 4.9 00c-reflections of the standard SRM 675, fluorphlogopite. CuKa1-
radiation, d001¼ 9.98104(7) Å at 25 1C.

2y (1) c Irel 2y (1) c Irel

8.853 1 81 65.399 7 2
17.759 2 4.8 76.255 8 2
26.774 3 100 a

35.962 4 6.8 101.025 10 0.5
45.397 5 28 116.193 11 0.5
55.169 6 1.6b 135.674 12 0.1

a Reflection 009 is too weak.
b 2y006 inaccurate, because of a superposition with 135.
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Also, for intensity calibration standards are available. The NIST offers under
SRM 674 a set of five materials with a mean grain size of 2mm:

a-Al2O3 (rhombohedr., a¼ 4.75893(10), c¼ 12.9917(7) Å), ZnO (hexag.,
a¼ 3.24981(12), c¼ 5.20653(13) Å), TiO2 (rutile, tetrag., a¼ 4.59365(10),

Figure 4.18 Powder pattern of Pb myristate, Pb(C14H27O2)2, taken with CuKa
radiation and variable divergence slit. The closing of the divergence slit
produces a false peak at 2y 0.51 (Schreiner, 1986.23)

Table 4.10 Quartz reflections after PDF 46-1041 (2yobs). 2ycalc was calculated
with the above lattice constants and l¼ 1.5405981 Å (both values
at 25 1C). Only the stronger reflections with Irel> 1 are reported.

hkl 2yobs 2ycalc Irel hkl 2yobs 2ycalc Irel

100 20.860 20.859 16 113 64.036 64.036 2
101 26.640 26.640 100 212 67.744 67.744 6
110 36.544 36.546 9 203 68.144 68.144 7
102 39.465 39.467 8 301 68.318 68.315 5
111 40.300 40.292 4 104 73.468 73.467 2
200 42.450 42.453 6 302 75.660 75.661 3
201 45.793 45.796 4 220 77.675 77.672 1
112 50.139 50.141 13 213 79.884 79.884 2
202 54.875 54.875 4 114 81.173 81.171 2
103 55.325 55.327 2 310 81.491 81.491 2
211 59.960 59.961 9 312 90.831 90.831 2
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c¼ 2.95874(8) Å), Cr2O3 (rhombohedr., a¼ 4.95916(12), c¼ 13.5972(6) Å) and
CeO2 (cub., a¼ 5.41129(8) Å).

For a quantitative analysis of phase mixtures the relative intensities of the
PDF do not suffice, and therefore recently a scaling factor I/Ic from relative to
absolute intensities is reported (RIR¼ relative intensity reference).
In recent releases of the ICDD powder diffraction file the reported value I/Ic

refers to the intensity ratio of the strongest (100%) reflection of the substance in
relation to the strongest reflection of corundum, Al2O3 (113 at 43.351), if both
materials were mixed and measured using an 1 : 1 weight ratio. The I/Ic-values
of the four standards in SRM 674 (besides Al2O3 itself) are: for ZnO, 5.17(13)
(101 at 36.251); for TiO2, 3.39(12) (110 at 27.421); for Cr2O3, 2.10(5) (104 at
33.591); and for CeO2, 7.5(2) (111 at 28.551). For completeness, the I/Ic-value
for quartz¼ 4.3 is given here too. If the strongest reflection of corundum
coincides with a reflection of the material to be calibrated, one may use another
reflection of corundum. Therefore, the corundum intensities of SRM 674 were
measured very accurately and are certified (Figure 4.19).
If one intends to determine the I/Ic-value for a new material the integral

intensities must be used, especially if sample and corundum exhibit great
differences in their half widths. For rock samples, quartz can be used as an
intensity reference.

Figure 4.19 Mathematical models for systematic errors (dotted curve) often fail at
small angles. The measured values for lead stearate (triangle
s¼ differences to calculated 2y values) exhibit a completely different
behavior. (Schreiner and Surdowski, 1983 [24]).
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Since 1991 a ground sintered plate of corundum is available as SRM 1976,
intended for the calibration of the whole 2y-range of an individual equipment
(Table 4.11). The individual grains are plates along (001) with a diameter of
5–7 mm and thickness of 1–2 mm. This plates are oriented more or less parallel
to the surface. Therefore, the intensities (measured with a fixed divergence
slit) with a large c are enhanced with respect to the intensities of SRM 674
(Table 4.12). The standard was measured at 25 1C. For l a slightly greater value
than usual is given (1.540629 Å). The textures of both corundum standards are
different because of different grain shapes.
For the calibration of half widths an LaB6-standard was described (SRM 660).

4.8.1 External Standards

Errors in the alignment of the goniometer that change rather slowly with time
can be controlled by external standards. The calibration specimen should
mechanically be rather sturdy and not change its surface structure during the
life-time of the goniometer. Pressings with tiny amounts of binder only or
ground sintered plates, for instance from Si, corundum, or quartz are suitable.
Consequently, Bruker AXS delivers with its goniometers (e.g. D5000) a section
of a fine-grained, natural quartzite without any sample holder. This specimen
should be measured every other month under identical measuring conditions

Table 4.11 2y-values (CuKa1) and intensities of a sintered corundum-plate
(SRM 1976, at 25 1C, with texture). The 2ycalc were calculated
from a¼ 4.74885(11), c¼ 12.9931(24) Å, and l¼ 1.540629 Å (total
error for Iint¼ 6.12%, for the peak height Imax¼ 7.85%).

hkl 2ycalc Iint Imax Hkl 2ycalc Iint Imax

012 25.577 32.34 33.31 02.10 88.995 11.76 8.99
104 35.150 100.00 100.00 226 95.252 10.14 7.25
113 43.355 51.06 49.87 21.10 101.074 16.13 10.94
024 52.552 26.69 25.17 324 20.86 10.09

116:107
116:597

�
116 57.499 92.13 83.6 01.14
300 68.213 19.13 16.89 13.10 127.684 15.58 7.56
10.10 55.57 34.61 146 136.085 15.47 6.55

76:871
77:234

�
119 40.10 145.177 11.29 4.06

Table 4.12 2y-values (CuKa1) and intensities of corundum (SRM 674) at
25 1C.

hkl 2y(1) Irel(674) hkl 2y(1) Irel(674)

012 25.576 55.4(24) 024 52.552 45.5(13)
104 35.151 87.4(19) 116 57.501 92.5(26)
110 37.777 36.5(14) 214 66.519 34.7(10)
113 43.354 100.0 300 68.210 55.5(22)
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(high voltage, tube current, slits, counting electronics etc.) and all records kept
in a safe place. A slow decrease of the intensities with time may not indicate
an unquestionable misalignment, but can be caused by a decreasing yield of the
X-ray tube due to the deposition of tungsten vapor on the tube windows and
the burning-in of the focal spot roughening the anode. If this loss of intensity
exceeds about 30%, a new tube should be installed.
Of great importance is the calibration specimen for the determination of the

mechanical zero-point of the goniometer, which seldom fits the real zero-point
exactly but deviates by some 1/1001. Even if this zero-point error amounts to
0.11, the lattice constants calculated from the shifted 2y-values will differ
significantly from the true ones (i.e. by over 3s). Provided that the reflections
are indexed correctly, a zero-point error can be recognized by about an
equal difference (positive or negative) between the measured and the expected
2y-values. After a least-squares refinement of the lattice constants using
zero-point shifted data the final differences of the 2y-values are not randomly
distributed but exhibit a systematic trend from �ve to +ve or vice versa.
Non-periodical mechanical failures of the gears, which only slowly change
with 2y, can also be detected and corrected using an external standard.
Not detectable by an external standard are systematic errors that differ from

specimen to specimen, such as a variable packing density of the sample (leading
to variable transparency errors) or – most frequent and most severe – the
sample displacement error. Even if the same person puts the same specimen
repeatedly into the same equipment the sample displacement error will vary.
During a test at our Siemens-diffractometer D500 about every third sample was
placed too deep by about 30 mm (away from the wanted tangential plane at the
focusing circle) despite a very careful procedure on the part of the operator. For
other equipment displacement errors of up to 100 mm are reported. Especially
if the sample holder is pressed plane to plane against the goniometer axis, a
single powder grain between both planes suffices to displace the specimen from
the correct position. Visually such a small error cannot be detected in a pattern,
but it will show up during the refinement of lattice constants and will change
these by 4–5s. These sample offset errors are removed in synchrotron setups
with analyzer crystals after the sample.

4.8.2 Internal Standards

For accurate measurements of diffraction angles internal standards should be
used, which are to be mixed with the sample itself. Unfortunately, after that the
sample is contaminated by the standard and further investigations, as would be
possible with the pure sample alone, are rendered difficult or impossible. Tests
to use magnetite as a standard were rather promising, as the magnetite standard
can be removed after the measurement completely with a simple magnet. Also,
a Rietveld-refinement becomes more complicated with an internal standard, as
the parameters of the standard must be refined too. A great advantage of the
internal standard is the common mass absorption (m/r)m of the mixture, i.e. for
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sample and for standard the same transparency (depth of penetration) is to be
applied, which facilitates a quantitative analysis.
A 2y-calibration takes place in four steps:

1. Selection of one or several standards,
2. preparation and measuring of the mixture,
3. exclusion of unsuitable standard reflections,
4. construction of a calibration curve and correction of 2y-values.

When selecting a standard one must pay attention to finding a standard peak,
which is placed before the first peak of the sample, or that at least the first
standard peak is only some few degrees behind, as the extrapolation of a
calibration curve is rather liable to faults. Also the peaks of the standard and
the sample should not overlap. If in the front range no standard peaks are
available, auxiliary points can be constructed if higher orders of the front peaks
can be measured. In this case the higher order is calibrated first and the position
of the first order peak is calculated from that of the higher order one using
Bragg’s law. This auxiliary point is in any case more reliable than an extra-
polation. The calculated positions can be used to extend the calibration curve
to smaller angles.
The admixture of the standard should be dimensioned so that the strongest

lines of sample and standard become about equal. The right ratio can be
calculated if the I/Ic-values of standard (Is/Ic) and sample (Ip/Ic) are known (see
above at intensity calibration). The weight ratio Xp ( sample) :Xs (standard) can
be estimated by:

Xp:Xs ¼ Is=Ic : Ip=Ic

(If both mass absorptions differ strongly this must be taken into account in a
correction term.)
If the I/Ic-values are not known, one can admix the standard in small

portions until the strongest reflections show about equal intensity.
If fluorphlogopite is used as an internal standard, an alignment of the mica

flakes parallel to the sample surface is preferred. This can be obtained if a small
amount of the mixture sample/standard is suspended in acetone or isopropanol
and is sedimented to a single crystal sample holder.
For the Guinier-camera a compromise between external and internal stan-

dard is possible, as the camera allows the simultaneous recording of several
samples onto the same film by dividing the camera by the installation of
separating disks. Mostly three individual patterns are taken simultaneously:
pure sample, mixture sample/standard, and pure standard. If one wants to
dispense with the mixture, it will be sufficient to put the sample pattern in the
centre and a standard pattern at each side of the Guinier-film.
Only those standard reflections are suited for a calibration that do not

overlap with sample reflections. If unavoidable, one may try to separate
standard and sample reflections by profile fitting. But in the plot for the
calibration curve the D2y-values of these standard reflections should follow
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the trend of the non-overlapping reflections, otherwise they must be abandoned
(Figure 4.20).
Similar to what is done for the external standard, for the construction of the

calibration curve the D2y-values are plotted versus 2yobs and then approximated
by a smooth curve. For polynomials a+bx+cx2+. . . one can calculate all
approximations from 0th order (zero point error only) up to 4th order (if at
least six calibration points are available) and compare the corresponding sums
of the squared differences (w2). As an optimal polynomial one can take that one

Figure 4.20 Calibration curve of 4th order. Dashed line: Calculated only with
Ag reflections. It results an erroneous extrapolation to smaller angles.
Full line: Same procedure but with the inclusion of additional fluor
phlogopite reflections. (Wong Ng & Hubbard (1987)30).
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which exhibits the last large drop in w2. Often this is a polynomial of 2nd order.
The higher the order the more risky becomes an extrapolation of the calibration
curve to greater or smaller angles.
For Rietveld structure refinements it is possible to apply a 2y-correction on

the complete raw data set. But as after such a correction the step widths
between the individual data are no longer constant, the complete data set must
be rectified to a new grid with constant step width. As the new grid points do
not coincide with those of the original measurement, the counting rates at the
new grid points must be estimated by an interpolation of the old values. As the
maximum possible shift is only a half step width long, a linear interpolation
between the two adjacent original counting rates will suffice. Better will be an
interpolation by using a polynomial of 2nd or 3rd order, especially to
reproduce correctly the reflection maxima. In the program GUFI such a angle
rectification is provided (Dinnebier & Eysel, 199033). Other corrections, such as
smoothing or Ka2-stripping, should be abandoned for a Rietveld analysis but
are handled in the refinement itself by corresponding parameters. A back-
ground curve may be constructed before and subtracted, though this too can be
parameterized and fit in the Rietveld refinements. Peak intensity extraction
using full-profile refinement methods when the unit cell is known, but without a
full knowledge of the structure, are also possible.

4.8.3 Correction Together with the Refinement of Lattice Constants

If only a restricted quantity of material is available, which after taking the
powder pattern shall be used for other experiments, the admixture of an
internal standard is prohibited, and errors are to be corrected without a
standard. If a systematic error can be described by a mathematical model,
the parameters of this model can be refined together with the lattice constants.
In practice one should restrict this refinement to one additional error only, as
rather strong correlations may exist between different errors. For example, the
zero-point error, D2y, and the sample-displacement error, D2y � cosy, differ only
by the slowly changing factor cosy. For a measurement up to 2y¼ 901 this
factor changes by only 29%, and a simultaneous refinement of both errors can
yield rather meaningless values.
In Table 4.13 an example is worked out for the determination of the sample-

displacement error without an internal standard. Other errors should be
excluded before if possible. For example, the zero-point error should be
corrected by using an external standard. If the reflections can be indexed
unequivocally (uncertain reflections must be omitted), the sample-displacement
error – the most important error changing from sample to sample – can be
easily refined with the lattice constants. The author’s program, LATCO, refines
the lattice constants twice, with and without sample-displacement error, and
one has to decide oneself which of the two refinements is to be preferred. The
main criterion for accepting the refinement with sample-position error is the size
of the error in comparison with its standard deviation: it must amount to at
least twice the standard deviation. Furthermore w2 should be significantly
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smaller for the refinement with error correction and the standard deviations of
the lattice constants should decrease too. More precisely, a w2-test of statistics
may decide whether the additional parameter is meaningful.
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17. A. Kern, Präzisionspulverdiffraktometrie: Ein Vergleich verschiedener
Methoden, Diploma Thesis, Heidelberg, 1992, 175 S.

18. A. Brown and J. W. Edmonds, The fitting of powder diffraction profiles
to an analytical expression and the influence of line broadening factors,
Adv. X-Ray Anal., 1980, 23, 361–374.

19. H. M. Rietveld, A profile refinement method for nuclear and magnetic
structures, J. Appl. Crystallogr., 1969, 2, 65–71.

20. J. Lauterjung, G. Will and E. Hinze, A fully automatic peak-search
program for the evaluation of Gauss-shaped diffraction patterns, Nucl.
Instrum. Methods Phys. Res., Sect. A, 1985, 239, 281–287.

21. C. R. Hubbard, Certification of Si powder diffraction standard reference
material 640a, J. Appl. Crystallogr., 1983, 16, 285–288.

22. R. D. Deslattes and A. Henins, X-ray to visible wavelength ratios, Phys.
Rev. Lett., 1973, 31, 972–975 (see also ibid. 1974, 33, 463–466 and 1976, 36,
898–890).

23. W. N. Schreiner, Towards improved alignment of powder diffractometrs,
Powder Diff., 1986, 1, 26–33.

132 Chapter 4



24. W. N. Schreiner and C. Surdowski, Systematic and random powder
diffractometer errors relevant to phase identification, Norelco Rep., 1983,
30 1X, 40–44.

25. D. L. Bish and R. C. Reynolds, Jr., Sample preparation for X-ray
diffraction, Rev. Min, 1989, 20, 73–99.

26. W. N. Schreiner and R. Jenkins, A second derivative algorithm for
identification of peaks in powder diffraction patterns, Adv. X-Ray Anal.,
1980, 23, 287–293.

27. W. N. Schreiner and R. Jenkins, A second derivative algorithm for
identification of peaks in powder diffraction patterns, Adv. X-Ray Anal.,
1980, 23, 287–293.

28. T. C. Huang, Precision peak determination in X-ray powder diffraction,
Aust. J. Phys., 1988, 41, 201–212.

29. T. C. Huang and W. Parrish, A combined derivative method for peak
search analysis, Adv. X-Ray Anal., 1984, 27, 45–52.

30. W. Wong-Ng, and C. R. Hubbard (1987), Standard reference materials for
X-ray powder diffraction. Part II. Calibration using d-spacing standards,
in: Methods and Practices in X-ray powder diffraction, published by the
International Centre of Powder Diffraction, Newton Square, Pennsylvania,
USA, (1987 ff.).

31. D. W. Marquardt, An algorithm for least–squares estimation of nonlinear
parameters, J. Soc. Indust. Appl. Math., 1963, 11, 431–441.

32. R. Jenkins and W. N. Schreiner, Considerations in the design of gonio-
meters for use in X-ray powder diffractometers, Powder Diff., 1986, 1,
305–319.

33. GUFI (Guinier–film–evaluation), Ver. 3.01 (1992), Dinnebier, R.E. and
Eysel, W. (1990) Powder diffraction satellite meeting of the XVth congress
of the International Union of crytallography, Toulouse (France), abstract
PS-07.03.15 (also as supplement to Acta Cryst. A46).

34. G. Cagliotti, A. Paoletti and F. P. Ricci, Choice of collimators for a crystal
spectrometer for neutron diffraction, Nucl. Instr., 1958, 3, 223–228.

133General Data Reduction



CHAPTER 5

The Profile of a Bragg Reflection for
Extracting Intensities

ARMEL LE BAIL

Laboratoire des Fluorures-UMR 6010, Université du Maine, Faculté des
Sciences, Avenue Olivier Messiaen, 72085 LE MANS Cedex 9, France

5.1 INTRODUCTION

A Bragg reflection from a perfect crystalline material, measured on a perfect
diffractometer, would have a simple Dirac peak profile (the d function) exactly
located at the diffracting angle position 2y expected from the Bragg law
(2d siny¼ l). Unfortunately, there is no such thing as a perfect diffractometer:
an instrumental effect is observed on the profile in the form of peak broadening
and asymmetry. This is also discussed Chapters 4 and 6. Moreover, the
detection of a Bragg reflection is possible only if there is a crystalline phase
in the sample, characterized by a high degree of three-dimensional order
extending over a large number of unit cells. Otherwise there is a sample effect
as well, and the profiles are broadened inversely proportional to the crystal size
(size effect), and if the periodicity is not well respected, due to various cell
imperfections in dimensions and content. It is not always easy to distinguish
between the powder pattern of a poorly crystallized or very defective com-
pound, or of a nanocrystalline material, and that of a glassy or amorphous
material for which no Bragg reflections occur, but only diffuse scattering. As an
alternative, the method of atomic pair-distribution function (PDF) analysis
may be applied to any powder pattern without the need for considering Bragg
reflections, as discussed in Chapter 16. The present chapter discusses the
various approaches of tackling the profiles of Bragg reflections in a powder
diffraction pattern, either individually or as a whole.
Almost everything possible today was already dreamed of 30 or 40 years ago.

The realizations of these dreams occurred slowly and progressively, thanks to
the increase in computer power, the improvements in graphical user interfaces,
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diffractometer data digitalization and the availability of synchrotron and
neutron radiation. Some important innovations were not instantly accepted
(e.g., the whole powder pattern fitting methods such as the Rietveld and
decomposition methods) or could not be applied to every radiation type or
diffractometer before adaptations made by that essential category of crystal-
lographers: the conceivers and developers of the software.

5.2 OVERVIEW OF CONTRIBUTIONS TO THE PEAK

PROFILE FUNCTION

There is no reason for an experimental Bragg peak to be exactly described by a
simple analytical function. Bragg peaks are generally very complicated objects.
In the early usual simplified formalism, still in use, the experimental function
h(x) describing a broadened Bragg peak profile observed on a powder diffrac-
tion pattern is due1 to the convolution of the instrumental aberration function
g(x) with the sample function f(x):

hðxÞ ¼
ZþN

N

f ðyÞgðx� yÞdy ¼ f � g ð1Þ

The reality is that the aberration function g(x) itself is the convolution of many
contributions depending first on the radiation source and then on the diffract-
ometer geometry and various experimental imperfections. Usually, the sample
function f(x) is considered to depend only on size and distortion effects, but
other sample-dependent contributions can play an important role on the final
peak profile, especially depending on the sample absorption (and related to
the thickness, compaction, roughness), and depending on the diffractometer
geometry and sample holder shape (flat specimen, capillary); these effects being
more or less important, depending on the incoming beam quality (parallel or
not). These additional sample effects are reported as well in the above global
instrumental aberration function g(x). It would be appropriate to rename it as
the ‘‘instrumental and sample aberration function’’, as opposed to the ‘‘sample
size and distortion function’’ f(x). As discussed in Chapter 4, it is considered
implicit that g(x) would be determined experimentally from a well crystallized
sample with the same chemical formulation (or by using a standard reference
sample, sufficiently similar to the defective sample, so as to present an analogous
absorption coefficient), and prepared in the same condition (thickness, compac-
tion, etc.) as the sample showing additional line broadening by size and
distortion effects to be characterized. Forgetting this, and using inappropriate
standard reference samples, could lead to wrong size and distortion parameter
estimations. Thus, a more complete description of the h profile would be:

h ¼ fs � fd � g1 � g2 � ::� gn ð2Þ

where fs and fd are the size and distortion sample contributions (f¼ fs� fd),
respectively, and g1 to gn would be all the instrumental and sample aberration
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effects, including the imperfections due to the primary beam radiation (wave-
length distribution), focusing, collimator and slit dimensions, sample size,
detector slit and monochromator dimensions, misalignment, etc. Experimentally,
Equation (2) is incomplete: the background is removed, and some multiplicative
factors are not included (scale, Lorentz-polarization effect, see Chapter 3), some
of them depending on the diffraction angle. When the sample is perfectly
crystallized and if the homogeneous grain size is, say, larger than 3–5mm, the
f(x) contribution is close enough to a d function and then h(x)E g(x). However,
interestingly, the instrumental resolution on the best instruments using synchro-
tron radiation has increased so incredibly that extremely fine fs and fd contribu-
tions can now be disclosed. The largest size ever detected2 (producing a
measurable broadening of the Bragg reflections) by powder diffraction is about
3.6 mm, obtained from a NAC3 reference sample (Na2Ca3Al2F14), showing
negligible microstrain (distortion), which can be compared to 1.2mm obtained
from SRM 660 LaB6 (the standard reference material from NIST proposed for
the characterization of the instrumental contribution to observed line profile
shapes from X-ray diffraction equipment) plus some amount of microstrain. Of
course, such small broadening effects due to large sample size are almost
completely negligible on Bragg peaks observed with a laboratory instrument,
affected by a dominant larger g(x) contribution; nevertheless, a new SRM 660a
LaB6 is now proposed by the NIST. It can also be concluded that the necessary
recommendation that a powder should contain a sufficiently large number of
randomly disoriented crystallites (recommendation fulfilled if sizes are as small as
5mm) would lead finally to the observation of a non-negligible line broadening
with the highest resolution instruments at synchrotron radiation facilities. Let us
now examine in more detail the g(x) part.

5.3 INSTRUMENTAL ABERRATIONS

Most early studies of powder diffractometer aberrations are due to Wilson4 6

and Alexander.7,8 The approach, now called ‘‘Fundamental Parameters
Approach’’ (FPA),9 pushes the concept of a convolution approach to powder
line profile fitting by taking account of every gn contribution in h instead of
fitting globally the h profile by selected empirical profile shapes. Fitting h
globally is easy when the lineshapes are simple Gaussians, as is the case when
considering low resolution, constant wavelength, neutron powder diffraction
data. This was behind the original success of the Rietveld method10 (Chapter 9).
However, the resolution of neutron instruments has also improved consider-
ably since the first applications of the Rietveld method. Spallation sources are
increasingly used in neutron ToF (time-of-flight) mode (Chapter 2), resulting
in complicated line-shapes that are much more difficult to fit, not to mention
X-ray data (conventional or synchrotron sources). Of all the single-function
profile models currently in use11 14 for X-ray powder data, none of them gives
an accurate description over the whole 2y range. Learned profiles, by using
experimental peak shapes on the pattern of interest, are by definition (either by
parametrization15,16 or Fourier representation17) able to fit exactly, but one has
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to introduce an angular variation, and extrapolation to the regions of the
diagram where isolated peaks are not available. Profiles can look more
Gaussian at low angles and more Lorentzian at large angles and peak
asymmetry vanishing generally quickly from low to large angles. The import-
ance of the various aberrations depends on the instrument geometry.

5.3.1 Largest Size Effect Ever Detected

It is quite interesting to see how the instrument line profile from synchrotron
radiation was recently illustrated2 in the case of the BM16 (now ID31) beam-
line18 at ESRF, for capillary samples. The synchrotron parallel beam makes the
instrument free of displacement-type aberrations.19 The resolution of this
instrument is such that it revealed non-negligible microstructural effects (size
and microstrain broadening) for LaB6 NIST SRM (standard reference material).
The study was performed on the NAC, with a wavelength close to 0.5 Å, using a
1mm capillary sample (a small decrease of the line width was noticed by using
smaller capillaries, arising from a change of the effective equatorial divergence of
the incident beam), with a step size of about 0.00041 2y. In this geometry, the
instrument line profile can be described as the convolution of the axial and
equatorial profiles. Modeling the axial divergence has been the subject of many
studies20 24 and is considered to be perfectly modeled by the Finger et al.
asymmetry correction.21 For a non-parallel beam, as in the case of conventional
laboratory diffractometers in Bragg–Brentano geometry, the low absorption
coefficient of NAC induces extra broadening, sufficient for obtaining larger
FWHM than from LaB6. To correct for this, the path of a ray through the
different parts of the diffractometer (monochromator, collimator, entry slit,
sample, output slit, analyzer) should be completely modeled and the angle
relationships established. The probability of a ray passing through the system
and reaching the counter is proportional to the product of the reflection curves
of the different components of the system. Concerning the BM16 instrument, the
equatorial instrumental profile is shown2 to be the convolution of three
independent contributions: the equatorial angular divergence of the incident
beam, and the reflection profiles of the monochromator and the analyzer
[Equations (1) to (4b) in Masson et al.2]. In the case where an equatorial slit is
inserted in the incident beam to limit the equatorial divergence, then the function
characterizing the incident beam source becomes the product of a Gaussian
function and a square-top function. This would also be the case if a collimating
mirror was inserted. For non-perfect optical elements, some additional effects
would have to be included. The characteristics of the shape of each aberration
profile do not change with 2y – only the width changes. The analyzer gives a
constant contribution over the whole scattering angle. For synchrotron instru-
ments, there is no satisfactory analytical expression for any of the aberration
functions. It is necessary to determine the individual components under working
conditions (rocking-curve measurements). The instrument profiles were modeled
for the 12 most intense lines of the NAC sample in three analyzer settings
(Ge 333, Ge 111 and Si 111), revealing a small extra line broadening interpreted

137The Profile of a Bragg Reflection for Extracting Intensities



as due to microstructural effects and fitted by a Voigt function. Figure 5.1 shows
the fitting results for two of the NAC lines (lower and higher angle region of the
12 lines) for the Ge(111) analyzer used routinely on BM16.
In contrast to a conventional laboratory diffractometer, the axial divergence

of the primary beam is generally very small compared with the axial divergence
of the diffracted rays for synchrotron instruments. For the Ge(111) crystal, the
profile shape is completely dominated by the analyzer reflection shape and is
largely super-Lorentzian. At large angle, the contribution of the monochro-
mator gives a non-negligible Gaussian contribution. The full widths at half
maximum (FWHM) are of the order of 0.0031 2y. The NAC, as seen with a
laboratory instrument (Bruker D8 Advance), for the same two lines, gives
FWHM 0.044 and 0.0711 2y, respectively (Figure 5.2), this being 15 to 24 times
larger (in fact ‘‘only’’ 5 to 8 times taking account of the fact that the wavelength
is three times larger) than the synchrotron data.
Another contribution to the peak width from conventional sources is that the

incident beam source profile shows a double contribution in this Bragg–
Brentano geometry, selected here without any monochromator in the incident
beam (showing the Cu Ka doublet la1¼ 1.54056 Å, la2¼ 1.54433 Å – though
the wavelength distribution has to be considered as being much more com-
plex;25,26 see also, Chapter 4). These partial fits are extracted from a whole
powder pattern decomposition. The main, but not only, part of this additional
broadening comes from the instrument. Indeed, a LaB6 SRM measurement on
the same laboratory instrument now provides slightly narrower FWHM than
from the NAC. This is due to a very reduced X-ray penetration depth in the
LaB6 sample as compared to NAC, because of the much higher absorption
coefficient of the former. So, using LaB6 as a standard for obtaining a global
g(x) would here lead to a strong error on the size and distortion estimations
from a low-Z sample such as the NAC. In principle, all gn contributions can be
modeled by the FPA, but for methods using a reference sample for modeling
g(x), this poses the question of which reference to use. In a recent size strain
round robin,27 a CeO2 microstructured sample was proposed for characteriza-
tion to the experts on an international scale, and the selected reference material
was preferred to be the annealed CeO2 instead of the LaB6 SRM. It was
suggested28 by FPA that this reference CeO2 sample presented a significant
intrinsic broadening. Perhaps it is too early to consider now that the FPA is an
exact science allowing one to calculate perfectly any g(x) contribution, for any
diffractometer, including sample effects in some reflection geometry, though
progress in this area has been rapid and is, clearly, highly valuable.

5.3.2 Monte Carlo Ray-tracing

The instrument design of neutron or X-ray diffractometers is realized nowadays
with the help of Monte Carlo ray-tracing simulations29 33 to obtain optimal
results (for instance best resolution and peak shapes for powder diffract-
ometers). The program GEOMET inside the BGMN34,35 FPA package simu-
lates device profiles by Monte Carlo ray-tracing, depending on many geometric
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Figure 5.1 Least squares fit of the NAC reference sample synchrotron powder
profiles obtained with the Ge(111) analyzer crystal. (a) NAC (211) Bragg
reflection; (b) NAC (921) Bragg reflection. The five other curves are, from
left to right, the incident beam source profile, the transfer function of the
monochromator, the pure sample profile, the reflection profile of the
analyzer, and the axial divergence asymmetry function, respectively.
(From Masson, Doryhée, Fitch, by courtesy of J. Appl. Crystallogr.)2
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input parameters such as sample dimensions (for irradiating and penetrating
the sample), linear attenuation coefficient of the sample, formula describing the
ADS divergence, a misfit angle between line focus and slit edge, the focus
dimensions and all the known (since Wilson6 8) divergence influences from the
slits and collimators. Besides Bragg–Brentano one can also choose flat sample
transmission and capillary geometries. Thus, the instrumental profile is pre-
defined and not to refine within Rietveld calculations. Raytracing does millions
of simple geometric calculations of possible X-ray paths and calculates true y
values for a fixed y0 (which is the diffractometer’s angle). All events are stored
in a narrow grid, each channel for a narrow range of difference y – y0. The result
is a point by point description of the geometry function. In a second step, this
description is fitted by a sufficient number of squared Lorentzians (Figure 5.3).
The choice of Lorentzians rather than Fourier series (or something else) for

the fit is because they can be convoluted easily, and need only some dozens of
parameters (instead of much more if Fourier series were used) for a good
expansion (error below 0.7%) of a given geometry function. However, the
developers do not believe that a further refinement of some of these parameters
(once the profile shape is deduced from ray-tracing) can be done together with
real structure parameters without correlation problems. All the models used
contain a simplification, e.g. a box shape for the intensity distribution inside the
focus and so on, and the input of initial geometric parameters is somewhat
problematic. For example, it is difficult to know precisely the actual divergence
of the collimators, including any missetting by the manufacturer or the
operator, or the angle between the line focus and the slit edges (always 01?),
or the effective width of the line focus and the intensity distribution emitted
(exact box shape versus double peak and feet), or the effective penetration
depth/linear attenuation of a packed powder sample in reflection geometry, or

Figure 5.2 Part of a whole powder pattern fit of the NAC reference sample. Same
reflections (211) (a) and (921) (b) as on Figure 5.1, measured with a
conventional laboratory diffractometer (Bruker D8 Advance), in Bragg
Brentano geometry, using Cu Ka radiation, without a primary beam
monochromator.
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the thickness of the prepared sample in transmission geometry, or the effective
sample roughness, and so on. We obviously need much more work before
claiming the absolute power of the FPA.
Besides ray-tracing, the other way to conduct FPA calculations is by refining

parameters related to focus width, primary and secondary axial divergence
angles, detection slit width, sample penetration depth, equatorial divergence
angle, etc., all these aberrations being modeled and numerically convoluted.9,28

Given the FPA tendency for modeling h, we expect to see a decrease in the
number of new propositions of algorithms for Ka2 elimination (Chapter 4) or
an improved deconvolution process, though these methods may be useful when
trying to extract the f part by deconvolution, in studying sample broadening
effects.

5.4 SAMPLE BROADENING

Contributions to the line broadening from the sample is dealt with in detail in
Chapter 13. One equation can be applied to powder diffraction data of any kind
(with or without three-dimensional ordering: liquids, amorphous or crystalline
solids, and any intermediate stage) the Debye scattering equation:36

f ðsÞ ¼
X
m

X
n

fmfnðsin2psrmnÞ=2psrmn ð3Þ

where s¼ (2 siny)/l, and rmn is the magnitude of the distances of each
atom from every other atom with fm and fn scattering factor. This equation
gives the average intensity, provided the sample can be considered as a rigid
body, taking with equal probability all orientations in space. For samples that

Figure 5.3 Ray traced data for a given diffractometer set up, fitted by a sum of 10
squared Lorentzians in BGMN. (Courtesy of J. Bergmann.)
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have a one-, two- or three-dimensional ordering, other expressions can be
derived from Equation (3) by successive approximations. For instance, for a
perfect three-dimensional ordering, such as in perfect crystal, the double sums
that run over every atom in the sample can be approximated by only a few of
the shortest terms that are factored by using the so-called structure factor
amplitude relative to the repetitive cell content. It is difficult to define a limit of
applicability of such approximate equations. They are said to be applicable in
the case of ‘‘homogeneous’’ systems, and if there are ‘‘not too many’’
imperfections, but people continue to apply them for samples showing large
concentration variations or enormous disorder induced by extensive defects.
Let us look at the most usual equations retained for describing size and
distortion effects.

5.4.1 Crystallite Size

A treatment of the analysis of line-shapes to extract particle size, shape and
strain information is discussed in detail in Chapter 13. Here we present an
overview.
In 1918, Scherrer established37 his famous relation giving a mean crystallite

size from the X-ray line profile width (see Chapters 1 and 13). In that sense,
‘‘crystallite’’ is equivalent to ‘‘homogeneous domain giving rise to coherent
diffraction’’, so that it is supposed that there is no complete break in the three-
dimensional order inside of it, though there could be some limited distortion.
Bertaut demonstrated,38,39 in 1949, the important result that the size distribu-
tion can be estimated by Fourier analysis of the diffraction line profile. The
Bragg law40 (2dsin y¼ l) (Chapter 1) expresses the ideal geometrical conditions
of diffraction; it implies that the crystal dimensions can be considered as infinite
compared to the distance between two diffraction centers, otherwise a size effect
broadens the Bragg peaks. To characterize the peak broadening, several
parameters are useful:

� The half width, o, introduced by Scherrer,37 corresponding to the angular
range in which the intensity is larger or equal to half the maximal intensity
(now designed as the FWHM, full width at half maximum). A size
parameter eo is defined from o by:

eo ¼ Kol=o cos y ð4Þ

where Ko is the Scherrer constant.41

� The integral breadth, b, introduced by Laue,42 is the ratio of the integrated
intensity to the intensity at the maximum fm:

b ¼
Z

f ð2yÞ d ð2yÞ
� ��

fm ð5Þ

is related to the crystallite size by the equation:

eb ¼ l=b cos y ð6Þ
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� The variance W, introduced by Tournarie43 and Wilson:44

W2y ¼
Z

ð2y�o2y4Þ2f ð2yÞ dð2yÞ
� ��Z

f ð2yÞ dð2yÞ ð7Þ

whereo2y4 is the peak centroid, first rank order moment of the intensity
distribution f (2y), W2y being the second rank order moment. Langford
and Wilson have shown45 that, instead of the above relation, it was
preferable to calculate a ‘‘true’’ variance, using the integrated intensity
as a function of the truncation range D(2y) centered on the peak centroid.
The tails of a f(s) profile, broadened only by a size effects, are expected to
vary approximately according to s 2, and in that case the variance W,
expressed as a function of the truncation range D(2y), is a straight line
close to the curve tails:

W ¼ W0 þ kDð2yÞ ð8Þ

The slope k of that line leads44 to an ‘‘apparent’’ mean size according to:

ek ¼ l=2p2 k cos y ð9Þ

This ek has the same signification as the eF defined below from the Fourier
analysis. In both cases, the ‘‘true’’ mean size is the product of the
‘‘apparent’’ dimension by the Scherrer constant relative to the variance,
Kv. Tournarie and Wilson have tabulated Kv for different crystallite shapes
as a function of the Miller indices hkl.

� Finally, Bertaut imagined38,39 the homogeneous domains of coherent
diffraction as constituted by columns of elementary cells juxtaposed
orthogonally to the diffracting planes, and he defined a size distribution
P(n) as the numerical fraction of columns of length n cells. From that size
distribution function, the size-only Fourier coefficients AS

n can be defined:46

AS
n ¼ 1

oN4

Xm
i¼InI

ði � jnjÞPðiÞ ð10Þ

whereoN4 is the mean number of cells per column. The sum extends from
i¼ |n| tom;m being the finite maximum size of the columns. The size-only fs
profile shape is the Fourier transform of AS

n according to:

fsðxÞ ¼ AS
0 þ 2

Xm
n¼1

AS
n cos2pnx ð11Þ

where x is the reciprocal variable and n is the harmonic number. The
first coefficient for n¼ 0 is normalized to 1 and the summation is made two
times from n¼ 1 to m, since A(1n)¼A( n). Usually x takes the form of
(s–s0)/Ds where s¼ (2sin y)/l, s0¼(2siny0)/l, Ds¼2(siny2 – siny1)/l, and
[y1,y2] is the angular range in which is defined the profile shape. The origin
y0 corresponds to the angular position of the peak maximum fm, the
function f being symmetrical, and m is the maximum number of significant
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Fourier coefficients. Note that it is preferred here to use summations instead
of integrals, since the problem is discontinuous (number of cells). To the
harmonic number n is associated a distance M, expressed in angstroms, in
the direction orthogonal to the diffracting planes:

M ¼ n=Ds ðÅÞ ð12Þ

A size distribution P(M), expressed along the variable M in angstrom units
can replace P(n), and the average size is defined by the equation:

oM4 ¼
XL
M¼0

MPðMÞ
,XL

M¼0

PðMÞ ð13Þ

where L is the maximal length (Å) of the columns. oM4 is the so-called
area-weighted average size. From P(M) can be defined a size distribution in
volume,G(M)¼MP(M)/oM4, verified ifG(M) and P(M) are normalized,
i.e. SG(M)¼SP(M)¼ 1.

The average of the G(M) function is the so-called volume-weighted mean size:

oM14 ¼
XL
M¼0

MGðMÞ
,XL

M¼0

GðMÞ ð14Þ

Another way to obtain the area-weighted size oM4, also called sometimes
the Fourier size eF, is from the slope at the origin of the An function:

�1=eF ¼ jdAn=dMjM!0 ¼ ðA1 � A0Þ=ðM1 �M0Þ ð15Þ

P(n) can be expressed from An as being proportional to its second derivative
(which instability explains why spurious oscillations are generally obscuring the
size distribution):

PðnÞ=oN4 ¼ d2 An=dn
2 ð16Þ

which can be replaced by:

PðnÞ ¼ ðAnþ1 � 2An þ An 1Þ=ðA0 � A1Þ ð17Þ

Substitution of Equation (10) in Equation (11) gives directly f as a function of
the size distribution P:

fsðxÞ ¼ 1=oN4
Xm
n¼1

PðnÞ sin2 pnx=sin2 px ð18Þ

This expression was used for the P(n) extraction directly from f(x), but as this
did not remove spurious oscillations, a smoothing procedure was applied, and
the method was tested on composite specimens prepared by mixing known
quantities of samples of nickel hydroxide, whose crystallite size distributions
were previously determined.47 The Fourier method is in principle an exact
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approach, though not always easy to apply because of peak overlap problems,
difficulties to locate the background, and in deconvoluting and separating the
size effect from the distortion effect. We are supposed to have the exact
relations oM4¼ eF and oM14¼ ebF¼ eb, whereas the variance ek and
Scherrer eo dimensions are obtained from approximations. Expecting that all
samples presenting the same average crystallite size but different size distribu-
tion functions would lead to the same peak width (Scherrer formula) or to the
same peak tail behavior in s 2 (variance method) is a strong simplification. It is
interesting to see if there is any systematic difference between these parameters
(those approximated, and those in principle exact) by a study of theoretical
profiles built up from some hypothetical size distributions. The relations
oM4¼ eF and oM14¼ eb were exactly verified,48 though it was recently
shown that the diffraction profile is not strongly sensitive to the fine details of
the size distribution.49 The variance ek showed a systematic difference that was
always smaller than oM4 by up to 34%, the best agreement being obtained
for an exponential size distribution P(n) leading to a Lorentzian f profile. This
systematic discrepancy is confirmed in many papers where both eF and ek were
determined. The Scherrer size eo showed a systematic error as well, being
always larger thanoM14, up to 40%, the best agreement being obtained for a
Gaussian size distribution P(n) (Table 5.1).
The attraction of using the Scherrer equation is the simplicity of its use.

However, given the rough approximations that underlie it,50 and the existence
of superior approaches to determining particle size, it should be time to
abandon its use. Expecting that the FWHM will provide a precise crystallite
size is not realistic, a page must be turned. We should also stop expecting that
all crystallites are of the same shape and size, along with other considerations
that are behind many approximations in that domain: generalizing special cases
that are rarely, if ever, encountered. For a simple approach not requiring the
size distribution extraction, it seems more appropriate to rely on calculating the
integral breadth, which provides the correct oM14 estimation. All these
developments suppose one to have obtained the true sample profile f. Ways
of obtaining size estimations if f or g or both are either Gaussian or Lorentzian
or Voigtian are based on approximations51,52 and will not be developed here.

Table 5.1 Comparison of crystallite sizes calculated from the variance (ek) and
Scherrer (eo) formula, with the area-weighted oM4 and volume-
weighted oM14 average sizes corresponding to different cases of
simulated size distribution functions P(n).

P(n) type oM4 ek oM14 eo

Window 100.00 86.13 123.88 140.62
Gaussian 100.00 88.94 104.00 109.75
Half Lorentzian 105.08 98.40 200.08 281.25
Bimodal 100.00 65.90 198.28 225.00
Real case 104.55 75.79 151.41 199.82
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Such peak shapes correspond to special cases of P(n) size distributions, sometimes
showing unphysical negative proportions of crystallites at some n values. Clearly,
the maximum of information (the size distribution and the area-weighted and
volume-weighted average sizes) will be obtained by using the Fourier analysis
with a stabilization scheme,47 or Monte Carlo/Bayesian/maximum entropy
methods.53 58

The presence of lattice strain seriously complicates the problem, and even
raises some doubts about the validity of the definition for the size effect in the
presence of distortions.

5.4.2 Lattice Strain

The effects of lattice strain on powder line profiles are also developed in detail
in Chapters 12 and 13. Again, here we give an introduction and overview.
The most convincing lattice strain description is again provided by the

Fourier analysis approach. A profile fd that would be affected by only
distortion effects can be asymmetrical and has to be represented by sine as
well as cosine terms:

fdðxÞ ¼
Xþm

n¼ m

AD
n cos2pnxþ BD

n sin2pnx ð19Þ

The demonstration is usually made for an 00l reflection from a crystal having
orthorhombic axes (Warren,59 Chapter 13.4), leading one to obtain the
following definitions for AD

n and BD
n , which are dependent on the harmonic

number l of the reflection family considered:

AD
n ¼ ocos2plZn4; BD

n ¼ osin2plZn4 ð20Þ

where Zn is the distortion variable expressing the possible differences in cell
positions for cells separated by n cells (in fact the component of the displacement
perpendicular to the diffracting plane, neglecting the X and Y components). It is
seen here that the broadening due to microstrain increases with the l order,
whereas the size broadening is independent of the order of a reflection. If we
define a distribution function Dn,Z as representing the probability for the
distortion to have the value Zn between one cell and its nth neighbor in the
whole sample, then we have:

AD
n ¼

Zþ1=2

1=2

Dn;Z cosð2plZÞ dZ; BD
n ¼

Zþ1=2

1=2

Dn;Z sinð2plZÞ dZ ð21Þ

This time, the problem is continuous in Z; however, the integral is not supposed
to extend from �N to +N, since Zn is expected to vary between �1 : 2
and +1 : 2 times the cell parameter (if it would be more, then we would
have to consider Zn11, etc.). We could obtain a generalization for the whole
00l family (l¼ 1, 2, etc.) that would enable us to calculate the profile shapes,
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extending along the whole powder pattern, including the possible size effect,
according to:

f ðx; lÞ ¼
Xþm

n¼ m

Zþ1=2

1=2

AS
n Dn;Z cos ½2pðnxþ lZÞ� dZ ð22Þ

A generalization to any hkl direction would build the complete powder pattern,
provided the structure factor is integrated. A f(x,l) reflection is not supposed to
extend outside of the range x¼ l – 1 : 2 to x¼ l+1 : 2.
For a large distortion, the question arises as to what extent the use of the

above equation will provide erroneous results, and does the size effect become
the consequence of the distortion effect. It is not conceivable that the average
size of a ‘‘homogeneous’’ domain of coherent diffraction could be larger than
the average distance (to an arbitrary origin) for which the disorder is complete,
or the periodicity definitely broken. In metals, it was found60 that the values
of size corresponded to the average distance between dislocations. We have
to note that the above equations for microstrain effects are approximate
ones. In the case of large distortions, the f(x,l) values for x close to l – 1 : 2 or
l+1 : 2 would not be zero, so that, if the observed powder pattern would
show continuous changes in intensity, the pattern calculated according to
Equation (22) would present large staircase steps, when scaled by the structure
factor F2

(hkl). This is a logical effect when using an average representation of the
cell content instead of using the real cell content, using the approximate
expression Equation (22) instead of the Debye scattering Equation (3). Even
more approximations are in use. The equations about the strain effect above
already are the result of approximations that are admissible only if there is little
distortion. The following scalar product (using the Warren59 notation) is
reduced to its more simple expression:

ðs� s0Þ=l � dm ¼ ðh1b1 þ h2b2 þ h3b3Þ � ðXma1 þ Yma2 þ Zma3ÞElZm ð23Þ

Any distortion within the unit cell is neglected, allowing one to use the same
structure factor for all cells. This is valid if the description of distortions by
fluctuations of cell parameters is a reasonable view. This is far from being
demonstrated for many kinds of defect such as different sorts of dislocations
and faults, twin boundaries, concentration variations, etc. It should work better
for simple defects like the substitution of one element by another without
changing the local order, but only displacing a bit its environment due to
different radii. For distortions associated with large faults, the size-strain
Fourier analysis view is obviously an oversimplification already in its more
perfect definitions above. Moreover, generally the approximations do not stop
here. The BD

n sine terms are usually neglected, considering only symmetric
profile shapes. After that, in the so-called Warren and Averbach method,46 it is
admitted that, for small values of l and n, the cosine can be expanded:

ocos2pZn4E1� 2p2l2 oZ2
n4 ð24Þ
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providing the possibility to separate the size and strain effects in the product
An¼AS

nA
D
n from the disposal of two harmonic reflections (for l¼ 1 and l¼ 2

for instance). Further approximations may come from this hypothesis. For
instance, if the strain distribution is Gaussian, then:

ocos2plZn4 ¼ expð�2p2l2oZ2
n4Þ ð25Þ

If this model is correct and if the root mean squared strain varies as the square
of the distance (oZ2

n4¼ n2oZ2
14), then the profile would have a Gaussian

peak shape whereas if the variation was linear (oZ2
n4¼ noZ2

14) the profile
would be Lorentzian. Using an expression like oZ2

n4¼ nkoZ14 allows the
modeling of the profile by refining only two parameters, k and oZ2

14 (for
n¼ 1). This model was used in an approach17 for introducing the Fourier
method inside of the Rietveld method. Trying to establish the limits of validity
of these above approximations could be done by the study of very large models
affected by more or fewer defects, of which the corresponding powder pattern
could be calculated exactly by the Debye scattering, Equation (3). Applying
then the above approximate equations to separate the size and distortion effects
would certainly be quite instructive about the errors made. Anyway, one
cannot expect that reducing the complexity of disordered condensed matter
by a few parameters will provide anything more than a vague characterization.
Going in the reverse sense, modeling patterns (WPPM:61 63 Whole Powder

Pattern Modeling, Chapter 13) by using the above equations or even more
simplified (but without using arbitrary profile functions) would have the same
limitations. Nevertheless, the fit of glass powder patterns gave not such bad
results in some cases64,65 (including glassy SiO2 or fluoride glasses), and by
using an extreme isotropic distortion of the average structure models being
used then in RMC66 (Reverse Monte Carlo) modeling was even more success-
ful.67,68 The ideal modeling would be that of real defects, respecting real
distances between atoms at any place in the model, and only then applying
the Debye scattering equation. This was done for Ni-Mo-S compounds,69,70 for
modeling nanocrystalline solids,71,72 or two-dimensional materials,73 including
turbostratically stacked layer systems.74 Another modeling approach for
calculating diffracted intensities from crystals containing planar faults is
implemented in the DIFFaX program.75

5.4.3 Anisotropic Sample Broadening: Faulting

Unless all crystallites are spheres, in the general case there will be a directional
hkl-dependency of the broadening. Of course, distortions may occur in
preferred directions and generate both anisotropic size and microstrain effects.
Some kinds of fault can produce a break of the long-range order for only a part
of the cell content. A relatively simple case76 is that of antiphase domains in
KAlF4, where perovskite layers of corner-sharing [AlF6], disconnected along
the c axis by the intercalation of K1 ions, can undergo a change in the tilting
angle. The effect is that of an ordering of K, Al and axial F atoms, whereas the
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equatorial F atoms generate a size effect according to the distance between
antiphase domains. The F atoms, being on more general positions than the
others, are the only atoms that contribute to some hkl combinations which, as a
consequence, are especially broadened. This is more apparent in neutron rather
than the X-ray data. Such a special anisotropic broadening effect causes
difficulties in whole pattern decomposition process or Rietveld refinements.
A simple slight hand-crushing causes the disappearance of some reflections,
while annealing makes them appear again, but with residual broadening
(Figure 5.4)
By using a crushing machine for 20min, a huge broadening appears, and

asymmetric lines appear, probably associated with misorientations of the
perovskite layers. Such asymmetric bands, rather than reflections, are common
in layered silicates. An example is shown in Figure 5.5 for a commercial talc
sample. Obtaining an excellent fit for such a powder pattern, showing narrow
lines together with large asymmetrical bands, is extremely difficult.
Another interesting case of faulting is observed for HNbO3, which adopts a

cubic double perovskite structure.77 It is probably due to a three-dimensional
generalization of the phenomenon corresponding to the previous KAlF4

example. The anisotropic effect due to faulting is especially obvious on the
neutron powder pattern (Figure 5.6). Anisotropic line broadening is especially
hard to model in whole powder pattern fitting. For those wanting to test by
themselves, the patterns shown in the Figures 5.4, 5.5 and 5.6 are available at

Figure 5.4 Three KAlF4 conventional X ray powder patterns (Cu Ka). Bottom:
sample slightly ground by hand, then annealed (see the small peak close
to 42.512y, still broader than others, related to antiphase domains).
Middle: sample slightly ground by hand (some peaks vanish, there is
already a complete disorder in the octahedral tilting angle along the c
direction). Top: sample ground to 20mn with a crusher, the perovskite
layers are now partly disoriented, generating peak asymmetry.
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Figure 5.5 X ray powder pattern (Cu Ka) of a commercial talc sample showing the
complex coexistence of narrow peaks, broad ones, and very broad
asymmetrical bands related to turbostratic effects (strongly disoriented
layers). An excellent fitting of such a pattern with a complete physical
description of the distortions is far beyond our current capabilities.

Figure 5.6 Part of the neutron powder pattern (l¼ 1.909 Å) of cubic double
perovskite HNbO3, showing very different profile shapes and widths.
No excellent fit of that pattern has ever been produced from a realistic
model, though the most probable faulting inside of the sample is a simple
three dimensional antiphase effect due to [NbO6] octahedra inversion of
the tilting angles of connection.
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the PowBase78 Internet Web site. The recent size strain round robin27 was
limited to the study of an isotropic size effect for a cubic sample with a short cell
parameter. We still wait for a comparative study of different methods, for a
reasonably complex problem, say an orthorhombic sample, with both size and
strain effects, anisotropy, and a relatively large cell resulting in significant peak
overlap. This limitation of the round robin to a very simple cubic structure
suggests how much disagreement exists in the international community
about the correct way to tackle such effects, as may be seen in review
papers79 83 about including microstructure characterization inside of the
Rietveld method.
Attempts to consider a hkl dependence of the broadening in the Rietveld

method were made by using different approaches involving ellipsoid,17,84 87

quartic and quadratic forms,88 90 either representing the modulation of the
average sizes oM4hkl and oM14hkl and microstrain oZ24hkl, or used for a
purely phenomenological qualitative fit without trying to extract any physical
parameters.

5.5 INDIVIDUAL PEAK FITTING AND LINE PROFILE ANALYSIS

Analyzing or fitting individual Bragg peaks can be done for very different
purposes, at different steps of a sample characterization: extraction of peak
positions for indexing purposes, stress characterization (Chapter 12), extrac-
tion of microstructural parameters by line profile analysis (LPA) according to
different methods (Chapter 13), etc. From Equation (1), LPA would require
deconvolution, i.e. extracting f knowing h and g. This operation is more
delicate than convoluting f from a model with g and obtaining a calculated
h to be compared to the observed one. Moreover, deconvolution requires that
there is not any peak overlap, so that only simple cases are manageable (high
symmetry, small unit cell). Working in Fourier space facilitates the deconvo-
lution process since it is replaced by a simple product. Designating H, F and G
as the Fourier transform respectively of h, f and g, then the deconvolution is
replaced by a division in the Fourier space, so that F(n)¼H(n)/G(n). That
process has long been used91 in LPA techniques, e.g., the Stokes method, but
leads to some oscillations on F(n) and possibly to negative values for large
harmonic n numbers. Many methods92 were proposed to avoid such spurious
effects. Early use of direct convolution product to model powder diffraction
profiles described93 97 the instrument contribution as a convolution of two
functions, one representing the diffractometer’s optics, and a second repre-
senting the wavelength distribution of the X-rays (incomplete FPA). In model-
based peak-shape and semi-empirical approaches, the double-Voigt98 102 is the
more elaborated line shape since size as well as microstrain is described by
Voigt or pseudo-Voigt functions. Besides the Gaussian peak shape used early
on (for instance in the Rietveld method10) for the fit of constant-wavelength
neutron data, many other analytical profiles were selected for enabling
individual peak fitting or the global fit of h or g. Most of these analytical
peak shapes are listed by Young and Wiles,103 such as Lorentzian,104 squared
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Lorentzian, Voigt,105 Pseudo-Voigt,106 Pearson-VII,107 Split Pearson-VII,108

the latter allowing the modeling of peak asymmetry, e.g., when introducing an
asymmetry parameter for Gaussians in the original Rietveld method, or using
modified a Lorentzian,109 etc. For time of flight (ToF) data, the profile shapes
are harder to model.110 Using either of these peak shapes approaches, the fit
can be attempted without any cell knowledge, or trying to find peaks where
they should be, according to the cell and space group knowledge, on one peak,
one group of peaks or on the whole pattern; this is the subject of the following
sections.

5.5.1 Peak Fitting for Intensity/Position Extraction – With

or without Cell Knowledge

There is an incredibly large number of interactive computer programs for
fitting analytical models to powder diffraction patterns. The problem with
individual peak fitting without cell knowledge is that there is a limit to the
number of overlapping peaks that can be seriously undertaken whereas
knowing the cell parameters adds a restraint on the peak position. The fit
can be done either by using analytical profile shapes chosen empirically
(frequently a pseudo-Voigt) with the purpose of obtaining the best fit, or by
applying the FPA. Some defenders of the FPA consider that the refining of
‘‘fundamental parameters’’ is nonsense, unless one is not familiar with his
diffractometer or want/must ‘‘absorb’’ any unknown effects or weaknesses of
his model. However, other FPA programmers consider it legitimate to allow
the possibility of adjusting a few parameters (source, sample and slit lengths;
receiving slit and source widths; horizontal divergence; primary and secondary
Söller slits angles) during the fit.9,111,112 The same considerations extend to the
fitting of the complete pattern, this being treated in Section 5.5 about whole
profile fitting.

5.5.2 Using Individual Peaks for Size/Distortion Extraction

Here, there are three possibilities: full analysis (Fourier methods), partial
treatment (integral breadth, variance,. . .), or peak fitting using models (with
FPA or not). A huge literature exists on this subject,92 including the outdated
‘‘single line methods’’ that assume that the size or strain constituent profiles are
either Lorentzian or Gaussian. The Williamson–Hall Plot,113 based on integral
breadth, is still in use despite the approximation that profiles due to size and
strain are Lorentzian – it is applicable only if one analyzes a series of individual
peaks.

5.5.3 Further Approximations

Usually not taken into account is the variation of the structure factor due to the
variation of the diffusion factor (X-ray), or of the Lorentz-polarization factor.
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When a peak is large, this may become quite significant,114,115 including in the
case of whole powder pattern decomposition detailed in the next section.

5.6 WHOLE POWDER PATTERN DECOMPOSITION (WPPD) –

NO STRUCTURE

If the structure is used for the calculation of the intensities, then this is the
whole powder pattern fitting (WPPF) Rietveld method for structure refinement
(Chapter 13). In this section, it is considered that the structure is not used,
but the indexing and the cell parameters are used. So, this is still WPPF but is
the second variant, generally designated by WPPD (Whole Powder Pattern
Decomposition). Clearly, any WPPF approach should be able to model the
peak shape and width variation according to the diffraction angle. Again,
this can be done either by fitting some analytical profile parameters in a
semi-empirical approach, and the angular variation of these parameters is
generally controlled by refining the U, W and W terms in the Cagliotti law116

(FWHM)2¼Utan2y+Vtany+W, or using the FPA by ray-tracing.

5.6.1 No Cell Restraint

Obtaining all the peak positions, areas, breadths and shape parameters for a
whole powder pattern without using the unit cell information is obviously
limited to simple cases where there is not too much peak overlap. With such an
approach one has to provide the number of peaks to be fitted so that the fit of
an intricate group of peaks does not lead to large uncertainties if the cell is
unknown. However, knowing the cell and space group and still using the peak
position as a refinable parameter provides at least the correct number of peaks
and an estimation of their starting position. Such calculations were made as an
alternative to the Rietveld method, during the first stage of the so-called two-
stage method for refinement of crystal structures.117 In the case of X-ray data,
early WPPF programs used profile shapes being a sum of Lorentzian curves,118

or double-Gaussian.119 The computer program PROFIT, deriving from a
software for individual profile fitting94 and extended to the whole pattern,
was applied to the study of crystallite size and strain in zinc oxide120 and for the
characterization of line broadening in copper oxide.121 Studying a whole
pattern can also be done in simple cases by using software designed for the
characterization of single or small groups of peaks, an example is a ZnO
study122 by using the computer program FIT (Socabim/Bruker). However,
WPPD is mostly realized nowadays by using peak positions controlled by the
cell parameters, even if the loss of that degree of freedom leads to slightly worst
fits, increasing the profile R factors.

5.6.2 Cell-restrained Whole Powder Pattern Decomposition

Imposition of the peak positions calculated from a cell knowledge marked a
great step in the quest for ab initio structure determination by powder
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diffractometry (SDPD). Arguably, leaving free the peak positions will allow for
taking account of subtle effects in position displacement (in stressed samples for
example, Chapter 12). But variation with regard to the theoretical position as
expected from cell parameters can be modeled as well in WPPD or the Rietveld
method. Nowadays, two generic names are retained for such cell-constrained
WPPD methods which can produce a set of extracted intensities suitable for
attempting a structure solution; the Pawley and Le Bail methods. Both were
derived from the Rietveld method.

5.6.2.1 The Pawley Method. Removing the crystal structure refinement in a
Rietveld software, and adding the possibility to refine an individual intensity
for every expected Bragg peak produced a new software (named ALLHKL)
allowing the refinement of the cell parameters very precisely and the extraction
of a set of structure factor amplitudes. The process was later called the
Pawley method.123 The least-squares ill-conditioning due to peak overlap was
overcome by using slack constraints. The usefulness of that procedure for the
confirmation of the cell indexing of a powder pattern of an unknown was
completely obvious in this original paper. Nevertheless, no SDPD was realized
by using the Pawley method before several years, probably because of the
limitations in computer power. During these pioneering years, the version of
ALLHKL could not extract the intensities for more than 300 peaks, so that for
more complex cases it was necessary to divide the pattern into several parts.
Moreover, it was a little difficult to avoid completely the under constrained
nature of the problem due to peak overlap. Being successful provides equipar-
titioned intensities (i.e., equal structure factors for those hkl Bragg peaks with
exact overlap), but being unsuccessful could well produce negative intensities.
Also, the first version applying Gaussian peak shapes could not produce any
SDPD due to the relatively poor resolution of constant wavelength neutron
data, and so it needed to be adapted to X-ray data, with the implementation of
more complex peak shapes. A series of programs were proposed next, based on
the same principles as the original Pawley method. Some programs were used to
produce intensities to apply the so-called two-step-method for structure
refinement, instead of using the Rietveld method (Cooper controversy117).
Toraya introduced two narrow band matrices instead of a large triangular
matrix, saving both computation time and memory space in his program
WPPF.124 Other program names are PROFIT,125 PROFIN126 (no slack
constraints, but equal division of the intensity between expected peaks when
the overlap is too close), FULFIT,127 LSQPROF128 and POLISH129 (see also
Chapter 17 for a snapshot of computer programs available at the time of
printing). Improving the estimation of intensities of overlapping reflections in
LSQPROF by applying relations between structure factor amplitudes derived
from direct methods and the Patterson function was considered in a satellite
program DOREES.130 The question of how to determine the intensities of
completely (or largely) overlapping reflections (systematic due to symmetry or
fortuitous) in powder diffraction patterns cannot have a definite simple answer
but continues to be much discussed since it is essential for improving our ability
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to solve structures. An early view with a probabilistic approach was given by
David,131 introducing later132 Bayesian statistics inside the Pawley method.
Early findings of preferred orientation on the basis of an analysis of E-value
distributions was another way133 to improve the structure factor amplitude
estimate.

5.6.2.2 The Le Bail Method. To be able to estimate R factors related
to integrated intensities, Rietveld10,134 stated ‘‘a fair approximation to the
observed integrated intensity can be made by separating the peaks according to
the calculated values of the integrated intensities, i.e.’’:

IKðobsÞ ¼
X
j

fwj;K � S2
KðcalcÞ � yjðobsÞ=yjðcalcÞg ð26Þ

where wj,K is a measure of the contribution of the Bragg peak at position 2yK to
the diffraction profile yj at position 2yj. The sum is over all yj(obs) that can
theoretically contribute to the integrated intensity IK(obs). There is a bias
introduced here by the apportioning according to the calculated intensities,
which is why the observed intensities are in fact said to be ‘‘observed’’, in
quotes, in Rietveld’s work. These ‘‘observed’’ intensities are used in the RB and
RF calculations (reliabilities on intensities and structure factor amplitudes).
They are also required for Fourier map estimations, which, as a consequence,
are less efficient than from single crystal data. The process of using iteratively
the Rietveld decomposition formula Equation (26) for WPPD purposes is now
called the Le Bail method.135 In the original computer program (ARITB) that
first applied this method, arbitrarily all equal S2

K(calc) values are first injected
into Equation (26), instead of using structure factors calculated from the
atomic coordinates. This results in ‘‘Ik(obs)’’ which are then reinjected as
new S2

K(calc) values at the next iteration, while the usual profile and cell
parameters (but not the scale) are refined by least-squares. Equipartitioning of
exactly overlapping reflections comes from the strictly equal result from the
Equation (26) for Bragg peaks at the same angles that would have starting
equal calculated intensities. Starting from a set of S2

K(calc) values that are not
all equal would produce IK(obs) values keeping the same original ratio for the
exactly overlapping reflections. Understandably, such an iterative process
requires as good a starting cell and profile parameters as the Rietveld method
itself. The process is easier to incorporate inside an existing Rietveld code than
the Pawley method, so that most Rietveld codes propose now the structure
factor amplitudes extraction as an option (generally multiphase, with the
possibility to combine a Rietveld refinement together with a Le Bail fit). A list
of earlier programs (1990–1995) applying the Le Bail method (the name coming
later) includesMPROF,136 FULLPROF,137 EXTRACT,138 EXTRA139 (EXPO140

is the integration of EXTRA and SIRPOW92 for the solution and refinement of
crystal structures), followed now by most well-known Rietveld codes (BGMN,
GSAS, MAUD, TOPAS, etc.) or standalone programs (AJUST141). Many
improvements were incorporated in the pattern decomposition Le Bail method
by the Giacovazzo group: by obtaining information about the possible presence
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of preferred orientation by the statistical analysis of the normalized structure
factor moduli;142 by using the positivity of the Patterson function inside of the
decomposition process143 (this having been considered previously131,144 146); by
the characterization of pseudotranslational symmetry used as prior informa-
tion in the pattern decomposition process;147 by multiple Le Bail fits with
random attribution of intensity to the overlapping reflections, instead of
equipartition, followed by application of direct methods to large numbers of
such datasets;148 150 by the use of a located structure fragment for improving
the pattern decomposition process;151 and by the use of probability (triplet-
invariant distribution functions) integrated152 with the Le Bail algorithm.

5.6.2.3 Comparisons of the Pawley and Le Bail Methods. The Giacovazzo
group considered153 that pattern-decomposition programs based on the Le Bail
algorithm are able to exploit the prior information in a more effective way than
Pawley-method-based decomposition programs. Other comparisons of both
methods are given by Giacovazzo,154 and David and Sivia,155 finding that the
Le Bail method could lead to negative intensities in ranges of the pattern where
the background is overestimated. Another approach for solving the over-
lapping problem was proposed by using maximum-entropy coupled with
likelihood evaluation.156 The fact is that both the Pawley and Le Bail methods
are able to estimate structure factor amplitudes that can lead to solved
structures from powder diffraction data in a more efficient way than was
previously possible.

5.6.3 Main Applications of WPPD

The list of the possible WPPD applications is impressive (see for instance
review papers by Toraya157 or Le Bail158), by either the Pawley or Le Bail
methods. In the SDPD maze,159 there is no other path than to use at least one
of them. With both methods, the fit quality is checked from agreement factors
that are the same as with the Rietveld method: RP, RWP, REXP (moreover, a
careful visual check is recommended). The reliabilities relative to the structure
(RB and RF), which can still be calculated, are meaningless (both programs
tending to obtain zero for them). It is recommended160 to have confidence
preferably in the original Rietveld estimated profile R factors (calculated after
background subtraction, and removing ‘‘non-peak’’ regions). WPPD provides
help in cell parameter refinement, determination of space group. The main
target is the extraction of intensities (Figure 5.7) for ab initio structure solution
purposes (it was not until 1987 that the first SDPD was realized by using the
Pawley method, for solving a really unknown structure162), or at least for the
establishment of the profile parameters to be used in a direct-space solution
program exploiting a raw powder pattern. These WPPD methods will provide
the smallest profile R factors attainable, smaller than those obtained at the
Rietveld method final step. With neutron data, besides solving the nuclear
structure, the FULLPROF program allows for solving magnetic structures as
well.163 Reusing extracted intensities for structure solution by direct space
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methods can be made in a way that is not sensitive to the equipartitioning
problems. This was done in the ESPOIR program164 by regenerating a powder
pattern from the extracted ‘‘|Fobs|’’, using a simple Gaussian peak shape whose
width follows the Cagliotti law established from the raw pattern. With such a
pseudo powder pattern, without profile asymmetry, background, etc., the
calculations are much faster than if the raw pattern was used. In another
direct-space structure solution program, PSSP,165 based on the Le Bail method
as well, an agreement factor allowing one to define the best model takes
account of the overlap significant for nearby peaks. In DASH, a similar
method166 is applied to the intensities extracted by the Pawley method through
the use of the correlation matrix.
When using direct methods instead of the direct-space methods, the

approaches are different. The direct methods necessitate the more complete
possible dataset (up to d¼ 1 Å) of accurate ‘‘|Fobs|’’. However, removing up
to half of them (those with too much overlapping, i.e. being too nearby than
0.5 FWHM, for instance) is possible while obtaining some success with the
direct methods (one can even remove up to 70–80% if the Patterson method is
applied and if only a small number of heavy atoms are to be located). David

Figure 5.7 An old example (1992) of Le Bail fit for structure factor amplitude
extraction, prior to structure determination by powder diffractometry of
the t AlF3 polymorph161 (conventional Cu Ka X ray data). No isostruc
tural phase is known for that metastable compound based on [AlF6]
octahedra exclusively connected by corners in a completely new 3D
framework, synthesized only in fine powder form, either from organo
metallic or hydrated amorphous precursors. The structure was solved by
applying the direct methods (no heavy atom), revealing totally the 11
independent atom sites.
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provided a demonstration167 recently of the equivalence of the Rietveld
method and the correlated intensities method in powder diffraction (it is
unlikely that this demonstration, related to the old two-stage controversy,
could lead to abandonment of the Rietveld method; however, research is
made on the question168). Another application of WPPD is for data genera-
tion used for Fourier map calculations for structure completion. The ‘‘|Fobs|’’
are estimated at the end of a Rietveld refinement by the Rietveld decomposi-
tion formula, so that the exactly overlapping reflections are given intensities in
the same ratio as they are calculated from the structural model. The Le Bail
method could be applied here, performing more than one iteration of the
decomposition formula, which would be insufficient for attaining the mini-
mum if there is a large discrepancy between the observed and calculated
patterns.
Calculations of electron density distributions from powder data also benefit

from the WPPD methods. Finally, it may be interesting to realize size-strain
analysis together with WPPD, if the structure model cannot provide a very
good fit, or when systematic errors distort the observed intensities. However,
the structure constraint will at least impose an almost correct intensity to
overlapping peaks, which is not the case in either the Pawley or Le Bail
methods. The structure constraints may preclude errors in attributing a wrong
broadening to some peaks with exact overlapping. Prudence is thus recom-
mended. Including size-strain analysis in WPPD requires the use of special
formula for taking account of the angular variation of the FWHM or of the
integral breadth, the same formula as those used with the Rietveld method:
either the so-called TCH169 formula (with different angular dependence for the
Gaussian and Lorentzian components of a pseudo-Voigt) or the Young and
Desai79 formula recommending the use of both G and L components for both
size and microstrain effects. A different approach would be by whole Powder
Pattern Modeling (WPPM61 63), consisting of the introduction of a physical
model, including deformations, twin fault, dislocations and crystallite size
distributions, with the expectation of obtaining realistic quantities to define
microstructures, as discussed in Chapter 13. However, if this is done through
the microstrain approximations implicit in Equations (19) to (25) above, then
the distortions should not be too large.

5.7 CONCLUSIONS

The profile of a Bragg reflection, if seen through a high-resolution diffract-
ometer, may reveal very fine details of the microstructure. The present chapter
provides an overview and reviews the limitations of our possibilities of analysis
of such microstructures by using only diffraction profiles and global distortion
parameters supposed to represent an averaging of all kind of imperfections.
Using Bragg peak shape analysis for microstructure characterization, we
should restrain ourselves to consider small deviations from regularity, other-
wise the very few extracted parameters will not have much sense owing to the
complexity and diversity of imperfections that could be at the origin of the line
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broadening. It appears logical that a large part of the distortion effects due to
large imperfections lead to diffracted X-rays that are not included inside of the
Bragg peaks, unless these defects have the same periodicity as the cell, or would
lead only to a size effect (some kinds of stacking faults). If the size-only effect
appears more manageable with confidence, it has still to be established that
there is not any distortion effect.
The view about line profile analysis given in this chapter is pessimistic, it is

the consequence of the complexity of the Bragg peak shapes as they occur
from poorly-crystallized material. More optimistic is the future of the
main whole powder pattern fitting applications (decomposition or Rietveld
methods) that have moved beyond the initial stages, enabling structure
determinations (almost routinely) and refinements (routinely) of moderately
complex structures to even complex crystal structures such as proteins
(sometimes).
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30. J. Šaroun and J. Kulda, Neutron News, 2002, 13(4), 15.
31. P. A. Seeger, L. L. Daemen, T. G. Thelliez and R. P. Hjelm, Neutron

News, 2002, 13(4), 20.
32. P. A. Seeger, L. L. Daemen, E. Farhi, W.-T. Lee, X.-L. Wang, L. Passel,
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47. A. Le Bail and D. Louër, J. Appl. Crystallogr., 1978, 11, 50.
48. A. Le Bail, 3ème Cycle Thesis, Rennes, 1976. http://tel.ccsd.cnrs.fr/

documents/archives0/00/00/70/41/.
49. S. Rao and C. R. Houska, Acta Crystallogr. Sect. A, 1986, 42, 6.
50. J. I. Langford and A. J. C. Wilson, J. Appl. Crystallogr., 1978, 11, 102.
51. R. Delhez, Th. H. de Keijser and E. J. Mittemeijer, Fresenius Z. Anal.

Chem., 1982, 312, 1.

160 Chapter 5



52. Th. H. de Keijser, E. J. Mittemeijer and H. C. F Rozendaal, J. Appl.
Crystallogr., 1983, 16, 309.

53. P.-Y. Chen and C.-Y. Mou, J. Chin. Chem. Soc., 1994, 41, 65.
54. P. E. Di Nunzio, S. Martelli and R. Ricci Bitti, J. Appl. Crystallogr., 1995,

28, 146.
55. P. E. Di Nunzio and S. Martelli, J. Appl. Crystallogr., 1999, 32, 546.
56. N. Armstrong and W. Kalceff, J. Appl. Crystallogr., 1999, 32, 600.
57. N. Armstrong, W. Kalceff, J. P. Cline and J. Bonevich, Res. Natl. Inst.

Stand. Technol., 2004, 109, 155.
58. N. Armstrong, W. Kalceff, J. P. Cline and J. Bonevich, in Diffraction

Analysis of the Microstructure of Materials, ed. E. J. Mittemeijer and
P. Scardi, Springer, Berlin, 2004, ch. 8, p. 187.

59. B. E. Warren, X-Ray Diffraction, Addison-Wesley, Reading, Massachusetts,
1969.

60. W. H. Hall, Proc. Phys. Soc. London, Ser. A, 1949, 62, 741.
61. P. Scardi, M. Leoni and Y. H. Dong, Mater. Sci. Forum, 2001, 376–381,

132.
62. P. Scardi and M. Leoni, Acta Crystallogr., Sect. A, 2002, 58, 190.
63. P. Scardi and M. Leoni, Diffraction Analysis of the Microstructure of

Materials, ed. E. J. Mittemeijer and P. Scardi, Springer, Berlin, 2004,
ch. 3, p. 51.

64. A. Le Bail, J. Non-Cryst. Solids, 1995, 183, 39.
65. A. Le Bail, J. Non-Cryst. Solids, 2000, 271, 249.
66. R. L. McGreevy and L. Pusztai, Mol. Simulation, 1998, 1, 359.
67. A. Le Bail, Chemistry Preprint Server, 2000: http://preprint.chemweb.

com/inorgchem/0008001.
68. A. Le Bail, Chemistry Preprint Server, 2003: http://preprint.chemweb.

com/inorgchem/0310001.
69. D. Espinat, E. Godart and F. Thevenot, Analusis, 1987, 15, 337.
70. D. Espinat, F. Thevenot, J. Grimoud and K. El Malki, J. Appl. Crystal-

logr., 1993, 26, 368.
71. B. Bondars, S. Gierlotka, B. Palosz and S. Smekhnov,Mater. Sci. Forum.,

1994, 166–169, 737.
72. J.-W. Hwang, J. P. Campbell, J. Kozubowski, S. A. Hanson, J. F. Evans

and W. L. Gladfelter, Chem. Mater., 1995, 7, 517.
73. D. Yang and R. F. Frindt, J. Appl. Phys., 1996, 79, 2376.
74. D. Yang and R. F. Frindt, J. Mater. Res., 1996, 11, 1733.
75. M. M. Treacy, J. M. Newsam and M. W. Deem, Proc. R. Soc. London,

Ser. A, 1991, 433, 499.
76. A. Gibaud, A. Le Bail and A. Bulou, J. Phys. C: Solid State Phys., 1986,

19, 4623.
77. J. L. Fourquet, M. F. Renou, R. De Pape, H. Theveneau, P. P. Man,

O. Lucas and J. Pannetier, Solid State Ionics, 1983, 9–10, 1011.
78. Powbase, Powder Pattern Database, 1999: http://sdpd. univ-lemans. fr/

PowBase/.

161The Profile of a Bragg Reflection for Extracting Intensities



79. R. A. Young and P. Desai, Arkiwum Nauli Mater., 1989, 10, 71.
80. A. Le Bail, NIST Special Publication, 1992, 846, 142.
81. R. Delhez, T. H. de Keijser, J. I. Langford, D. Louër, E. J. Mittemeijer
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CHAPTER 6

Instrumental Contributions to the Line
Profile in X-Ray Powder Diffraction.
Example of the Diffractometer with
Bragg–Brentano Geometry

ALEXANDER ZUEV

Max Planck Institute for Solid State Research, Stuttgart, Germany

6.1 INTRODUCTION

X-Ray powder diffractograms contain in encrypted form information about
the structure of the sample material. The positions and intensities of diffraction
peaks reveal the information about an ideal crystal structure. The form of the
peaks reflects the information about defects in the structure.1 Instrumental
aberrations affect the apparent peak positions (especially at low and high
scattering angles) and intensities of the diffraction peaks as well as the form of
the peaks.2,3 Hence, properly taking into account the instrumental contribu-
tions is essential both for studies aimed at obtaining information about the
ideal crystal structure of the material and information about deviations from
this ideal structure.
Two important fields of interest in powder diffraction research today are ab

initio structure determination from powder diffraction data (SDPD) and line
profile analysis (LPA).
The prerequisites for structure solution are to find the correct peak position

and intensity. For the last step of SDPD, refinement of the structure (Rietveld
refinement4,5), it is also important to know the form of the diffraction peak,
taking into account the instrumental contributions. Notably, in modern SDPD
there is the ability to obtain information about deviation from the ideal
structure. Crystallite size and microstrain broadening should be considered
primarily as the contributors to the physical profile. All main Rietveld pro-
grams take into account these deviations from the ideal structure.
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In addition to these deviations from the ideal structure, other crystal structure
defects (e.g., stacking faults) are the subject of line profile analyses.1,6 Correction
by taking into account instrumental contributions is of even greater importance
in the study of defects and microstructure (LPA), as discussed in Chapter 13.
The problem of the instrumental function has been under intensive study for

over 50 years.7 52 However, despite repeated attempts there is no generally
recognized method today for calculation of the instrumental function in powder
diffraction. Standard Rietveld refinement is dominated by the phenomenological
description of the profile.
The main difficulties encountered in numerical calculations of the instrumental

function are associated with the wide range of instrumental parameters [diffracto-
meter radius, sizes of X-ray source, sample, receiving slit, using (or not using)
Soller slits in incident and/or diffracted beam, using (or not using) monochroma-
tor], the contributions of some of which differ by three orders of magnitude.
There are two different approaches for calculation of the instrumental

function. The first is the convolution approach. Proposed more than 50 years
ago, initially to describe the observed profile as a convolution of the instru-
mental and physical profiles,7 9 it was extended for the description of the
instrumental profile by itself.2,11 According to this approach the total instru-
mental profile is assumed to be the convolution of the specific instrumental
functions. Representation of the total instrumental function as a convolution is
based on the supposition that specific instrumental functions are completely
independent. The specific instrumental functions for equatorial aberrations
(caused by finite width of the source, sample, deviation of the sample surface
from the focusing circle, deviation of the sample surface from its ideal position),
axial aberration (finite length of the source, sample, receiving slit, and restric-
tion on the axial divergence due to the Soller slits), and absorption were
introduced. For the main contributors to the asymmetry – axial aberration
and effect of the sample transparency – the derived (half)-analytical functions
for corresponding specific functions are based on approximations. These
aberrations are being studied intensively (see reviews refs. 46 and 47).
The convolution approach is realized in the fundamental parameter

approach (FPA) developed by Cheary and Coelho.27 Special attention was
given to calculating a specific instrumental function caused by axial diver-
gence.34 Additionally, axial divergence was studied in detail experimentally.35

The convolution approach provides much more reliable results (for peak
position, intensity, and form) than methods that used analytical functions to
fit the experimental profile. To achieve the best fit for experimental data it is also
necessary to tune the fundamental parameters.51 Masson et al.50 used the
convolution approach to determine the instrumental function for high-resolution
synchrotron powder diffraction, and showed that it can be represented as a
convolution of four specific instrumental functions describing the equatorial
intensity distribution, the monochromator and analyzer transfer function, and
the axial aberration function. The specific instrumental functions for the
conventional diffractometer with Bragg–Brentano geometry, as well as in the
case of synchrotron radiation, have been studied by Ida and coworkers.39 45
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The second method for calculating the total instrumental function is ray-
tracing simulations, in which the contribution of all possible incident and
diffracted rays to the total intensity are treated numerically.25,26,36 38 Like any
pure numerical treatment it is limited in the analysis. In addition, the Monte-
Carlo ray-tracing simulations are time-consuming. Nevertheless, ray-tracing
simulations provide a reliable calculation of the instrumental function.
In Rietveld refinement, it is standard practice to use a phenomenological

description of the diffraction profile. Several analytical functions are in use.
The variation of the full width at half-maximum (FWHM) with diffraction
angle 2y associated with the instrumental aberrations can be described using
simple analytical formulas.14,22 The apparent shift of peak positions was
considered in detail by Wilson.3 Asymmetry of the profile at low and high
diffraction angles due to axial divergence can be taken into account by
the correction proposed by Finger, Cox, and Jephcoat.31 Distinguishing
sample from instrumental contributions to the line profile is possible by a
preliminary measurement with a so called line profile standard (e.g., NIST
SRM 660a LaB6).
In the field of powder diffraction related to the retrieval of the defects and

microstructural information the requirements for using physically meaningful
instrumental profile are greater than in the field related to the crystal structural
analysis. Thus the following main methods are used. (1) The use of a special
high-resolution diffractometer. (2) Experimental determination of the instru-
mental function for the same material but without defects. (3) Numerical
calculations of the instrumental function with ray-tracing simulations.
Recently, a new comprehensive approach to calculate the total instrumental

function has been proposed,53,54 in which all aberration effects are treated
simultaneously in the same manner. The method is based on an exact analytical
solution, derived from diffraction optics, for the contribution of each incident
ray to the intensity registered by a detector of finite size.
The main difference between the proposed method and the convolution

approach (in which the line profile is synthesized by convolving the specific
instrumental functions) lies in the fact that the former provides an exact
solution for the total instrumental function (exact solutions for specific instru-
mental functions can be obtained as special cases), whereas the latter is based
on the approximations for the specific instrumental functions, and their cou-
pling effects after the convolution are unknown. Unlike the ray-tracing
method, in the proposed method the diffracted rays contributing to the regis-
tered intensity are considered as combined (part of the diffracted cone) and,
correspondingly, the contribution to the instrumental line profile is obtained
analytically for this part of the diffracted cone and not for a diffracted unit ray
as in ray-tracing simulations.
There are no limitations on the size of the source, sample or receiving slit,

and correspondingly on the axial or equatorial divergence. The proposed
method, valid over a full range of 2y from 0 to 1801, can be applied to different
diffractometer geometries. We shall restrict our consideration here to the
common Bragg–Brentano geometry.
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6.2 CONTRIBUTIONS TO THE OBSERVED PROFILE

The line profile in X-ray powder diffraction for a monochromatic beam is
determined by sample broadening and instrumental aberration. Figure 6.1
shows schematically contributions to the observed profile h(j) from instru-
mental aberration g(j) and physical profile f(j) for monochromatic X-rays.
Measurements of a sample of the material without physical broadening (‘‘ideal
sample’’) with the diffractometer without instrumental aberration would give
the profile as a Dirac d-function.
For the ideal sample only the instrumental aberrations cause the line profile

to be distributed over the angular region. The instrumental function can be
conceived of as a response function of the diffractometer to the input signal in
the form of a d-function. In contrast, measurements with the ideal diffracto-
meter would give the physical profile of the real structure. The physical profile
can be represented as a sum of the d-functions. The observed peak profile of the
non-ideal structure obtained from the measurements with non-ideal diffracto-
meter can then be considered as a linear superposition of profiles corresponding
to the responses of the diffractometer to the given set of the d-functions. In this
case we can write for the observed intensity at the scanning angle j:

hðjÞ ¼
ZN
N

f ðZÞgðj; ZÞdZ ð1Þ

°

Figure 6.1 Contributions to the observed profile for monochromatic X ray radiation.
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Let us consider two ideal diffraction peaks d1(y) and d2(y�Z) with equal
intensity, but shifted relative to each other by an angle Z. The response
functions of the diffractometer to these d-functions are g1(j,y) and g2(j,y�Z)
which, strictly speaking, have different forms and intensities, and, consequently
cannot be considered as shifted by the angle Z relative to each other. If the shift
angle Z is small, there is reason to believe that, firstly, the response functions
have the same form and intensity and, secondly, the shift between the response
functions is Z. This led us to the convolution integral:2

hðjÞ ¼
ZN
N

f ðZÞgðj� ZÞdZ ð2Þ

The convolution of the two functions f(Z), g(Z) is denoted by the symbol f� g:

ZN
N

f ðZÞgðj� ZÞdZ ¼ f � g ð3Þ

The characteristic emission of X-rays from an X-ray tube, in the strict sense, is
not monochromatic (Figure 6.2). The energy distribution of a single characteristic
emission line can be described by the Lorentz function:51

WðEÞ ¼ G=2p

ðE � E0Þ2 þ ðG=2Þ2

Here E0 is the characteristic energy, and G determines the width of the distribu-
tion. In the case of using copper radiation, which is widely used in powder
diffraction experiments, the Ka radiation can be represented as a sum of four
Lorentz functions.51,55 Table 6.1 gives the parameters for this function.
Using such radiation means that the profile of the ideal structure recorded on

the ideal diffractometer without aberration is no more a d-function (Figure 6.2b).
Analogously to the above discussion, the total observed profile can be

represented as a convolution of the three functions h¼ f� g�w, where
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Figure 6.2 Energy distribution for copper Ka radiation (a), and corresponding line
profile (ideal sample, ideal diffractometer) (b).
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function w is peak profile function related to the wavelength distribution of the
X-ray tube.

6.3 GENERAL DESCRIPTION OF THE METHOD

Suppose an X-ray coming from surface element dS1 is scattered by a powder
sample at surface element dS2. The sizes of the elements dS1 and dS2 are small
enough to be considered as points A1 and A2 respectively (Figure 6.3).
The scattered photons form a cone with vertex at point A2 and half angle 2y.

The total scattered intensity I0(y) at the Bragg angle y is proportional to the
intensity I(A1,A2) incident on the element dS2. If the registration of the
scattered X-rays is performed by a detector of limited size which intersects a
part of the diffraction cone the registered intensity is proportional to the
curvilinear integral over the line l of intersection of the diffraction cone and
detector:

IðPc1;Pc2Þ ¼
ZPc2

Pc1

IðPÞdl ð4Þ

Here I(P) is the unit line intensity at point P lying on l. Pc1 and Pc2 are the
points of intersection of the line l and the detector boundaries. If absorption
between the scattering point A2 and the detector is neglected, the integral can
easily be calculated, because the number of photons between rays R1 and R2 of
the cone remains unchanged. Then we can write for the registered intensity:

IðPc1;Pc2Þ ¼ IðR1;R2Þ ¼ ð2pÞ 1I0cBIðA1;A2Þc ð5Þ

Here c is the dihedral angle between two planes. Both share a common line –
the incident ray A1A2. The first plane passes through point Pc1 and the second
one passes through the point Pc2.
As a consequence the efforts of calculating the registered intensity are

directed toward calculating the intersection points of the line l and the bound-
ary of the receiving slit. The intersection of the receiving slit plane and
diffraction cone is a conical section. It can be an ellipse, parabola, or hyperbola,
depending (for a given diffraction cone) on the angle between the receiving-slit
plane and the incident ray.

Table 6.1 Parameters for the Lorentz function for energy distribution of the
X-ray tube.

Component Energy (eV) G Iintegr

a11 8047.84 2.285 0.579
a12 8045.37 3.358 0.08
a21 8027.99 2.666 0.236
a22 8026.5 3.571 0.105
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Finding the intersection points Pc1 and Pc2 can be realized in various ways. In
the previous work of the author,53 the equation of the conic in polar coordinates
was used:

r ¼ p

1þ e cosj
ð6Þ

A prerequisite for using this equation is finding for each incident ray the
corresponding coordinate system, coordinates of the focus and parameters p, e
of the conic. To find the coordinates of the focus and parameters p, e of the
conic the Dandelin sphere was used.53

Another possibility of applying this method is using a general equation of a
conic.54 The general equation of a conic can be mathematically expressed by a
second degree polynomial:56

ax2 þ 2bxyþ 2cy2 þ 2dxþ 2fyþ g ¼ 0 ð7Þ

The coefficients of Equation (7) have to be found as functions of the
diffractometer radius, scanning angle, diffraction cone angle, and coordinates
of points on the source and sample, which determine the incident ray.

incident beam

A1

A2

l

Pc1

R1

R2

receiving
slit

D1

A1

A2

dS1

dS2

ns1

ω2

ω1

D4 D3

ψ

Pc2
D2

ns2

Π1

Π2

Figure 6.3 The positions of the incident beam, the diffraction cone and the receiving
slit. dS1 is an element of the source surface and dS2 is an element of the
sample surface. These elements are shown on an enlarged scale above
points A1 and A2. (Reprinted from Ref. 50. Permission of the International
Union of Crystallography.)
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6.4 BASIC EQUATIONS

In this section a common equation of a cone in an arbitrary coordinate system
is used. A common equation of a conic can be obtained from the common
equation of the cone in the coordinate system related to the cutting plane by
setting z¼ 0, where z is the coordinate normal to the cutting plane.

6.4.1 Vector Equation of a Cone

The position of the diffraction cone is defined by the position of its vertex
described by the position vector V, the direction vector U that is parallel to the
axis of the cone, and a half-angle 2y (Figure 6.4).
The equation of the cone can be given in vector form as:57

X� V

jX� Vj �
U

jUj ¼ cos 2y ð8Þ

Here X is the position vector of any point X on the cone. After squaring both
sides and regrouping the terms:

ðU � X�U � VÞ2 � cos2 2yU2ðX� VÞ2 ¼ 0 ð9Þ

Opening the parentheses and regrouping the terms accordingly to their order in
the components of the vector X¼ {x, y, z} we get:

ðU � XÞ2 � cos2 2yX2 � 2ððU � VÞU� cos2 2yVÞ � X
þ ðU � VÞ2 � cos2 2yV2 ¼ 0

ð10Þ

6.4.2 Equation of a Conic

A conic is the intersection of a cone with a plane. Introducing a system
coordinate related to the plane in a such way that the z-axis is perpendicular

x

y

z

V U2θ

X X-V

Figure 6.4 Cone, cutting plane, and vectors U,V.
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to the plane, we can obtain the equation of a conic in this coordinate system
by setting z¼ 0 in the equation for a cone. For the points of the cone in the
XY-plane we have X¼ {x, y, 0}.
Substituting in Equation (10) gives for the second order terms:

ðU � XÞ2 � cos2 2yU2X2jz¼0

¼ x2U2
x þ 2xyUxUy þ y2U2

y � cos2 2yU2x2 � cos2 2yU2y2

¼ ðU2
x � cos2 2yU2Þx2 þ 2UxUyxyþ ðU2

y � cos2 2yU2Þy2
ð11Þ

and consequently:

a ¼ U2
x � cos2 2yU2 ð12aÞ

b ¼ UxUy ð12bÞ

c ¼ U2
y � cos2 2yU2 ð12cÞ

First order terms are:

�ð2ðU � VÞU� 2 cos2 2yU2VÞXjz¼0 ¼� ð2ðU � VÞUx � 2 cos2 2yU2VxÞx
� ð2ðU � VÞUy � 2 cos2 2yU2VyÞy

and consequently:

d ¼ �ðU � VÞUx � cos2 2yU2Vx ð12dÞ

f ¼ �ðU � VÞUy � cos2 2yU2Vy ð12eÞ

and for the free term g we have;

g ¼ ðU � VÞ2 � cos2 2yU2V2 ð12fÞ

The scalar products U �V, U �U, and V �V can be expressed in terms of their
components as:

U � V ¼ UxVx þUyVy þUzVz ð13aÞ

U �U ¼ UxUx þUyUy þUzUz ð13bÞ

V � V ¼ VxVx þ VyVy þ VzVz ð13cÞ

Hence, for the given diffraction angle y the coefficients of Equation (7) are a
function of the values Ux,Uy,Vx, Vy and Vz.
The position vectorV is determined by the pointA2 (on the sample), and vector

U is a vector from point A1 (on the source) to point A2. Equations (12a–12f)
together with Equations (13a–13c) can be used in an arbitrary coordinate system
to obtained the equation of the conic in form Equation (7). In the next section

174 Chapter 6



these equations are applied to obtain the equations of the conic for two important
cases – in the plane related to the receiving slit, and in the plane related to the
sample.

6.5 DIFFRACTOMETER WITH BRAGG–BRENTANO GEOMETRY

6.5.1 Coordinate Systems for Bragg–Brentano Geometry

For the diffractometer with Bragg–Brentano geometry the following right-
hand coordinate systems related to the source, sample and receiving slit are
used (Figure 6.5).
The coordinate system CSs is associated with the well-aligned sample. The

xs-axis coincides with the rotation axis of the diffractometer. The ys-axis is an
intersection of the sample surface with the equatorial plane. The origin of the
coordinate system is the center of the sample.
The coordinate system CSf is associated with the source. Without source

misalignment yf zf -plane lies in the equatorial plane of the diffractometer and
the yf -axis has angle p/2�j with the ys-axis of the coordinate system CSs. The
origin of the coordinate system CSf lies in the middle of the source.
The coordinate system CSr is associated with the receiving slit. Without

misalignment the yr zr -plane lies in the equatorial plane of the diffractometer

ϕ

ϕzf
A1

Zs

yf

x

y

z

source

sample

receiving
slit

rotation
axis

conic
A2

ys

Xs

Xf

Figure 6.5 Coordinate systems related to the source, sample, and receiving slit.
(Reprinted from Ref. 54. Permission of the International Union of
Crystallography.)
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and the yr -axis makes an angle p/2+j with the y -axis of the coordinate
system CSs.

6.5.2 Equation of a Conic in the Receiving Slit Plane (Coordinate System CS)

Table 6.2 gives the coordinates of the points A1 and A2 in the coordinate
systems used.
Consequently, the components of the vectors U and V in the coordinate

system CSr are given as:

Ux ¼ xs � xf
Uy ¼ zs cosj� yf cos 2j� ðys þ 2R cosjÞ sinj
Uz ¼ �ys cosj� R cos 2j� zs sinjþ yf sin 2j

ð14Þ

and:

Vx ¼ xs
Vy ¼ zs cosj� ys sinj
Vz ¼ R� ys cosj� zs sinj

ð15Þ

Substituting this in Equation (10) and simplifying we obtain the equation of a
conic in the receiving slit plane in implicit form:

cos2 2yðR2 � 2 cosjysRþ y2 þ ðx� xsÞ2 þ y2s þ 2yys sinjÞ
�ðR2 þ 2ysR cosjþ ðxf � xsÞ2 þ y2f þ y2s � 2yf ys sinjÞ
¼ ðy2s þ ysðy� yf Þ sinjþ ðx� xsÞðxf � xsÞ
þðyþ yf ÞR sin 2jþ ðyyf � R2Þ cos 2jÞ2

ð16Þ

This equation (representing the polynomial of second degree in two variables
x and y) describes the line of an intersection of the diffraction cone produced by
an arbitrary incident X-ray with the receiving slit plane of the diffractometer in
Bragg–Brentano geometry. The parameters of the equation are the diffracto-
meter radius R, scanning angle j, diffraction angle y, and coordinates of points
on the source and the sample in the source or sample related coordinate
systems. Notably, point A2 related to the sample can have three coordinates.
The coordinate zs corresponds to the deviation of the sample surface from its
ideal position. The graph of Equation (16) for given parameters can be easily

Table 6.2 Coordinates of the points A1 and A2.

Point/vector Coordinate system Coordinates

A1 CSf {xf, yf, 0}
CSs xf ; R cosjþ yf sinj;R sinjþ yf cosj

� �
CSr xf ; yf cos 2jþ R sin 2j; 2 cosjðR cosj yf sinj

� �
A2/V CSs {xs, ys, zs}

CSr xs; zs cosj ys sinj; R ys cosj zs sinjf g
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drawn using Mathematica.58 For the most part, the figures in this paragraph
were prepared with Mathematica.58

6.5.3 Equation of a Conic in the Sample Surface Plane (Coordinate System CS)

In the coordinate system related to the sample we have for the component of
the direction vector U and V:

Ux ¼ xs � xf
Uy ¼ ys þ R cosj� yf sinj
Uz ¼ zs � yf cosj� R sinj

ð17Þ

Vx ¼ xs
Vy ¼ ys
Vz ¼ zs

ð18Þ

In the same way as in the case of the coordinate system related to the receiving
slit, the equation of the conic in the sample plane in implicit form can be
obtained:

ðy2s � ysyþ z2s þ ðx� xsÞðxf � xsÞ þ sinjyf ðy� ysÞ � Rzs sinj
� cosjðRðy� ysÞ þ yf zsÞÞ2 ¼ cos2 2yððx� xsÞ2 þ ðy� ysÞ2 þ zsÞ
�ððxf � xsÞ2 þ ðR cosj� sinjyf þ ysÞ2 þ ðR sinjþ cosjyf � zsÞ2Þ

ð19Þ

This equation is important for the study of the effect of absorption because it
can be used for estimations of the length of the scattered X-rays in the sample
from the diffraction cone vertex to the sample surface.

6.5.4 Case of the Degenerated Cone (2h=901)

For the diffraction angle 2y¼ 901 the diffraction cone degenerates to the plane
P90 passing through the point A2 and perpendicular to the incident ray
U¼A1A2. The equation of this plane in vector form is:

U � ðX� VÞ ¼ 0 ð20Þ

The plane P90 determines, together with the equation of the receiving slit
plane, the line of the intersection of these planes. In the coordinate system CSr

the line of the intersection can be obtained easily from Equation (20) by setting
the component z of the vector X to 0. Substituting coordinates of vector V and
vector U in the coordinate system CSr we obtain the equation of a straight line
in the receiving slit plane:

UxxþUyy�U � V ¼ 0 ð21Þ

or:

y ¼ U � V�Uxx

Uy
ð22Þ
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An example of the intersection of the degenerated diffraction cone is given in
Section 6.6.

6.5.5 Intersections of the Conic and Receiving Slit Boundary

There are three common cases related to the intersections of the conics with
the receiving slit. (1) No intersection with the receiving slit; (2) the conic
intersects the receiving slit in two points; (3) the conic intersects the receiving
slit in four points. The case of the conic touching the receiving slit boundary
can be reduced to the first two cases. Finding the points of the intersection of
the conic with the receiving slit boundaries reduces, in most cases, to the
solution of quadratic equations. For the horizontal sides of the receiving slit
(axial direction) y¼�dw/2 the quadratic equation axx

2+bxx+cx¼ 0 has the
coefficients:

ax ¼ a
bx ¼ 2d � bdw

cx ¼ cdw
4 � fdw þ g

For the sides x¼�lw/2 that lie parallel to the equatorial plane the quadratic
equation ayx

2+byx+cy¼ 0 has the coefficients:

ay ¼ c
by ¼ 2f � blw

cy ¼ clw
4

� dlw þ g

In a special case there is only one intersection of the line and the conics. This
can occur if the line is parallel to the main axis of the conic (in the case of a
parabola), or the line is parallel to the asymptote of the hyperbola. Only the
intersection points {xi, yi} lying on the receiving slit boundary are of interest.
The conditions –lw /2oxiolw /2 and –dw /2o yiodw /2 should be met. Care

should be taken at the Bragg and scanning angles near 901 to ensure the
intersection points lie on the proper branch of the hyperbola.

6.5.6 Angle Between Two Planes

Suppose points X1 ¼ fx1; y1; 0g and X2 ¼ fx2; y2; 0g represent the intersections
of the conic and receiving slit boundary. The registered intensity is proportional
to the dihedral angle f between two planes containing points A1, A2, X1 and A1,
A2, X2.

53 This angle is the angle between the two normals N1 and N2 to the
plane in question:

N1 ¼ ðX1 � VÞ �U

N2 ¼ ðX2 � VÞ �U
ð23Þ

Here Xi are the position vectors to points Xi. Introducing the unit vectors
n1 ¼ N1=jN1j and n2 ¼ N2=jN2j and taking into account jNij ¼ jXi � Vj � jUj
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sin 2yði ¼ f1; 2gÞ we have:

cosf ¼ n1 � n2 ¼
X1 � Vð Þ �Uð Þ � X2 � Vð Þ �Uð Þ
X1 � Vj j � X2 � Vj jU2 sin2 2y

ð24Þ

Components of the vector Ni ¼ Xi � Vð Þ �U can be expressed through the
components of the vectors U, V, and Xi:

Nix ¼ �UzVy þUyVz þUzyi
Niy ¼ UzVx �UxVz �Uzxi
Niz ¼ �UyVx þUxVy þUyxi �Uxyi

6.6 APPLICATION OF THE METHOD

The equation of the conic (16) can be used for very illustrative demonstrations
of the influence of different parameters on the relative positions of the conic
and the receiving slit, and correspondingly to the registered intensity. The
different behavior of the conics due to axial and equatorial aberrations is given
in subsequent subsections to demonstrate their different contributions to the
registered intensity.
The proposed method for calculating the total instrumental function can

be used to calculate specific instrumental functions. The principal point in
the calculations is the finite width of the receiving slit, i.e. the special instru-
mental function will be calculated coupled with the finite width of the receiv-
ing slit. Notably, in the proposed method the convolution is not used to
synthesize the total instrumental function from the specific instrumental
functions. In fact, there is no need to calculate specific instrumental functions,w

but it may be useful for comparison with methods based on the convolution
approach or for testing approximations. In the following sections, compari-
sons are made between the profiles of some specific instrumental functions
suggested previously by Klug and Alexander2 and later by others41,42,51 and
the profiles calculated by the proposed method. For the purpose of compari-
son with the proposed method, the specific instrumental function used in
the convolution approach was convolved with the instrumental function
representing the receiving slit. In Section 6.6.3 the total instrumental
profile calculated by the proposed method is compared with the profile
obtained using a Monte Carlo ray-tracing simulation (by using the program
BGMN36 38).

6.6.1 Some Illustrative Examples of the Conic in the Receiving Slit Plane

6.6.1.1 Relative Positions of the Conics and Receiving Slit. The relative
positions of the conic and receiving slit can be characterized by the number Nc

wFurthermore, in experiment it is difficult to make comparisons with functions (e.g., specific
function for flat specimen or axial aberration) having singularity.
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and position of the intersection points of the conic and receiving slit. Figure 6.6
gives the positions of the conics and receiving slit for all cases. The cases are
related to the Bragg angle y¼ 101 (with one exception: second row, left, y¼ 61)
and to the receiving slit with the size 10� 0.25mm2.
To illustrate more clearly the intersection details the y-axis range was scaled

out by a factor of about 20. Generally, the conic section can intersect the
receiving slit boundary in two or four points. The two intersections with the
side boundary are related to the high registered intensity. The two intersections
with bottom and top of the receiving slit can be related to a low registered
intensity (e.g. small Bragg angle, scanning angle far from Bragg angle) as well
as to the high registered intensity.

6.6.1.2 Different Bragg Angles. Figure 6.7 shows the set of conics in the
receiving slit plane for different diffraction angles yi (101, 401, 501, and 801).
The scanning angle ji is set to the diffraction angle yi. The receiving slit is
10� 0.25mm2.
All conics were calculated for the incident rays with the fixed point A1¼ {0, 0}

from the source center and for points A2¼ {xs, 0, 0} having only axial compo-
nents. The set of the conics from the other point A1¼ {xf, 0} can be obtained
easily from that shown on the picture by the shift of the conics by xf.
As can be seen from the figure the conics produced by the diffraction cone

with the different Bragg angles fill the receiving slit plane differently, being
responsible for the asymmetry, apparent shift, and width of the diffraction peak
(see also the Section 6.6.1.4).

Figure 6.6 Possible intersections of the conics and receiving slit (2yo 901).
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6.6.1.3 Degenerated Cone. In the special case of the degenerated diffrac-
tion cone (2y¼ 901) the conic sections represent straight lines (Figure 6.8).
Asymmetry and shift do not disappear for this case.
The next section illustrates the effects of the asymmetry, shift and width.

6.6.1.4 Asymmetry, Shift, and Width of the Diffraction Peaks. For a given
Bragg and scanning angle the points of intersections of scattered X-rays and the
receiving slit plane fill a certain region R(yB,j) in the latter. Figure 6.9 shows
examples of these regions for different diffraction angles yB and scanning
angles.
In all cases the scanning angles are equal to the Bragg angles. Strictly

speaking, the density of these points, for a given Bragg angle, depends on the
scanning angle. However, for qualitative purposes only, we can assume that for
other scanning angles the corresponding region can be obtained by moving the
region R(yB,jB) by the value 2R(yB�j). By such a consideration it is easy to see
the origin of the asymmetry, apparent shift of the peak position and changing
the width of the peak.

6.6.1.5 Non-convolution Calculation of the Observed Profile. The proposed
method can be applied to the calculation of the total registered intensity in the
case where the physical profile f(y) is no longer a d-function. In this case the
scattered X-rays for a given incident ray and point A2 are no longer distributed
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Figure 6.7 Set of conics near the receiving slit for different Bragg angles. Diffraction
cones are produced by the incident ray from fixed point A1¼ {0, 0} to
points on the sample A2 having only axial component. (Reprinted from
Ref. 54. Permission of the International Union of Crystallography.)
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on a conical surface with half angle 2y, but have a spatial distribution. Now we
can consider a set of diffraction cones with the common vertex and axes but
with different scattering angles yi. Full scattered intensity for each cone is
described by the physical diffraction profile. For each diffraction cone the
corresponding conic can be easily calculated.
Figure 6.10a shows as an example one physical profile, and Figure 6.10b

shows the corresponding conic sections. For a given incident ray we can write
for the registered intensity at the scanning angle j0:

Iregðj0ÞE
X
i

gðj0; yiÞf ðyiÞ

or as an integral:

Iregðj0Þ ¼
Z

gðj0; yÞ f ðyÞdy

Hence, for a given physical profile point on the observed profile there can be
calculated by an additional integration.

6.6.2 Specific Instrumental Function

6.6.2.1 Equatorial Aberrations. For a well-aligned diffractometer the
following factors affect equatorial aberration: finite width of the source and
receiving slit, and flat specimen effect (we also assume that angular distribution
in the equatorial plane is uniform). The first two factors produce rectangular
profiles without shifts. The convolution of these two instrumental functions
provides an exact solution as a triangular or trapezoidal profile where the
receiving slit width equals or does not equal the width of the source,
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Figure 6.8 Intersections of the degenerated diffraction cone (2y¼ 901) and receiving
slit plane. Diffraction cones are produced by the incident ray from fixed
point A1¼ {0, 0} to points on the sample A2 having only an axial compo
nent. The black rectangle represents the receiving slit. (Reprinted from
Ref. 54. Permission of the International Union of Crystallography.)
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Figure 6.9 Filling the receiving slit plane with the conics. Diffraction cones are
produced by the incident ray from set of points A1¼ {xf, 0} to the set of
points on the sample A2¼ {xs, ys}. The black rectangle represents the
receiving slit.
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respectively. This is a simple situation to calculate. The flat specimen aberration
causes a shift and asymmetry of the diffraction line profile. For a point source
and point receiving slit the exact solution for flat specimen aberration can be
obtained.2,41,51 Our interest is the consideration of the flat specimen aberration
together with the aberration caused by the finite width of the receiving slit
because (1) the first is responsible for asymmetry (for equatorial aberrations)
and (2) the measurement are always carried out with a finite receiving slit.
First, we compare these instrumental profiles calculated with the proposed

method and with the convolution approach. Secondly, a fine difference between
an exact solution and a solution based on the convolution approach is demon-
strated.
The approximation for the specific instrumental function for the flat spec-

imen aberration as given by Cheary et al.51 and Ida and Kimura41 is:

JFSðeÞ ¼ 1= 2 eeMð Þ1=2
h i

; eM � e � 0

where e¼ 2j� 2y, eM ¼ �½Lx=ð2RÞ�2 sin 2y and Lx is the specimen length along
the equatorial direction.
Calculation of this type of aberration is simple when using the proposed

method. For the profile on Figure 6.11 the grid used for calculating the flat
specimen aberration coupled with the receiving slit function is 1� 1 for the source
and 1� 20 for the sample; the length of the receiving slit was set to be much
smaller than R sin 2y. One can see quite clearly that the results agree very well.
Of some interest is to consider the coupling effects by the example of the flat

specimen aberration and finite width of the receiving slit. Assuming the size of
the receiving slit in the axial direction is negligibly small (that means x¼ 0), and
taking into account xf¼ 0, yf¼ 0, xs¼ 0, we obtain from Equation (16) the
following equation:

ð�R2 cos 2jþ yR sin 2jþ yys sinjþ y2s Þ
2

¼ ðy2s þ R2 þ 2ysR cosjÞ � ððys cosj� RÞ2 þ ðyþ ys sinjÞ2Þ cos2 2y
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Figure 6.10 Calculation of the combined contribution due to the physical broadening
and due to geometrical aberrations in the observed profile. a) Physical
profile; b) set of the conics corresponding to the the diffraction cones at
the angles yi �A1¼ {0, 0}, A2¼ {1, 0, 0}, y0¼ 101, j¼ 101.
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Setting y¼�dw we obtain the equation linking angle j and equatorial positions
ys on the sample from which the diffracted rays hit exactly on the boundary of
the receiving slit.
Figure 6.12 shows the solution of the equation for the top side of the receiving

slit. The four scanning angle regions related to the signal front can be

°

Figure 6.11 Equatorial aberration coupled with the receiving slit width calculated by
the proposed method (solid line) and as a convolution (open circles) of
JFS with the rectangle function (dashed line) representing the receiving
slit. The vertical line at 201 represents the Bragg angle to which the
aberration function is related. (Reprinted from Ref. 53. Permission of the
International Union of Crystallography.)
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Figure 6.12 Asymmetrical contribution from equatorial peripheral points of the
sample: coupling effect of flat specimen aberration with finite width of
the receiving slit. For the scanning angle j1ojoj2 there is only
contribution from one side of the sample. The dashed line corresponds
to the symmetrical contribution from the sample. (Reprinted from Ref.
54. Permission of the International Union of Crystallography.)
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distinguished. (1) For angles joj1 diffracted rays from the sample do not fall
into the receiving slit. (2) For angles j1ojoj2 diffracted rays from the region
on the top of the sample contribute to the registered intensity (see Figure 6.13).
(3) For angles j2ojoj3 diffracted rays from the regions on the top and
bottom of the sample contribute to the registered intensity. The region in the
middle of the sample does not contribute to the registered intensity. (4) For angles
j4j3 diffracted rays from the all-illuminated surface of the sample contribute
to the registered intensity. Notably, this case cannot be realized for a very narrow
receiving slit (for the conditions of Figure 6.12 dwr 0.0025mm), because a region
of the illuminated sample always exists from which the diffracted rays miss the
receiving slit. The asymmetry of the contribution of the diffracted points from
the periphery of the sample causes the slight break in the profile at the angle j2.
Since the break is slight, the front of the instrumental function for this case can be
calculated on the assumption that symmetrical points �ys on the sample con-
tribute symmetrically to the registered signal. We will come to the convolution
approach;2 however, for best fit we may need to fine tune the ‘‘fundamental’’
parameters51 (here a width of the receiving slit). Although this break is small, it
makes sense to provide tools to enable the quantitative estimation of the effect.

6.6.2.2 Axial Aberration. The equation of the conic for the case that points
A1 and A2 have only axial components can be obtained from the general
Equation (16) by setting their equatorial components yf, ys to 0.
For this case the equation of the conic can be expressed in the form:

ðR2 þ y2 þ ðx� xsÞ2ÞðR2 þ ðxf � xsÞ2Þ cos2 2y
¼ ð�R2 cos 2jþ yR sin 2jþ ðx� xsÞðxf � xsÞ2Þ
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Figure 6.13 Conic sections near top side of the receiving slit. The conics are produced
with the following incident rays: point A1 is the center of the source,
points A2 have coordinates: {0, 5} (short dashed line), {0, 0} (continuous
line), {0, 5} (dashed line). The vertical thick line represents part of the
receiving slit (infinitesimally small in the axial direction). (Reprinted from
Ref. 54. Permission of the International Union of Crystallography.)
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Figure 6.7 gives a set of the conics produced by the diffraction cone with
the incident rays from the source center A1¼ {0, 0} (in coordinate system CSf)
to the points along the rotation axis of the diffractometer A2¼ {xs, 0, 0}
(in coordinate system CSs).
The specific instrumental function JAX for the axial aberration can be

analytically calculated for the special case in which there is no divergence of
the incident rays:51

JAXðeÞ ¼
je1 � e2j 1 ðe2=eÞ1=2

h i
; e1oeo0

je1 � e2j 1 ðe2=eÞ1=2 � 1
h i

; e2 � e � e1

8<
:

where:

e1 ¼ � cot 2y
2

Lr � Ls

2R

� �2

; e2 ¼ � cot 2y
2

Lr þ Ls

2R

� �2

and Ls and Lr are axial sample and receiving slit lengths.
Function JAX (e) was convolved with the receiving slit function representing

the rectangular function. Figure 6.14 shows axial instrumental functions. The
results are consistent with our model.

°

Figure 6.14 Axial aberration. Source and sample: axial length 10mm; receiving slit:
length 10mm, width 0.25mm. Solid and dashed lines: calculation by the
proposed method without and with divergence in the incident beam,
respectively. Open circles: calculation as a convolution of JAX with the
rectangle function representing the receiving slit. The vertical line at
j¼ 201 represents the Bragg angle to which the aberration function is
related. (Reprinted from Ref. 53. Permission of the International Union
of Crystallography.)
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The analytical approximation for the axial aberration in the convolution
approach is possible only for the case in which the divergence of incident X-rays
is sufficiently small [o11 (ref. 51)]. Axial aberration for the general case can be
calculated by using the semi-analytical approach developed by Cheary and
Coelho.34

In the proposed method the axial aberration function (coupled with the finite
sizes of the receiving slit) for the general case of a non-parallel incident X-ray
beam can be calculated without difficulty by taking grid points along the
lines passing through the center of the source or sample in the axial direction.
The results are given in Figure 6.14. As can be seen from Figures 6.11 and 6.14,
the axial aberration has a greater impact on the profile shape than does the
equatorial aberration.
Figure 6.15 shows the instrumental profile caused by axial shift of the points

A1 and A2 (i.e. arbitrary axial divergence).
Some characteristic angle regions can be distinguished. The incident rays

with maximal axial divergence are responsible for the first signals at the
scanning angle j1. For the small scanning angles far below the peak position
only the incident rays having axial components contribute to the registered
intensity. The incident rays that are parallel to the equatorial plane (without
axial divergence) do not contribute to the registered intensity until the scanning
angle of the diffractometer reaches the angle j2. Angle j2 refers to the angle at
which the incident ray with maximal axial shift (without axial divergence) starts
with the contribution to the registered intensity. From angle j2 to j3 only
incident rays having an axial shift contribute to the registered intensity. In other
words, there is no contribution to the registered intensity from the incident ray
determined by the source and sample center. Starting from the angle j3 the
incident rays from the center of the source to the center of the sample
contribute to the registered intensity.
The next region (scanning angles j4ojoj5) corresponds to that with

maximal registered intensity. In this region the vertex of the conic produced by

Figure 6.15 Instrumental profile caused by an axial aberration (see explanations for
angles j1 in the text). (Reprinted from Ref. 54. Permission of the
International Union of Crystallography.)
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the incident ray without any axial shifts (incident ray from the source center
to the sample center – central incident ray) (i) falls into the receiving slit and
(ii) the conic intersects both vertical sides of the receiving slit. From the angles
near j¼j5 the registered intensity takes a sharp downward turn. Angle j5 is
characterized by the fact the conic produced by the central incident ray
intersects the bottom side of the receiving slit.
The angle j6 corresponds to the angle at which the vertex of the conic

produced by the central incident ray meets the bottom side of the receiving
slit. However, after the exit of this vertex from the receiving slit, the arcs of
the conics produced by the incident rays having axial divergence contribute to
the registered intensity. The end of the registration refers to the scanning angle
j7, which differs somewhat from the angle j6.

6.6.2.3 Absorption. An absorption correction is important for thick speci-
mens with small absorption coefficient for X-rays. Consideration of absorption
means that point A2 has a non-zero y component. As a consequence of this
there is another conic that is important for considering the absorption. This
conic is the intersection of the diffraction cone and the surface plane of the
sample. Figure 6.16 shows schematically a part of the diffraction cone and a
cross-section of the latter with the sample surface plane (plane XsYs in co-
ordinate system CSs). Points Dip (i¼ 1–4) are point projections of the receiving
slit from point A2. Points Pci p are projections of the intersection points Pci of
the receiving slit and conic in the receiving slit plane.
The contribution to the recorded intensity should be corrected for each

incident and scattered ray by the factor exp(�ml), where m is the linear
absorption coefficient and l is the length of the ray in the sample, which
consists of two components; the first is the length l1 passed by the incident ray
in the sample to point A2 from the sample surface, and the second is the
distance l2 traversed by the diffracted rays from point A2 to the sample surface.
The distance l2 can be considered as a function of dihedral angle c between
planes P(A1, A2, Pc1) and P(A1, A2, P), where P is a point on the conic in the
sample plane. Because the scattered rays have different lengths in the sample
the corrections, strictly speaking, should be introduced for each scattered ray:

IðPc1;Pc2ÞB expð�ml1Þ
Zc2

0

exp½�ml2ðcÞ�dc

where c is the dihedral angle between planes P(A1, A2, Pc1) and P(A1, A2, P),
where P is the current point on the conic within the receiving slit. Preliminary
estimations show that the length l2 can be taken as constant for a given incident
ray. However, for specific conditions the corresponding estimations should be
made to be sure the length changes are negligible.
Figure 6.17 shows one example of the conic in the receiving slit plane (a) and

corresponding conic in the sample surface plane (b). The conic in the sample
plane can be considered also as a point projection (point A2) of the conic in the
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receiving slit plane into the sample plane. In this specific case, as can be easily
seen from Figure 6.17b, the change of the coordinate of the point P between
points Pc1p and Pc2p causes an insignificant change in the length l2.
A simplified consideration is given by Ida and Kimura42 and Cheary, Coelho

and Cline.51 The specific instrumental function for the sample with a thickness
of T is given as:

JmðeÞ ¼
expðe=dÞ

d½1� expðemin=dÞ�
; emin � e � 0

where:

emin ¼ �ð2T=RÞ cos y; d ¼ sin y=ð2mRÞ

Figure 6.18 shows the convolution of the aberration function Jm(e) with the
receiving-slit instrumental function. Here the profile calculated according to the
proposed method is also represented. The calculation was carried out with a
fixed point A1 at the center of the source; points A2 lie on the y-axis from the
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Figure 6.16 An intersection of the diffraction cone and sample surface. Point A2 is
located under the sample surface. Points Dip are point projections of the
receiving slit on the sample surface.
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center into the specimen. To eliminate the axial aberration, here due to the
length of the receiving slit, the length of the receiving slit was reduced to 0.1
mm. Comparison of the axial aberration (Figure 6.14) and the absorption effect
(Figure 6.18) shows that for samples with a low absorption the influence of
absorption on the line profile may be comparable with the influence of the axial
aberration.
Figure 6.18 shows that there is good agreement between these two approaches

in this case as well.
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Figure 6.17 Intersection of the diffraction cone with a) the receiving slit plane, and b)
the sample plane. Case of absorption (the vertex of the diffraction cone is
under the sample plane). D1D2D3D4 receiving slit. D1pD2pD3pD4p

projection of the receiving slit from vertex of the diffraction cone into the
sample plane.
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Figure 6.18 The effect of absorption in the specimen. The absorption coefficient m
corresponds to that of graphite. Sizes of the receiving slit: length 0.1mm,
width 0.25mm. The calculation according to the proposed method and
the convolution approach are shown as a solid line and open circles,
respectively. The vertical line at 2j¼ 201 represents the Bragg angle to
which the aberration function is related. (Reprinted from Ref. 53.
Permission of the International Union of Crystallography.)
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6.6.3 Total Instrumental Profile

The instrumental function calculated by the proposed method for two angles
was compared with the instrumental function obtained using the BGMN
program (Figure 6.19).36 38

In the program geomet of the BGMN package Monte Carlo ray-tracing is
used to calculate the instrumental function. The advantage of using the ray-
tracing simulation is that it provides a correct instrumental profile for a given
instrument geometry. As shown in Figure 6.19, the agreement between these
two methods is very good. However, precise calculations using the ray-tracing
method are time-consuming.

6.6.3.1 Precision and Calculation Time. To calculate one point on the in-
strumental profile we need to calculate a multidimensional integral. For the case
where absorption can be neglected this integral reduces to a four-dimensional
integral. To estimate how the number of points on the calculation grid affects
the precision and calculation time, the calculations of the total instru-
mental profile were performed for four cases. They are given in Table 6.3.

a) b)

° °

Figure 6.19 Comparison of the calculated instrumental function with the instrumen
tal function obtained using the BGMN program. Sample sizes:
5� 10mm2; receiving slit sizes: 0.25� 10mm2. Bragg angle: (a)
2y¼ 201, (b) 2y¼ 801. (Reprinted from Ref. 53. Permission of the Inter
national Union of Crystallography.)

Table 6.3 Effect of the number of points on the
calculation grid on the precision and
calculation time.

Number of points R(50,n) (%) Time (s)

50 260
20 0.06 6.5
10 0.25 0.45
5 1 0.046
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The precision of the calculations with n� n� n� n-calculation points was
referred to the grid with 50� 50� 50� 50 points as:

Rð50; nÞ ¼

P
i

jyið50Þ � yiðnÞjP
i

yið50Þ

The number of calculation points on the instrumental profile for the given cases
is 100.
Figure 6.20 compares two total instrumental profiles calculated with

50� 50� 50� 50 and 5� 5� 5� 5 points. As is easy to see, it is enough to
take only 5 calculation points in each direction to reach a precision of B1%.
The calculation time for this case is about 0.05 s. The calculation time can be
decreased still further by taking an unequal number of calculation points in
each direction from the line position.
Taking into account absorption leads, generally, to a six-dimensional integral.

However, within certain limits it can be reduce to the five-dimensional integral
because the length of scattered X-rays in the sample changes insignificantly.
For realizing the algorithm for calculation of the integral, the following

factors reducing the calculation time can be taken into account. (1) Symmetry
relative to the equatorial plane (time reducing by a factor 2). (2) Parallel shift of
the incident X-ray in the axial direction causes the same parallel shift of the
conic in the receiving slit plane. Thus, the intersection with the horizontal lines
can be easily calculated by adding the value of the shift. The coefficients of the

Figure 6.20 Instrumental functions calculated on different grids.
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quadratic form can be re-calculated and used for finding the intersections with
vertical lines. For the shift by D in the axial direction the quadratic form
Equation (7) changes to:

ax2 þ bxyþ cy2 þ ðd þ 2aDÞxþ ðf þ bDÞyþ ðgþ dDþ aD2Þ ¼ 0

The four-dimensional integral (case without absorption) can be reduced to a
three-dimensional integral.

6.7 ABOUT MISALIGNMENT, SOLLER SLITS,

MONOCHROMATOR

The effects of misalignment and Soller slits can also be included in the
calculation as well as a different diffractometer geometry. For the case of the
diffractometer equipped with a crystal monochromator it is also possible to
provide a solution in the context of the proposed method. For reasons of space,
we outline here the possible treatment of these effects without going into
details.

6.7.1 Misalignment

The most interesting case of the misalignment is referred to the deviation of the
sample from its ideal position. This misalignment can be described by the
translation vector Vmis and rotation matrix Mmis.
Knowing the coordinates of the point A2,mis in the coordinate system related to

the sample we can calculate the coordinate of the point A2 in the coordinate
systemCSs. The relationship between coordinates of pointA2,mis¼ {xmis, ymis, zmis}
in the coordinate system CSmis and coordinates of this point A2¼ {x, y, z} in the
coordinate system CSs is A2 ¼ MT

mis � A2;mis þ Vmis. The further treatment is the
same as for the case without misalignment. Figure 6.21 shows two total
instrumental functions calculated for well-aligned and mis-aligned samples.
The mis-aligned position was obtained from a well-aligned one by a shift of the
sample by 0.05 mm along the z-axis.
It is easy to see that the position of the instrumental function is very sensitive

to the position of the sample.

6.7.2 Soller Slits

For the case of Soller slits in the incident beam, the condition of rays passing
through the slits is given by the inequality:

arctan
jxs � xf j

Rþ ys cosj

� �
oaslits

For Soller slits in the diffracted beam each point A2 on the sample ‘‘sees’’ only
parts of the receiving slit (Figure 6.22).
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Therefore, instead of one full receiving slit, several (the number depends on
the positions and geometrical parameters of the Soller slits) smaller receiving
slits should be considered. The corner points of these new sub-receiving slits for
given Soller slits depend on the position of point A2 and angle j and can be

°

Figure 6.21 Influence of the position of the sample on the instrumental function.
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Figure 6.22 Soller slits in the diffracted cone. A drawing plane passes through the
rotation axis of the diffractometer and the center of the receiving slit. The z
axis is shown on an exaggerated scale. The lamellae of the working channels
of the Soller slits are highlighted in black. Corresponding ‘new’ receiving
slits (gray) and the conic section are shown on the right. (Reprinted from
Ref. 53. Permission of the International Union of Crystallography.)
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easily calculated. Further calculations of points Pci should be carried out for
each sub-receiving slit. Such a consideration provides an exact solution for the
instrumental function for the diffractometer with the Soller slits in the same
way as in the case without the Soller slits. Figure 6.23 shows conics at different
scanning angles produced by the incident rays from point A1¼ {5, 0} on the
source to the point A2¼ {�5, 0, 0} on the sample (points with maximal axial
divergence) and parts of the conics passed through the Soller slits. It is easy to
see that Soller slits restrict the contribution to the registered intensity at low
scanning angles.
Calculations in this case can take more time (test calculation with four sub-

receiving slits gave a factor of about 2 in comparison with the case without
Soller slits). Obviously, related approximations can be devised and tested using
the exact solution.

6.7.3 Monochromator

Notably, there is no satisfactory solution, based on a physically meaningful
model, for incorporating a monochromator during the calculation of the
instrumental function in X-ray powder diffraction.51 In the context of the
proposed method, the case of the diffractometer with a monochromator can
be considered as follows.
Monochromator in the incident beam. Figure 6.24 shows beam paths in the

diffractometer with an incident-beam focusing monochromator. The rays from

0.4°

0.3°

0.25°

0.2°

0.15°

0.1°

Figure 6.23 Parts of the conics passing through the Soller slits. Dot lines conics
corresponding different scanning angles (shown on figure as e¼ y j ) in
the receiving slit plane. y¼ 101. A1¼ {5, 0}, A2¼ { 5, 0, 0}. Set of the
rectangles with the vertical long sides represent parts of the receiving slit
plane as they are seen from point A2. Thick lines part of the conics
passing through the Soller slits.
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the X-ray source are focused at the focal slit plane. The focal slit is placed at the
goniometer radius. Now the image of the source in the focal slit can be
considered as the source of the X-rays.
The corrections should be made to take into account the change, first of all,

in the axial divergence and, perhaps, in the equatorial divergence. It is easy to
see from Figure 6.24 that the maximal axial divergence can be estimated as
gAX ¼ lAX=ðRþ aþ bÞ. Substituting the values lAX¼ 10mm, R¼ 217.5mm,
a¼ 120mm, and b¼ 360mm, gives gAX ¼ 0:014, which corresponds to about
0.81. Without a monochromator the axial divergence would be about 2.61.
The intensity distribution in the equatorial and axial directions perhaps will be
slightly charged from uniform. The corresponding correction should be made.
For a non-monochromatic X-ray beam an additional integration over the

wavelength distribution is required.
Plane crystal monochromator in the diffracted beam. This case is considered in

the next two sections.

6.8 PLANE CRYSTAL MONOCHROMATOR IN THE DIFFRACTED

BEAM

The influence of the plane crystal monochromator in the diffracted beam can
also be considered in the context of using the conic section. The plane crystal
monochromator is located after the receiving slit at the radius Rm.

6.8.1 Setting of the Monochromator

The diffracted ray coming from the center of the sample and passing through
the center of the receiving slit strikes the center of the monochromator crystal.
The angle between this ray and the crystal plane is equal to �ym. Signs +, �
corresponds to the respective clockwise and counter-clockwise rotations of the

focal
slit

A1

source

monochromator

R

a b

receiving
slit

sample

goniometer
circle

A1F

Figure 6.24 Bragg Brentano diffractometer with incident beam monochromator.
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crystal. We consider the case of counter-clockwise rotation. The rotation axis
of the monochromator crystal is parallel to the rotation axis of the diffracto-
meter and has the same direction.

6.8.2 Reflection Cones

We can consider point A2 as a source of the monochromatic radiation. The
reflection region can be represented as a ring limited by the two circles. The
center of the circles is the projection A

p
2 of point A2 on the monochromator

plane, and the radii are d cot y1, y1 ¼ yB þ d1ð Þ and d cot y2, y2 ¼ yB þ d2ð Þ,
where yB is the Bragg angle of the crystal, d1 and d2 determine the width and the
shift of Bragg angle according to the dynamical theory of X-rays scattering,59

and d is a distance between points A2 and Ap
2
. We suppose now that the crystal

is set up in such way that the ray from the center of sample and passing through
the center of the receiving slit comes in the middle of the reflection ring. Then:

ym ¼ yB þ d1 þ d2ð Þ=2; y1 ¼ ym � d; and y2 ¼ ym þ d

For a well-aligned monochromator crystal the normal to the crystal plane lies
in the equatorial plane. In this case the registered intensity will be maximal for
the narrow receiving slit at the angles corresponding to the peak positions. We
can introduce the reflection cones as the cones whose axes are parallel to the
normal of the monochromator plane vertex with point A2 and directrices as the
circles bounding the reflection region. The common equation of the cone
Equation (8) can be used to obtain the conic equation corresponding to
intersection of the receiving slit plane and reflection cones. For this case the
direction vector is constant in the coordinate system related to the receiving slit
and equal to the unit vector normal to the monochromator plane. The vector
parallel to the axis of the reflection cone is the normal n to the crystal plane:

nx ¼ 0
ny ¼ � cos ym
nz ¼ � sin y

The half-angles of the reflection cones are p=2� ym � dð Þ. The common equa-
tion of the cone Equation (8) takes the form for the reflection cone:

X� V

X� Vj j � n ¼ sin ym � dð Þ ð25Þ

The coefficients of the reflection conic in the receiving slit plane are:

a ¼ � sin2 ym � dð Þ
b ¼ 0
c ¼ cos d cos 2ym þ dð Þ
d ¼ xs sin

2 ym þ dð Þ
f ¼ � ys sinj sin2 ym þ dð Þ þ cos ym R sin ym � ys sin jþ ymð Þð Þ

� �
g ¼ �R2 sin d sin 2ym þ dð Þ þ 2ysR cosj sin2 ym þ dð Þ � sin ym sin jþ ymð Þ

� �
þy2s sin j� dð Þ sin jþ 2ym þ dð Þ � x2s sin

2 ym þ dð Þ
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as functions of the coordinates of point A2, the diffractometer radius R and
angle j, the Bragg angle ym of the monochromator crystal, and d which is the
half width of the reflection ring.

6.8.3 Intersection of the Diffraction and Reflection Conics in the Receiving

Slit Plane

There are four solutions in the general case of an intersection of two conics. In
our case there are not more than two possible solutions. This occurs because the
diffraction and reflection cones have the same vertex-point A2. Let us denote by
yun the angle between the axes of the diffraction and reflection cones. These
cones will intersect with one another

2y� p=2� ym � dð Þj joyuno2yþ p=2� ym � d

Using Equations (8) and (24) we can obtain:

X� Vð Þ � A ¼ 0

where A ¼ u sin ym � n cos 2y
Taking into account that for points on the receiving slit plane X ¼ fx; y; 0g

and expressing the scalar product by the sum of the component products we
can obtain the relation between x and y:

Axxþ Ayy ¼ V � A
or:

y ¼ V � A� Axx

Ay
ð26Þ

Substituting the last expression for y in the equation of the reflection (or
diffraction) conic we obtain the quadratic equation amx

2 þ bmxþ cm ¼ 0 for x.
The coefficients of this equation are:

am ¼ A2
x

A2
y

c� Ax

Ay
bþ a

bm ¼ b

Ay
� 2

Ax

A2
y

c

 !
A � Vþ d � Ax

Ay
f

cm ¼ c

A2
y

A � Vþ f

Ay

 !
A � Vþ g

Solving the quadratic equation and using Equation (26) we obtain the coor-
dinates of intersection points Pcmi of the diffraction and reflection cones. The
registered intensity is proportional to the dihedral angle and can be found using
Equation (25). There is one special case that requires special consideration. This
is where the diffraction conic lies completely in the reflection region. The
registered intensity for this case is determined by the part of the diffraction
conic lying in the receiving slit.
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The other way to calculate the registered intensity after the plane mono-
chromator can be described as follows. To calculate angle between two planes
we need only know the unit direction vector m ¼ fm1;m2;m3g to the points
Pcmi. These direction vectors are determined by the line of the intersection of
the diffraction and reflection cones. To find this direction we use the following
equations:

m � u ¼ cos 2y
m � u ¼ sin ym
m � u ¼ 1

However, it should be tested whether the ray comes into the receiving slit.

6.9 EFFECT OF THE PLANE MONOCHROMATOR ON

INSTRUMENTAL FUNCTION

6.9.1 Equatorial Aberration in the Presence of the Monochromator

With the shift ys of the point A2 in the equatorial direction, the point Ar in the
receiving slit corresponding to the middle point of the ring on the crystal plane
moves by the value dy ¼ �ys sinj. The maximal shift of point Ar in the
equatorial plane can be taken as the width of the receiving slit. As a conse-
quence the only rays of the reflection cone from the points of the sample with a
shift smaller than dw= 2 sinjð Þ go through the receiving slit. As an example
ys ¼ �0:125= sin 10�E� 0:72mm and ys ¼ �0:125= sin 40�E� 0:19mm.
Hence only the points near the rotation axis of the diffractometer contribute
to the registered intensity. Contrary to the case without the monochromator,
only points from one side of the sample contribute to the registered intensity.
For scanning angles smaller than the Bragg angle only points on the sample
with positive coordinates contribute to the registered intensity. For scanning
angles larger than the Bragg angle only points on the sample with negative
coordinates contribute to the registered intensity. Changing the distance from
the points on the sample causes a slight change in intensity in the instrumental
line profile. As an example, for yB¼ 101 and R¼ 200 the change of intensity is
equal E0.7%. The front and back of the equatorial instrumental function is
smeared by the length corresponding to the width of the reflection region, and
is considerably smaller than the length of the front/back of the instrumental
function without the monochromator.
Figure 6.25 shows the equatorial instrumental functions with and without

taking into account the monochromator.
The reflection region was represented by the rectangular function:

RðcÞ ¼ 1; c� ymj j � d
0; c� ymj j4d

	

The form of the reflection function R(c) influences only the very narrow front
and back of the profile.
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6.9.2 Axial Aberration in the Presence of the Monochromator

The shift of point A2 in the axial direction causes an equal axial shift of the
middle point of the reflection conic in the receiving slit plane. In this sense the
axial aberration is equivalent to using a narrow receiving slit with the width
equal to that of the reflection region in the receiving slit plane.
Because of this, we will compare two instrumental profiles. Both are the profiles

caused by the axial aberrations with the difference that the first is registered by
the narrow receiving slit in the absence of a monochromator and the second is the
profile taking into account the monochromator. In the latter case the width of
the receiving slit is selected so that the reflection regions intersect only the vertical
boundaries of the receiving slit. If this condition is fulfilled the registered intensity
depends only on the length of the receiving slit and not on its width.
Figure 6.26 shows the axial instrumental functions for these two cases.

6.9.3 Total Instrumental Function in the Presence of the Monochromator

Figure 6.27 shows the total instrumental functions with and without a mono-
chromator. (Reprinted from Ref. 54. Permission of the International Union of
Crystallography.)
The profile with the monochromator was scaled by a factor of about 250.

The difference between the profiles calculated with and without the mono-
chromator is explained by the differences in the equatorial and axial aberration
profile (Figures 6.25 and 6.26).

6.10 CONCLUSIONS

The general form of a conic was used to calculate the instrumental function of a
diffractometer in Bragg-Brentano geometry. The coefficients of the quadratic

Figure 6.25 Equatorial aberration with and without monochromator. (Reprinted
from Ref. 54. Permission of the International Union of Crystallography.)
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form representing the intersection of the diffraction cone and the receiving slit
plane are given in a general form as functions of the coordinates of the points
A1 (at the source), A2 (at the sample), the scattering angle y, and the diffracto-
meter angle j. The equation of the conic for a diffractometer in Bragg-
Brentano geometry is also given in implicit form.

Figure 6.26 Axial instrumental functions with and without monochromator.
(Reprinted from Ref. 54. Permission of the International Union of
Crystallography.)

Figure 6.27 Total instrumental functions with and without monochromator.
(Reprinted from Ref. 54. Permission of the International Union of
Crystallography).
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Calculation of the instrumental contribution to the line profile at the
diffractometer angle j is reduced to the calculation of the integral over two
well defined regions – the source and the sample. The calculation of the
integrand is reduced, in turn, to solving quadratic equations. All aberrations
and coupling effects are taken into account. The specific instrumental functions
can be easily deduced from the common consideration. This mathematical
formalization enables a straightforward calculation (also strengthened by the
illustrative basis) of the instrumental function and the analysis of contribution
different instrumental factors to the line profile in X-ray powder diffraction.
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46. M. Čerňanský, Restoration and Preprocessing of Physical Profiles from

Measured Data, in Ref. 1, 613–651.
47. D. Reefman Towards Higher Resolution: A Mathematical Approach, in

Ref. 1, 652–670.
48. A. D. Stoica, M. Popovici and W. B. Yelon, J. Appl. Crystallogr., 2000, 33,

137–146.
49. O. Masson, R. Guinebretiere and A. Dauger, J. Appl. Crystallogr., 2001,

34, 436–441.
50. O. Masson, E. Dooryhee and A. N. Fitch, J. Appl. Crystallogr., 2003, 36,

286–294.
51. R. W. Cheary, A. A. Coelho and J. Cline, J. Res. Natl Inst. Stand. Technol.,

2004, 109, 1–25.

204 Chapter 6



52. E. Prince and B. H. Toby, J. Appl. Crystallogr., 2005, 38, 804–807.
53. A. Zuev, J. Appl. Crystallogr., 2006, 39, 304–314.
54. A. Zuev, J. Appl. Crystallogr., submitted.
55. M. Deutsch, E. Förster, G. Hölzer, J. Härtwig, K. Hämäläinen, C.-C. Kao,
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CHAPTER 7

Indexing and Space Group
Determination

ANGELA ALTOMARE,a CARMELO GIACOVAZZOa,b AND ANNA
MOLITERNIa

a Istituto di Cristallografia (IC), C.N.R., Sede di Bari. Via G. Amendola
122/o, 70126 Bari, Italy; b Dipartimento Geomineralogico, Università degli
Studi di Bari, Campus Universitario, via Orabona 4, 70125 Bari, Italy

7.1 THE CRYSTALLINE LATTICE IN POWDER DIFFRACTION

Solving a crystal structure via a diffraction experiment is a many-step process,
which requires the previous identification of the unit cell parameters and the
determination of the space group. If these items are incorrectly defined the
process inevitably fails.
A single-crystal diffraction experiment generates thousands of diffracted

beams whose intensities may be measured in correspondence to the reciprocal
lattice points:

r�hkl ¼ ha� þ kb� þ lc�

As was shown in Equation (34) of Chapter 1, Bragg’s law dictates that the
scattering vectors for a Bragg peak, h, correspond to these reciprocal lattice
vectors. The three-dimensionality of the diffraction pattern makes the identi-
fication of the three vectors a*, b*, c*, straightforward, from which the direct
space unit cell vectors:

a ¼ b� ^ c�

V
; b ¼ c� ^ a�

V
; c ¼ a� ^ b�

V

may be derived (see Chapter 1). The unit cell parameters suggest (and only
suggest) the crystal system, which has to be confirmed via identification of the
Laue group. This group may be singled out as follows. Let us suppose that the
set of symmetry operators:

Cs � ðRs;TsÞ; s ¼ 1; . . . ;m ð1Þ
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is present (Rs is the rotation matrix, Ts the translation component). Then:

rjs ¼ Rsrj þ Ts; s ¼ 1; . . .m

are symmetry equivalent positions in direct space (rj is a generic positional vector
in the unit cell). If the space group is centrosymmetric, in the reciprocal space
we will observe, for the reflections with indices:

hRs; s ¼ 1; . . .m ð2Þ

the intensity condition:

IhRs
¼ Ih; s ¼ 1; . . .m ð3Þ

The reflections (2) are called symmetry equivalent reflections: the set contains both
the Friedel opposites (Chapter 3). If the space group is non-centrosymmetric, the
reflections (2) and their Friedel opposites, say:

hRs; s ¼ 1; . . .m;�hRs; s ¼ 1; . . .m

constitute the set of symmetry equivalent reflections, for which the condition:

IhRs
¼ I hRs

¼ Ih; s ¼ 1; . . .m ð4Þ

is true. From Equations (3) or (4) the Laue group may be identified. For
example, the relation:

Ihkl ¼ Ihkl ¼ Ihkl ¼ Ihkl ¼ Ihkl ¼ Ihkl ¼ Ihkl ¼ Ihkl

identifies the Laue group 2/m 2/m 2/m. These relationships are tabulated in the
International Tables for Crystallography.1

To single out the correct space group among those showing the same Laue
symmetry the systematically absent reflections have to be studied. Since the
structure factor:

FhR ¼ Fhexpð�2pihTÞ ð5Þ

we have:

jFhRj ¼ jFhj; fhR ¼ fh � 2pihT

If hR ¼ h but hT 6¼ n, with n a generic integral number, Equation (5) is violated
unless the h-reflection is a systematically absent reflection. The use of Equation
(5) therefore leads to the conditions for the systematically absent reflections, e.g.
in the space group P21 or P21/m, I0k0¼ 0 for k odd. In the space group P21/c,
I0k0¼ 0 for k odd and Ih0l¼ 0 for l odd. These conditions also are tabulated in
the International Tables for Crystallography.1

The combination of the information on the Laue group with the analysis of
the systematically absent reflections allows the determination of the so-called
Extinction symbol (ES). In the International Tables for Crystallography1 the list
of extinction symbols is given per crystal system. There are 14 ES for the
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monoclinic, 111 for the orthorhombic, 31 for the tetragonal, 12 for the trigonal-
hexagonal, and 18 for the cubic system. In the first position of the ES the
centric type of the cell is shown, then the reflection conditions for the successive
symmetry directions are given. Symmetry directions without conditions
are represented by a dash. A symmetry direction with reflection conditions is
represented by the symbol of the corresponding screw axis or glide plane.
The ES does not unambiguously define the space group. Table 7.1 shows

some extinction symbols and the corresponding compatible space groups.
The above practice is rather straightforward for a single-crystal experiment,

but often provides doubtful results when only powder diffraction data are
available. The basic reason is that the powder diffraction pattern is one-
dimensional, owing to the collapse of the reciprocal lattice of the individual
crystallites onto the 2y axis. Consequently, reflections with the same |r*hkl|
modulus (i.e. with the same interplanar spacing dhkl: indeed dhkl¼ 1/|r*hkl|) will
overlap on the 2W axis. For convenience, we quote in Table 7.2 the algebraic
expressions of dhkl for the various crystal systems.
As an example, in Figure 7.1 we show the reciprocal plane hk0 for an

orthorhombic lattice defined by the unit cell parameters a¼ 10.00 Å, b¼ 5.77 Å,
c¼ 14.32 Å.
Because of the orthorhombic symmetry the reflections (hk0), (�h,�k,0),

(�h,k,0), (h,�k,0) will precisely overlap on the d-axis (the one-dimensional axis
of interatomic spacing, d) since, in Table 7.2, the expressions of 1/d2hkl depend
on the squares of h, k, l. The number of overlapping symmetry equivalent
reflections is given by the reflection multiplicity mh. The value of mh is reflection
dependent: for example mh¼ 2 for the reflection (h00), mh¼ 4 for the reflection
(110), mh¼ 8 for a generic (hkl) reflection.
The value of mh may be calculated for each space group and for each

reflection by the following algorithm. Let Cs¼ (Rs, Ts), s¼ 1, . . . m be the
set of symmetry operators of the space group: the number of distinct vectors
hs ¼ hRs obtained by varying s from 1 to m, added to the Friedel opposites
�hs ¼ �hRs if the space group is non-centric, corresponds to the multiplicity of
the reflection h.
The multiplicity is not a problem for the correct estimation of the integrated

intensity (say Ih) to associate with a given unique reflection h. If, at a given 2W
value, only mh equivalent reflections overlap, the value of Ih will be equal to the

Table 7.1 Some extinction symbols and the corresponding compatible space
groups.

Cryst. system Ext. symb. Space groups

Mon. P 1 1 P2, Pm, P2/m
Orth. P P222, Pm2m, P2mm, Pmm2, Pmmm
Orth. P a Pm2a, P21ma, P mma
Tetr. P P4, P4, P4/m, P422, P4mm, P42m, P4m2 P4/mmm
Hex P61 P61, P65 P6122, P6522
Cub. P n P43n, Pm3n
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overall measured integrated intensity divided by mh. However, from Figure 7.1
we see that reflections that are not symmetry equivalent, can occasionally
overlap on the 2W-axis because of the special relationship between the a and b
values (i.e. bEa= 3

p
). In our case the reflections (200) and (110) will nearly

Table 7.2 Algebraic expressions of dhkl for the various crystal systems.

System 1/d2hkl

Cubic (h2+ k2+ l2)/a2

Tetragonal h2 þ k2

a2
þ l2

c2

Orthorhombic h2

a2
þ k2

b2
þ l2

c2

Hexagonal and
Trigonal (P)

4

3a2
ðh2 þ k2 þ hkÞ þ l2

c2

Trigonal (R) 1

a2
ðh2 þ k2 þ l2Þ sin2 aþ 2ðhkþ hl þ klÞðcos2 a cos aÞ

1þ 2 cos3 a 3 cos2 a

� �

Monoclinic h2

a2 sin2 b
þ k2

b2
þ l2

c2 sin2 b

2hl cos b

ac sin2 b

ð1 cos2 a cos2 b cos2 gþ 2 cos a cos b cos gÞ�1

Triclinic h2

a2
sin2 aþ k2

b2
sin2 bþ l2

c2
sin2 gþ 2kl

bc
ðcos b cos g cos aÞ

�

þ 2lh

ca
ðcos g cos a cosbÞ þ 2hk

ab
ðcos a cos b cos gÞ

�

Figure 7.1 The plane hk0 of a reciprocal orthorhombic lattice.
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overlap, as well as the reflections (400) and (220), etc. Of course, according to
the c values, reflections of (hkl) type can occasionally overlap with (hk0)
reflections. This type of overlapping (total or partial according to the 2W misfit)
is called occasional because it does not depend on the symmetry, but on some
particular relationships among the lattice parameters. This kind of occasional
overlap can sometimes be resolved by collecting datasets at different tempera-
tures, if the thermal expansivity is different along the different axes.
A further type of overlapping, called systematic overlapping, may occur for

high symmetry crystal systems (i.e., in tetragonal, hexagonal and cubic sys-
tems), where the lattice symmetry may be higher than the Laue symmetry. For
example, for any space group belonging to the Laue class 4/m the symmetry
equivalent reflections are:

ðhklÞ; ðhklÞ; ðkhlÞ; ðkhlÞ; ðhklÞ; ðhklÞ; ðkhlÞ; ðkhlÞ

Owing to the lattice symmetry (4/mmm in the tetragonal system), 1/d2hkl depends
on the value of (h2+ k2) and the following reflections will systematically
overlap:

ðhklÞ; ðhklÞ; ðkhlÞ; ðkhlÞ; ðhklÞ; ðhklÞ; ðkhlÞ; ðkhlÞ

ðhklÞ; ðhklÞ; ðkhlÞ; ðhklÞ; ðhklÞ; ðhklÞ; ðhklÞ; ðkhlÞ

The first eight reflections are symmetry equivalent to (hkl) and the second eight
to the reflection (khl). Since there is no symmetry relation between Ihkl and Ikhl,
the two intensities are expected to be uncorrelated. Then the measured overall
intensity (summing the contributions of the 16 reflections) cannot be reliably
partitioned into Ihkl and Ikhl.
Let us now refer to the cubic system. For all the space groups belonging to

the Laue class m3 the 24 equivalent reflections are:

ðhklÞ; ðhklÞ; ðhklÞ; ðhklÞ; ðlhkÞ; ðlhkÞ; ðlhkÞ; ðlhkÞ; ðklhÞ; ðklhÞ; ðklhÞ; ðklhÞ
þ Friedel opposites

ð6Þ

Owing to the lattice symmetry (i.e. m3m) there are 48 reflections that have the
same value of d2hkl. In particular, besides the reflections (6), also the following
ones overlap:

ðkhlÞ; ðhklÞ; ðkhlÞ; ðkhlÞ; ðlkhÞ; ðlkhÞ; ðlkhÞ; ðlkhÞ; ðhlkÞ; ðhlkÞ; ðhlkÞ; ðhlkÞ
þ Friedel opposites

ð7Þ

Since there is no symmetry relation between Ihkl and Ikhl, the two intensities are
expected to be uncorrelated. Then the measured overall intensity (summing the
contributions of the 48 reflections) cannot reliably be partitioned into Ihkl and Ikhl.
From the above considerations two consequences arise:

a. The problem of identifying the unit cell parameters is a classical inver-
sion problem. That is, the d-values of all the reflections may be easily
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calculated if the unit cell parameters are known, the reverse is not a simple
process owing to the one-dimensionality of the diffraction pattern.

b. Owing to the reflection overlap, the estimate of the reflection intensities is
difficult. The presence of preferred orientation (see Chapter 3, Section
3.4.3, and Chapter 12) may make such an estimate even more difficult.
Then it may be rather difficult to verify the extinction rules (the reflections
that are expected to be systematically absent may overlap with non-absent
reflections), and complex mathematical methods of a probabilistic type
should be applied to obtain the correct answer.

The special algorithms necessary to derive, from a typical powder diffraction
pattern, the unit cell parameters and the correct space group are described in
Sections 7.2 and 7.3, respectively. They are present in numerous computer
programs for this purpose (Chapter 17).

7.2 INDEXING OF A POWDER PATTERN

7.2.1 Introduction

The main goal of the powder-pattern indexing process is the geometrical
rebuilding of the three-dimensional reciprocal space from the one-dimensional
distribution of the observed d values. The name ‘‘indexing’’ is related to the fact
that the unit cell determination step is equivalent to assigning the appropriate
triple of Miller indices to each observed inter-planar distance.2

Powder-pattern indexing is the first necessary step in the ab initio structure
determination process. The first important indexing tentative was proposed by
Runge.3 Despite its long history and the great recent advances in experimental
devices, mathematical methods and computing speed, powder pattern index-
ation can still be a challenge. The basic indexing equation relating reciprocal
cell parameters and indices consists of the following quadratic form:

Qhkl ¼ h2A11 þ k2A22 þ l2A33 þ hkA12 þ hlA13 þ klA23 ð8Þ

where

Qhkl ¼
104

d2
hkl

; dhkl ¼
l

2 sin yhkl

A11 ¼ 104a�2;A22 ¼ 104b�2;A33 ¼ 104c�2;A12 ¼ 104 � 2a�b�cos g�;
A13 ¼ 104 � 2a�c�cos b�;A23 ¼ 104 � 2b�c�cos a�

The correct unit cell may be identified by associating indices to n inter-
planar distances, where n depends on the lattice symmetry. In accordance with
Table 7.3, the minimum values of n are: n¼ 1 for the cubic system, n¼ 2 for
tetragonal and hexagonal crystals, n¼ 3, 4, 6 for orthorhombic, monoclinic and
triclinic systems, respectively.
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Once the reciprocal cell parameters have been calculated, the direct cell is
easily derived. The goodness of indexing results depends on the quality of
{Qhkl}, and therefore on the accuracy of the peak positions. The importance of
data accuracy has been emphasized by de Wolff:4

The ‘‘indexing problem’’ is essentially a puzzle ( . . . ). It would be quite
an easy puzzle if errors of measurement did not exist.

Many years later Shirley5 stated:

Powder indexing is not like structure analysis, which works well on good
data and will usually get by on poor data given a little more time and
attention. Powder indexing works beautifully on good data, but with
poor data it will usually not work at all.

Despite their age, the previous two sentences are still valid. The errors in peak
location may be (see Section 7.1 and Chapter 4): (a) Accidental. In Figure 7.2 we

Table 7.3 Qhkl as a function of the lattice symmetry.

Lattice symmetry Qhkl

Cubic Qhkl¼(h2+ k2+l2) A11

Tetragonal Qhkl¼(h2+ k2) A11+l2 A33

Hexagonal Qhkl¼(h2+ hk+k2) A11+l2 A33

Orthorhombic Qhkl¼h2A11+k2A22+l2 A33

Monoclinic Qhkl¼h2A11+k2A22+l2 A33+hl A13

Triclinic Qhkl¼h2A11+k2A22+l2A33+hk A12+hl A13+kl A23

Figure 7.2 Zoom of the powder diffraction pattern of VNI. The upper vertical bar (in
red) indicates the result of a peak search procedure, the lower verticals bars
(in blue; on the x axis) the reflection positions calculated by the published
refined cell parameters.
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show a zoom of the VNI6 pattern, where, due to the overlap, the peak is located
between the positions of the two reflections. (b) Systematic, owing to sample
effects (i.e., transparency) or shift of the 2y0 position.
Special attention and care are required when numerical relationships between

cell axes exist (geometrical ambiguities, see Section 7.2.3). In addition, the
presence of impurities makes the indexing process more difficult. Errors in Qhkl

modify the problem to one of finding {Aij} satisfying the following relation:

Qhkl � Doh2A11 þ k2A22 þ l2A33 þ hkA12 þ hlA13 þ klA23oQhkl þ D ð9Þ

where D is a suitable tolerance parameter.
A simple indexing exercise is the case of the crystal structure LaB6

(NIST Reference St‘andard Material 660A),7 certified cell a¼ 4.1569162 Å,
whose observed (by a conventional diffractometer) dhkl values in Å are given
in Table 7.4. If a cubic lattice is supposed and the Miller indices (100) are
tentatively assigned to the first observed line (dhkl¼ 4.1605 Å), then A11, as
defined in Table 7.3, leads to the direct cell parameter, by means of which all the
remaining lines can be indexed.

7.2.2 Figures of Merit

Whatever the indexing method, many plausible cells are usually suggested. It is
then useful to apply a figure of merit (FOM) for discriminating the most
probable ones and for assessing their reliability. The most adopted FOMs are
M20 and FN, proposed by de Wolff8 and by Smith and Snyder,9 respectively.
M20 is defined as:

M20 ¼
Q20

2oe4N20

where Q20 is the Q value in case of the 20th observed peak, oe4 is the average
discrepancy between the observed and calculated Q values for the 20 indexed
peaks, N20 is the number of calculated reflections up to the d value corre-
sponding to Q20.
M20 depends on: (a) the fit between calculated and observed lines (via oe4);

(b) the volume of the unit cell (via N20). The smaller the average differenceoe4
and the cell size, the larger M20, the greater the confidence in the proposed unit

Table 7.4 Indexing results for LaB6.

dhkl h k l dhkl h k l dhkl h k l

4.1605 1 0 0 1.3873 3 0 0 1.0090 4 1 0
2.9418 1 1 0 1.3158 3 1 0 0.9806 3 3 0
2.4023 1 1 1 1.2546 3 1 1 0.9544 3 3 1
2.0815 2 0 0 1.2012 2 2 2 0.9302 4 2 0
1.8611 2 1 0 1.1540 3 2 0 0.9078 4 2 1
1.6991 2 1 1 1.1120 3 2 1 0.8868 3 3 2
1.4712 2 2 0 1.0401 4 0 0

213Indexing and Space Group Determination



cell. There is not a threshold value of M20 ensuring the correctness of the cell.
De Wolff suggested that if the number of unindexed peaks among the first
20 lines is not larger than 2 and ifM20 4 than 10, the indexing results should be
substantially correct.8 In addition, if better solutions are not found, due to the
possible presence of impurities, a check of cells having some unindexed lines
and higher de Wolff figure of merit is advised.10

The FN figure of merit is defined as follows:

FN ¼ 1

ojD2yj4 � N

Nposs

where o|D2y|4 is the average absolute discrepancy between the observed and
calculated 2y values and Nposs is the number of possible diffraction lines up to
the Nth observed line. Usually the FN value is joined with the couple
(o|D2y|4, Nposs).
Smith and Snyder9 compared FN and M20 performances, analyzing a set of

compounds belonging to triclinic, orthorhombic and cubic systems. They
emphasized the superiority of FN with respect to M20 because the latter is (a)
defined for exactly 20 lines, (b) strongly dependent on the crystal class and the
space group. But Werner10 noted that the increasing value of M20 with
symmetry is not a disadvantage, since a cubic indexing of a powder pattern
is more probable than a triclinic one.

7.2.3 Geometrical Ambiguities

A powder pattern can be indexed by different lattices.8,11,12 Systematic ambi-
guities may occur when ‘‘two or more different lattices, characterized by
different reduced forms, may give calculated powder patterns with identical
2y positions’’.13 Table 7.5 supplies some examples of lattices giving geometrical
ambiguities, and the related matrix transformation.13 If geometrical ambigui-
ties occur, additional prior information (e.g., a single-crystal study) is required
to choose between one of the two possible lattices.

7.2.4 Historical Indexing Programs

The most common and widely used indexing programs are ITO,12 TREOR14

and DICVOL91.15 All three classic programs are present in the indexing
Crysfire suite.16 Their approach to the indexing problem is different and will
be briefly described.
� ITO is based on a method originally suggested by Runge3 and enriched

by Ito17,18 and by de Wolff.4,19 A crystallographic zone in the reciprocal space
(i.e., a plane trough the origin) can be defined via the origin itself and any two
lattice points. If Q0 and Q00 are the squared distances of the two points from the
origin, the Q value of any lattice point belonging to the zone can be defined by:

Qm;n ¼ m2Q0 þ n2Q00 þmnR ð10Þ
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where m and n are integers, R ¼ 2 Q0Q00p
cosj and j is the angle between the

positional vectors of the two points. Then:

R ¼ ðQm;n �m2Q0 � n2Q00Þ=mn ð11Þ

According to the algorithm, all the observed Qhkl values and a few positive m
and n integers are inserted into Equation (11): a great number of R values is
obtained and stored, some of them are equal within suitable limits of error.
From them the angle between the zone base vectors is easily determined. The
procedure is repeated for different zones (i.e., for different pairs Q0 and Q00).
The most important zones will be those for which the R value is found many
times. Once the search of zones has been performed, the next steps of ITO are:
(a) to find pairs of zones having a common row, (b) to determine the angle
between two zones to describe the lattice. The method has been generalized by
Visser,12 who explicitly takes into account the reciprocal space symmetry. The
program ITO is very efficient for indexing low-symmetry patterns.
� TREOR starts with the cubic symmetry analysis and step-by-step performs

tests for lower symmetry crystal systems. For each investigated system TREOR
selects the ‘‘basis lines’’, a term used for diffraction lines (usually belonging to
the low 2y region) to which tentative (by trial and error techniques) indices are
associated to find the unit cell. Five sets of basis-lines are generally sufficient for
orthorhombic tests, while seven sets of basis-lines may not be enough for
monoclinic tests owing to the presence of a dominant zone (in this case more
than five basis lines can be indexed with a common zero index). To detect
the presence of dominant zones a special short-axis test aiming at finding two-
dimensional lattices parameters is performed for monoclinic symmetry.14

Table 7.5 Examples of lattices leading to geometrical ambiguities in the
indexing results.13 P¼ {Pij} is the matrix transformation from
lattice I into lattice II, described by the {ai} and {bi} translations,
respectively with bi¼Sj Pijaj.

Lattice I Lattice II P

Cubic P Tetragonal P 0 1
2
1
2
=0 1

2
1
2
=100

Cubic I Tetragonal P 0 1
2
1
2
=0 1

2
1
2
= 1
2
00

Orthorhombic F 1
3
1
3
0=001=110

Orthorhombic P 1
4
1
4 0=00

1
2 =

1
2
1
2 0

Cubic F Orthorhombic C 1
2
0 1
2
=010= 1

4
0 1
4

Orthorhombic I 1
6
0 1
6
= 1
2
0 1
2
=010

Hexagonal Orthorhombic P 1
2
1
2
0= 1

2
1
2
0=001

Rhombohedral Monoclinic P 1
2 0

1
2 =

1
2 0

1
2 =010
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If M is the square matrix of Miller indices, A is the vector of the unknown
{Aij} and L is the vector of {Qhkl} for the basis lines, each trial set of {Aij} in
Equation (8) is obtained by solving the system of linear equationsMA¼L. The
correctness of the trial parameters {Aij} is related to the accuracy of low-order
lines. Testing several different combinations of the basis lines can enable one to
find a correct solution even in the case of error in one or more of the basis lines.
A plausible solution is found if the indexed pattern is characterized by
M204 10 with no more than one unindexed line among the first 20.
The success of TREOR is related to the standard set of parameters suggested

by the accumulated experience of the authors:14 in case of failure these
parameters can be easily changed by the user via suitable keywords in the
input file. The method has been classified by Shirley5 as semi-exhaustive
because judicious deductions are made ‘‘to limit the size of the solutions field
in order to gain speed’’.
� DICVOL91 has an indexing approach based on the dichotomy method,

introduced by Louër and Louër.20 Shirley5 defined this method as ‘‘probably
the optimal exhaustive strategy in parameter-space’’. The original version
of the program was written for orthorhombic and higher symmetry. Later,
the method was extended to monoclinic21 and to triclinic symmetry.15

The dichotomy method is based on the variation in direct space, by finite
increments, of the lengths of cell edges and of the interaxial angles (an
m-dimensional search, where m is the number of unknown unit cell para-
meters): the variations are reduced when they contain a possible solution. The
following example for a cubic system can help to understand how DICVOL91
works. The a (¼ b¼ c) parameter is varied from a minimum value a0 up to
a maximum value aM by using a step of p¼ 0.5 Å. The search space can
be explored via the interval [a0+ np, a0+ (n+1)p] where n is a variable
integer. Let:

Q ðhklÞ ¼ h2 þ k2 þ l2

½a0 þ ðnþ 1Þp�2
;QþðhklÞ ¼

h2 þ k2 þ l2

½a0 þ np�2

If, for the given n value, all the observed Qi lines satisfy the relation:

Q ðhklÞ � DQi � Qi � QþðhklÞ þ DQi;

where DQi is a suitable tolerance value, then the domain [a0+ np, a0+
(n+1)p] is halved and the procedure is repeated for six times (n¼ 6) up to a
final step length of p/26¼ 78� 10 4 Å.
The search is performed from high to low symmetry crystal systems by using

partitions of the volume space and by analyzing shells of 400 Å3 of volume,
except for triclinic symmetry for which the volume variation is related to the
value suggested by Smith:22

Vest ¼ 0:6 d3

1
N
� 0:0052

216 Chapter 7



This author proposed a method for estimating the unit-cell volume (Vest)
directly from the powder diffraction data, via d and N, where d is the value
of the Nth observed line (i.e. if N¼ 20 and d20 is the value of the 20th observed
line, VestE 13.39d320). In the triclinic system Q(hkl) is a complicated function of
the direct cell parameters (see Table 7.2): then the algorithm is applied in Q
space by using Equation (8). DICVOL91 is highly sensitive to the quality of the
data.

7.2.5 Evolved Indexing Programs

In more recent years the indexing problem has been revisited.23 Some of the
classic indexing packages, TREOR and DICVOL91, have evolved toward more
powerful and effective versions: N-TREOR24 and DICVOL04,25 respectively.
In addition, completely new packages have been developed, encouraged by the
availability of increased computing speed. Among them we quote: a genetic-
algorithm based program by Kariuki et al.,26 SVD-Index,27 X-Cell,28 and
McMaille.29 All the above programs are here briefly described: for more details
the reader is referred to the exhaustive papers of Shirley2 and Bergmann et al.23

� N-TREOR is the evolved version of TREOR. Even though this new
package retains the main strategy of TREOR, new changes have been intro-
duced to make it more exhaustive and powerful. Several automatic decisions
are taken by N-TREOR, among which we quote:

1. If N-TREOR does not find satisfactory results in the default run, it will
repeat the unit cell search with wider tolerance limits. If still no solution is
found, the maximum (h,k,l) Miller indices of the orthorhombic and
monoclinic base lines are increased, and correspondingly the tolerance
limits are narrowed to 50% of the default value to avoid the generation of
a large number of wrong large unit cells.

2. If the maximum observed d value is greater than 10 Å, the largest cell
volume and axis length investigated by N-TREOR are set to 4000 Å3 and
35 Å, respectively (the default values in TREOR are 2000 Å3 and 25 Å,
respectively).

3. A wavelength dependence of the error tolerance:

D ¼ jsin2ðyobsÞ � sin2ðycalcÞjoe

has been introduced, where e is a threshold value, yobs and ycalc are the
observed and calculated (via the trial cell) Bragg y values, respectively. In
TREOR the default value of e was optimized only for the case of CuKa

radiation (eCu), in N-TREOR the e value depends on the wavelength
according to e¼ (l/lCu)

2eCu, where l is the experimental neutron or X-ray
wavelength and lCu is the CuKa wavelength.

4. Monoclinic solutions are checked for possible rhombohedral symmetry. If
the symmetry is likely to be rhombohedral N-TREOR calculates the
possible hexagonal axes.
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5. A modified de Wolff8 figure of merit M0
20 has been introduced:

M0
20 ¼ ð7�NparÞ �M20

whereNpar is the number of cell parameters to be determined.M0
20 enables

one to select from among the candidate cells the one with the highest
symmetry.

6. If the selected cell has M0
20 (¼M20) Z 20 for triclinic crystal systems, or

M0
20 Z 30 (i.e., M20 Z 10) for monoclinic or higher symmetry crystal

systems, it will be automatically refined by PIRUM, originally an inter-
active program, suitably modified to perform the automatic refinement of
the unit-cell parameters. If more than 25 observed lines are available, the
first 25 lines will be used for finding the cell, while all the lines will be
involved in the refinement step. At the end of the PIRUM refinement a
statistical study of the index parity of the assigned reflections is performed
to detect the presence of doubled axes or of additional lattice points
(A-, B-, C-, I-, R- or F-centred cell). If one of the index parity conditions is
verified, an additional refinement is performed taking into account this
information.

7. An automatic correction of the 2y0-shift is made. As soon as the standard
run (the first run) is finished, whatever the results are, the indexing process
is repeated after the application of origin shifts D2y in both directions of
the 2y axis, being:

D2y ¼ 	ðn� 1Þ � D2ystep

where n is a sequential number indicating the current N-TREOR run
(n¼ 1 for the first run, n¼ 2 for the second run. . .) and D2ystep is two times
the experimental 2y step. For each nth run N-TREOR stores the M0

20

value and the corresponding unit cell. The origin shift for which M0
20 is a

maximum [i.e., (M0
20)max] is assumed to be the best shift leading to the set

of correct 2y values. The automatic 2y correction procedure stops as soon
as a cell with M0

20o (M0
20)max is found.

N-TREOR has been implemented in the package EXPO200430 and it is
also available as a stand-alone program.

� DICVOL04. Among the new facilities we quote:

1. Refinement of the ‘‘zero-point’’ of powder data. Two approaches are
proposed: (a) in case of small shift (o0.031) a refinement option for the
2y zero offset and for the cell parameters may be applied; (b) when the
shift is not negligible (E0.101) the reflection-pair method31 is applied to
estimate the zero origin via the angular separation between two orders of
reflections.

2. A tolerance for unindexed lines. DICVOL04 can tolerate a limited
number (fixed by the user) of unindexed lines. This option must be
carefully used since it can generate erroneous cells.
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3. The use of a systematic reduced-cell analysis in monoclinic and triclinic
systems to choose among equivalent (having the same reduced cell)
solutions.

� Direct space methods: Indexing via a Genetic Algorithm (GA). GA is an
optimization technique exploiting the idea of Darwinian evolution: the fittest
member of a population survives and procreates to lead to improved genera-
tions, with random mutations allowing the system to evolve.32,33 Methods for
indexing powder diffraction data were proposed by Tam and Compton34 and
Paszkowicz.35 Their approaches, like the traditional indexing methods, exploit
the diffraction geometry. Kariuki et al.26 apply GA techniques by using also
whole-profile fitting. The aim is to find the lattice parameters {a,b,c,a,b,g}
having the best agreement with the experimental powder diffraction pattern.
i.e., the agreement in correspondence with the global minimum of the hyper-
surface Rwp {a,b,c,a,b,g}, where:

Rwp ¼
X

regions

P
i

wiðyi � yciÞ2P
i

wiy
2
i

2
64

3
75

1
2

Sregions indicates the sum on the 2y regions in which the pattern has been split
by the user, i runs over the points in each region, yi and yci are the observed and
calculated diffraction patterns at the ith experimental step. The intensities are
estimated via the Le Bail algorithm.36 The procedure is more time consuming
but it may be less sensible to the presence of a minority impurity (the global
minimum in Rwp will be reached when the majority phase is correctly indexed).
� Direct space methods: Indexing via a Monte Carlo approach – McMaille.

This is an indexing program that exploits the information of the whole powder
profile, as already proposed by Kariuki et al.,26 and uses Monte Carlo methods
to randomly generate cell parameters. Once the parameters have been gener-
ated the Miller indices and the peak positions are calculated, the goodness of
the cell is assessed by a suitable figure of merit. The use of the intensities makes
the program relatively insensitive to impurities provided the sum of their
intensities is less than 10–15% of the total intensity. The allowed tolerance of
zero-point errors is |0.051|.
The indexing problem is usually solved in a few minutes if: (a) the symmetry

is not lower than monoclinic; (b) the cell volume is less than 2000 Å3; (c) the cell
parameters are less than 20 Å. More computing time is required for triclinic
symmetry: indeed the main drawback of the McMaille approach is the high
request of computing time in the case of low crystal symmetry.
� SVD-Index. This is a commercial indexing program27 belonging to the

TOPAS37 suite from Bruker AXS. The reciprocal-lattice relationship defined in
Equation (8) is solved via the iterative use of the Singular Value Decomposition
(SVD) approach.38 This method is recommended for cases in which there are
more equations than variables.38
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Unlike N-TREOR and TREOR, SVD-Index involves the indexing procedure
not only for a few lines (the basis lines in TREOR or N-TREOR) but for all the
observed lines. The new approach is claimed to be insensitive to 2y0 errors, to
the presence of impurities and to a lack of low-angle diffraction peaks.
� X-CELL. This is a commercial program within the Materials Studio suite

from Accelrys.39 It performs an exhaustive search via the successive dichotomy
approach, like the package DICVOL, combined with: (a) a search for the
zero-point shift of the diffraction pattern; (b) impurity tolerance levels (user
defined), specifying how many unindexed diffraction peaks are tolerated.
Some final remarks may be useful. Bergman et al.23 compared the perform-

ances of classic and new indexing programs. Even if they observed that some of
the recent indexing packages are more robust against zero-shift error, impurity
lines, lack of data accuracy, their main conclusion (see also ref. 10) was that the
chances of success of the indexing step increases proportionally with the
number of different applied indexing programs.

7.3 SPACE GROUP DETERMINATION

7.3.1 Introduction

As specified in Section 7.1, the analysis of the diffraction intensities provides
information on the Laue group and on the systematically absent reflections,
from which the extinction symbol and, in favourable cases, the space group
may be identified. Unfortunately, in the case of powders, the experimental
diffraction pattern cannot be unambiguously interpreted: the peak overlap
(systematic or casual), the background contribution, the occasional presence of
preferred orientation and/or impurity peaks make uncertain the intensity
evaluation. Consequently, the intensity of reflections corresponding to small
peaks cannot be accurately estimated. Careful visual inspection of the experi-
mental pattern is the most common practice for identifying the space group:
frequently, more space groups are compatible with the experimental peak
distribution. When more than one choice is available the correct extinction
symbol may be determined by one of the following strategies: (a) by considering
the prior information on the molecular properties of the structure under study,
which may condition the choice of the space group; (b) by attempting the
complete solution process for each probable space group: then the most reliable
solution is chosen.
To give a practical example, Figure 7.3 shows a small 2y interval of the

experimental pattern of a P21/n crystal structure. The three vertical bars,
generated in the Laue group P2/m, correspond to the positions of the reflec-
tions (20–1), (210) and (201). The reflection (20–1) corresponds to a systemati-
cally absent reflection, but its intensity is ambiguous because it is overlapped
with (210).
In recent years, several new procedures, strategies and programs have been

developed devoted to the ab initio automatic solution of powders. These include
innovative approaches, avoiding the manual inspection of the diffraction
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pattern and based on statistical analysis of the reflection integrated intensity,
for determining the space group automatically. Two alternative methods
have been proposed, the first by Markvardsen et al.,40 implemented into the
package DASH,41 and the second by Altomare et al.,42,43 implemented into
EXPO2004.30 Both of them: (a) are based on the statistical analysis of the
reflection integrated intensities, and therefore avoid the manual inspection of
the diffraction pattern; (b) provide a quantitative estimate of the relative
probabilities of all the different extinction groups compatible with the crystal
system (as determined by the indexing process). The extinction group with the
largest probability is preferred: the space groups compatible with it are the best
candidates.

7.3.2 The DASH Procedure

This is based on the evaluation of the joint probability p(Egr|I
p), where Egr

denotes the extinction symbol, and Ip¼ (I1, I2. . .IN) are the correlated reflection
intensities obtained from the linear least-squares Pawley refinement, when the
most general extinction group of the crystal system under consideration is
adopted. From Bayes’s theorem:

pðEgrjIpÞ ¼ pðEgrÞpðIpjEgrÞ=pðIpÞ:

The prior probability distribution p(Egr) is constant because all the extinction
symbols are assumed to be equally probable; p(Ip) is also constant because data
do not change by varying the extinction group. Accordingly:

pðEgrjIpÞ / pðIpjEgrÞ

Figure 7.3 The 2y interval (11.51 11.81) in the diffraction pattern of a P21/n crystal
structure.
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where p(Ip|Egr) provides the relative probability of each extinction group Egr. It
may be shown that:

pðIpjEgrÞ ¼
Z

pðIjEgrÞpðIpjIÞdI

where p(Ip|I) is the multivariate Gaussian likelihood function:

pðIpjIÞ ¼ ð2pÞ N=2jCj 1=2exp½�1=2ðIP � IÞTC 1ðIP � IÞ�

and C is the Pawley covariance matrix. All the intensities are assumed to be
statistically independent and identically distributed; consequently, p(I|Egr)¼P
p(Ii|Egr). If, in agreement with the given Egr, the ith intensity is expected to be
absent, then p(Ii|Egr) is a delta function, while in the contrary case it coincides
with the Wilson acentric distribution.44 In the ideal case that the N peaks in the
experimental pattern are non-overlapping, then the C matrix is diagonal and
the p(Ip|Egr) calculation requires the evaluation of N one-dimensional integrals
which can be analytically solved. In the more realistic case that the reflections
are overlapping, C can be approximated by a block diagonal matrix: the
corresponding integrals (with dimensions higher than one) may be solved
numerically by Monte Carlo techniques.

7.3.3 The EXPO2004 Procedure

This may be synthesized into the following steps:

1. The experimental powder diffraction diagram is decomposed via the Le
Bail algorithm36 into single diffraction intensities in the space group
having the largest Laue symmetry and no extinction conditions
(e.g., P2/m for monoclinic, P2/m2/m2/m for orthorhombic, P4/mmm for
tetragonal, P6/mmm for trigonal-hexagonal systems, and Pm3m for the
cubic system).

2. The normalized intensities zh¼ |Eh|
2 are submitted to statistical analysis

for the determination of the space group symmetry.
3. The algorithm provides a probability value for each extinction symbol

compatible with the lattice symmetry established by the indexing procedure.

Step 2 may be clarified by an example. In the orthorhombic system any space
group may be represented by the string:

M r1=s1 r2=s2 r3=s3

M denotes the unit cell type; rj, j¼ 1,. . .,3 are the symmetry elements along the
three axes; sj, j¼ 1,. . .,3 are the symmetry elements perpendicular to the axes.
The occurrence probabilities for the axes are:

pð21½100�Þ ¼1�ozh004h¼2nþ1; pð21½010�Þ
¼1�oz0k04k¼2nþ1; pð21½001�Þ ¼ 1�oz00l4l¼2nþ1
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The probabilities are equal to unity if the z averages are equal to zero, they
vanish if the averages are equal to (or larger than) unity. Conversely, for the
two-fold axes:

pð2½100�Þ ¼ 1� pð21½100�Þ; pð2½010�Þ ¼ 1� pð21½010�Þ; pð2½001�Þ ¼ 1� pð21½001�Þ

For the glide planes normal to [100] and for the mirror plane:

pðbÞ ¼ 1�oz0kl4k¼2nþ1; pðcÞ ¼ 1�oz0kl4l¼2nþ1; pðnÞ ¼ 1�oz0kl4kþl¼2nþ1

pðdÞ ¼ 1�oz0kl4kþl 6¼4n; pðmÞ ¼ 1�max½pðbÞ; pðcÞ; pðnÞ; pðdÞ�

The probabilities for the different types of unit cell are obtained as follows:

pðAÞ ¼ p0ðAÞ½1� p0ðBÞ�½1� p0ðCÞ�; pðBÞ ¼ p0ðBÞ½1� p0ðAÞ�½1� p0ðCÞ�
pðCÞ ¼ p0ðCÞ½1� p0ðAÞ�½1� p0ðBÞ�; pðIÞ ¼ p0ðIÞ; pðFÞ ¼ 1�ozhkl4½g�

pðPÞ ¼ 1�max½pðAÞ; pðBÞ; pðCÞ; pðIÞ; pðFÞ�

where:

p0ðAÞ ¼ 1�ozhkl4kþl¼2nþ1; p
0ðBÞ ¼ 1�ozhkl4hþl¼2nþ1;

p0ðCÞ ¼ 1�ozhkl4hþk¼2nþ1; p
0ðIÞ ¼ 1�ozhkl4hþkþl¼2nþ1

and [g] is the subset of reflections with all the indices odd or even. In practice,
owing to the low accuracy of the zh estimates, a suitable weight w is introduced
in the statistical averages. Accordingly o zw4¼ (Swj zj)/(Swj), where w takes
the overlapping into account.
All the probabilities of the symmetry operators are combined to provide the

probability of the extinction group. For example, in the orthorhombic system,
the probability of the extinction symbol P--- is given by:

pðP---Þ ¼ pðPÞpð2½100�Þpðm?aÞpð2½010�Þpðm?bÞpð2½001�Þpðm?cÞ

Consider now p(Bb-b); the string b-b implies the following symmetry elements:

b?a; b?c; 21½010�

The presence of B additionally implies:

c?a; n?b; a?c; 21½100�; 21½001�

Then:

pðBb-bÞ ¼ pðBÞpð21½100�Þpðb; c?aÞpð21½010�Þpðn?bÞpð21½001�Þpða; b?cÞ

The procedure is fully automatic and is supported by a graphic interface that
provides: (a) a graphic window where the possible extinction groups are ranked
according to their probabilities; (b) the list of compatible space groups for each
selected extinction symbol; (c) on user request, the list of the reflections that,
according to the selected extinction symbol, are expected to be systematically
absent. For each of them the following specifications are given: the type of
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reflection (single or overlapped with other reflections), the corresponding zw
and the symmetry operator(s) responsible for the extinction. Furthermore, a
histogram for each symmetry operator is supplied, giving the number of
systematically absent reflections (nsar in Figure 7.4) versus the zw values. In
Figure 7.4 we show the information provided by the graphical interface for
METYL, a test structure crystallizing in I222.45 The most probable extinction
symbol is I–(ac)–; the second in the order is I---, which is the correct one. For
I–(ac)– the program calculates three histograms (Figures. 7.4i–iii) corresponding
to the three symmetry operators I, a, c respectively: in each figure the
blue histogram refers to single and the red one to overlapping reflections. In
Figure 7.4(iv), in the ellipse, the reflection (101) is emphasized. In the chosen
2y range two rows of vertical bars are present: the lower, in red, locate the
peaks. The higher bars of different colours mark the absent reflections only:
black for single or for reflections overlapping with other absent reflections,
purple for absent reflections overlapped with reflections not expected to be
absent. Clearly, the extinction symbol I–(ac)– must be eliminated from the list
of candidates.

Figure 7.4 (i iii) Histogram plots of METYL corresponding to the symmetry oper
ators I, a, and c. Part (iv) shows the experimental pattern: the ellipse
emphasizes the presence of the reflection (101).
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CHAPTER 8

Crystal Structure Determination

ROCCO CALIANDRO,a CARMELO GIACOVAZZOa,b AND
ROSANNA RIZZIa

a Istituto di Cristallografia (IC), C.N.R., Sede di Bari. Via G. Amendola
122/o, 70126 Bari, Italy; b Dipartimento Geomineralogico, Università degli
Studi di Bari, Campus Universitario, via Orabona 4, 70125 Bari, Italy

8.1 INTRODUCTION

Typical X-ray diffraction experiments provide structure factor moduli, while the
relative phases are lost. Recovery of the phase information is crucial for crystal
structure solution and is referred to in crystallography as the phase problem. In
single-crystal diffraction this problem is solved by different approaches:

a. By using only the diffraction data of the compound under study when no
supplementary information about its molecular geometry is available
(ab initio methods). PM and DM belong to this category.

b. By using the diffraction data of the compound under study when supple-
mentary information about its molecular geometry is available (DST: a
particular case is the molecular replacement method).

c. By using the diffraction data of the compound under study and the
diffraction data of one or more isomorphous structures (isomorphous
replacement methods).

d. By making use of anomalous dispersion effects. One or more (at different
wavelengths) sets of data are measured that simulate isomorphous structures
(SAD-MAD, SIRAS-MIRAS techniques).

e. By using the experimental measure of the triplet invariant phases (multiple
diffraction effect). The three-beam diffraction effect can be treated in
accordance with dynamical theory and used for the experimental solution
of the phase problem.

Crystal structure solution from powder data is not straightforward owing to
the following problems: the uncertainty in the determination of the
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background, the possible presence of preferred orientation effects and,
fundamentally, the collapse of the three-dimensional reciprocal space onto a
one-dimensional diffraction pattern, which implies a severe overlapping of the
diffraction peaks. As a consequence, the diffraction moduli of the reflections
are only approximately estimated (see Chapter 5). The uncertainty about
moduli makes some of the above-described approaches unsuitable for powder
crystallography. For example, case (e) is today experimentally inapplicable to
powder samples and cases (c) and (d) rely on very small differences among
structure factor moduli that can hardly be obtained with sufficient accuracy
from the powder diffraction pattern [furthermore, |Fh| and |F h| overlap, and
the difference (|Fh| – |F h|) cannot be appreciated]. Accordingly, in this chapter
we will mostly refer to cases (a) and (b); for a complete review of the phasing
techniques in crystallography, the reader is referred to a textbook.1

However, powder diffractometry plays a central role in research and tech-
nology, making possible the analysis of materials that are not available as single
crystals of adequate dimensions and quality. For this reason much recent effort
has been devoted to the improvement of experimental techniques (i.e., use of
synchrotron radiation, optics, generator, detector, etc.) as well as to the
development of new methods for data analysis. For example, in the last decade
alternative structure solution strategies have been suggested (direct-space
approaches), which directly use the powder diffraction profile rather than the
single reflection intensities, thus avoiding the problematic extraction process.
In this chapter PM will be described first, then DM will be analyzed more

extensively and, finally, an overview of the most commonly used global
optimization methods in direct space is given.

8.2 THE PATTERSON FUNCTION

The Patterson function is the convolution of the electron density r(r) with itself
inverted with respect to the origin:

PðuÞ ¼ rðrÞ � rð�rÞ ¼
Z
v

rðrÞrðrþ uÞdu ð1Þ

where * indicates the convolution operation. It may also be shown that:

PðuÞ ¼ T 1 Fðr�Þj j2
h i

¼
Z
S�

Fðr�Þj j2expð�2pir�uÞdr�

where the operator T represents the Fourier transform and S* all of reciprocal
space.
Since |F(r*)| is sampled only at the nodes of the reciprocal lattice (where

r*¼ h), we have:

PðuÞ ¼ 1

V

X
h

Fhj j2 expð�2pihuÞ ð2Þ
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where V is the volume of the unit cell. From Equation (2) it is possible to
deduce the following Patterson features:

a. P(u)¼P(–u), i.e. the Patterson map is always centrosymmetric.
b. The maxima of P(u) correspond to the interatomic vectors.
c. Each peak has an intensity proportional to the product of the atomic

numbers of the two atoms related by the interatomic vector u. More pairs
of atoms can have the same interatomic vector u and therefore may
contribute to the same Patterson peak.

d. A unit cell containing N atoms generates N2 interatomic vectors ri – rj.
N of them will be located at the origin, while the remaining N(N – 1) are
distributed over the cell. This implies that Patterson peaks usually overlap
(also owing to the fact that the Patterson peaks are wider than the electron
density peaks).

e. Patterson maps calculated by powder data are less informative than those
obtained by single-crystal data because of the unavoidable errors in the
diffraction moduli provided by full pattern decomposition procedures.

The above features can make it difficult to derive the atomic positions from
analysis of the Patterson map. The most traditional approach involves the use
of the so-called Harker sections: they contain the interatomic vectors between
an atom and its symmetry equivalents. For instance, let us consider the space
group P21, with equivalent positions:

ðx; y; zÞ; ð�x; yþ 0:5;�zÞ

The Harker vector (2x, 0.5, 2z) lies in the Harker section (u, 0.5, w) and may be
used to derive the position of the atom; indeed: x¼ u/2, y undefined (the origin
in P21 floats freely along the z-axis), z¼w/2.
The use of the Harker sections is made easier when a few heavy atoms are

present in the unit cell: their Harker maxima can be recognized and used to
locate the heavy atoms. If they have a sufficiently high atomic number, they can
be used as a good initial model to which one can apply the so-called Method of
Fourier Recycling, to obtain the light atom positions and then to recover the
complete structure.
Some tricks can be useful to simplify the analysis of the Patterson map. The

peaks may be sharpened by using |Eh|
2 instead of the |Fh|

2 coefficients; in
addition, considering that the sharpening procedure can produce serious Fourier
truncation effects that generate large ripples in the Patterson map, mixed co-
efficients (|Eh||Fh|) or (|Eh|

3|Fh|)
1/2 may be employed2 4 to reduce the ripples in the

map. It is also very convenient to remove the ‘‘origin peak’’ from the Patterson
map: this is obtained by using in the Patterson calculation the coefficients:

F 0
h

�� ��2¼ Fhj j2�
XN
j¼1

f 2j

or equivalently, the coefficients (|Eh|
2� 1).
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A strategy for the determination of the crystal structure by Patterson
search methods by using large known molecular fragments has been described
by Rius and Miravitlless.5 More recently the Patterson information has been
used to evaluate diffraction moduli more accurately than the full pattern
decomposition procedures.6 8 The idea lies on the relation (|F(r*)|2¼T[P(u)]):
the Patterson is first modified by enforcing the positivity of the Patterson map
and then it is Fourier transformed. As an example, the automatic procedure8

implemented in the EXPO program9 may be described in terms of the following
steps:

1. The integrated intensities (|F|2) are extracted from the powder pattern via
the Le Bail method.10

2. A Patterson map P(u) is calculated and modified into a new map P0(u). A
truncation criterion is used. All the points of the map having density
smaller than a defined threshold are set to zero to take into account only
the main peaks in the map.

3. The inversion of P0(u) provides new diffraction intensities. These are used
with the default values given by the EXPO program to obtain the new set
of |F|2.

4. The procedure returns to step 2 and is repeated for some cycles.

8.3 DIRECT METHODS

DM are ab initio crystal structure solution techniques able to estimate
phases directly from structure factor magnitudes. These methods started in
1948.11 With the advent of modern computers and the use of sophisti-
cated mathematical approaches, they are able to definitively solve, in practice,
the phase problem for small molecules. Protein structures, up to say 2000
non-hydrogen atoms in the asymmetric unit, are today solved ab initio,
provided single-crystal diffraction data with resolution better than 1.2 Å are
available.
The application of DM to powder data requires the previous application of a

full pattern decomposition procedure (see Chapter 5): in the following we will
suppose that single diffraction intensities are available for each reflection in the
measured 2y range. Owing to the peak overlap the estimates of the diffraction
moduli will be affected by unavoidable errors: this weakens the efficiency of
DM (naively, wrong moduli will produce wrong phases), and still today makes
crystal structure solution from powder data a challenge.
The role of the full pattern decomposition techniques has been recently

investigated:12 two different extraction approaches, Pawley13 and Le Bail
algorithms were applied, and different peak profile functions were used. The
results may be summarized as follows:

a. Systematic attempts to improve the profile fitting do not necessarily lead
to more accurate extracted intensities. In Figure 8.1 the profile residual Rp
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and the error on the estimated |F| moduli (RF) are given for several test
structures: the two quantities are not strictly correlated.

b. A suitable choice of the peak-shape function may improve the profile
fitting but not necessarily the decomposition efficiency.

The high values of RF are mainly due to the limited information contained
in a powder pattern. A way to overcome this limitation has been proposed
by Altomare et al.,14,15 based on a Monte Carlo approach: several sets of
extracted intensities, called decomposition trials, are calculated and submit-
ted one after the other to DM. Each decomposition trial is obtained by
partitioning in a specific way the overall intensity of one or more clusters of
overlapping reflections under the constraint that the intensity of each cluster is
constant.
In their basic form DM exploit two types of prior information: the positivity

of the electron density map (this condition may be relaxed, e.g., for neutron
diffraction, see Section 8.4.7), and the atomicity (the electrons are non-
dispersed into the unit cell but concentrated around the nuclei). This informa-
tion, apparently trivial, is very useful to succeed in all the steps of a modernDM
procedure: (1) scaling of the observed intensities and normalization of the
structure factors; (2) estimate of the structure invariants; (3) application of the
tangent formula; (4) crystal structure completion and refinement.

Figure 8.1 RF (top part) and Rp (bottom) obtained by EXPO using the Pearson VII
profile function for a set of test structures. Rp is the residual (%) between
the observed profile and that calculated from the chosen profile function.
RF is the residual (%) between the moduli provided by decomposition
techniques and the structure factor moduli calculated from the published
structure model.
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8.3.1 Scaling of the Observed Intensities and Normalization of the Structure

Factors

X-Ray diffraction experiments may provide thousands of diffraction intensities
|Fh|

2
obs, which are on a relative scale:

Fhj j2obs¼ K Fhj j2 ð3Þ

The scale factor K may be determined, together with the average isotropic
thermal factor B, by the Wilson method.16 On assuming that Bj is equal to B for
all the atoms, Equation (3) may be rewritten as:

Fhj j2obs¼ K Fhj j2¼ K F0
h

�� ��2expð�2Bs2Þ ð4Þ

where s2¼ sin2W/l2 and |F0
h| is the structure amplitude on an absolute scale

when the atoms are at rest. To calculate K and B the observed diffraction data
are divided into ranges with constant s2, and average values of the intensities
are calculated in each shell. For each shell we can write:

Fhj j2obs
D E

¼ K Fo
h

�� ��2D E
expð�2Bs2Þ ¼ K

Xo

s
expð�2Bs2Þ ð5Þ

where, in the absence of any structural information,
Po

s ¼ eðhÞ
PN

j¼1 ðf oj Þ
2. e(h)

is the so-called Wilson statistical coefficient taking into account the space group
symmetry. From Equation (5) we get straightforwardly:

ln
Fhj j2obs

D E
Po

s

0
@

1
A ¼ ln K � 2Bs2 ð6Þ

Equation (6) represents a straight line: the intercept on the vertical axis yields
the value of K; 2B is the slope of the line. In practice, owing to structural
regularities (atoms are not randomly located) the experimental values are not
rigorously aligned: the best evaluation of K and B is then obtained by calcu-
lating a least squares line. Figure 8.2 shows a typical Wilson plot.
Once scale and average thermal factors have been determined, normalized

structure factors |Eh| can be calculated as follows:

Ehj j2¼ Fhj j2obs
Fhj j2obs

D E ¼ Fhj j2obs
K
Po

s expð�2Bs2Þ ð7Þ

The |Eh|’s are differently distributed for centric and non-centric space
groups;16,17 their probability distribution functions are, respectively:

P 1ð Ej jÞ ¼ 2

p

r
expð� Ej j2

.
2Þ ðcentricÞ
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P1ð Ej jÞ ¼ 2 Ej j expð� Ej j2Þ ðacentricÞ

which are represented in Figure 8.3.
The above distributions are widely used to identify the correct space group when

single-crystal data are available. Unfortunately, they are unusable for powder data
owing to the fact that the |Eh|

2 distribution is strongly dependent on the algorithm
used for the pattern decomposition (Pawley/Le Bail).18 When two or more
reflections heavily overlap, the Pawley technique often provides negative intensities
for some of the overlapped reflections. Conversely, the Le Bail algorithm intrin-
sically tends to equipartition the overall intensity among the severely overlapped
reflections. The general statistical consequence is that the distribution of the
structure factor amplitudes will be biased towards the centric nature for Pawley
based methods, and towards the non-centric for Le Bail based techniques.
Furthermore, the distributions of the normalized structure factors are

strongly affected by pseudotranslational symmetry, and for powder data also
by preferred orientation effects. The above information can also be used
as prior information to perform a better powder pattern decomposition,19,20

so improving the efficiency of DM.

8.3.2 Estimate of Structure Invariants

Structure invariants are products of structure factors that remain invariant
whatever the origin. They may be written as

Fh1Fh2 . . .Fhn ¼ Fh1Fh2 . . .Fhn

�� �� exp½iðfh1
þ fh2

þ � � � þ fhn
Þ� ð8Þ

Figure 8.2 Typical Wilson plot.
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with h1+ h2+� � �+ hn¼ 0. Indeed, owing to the shift of origin x0, the single
phase fh changes according to:

f0
h ¼ fh � 2phx0

but Equation (8) does not change:

F 0
h1
F 0
h2
. . .F 0

hn
� Fh1Fh2 . . .Fhn

The simplest structure invariants are:

a. for n¼ 1, F000;
b. for n¼ 2, the product Fh F h¼ |Fh|

2;
c. for n¼ 3, Fh Fk F h k¼ |Fh Fk F h k| exp[i(fh+fk�fh1k)];
d. for n¼ 4, Fh Fk Fl F h k l¼ |Fh Fk Fl F h k l| exp[i(fh+fk+fl�fh1k1l)]

etc.

The first structure invariant containing phase information is the triplet
invariant, which is the most important one (together with the quartet invari-
ants). Since the moduli are known from the experiment, it is usual to refer to
structure invariants as to a combination of phases, e.g., the sum:

Fh;k ¼ fh þ fk � fhþk

Figure 8.3 Probability distribution function of normalized structure factor ampli
tudes for centrosymmetric (centric) and non centrosymmetric (acentric)
structures.
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is denoted as the triplet phase invariant, and the sum:

Fh;k;l ¼ fh þ fk þ fl � fhþkþl

is called quartet phase invariant.
A probabilistic formula for estimating structure invariants has been given by

Cochran:21

PðFh;kÞ ¼ ½2pI0ðGh;kÞ� 1 expðGh;k cosFh;kÞ ð9Þ

where I0 is the modified Bessel function of order zero:

Gh;k ¼ 2s3s
1=2

2 EhEkEhþkj j ð10Þ

and sn ¼
PN
j¼1

Zn
j . For equal atom structures Equation (10) reduces to:

Gh;k ¼ 2

N
p EhEkEhþkj j

Equation (9) is a von-Mises type function:22 it is shown in Figure 8.4 for
different values of Gh,k. We note: (a) P(Fh,k) always attains the maximum when
Fh,k¼ 0; (b) the curves become more and more sharp with increasing values of
Gh,k. Accordingly, only for large values of Gh,k is the estimate Fh,k¼ 0 reliable;
(c) the number of reliable triplets is small for large structures (those with large
N values).

Figure 8.4 Probability distributions (Equation 9) for different values of the parameter
Gh,k given by (Equation 10).
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The Cochran formula, Equation (9), estimates the triplet phase Fh,k only
exploiting the information contained in the three moduli |Eh|,|Ek|,|Eh1k|. The
representation theory proposed by Giacovazzo23,24 indicates how the informa-
tion contained in all reciprocal space could be used to improve the Cochran’s
estimate of Fh,k. The conclusive conditional probability distribution

25 has again
a von Mises expression:

P10ðFh1;h2Þ ¼ ½2pI0ðGÞ� 1 expðG cosFh1;h2Þ

with G¼C(1+Q),
C ¼ 2 Eh1Eh2Eh3

�� ��= N
p

is the Cochran reliability parameter:

Q ¼
X
k

Pm
i¼1 Ak;i=N

1þ eh1eh2eh3 þ
Pm

i¼1 Bk;i

� �
=2N

 !
;

Ak;i ¼ ek½eh1þkRi
ðeh2 kRi

þ eh3 kRi
Þ þ eh2þkRi

ðeh1 kRi
þ eh3 kRi

Þ
þ eh3þkRi

ðeh1 kRi
þ eh2 kRi

Þ�;

Bk;i ¼ eh1 ekðeh1þkRi
þ eh1 kRi

Þ þ eh2þkRi
eh3 kRi

þ eh2 kRi
eh3þkRi

� �
þ eh2 ekðeh2þkRi

þ eh2 kRi
Þ þ eh1þkRi

eh3 kRi
þ eh1 kRi

eh3þkRi

� �
þ eh3 ekðeh3þkRi

þ eh3 kRi
Þ þ eh1þkRi

eh2 kRi
þ eh1 kRi

eh2þkRi

� �
;

e ¼ Ej j2�1

and Ri is the rotational matrix of the ith symmetry operator. The summation
goes over the free k vectors and on the m symmetry operators.
We will denote such a probability by P10ðFh1;h2Þ to emphasize the fact that

the formula explores the reciprocal space by means of a ten-node figure.
An appropriate probability distribution of von Mises type has been provided

to estimate the quartet invariants:26,27

PðFh;k;l R1;R2; :::::;R7j Þ ¼ ½2pI0ðGÞ� 1 expðG cosFh;k;lÞ ð11Þ

where:

G ¼ 2R1R2R3R4ð1þ e5 þ e6 þ e7Þ
1þQ

;

Q ¼ ðe1e2 þ e3e4Þe5 þ ðe1e3 þ e2e4Þe6 þ ðe1e4 þ e2e3Þe7½ �=2N

and ei ¼ R2
i � 1

For simplicity we used the following notation:

e1 ¼ eh; e2 ¼ ek; e3 ¼ el; e4 ¼ ehþkþl; e5 ¼ ehþk; e6 ¼ ehþl; e7 ¼ ekþl

The reflections with indices h, k, l, h+k+l are called basis reflections, those
with indices h+k, h+l, k+l are called cross reflections. Equation (11) suggests
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that: (a) quartets are phase relationships of order N 1: their average reliability
is therefore not very high, at least for large structures; (b) the reliability
increases for large values of |EhEkElEh1k1l|; (c) if the cross moduli are large,
Fh,k,l is expected to be close to zero (see Figure 8.5); (d) if the cross moduli are
all small, Fh,k,l is expected to be close to p (see Figure 8.6).

Figure 8.5 Typical probability distribution for quartet phases characterized by large
cross magnitudes.

Figure 8.6 Typical probability distribution for quartet phases characterized by small
cross magnitudes.
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These last quartets are the most important ones because they add supple-
mentary information to that provided by triplets.

8.3.3 Tangent Formula

By just changing k into �k the generic triplet invariant may be rewritten as:
Fh, k¼fh�fk�fh k. For this invariant the Cochran formula states that
fh�fk�fh kE0, with reliability given by Gh; k ¼ 2s3s

1=2
2 EhE kEh kj j.

Equivalently, one can say that fh is distributed about fk+fh k according
to the von Mises formula:

PðfhÞ ¼ ½2pI0ðGh; kÞ� 1 exp½Gh; k cosðfh � WhÞ�

where Wh¼fk+fh k

Generally, each h reflection takes part in r triplets, for each of which the
expectation:

fhEWj ¼ fkj
þ fh kj

may be established. By combining the corresponding probabilities, one obtains:

PðfhÞ ¼
Yr
j¼1

PjðjhÞ ¼ A exp
Xr
j¼1

Gh; kj cosðjh � WjÞ
 !

ð12Þ

where A is a normalizing structure factor. Since the exponential can be
rewritten as:

cosjh

Xr
j¼1

Ghkj cosðjkj
þ jh kj

Þ þ sinjh

Xr
j¼1

Ghkj sinðjkj
þ jh kj

Þ

¼ ah cosðjh � bhÞ

Equation (12) becomes:

PðfhÞ ¼ ½2pI0ðahÞ� 1 exp½ah cosðfh � bhÞ�

where:

ah ¼
Xr
j¼1

Gj cos Wj

 !2

þ
Xr
j¼1

Gj sin Wj

 !2
2
4

3
5
1=2
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and:

tan bh ¼

Pr
j¼1

Gj sin Wj

Pr
j¼1

cos yj
ð13Þ

with Gj ¼ Gh; kj . Equation (13) is known as the tangent formula;28 it gives the
most probable value of fh , say bh, when a certain number of pair of phases
ðfkj

;fh kj
Þ are known. The term ah is the reliability parameter of the phase

indication: bh has to be considered a good estimate of fh only for large ah.

8.3.4 A Typical Direct Methods Procedure

A modern direct phasing procedure may be described schematically as follows:

a. The structure factors are normalized according to Section 8.4.1.
b. The largest normalized structure factors (e.g., those with |E|> 1.3) are

selected. We will denote this set by NLARGE. Triplet and negative quartet
invariants are found among the NLARGE reflections.

c. Random phases are given to each of the NLARGE reflections. Cycles
of tangent formula are then applied until the phases are stable (until
convergence). This set of phases constitutes a trial and an eventual
figure of merit (FOM) is calculated evaluating the quality of the trial
(see Section 8.4.5).

d. Since it is unlikely that the tangent formula drives any random set of
phases to the correct values, a new trial is attempted starting from the
point (c).

e. After a sufficient number of trials have been obtained, the most reliable
one (that with the highest value of FOM) is explored. An E-map is
calculated according to:

rðrÞ ¼ V 1
X
h

wh Ehj j expðijhÞ expð�2pi hrÞ

where wh takes into account the reliability of the phase fh. The locations
of the highest peaks are automatically found: to them stereochemical
criteria of acceptable bond lengths and angles are applied to identify
possible molecular fragments. If the molecular model has no chemical
sense, a new trial is explored.

8.3.5 Figure of Merit

As mentioned, the phasing process usually leads to more than one trial solution
and the most promising ones are detected by application of some FOMs.
Several functions have been proposed, which are expected to be minima or
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maxima for the correct solution. The most usual for small molecules are:29,30

Z ¼
X

h
ah ¼ max

MABS ¼
P

h ahP
h hahi

� 1 ¼ min

RKarle ¼
X

h
Ehj j � Ehj jcalc
�� ��=X

h
Ehj j ¼ min

the so-called c0 FOM,31 their combinations and evolutions.
When powder data are available and a molecular model has been obtained,

the so-called w2 figure of merit may be used. Its expression is:

w2 ¼
P

i yiðobsÞ � yiðcalcÞj j
N

� 100

where yi(obs) and yi(calc) are the observed and the calculated profile intensity at
the angular step i, respectively. N is the number of counting steps in the powder
diagram (the summation is over N). This FOM considers the entire intensity
profile, count-by-count, rather than the integrated intensities of individual
diffraction peaks.

8.3.6 Completion of the Crystal Structure and Preliminary Refinement

The structural models generally obtained by PM or DM are often incomplete
and distorted fragments, which are only rough approximations of the real
structures: therefore methods for completing the model and for its refinement
have to be used. When single-crystal data are available such methods can be
summarized as in the flow diagram shown in Figure 8.7 (method of Fourier
Recycling). Starting from the partial model {X,B} obtained by Patterson orDM
procedures, cycles of least-squares refinement, in which atomic coordinates and
isotropic thermal parameters are refined, are combined with observed Fourier
syntheses. The process should be repeated until the structure is complete.
Often the least-squares refinement is combined with an EDM (electron

density modification) procedure:32,33 the advantage is that it is not necessary
to interpret electron density peaks in terms of atomic species. In practice the
map is modified by a suitable function ‘‘g’’ to obtain a better representation r0

of the structure:

r0 ¼ g rð Þ ð14Þ

The function g is designed for exploiting positivity and atomicity of the electron
density (the same information exploited in reciprocal space by the probabilistic
formulae estimating structure invariants). Therefore the inversion of r0 is
expected to produce better phase values than those used for calculating the
map r.
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The above techniques have to be optimized for application to powder
diffraction data.34 In particular:

a. With reference to Figure 8.7, the observed Fourier synthesis may
be replaced by a difference (Fobs – Fcalc) or by a (2Fobs – Fcalc) Fourier
synthesis.

b. When powder data are available the Fobs are replaced by the moduli
provided by full pattern decomposition techniques. As shown in

{ }B,X

{ } { }′′,, BB XX ⇒

calci

obs
eF φObserved

Fourier 

Structure
Factor
Calculation 

Least-squares
refinement 

Structure
Factor
Calculation 

Partial
Structure

{ } RFcalc ,

{ } RFcalc ,

Figure 8.7 Flow diagram of the Method of Fourier Recycling for single crystal data.
{X,B} represent the set of atomic positions and vibrational parameters,
respectively. Fobs and Fcalc are respectively the observed and calculated
structure factor amplitudes. R is the crystallographic residual between Fobs

and Fcalc.
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Figure 8.1 such moduli are generally far from the true Fobs. The
least-squares procedures are then rather unstable and Fourier syntheses
are less effective.

8.3.7 Solving Crystal Structures from Powder Neutron Data

Neutrons do not interact with electrons but with atomic nuclei. The neutron–
nucleus interaction is governed by very short-range nuclear forces (B10 13 cm);
since the nuclear radius is of the order of 10 15 cm (several orders of magnitude
less than the wavelength associated with the incident neutrons) the nucleus
behaves like a point scatterer: accordingly its scattering factor bo will be
isotropic and not dependent on sin W/l. As a result, strong reflections can be
observed at both long and short d-spacing, so making easier structure solution
and refinement. Also, bo is not proportional to Z, as in X-rays and this property
allows one to distinguish between atoms having quite close Z values and makes
it easy to localize hydrogen atoms (usually these are replaced by deuterium,
which has bo4 0 and negligible incoherent scattering).
The neutron–atom interaction involves also the interaction between the

magnetic moment associated with the spin of the neutron and the magnetic
moment of the atom (this last generated by the presence of unpaired electrons).
This allows the investigation of magnetic structures, whose magnetic scattering
does decline with sin y/l.
Some relevant neutron properties are:

1. The interaction of neutrons with matter is weaker than for X-rays
and electrons. Therefore higher neutron fluxes are needed to measure
appreciable scattered intensities.

2. For some elements boo 0.
3. Coherent scattering, giving rise to Bragg scattering, defines the structure

factor:

Fh ¼
XN
j¼1

bj expð2phrjÞ exp �Bj
sin2 y�

l2
� 	

where bj is a positive or negative value.

We have underlined that positivity and atomicity of the electron density are
basic conditions for the validity of traditional DM. What then is the effect of
the possible violation of the positivity criterion on DM procedures? It has been
assessed35 37 that positivity is not an essential ingredient of DM. In particular
the triplet phase invariants can again be evaluated via a von Mises distribution,
but now the value of N has to be replaced by Neq, where:

a. Neq is calculated as N if all the scatterers have positive b0 values;
b. Neq is equal to –N if all the scatterers have negative b0 values;
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c. Neq is equal toN if the scattering power of the negative scatterers equals the
scattering power of the positive ones. In this case no triplet can be evaluated;

d. if the scattering power of the positive scatterers is predominant the triplets
are expected to be positive but with a large value of Neq.

By collecting both neutron and X-ray data the available experimental infor-
mation increases. It is common opinion that neutron powder diffraction is a
particularly good technique for structure refinement while X-rays should be
used for structure determination.

8.4 DIRECT-SPACE TECHNIQUES

As stated in the preceding sections, crystal structure solution from powder
diffraction data is traditionally achieved by first extracting the intensities of
individual reflections from the experimental profile, and then by using PM or
DM. The efficiency of these last techniques is affected by the difficulty of
extracting unambiguous values of the individual intensities. If information
about the molecular geometry is available, the so-called Direct-Space Tech-
niques (DST) can be used, which do not require pattern decomposition and
directly use as target the experimental diffraction profile. DST use global
optimization algorithms to orient and locate the structural model. These algo-
rithms are able to locate the global minimum from any random starting point,
thus being able to escape from local minima (which correspond to incorrectly
determined structures). An appropriate figure of merit, called the cost function
(CF), is associated with each generated structural model: the CF quantifies the
agreement between experimental and calculated powder diffraction patterns.
Global optimization techniques are used to find the trial structure associated
with the lowest CF, which is equivalent to finding the global minimum of the
hypersurface defined by the CF, by varying the set of variables that defines the
generated crystal structure. Grid search, Monte Carlo, simulated annealing and
genetic algorithms are the search methods most commonly used for this
purpose: they will be described in the following sections.
DST are advantageous only when substantial prior information on the

molecular geometry, and/or on its crystal chemistry, is available. Such infor-
mation introduces a dependence on the prior chemical restraints: only wrong
solutions can be obtained if the prior information is wrong, but, if it is correct,
only chemically feasible structural models are generated. A class of structures
particularly suited for direct-space approaches (and particularly resistant to
DM) are the molecular organic compounds: they generally contain structural
units of well-defined geometry and atoms with known connectivity. Model
building programs, such as Cerius2 (ref. 38), Chem3Dultra (ref. 39) and Sybyl
(ref. 40), and the Cambridge Structural Database (CSD)41 can be used to
construct a chemically feasible structural model. The resulting model is gener-
ally described in terms of internal coordinates, i.e., bond lengths, bond angles
and torsion angles. Usually the only variables that are determined by search
methods are the torsion angles (internal degrees of freedom, or internal DOFs)
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and the parameters defining position and orientation of the molecular fragment(s)
(external DOFs).
Among inorganic structures, the extended framework structures constituted

by well-defined building units, such as zeolites, are particularly suited for DST.
In this case the chemical information can be encoded in building units, e.g.,
polyhedra of atoms with known geometry, in which case the variables are only
the positions and the orientations of the scattering objects (only external DOFs
are present in this case).42

The use of the prior chemical information allows a dramatic reduction of the
number of DOFs necessary to describe the structure, both for organic and
inorganic compounds, compared with the description in terms of atomic
coordinates. Generally reductions can be obtained of a factor 2 for inorganic
structures and by a factor of at least 3 for organic ones.42 Moreover, the use of
internal coordinates greatly reduces the number of generated trial structures,
since only the chemically plausible ones are explored.
The most commonly used approach to cope with the generation of flexible

models is to express the internal coordinates of the model by the so-called Z-
matrix (Figure 8.8), where the position of each atom is determined from the
bond distance, the bond angle and the torsion angles with respect to three
preceding atoms in the matrix. In the first column of the matrix of Figure 8a a
number is assigned to all the atoms of Figure 8b, the second column contains
the bond lengths to connect the atoms on the left with the atom on the right
(third column), the fourth column contains the bond angles formed by atoms in
columns 1, 3, 5 of the same row, and the sixth column contains the torsion
angles formed by atoms in columns 1, 3, 5, 7 of the same row. During the DST

(a)

(b)

1

2 d12 1

3 d23 2 θ123 1

4 d24 2 θ124 1 τ1234 3

2

4

3

1

Figure 8.8 (a) Z matrix description for the tetrahedron shown in (b). dij, yijk and tijkl
indicate, respectively, the bond length between atoms i and j, the bond
angle between atoms i, j and k and the torsion angle formed by atoms i, j, k
and l.
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calculations, the crystallographic coordinates for each model are frequently
required: the algebra and techniques to convert internal coordinates into atomic
coordinates in a Cartesian frame and finally in crystallographic coordinates are
well described in ref. 43.

8.4.1 Grid Search Methods

The most intuitive approach to tackle the crystal structure solution by DST is
to define a grid over the parameter space of interest and systematically explore
every grid point. This method is simple and easily implemented in a computer
code, and guarantees that the global minimum may be found, provided a
suitably fine grid is used. However, it can be applied only when the parameter
space is relatively small, namely when the number of DOFs necessary to
describe the model is limited.
The systematic translations and rotations are performed within the corre-

sponding asymmetric regions, while molecular and crystallographic symmetries
can be used to further limit the ranges of the positional and orientational
parameters.44 Moreover, the rotational space can be better sampled by a
redefinition of the relative parameters: the number of sampling points can be
reduced by a factor 2/pE 0.64, with equal volumes sampled per each point, if
the conventional Euler angles W,f,c are replaced by the quasi-orthogonal Euler
angles:45

Wþ ¼ Wþ c; j; W ¼ W� c

Grid search procedures have been mainly applied to rigid structural frag-
ments.46 48 For cases in which internal DOFs are necessary to describe the
conformational flexibility, the number of grid points to be explored undergoes
a combinatorial explosion that prohibits the exhaustive search procedure.
Some authors have avoided this difficulty by a two-step procedure: first a rigid
model is moved in a six-dimensional grid described by the external DOFs, then
it is refined in the position corresponding to the minimum CF, by allowing
conformational modifications subject to bond restraints.49

8.4.2 Monte Carlo Methods

To approximately locate the global minimum (i.e., to obtain a good quality
crystal structure solution) in a reasonable amount of time, grid search methods
should be replaced by the stochastic ones, based on a random sampling of the
parameter space. This technique, called Monte Carlo (MC), has been widely
used in other scientific fields to simulate the behavior of complex systems. Its
application to crystal structure determination from powder diffraction data has
been developed by many authors: the main strategies are outlined below.
MC methods require the construction of a Markov chain of structures, i.e., a

sequence of structures, each exclusively depending on the previous one. Each
structure of the sequence, called a configuration, is defined by the set of external
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and internal DOFs necessary to fix position, orientation and intramolecular
geometry of the predefined structural model. A given configuration is derived
from the previous one by random variations of its DOFs, and two successive
configurations represent aMCmove. In Figure 8.9 the steps involved in a single
MC run are sketched for a structural model having a single internal DOF (the
unknown torsion angle between the two rings). The steps can be summarized as
follows:

a. A trial configuration is generated from a given old configuration through
small random displacements of the set {pi}¼ {x, y, z, y, j, c, t1
t2, . . . ,tn}, where the first three parameters represent the position of
the center of mass of the structural model in an orthonormalized reference
frame, the second three parameters (usually coinciding with the Euler
angles) fix the orientation of the model and the last n parameters are the
variable torsion angles. For each ith parameter, the new value pi is
calculated from the old one (say poldi ) according to the relation:

pi ¼ poldi þ risiDp ð15Þ

where ri is a random bit that assumes the values +1 or –1, giving the sense
of the displacement, si is a random number extracted uniformly in the

Trial 
configuration

Old
configuration

New
configuration

CF

no

yes

Acceptance
criterion

Figure 8.9 Summary of the steps involved in a single Monte Carlo move for a
structural model having a single unknown torsion angle between the two
rings.
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range (0, 1) and Dp is a predefined maximum step width for the ith
parameter.

b. A powder diffraction pattern is calculated for the trial structure and it is
compared with the experimental profile. The profile weighted index Rwp is
frequently used as agreement factor:

Rwp ¼
P

t wtðyot � Kyct Þ
2P

t wtðyot Þ
2

s
ð16Þ

where yot and yct are, respectively, the observed (background subtracted)
and calculated counts corresponding to the tth point in the powder
diffraction profile, K is a scale factor and wt is a weighting factor, usually
chosen as Poissonian (wt¼ 1/yot ). Rwp is used as the CF to asses the
suitability of the trial structure.

c. An acceptance criterion decides whether the trial structure is accepted or
rejected. In most of the cases it is based on the importance sampling
algorithm developed by Metropolis and coworkers:50 the trial configura-
tion is accepted if CFoCFold, otherwise it is accepted with probability:

exp½�ðCF � CFoldÞ=T � ð17Þ

where T is an appropriate scaling factor. This is accomplished by taking a
random number r between 0 and 1 and accepting the trial configuration if
exp[�(CF�CFold)/T]4 r.

d. If the trial configuration is accepted, it is considered as a new configura-
tion in the Markov chain, and becomes the starting point for a subsequent
generation. If the trial configuration is rejected, a new one is attempted
from the old configuration until the acceptance criterion is fulfilled.

Several MC moves are repeated until a sufficiently long chain of structures is
obtained, which can be viewed as a random walk through the parameter space. It
is guided by the importance sampling algorithm towards the global minimum of
theCF hypersurface, which should be reached provided a sufficiently wide-region
of the parameter space has been explored. In fact, Equation (17) avoids the
system being trapped into local minima, since it allows a configuration with
higher CF to be accepted with finite probability, and hence the random walk to
climb over barriers of the CF hypersurface. The rate at which this happens is
governed by the temperature parameter T, which can be varied during the
minimization process in a process called simulated annealing, as described below.
Among the various MC procedures designed to solve the phase problem

from powder data, we quote the pioneering work of Harris et al.,51 the paper by
Andreev et al.,43 where the mathematical procedures for generating flexible
molecular structures has been clearly described, and the contribution by
Tremayne et al.,52 implemented in the computer program OCTOPUS,53 where
a local minimization at each MC move is introduced to increase the efficiency
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of the global optimization algorithm. The two latter works are examples of how
one of the major drawbacks of DST may be solved: its dependence on the
initially guessed structural model. In the paper of Andreev and coworkers the
unknown part of the structural geometry is parameterized and actively used
during global minimization, but has the effect of widening the parameter space
of the search algorithm. In the paper by Tremayne and coworkers it is fixed in
the global search algorithm, yielding a smaller parameter space, but relaxed
during local minimization. The acceptance probability, Equation (17), is then
calculated using the CF associated to the locally minimized configurations: if a
trial structure is accepted, the new one is generated starting from the structure
with standard geometry (not from that with relaxed geometry), to avoid
substantial deviations from the standard molecular geometry of the structural
fragment during the MC calculation.
MC methods can benefit by the calculation of the potential energy of the

structural model: its use avoids or highly reduces the generation of unrealistic
structures, characterized by too short intermolecular contacts or impossible
bond length and angles. As the primary aim for introducing the potential
energy is to avoid implausible structures, rather than to introduce a fine
discrimination among different plausible structures, a simple potential energy
function is frequently used, consisting only of repulsive terms. Lanning et al.54

and Brodski et al.55 used the following Leonard-Jones potential:56

E ¼
X
i

X
j4i

Bij

r12ij
ð18Þ

where the summation is carried out over all pairs of atoms (labelled i and j)
within a cut-off radius and the parameters Bij are estimated by molecular
mechanics force field calculations.57 Coelho58 used the Born–Mayer potential:59

E ¼
X
i

X
j4i

Cij expð�DrijÞ ð19Þ

For inorganic compounds, Putz et al.60 used the potential:

E ¼
X
i

X
j4i

Eij

Eij ¼
0 if rij � rmin

ij

rmin
ij

.
rij

� 	6
�1 if rij o rmin

ij

8<
: ð20Þ

where rmin
ij is the parameter indicating the minimum observed distance between

the two atom types, which can be obtained from the Inorganic Crystal Structure
Database.61 For ionic atomic models, a Coulomb term:

E ¼ A
X
i

X
j>i

QiQj

rij
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can be added to the repulsive term, where Qi and Qj are the ionic valences of
atoms i and j.60

Most of the authors used a mixed CF, by summing the energy term to that
assessing the agreement between calculated and experimental profiles.54,58,60

More recently, Brodski et al.55 have considered the potential energy function
and the weighted profile R-factor [see Equation (16)] as two independent CFs to
be minimized. In their MC strategy the Metropolis acceptance criterion is
replaced by the following: a trial configuration is accepted if either its energy
term or its profile agreement index is lower than the respective term of the old
configuration, otherwise it is rejected.
Another promising modification of the Metropolis acceptance criterion has

been proposed by Hsu et al.,62 who replaced the difference CF�CFold in
Equation (17) by the term:

CF � CFold þ e
HðCF ; tÞ �HðCFold; tÞ
HðCF ; tÞ þHðCFold; tÞ

where e is a tuning constant and H(CF,t) is the cumulative histogram of
configurations with cost function equal to CF. It depends on the ‘‘time’’ t since
it is updated at each MC move: if the configuration is accepted,
H(CF )¼H(CF )+1, otherwise H(CFold)¼H(CFold)+1. When a local mini-
mum is reached, the acceptance rate decreases, hence the additional term
deforms locally the energy landscape in such a way that the local minimum
is no longer favoured. As a result, the process keeps track of the number of
prior explorations of a particular energy region and avoids trapping in local
minima. This technique, called energy landscape paving, enhances the conver-
gence of aMC search applied to organic molecules from single-crystal data, but
has still to be checked against powder diffraction data.

8.4.3 Simulated Annealing Techniques

The fundamental difference between standard MC and simulated annealing
(SA) techniques concerns the way in which the scaling factor T of Equation (17)
is used to control the sampling algorithm. In the former method, T is fixed or
varied empirically, whereas in the latter T is slowly reduced during the proce-
dure, according to an annealing schedule. To get the rationale underlying this
strategy, it is useful to introduce an equivalence between the DOFs of the
structural model to be varied during the minimization and the particles of an
imaginary physical system. We will follow the arguments of Kirkpatrick
et al.,63 who first introduced the SA technique. The cost function represents
the energy of the physical system, hence the global minimum configuration
corresponds to its ground state. The probability factor of the Metropolis
criterion resembles the Boltzmann factor exp(�E/kBT) for the energy level E
to be populated, where kB is the Boltzmann’s constant and T is the temperature.
In the evolution of the physical system the ground state may be reached by
slowly lowering its temperature, through states of thermodynamic equilibrium:
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correspondently, the correct crystal structure can be reached provided the
T parameter of Equation (17) is continuously reduced, avoiding the system
being trapped in local minima, corresponding to false structure solutions. The
optimal annealing schedule, suggested by Kirkpatrik,64 can be deduced by
considering the properties of the physical systems consisting of many interact-
ing atoms. To bring the fluid into a low energy state one should first warm the
system until it is completely melted, then one should slowly lower the temper-
ature, spending a long time at temperatures near the freezing point, and finally
one should cool more rapidly to bring the atoms to rest. The same sequence can
be followed in the global optimization algorithm, considering as key para-
meters the T factor and the fraction of accepted MC moves (acceptance ratio).
The system starts at a given T value, T is then increased until the acceptance
ratio is high enough (this ensures that the system is melted, i.e., the DOFs can
vary freely in the parameter space); then T is decreased, keeping the same value
until a fixed number of moves has been performed. This is the longest stage,
during which the system should reach the global minimum without being
trapped in local minima. Finally, the global minimum position is refined by a
rapid decrease of T and the iteration is stopped when the acceptance ratio
reaches some allotted low value, indicating that no further improvements are
observed. It has been shown65 that convergence to the global minimum can be
achieved for a logarithmic annealing schedule, but scarcity of computing time
could suggest a choice of faster annealing schedules, for which success is no
longer guaranteed.
Several variants of the basic SA algorithm have been developed, which differ

in the choice of the CF, in the design of the annealing schedule or in the
procedure for the generation of the trial configurations. For example, Andreev
et al.66 reduce T at a preset rate and, for each T, perform several moves which
increase as the acceptance ratio decreases; David et al.67 introduced the
following relevant novelties, included in the computer program DASH:68

a. The CF is based on the comparison between the calculated structure-
factor magnitudes and the integrated intensities extracted to Pawley
techniques according to the formula:

CF ¼
X
h

X
k

½ðIh � c Fhj j2ÞðV 1ÞhkðIk � c Fkj j2Þ� ð21Þ

where Ih and Ik are the integrated intensities assigned, respectively, to
reflections h and k by a Pawley refinement, Vhk is the covariance matrix
obtained by the Pawley refinement, c is a scale factor and |Fh| and |Fk| are
the structure-factor magnitudes calculated from the trial structure. The
calculation of this CF is much faster than that of the R-profile factor, so
leading to a rapid identification of the correct solution. For cases where
the structural model being optimized is not a complete description of
the asymmetric unit, a CF derived by a maximum-likelihood approach
has been employed, leading to an improved success rate of the SA
algorithm.69
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b. The temperature reduction is related to fluctuations in the cost function,
so that the cooling schedule slows down when the CF fluctuations are
large. This allows a more extensive exploration of the parameter space
when the algorithm is sampling both good and bad solutions: it is
equivalent to cooling more slowly if the heat capacity of the physical
system is large.

c. The parameter generation occurs according to an exponential probability
distribution, contrary to the uniform generation implicit in Equation (15).
The shift Dp of the parameter pi is extracted according to the probability
distribution:

PðDpÞ ¼ Dp
Dp0

exp � Dp
Dp0


 �

where Dp0 is the current characteristic distance for the parameter pi. This
allows one to efficiently sample the neighboring parameter space, whilst
ensuring that there is a finite chance of sampling well away from the
current point.70

d. The quaternion representation is used for rotations of the model.71 Three
of the four quaternions fix the orientation of a rotation axis, the remain-
ing determines the rotation around the axis. The advantage is that they
ensure a uniform sampling of orientations, avoiding the singularities
introduced by the description in terms of Euler angles.70

The SA algorithm implemented in the program PowderSolve72 includes
similar techniques, with the addition of a dependence of the step width for
parameter changes [Dp in Equation (15)], on the acceptance ratio and on the CF
fluctuations. A local quenching has also been introduced, i.e., a local Rietveld
optimization is performed whenever a promising structure solution is obtained
during the calculation. This avoids going to very low annealing temperatures
during the main SA run, enhancing the efficiency of the method.
The program ENDEAVOUR60 can find the crystal structure of ionic and

intermetallic compounds without using a starting structural model, but gener-
ating random distributions of atoms within the unit cell. In each MC move a
new random atom configuration is generated from the previous one by
randomly displacing 95% of the atoms (randomly chosen) and exchanging in
pairs the remaining 5%. A local optimization is also performed, whose number
of cycles depends on the number of atoms in the unit cell. This dependence is
present also in the annealing schedule, so that the whole procedure is strongly
influenced by the unit cell content provided by the user. In this program part of
the prior structural knowledge usually exploited in DST is embedded on an
energy term included in the CF, which for metallic compounds is expressed by
Equation (20) and in general depends on the type of compound under study. A
similar approach has been followed by Coelho58 and implemented in the
program TOPAS,73 where several energy terms of the type shown in Equations
(18) and (19), representing the atom–atom interaction, are summed to define

251Crystal Structure Determination



the CF, and, in addition, the magnitude of the atomic random displacements
are related to the expected mean bond length of the considered compound.
The program ESPOIR74 uses a novel CF that combines the rapidity inherent

in the handling of extracted intensities (instead of profile counts) with the
necessity to take into account the reflection overlapping. The intensities
extracted from the observed profiles are used to reconstruct a pseudo-pattern,
where background, Lorenz-Polarization, complex profile shapes and reflection
multiplicity are not included. A simple Gaussian shape with short tails, sampled
by no more than five profile points above the full width at half maximum, is
used to grossly mimic the overlapping in the experimental profile. The CF states
the agreement between observed and calculated pseudo-patterns.
An improved version of the SA search algorithm, called parallel tempering,

has been included in the program FOX.42 Since a single chain of configurations
could be trapped in local minima if the temperature decreases prematurely, a
small number of parallel optimizations are performed, each at a different
temperature. Exchanges of configurations among parallel optimization proc-
esses are allowed, using the same acceptance criterion adopted in the single
chain generation, to ensure an optimal exploration of the parameter space. This
approach is particularly suited for structural models defined by a high number
of DOFs (typically more than 10).

8.4.4 Genetic Algorithm Techniques

The genetic algorithm (GA)75 is an alternative global optimization technique to
MC and SA approaches. It is based on the principles of the Darwinian theory
of evolution and allows a population composed of many individuals to evolve
under specified selection rules to a state of best fitness. To fit our crystallo-
graphic problem into the biological evolution terminology, we should consider
the following equivalences: aDOF corresponds to a gene; the sequence ofDOFs
necessary to identify the position, orientation and internal conformation of the
structural model corresponds to a chromosome; the CF corresponds to the
fitness associated with each molecule; the search for the structural solution is
equivalent to searching for the molecule with the best fitness, which is the result
of a series of evolution steps from one initial population of molecules. The
operations involved in a single evolution step are:

a. Natural selection. It selects the individuals destined to survive or to take
part in mating. It implies the calculation of the fitness for all the members
of a given population and a selection procedure, somehow analogous to
the SA acceptance criterion, capable of tagging the members with highest
probability of survival (thus containing some random element).

b. Mating. It procreates the new offspring by mixing the genetic information
of two selected parents.

c. Mutation. It generates new individuals (mutants) by randomly changing
part of the genetic information of individuals randomly chosen from the
population.
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All these three processes play a fundamental role in the GAmethod: mating is
responsible for the preservation and improvement of selected characters in the
population, mutation is responsible for genetic diversity and prevents the
stagnation of the population, natural selection drives the evolution towards
the best fitted populations, enhancing the lifetime of individuals containing the
best suited groups of genes (schemata). As a general strategy, the number of
members from one generation to the next is kept constant, so that a crucial
parameter is the size of the populations: too small populations tend to be
dominated by few individuals, leading to stagnation and poor sampling of the
parameter space, while too large ones could slow down the convergence
towards the optimal member.
A relevant feature of GA methods is its implicit parallelism, being able to

treat at the same time different members of a population, so investigating
simultaneously different regions of the parameter space. This makes the GA,
just like the above-mentioned parallel tempering, particularly advantageous for
the solution of problems with many DOFs.
Two research groups have independently introduced the GA technique for

structural solution from powder diffraction data: Kariuki et al.76 and Shankland
et al.77 They both use the following strategy:

� The initial population of randomly chosen individuals is constituted by
chromosomes of the following kind: {x,y,z|W,f,c|t1,t2,. . ..,tn}, containing
the translation, rotation and internal conformation schemata.

� The mating procedure is performed by a single-point crossover, i.e., the
chromosomes of the two parents are cut in a single position and the cut
segments are swapped.

� The chromosomes are mutated by assigning a new random value to one or
more randomly chosen genes.

In detail, the two approaches differ in many other implementation aspects,
the most relevant of which is the definition of the fitness function: Shankland
and coworkers use the same function based on integrated intensities as that
used in DASH [see Equation (21)], while Kariuki and coworkers use the profile
agreement factor. In addition they dynamically scale this cost function by the
transformation:

r ¼ CF � CFmin

CFmax � CFmin

where CFmin and CFmax are the CF minimum and maximum values within a
given population, respectively. r is the argument of a tanh or an exponential
function that is maximum for r¼ 0 and minimum for r¼ 1.78 In a more recent
implementation of the algorithm79 the Lamarckian conception of evolution has
been introduced, assuming that an individual can improve its fitness during its
lifetime. This is accomplished by locally minimizing the agreement factor of
each new structure generated during the calculation before the operations of
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natural selection, mating or mutation are applied. As for MC procedures, the
introduction of local minimization produces a significant increase in the
convergence rate of the algorithm.
A new evolutionary algorithm, called differential evolution (DE)80 has been

successfully applied to powder data crystal structure solution.81 DE is a simpler
and more deterministic method with respect to GA, and is based on the
generation of children from a unique parent. In particular, each member of
the population creates a child having the chromosome:

parentþ Kðmember1 � parentÞ þ Fðmember2 �member3Þ ð22Þ

where parent is the chromosome of its parent, memberi, i¼ 1,3 refers to the
chromosomes of other three randomly selected members of the populations and
the parameters K and F tune respectively the level of recombination and
mutation present in the algorithm. The operations shown in Equation (22)
are applied to individual genes of the chromosomes, taking into account the
allowed bounds associated to each of them: if the newly generated value of any
gene exceeds its upper or lower bound, it is reset to a median value between the
parent and the overstepped boundary. The new population is formed in a
deterministic manner, by comparison of the newly created child with its parent:
the fitter of the two survive. The DE algorithm was shown to be more robust
than GA, at the price of a slower convergence.

8.4.5 Hybrid Approaches

Recent developments of global optimization methods have led to hybrid
algorithms that have the merit of combining the best features of two different
techniques. An example concerns an algorithm derived from MC and mole-
cular dynamics (MD) techniques.82 The orientation and location of a model
molecule is here figured as the problem of driving a hypothetical particle into a
well of potential energy defined in the parameter space. The coordinates of the
particle correspond to the internal and external DOFs of the structural model
and its momentum components represent the shifts of the corresponding DOFs.
Molecular dynamics rule the motion of the particle through the parameter
space by means of Hamilton’s equations, where the initial momentum com-
ponents are randomly extracted from a Gaussian distribution and the potential
energy coincides with the CF given by Equation (21). After a fixed number of
MD steps, the particle describes a trajectory in the parameter space, but its total
energy (kinetic+potential) value tends to deviate from the initial one, due to
systematic errors introduced by the finite step size of the MD simulation.
Therefore, a MC step is performed to force the conservation of the total energy
of the particle, and the trajectory undergoes a Metropolis acceptance criterion,
based on the comparison of its initial (Eold) and final (E) total energy.
The trajectory is accepted if EoEold, otherwise it is accepted with probability
given by:

exp½�ðE � EoldÞ=T �
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in analogy with Equation (17). If the trajectory is accepted, a new one begins at
its endpoint, otherwise it begins at the starting point of the rejected trajectory;
in both cases, new momentum components are randomly extracted from the
Gaussian distribution. The hybrid Monte Carlo stops either when a predeter-
mined lower bound on the potential energy is reached or when a maximum
number of MD plus MC steps is exceeded. When applied to a single test
structure, this approach has increased the success rate of 35% with respect to
the SA algorithm implemented in DASH.
Another hybrid approach involves the use of the structure envelope. It is

generated by using few strong low-resolution reflections, which are less affected
by overlap and whose phases need to be estimated, and produces a partition of
the unit cell into regions of high and low electron density. This allows the
restriction of the parameter space used for global optimization methods. A grid
search procedure limited to the grid points falling within the region of
the asymmetric unit defined by the structure envelope succeeded in finding
the solution of a zeolite83 and of an organic84 structure. In a more recent
version of the procedure, the envelope information has been embedded in the
framework of an SA algorithm, specifically in the definition of its
CF: CF ¼ wRwp+(1�w)P, where w is a weighting factor that can be adjusted
depending upon the reliability of the generated envelope and P is a penalty
function measuring the fit of the model in the actual configuration with the
envelope.85

Altomare et al. have attempted to combine DM with SM techniques:86 the
procedure has been implemented in the package EXPO2004.87 It is justified by
the necessity to exploit the prior information on the molecular geometry for
cases in which the classical DM ab initio approach applied to powder data is not
able to reach a fully interpretable electron density map. As a first step, a
procedure to complete inorganic crystal structures via a MC method has been
developed. It takes advantage of the prior knowledge on the coordination
polyhedra around the heavy atoms located by means of DM procedures and,
for each polyhedron, of the average cation–anion distance.86 The expected
types of coordination polyhedron about each of the cations in the asymmetric
unit are specified by the user via directives, together with the expected average
bond distances and the tolerance parameters. Then the following steps are
performed:

� The positional parameters of the heavy atoms provided by DM are
submitted to automatic Rietveld refinement to improve their accuracy.

� The distances between the heavy atoms are analyzed to derive (or confirm)
the cation connectivity (tetrahedral or octahedral). Let us suppose that
two cations, say C1 and C2 (see Figure 8.10), have been located. The
bridge anion A1, bonding C1 to C2, is expected to lie on the circle
intersection of the two coordination spheres, centred in C1 and C2. A
random point on the circle is chosen as a trial location of A1: it is a feasible
atomic position. The positions of the other anions A2, A3, A4 may be
(randomly) fixed by a random rotation of the C1 polyhedron about the
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C1–A1 axis. The site symmetry of the new anions is checked, their
symmetry equivalents are generated, and the completeness of the polyhe-
dra is controlled.

� The process is cyclic: the procedure stops when all anions have been
positioned. For each feasible model the profile residual is calculated and
those corresponding to the best agreement factors are selected for Rietveld
refinement.

As an example, when applied to the structural fragment shown in Figure 8.11
the procedure was able to assign 10 of the 12 O anions, starting from the four Si
peaks initially located by DM.
Subsequently, the procedure has been generalized to cope with cases in which

not all the heavy atoms present in the structure are correctly located, allowing

Figure 8.10 Schematic view of the Monte Carlo procedure to locate a tetrahedron of
anions (A) starting from the positions of two cations (C).

Figure 8.11 Structural fragment of SAPO.89 Ten of the 12 O anions are located by the
Monte Carlo method starting from a partial map containing the four
symmetry independent Si cations and using prior knowledge of their
coordination polyhedra.
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the location of missing cations and surrounding anions when the cation
coordination is tetrahedral or octahedral.88 With this new procedure the
complete structure of the fragment shown in Figure 8.11 may be found when
starting from only two Si peaks located by DM.
The completion of an organic structure is a challenging task, since the

electron density maps resulting from the application of DM usually contain
partial and distorted molecular fragments. Tanahashi et al.90 accomplished
it by combining DM with a MC approach borrowed from the procedure
described in Harris et al.51 The positions of three missing atoms were found by
varying their coordinates in each MC move.
Altomare et al.91 combined DM with SA. The peaks of the electron density

map provided by DM are used to reduce the number of DOFs of the global
optimization algorithm according to three protocols:

a. If triplets or quadruplets of connected peaks are present in the DM
electron density map, they are in turn associated to all (if any) similar
multiplets of the structural model. Each association is followed by an SA
run with external DOFs strictly bounded around their initial values (the
position and orientation of the structural model is almost fixed during the
SA process).

b. Couples of connected peaks are in turn associated to all the couples of
bounded atoms of the model. The SA run following each association has a
parameter space restricted by the requirements that the barycentres of the
map and model pairs coincide and that the model preferably rotates
around the axis of the pair.

c. Each peak of the map is in turn associated with all the atoms of the model.
In this case only the position of the model is fixed, while its orientation
and internal conformation has to be found by the SA runs.

During the SA runs, a combined CF is adopted, defined by the product of the
usual profile agreement factor (16) by a figure of merit that measures the degree
of overlap between the actual configuration and the peaks of the map. After
having associated all the multiplets of the model with a corresponding multiplet
of the map, according to one of the three protocols, the best solutions resulting
from the different SA runs are selected and subjected to a local minimization, to
improve the location of the assessed model by relaxing the constraints intro-
duced to define the association. It is worth noticing that, with this approach,
different SA runs can lead to the correct solution, which strongly suggests that
the true global minimum has been found.

8.4.6 Application to Real Structures

In recent years an increasing number of crystal structures have been solved by
application of pure or hybrid global optimization methods applied to powder
diffraction data. The most striking applications regard organic structures
particularly resistant to traditional methods. The first organic material of
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unknown crystal structure to be solved by a direct-space approach was
p-BrC6H4CH2CO2H using the MC method.51 Since then, the algorithmic
development of global optimization techniques has lead to the solution of
increasingly complex structures, with more non-hydrogen atoms and/or with a
larger amount of flexibility. Today most reported structure determinations in
the field of organic structures (particularly those of pharmaceutical interest)
have employed direct-space techniques for structure solution.
A list of representative organic structures recently solved by the Direct-Space

algorithms outlined in this chapter is given in Table 8.1, where the arrows
superimposed on the molecular models indicate the unknown torsion angles
varied during the minimization procedure. As a general trend, the use of hybrid
approaches allows one to undertake more difficult cases, such as structures with
a higher number of unknown torsion angles (internal DOFs) or non-hydrogen
atoms. The solution of the structure in the 7th row of Table 8.1, for example,
was originally obtained by a SA algorithm92 by using 18 variable parameters to
be optimized: six describing the position and orientation, nine describing
torsion angles for the cation and three describing the position of the chloride.
With the hybrid approach of Altomare et al.88 the solution was more easily
obtained by positioning the isolated chloride ion in correspondence with the
highest peak of the DM electron density map and by independently minimizing
the flexible structural model of the cation using the remaining peaks of the map
as pivots. The solution of the Tri-b-peptide shown in the last row of Table 8.1,
instead, was reached by using an envelope calculated from the correctly
estimated phases of seven low-order reflections.

8.4.7 Crystal Structure Prediction

A process even more challenging than structure determination is the prediction
of a crystal structure without the use of experimental information relevant to
that particular structure. This process, called crystal structure prediction (CSP),
would allow one to announce a crystal structure before any confirmation by
chemical synthesis or discovery in nature. The outcome of CSP is the prediction
of the atomic coordinates of the structural model, together with the space group
and cell constant specifications. The relation of CSP with powder diffraction
relies on the fact that a powder pattern can be calculated using this outcome,
which could further be used to identify a real compound not yet characterized.
Current methodologies allow the prediction of some organic molecules with no

more than 20 non-H atoms in the asymmetric units, with rigid structure or with a
limited amount of flexibility (no more than two torsion angles) and with no more
than one molecule per asymmetric unit.93 All the methods involve three stages:

� Construction of a three-dimensional molecular model either by molecular
mechanics methods or by analogy with other CSD structures;

� Generation of trial structures with different positions and orientations in
asymmetric units of varying dimensions and in various space groups, with
eventual modifications of the internal conformation.
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Table 8.1 Recent examples of organic structures solved by global optimization
methods applied to powder diffraction data.

Molecular structure
Internal
DOFs

Non H
atoms Algorithm Ref.

N
+

O−

OCl

Cl

0 11 Grid a

SH2N
O

O

4 19 MC b

CH3

HOCH3

H3C O
2 15 GA c

N S NH2

O

O

O

O

2 13 DE 81

S

N
S N

NH2

S

O

O

NH2N

H2N

H2N

6 20 SA 70

H3C

CH3

N

O

O

OH

CH3

H
8 22 SA 67

MC+MD 82

O

O

N

N

Cl

9 20 SA 92
SA+DM 91

O N N N O

O O O O

17 41 SA+
envelope

85

a K. Goubitz, E. J. Sonneveld, V. V. Chernyshev, A. V. Yatsenko, S. G. Zhukov, C. A. Reiss and H.
Schenk, Z. Kristallogr., 1999, 214, 469.

b M. Tremayne, E. J. MacLean, C. C. Tang and C. Glidewell, Acta Crystallogr., Sect. B, 1999, 55,
1068.

c K. Shankland, W. I. F. David, T. Csoka and L. McBride, Int. J. Pharm., 1998, 165, 117.
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� Global optimization through the parameter space using the lattice energy
as CF. It is generally parameterized according to atom–atom potentials of
the type in Equations (18) and (19), but more recent algorithms include
more elaborate intermolecular potentials.

Among the currently available methods we quote ZIP-PROMET,94 which can
only handle rigid models and generates the trial structures by a stepwise
construction of dimers and layers, UPACK95 which uses a grid search algorithm,
and Polymorph Predictor,96 which uses a SA search.
Among the computer programs producing predictions for inorganic structures

we cite GULP,97 which uses atomic potentials, and GRINSP,98 which uses aMC
algorithm whose CF depends exclusively on the weighted differences between
calculated and ideal interatomic first neighbor distances.

8.5 CONCLUSIONS AND OUTLOOK

The last decade has been characterized by the intensive development of new
algorithms, which has made easier the crystal structure solution from powder
data. Crystal structure determination of compounds with 20–40 atoms in the
asymmetric unit is now possible. DM advances have been accompanied by the
strong evolution of DST: their integration may be one of the most promising
tools for the near future.
DM are particularly suited for the cases in which the molecular geometry is

unknown. Their efficiency depends on the number of atoms in the asymmetric
unit, on the quality of the diffraction pattern and on the resolution of the data.
DM will profit from any improvement (deterministic or stochastic) of the full
pattern decomposition techniques.
DSTmethods are particularly competitive for organic compounds, which are

more resistant to the traditional approaches and whose structural models can
be easily guessed. At present, the complexity of crystal structures solved by
direct-space methods is essentially limited by the number of DOFs that can be
handled by the global optimization algorithms within a reasonable amount of
time. In prospect, improvement of both search algorithms and computer power
may overcome this limitation. The major pitfalls for the use of DST are:
(a) they are time consuming; (b) they are dependent on the existence of reliable
prior structural information. Partially incorrect models may compromise
the success of the procedure independent of the computer time spent; (c) they
are sensitive to the accuracy of the peak profile parameterization through peak-
shape and peak-width functions.99

In accordance with the above considerations, hybrid approaches involving
DM and DST seem to have the best prospects in the long run. In this contest,
the contribution of DM is to reduce the extension of the search space and to
allow the optimization of more than one molecule in the asymmetric unit; that
of DST is to make easier the solution for compounds with only light atoms,
even if measured by a home-built diffractometer.
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SYMBOLS AND NOTATION

N number of atoms in the unit
cell

fj scattering factor of the jth
atom

foj scattering factor of the atom
at rest

Zj atomic number of the jth atom
rj positional vector of the jth

atom
Bj isotropic thermal factor of the

jth atomFh ¼
XN
j¼1

fj exp 2pihrj
� �

¼
XN
j¼1

f oj exp �Bj
sin2 y

l2


 �
exp 2pihrj
� �

¼ Fhj j exp ijhð Þ

structure factor with vectorial
index hR (h,k,l). jh is its
phase.

DM Direct Methods
DST Direct-Space Techniques
PM Patterson Methods
MC Monte Carlo
SA Simulated Annealing
GA Genetic Algorithm
DOF Degree of Freedom
CF Cost Function
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CHAPTER 9

Rietveld Refinement

R. B. VON DREELE

IPNS/APS Argonne National Laboratory, Argonne, IL, USA

9.1 INTRODUCTION

A polycrystalline powder can be represented in reciprocal space as a set of nested
spherical shells positioned with their centers at the origin1 (Figure 9.1). These
shells arise from the reciprocal lattice points from the myriad (e.g. E109mm 3

for 1mm crystallites) of small crystals, ideally with random orientation, in the
sample (Chapter 1). Their magnitude is related to the crystalline structure
factors as well as the symmetry driven overlaps (i.e. reflection multiplicities)
and are affected by systematic effects (e.g. Lorentz and polarization, absorption,
extinction and preferred orientation). The structure factors and their systematic
effects are discussed elsewhere in this volume (Chapter 3). These shells have
some thickness or broadening from instrumental effects and the characteristics
of the crystalline grains themselves; details are given in Chapters 5, 6 and 13. An
experimentally measured powder diffraction pattern is a scan through this suite
of shells, which by its nature, is a smooth curve consisting of a sequence of peaks
resting upon a slowly varying background.
Techniques for obtaining these data are discussed in Chapter 2.
Early data analysis attempted to extract values of the individual structure

factors from peak envelopes and then apply standard single crystal methods to
obtain structural information. This approach was severely limited because the
relatively broad peaks in a powder pattern resulted in substantial reflection
overlap and the number of usable structure factors that could be obtained in
this way was very small. Consequently, only very simple crystal structures
could be examined by this method. For example, the neutron diffraction study
of defects in CaF2-YF3 fluorite solid solutions2 used 20 reflection intensities to
determine values for eight structural parameters. To overcome this limitation,
H. M. Rietveld3,4 realized that a neutron powder diffraction pattern is a
smooth curve that consists of Gaussian peaks on top of a smooth background
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and that the best way of extracting the maximum information from it was to
write a mathematical expression to represent the observed intensity at every
step in this pattern:

Yc ¼ Yb þ
X

Yh ð1Þ

This expression has both a contribution from the background (Yb) and each of the
Bragg reflections (Yh; h¼ hkl) that are near the powder pattern step (Figure 9.2).

• • • • • • • • •

• • • • • • • • •

d*

• • • • • • • • •

• • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

d*

1/λ

so

s

Ewald sphere

2Θ

Smear in 3D

Spherical reflection shells

Figure 9.1 Reciprocal space construction for a powder diffraction experiment. The
myriad reciprocal lattice points for the crystallites combine to form nested
spherical shells centered at the reciprocal space origin.

Figure 9.2 Portion of a powder diffraction pattern showing the contributions to the
calculated pattern from 15 reflections above a small flat background.
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Each of these components is represented by a mathematical model that embodies
both the crystalline and noncrystalline features of a powder diffraction experi-
ment.
The adjustable parameters for this model are refined by a least-squares

minimization of the weighted differences between the observed and calculated
intensities. The study by Loopstra and Rietveld5 on Sr3UO6 with 42 structural
parameters clearly showed the power of this technique compared to the
integrated intensity methods used earlier. This approach to the analysis of
powder patterns has been so successful6 12 that it led to a renaissance in powder
diffraction and this technique of treating powder diffraction data is now known
as ‘‘Rietveld refinement.’’

9.2 RIETVELD THEORY

9.2.1 Least Squares

Since a powder diffraction pattern is a set of peaks, some overlapped, super-
imposed on a smooth and slowly varying background, a Rietveld refinement
can be thought of as a very complex curve fitting problem. The model function
[Equation (1)] is parameterized by both the crystal structure (atomic coordi-
nates, thermal displacements and site occupancies) and by the diffraction
experiment (unit cell, peak profile broadening, etc.) via mostly nonlinear and
transcendental analytical expressions. Since the powder diffraction pattern is
usually obtained via particle (X-ray photon or neutron) counting techniques
(Chapter 2), the intensities have a Poisson distribution about their expected
value. Given sufficient counts (420) in every powder profile step this distri-
bution is indistinguishable from a Gaussian one and in any case has a well-
defined 2nd moment. Consequently, when the number of observations (powder
profile points in this case) exceeds the number of parameters, a minimization of:

M ¼
X

wðYo � YcÞ2 ð2Þ

by least-squares will give parameter estimates of minimum variance in any
linear combination.13 The weight, w, is computed from the variance in Yo and it
is generally assumed that there are no nonzero covariances between different Yo

across the powder pattern. The calculated powder profile intensity, Yc, is given
by:

Yc ¼ K Fhj j2HðDThÞ ð3Þ

where K is the product of the various correction and scaling factors to the
reflection intensities |Fh|

2 (Chapter 3) and H(DTh) is the value of the profile
function for the location of the profile point relative to the reflection Bragg
position (Chapters 5, 6 and 13).
One can think of the minimization Equation (2) as describing a slightly noisy

multidimensional surface with a very small number of very deep minima that
correspond to the possible solutions to the problem. Notably, the minima are
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not always equivalent; some may be ‘‘false minima’’ and describe incorrect
solutions.
Since Equation (3) is nonlinear and transcendental (i.e. invokes trigonometric

functions), the usual linear version of least-squares analysis can not be used. The
method is to approximate the expression for Yc as a Taylor series and only
retain the first term:

YcðpiÞ ¼ YcðaiÞ þ
X
i

@Yc

@pi
Dpi ð4Þ

The minimum is found from the first derivative of Equation (2):

X
wðYo � YcÞ

@Yc

@pj
¼ 0 ð5Þ

or by substitution:

X
w DY �

X
i

@Yc

@pi
Dpi

" #
@Yc

@pj
¼ 0 DY ¼ Yo � YcðaiÞ ð6Þ

After rearrangement:

X
w
@Yc

@pj

X
i

@Yc

@pi
Dpi

 !
¼
X

wDY
@Yc

@pj
ð7Þ

This is the suite of normal equations; there is one for each parameter shift, Dpi.
By accumulating terms, these equations can be given, in matrix form, from the
following:

ai;j ¼
X

w
@Yc

@pi

@Yc

@pj
xj ¼ Dpj vi ¼

X
wðDYÞ @Yc

@pi
ð8Þ

to give:

Ax ¼ v ð9Þ

This matrix equation is solved for the desired parameter shifts by:

A 1Ax ¼ A 1v x ¼ A 1v ¼ Bv xj ¼ Dpj ð10Þ

The inverse matrix, B, is normalized by the reduced w2 [Equation (13)] to give
the variance-covariance matrix. The square roots of the diagonal elements of
this normalized matrix are the estimated errors in the values of the shifts and,
thus, those for the parameters themselves. These error estimates are based
solely on the statistical errors in the original powder diffraction pattern
intensities and can not accommodate the possible discrepancies arising from
systematic flaws in the model. Consequently, the models used to describe the
powder diffraction profile must accurately represent a close correspondence to
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the scattering process that gives rise to features in the observed pattern to avoid
significant systematic errors.
The result of a Taylor series approximation is that the computed shifts, Dpi,

is not accurate yielding a fully minimized solution to the problem, but are a
(hopefully) better approximation. Consequently, the new parameter values are
used for a subsequent refinement cycle; this process is repeated until the
parameter shifts are less than some fraction of their estimated errors as
obtained from the diagonal elements of the B matrix.
Implicit in this approach is that an initial estimate of all the parameters [ai,

Equation (4)] must be provided beforehand. These estimates must place the
value of the minimization function within one (preferably the ‘‘best’’) well in
the M-surface.
The quality of the least squares refinement is indicated by some residual

functions:

Rp ¼
P

Yo � Ycj jP
Yo

ð11Þ

and:

Rwp ¼
MP
wY2

o

s
ð12Þ

Notice that the ‘‘weighted’’ residual, Rwp, contains the factor, M, that is
minimized by the least squares; thus it is the only statistically relevant residual.
The reduced w2 or ‘‘goodness of fit’’ is defined from the minimization function
as:

w2 ¼ M= Nobs �Nvarð Þ ð13Þ

and the ‘‘expected Rwp’’ from:

RwpðexpÞ ¼ Rwp

.
w2

p
ð14Þ

If the weights for the observations are chosen ‘‘properly’’ (i.e. as reciprocal
variances) then the value of reduced w2 will be somewhat greater than unity for
an optimal refinement. Misscaled variances will drive this value away from
unity without affecting the value of Rwp. As recently noted by Mercier et al.,14,15

inversion of the A matrix developed in a Rietveld refinement is frequently
plagued by poor numerical conditioning due to the extreme range of the
individual partial derivatives. This had been noted for some time by many
developers of the Rietveld refinement codes (e.g. GSAS by Larson and Von
Dreele16) and one solution is to employ a normalization process to the matrix
before inversion. The simplest is to apply the following:

A0
ij ¼

Aij

AiiAjj

p ð15Þ
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After inversion of A0, the required inverse matrix is obtained by applying the
same correction to every element:

Bij ¼
B0

ij

AiiAjj

p ð16Þ

This eliminates those least squares instabilities in Rietveld refinements that
arise from rounding error limitations in computer calculations.

9.3 CONSTRAINTS AND RESTRAINTS

9.3.1 Introduction

A crystal structure is described by a collection of parameters that give the
arrangement of the atoms, their motions and the probability that each atom
occupies a given location. These parameters are the atomic fractional coordi-
nates, atomic displacement or thermal parameters, and occupancy factors. A
scale factor then relates the calculated structure factors to the observed values.
This is the suite of parameters usually encountered in a single crystal structure
refinement. In the case of a Rietveld refinement an additional set of parameters
describes the powder diffraction profile via lattice parameters, profile para-
meters and background coefficients. Occasionally other parameters are used;
these describe preferred orientation or texture, absorption and other effects.
These parameters may be directly related to other parameters via space group
symmetry or by relations that are presumed to hold by the experimenter. These
relations can be described in the refinement as ‘‘constraints’’ and as they relate
the shifts, Dpi, in the parameters, they can be represented by

Dp0j ¼ kij Dpi ð17Þ

The kij are then the elements of a sparse rectangular matrix that relates the
suite of parameters of interest to a smaller set that are actually refined. This
reduces the number of partial derivatives via:

@Yc

@p0i
¼ 1

kij

@Yc

@pj
ð18Þ

In their simplest form, these constraints can be used for atomic sites on special
positions (e.g. x,x,x positions in cubic space groups) where there are special
relationships between the individual atomic coordinates and also among the
individual anisotropic thermal motion parameters (e.g. U11¼U22¼U33 and
U12¼U13¼U23 for cubic x,x,x sites).

9.3.2 Rigid Body Refinement

For large structures, the number of parameters required to describe them is
greater than can be determined from the diffraction data obtained in a single
experiment. This can be resolved by providing additional information to the
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refinement problem. Very frequently some part of the structure has well-known
stereochemical features. For example, it may have one (or more) phenyl
(-C6H5) groups, which can be assumed to be flat with uniform C–C, and
C–H distances. This information can be provided by various techniques,
depending on the effect one desires as well as the level of confidence in these
data. One way is to describe the molecular fragment as a ‘‘rigid body’’ that is
oriented and positioned within the crystal structure. The fragment is first
described in a local Cartesian coordinate system. Although this could be a
simple list of xyz coordinates, an alternative description can be made by
successive translations of the atoms from the Cartesian origin. For example,
a benzene ring can be built by two translations for the six carbon atoms and the
six hydrogen atoms starting from the centroid of the molecule (Figure 9.3).
In the first step the six C atoms and six H atoms are translated by t1 along the

vectors (1,0,0), (cos60,sin60,0), (�cos60,sin60,0), (�1,0,0), (�cos60,�sin60,0),
(cos60,–sin60,0). For the second step only the H atoms are translated by t2
along these vectors. The two translations can potentially be parameters in the
refinement, and this model preserves the D6h symmetry of the benzene mole-
cule. Alternative descriptions are possible in which the group is built by a
different sequence of translation scales and vectors from a different choice of
origin that gives a different flexibility to the model. For example, the C6H5

phenyl group may be built from the C atom that forms the attachment point
with a sequence of four translations that follow the bonding pattern and allow
the three types of C–C bond lengths and the C–H bond length to be refined
separately. In more general terms the position of any atom, X¼ (X,Y,Z), in a
rigid body is given by:

X ¼
XNt

i¼1

tivi ð19Þ

where the ti are the translation scalars and vi are the associated vectors.
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C C
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t2 t2
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C

C

x

y

H H

H H
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t2t2

t2 t2

t2 t2
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Figure 9.3 A benzene ring developed in Cartesian coordinates by two translations,
one to place the C atoms and the other to further place the H atoms.
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The Cartesian atom coordinates can also be developed by a sequence of bond
translations, each with associated bond and torsion angles with respect to
previously placed atoms. This ‘‘Z-matrix’’ description17 is most useful for
relatively short chains of atoms; in long chains small changes in bond or
torsion angles at one end will induce very large atom position shifts at the
other. It also is not easily applied to cyclic molecules. For the Z-matrix scheme
in Figure 9.4, the first atom (A) is placed at the Cartesian origin and the second
(B) is placed along the X axis at the presumed bond distance (d2). The third
atom (C) is placed in the X,Y plane at the presumed bond distance (d3) from B
and the presumed angle (a3) with respect to the B–A bond. The fourth atom (D)
is then placed at a bond distance (d4) from the previously placed one, the bond
angle (a4) from the previous two and at a torsion angle (t4) with respect to the
previous three atoms. Succeeding atoms are placed via selection of three
parameters dn, an, and tn.
The rigid body is then oriented in preparation for inclusion within the

crystallographic unit cell by a sequence of rotations. These are defined as
rotations of the coordinate system about the Cartesian axes {X,Y,Z}:

Rxða1Þ ¼
1 0 0
0 cos a1 � sin a1
0 sin a1 cos a1

0
@

1
A for a rotation a1 about the X axis ð20aÞ

Ryða2Þ ¼
cos a2 0 sin a2
0 1 0

� sin a2 cos a2

0
@

1
A for a rotation a2 about the Y axis ð20bÞ

Rzða3Þ ¼
cos a3 � sin a3 0
sin a3 cos a3 0
0 0 1

0
@

1
A for a rotation a3 about the Z axis ð20cÞ

A

B C

D

d2

d3

d4

α3 α4 τ4

X

Y

Z

E
d5

α5

τ5

Figure 9.4 A Z matrix representation of a molecular chain.
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The order and number of these rotations is selected to properly orient the
group within the crystal structure. Although only three rotations at most are
required for any conceivable molecular orientation, additional rotations could
be used to allow ‘‘preorientation’’ of a group so that a refined rotation can
occur about some ‘‘natural’’ direction in the crystal structure. The rigid body
coordinates then transform by:

X0 ¼ Raða3ÞRaða2ÞRaða1ÞX where a is one of X;YorZ ð21Þ

The coordinates of oriented rigid body group are then transformed into the
crystallographic coordinate system defined by the unit cell axes {a,b,c} and then
the origin of the group is translated to the appropriate location within the unit
cell. Given the crystal to Cartesian transformation matrix:

L ¼
a b cos g c cos b
0 b sin a� sin g 0
0 �b cos a� sin g c sin b

0
@

1
A ð22Þ

the rigid body atom locations in the crystal structure are given by:

x ¼ L 1X0 þ t ð23Þ

Thus, a small set of parameters can be used to describe the position and
orientation of a large group of atoms. Equations (19–23) are used to form
elements of the sparse matrix that transforms the set of atomic coordinate
parameters into a smaller set of variables determined by the least squares
refinement via Equations (17) and (18).

9.3.3 Rigid Body Refinement of Fe[OP(C6H5)3]4Cl2FeCl4

As an example we describe the refinement of Fe[OP(C6H5)3]4Cl2FeCl4,
employing rigid body descriptions of the various molecular fragments that
make up this structure.18 As seen in Figure 9.5, this structure is composed of
two molecular fragments; one is a simple FeCl4 tetrahedron and the other is a
six-coordinate iron complex with four triphenylphosphine oxide, OP(C6H5)3,
ligands and two chlorides. A ‘‘free’’ refinement of this crystal structure requires
the adjustment of the positions of 88 non-hydrogen atoms or 264 parameters.
The X-ray diffraction data obtained from this material with CoKa radiation on
a laboratory instrument was insufficient (dmin¼ 1.39 Å) to allow a meaningful
refinement for this problem. Thus, a rigid body description was constructed
using the software program GSAS16 that fixes the stereochemistry of those
parts of this structure that are assumed to be well known from comparison with
other structures.
The FeCl4 anion is assumed to have an idealized tetrahedral symmetry, thus

forming one rigid body with only its position, angular orientation and the
Fe–Cl bond length as adjustable parameters (Figure 9.6). Thus 15 atomic
coordinates are replaced by seven rigid body parameters. In this figure the five
atoms are represented by five vectors, one null for the Fe atom and four that
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point to the vertices of a tetrahedron over a distance of 2.1 Å for the four Cl
atoms. This distance will be adjusted in the rigid body refinement. The Fe atom
is then at the origin of this rigid body and six parameters will be used to
describe its location and orientation.
A more complex model is required for the triphenylphosphine oxide group

(Figure 9.7). Two rigid bodies are defined both with the P atom as their origin.
The first consists of just the P and O atoms as a simple linear group oriented
along the positive Cartesian Z-axis; the P–O bond (1.4 Å) is refined. The second
describes the position of the six C atoms relative to the P atom position arranged
along the negative Z-axis; the P–C (1.6 Å) and C–C (1.38 Å) bond lengths are
refined. This choice of common origin is important as the rigid body translations
and rotations are all defined about their respective origins.

Figure 9.5 Molecular structure of Fe[OP(C6H5)3]4Cl2
1FeCl4

�.

z

x

y

Fe - 

Cl1
Cl2

Cl3Cl4

1 translation, 5 vectors 

Fe [    0,      0,        0     ] 

Cl1 [ sin(54.75), 0,     cos(54.75)] 

Cl2 [ -sin(54,75), 0,     cos(54.75)] 

Cl3 [   0,  sin(54.75),  -cos(54.75)] 

Cl4 [   0,  -sin(54.75),  -cos(54.75)] 

D=2.1Å

Figure 9.6 Rigid body description of FeCl4
� anion.
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Each triphenylphosphine oxide ligand is then assembled from one PO and
three C6 rigid bodies (Figure 9.8). The first two rotations, R1(x) and R2(y)
position the OP group about the P atom position such that the O atom forms a
reasonable bond with Fe; there are four sets of these for the four OP(C6)3
ligands giving eight parameters. Each P atom has an x,y,z crystallographic
coordinate for 12 more parameters. The three additional rotations R3(z), R4(x)
and R5(z) are applied to each of the three C6 groups to position them about
each P atom. The P5(z) rotations describe the ‘‘twist’’ of each C6 group about its
P–C bond; these are 12 more parameters. The initial P4(x) rotation is 70.551 and
P3(z) rotations are 01, 1201 and 2401 apart to give tetrahedral stereochemistry
for the POC3 bonds. These are refined so that the P4(x) rotation is identical for
all four OP(C6)3 ligands and the three P3(z) rotations on each ligand retain their
relative 1201 differences; this yields five more parameters. Figure 9.8 shows the

P O
C1

C3

C2C4

C6

C5

z

x

P [ 0, 0, 0]
O [0, 0, 1] 
D=1.4Å 

C1-C6 [0,  0,  -1] 
D1=1.6Å 

C1 [  0,     0,    0 ] 
C2 [ sin(60),  0,  -1/2 ] 
C3 [-sin(60),  0,  -1/2 ] 
C4 [ sin(60),  0,  -3/2 ] 
C5 [-sin(60),  0,  -3/2 ] 

C6 [  0,     0,   -2  ] 
D2=1.38Å 

DD1
D2

Figure 9.7 Rigid body descriptions of the PO and PC6 groups.

Rigid body rotations – about P atom origin

For PO group – R1(x) & R2(y) – 4 sets

For C6 group – R1(x), R2(y), R3(z), R4(x), R5(z)

3 for each PO; R3(z)=0, 120, & 240; R4(x)=70.55 

Transform: X’=R1(x)R2(y)R3(z)R4(x)R5(z)X

P

O

C

C C

C C

C

z

x

y

R1(x)

R2(y)
R3(z)

R5(z) R4(x)

Fe

47 structural variables

Figure 9.8 Assembly of PO and C6 rigid bodies with applied rotations.
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order of the coordinate transforms for the five rotations. These can be under-
stood easily by considering them in reverse (R5 to R1); the rotation R5 twists the
C6 group about the P–C bond, R4 then tilts the C6 group to a near tetrahedral
angle (70.61), R3 then positions each of the three C6 groups on the three legs of
the tetrahedron, R2 and R1 then position the P(C6)3 on the complex with iron.
With this model the structure is described by 47 rigid body parameters with an
additional nine x,y,z parameters (for the FeCl2 part of the complex) compared
to 264 required for a completely free refinement of 88 atoms. Figure 9.9 shows
the powder profile fit with this model.

9.3.4 Stereochemical Restraint Refinement

An alternative method for providing the additional information to a structure
refinement is to include as additional observations the values and associated
estimates of their errors of various stereochemical features. These additional
observations provide additional terms to the least-squares minimization func-
tion:

M ¼
X

wYiðYoi � YciÞ2 þ fa
X

waiðaoi � aciÞ2

þ fd
X

wdiðdoi � dciÞ2 þ fp
X

wpið�pciÞ2
ð24Þ

For the minimization function in a Rietveld refinement including stereo-
chemical restraints, the terms are: Y – powder pattern, a – bond angles,

Figure 9.9 Result of final rigid body refinement of Fe[OP(C6H5)3]4Cl2[FeCl4].
Observed profile is indicated by (+), calculated and difference curves
are shown and reflection positions are marked as (|).
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d – bond distances, and p – deviations from best plane. The weight factors, f,
are chosen to balance the various contributions and prevent any excess impact
by any suite of terms. The individual observation weights are determined from
the standard uncertainty associated with each observation.
Unlike the rigid body formulation, the use of restraints does not result in a

reduction in the number of parameters used to describe a crystal structure, but
it includes additional stereochemical information to augment the suite of
diffraction observations (i.e. the powder pattern), thus permitting a full refine-
ment of the structure.
For the Fe[OP(C6H5)3]4FeCl4 example considered above, bond length

restraints for six Fe–Cl (2.21 Å), four P–O (1.48 Å), 12 P–C (1.75 Å), and 72 C–
C (1.36 Å) can be used along with tetrahedral angles (109.51) for the 12 O–P–C, 12
C–P–C and six Cl–Fe–Cl angles and the hexagonal value (1201) for 72 C–C–C
and 24 P–C–C angles. In addition the six C atoms in each phenyl ring can be
considered to be coplanar, giving an additional 72 restraints on their positions.
Thus, a total of 290 stereochemical restraint terms are added to the minimiza-
tion function for the refinement of the 264 atomic coordinates needed for the 88
atoms in this complex. The powder profile fit for this refinement is shown in
Figure 9.10 and a comparison between the two refinements is shown in Figure
9.11. A closer fit as indicated by the profile residuals was obtained here, most
likely due to the larger number of parameters in the refinement. The results are
very similar; the small differences arise from the difference between the rigid

Figure 9.10 Result of final stereochemical restraint refinement of the complex
Fe[OP(C6H5)3]4Cl2[FeCl4]. Observed profile is indicated by (+), calcu
lated and difference curves are shown and reflection positions are
marked as (|).
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body model and the stereochemical restraint model. These constrain/restrain
the refinement in slightly different ways.

9.3.5 Protein Powder Refinements

The crystal structures of proteins represent an extreme in the number of atom
positions needed to describe them compared to those structures more com-
monly studied by powder diffraction. For example, the well-known tetragonal
crystal structure of hen egg white lysozyme has 1001 nonhydrogen atoms within
the protein molecule; another 100 or so water molecules and salt ions are also
present. This gives over 3000 atomic x,y,z coordinates. Nonetheless, a Rietveld
refinement of these structures from powder diffraction data can be performed
by extending the suite of restraints to include all stereochemical features that
show characteristic values.19,20 The suite of restraints given in Equation (24) is
then:

M ¼
X

wYiðYoi � YciÞ2 þ fa
X

waiðaoi � aciÞ2 þ fd
X

wdiðdoi � dciÞ2

þ fp
X

wpið�pciÞ2 þ fx
X

wxiðxoi � xciÞ2 þ fv
X

wviðvoi � vciÞ4

þ fh
X

whiðhoi � hciÞ2 þ ft
X

wtið�tciÞ2 þ fR
X

wRið�RciÞ2
ð25Þ

with additional terms for chiral volume, x, van der Waals ‘‘bump’’, v, hydrogen
bond, h, torsion angle, t, and torsion angle pair, R, restraints. The characteristic
values for these restraints are obtained from the results of high-resolution
single-crystal protein structures21 and those of small peptides.22 The torsion
angle and paired torsion angle restraints present a particular difficulty as these

Figure 9.11 Superposition of the rigid body and stereochemical restrained refine
ments of Fe[OP(C6H5)3]4Cl2[FeCl4].
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have no single preferred value (unlike, for example, a bond angle).23 These
restraints can be formulated as pseudopotentials19,20,24 determined from the
observed distribution of these values in high-resolution protein structures. This
allows the restraint to have multiple preferred values and can accommodate the
coupling of the two torsion angles, f and c, as present in, for example, the
protein backbone.25
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CHAPTER 10

The Derivative Difference Minimization
Method

LEONID A. SOLOVYOV

Institute of Chemistry and Chemical Technology, K. Marx av., 42, 660049
Krasnoyarsk, Russia

10.1 INTRODUCTION

The extensive practice of using the full-profile approach to powder diffraction
data analysis has validated it to be the best way of extracting precise and
comprehensive information. An evident advantage of this approach is the
possibility of using experimental data in the original form of a whole diffraction
pattern. This advantage is utilized in the Rietveld1 method of structure
refinement from powder data and in many other techniques of structural,
microstructural, and quantitative phase analysis. Most generally applied
routines of full-profile fitting are based on the minimization of the squared
differences between the observed and calculated powder profiles at each data
point. Achieving this goal requires the modelling of all of the scattering
contributions to a powder pattern, including the background. In simple cases,
the background can be estimated and subtracted from the experimental
pattern,2 5 or modelled by physically based functions.6,7 However, as a
rule, the background line is very difficult to describe correctly, since it is a
complex convolution of diverse components originating from the sample itself,
amorphous and semi-crystalline admixtures, the sample holder and other
sources. The problem of the background curve ambiguity, which increases
with increasing diffraction peak overlap, is commonly approached by applying
empirical functions such as polynomial or Fourier series. None of these
approximations can provide an adequate general description of the background
line. As a result, systematic errors caused by inadequate background definitions
limit the precision and applicability of full-profile data analysis.
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This chapter is devoted to the recently proposed derivative difference mini-
mization (DDM) method,8 which allows full-profile refinement independently of
the background. In this method the refinement is aimed not at minimizing the
absolute difference between the observed and calculated patterns, but at
minimizing the oscillations (or curvature) of the difference curve. The difference
curve is considered as an estimation of background which, in the absence
of crystalline admixtures, usually varies much less rapidly along the powder
profile than does the diffraction pattern. Thus, the DDM procedure is aimed at
finding such a calculated diffraction pattern that gives the smoothest difference
after being subtracted from the observed powder profile. This procedure does
not involve background line modelling or approximations, thus avoiding the
background-related systematic errors.

10.2 DERIVATIVE DIFFERENCE MINIMIZATION PRINCIPLE

As a measure of the difference curvature and oscillations, the squared values
of its derivatives may be used. The respective minimization function is
given by:

MF
X

w1 @

@y
ðYo YcÞ

� �2
þw2 @2

@y2
ðYo YcÞ

� �2
þ . . .þ wk @k

@yk
ðYo YcÞ

� �2( )
ð1Þ

where Yo and Yc are the observed and calculated profile intensities, respecti-
vely, y is the diffraction angle, w is the weight and the sum is over the entire
powder profile. Applying the Savitzky–Golay (SG) formalism9 for calculating
derivatives, the minimization function may be rewritten as:

MF ¼
XN m

i¼mþ1

X
k

wk
i

Xm
j¼ m

ckj Diþj

 !2

ð2Þ

where ckj are the SG coefficients for the derivative of order k with the profile
convolution interval [�m, m], N is the number of profile points, and D is the
profile difference (D¼Yo�Yc). The refinement of variable parameters, vr, is
carried out by solving the normal equations corresponding to the minimum of
Equation (2):

X
k

XN m

i¼mþ1
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i

Xm
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ckj Diþj
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�
Xm
j¼ m

ckj
@Yc;iþj

@vr

 !
¼ 0 ð3Þ
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i ¼

Xm
j¼ m

ðckj Þ
2ðsiþjÞ2

" # 1

ð4Þ

where si is the variance in the observed profile intensity Yoi. The sum in
Equation (4) represents the estimated squared variance in the SG derivative of
order k for the ith profile point. The standard deviations of the refined
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parameters are estimated from Equation (5):

si ¼ A 1
ii MF=ðN � Pþ CÞ

� �1=2 ð5Þ

where Aii
1 is the diagonal element in the inverted normal matrix, N is the

number of observations, P is the number of refined parameters and C is the
total number of constraints.
For a practical application, the set of k derivatives needs to be restricted

to a finite number. Test runs of the procedure gave satisfactory results using the
first and second derivatives calculated applying the SG coefficients for the
second-degree polynomial. When minimizing only the first-order derivative,
the refinement was less stable since, presumably, the first derivative has values
close to zero in the regions of the diffraction peak maxima, thus reducing the
contribution of these regions to the minimization function. The SG coefficients
for the first and second derivatives with the convolution interval [�m, m] can be
expressed as:

c1j ¼
3j

mðmþ 1Þð2mþ 1Þ ð6Þ

c2j ¼
45 j2 � 15mðmþ 1Þ

mðmþ 1Þð2mþ 1Þ½4mðmþ 1Þ � 3� ð7Þ

Equation (7) contained an error in the original paper on DDM,8 which was
later corrected.10

The reliability factor for DDM may be calculated analogously to that for
Rietveld refinement as a normalized sum of the squared derivative difference
over the powder profile. However, the value of such a reliability factor will
depend on the convolution interval choice. For instance, for wider convolution
intervals the R factor will be lower, as the wider the intervals the smoother the
derivative curve. A less interval-dependent R factor can be calculated as:

RDDM ¼

P
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PN m
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i¼mþ1

wk
i

Pm
j¼ m

ckj Yo;iþj

 !2
þ
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i¼mþ1

wi Yoi �
Pm

j¼ m

c0j Yo;iþj

 !2

PN m

i¼mþ1
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2
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vuuuuuuuut ð8Þ

The second summand in Equation (8) characterizes the quality of the SG
smoothing of the observed profile. This term will increase with increasing
convolution interval, since with wider convolution intervals the quality of the
SG polynomial fit is worse. Such a composite R factor allows a partial
compensation of the RDDM dependence on the convolution interval.
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The choice of the convolution intervals for each data point requires special
consideration since it influences the results of the DDM application. On the one
hand, the intervals should be narrow enough to provide an adequate calculation
of the derivatives. On the other hand, they should be wide enough to
take into account long modulations of the difference curve. A derivative of
the profile difference can, alternatively, be considered as a difference in the
derivatives of the observed and the calculated profiles. Since the SG coefficients
are calculated from a polynomial fitted to the convoluted profile region, the
optimal interval should be the maximal one that provides an adequate poly-
nomial fitting of the observed profile. For simplicity, the intervals can be chosen
to be equal to the average full-width at half-maximum (FWHM) of the
diffraction peaks. Preliminary tests of the procedure showed that such a choice
provided stable refinement. However, better results were achieved by applying
flexible convolution intervals for each profile point.
The optimal intervals can be assigned on the basis of the counting statistics.

The assignment procedure consists in finding the widest interval for which the
average deviation of the observed profile intensities from the SG polynomial
does not exceed their variances at each point of the convoluted profile region.
Such a procedure generates narrower convolution intervals for the powder
pattern regions with intense well-resolved diffraction peaks, and wider intervals
for the regions with small and/or overlapped peaks. For noisy data and when
the background curvature is apparently high the maximal allowed interval
width should be restricted to a reasonable value to let the difference be adequate
by curvature with the background line. Figure 10.1 shows a fragment of an
XRD pattern of [Pt(NH3)2(C2O4)] after the DDM refinement of the structure
with different maximal convolution intervals (C-max) allowed. One may see
that with wider C-max the difference profile has higher oscillations but lower
overall curvature. With narrower C-max the difference profile is less oscillatory,
but of higher overall curvature. Notably, the quality of structural parameters
obtained by DDM with C-max¼ 0.41 2y was somewhat better than that with
wider C-max, which was also reflected in lower R factors. In this example
the choice of narrower C-max led to better DDM refinement results due to
the presence of local background maxima on the XRD pattern attributed,
presumably, to an amorphous admixture. In other cases, however, when the
real background curvature is apparently low, the choice of wider C-max
intervals may be more appropriate.

10.3 DDM DECOMPOSITION PROCEDURE

The initial stages of powder diffraction structure analysis often require
the decomposition of the powder pattern into individual Bragg components
without reference to a structural model. The DDM-based decomposition
procedure11 consists in finding additions to the calculated (or initially set)
reflection intensities for minimizing the squared derivatives of the difference
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diffraction profile. The calculated profile intensity in the ith profile point is
defined as:

Yci ¼
X
n

IcnfnðyiÞ ð9Þ

where Icn is the calculated intensity of the nth reflection, f(y) is the peak-shape
function, and the sum is over the whole set of reflections contributing to the
profile point. In accordance with the DDM methodology, the minimization
function for an individual reflection can be written as:
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Figure 10.1 Fragment of weighted observed (top solid), calculated (middle dashed),
and difference (bottom solid) XRD powder profiles for [Pt(NH3)2(C2O4)]
after DDM refinement with different maximal convolution intervals
C max allowed. (a) C max¼ 21 2y, RDDM¼ 0.075, RB¼ 0.030; (b)
C max¼ 0.41 2y, RDDM¼ 0.063, RB¼ 0.026.
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where d is the sought addition to the reflection intensity and the sum is over the
profile area to which the reflection contributes. Restricting the derivatives in
MF to first and second order and minimizing with respect to d gives:
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from which:
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Using the SG coefficients one may rewrite Equation (12) as:

d ¼
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Considering the peak overlap, because of which several reflections may con-
tribute to the same profile area, the addition d should be reduced by an
appropriate overlap correction. Finally, the estimated ‘‘observed’’ reflection
intensity is given by:

Iobs ¼ Ic þ d
f ðy0ÞIc
Y0

c

ð14Þ

Y0
c ¼

X
n

Icnfnðy0Þ ð15Þ

where y0 is the reflection position, f(y0) and Yc
0 are the values of the peak-shape

function and the calculated profile intensity in the position y0; d is obtained
from Equation (13). The multiplier after d in Equation (14) represents the
overlap correction factor.
The result of the application of the DDM decomposition formula Equation

(14) is similar to that of Rietveld’s approximation for Iobs,
1 except that it is

DDM-oriented and thus does not require a background definition. In the
DDM program12 the formula is also used for the Bragg R factor calculation.
For single non-overlapped peaks or a set of peaks with the same position, the
DDM decomposition directly gives the best estimate for Iobs. For partly
overlapped peaks it should be iterated to arrive at an optimized set of Iobs
similarly to the Le Bail method.13 The starting intensities Ic can either be
calculated from an existing structure model or set arbitrarily when the model is
absent. Notably, for fully overlapped peaks the DDM decomposition
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procedure automatically preserves the initial set ratio of intensities, which is
important when the values of Iobs are used in the difference Fourier map
calculations.

10.4 RESULTS AND DISCUSSION

10.4.1 Tests on Simulated and Real Data

The DDM algorithm can be readily adapted to any full-profile refinement
routine. It was included into the computer program DDM,12 which is based on
a modified and corrected code of BDWS-9006PC.14 A variant of DDM has
recently been implemented in the BGMN15 program.
The method was initially tested using simulated powder X-ray diffraction

(XRD) patterns. Numerous DDM runs starting from randomly altered struct-
ure and profile parameters showed stable and correct refinement, equivalent by
the convergence rate to the least-squares Rietveld refinement. The original
structure models used for generating the test simulated patterns were repro-
duced by DDM completely up to the isotropic displacement parameters.
Comparative Rietveld and DDM refinements were performed on simulated
data with added statistical noise and a polynomial background of moderate
curvature. In these tests both DDM and Rietveld procedures were shown to
have the same accuracy.8 Figure 10.2 illustrates the results of DDM run on a
simulated XRD pattern of Ag2[Pd(NH3)2(SO3)2]

16 with an added randomly
modulated highly curved background and statistical noise. DDM was started
from randomly altered parameters (with 0.5–1.0 Å displacement of the atomic
positions) and demonstrated a stable convergence. The test structure model was
reproduced with less than 0.01 Å deviations in the interatomic distances. The
only notable bias from the test model was in lower (by B0.5–0.7 Å2) isotropic
displacement parameters, Biso. The randomly curved background line was
rendered by the difference curve in detail.
The first tests of DDM on experimental XRD data of [Pd(NH3)4](C2O4) and

neutron diffraction data of (C5H6N)Al3F10 have validated its capacities for
high precision structural analysis.8 The crystal structure of [Pd(NH3)4](C2O4)
was earlier solved by Patterson search and refined by Rietveld method.17 Its
re-refinement by DDM gave a better structural geometry. A smaller imbalance
in the C–O distances and O–C–C angles of the oxalate molecule was obtained,
and the C–C distance was much closer to that usually determined for oxalates.
The problem with the Rietveld refinement in this case was, in particular, due to
a local maximum of the background curve, which was not adequately modelled
by the polynomial function applied in the earlier study. The structure solution
and Rietveld refinement of (C5H6N)Al3F10, performed in the framework of the
‘‘DuPont Powder Challenge’’, was seriously complicated by the low quality of
the diffraction data (Figure 10.3) as a result of strong anisotropic peak
broadening and complex background curvature.18 In the process of structure
determination, the background was approximated by an enhanced variant of
the algorithm described by Sonneveld and Visser.2 Rietveld refinement of the
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Figure 10.2 Results of DDM refinement for simulated XRD pattern with randomly
modulated background and statistical noise added. The simulated (1),
calculated (2), difference (3), difference first derivative (4) and difference
second derivative (5) profiles are shown at the initial stage (a) and after 15
cycles of DDM (b). The bold dashed line depicts the background curve
added.
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structure was performed using the shifted Chebyshev background functions
and applying constraints on interatomic distances, without which the structure
geometry was not satisfactory. With DDM, the structure was refined success-
fully without geometrical constraints and without background modelling.8

The sensitivity of DDM refinement to light atom positions, namely to H
atoms, was examined on laboratory XRD data for trans-[Pd(NH3)2(NO2)2].
The Rietveld refinement of this structure was earlier carried out with rigid
constraints on the NH3 geometry.19 Attempts at unconstrained Rietveld
refinement of H-atom positions resulted in a serious distortion of the amino-
group geometry. By applying DDM, the H-atom positions were refined
successfully, giving an acceptable molecular geometry and a reasonable hydro-
gen bonding system. This example is included into the DDM program
package.12 Additionally, the Rietveld and DDM procedures were tested on
simulated XRD data for the same compound. The simulated XRD profile was
generated from the structure model with an idealized geometry of NH3 and
added by a polynomial background and statistical noise. The results are
summarized in Table 10.1. For the simulated data both Rietveld refinement
and DDM demonstrated the same accuracy, but for real data the geometric
parameters of H atoms obtained by DDMwere essentially better. In these tests,
the same set of structural and profile parameters were refined by both Rietveld
and DDM methods, except the polynomial background parameters used in the
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Figure 10.3 Experimental (top), calculated (bottom) and difference (middle dotted)
neutron powder diffraction profiles after DDM refinement of the
(C5H6N)Al3F10 structure (shown in insert).
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Rietveld refinement. Evidently, the reason for the problematic Rietveld refine-
ment of H-atom positions in this example was in the inaccuracy of the
background model.
The successful testing of DDM method for structure refinement purposes

allows us to predict its applicability in other fields of powder diffraction, such as
the analysis of microstructure and quantitative phase analysis (QPA). Trial
runs of DDM for the XRD data supplied by the International Union of
Crystallography Commission on Powder Diffraction for the Size-Strain and
QPA round-robins gave encouraging results. Respective examples are included
in the DDM program package.12 In particular, the biases in the phase contents
determined by DDM refinement for the QPA round-robin samples from the
weighted amounts were less than 1 wt.%.

10.4.2 Applications of DDM

The first applications of DDM in the structural studies of polycrystalline8,11,20

and mesostructured substances21 23 have demonstrated its capacities for
obtaining precise structure characteristics from diffraction data with various
background complexities. DDM was used in the structure refinement and
analysis of a series of nickel and iron methylimidazole hexafluorophosphates
and tetrafluoroborates obtained in a sonochemical reaction.20 Due to the
specific synthesis procedure, the substances were highly disordered and their
XRD powder patterns contained a background of complex curvature, indicat-
ing the presence of an amorphous admixture. Despite these difficulties, the
structures were successfully refined by DDM and analyzed in detail.
The crystal structure of the potassium salt of 1-(tetrazol-5-yl)-2-nitroguanidine

[K(C2H3N8O2)] was solved and refined from laboratory X-ray powder diffrac-
tion data by applying the DDM decomposition and refinement methods.11

The structure model was found from a Patterson search, for which the
reflection intensities were derived from the powder profile by the DDM
decomposition. The use of DDM allowed successful location and uncon-
strained refinement of all the atomic positions, including those of three

Table 10.1 Geometric parameters of the NH3 group in trans-
[Pd(NH3)2(NO2)2] obtained from unconstrained DDM and
Rietveld refinements for real and simulated powder XRD data.

Source of data

Bond length (Å) Bond angles (1)

N H1 N H2 N H3 H1 N H2 H2 N H3 H3 N H1

DDM, real data 0.88(15) 0.84(12) 1.09(14) 106(11) 119(10) 98(11)
Rietveld, real data 0.99(8) 1.32(9) 1.11(8) 129(6) 89(5) 91(5)
DDM, simulated

data
0.97(4) 0.97(5) 0.89(5) 118(4) 108(4) 101(4)

Rietveld, simulated
data

0.93(4) 0.94(5) 0.83(5) 112(4) 103(4) 112(4)

Expected 0.9 0.9 0.9 110 110 110
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independent H atoms. An ambiguous position of one of the H atoms was
explicitly resolved from the difference Fourier map. The advantages of DDM in
terms of the precision and reproducibility of the structural parameters were
discussed in comparison to Rietveld refinement results. The failure to refine the
H-atom positions by the Rietveld method was attributed to systematic errors
associated with the background modelling, which were avoided by DDM.
Figure 10.4 shows the final DDM plots after the decomposition and structure
refinement. The difference curves on the plots reveal two broad maxima in the
region between 20 and 501 2y that could not be adequately modelled by
the polynomial function used in the Rietveld refinement. For the same reason,
the reproducibility of the Rietveld refinement results for two differently
prepared samples was shown to be worse than that of DDM. Specifically, the
overall mean difference in the interatomic distances determined for the two
samples was ca. 0.016 Å for DDM and ca. 0.032 Å for Rietveld refinement.
Notably, the complexity of the background line was not apparent from a visual
examination of the XRD patterns. Only after the DDM refinement did the
background modulations become noticeable.
The opportunity of full-profile refinement independently of the background

curve allowed by DDM is especially important for studies of semi-crystalline
substances, such as polymers, organized amphiphilic liquid crystals, block
copolymers, mesostructured materials etc., for which the contribution
of amorphous and disordered fractions to the background line is essential.
A particular problem with mesostructured materials, for which the DDM
method was originally designed, is that they exhibit diffraction peaks at very
low angles, where the background scattering is especially complex and difficult
to model. In the first applications of the full-profile structure analysis of
mesoporous mesostructured materials using the continuous density function
method24 27 the background line was subtracted from the powder profile by the
enhanced algorithm of Sonneveld and Visser.2 This approximation was rough,
but attempts of background modelling with polynomials and other functions
gave unsatisfactory results because of its very sharp change and complexity in
the low-angle region. The use of DDM has given a solution to these problems.
First preliminary variants of DDM were applied in the full-profile X-ray

diffraction structure analysis of a series of new silica mesoporous materials28

and ordered nanopipe mesostructured carbons.29 DDM allowed stable back-
ground-independent full-profile refinement of the structure parameters of these
advanced nanomaterials, a result that was unattainable by any other method.
To date, DDM has been applied to many various mesoporous and meso-
structured substances. The structural parameters of a series of face-centred
cubic (Fm3m), body-centred cubic (Im3m), and two-dimensional hexagonal
(p6mm) mesoporous silicates were determined by DDM from synchrotron
XRD.22 A comprehensive structural analysis of mesoporous silicates SBA-16
(cage-type cubic Im3m), their carbon replicas, and silica/carbon composites was
performed by applying DDM.23 The structure of MCM-48 mesoporous silicate
materials was analysed in detail by DDM from different laboratory and
synchrotron XRD data.21 The pore wall thickness of both as-made and
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after (a) DDM decomposition and (b) DDM refinement. Inserts:
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calcined MCM-48 was determined with high precision to be 8.0(1) Å. Detailed
density distribution analysis revealed that the low-curvature segments of the
pore wall were ca. 10% denser than the curved ones, which could be related to a
more compact atomic packing of silica allowed by the flat-wall geometry. The
surfactant density distribution in the pores was analysed and found to have a
distinct minimum in the pore centre similar to that detected previously in
MCM-41.24 A new extended model function of the density distribution in
MCM-48 was proposed on the basis of the structural features revealed. The
reliability of the results was supported by the reproducibility of the structural
characteristics obtained by DDM from different XRD data sets. The agreement
between the observed and calculated synchrotron XRD patterns of MCM-48
and its carbon mesostructured replica30 achieved by DDM refinement is
illustrated by Figure 10.5. The modulations of the difference profile indicated
the presence of a disordered fraction in the sample, which is, in general, very
difficult to exclude in the synthesis of mesostructured materials. The sharp
increase of background for the carbon replica in the low-angle area is due to
density fluctuations in the carbon nanoframeworks.
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Figure 10.5 Weighted observed (solid), calculated (dashed), and difference (dotted)
synchrotron XRD patterns for MCM 48 mesoporous silica (a) and its
carbon replica (b) after DDM refinement.
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10.5 CONCLUSIONS

The derivative difference minimization method of full-profile refinement has
been shown to be a powerful and efficient tool of powder diffraction analysis.
The most attractive advantage of DDM is the possibility of profile refinement
without the background line modelling, which presents a generally recognized
problem. Moreover, in comparison to the Rietveld refinement involving
empirical background modelling, DDM can provide structural characteristics
with higher precision, reproducibility and comprehension.
While the derivative difference method was primarily designed for cases of

complex modulated background, it has also been demonstrated to be advant-
ageous in common cases of seemingly flat background line. Notably, even when
the background contribution to a powder pattern is apparently simple it may
have (and normally has) modulations that are invisible due to peak overlap.
Inadequate backgroundmodelling and/or approximations give rise to systematic
errors that are avoided in the scheme of DDM. The improvement of the
precision provided by the derivative difference method is, evidently, of high
importance for powder diffraction analysis.
The residual difference after a successful DDM refinement or/and decom-

position can be considered as a scattering component of the powder pattern
free of Bragg diffraction. The separation of this component would facilitate the
analysis of the amorphous fraction of the sample, the radial distribution
function of the non-crystalline scatterers, the thermal diffuse scattering proper-
ties and other non-Bragg features of powder patterns. The background-
independent profile treatment can be especially desirable in quantitative phase
analysis when amorphous admixtures must be accounted for. Further exten-
sions of DDM may involve Bayesian probability theory, which has been
utilized efficiently in background estimation procedures3 5 and Rietveld refine-
ment in the presence of impurities.31 DDM will also be useful at the initial steps
of powder diffraction structure determination when the structure model is
absent and the background line cannot be determined correctly. The direct
space search methods of structure solution, in particular, may efficiently utilize
DDM.
The principles of DDM are universal and may be used in many diverse areas

of powder diffraction and beyond. Future developments will be focused on
studying the properties of this procedure and its efficiency in applications to
different data. Various options for calculating the derivative difference mini-
mization function and optimal refinement strategies should be subjected to
methodical analysis.
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CHAPTER 11

Quantitative Phase Analysis

IAN C. MADSEN AND NICOLA V. Y. SCARLETT

CSIRO Minerals, Box 312 Clayton South 3169, Victoria, Australia

11.1 INTRODUCTION

Measurement of the elemental composition of materials is a relatively mature
art. In the natural world there are 92 elements with methods for their quan-
titative determination generally well established and, in many cases, the subject
of internationally accepted standards. However, the physical properties of
minerals and materials formed by these elements, and the manner in which
they react, is not solely dependant on their chemical composition but on how
the constituent elements are arranged; that is, their structural form. This finite
number of known elements combine into some 230 crystallographic forms with
almost infinite variability induced by solid solution, degree of crystallinity,
morphology and so on. Therefore, the measurement of the form and amount of
the various crystalline and amorphous components is considerably more
complex than the measurement of the constituent chemistry.
In industry, many manufacturing or processing lines are controlled by

measurement of chemistry alone simply because these values can be readily
obtained to a high degree of accuracy and precision. When quantification of
crystal form, or phase, is used in plant optimization and control it is
often derived from bulk chemical analysis rather than being measured directly.
This is achieved by normative calculation where particular elements are
assigned to specific phases based on an assumed knowledge of individual phase
composition.
While there are several methods that can be used to obtain phase related

information, diffraction methods are the most direct. This is because diffraction
information is produced by the crystal structure of each phase rather than being
derived from secondary information (e.g., chemistry).
Crystal structures of individual phases have traditionally been obtained via

single-crystal diffraction methods. However, in both the natural and
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synthesized material world, many compounds are only present as fine-grained
materials and are ideally suited to characterization using powder diffraction
methodology. Powder diffraction is also the only diffraction technique suited to
multi-phase samples where the emphasis is to derive phase identification and
quantification. This is possible since the observed powder diffraction pattern of
a multi-phase sample is the sum of the diffraction patterns of the component
phases.
The fundamental relationships between diffracted peak intensity in a powder

diffraction pattern and the quantity of phase in a mixture producing that peak
are well established. However, many factors impinge upon these relationships.
These are generally experimental and arise from sample and instrument related
effects.1 Such factors include counting errors, particle statistics, preferred
orientation, microabsorption and, the most hazardous of all, operator error.
This chapter focuses on the application of quantitative phase analysis (QPA)

techniques for the extraction of phase abundance from diffraction data. Rather
than repeat the extensive coverage of the QPA methodology covered in other
texts,2 5 the focus will be on the basis and application of the most commonly
used techniques. These were identified from participant responses to the recent
round robin on QPA sponsored by the International Union of Crystallography
(IUCr) Commission on Powder Diffraction (CPD).6,7 By far the greatest
number of participants in that study used whole pattern (Rietveld based)
methods but there are still several users of traditional single peak based
methods and there are still many applications for which these methods suffice.
Issues in the measurement of precision and accuracy will also be discussed.

11.2 PHASE ANALYSIS

There are several traditional methods for the estimation of phase abundance in
multi-phase materials.4 In summary, these can be divided into two groups:

� Indirect methods – these are usually based on the measurement of total
chemistry which is then apportioned according to an assumed composition
for each phase. A very widely used form of this ‘‘normative calculation’’ is
the Bogue method8 for the estimation of Portland cement phases. The
limitations in this approach arise when the actual compositions of indi-
vidual phases vary from those assumed in the calculation. This frequently
occurs in the cement industry, where variance in local materials and
production conditions can affect detailed phase compositions. In addition,
normative calculation has the potential to be unstable when several phases
in the mixture have similar chemical composition.

� Direct methods – these are based on a property specific to phases of interest
in the sample. These methods are often not generally applicable, but are
useful in estimating abundances of selected components. Examples include
(i) magnetism – applicable to samples in which phases have different
magnetic susceptibilities, (ii) selective dissolution – where the rate and
extent of dissolution can be phase dependant, (iii) density – involving the
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physical separation of phases with different densities, (iv) image analysis –
for estimation of phase abundance from optical and electron-beam images,
and (v) thermal analysis – where the magnitude of endo- and exothermic
features during phase transitions are proportional to the amount of the
phases present. Powder diffraction may be included in this category
as it distinguishes and quantifies phases on the basis of their unique
crystal structures, giving the technique broad applicability for crystalline
materials.

Quantification of powder diffraction data is reliant on determination of the
contribution of each component phase in a mixture to the final pattern.
Commonly used methods can be divided into two distinct groups:

� The so-called ‘‘single peak’’ methods which rely on the measurement of a
peak, or group of peaks, for each phase of interest and assumes that the
intensity of these peaks are representative of the amount of the individual
phases. This is often not the case due to peak overlap and phase-dependant
factors (e.g., preferred orientation and microabsorption) which affect the
relative intensities.

� Whole pattern methods which rely on the comparison of wide range
diffraction data with a calculated pattern formed from the summation
of individual phase components that have either been (i) measured from
pure phase samples or (ii) calculated from crystal structure information.

11.3 MATHEMATICAL BASIS

The integrated intensity I of reflection hkl for phase a in a multi-phase mixture
measured on a flat-plate sample of infinite thickness can be calculated from:

IðhklÞa ¼
I0l

3

32pr
e4

m2
ec

4

� �
� Mhkl

2V2
a

FðhklÞa
�� ��2 1þ cos2 2y cos2 2ym

sin2 y cos y

� �� �
� Wa

ram�m

� �
ð1Þ

where I0 is the incident beam intensity, e is the charge on an electron, me is the
mass of an electron, r¼ the distance from the scattering electron and the
detector and c¼ the speed of light. M and F are the multiplicity and structure
factor of the reflection hkl respectively, V is the unit cell volume and y and ym
are the diffraction angles for the hkl reflection and the monochromator,
respectively. Wa and ra are the weight fraction and density of phase a,
respectively, while mm

* is the mass absorption coefficient of the entire
sample.
For Bragg–Brentano geometry, the path lengths of the incident and dif-

fracted beams are equal for all values of 2y and, consequently, the effect of
increased sample absorption is a decrease in the overall intensity of the pattern.
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This is accounted for in Equation (1) by:

1

2m�m
ð2Þ

However, for some instrument geometries, there is an angular dependence on
observed intensity due to sample absorption, which must be allowed for in the
calculation of I. This is the case where a flat plate sample is examined using a
fixed angle of incidence or where a capillary sample is used.
A fixed angle of incidence arises when a flat plate sample is examined in an

instrument such as the Inel powder diffractometer incorporating the CPS120
position sensitive detector (detector produced by Inel, Z.A.-C.D. 405, 45410
Artenay, France. http://www.inel.fr/en/accueil/). In this case, the absorption
term above takes the form:9

sin b
m�mðsin aþ sin bÞ ð3Þ

Where a is the angle between the incident beam and the sample surface and b
is the angle between the diffracted beam and the sample surface. In this
geometry, a is set to a fixed value and b varies with diffraction angle according
to b¼ 2y – a. In Bragg–Brentano geometry a¼ b¼ y and Equation (3) reduces
to the expression in Equation (2).
For cylindrical samples, Sabine, et al.10 define the absorption factor as the

ratio between the ‘‘integrated intensity when no radiation removal processes
are operative’’ and the observed intensity. This factor is given by:

AðyÞ ¼ AL cos
2ðyÞ þ AB sin

2ðyÞ ð4Þ

where AL and AB are the absorption factors at the Laue condition, y¼ 01, and
the Bragg condition, y¼ 901 respectively.
For quantitative phase analysis, the expression in the first square bracket of

Equation (1) can be reduced to a constant for a particular experimental set-up
while the expression in the second square bracket is a constant for reflection hkl
for phase a. Therefore, the intensity, I, of a reflection (or group of reflections), i,
can be reduced to:

Iia ¼ Cia
Wa

ram�m
ð5Þ

where Cia¼ constant for reflection (or group of reflections) i of phase a.
Application of Equation (5) can be seen in the absorption–diffraction

method3 for QPA. This method requires:

(i) The determination of Cia by (i) the preparation of standards with known
additions Wa of phase a, (ii) measurement of peak intensity I for the
standards, and (iii) estimation of the standard sample mass absorption
coefficient mm

*.
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(ii) Measurement of Iia and estimation of mm
* for the unknown samples and

calculation of Wa use a rearranged Equation (5).

The value of mm
* can be estimated through direct measurement of beam

intensity through a sample of known thickness t in a beam of the same
wavelength as that used in the XRD data collection. Following measurement
of the beam intensity with sample in (I) and out (I0) of the beam, mm

* can be
calculated using:

I

I0
¼ expð�m�mr � tÞ ð6Þ

Alternatively, mm
* can be calculated from the sum of the products of the

theoretical mass absorption coefficient (mj
*) of each element (or phase) and the

weight fractions (Wj) of all n elements (or phases) in the sample. Elemental
composition may be determined, for example, by X-ray fluorescence (XRF)
measurement and use of this is more accurate than the use of phase compo-
sition as it takes into account any amorphous material not represented by peaks
in the diffraction pattern but which still contribute to mm

*.

m�m ¼
Xn
j¼1

m�j Wj ð7Þ

Notably, measurement via Equation (6) produces an accurate estimate of mm
*

while calculation via Equation (7) gives only a theoretical mm
* and does not

include sample porosity. All of this presumes that the sample used to measure
beam attenuation is the same as that used to collect the diffraction pattern,
otherwise variations in packing density need to be taken into account.
A more general, and experimentally simpler, approach is to eliminate mm

*

from the analysis altogether via the inclusion of an internal standard s in known
weight fraction Ws. Substitution of the measured intensity of the jth reflection
(or group of reflections) of the standard phase, Ijs, into Equation (5) yields:

Ijs ¼ Cjs
Ws

rsm�m
ð8Þ

The ratio of Equations (5) and (8) gives:

Iia

Ijs
¼ Ciarsm

�
m

Cjsram�m

Wa

Ws
ð9Þ

Since mm
* now appears both in the numerator and denominator, its effect on

the analysis is removed from the calculation. The weight fraction of the
unknown, Wa, can be determined from:

Wa ¼ Kij
as �Ws �

Iia

Ijs
ð10Þ
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where:

Kij
as ¼

Cjs

Cia
� ra
rs

Kij
as can be determined by making known mixtures of standard and analyte

phases. Notably, the presence of systematic errors (such as preferred orientation
and microabsorption) which vary as a function of Wa will not be detected
through application of Equation (10). The use of consistent sample preparation
and presentation techniques is required to minimize the effect of these aberrations
on the analysis.

11.3.1 Reference Intensity Ratio (RIR) Methods

Rearranging Equation (10) allows the definition of the so-called Reference
Intensity Ratio (RIR)11,12 as the ratio of strongest peak of phase a to the
strongest peak of standard s. Since the generally accepted standard for QPA is
corundum, the RIR equates to I/Ic for the phase (where I is the intensity of the
strongest peak of the phase a and Ic is the intensity of the strongest peak of
corundum):

1

K
ij
as
¼ Iia

Ijs
� Ws

Wa
¼ RIRas �

I

Ic
ð11Þ

Quantification of the unknown phase in the presence of a known standard
addition can be achieved by the rearrangement of Equation (11):

Wa ¼
Iia

Ijs
� Ws

RIRas
ð12Þ

Hubbard and Snyder12 describe modifications to Equation (11) that allow
the use of peaks other than the strongest peak. Values for RIR can be obtained
by (i) measurement using known mixtures of the standard and analyte phases
or (ii) calculation from crystal structure information using, for example,
Rietveld analysis software set to pattern calculation mode. Collated lists of
RIR values for frequently encountered phases can be found in the ICDD
database13 and Smith et al.14 Importantly, though, the user must be very careful
in their selection of an appropriate RIR value for their particular experiment.
The values of RIR will depend upon the analytical strategy employed (e.g. peak
height, peak area, whole pattern, X-ray wavelength) in their derivation. This
must match the conditions used in the experiment to which the value is to be
applied. An important feature of RIR based techniques is that, once they are
determined for the analyte phases of interest, the standard phase does not need
to be present in the sample.
Chung15,16 has demonstrated that for a system consisting of n phases in

which all components are crystalline and included in the analysis, an additional
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constraint can be included of the form:Xn
k¼1

Wk ¼ 1:0 ð13Þ

The effects due to sample mm
* can be removed during calculation by the

application of this so-called matrix flushing (or normalized RIR) method which
combines Equations (12) and (13) and replaces the terms related to the standard
phase according to:

Ws

Ijs
¼

Xn
k¼1

Ik

RIRks

 ! 1

ð14Þ

Thus the weight fraction of phase a can be calculated from:

Wa ¼
Iia

RIRas
�

Xn
k¼1

Iik

RIRks

 ! 1

ð15Þ

The application of Equation (15) assumes that all phases are crystalline and
included in the analysis with the result that the sum of theWj’s is normalized to
1.0. While the technique leads to derivation of the correct relative phase
abundances, the absolute values may be overestimated if non-identified or
amorphous materials are present. The addition of an internal standard to the
system allows calculation of the absolute amount of each phase [Equation (16)]
and thus the derivation of the amount of amorphous and/or non-analysed
components [Equation (17)]:

WaðabsÞ ¼ Wa �
WstdðknownÞ
WstdðmeasÞ

ð16Þ

WðunkÞ ¼ 1:0�
Xn
k¼1

WkðabsÞ ð17Þ

whereWa(abs) is the absolute weight fraction of phase a;Wstd(known) is the known
weight fraction of the standard added to the sample; Wstd(meas) is the weight
fraction of the standard reported by Equation (15); Wunk is the weight fraction
of the unknown (unidentified) and/or amorphous component in the mixture.
If an internal standard has been used, then initial calculation of its concen-

tration via Equation (15) may be (i) the same as the weighed amount, indicating
that no amorphous/unidentified phases are present, (ii) greater than the
weighed amount, indicating that amorphous/unidentified phases may be
present, or (iii) less than the weighed amount indicating operator error or the
use of invalid RIR values.

11.3.2 Rietveld-based Methods

Whole pattern (especially Rietveld-based) methods for the determination of
phase abundance have the potential to produce more accurate and precise
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results than those obtained from conventional single peak methods. This
improvement derives from the fact that (i) all of the peaks in the pattern
contribute to the analysis, regardless of the degree of overlap, and (ii) the
impact of some sample related effects, such as preferred orientation, are
minimized by the inclusion of all reflections. The application of models for
correction of certain residual aberrations serves to further improve the analysis.
While the Rietveld technique was initially developed for the refinement of

crystal structure, other parameters that must be refined to ensure best fit between
the observed and calculated patterns contain useful, non-structural information
that can be of interest to the analyst. These include peak width and shape, which
can be related to crystallite size and strain (see Chapter 13), and the Rietveld scale
factor, which, in a multiphase mixture, relates to the amount of the phase present.
Recalling Equation (1), the expression in the second square bracket shows

that the constant C in Equation (5) is inversely proportional to the square
of the unit cell volume (V2), while Hill17 has demonstrated that the individual
reflection intensity I is proportional to the Rietveld scale factor, S:

Ca /
1

V2
a

and Ia / Sa ð18Þ

Coupled with the knowledge that the phase density ra (g cm 3) can be
calculated from the mass of the unit cell contents (ZM, where Z¼ the number
of formula units in the unit cell and M¼ the molecular mass of the formula
unit) and the unit cell volume (V ):

ra ¼ 1:6604 � ZMa

Va
ð19Þ

(The value 1.6604¼ 1024/6.022� 1023 is needed to convert r in AMU Å 3

into gm cm 3.) Substitution and rearrangement of Equations (18) and (19) in
Equation (5) shows that:

Wa ¼
SaðZMVÞam�m

K
ð20Þ

where K is a ‘‘scaling factor’’ which is used to put Wa on an absolute basis.
O’Connor and Raven18 have demonstrated that K is dependant only on the
instrumental conditions and is independent of individual phase and overall
sample-related parameters. Therefore, a single measurement is sufficient to
determine the value of K for a given instrumental configuration. In this context,
(ZMV)a is the ‘‘calibration constant’’ for phase a and can be calculated from
published crystal structure information alone. Measurement of K in this way
may be carried out on a standard mixture separately from the measurement of
the actual unknown mixture in question. This standard mixture then constitutes
an ‘‘external standard’’. The value of K calculated for the external standard will
be appropriate for the calibration of subsequent measurements as long as all
instrumental conditions remain the same as those used for its determination.
In a similar manner to that used for the single peak approach, the need to

measure K and measure or calculate mm
* can be eliminated by the addition of an
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internal standard s in known amount Ws and taking the ratio of Equation (20)
for analyte and standard phases:

Wa ¼ Ws �
SaðZMVÞa
SsðZMVÞs

ð21Þ

Hill and Howard19 have applied the matrix flushing method of Chung15,16 to
the Rietveld analysis context and shown that the weight fraction of phase a in
an n phase mixture can be given by the relationship:

Wa ¼
SaðZMVÞaPn

k¼1

SkðZMVÞk
ð22Þ

The use of Equation (22) in QPA once again eliminates the need to measure
the instrument calibration constant and the sample mass absorption coefficient.
However, in a similar manner to Equation (15), the method normalizes the sum
of the analysed weight fractions to 1.0. Thus, if the sample contains amorphous
phases, and/or minor amounts of unidentified crystalline phases, the analysed
weight fractions will be overestimated. Once again this can be addressed by
inclusion of an internal standard and modification of the measured Wa’s via
Equations (16) and (17).

11.3.2.1 Application to Phases of Poor Crystallinity or Unknown Structure. As
a general rule, the Rietveld method requires the phases being analysed to be
crystalline and of known structure, although amorphous and unidentified
phases may be quantified as a group by the use of either internal or external
standard methods. However, if phases of interest are poorly ordered or have
only partially known structures, it is still useful to be able to quantify them
separately from the bulk of truly amorphous material.
Phases with partially known structures have had their unit cell dimensions

and space group determined, allowing the assignment of indices to the reflec-
tions. If the phase of interest can be ‘‘indexed’’ in this manner, analysis can be
achieved by substituting the structure factors in Equation (1) with values
derived from measurement of peak intensities.20 Application of a Le Bail
et al.21 approach (see Chapter 5) permits the constraint of peak positions
according to the assigned space group and unit cell parameters while allowing
individual peak intensities to vary to achieve the best fit to the pattern.
If the phase cannot be indexed, it can be defined as a related series of peaks

that may be scaled as a single entity during refinement. The relative peak
intensities can be derived through peak fitting to a diffraction pattern in which
the phase is a major component.
In either case, the lack of a complete crystal structure precludes the

calculation of the ZMV calibration constant, requiring additional measure-
ment steps for the calibration of the model. The following steps describe the
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procedure necessary for the generation of such a calibrated model:

1. Collect a diffraction pattern from the pure phase. If pure phase material is
not available, then the phase should constitute the bulk of the sample.

2. Run the Rietveld program in the LeBail fitting mode using the assigned
space group and unit cell parameters. From the refined list of intensities,
create a file containing h, k, l,M, d, 2y and I, where h, k and l are the Miller
indices of the reflection,M is the reflection multiplicity, d is the d-spacing of
the reflection, 2y is the Bragg angle and I is the reflection intensity.

3. Depending on which Rietveld program has been used, it might be neces-
sary to remove the effect of the Lorentz-polarization (Lp) factor from
each observed peak intensity:

Lp ¼ 1þ cos2 2a � cos2 2y
4 cos y sin2 y � ð1þ cos2 2aÞ

ð23Þ

where a is the diffraction angle of the monochromator.
Note that Equation (23) refers to Bragg–Brentano geometry.

4. Removal of the contribution of the Lp factor from the measured
intensities via:

I
0
meas ¼

Imeas

Lp
ð24Þ

These modified intensities can now replace the intensities in the hkl file.
5. To achieve quantification via Equation (22), it is necessary to calculate a

ZMV calibration constant that can be used with this hkl file. This can be
achieved through the addition of an internal standard in known amount
and rearrangement of Equation (21):

ðZMÞa ¼
wa

ws
� Ss

Sa
� ðZMVÞs

Va
ð25Þ

where a is the unknown and s is the standard.

The ZM value calculated in Step 5 will be appropriate for quantification of
mixtures using the hkl file created in Step 4, but will not be physically realistic in
its magnitude since the intensity values used are not true structure factors. A
physically meaningful number may be determined from the measured density of
the phase, ra, using:

ðZMÞaðtrueÞ ¼
raVa

1:6604
ð26Þ

The peak intensity values in the hkl file can then be scaled according to the ratio
of ZMa(true)/ZMa. These values will then approximate ‘‘real’’ structure factors
for this material.
Further details of this approach to the calibration of poorly ordered

materials can be found in Scarlett and Madsen.22
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The following example demonstrates the application of the peak model
technique to the poorly ordered clay phase nontronite, for which accurate
crystal structure models are not available (Figure 11.1). In this instance, the
phase model was obtained by Le Bail extraction of peaks using nontronite cell
data and X-ray diffraction data obtained from relatively pure nontronite.
Synthetic mixtures of this material and corundum (Al2O3) were prepared and
a value for ZMnontronite calculated from the refinement of the 50/50 mixture.
Figure 11.2 shows the good agreement between weighed and measured
amounts of nontronite for the series of synthetic mixtures.

11.4 FACTORS LIMITING ACCURACY

11.4.1 Particle Statistics

For quantitative phase analysis it is generally accepted that the peak intensities
need to be measured to an accuracy of about �1� 2% relative. The ability to
achieve this is strongly influenced by the size of the crystallites in the sample:
reproducible diffraction intensities require a small crystallite size to ensure that
there is uniform intensity around the Debye–Scherrer cone.
Elton and Salt23 have used both theoretical and experimental methods to

estimate the number of crystallites diffracting (Ndiff) in a sample. Fluctuations
in line intensity between replicate samples arise largely from statistical variation
in the number of particles contributing to the diffraction process. It has been
shown that small changes to the instrumental and sample configurations can
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Figure 11.1 X Ray diffraction pattern (Co Ka) for a sample of 3 : 1 nontronite (N) :
corundum (C). The poor crystallinity of the nontronite is evident from
the peak broadening in the diffraction peaks. The lack of an adequate
crystal structure for nontronite precluded the use of a conventional
Rietveld analysis technique.
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significantly improve the sample’s particle statistics. An estimate of the frac-
tional particle statistics error, sPS, is given by:

sPS ¼ Ndiff

p .
Ndiff

ð27Þ

Table 11.1 summarizes the work of Smith24 into the effect of particle
statistics in a static sample. This work showed that a powder of particle size
40 mm may have as few as 12 crystallites diffracting in a sample volume of
20mm3. This results in a value of sPS of about 0.3, which is insufficient for
reproducible pattern statistics. Reduction of the particle size to 1 mm reduces
sPS to a more acceptable value of 0.005. Notably, the number of diffracting
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Figure 11.2 Comparison of weighed and measured values for the series of synthetic
mixtures of nontronite and corundum. The analyses were derived using a
modified Rietveld approach in which nontronite is defined using a file of
reflection hkl’s and intensities rather than the full crystal structure. The
line represents a 1 : 1 relationship.

Table 11.1 Relationship between crystallite diameter and the number diffracting
(after Smith24).

Crystallite diameter (mm) 40 10 1

Crystallites (20mm3) 5.97� 105 3.82� 107 3.82� 1010

Number diffracting 12 760 38 000
rPS 0.289 0.036 0.005
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crystallites will be affected by the absorption coefficient (m) of the sample and
that the figures given in Table 11.1 are for a particular value of m.
For a given sample, several methods can be used to increase the number of

crystallites contributing to the diffraction pattern, including:

(i) Increase the instrument beam divergence. Some of the ways of achieving
this for a laboratory source are to use a broad focus rather than a fine
focus tube, or to use wider divergence and receiving slits. Elton and
Salt23 have demonstrated that sPS can be reduced by a factor of about
two times by using a broad focus tube with a 1.2 mm receiving slit
instead of a long fine focus tube with a 0.3mm receiving slit. However,
notably, such steps may reduce the overall instrument resolution and
lead to greater peak overlap.

(ii) Rotate the sample about the normal to the sample surface for a flat plate
sample or the sample axis for a capillary sample. This increases the
irradiated volume and reduces sPS by a factor of about 5–6 times.

(iii) Oscillate the sample about the theta axis (flat plate geometry). Note that
this motion removes the exact y/2y relationship between sample
and receiving slit and may lead to aberrations in the peak intensities,
positions and profile shapes when using non-parallel laboratory source
X-ray beams. The degree of improvement in sPS will depend on the
range of oscillation used.

(iv) Repack the sample, recollect and reanalyse the diffraction data.
Averaging the results from each analysis will produce more meaningful
parameter values and will allow independent determination of their
estimated standard deviations (esd’s).

(v) Reduce the average crystallite size by mechanical comminution of the
sample. This is the most effective method of increasing the number of
crystallites examined. However, caution must be exercised in the choice
of mill since many grinding techniques introduce peak broadening
through both the reduced crystallite size and the introduction of lattice
strain. In addition, some phases can undergo solid-solid phase transi-
tions or dehydration during grinding. These problems are significantly
reduced by grinding in a liquid (e.g. alcohol or acetone) which tends to
reduce local heating of the sample in the grinding vessel. The McCrone
micronising mill is effective in reducing the particle size to around
10 mm or less in times of 1–20min, depending on material hardness
(Produced by McCrone Research Associates Ltd, 2 McCrone Mews,
Belsize Lane, London NW3 5BG, England). Further details of sample
preparation techniques and their effect on diffraction data can be found
in Buhrke et al.25 and Hill and Madsen.26

11.4.2 Preferred Orientation

The basis for calculation of powder diffraction intensities relies on the sample
being a randomly orientated powder; that is, all reflections have an equal
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probability of meeting the diffraction condition. However, the morphology of
some materials often makes this difficult to achieve since they have a natural
inclination to align themselves along a particular crystallographic direction.
This causes a preponderance of one set of reflections to be presented to the
beam and the relative intensities of the pattern to be skewed accordingly.
Materials that crystallize as needles or plates are particularly susceptible to this
and tend to align themselves during sample packing.
Figure 11.3 shows a scanning electron image of the mineral brucite

(Mg(OH)2), which exhibits anisotropic crystal growth resulting in relatively
large dimensions in the (hk0) plane relative to the (00l) plane. During sample
packing, the natural tendency is for these plates to orient with the large flat
(hk0) surfaces aligned with the sample surface. This leads to preferred orien-
tation, and hence intensity enhancement, of the (00l) reflections.
This misrepresentation of relative intensity causes significant problems for the

application of single peak methods in that no single peak is truly representative
of the amount of the material present. Whole pattern methods are, in general,
more accurate for these types of materials since (i) all peaks in the pattern
contribute to the analysis, and (ii) they generally incorporate some form of
correction algorithm to compensate for such intensity aberrations. The most
commonly used (Madsen et al.26 and Scarlett et al.17) correction algorithm for
preferred orientation is the March–Dollase27,28 model given in Equation (28):

PðaÞ ¼ ðr2 cos2 aþ r 1 sin2 aÞ
3
2 ð28Þ

Figure 11.3 Brucite, Mg(OH)2, morphology showing the flat, hexagonal plates that
lead to the preferred orientation along the [00l] direction.
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where a is the angle between the preferred orientation vector and the reciprocal
lattice vector direction of the Bragg peak being corrected and r is a refinable
parameter indicating the degree of preferred orientation. In an ideal, randomly
orientated powder, r¼ 1.
Notably, the correction algorithms are only approximations and may not

adequately correct for extreme preferred orientation. In this case it may be
better to eliminate, or at least minimize, preferred orientation before data
collection begins through appropriate selection of sample packing technique or
instrument geometry.26

11.4.3 Microabsorption

The most problematic factor affecting accuracy in QPA via XRD is that of
microabsorption. While the application of whole pattern, Rietveld based
techniques for QPA19,29 may allow for the correction of some sample related
aberrations (such as preferred orientation), it does not adequately counter the
effects of microabsorption. A detailed discussion of the effect can be found in
Zevin and Kimmel4 and references therein and will not be repeated here. In
summary, the effect arises when the sample contains phases with different mass
absorption coefficients and/or particle size distributions. The result is that the
intensities of reflections from the heavily absorbing phases are suppressed
while those from lighter absorbers are effectively enhanced. This subsequently
misrepresents the derived relative abundance of the phases.
For those samples where the effects of microabsorption absorption

are present Brindley30 has defined the so-called particle absorption factor t as:

ta ¼
1

Volk

ZVolk
0

exp½�ðma � mÞD� � dVolk ð29Þ

where ma is the linear absorption coefficient (LAC) of phase a, m is the average
linear absorption coefficient of the entire sample and D is the ‘‘effective
dimension’’ of the particles and Vol is the particle volume.
Taylor and Matulis31 have shown that Brindley microabsorption corrections

can be incorporated into Equation (22) according to:

Wa ¼
SaðZMVÞa

taPn
j¼1

SjðZMVÞj
tj

ð30Þ

Since ta is a function of the weight fractions, W, of all phases, W is derived
through iterative calculation of the t’s and W’s.
There are severe limitations in the Brindley correction that arise from the

range of applicability of the model (for coarse samples, mD is typically in
the range 0.1 to 1.0) and the difficulty in defining an appropriate value for D.
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All materials subject to size reduction through grinding will exhibit a distribution
of particle sizes, often skewed in shape, with the result that a single estimate of
size will not represent the sample as a whole. In addition, the grinding
of multiphase samples most often results in differential size reduction of
‘‘hard’’ and ‘‘soft’’ phases. In practice, the difficulty in obtaining an accurate
estimate of individual particle sizes usually means that analysts make an
informed guess at the value of D. Thus, the value used may be empirically
based to achieve a desired phase abundance rather than a value based on
sound measurement. Widespread misuse of microabsorption correction
was clearly demonstrated in the IUCr quantitative phase analysis round
robin.6,7

Given the limitations of current microabsorption correction algorithms, the
best approach is to minimize the effect where possible before data collection is
undertaken. Examination of Equation (29) shows that this can be achieved in
two ways, namely:

� Reduction of particle size. Further discussion can be found Section 11.4.1
(Particle Statistics) and in Buhrke et al.25

� Reduction of the absorption contrast. Sometimes this can be simply
achieved through a change in the wavelength used to collect the diffrac-
tion data. Table 11.2 shows that for a mixture containing corundum
(a-Al2O3) and hematite (a-Fe2O3) there is a factor of about 10� in the
linear absorption coefficient if Cu Ka radiation is used to collect the data.
However, if Co Ka radiation is used, the LAC’s of the two phases are
almost equal. Thus, there will be minimal preferential absorption
if the particle sizes are similar. While the absorption contrast remains
high for short wavelengths such as Mo Ka, the lower values of
LAC means that a larger volume of material will contribute to the
pattern, resulting in benefits deriving from the improved particle statis-
tics. Notably, the penetrating power of neutrons is such that the often
debilitating effects of microabsorption present in X-ray data are very
significantly reduced in neutron diffraction data. The results of the QPA
round robin7 showed that for Sample 4 (designed to exacerbate the
microabsorption effect) those participants who collected and analysed
neutron diffraction data performed significantly better than all other
participants.

Table 11.2 Linear absorption coefficients for corundum (a-Al2O3) and hematite
(a-Fe2O3) at a range of wavelengths.

X Ray linear absorption coefficient (cm–1) Neutron cross section (cm)

Wavelength Cu Ka Co Ka Mo Ka 1.54 Å
Corundum 125.4 194.7 12.6 0.005
Hematite 1145.9 238.4 139.2 0.039
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11.4.4 Precision, Accuracy and the Calculation of Error

The question of precision and accuracy in QPA via XRD is a difficult one. It is
simple enough to calculate errors on the basis of replication or precision in the
mathematical fit. However, determination of the actual accuracy of the analysis
is no trivial task in a standardless method. In fact, it cannot be achieved
without recourse to some other measure of the sample that does incorporate
standards. Too often, analysts will report Rietveld errors (see Appendix A)
calculated during refinement as the errors in the final quantification.6,7 These
numbers relate purely to the mathematical fit of the model and have no bearing
on the accuracy or otherwise of the quantification itself.
Consider, for example, a three-phase mixture of corundum, magnetite and

zircon. Such a sample was presented as Sample 4 in the IUCr CPD round robin
on quantitative phase analysis.7 Its components were chosen with the deliberate
aim of creating a sample in which severe microabsorption occurs. Table 11.3
shows the weighed amounts of each component and the results of replicate
analyses of three different sub-samples of this material.
In this context, the Rietveld error represents the uncertainty in the mathe-

matical fit between the observed and calculated patterns and is the value most
often quoted as the error in the phase abundance. Contrasting with this is the
standard deviation of the mean abundances, which represents the expected
precision in the analysis and is 3 to 4 times greater than the Rietveld derived
errors. The good level of fit achieved in conducting these analyses (evidenced in
the low R-factors) could lead the analyst to conclude that the mean value � the
standard deviation of the mean is an adequate measure of the phase abun-
dances and their errors. However, the Rietveld errors and the replication errors
are at least an order of magnitude smaller than the bias (measured – weighed).
The bias, due to the presence of severe microabsorption, represents the true
accuracy that can be achieved in this system if the analyst takes no further steps
to identify the cause and minimize the effect of absorption contrast or other
aberrations which may affect accuracy.

Table 11.3 Comparison of errors generated during the analysis of XRD data
(Cu Ka) from three sub-samples of Sample 4 from the IUCr CPD
round robin on quantitative phase analysis. The bias values are
(measured – weighed) while the values denoted ‘‘XRF’’ are the phase
abundances generated from elemental concentrations measured by
X-ray fluorescence methods.

Parameter Phase

N¼ 3 Corundum Magnetite Zircon
Weighed 50.46 19.46 29.90
Mean measured wt.% 56.52 17.06 26.42
Mean of Rietveld errors 0.15 0.11 0.11
S.D. of measured wt.% 0.63 0.41 0.35
Mean of bias 6.06 2.58 3.48
XRF 50.4(2) 19.6(1) 29.5(1)
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In the example above, the phases are such that the chemistry is unambiguous
and the phase quantification could have been derived by normative calculation
from bulk elemental analysis (XRF). This is not often the case, but it is
frequently possible to establish the composition of each phase within a system
via electron probe microanalysis or similar and conduct the inverse of a
normative calculation to derive the bulk chemistry from the XRD QPA. This
can then be compared with the results of a standards based technique such as
XRF to obtain a measure of the accuracy of the XRD analysis. Examples of
such calculations are given later in the sections dealing with application in
mineralogical and industrial situations. Where this is not possible or practical,
it is better to consider XRD QPA as a ‘‘semi-quantitative’’ technique at best.
As an addendum to the above example, Table 11.4 shows the effect of

the use of the Brindley correction on the mean measured weight percentages and
bias values. The difficulty in establishing an appropriate value of D has
been discussed in the preceding section on microabsorption, and Table 11.4
shows the considerable effect on quantification of different, arbitrarily chosen
values. The magnitude of the change in bias between no correction and a
correction for a particle size of 10mm, serves to illustrate the need for extreme
caution in the application of this technique. Notably, a mean particle size of
10mm is typical for samples prepared using a common milling device such as the
McCrone micronising mill discussed in Section 11.4.1 (Particle Statistics).

11.5 EXAMPLES OF QPA VIA POWDER DIFFRACTION

11.5.1 Application in Mineralogical Systems

11.5.1.1 A Simple Three-phase Mixture. The first sample of the IUCr CPD
round robin on QPA6 summarized the results obtained from the analysis of a

Table 11.4 Comparison of errors generated during the analysis of the same
XRD data (Cu Ka) presented in Table 11.3 using the Brindley
correction method for microabsorption. As in Table 11.3, the
mean is based upon three replicate measurements and the bias is
the measured value – the weighed.

Parameter Phase

N¼ 3 Corundum Magnetite Zircon
Weighed 50.46 19.46 29.90
Brindley correction, D¼ 1mm
Mean measured wt.% 55.76 17.81 26.43
Mean of bias 5.30 1.83 3.47
Brindley correction, D¼ 5mm
Mean measured wt.% 52.49 21.18 26.33
Mean of bias 2.03 1.54 3.57
Brindley correction, D¼ 10mm
Mean measured wt.% 47.76 26.15 26.08
Mean of bias 2.70 6.51 3.82
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three-phase mixture (Figure 11.4) prepared with eight different compositions
so that each phase was represented at concentration levels ranging from about
1.3 to 95 wt.%. The purpose of the study was to determine the level of precision
and accuracy of the quantitative phase determinations of the three components
in terms of the variation due to (a) pure sampling and testing errors within a
typical laboratory and (b) differences in the analytical procedures between
laboratories.
The materials used in the study (corundum – a-Al2O3, zincite – ZnO, and

fluorite – CaF2) provided a relatively ‘‘simple’’ analytical system to determine
the levels of accuracy and precision that could be expected under ideal condi-
tions. Rather than being too prescriptive in the detail of the techniques to be
used for analysis, the round robin organizers allowed the participants to select
and report their own methodology. Thus, the RR also served as a survey of
commonly used techniques for QPA.
A summary of all the results returned shows that while the mean values

approximate the weighed values, there is a very wide range of values, indicating
that many participants were unable to accurately quantify the amounts of
materials present even in this relatively simple phase system. Among the
significant causes of deviation from the weighed values were operator errors.
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Figure 11.4 Composition of mixtures contained within the Sample 1 suite from the
IUCr CPD round robin on quantitative phase analysis.
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These were largely due to inappropriate use of the method being applied. For
the Rietveld based techniques, these errors included (i) entry of incorrect crystal
structure information, including atom coordinates and thermal vibration
parameters, (ii) incorrect space group notation, (iii) incorrect atom site
occupation parameters, (iv) allowing structure parameters (especially thermal
parameters) to refine to physically unrealistic values, and (v) not completing the
refinement.
To test the validity of Rietveld based methods for QPA, the round robin

organizers undertook the analysis of all eight mixtures in the Sample 1 suite
using the following refinement strategy:

(i) For all samples, parameters included in the refinement included (i)
pattern background, modelled with a polynomial in 2y, (ii) sample
offset, and (iii) sample absorption coefficient.

(ii) For Rietveld programs that used the fundamental parameters
approach32,33 to peak modelling, the instrument component was defined
using data collected from a sample of highly crystalline of Y2O3. The
instrument parameters (divergence slit aperture, receiving slit width,
axial divergence and so on) released in this step were then fixed at their
refined values and used to define the instrument contribution to peak
width for the remaining samples in the analysis.

(iii) For Sample 1a (B95wt.% fluorite), parameters included in the refine-
ment were the unit cell dimensions and crystallite size for each of the
three phases. In addition, the thermal vibration parameters for Ca and
F were released. The thermal parameters were then fixed at their refined
values and used in the model for fluorite in all other samples.

(iv) For Sample 1b (B95wt.% corundum), Step 3 was repeated but this
time allowing refinement of Al and O thermal parameters as well as the
Al z and O x coordinates. These parameters were then fixed at their
refined values and used in the model for corundum in all other samples.

(v) For Sample 1c (B95wt.% zincite), Step 3 was repeated but this time
allowing refinement of Zn and O thermal parameters. Once again, these
parameters were then fixed at their refined values and used in the model
for zincite in all other samples.

(vi) In each of steps 3 to 5, the refined thermal parameters were checked for
agreement with literature values. This is a critical step, since thermal
parameters that deviate significantly from expected values may point to
errors in the models that generate the calculated pattern intensity. Since
all phases in this study are well-ordered materials, isotropic thermal
parameters (Beq) in the range¼ 0.3–0.5 Å2 are expected. However, par-
ticipants in the RR returned results based on structures with Beq values
ranging from 0.0 to 10.0 Å2. Since the thermal parameters correlate
strongly with the Rietveld scale factor, any errors in Beq will be reflected
in the reported quantitative phase abundances.

(vii) For all eight Sample 1 data sets, the refinable parameters for each phase
included (i) unit cell dimensions, (ii) crystallite size, and (iii) an overall
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scale factor. By following the procedure detailed above, refinement
stability, even for the minor phases, was assured through the minimi-
zation of the number of parameters in the refinement.

The data sets distributed by the CPD for the QPA round robin are a useful
resource for users aiming to develop and test their skills in applying various
techniques. All data sets, in formats suitable for most of the commonly used
software, can be found at http://www.mx.iucr.org/iucr-top/comm/cpd/QARR/
data-kit.htm.
Phases present only in minor amounts are more difficult to determine than

the phases present in medium to major amounts. This is especially true in this
example for corundum, which, for X-ray radiation, has the lowest average
scattering power and hence the lowest observed intensities of the three phases.

11.5.1.2 Internal Standard Addition. An example of the use of an internal
standard for phase quantification is the recent work by Madsen et al.34 in their
study of the reaction mechanism of pressure acid leaching (PAL) of nickel
laterite ores. This was an in situ study in which nickel laterites were reacted with
sulfuric acid at elevated temperature and hydrothermal pressure to prevent the
boiling of the acid. The purpose of pressure acid leaching is to dissolve any
nickel-bearing phases into the acid and subsequently treat this with solvent
extraction for the recovery of the nickel. There has been much ex situ work
done to the reaction mechanisms of this system,35,36 but these studies have
relied on the cooling of the system prior to any analytical work.
The aim of the in situ XRD study was to examine the phase changes

occurring in the system at processing temperature and pressure to remove
any artefacts induced by cooling. The reaction products formed during PAL of
one particular laterite ore, saprolite, were believed to undergo considerable
change upon cooling and as such its phase chemistry had not been confirmed.
This dynamic study allowed that system to be examined directly. To obtain
kinetic information from experiments such as this, it is important that phase
quantification be carried out throughout the reaction. In this example, datasets
of two minutes duration were collected throughout the experiment using a
position sensitive detector (Inel CPS120). Each dataset was quantified using the
Rietveld method.
The reaction mechanism of this system involved the transfer of phases across

the solid–liquid interface. Hence, quantification using Equation (22) produced
values that were overestimated. To determine the absolute phase abundances,
powdered diamond was selected as an inert internal standard and was weighed
into the starting solids. Acid was then added to this mixture and the standard
concentration taken as its weight fraction of the sample in its entirety, i.e.,
solids and liquids in total. For each dataset the results of the quantitative phase
analysis were adjusted according to the known amount of standard present in
the system [Equation (16)]. This allowed the determination of variation in the
amorphous content of the system to be assessed [via Equation (17)] as well as
the formation and consumption of crystalline phases. The amorphous content
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of the sample included any amorphous solid material as well as the liquid
phase.
Figure 11.5 shows the results of QPA of a PAL experiment (data collected at

Beamline 6.2, Daresbury SRS under grant number 42028). The dissolution of
lizardite [nominally Mg3Si2O5(OH)4] and subsequent crystallization of kieserite
(MgSO4 �H2O) is immediately apparent. These reactions correspond with an
increase and decrease in amorphous content, respectively. Kieserite is only
observed during in situ studies as it has a negative temperature coefficient of
solubility and redissolves on cooling during extraction for ex situ study.

11.5.1.3 External Standard. The recent work of Scarlett et al.37,38 in the
determination of reaction sequences in the formation of iron ore sinter phases
(SFCA) highlighted some of the difficulties in determining the absolute abun-
dances of phases in complex mineralogical systems. The work consisted of
laboratory-based, in situ analysis of XRD data collected during the heating to
B1200 1C of a mixture of SiO2, Fe2O3, CaO (added as calcite – CaCO3), and
Al2O3 [added as gibbsite – Al(OH)3]. Initially, quantification was carried out
using the ZMV algorithm of Hill and Howard19 given in Equation (22).
However, during the reaction, there are several significant phase changes that
have the potential to affect the accuracy of phase abundances derived in this
manner. These include:

� Decomposition of gibbsite at about 220 1C with an accompanying loss of
water from the sample. The product of this decomposition is a finely-
divided Al-oxide which is effectively amorphous and hence cannot be
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included in a conventional analytical method based on the Hill/Howard
ZMV algorithm.

� The decomposition of calcite at about 650 1C with an accompanying loss
of CO2 from the sample. In this case, crystalline CaO in the form of lime is
formed and can be included in the analysis.

Since the ZMV algorithm normalizes the sum of the analysed weight frac-
tions to 1.0, the loss of part of the sample or the generation of amorphous
phases will result in the overestimation of the analysed phases. The black circles
and line in Figure 11.6 show the analysed amount of the major phase (hematite
– Fe2O3) calculated using Equation (22). At the start of the reaction, the
amount of hematite is B69wt.% (from known weight additions), but appears
to increase in concentration as the gibbsite and calcite decompose during the
reaction sequence. While the relative phase abundances in the sample at each
step are correct, the absolute amounts are needed to derive the reaction
mechanism.
To put the phase abundances on the absolute scale, Equation (20) was used

by first determining the scaling factor K based on the known amount of
hematite in the sample at the start of the reaction. This makes the initial
measurement of hematite effectively an external standard for the rest of the
experiment. The results of this quantification method are shown by the crosses
in Figure 11.6 and give a more realistic indication of the amount of hematite
present in the sample at each step in the reaction.
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In dynamic experiments of this nature, phase identification and quantifica-
tion of complex mixtures is made more difficult by the poor quality of the
rapidly accumulated data. It is, therefore, critically important to cross check the
analyses wherever possible. In this example, calculation of bulk chemistry at
each data point was possible as the starting materials were synthetics of known
composition. This calculation involves knowing or determining (via electron
probe microanalysis or similar) the chemical composition of each phase iden-
tified within the mixture, calculating its contribution to each element present in
the mixture and summing the individual elements to give the bulk chemistry.
Figure 11.7 shows the results of such calculations for Fe, Ca and O for the
SFCA mixture described above. The match between calculated chemistry and
weighed (or theoretical) chemistry is quite reasonable. This is a good confir-
mation of the XRD QPA throughout this reaction. Note that there is a
discrepancy between the calculated and theoretical values at elevated temper-
ature due to the formation of SFCA and SFCA-I of unknown and probably
variable chemical composition.
Such calculations can be used, not only for verification, but as part of the

phase identification process. For example, Figure 11.8 again shows the calcu-
lated chemistry (Fe, Ca and O only) from the XRD QPA during the reaction of
the mixture described above. This calculation was carried out prior to com-
pletion of the analysis of this reaction and represents a time at which phase
identification, and thus the Rietveld model, was incomplete. Compared with
Figure 11.7, there is a clear discrepancy between the theoretical and calculated
amounts of Ca, Fe and O from about 1000 1C. This suggests that a phase of
composition CaxFeyOz is missing from the analytical method. Inclusion of
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CaFe2O4 and recalculation of the chemistry produces the agreement shown in
Figure 11.7.

11.5.2 Applications in Industrial Systems

The emergence of interest in XRD as a tool for monitoring phase abundances
in industrial processing plants has led to the development of on-line measure-
ment systems. These instruments are required to take XRD data from a
continuously flowing stream of material, derive a quantitative estimate of the
minerals present and to report the results to the plant control room in a totally
automatic manner that does not require operator intervention. To achieve this,
a robust analytical regime is required to minimize the possibility of erroneous
results being produced. For methods that rely on a Rietveld based approach to
the analysis, careful optimization of the input conditions (including crystal
structures for all phases and minimization of the number of parameters being
refined) is required for refinement stability.
By way of example Scarlett et al.39 and Manias et al.40 have described an on-

line XRD analyser designed for use in monitoring the abundance of the major
phases in finished Portland cement. The instrument is placed at the exit of an
operational cement mill and passes some 30 kg h 1 of material on a continuous
basis while obtaining XRD data and quantitative phase abundances every 1 to
2 min. Portland cement is a mineralogically complex material consisting of
some 10 to 15 phases of interest that vary in concentration from 60wt.% down
to E0.2wt.%. The physical and chemical characteristics of the component
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phases, including the detailed chemical composition, crystallite size and ratio of
polymorphs, depend on the nature of the starting materials and the production
conditions present in a specific plant.41,42

To produce the most reliable analyses under these conditions, especially for
the minor phases, Rietveld-based analytical conditions need to be developed
using the following steps:

(i) The ferrite and aluminate phases, C4AF and C3A, are present in cement
clinker at about 10 to 15 wt.% in total. (Cement industry nomenclature
has been used when referring to the phases present in cement and clinker.
C¼CaO, S¼ SiO2, A¼Al2O3, F¼Fe2O3.) Hence their diffraction
patterns are normally dominated by the more abundant silicate phases,
C3S and C2S. Taylor41 describes a method where C3S and C2S can be
extracted from the sample using a mixture of salicylic acid and methanol
(SAM), leaving a residue (denoted Residue #2) in which C4AF and C3A
are the major phases remaining. Collection and analysis of high quality,
laboratory based XRD data from this residue (Figure 11.9C) allows
refinement of parameters for the C4AF and C3A. In addition, this
pattern can be used to identify whether (i) C3A is present as more than
one polymorph – cubic and orthorhombic are the most commonly
occurring forms – and (ii) C4AF exhibits a range of compositions with
varying Fe/Al ratios – some cement plants produce C4AF with two
distinct compositions which have different unit cell dimensions and are
readily analysed as separate phases. During on-line analysis, the crys-
tallite size and unit cell parameters are fixed at the values determined
from the residues or, at the very least, constrained to vary within a small
range near the determined values.

(ii) There is also a high degree of peak overlap between C3S and the next
most abundant phase (C2S) normally present in clinker at about 10 to 15
wt.%. A separate chemical extraction, using different ratios of salicylic
acid and methanol, allows the removal of only C3S, leaving a residue
(Residue #1, Figure 11.9B) in which the major phase is C2S. Collection of
XRD data from this material allows refinement of the crystallite size and
unit cell dimensions for C2S. This is a critical step in the development of a
robust method since the high degree of overlap between the C3S and C2S
patterns leads to ambiguities in the partitioning of peak intensity, and
hence the derived phase abundances, between the two major silicate
phases. Notably, in the determination of parameters for C2S, the para-
meters determined for C4AF and C3A (step i above) are utilized in the
refinement method as these phases are also present in this residue.

(iii) Since C3S is the major phase in clinker (typically present at about 50 to
70wt.%), its parameters, including crystallite size and unit cell dimen-
sions, can be refined by collecting XRD data from a representative
sample of the plant’s clinker production (Figure 11.9A). During this
step, the unit cell and crystallite size parameters for the other phases are
fixed at the values determined during steps i and ii above.
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Figure 11.9 XRD (Cu Ka) data for (A) raw Portland cement clinker, (B) Residue #1
from which most of the C3S has been removed and (C) Residue #2 from
which C3S and C2S have been removed. Silicate phase extraction was
conducted using a salicylic acid methanol (SAM) mixture using the method
described by Taylor.41 In Residue #2 the presence of the alkali sulfate
phases [denoted Arc for arcanite K2SO4 and Ap for aphthitalite
K3Na(SO4)2] is clearly evident. Notably, the material used in these plots
was derived from a different cement plant to the one illustrated in Figure 10.
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(iv) Any other materials added to clinker to make Portland cement, espe-
cially gypsum (CaSO4 �2H2O), must also be defined crystallographically.
Care must be taken in the sample preparation stage as gypsum can
partially dehydrate to hemihydrate (CaSO4 �

1
2
H2O) and anhydrite

(CaSO4) during grinding. Since all three calcium sulfate phases may be
present in finished cement, samples of hemihydrate and anhydrite can be
prepared by heating two sub-samples of the gypsum to 125 and 600 1C
respectively. The unit cell parameters and crystallite sizes of the three
sulfate phases can be refined from respective XRD data sets and fixed for
on-line use. However, the tendency for gypsum to orientate preferen-
tially along the (0k0) crystallographic direction necessitates the inclusion
of a refinable preferred orientation parameter for this phase.

11.5.2.1 Alkali Sulfates. Since the silicate phases (C3S and C2S), present in
total at up to 85 wt.%, normally dominate clinker samples, all minor phases are
significantly concentrated in Residue #2. This includes the important alkali
sulfate phases which can (i) affect setting times and final strength, and (ii) be
used to assess kiln operating conditions. Since these are normally present at a
total of about 0.5wt.% in clinker, and are often distributed across several Na
and K sulfate phases, they are not easily identified in raw clinker XRD patterns.
However, their presence may be more easily detected in the XRD pattern of
Residue #2. By optimizing the parameters of the alkali sulfates from Residue
#2 data, and then constraining them in the on-line analysis system, these phases
can be measured at the o0.5wt.% level (Madsen, Scarlett and Storer 2001,
unpublished results) even when rapidly collected on-line data is used.
The inclusion of the alkali sulfate phases in an automatic, on-line analysis

method has the potential to produce meaningless results, especially under
conditions where data quality may not be optimal for the analysis of minor
phases. Therefore, it is essential that some verification of the results be
obtained. Figure 11.10 shows the concentration of K2O (i) from chemical
(XRF) analysis and (ii) calculated from the quantitative phase abundances
measured using an on-line XRD instrument installed in an operational cement
plant. Up to the 5th of June 2002, alkali sulfates were not included in the
analytical method, resulting in a clear underestimation of K2O calculated from
the XRD results relative to those obtained by XRF. In this particular cement
plant, the only alkali sulfate phase identified was arcanite (K2SO4). After the
5th June, arcanite was included in the method, resulting in excellent agreement
between the calculated and observed K2O values. This agreement gives both the
analyst and plant operators confidence that the XRD derived phase abund-
ances, even at this low level, are accurate and can be used to either control plant
parameters or predict downstream properties of the material.
For Portland cement, the removal of the major phases to leave a residue in

which the minor phases are concentrated relies on a chemical extraction process.
Clearly, this approach will not be suitable for all phase systems. In some cases,
concentration of minor phases can be achieved by magnetic, density or grain size
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separation from the major phases. Whichever method is selected, the importance
of obtaining detailed parameters from all phases in the material cannot be
overstated if a reliable and stable on-line analysis regime is to be achieved.

11.6 SUMMARY

The value in using diffraction based methods for the determination of phase
abundance arises from the fact that diffraction information is derived directly
from the crystal structure of each phase rather than from secondary parameters
such as measurement of total chemistry. However, the methodology of quanti-
tative phase estimation is fraught with difficulties, many of which are experi-
mental or derive from sample related issues. Hence it is necessary to verify
diffraction based phase abundances against independent methods. In those
circumstances where this is not possible, the QPA values should be regarded
only as semi-quantitative. While such values may be useful for deriving trends
within a particular system, they cannot be regarded as an absolute measure.
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APPENDIX A: DERIVATION OF ERRORS IN RIETVELD-BASED

QUANTITATIVE PHASE ANALYSIS

Relative Phase Abundances

The following section describes the derivation of errors in the quantitative
phase abundances resulting from the Hill and Howard19 algorithm. Notably,
these errors only reflect the uncertainty generated by the mathematical fitting
process in the Rietveld minimization process. It should also be reiterated that
other sources of error, such as the presence of microabsorption, may generate
errors that exceed the magnitude of those calculated here.
The weight fraction Wa of phase a is calculated using:

Wa ¼
SaðZMVÞaPn

j¼1

SjðZMVÞj
ðA1Þ

The variance in the weight fraction of phase a, Var(Wa), is calculated from:

VarðWaÞ ¼
ðSaZMVaÞ2

Pn
j¼1

SjZMVj

 !2
� dS2

a

S2
a
þ

Pn
j¼1

dS2
j ZMV2

j

Pn
j¼1

SjZMVj

 !2

2
666664

3
777775 ðA2Þ

where dS is the error in the Rietveld scale factor.
The error in the determination of the weight fraction for phase a is then:

dðWaÞ ¼ VarðWaÞ
p

ðA3Þ

Absolute Phase Abundances

Equation (A1) can only be used to determine the relative phase abundance since
the total of the measured weight fractions is summed to 1.0. The addition of an
internal standard phase to the sample in a known amount Ws

weigh can be used
to determine the absolute amount of the phases present. The corrected (abso-
lute) concentration Cor(Wa) for phase a is given by:

CorðWaÞ ¼ Wa �
Wweigh

s

Wmeasure
s

ðA4Þ

where Ws
measure is the measured weight fraction for the standard phase derived

using Equation (A1).
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The variance in the corrected weight fractions can be calculated from:

Var CorðWaÞð Þ¼½Wweigh
s �2 � ðWaÞ2

Wmeasure
s

� �2
� dðWaÞð Þ2

ðWaÞ2
þ

dðWmeasure
s Þ

� �2
ðWmeasure

s Þ2

" # ðA5Þ

where d(Wa) is the error in the weight fraction of phase a calculated using
Equation (A3); d(Ws

measure) is the error in the measured weight fraction of the
standard phase calculated using Equation (A3).
The error in the corrected weight fraction is:

d CorðWaÞð Þ ¼ Var CorðWaÞð Þ
p

ðA6Þ

The concentrations of the phases in the sample before the addition of the
internal standard, i.e. on the ‘‘as-received’’ basis can then be calculated using:

AsRec Wað Þ ¼ Cor Wað Þ
1:0�W

weigh
s

ðA7Þ

The variance in the ‘‘as received’’ concentrations can be calculated from:

Var AsRec Wað Þð Þ ¼ 1:0

1:0�W
weigh
s

� �2

� dCor Wað Þð Þ2 ðA8Þ

where dCor(Wa) is the error in the corrected weight fraction of phase a
calculated from Equation (A6).
The error in the ‘‘as-received’’ concentrations is then:

d AsRec Wað Þð Þ ¼ Var AsRec Wað Þð Þ
p

ðA9Þ

Amorphous Content

The difference between 1.0 and the sum of the ‘‘as-received’’ components
represents the total amount of amorphous material in the sample and/or non-
included phases in the analysis and can be calculated from:

Wamorphous ¼ 1:0�
Xn 1

j¼1

AsRec Wj

� �
ðA10Þ

Note that Equation (A10) is only summed over n� 1 phases since the internal
standard phase is now omitted from the calculation.
The variance in the amorphous content is calculated from:

Var Wamorphous

� �
¼
Xn 1

j¼1

d AsRec Wj

� �� �� �2 ðA11Þ
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where d(AsRec(Wj)) is the error in the corrected weight fraction of phase j
calculated from Equation (A9).
The error in the amorphous content is then:

d Wamorphous

� �
¼ Var Wamorphous

� �q
ðA12Þ
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CHAPTER 12

Microstructural Properties: Texture
and Macrostress Effects

NICOLAE C. POPA

National Institute for Materials Physics, P.O. Box MG-7, Bucharest,
Romania

12.1 TEXTURE

Frequently, polycrystalline specimens exhibit a preferred orientation of the
crystallites or polycrystalline texture. In addition, many manufacturing proc-
esses of technological materials can induce texture. In comparison with spec-
imens having randomly oriented crystallites, the relative intensities of the
diffraction lines of textured samples are modified. As a consequence the
structural and quantitative phase analysis of polycrystalline samples becomes
impossible without proper modeling of the texture.
Texture can influence many macroscopic properties of materials. Strain,

stress and the elastic constants, as well as sound propagation in samples,
depend strongly on the preferred orientation of crystallites. To calculate the
pyroelectric and piezoelectric coefficients of polycrystalline specimens the ori-
entation distribution function of the crystallites is needed. Some properties such
as macroscopic magnetic anisotropy do not exist if the sample is not textured.
Other properties like ionic conductivity or critical current in high-temperature
superconductors are texture dependent. By studying the texture of rocks
important information can be obtained about the geological history of a given
region of the Earth. Consequently, texture analysis is needed not only to correct
for preferred orientation in the structural and phase analysis of powders but
also is a vital step in materials characterization.

12.1.1 The Orientation Distribution Function and the Pole Distributions

The texture of a polycrystalline sample is commonly described by the orient-
ation distribution function (ODF). To define this function two orthogonal
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coordinate systems must be introduced, the system (x1, x2, x3) linked to the
crystallite and (y1, y2, y3) linked to the sample. The Euler matrix a(j1, F0, j2)
connects the two systems:

xi ¼
X3
j¼1

aijðj1;F0;j2Þyj ð1Þ

a j1;F0;j2ð Þ ¼

cosj1 cosj2

� sinj1 sinj2 cosF0

sinj1 cosj2

þ cosj1 sinj2 cosF0
sinj2 sinF0

� cosj1 sinj2

� sinj1 cosj2 cosF0

� sinj1 sinj2

þ cosj1 cosj2 cosF0
cosj2 sinF0

sinj1 sinF0 � cosj1 sinF0 cosF0

0
BBBBB@

1
CCCCCA
ð2Þ

Here 0rj1r 2p is a simple rotation of (y1, y2, y3) around y3 transforming this
system into y01, y

0
2, y3. Further, the angle 0rF0r p rotates this system around

y01 transforming it into y01, y
00
2, x3) and, finally, by rotating this last system

around x3 by 0rj2r 2p one obtains (x1, x2, x3).
The orientation distribution function f(j1, F0, j2) is defined by the volume

fraction of the crystallites having the orientations in the range (j1, j1+ dj1),
(F0, F0+ dF0), (j2, j2+ dj2):

1=8p2
� �

f ðj1;F0;j2Þ sinF0dj1dF0dj2 ¼ dVðj1;F0;j2Þ=V ð3Þ

From the definition the following normalization condition follows:

1=8p2
� � Z2p

0

Zp
0

Z2p
0

f j1;F0;j2ð Þ sinF0dj1dF0dj2 ¼ 1 ð4Þ

If the crystal and sample symmetries are higher than triclinic, the multiple
physically equivalent choices of the coordinate systems (xi) and (yi) impose
constraints on the ODF. The symmetry group of the ODF must be the product
of the proper subgroups (only pure rotations) of the crystal and sample point
groups.
In the diffraction measurements of textured polycrystals the ODF is not

observed, but a two-dimensional projection of the ODF called pole distribu-
tion. Diffraction occurs when the Bragg conditionQB¼ 2pH is (nearly) fulfilled
(Chapter 1). By QB and H we denoted the Bragg scattering vector and the
reciprocal lattice vector; y¼QB/QB and h¼H/H are their unit vectors. Let us
denote by IRH (Ds) the diffracted intensity of the randomly oriented polycrystal,
where s is the scanning variable (scattering angle, energy, time-of-flight), and by
ITH (Ds) the diffracted intensity of the textured polycrystal. The ratio ph(y)¼ ITH
(Ds)/IRH (Ds) is equal to the ratio between the volumes of crystallites in reflec-
tion for the textured and non-textured sample. This ratio is called the pole
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distribution function and has the following expression:

phðyÞ ¼ 1=2pð Þ
Z
hjjy

f ðj1;F0;j2Þdo ¼ 1=2pð Þ
Z2p
0

f ðj0
1;F

0
0;j

0
2Þdo ð5Þ

The angles j0
1;F

0
0;j

0
2 in Equation (5) are the Euler angles for which h||y and the

angle o denote the rotation of the crystallite around this direction. The unit
vectors h and y can be represented in the coordinate systems (xi) and (yi) by the
pairs of polar and azimuthal angles (F, b) and (C, g), respectively, or by triplets
of direction cosines ai and bi:

h ¼
X3
i¼1

aixi ¼ cos b sinFx1 þ sin b sinFx2 þ cosFx3 ð6Þ

y ¼
X3
i¼1

biyi ¼ cos g sinCy1 þ sin g sinCy2 þ cosCy3 ð7Þ

With these definitions the Euler matrix with the constraint h||y becomes:

aðj0
1;F

0
0;j

0
2Þ ¼ mtðF;bÞnðoÞmðC; gÞ ð8Þ

The index t in Equation (8) stands for transpose and the matrices m and n are:

mðC; gÞ ¼
cosC cos g cosC sin g � sinC

� sin g cos g 0

sinC cos g sinC sin g cosC

0
B@

1
CA;

nðoÞ ¼
coso sino 0

� sino coso 0

0 0 1

0
B@

1
CA

ð9a;bÞ

The peaks marked H and �H are not distinguishable in position and for
regular scattering (anomalous scattering negligibly small) the Friedel law holds
(Chapter 7), then IRH (Ds)¼ IRH (Ds). As a consequence the measured intensity
for the textured sample is:

ITHðy;DsÞ ¼ IRHðDsÞPhðyÞ ð10Þ

PhðyÞ ¼ ð1=2Þ phðyÞ þ p hðyÞ½ � ¼ ð1=2Þ phðyÞ þ phð�yÞ½ � ð11Þ

The function Ph(y) defined by Equation (11) is called the reduced pole distri-
bution (pole figure). Hereafter we will call it, simply, the pole distribution (or
pole density), because ph(y) will be used very rarely. The pole distribution is
centrosymmetric and for crystal and sample symmetry higher than triclinic it
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has the symmetries of the corresponding Laue groups. The normalization
condition is:

1=4pð Þ
Z2p
0

Zp
0

PhðyÞ sinCdgdC ¼ 1 ð12Þ

According to Equation (10) the diffracted intensity of a textured polycrystal is
the diffracted intensity of the randomly oriented polycrystal multiplied by the
pole density in the direction of the scattering vector in sample. The pole density
Ph(y) is the unique function connected with the preferred orientation that is
accessible to a direct measurement by diffraction.

12.1.2 Two Goals in Texture Analysis

Concerning interest in texture analysis, the community of diffractionists can be
roughly divided in two categories. For the first category the goal is a quanti-
tative texture analysis. The texture can have important effects on some physical
properties of manufactured materials. Consequently, the texture determination
is a necessary step in material characterization.
Quantitative texture analysis means the determination of the ODF. It pre-

sumes the measurement by X-ray or neutron diffraction of several pole distri-
butions. In the traditional constant wavelength diffraction method, the detector
is positioned on the center of the diffraction peak and the sample is rotated on a
goniometer to obtain as many points as possible in a hemisphere of (C, g)
space. For neutron time-of-flight, a well-separated peak of strong intensity can
be selected for which the integral intensity is extracted. The pole distributions
obtained for several peaks are further processed to obtain the ODF. This
operation is named inversion of the pole figures. Many mathematical methods
have been proposed for this purpose. A largely used method is by Fourier
analysis, as described in the book by Bunge.1 Other methods solve the integral
Equation (5)+(11) directly, like theWIMVmethod (Williams,2 Imhof,3 Matthies
and Vinel4), which uses an iterative procedure assuring a positive solution
for ODF. Matthies, Wenk and Vinel5 give a comparison of three methods for
inversion of pole figures in a paper where the reader can find also a comprehen-
sive bibliography for this specific problem.
The traditional method to measure the pole distributions becomes unsatis-

factory if the peaks are overlapped. This happens for low symmetry compounds
or when the sample contains many phases. In addition, by using a position
sensitive detector or neutron time-of-flight diffraction, a large segment or the
whole pattern can be recorded simultaneously, and using only a small number
of peaks, a large volume of information is lost. To eliminate these drawbacks,
Wenk, Matthies and Lutterotti6,7 proposed a combination of the WIMV
procedure (or other inversion method) with the Rietveld method – more
exactly with the Le Bail8 (Chapter 8) routine for peak intensity extraction.
In this combined method it is presumed that the structural parameters, or
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Bragg peak intensities for the random sample, are known and then are not
refined.
Those interested mostly in structure determination from powder diffraction

see the texture problem differently. The presence of the preferred orientation
makes a good pattern fitting difficult or even impossible and, consequently, a
procedure is needed to correct for the texture effect in the Rietveld codes. For
that it is not necessary to find the ODF, but to have a reliable model of the pole
distribution whose parameters are refined together with the structure and other
parameters.
In the 1970s and early 1980s in the Rietveld programs an empirical

Gaussian model was used for the pole distribution. In 1986 Dollase9 proposed
the March model10 describing the texture resulting from the packing of plate-
lets or needles and having cylindrical sample symmetry. Details on this
model are given below. For Bragg–Brentano geometry the Dollase–March
model has a simple form that was implemented in the Rietveld programs
DBWS11 and GSAS.12

Ahtee, Nurmela, Suortti and Jarvinen13 (1989) described the pole distribution
in their Rietveld program by a series of symmetrized spherical harmonics in the
angles (F, b), the series coefficients being refinable parameters. This means
that only the dependence on h of Ph(y) was modeled, and not the dependence
on y. Consequently, the model works for any texture only if the direction in
the sample of the scattering vector is constant on the whole pattern, as in the
Bragg–Brentano geometry or in the time-of-flight diffraction with only one
detector. For Debye–Scherrer geometry or for time-of-flight with multi-
detectors in the same scattering plane the model only works for texture of
cylindrical sample symmetry, if the cylinder axis is normal to the scattering
plane. In this case Ph depends only onC that is kept constant (p/2) in the whole
pattern.
In 1992 Popa14 reported the implementation in the Rietveld refinement of the

general description of texture by spherical harmonics. This means that the
dependence of Ph(y) on both h and y was considered. The author used a sample
of cylindrical symmetry but the diffraction pattern was recorded in a non-
conventional focusing geometry in which the angle C depends on the Bragg
angle. Consequently, both directions h and y are involved and then there is no
loss of generality. It is impossible to fit such patterns if the general represent-
ation of texture by spherical harmonics is not considered, even if the sample
symmetry is cylindrical.
Later Von Dreele15 implemented the general description of texture by

spherical harmonics in GSAS. Von Dreele proved that, by using this descrip-
tion, beside the robustness of the texture correction in the Rietveld method it is
also possible to perform a reliable quantitative texture analysis. He measured
by neutron time-of-flight diffraction a standard calcite sample previously used
for a texture round robin.16 The patterns from different detector banks and
sample orientations were processed by GSAS, refining the harmonic coefficients
simultaneously with the structural and other parameters. Six pole distributions
calculated from the refined harmonic coefficients and used as input in the
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WIMV routine gave similar ODF to those obtained from individual pole figure
measurement.
In connection with the implementation in the Rietveld codes, the Dollase–

March model and the spherical harmonics approach, for pole distributions
determination, is developed in the next two parts. The problem of pole figure
inversion is outside the scope of this chapter.

12.1.3 Dollase–March Model

The Dollase approach9 is based on the observation that, if the distribution of a
given pole h0 is known, the distribution of any other pole h can be derived. Let
us denote by a the angle between h and h0. For the crystallites that have h

parallel to y, the pole h0 lies on the surface of a cone of axis y and angle 2a. On
the other hand, the pole h is a member of a family of mh equivalents making
different angles ak with h0. Then we can write:

PhðC; gÞ ¼ 1=mhð Þ
Xmh

k¼1

1=2pð Þ
Z2p
0

Ph0 C0k oð Þ; g0k oð Þ½ �do ð13Þ

Here the angle o denotes the rotation of h0 on the surface of the cone of angle
2ak and the angles C0k, g0k of y0||h0 are:

cosC0k ¼ cos ak cosC� sin ak sinC coso ð14Þ

tan g0k ¼
sin ak cosC sin g cosoþ sin ak cos g sinoþ cos ak sinC sin g
sin ak cosC cos g coso� sin ak sin g sinoþ cos ak sinC cos g

ð15Þ

Note that h0 is also a member of a family of equivalents. If the pattern
indexation is changed into an equivalent indexation the terms in the sum in
Equation (13) permute but the sum remains unchanged.
In general it is impossible to know any pole distribution prior to a meas-

urement, and then Equation (13) seems useless. But, as Dollase remarked,9 if,
on average, the crystallites are disc shaped or rods (needles), the preferred
orientation of a prominent, cleavage or growing plane (h0k0l0) can be predicted.
This plane is the disc surface and, respectively, the plane normal to the rod axis.
When the powder is settled and compacted on a flat surface, the pole h0(h0k0l0)
distributes preferentially along the surface normal for discs, and perpendicular
to this normal for needles. Around this normal the distribution is uniform. This
results a specimen with cylindrical sample symmetry, the symmetry axis being
the normal to the compaction surface. According to March10 and taking the
symmetry axis as y3, the distribution of h0 is:

Ph0ðyÞ ¼ Ph0 Cð Þ ¼ 1=rþ ðr2 � 1=rÞ cos2 C
� � 3=2 ð16Þ

The March distribution fulfills the normalization condition Equation (12) and
is monotonic in the limits 1/r3 for C¼ 0 and r3/2 for C¼ p/2. The maximum is
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in C¼ 0 if r o 1, and in C¼ p/2 if r4 1. Consequently, ro 1 corresponds to
disc shaped crystallites and r4 1 corresponds to needles. The parameter r,
refinable in the Rietveld method, has a physical significance. It represents the
ratio between the thickness in the preferred orientation direction of the textured
and of a hypothetical not-textured specimen under the condition of volume
conservation.
By replacing Equation (16) in Equation (13) one obtains:

PhðCÞ ¼ 1=mhð Þ
Xmh

k¼1

1=pð Þ
Zp
0

1=rþ ðr2 � 1=rÞ cos2 C0kðoÞ
� � 3=2

do ð17Þ

Here cos C0k is given by Equation (14); g0k given by Equation (15) is no longer
necessary because the sample symmetry is cylindrical. Also, the range for
integration is constrained to (0,p) because in Equation (14) cos(2p�o)¼ coso.
Equation (17) gives the pole density in the limits of the March model of
texture for any diffraction geometry. For any diffraction geometry the angle C
can be calculated from two pairs of polar and azimuthal angles describing the
orientations in the laboratory coordinate system (l1, l2, l3) of the symmetry axis
y3 and of the scattered beam k2. To define the laboratory system we presume,
without loss of generality, that the incident beam is horizontal. The axis l1 is
taken along the incident beam from source to sample, l3 is taken in the vertical
direction and then l2¼ l3� l1. The vector k2 from sample to detector (pixel, if
the detector is position sensitive) is defined by the scattering angle 2y, a polar
angle with respect to l1, and by the azimuthal angle z measured anticlockwise
from l2 to the projection of k2 on the plane (l2, l3). Consequently, in the
laboratory system, the unit vector of the scattering vector is:

y ¼ QB=QB ¼ � sin yl1 þ cos y cos zl2 þ cos y sin zl3 ð18Þ

If the sample symmetry axis y3 is defined by the standard polar and azimuthal
angles (Cs, gs), then the angle C can be generally written as follows:

cosC ¼ � sin y sinCs cos gs þ cos y cos z sinCs sin gs þ cos y sin z cosCs ð19Þ

For particular diffraction geometries z, Cs, gs take specific values. In the
Bragg–Brentano geometry z¼ 0, Cs¼ p/2 and gs¼ p/2+ y, then C¼ 0 and
Equation (17) takes a simple form:

Phð0Þ ¼ 1=mhð Þ
Xmh

k¼1

1=rþ ðr2 � 1=rÞ cos2 ak
� � 3=2 ð20Þ

Only for the Bragg–Brentano geometry, the Dollase–March texture multiplier
has a simple expression. For any other diffraction geometry the integral over o
cannot be removed. In the Debye–Scherrer geometry z¼ 0, Cs¼ 0, then from
Equation (19) C¼ p/2, and in place of Equation (17) we have:

Phðp=2Þ ¼ 1=mhð Þ
Xmh

k¼1

2=pð Þ
Zp=2
0

1=rþ ðr2 � 1=rÞ sin2 ak cos2 o
� � 3=2

do ð21Þ
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Howard and Kisi17 have found that Equation (21) can be reasonably approxi-
mated by Equation (20) if the March parameter r is replaced by r 1/2. Conse-
quently, many Rietveld programs use Equation (20) for both Bragg–Brentano
and Debye–Scherrer geometry. The approximation is good for r not far from 1
but becomes too rough for medium and strong texture. For geometries
other than Bragg–Brentano (including Debye–Scherrer) it would be better
to implement in the Rietveld programs the exact formula Equation (17). As
the integrant is a ‘‘quiet’’ function, the integral can be calculated by a Gauss
quadrature formula with a small number of nodes.
Sometimes, even if the crystallites are disc-shaped or needles, the description

of the texture starting from a single distribution of a single prominent plane is
inadequate. It is possible that volume fractions of crystallites in the specimen
have different prominent, cleavage or growing planes (h0i, k0i, l0i) with the
same sample symmetry axis and different or identical strength parameters ri, or
the prominent plane is the same for all fractions but the strength parameters ri
are different. In these cases the integrant in Equation (13) must be replaced as
follows:

Ph0ðC; rÞ )
Xn
i¼1

wiPh0iðC; riÞ ð22Þ

Here n is the number of distinct fractions, wi the fraction weights and Ph0iðC; riÞ
March distributions. The refinable parameters are n� 1 weights plus the
distinct strength parameters ri.
The Dollase–March model to describe the texture in the Rietveld method

has become very attractive due to the small number of refinable parameters.
Nevertheless, frequently it produces an incomplete texture correction, even
if complex variants like Equation (22) are used. In fact the condition of
disc-shaped crystallites or needles is not fulfilled in general and the specimen
does not have cylindrical sample symmetry. In principle, by spinning the
specimen, an apparent cylindrical texture is obtained, but in this case there
is no prominent plane (h0k0l0) as required by the Dollase approach. Any
diffraction plane can be used as a placeholder, but it is highly improb-
able that the corresponding pole h0 has a monotonic distribution in the
range 0rCr p/2, which is described by the March formula Equation (16).
For a general type of texture, only a mathematical description independent of
any physical model can guarantee a reliable correction in the Rietveld method.
Such a description is the Fourier analysis by using symmetrized spherical
harmonics.

12.1.4 The Spherical Harmonics Approach

12.1.4.1 Description of the Texture by Spherical Harmonics. The description
of the texture by spherical harmonics was first reported by Roe18 and Bunge19 and
later developed by Bunge.1,20 According to Bunge1 the orientation distribution
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function can be expanded in a series of generalized spherical harmonics:

f ðj1;F0;j2Þ ¼
XN
l¼0

Xl
m¼ l

Xl
n¼ l

cmnl expðimj2ÞPmn
l ðF0Þ expðinj1Þ ð23Þ

Denoting x¼ cosF0, the functions Pl
mn (x) are defined as follows:

Pmn
l ðxÞ ¼ ð�1Þl min m

2lðl �mÞ!
ðl �mÞ!ðl þ nÞ!
ðl þmÞ!ðl � nÞ!

� �1=2
ð1� xÞ ðn mÞ=2ð1þ xÞ ðnþmÞ=2

� dl n

dxl n
ð1� xÞl mð1þ xÞlþm
h i ð24Þ

The functions Pl
mn are real for m+ n even and imaginary for m+ n odd. They

have the following properties:

Pmn�
l ðFÞ ¼ ð�1ÞmþnPmn

l ðFÞ ð25Þ

Pnm
l ðFÞ ¼ Pmn

l ðFÞ ¼ P m; n
l ðFÞ ð26Þ

Pmn
l ðp� FÞ ¼ ð�1ÞlþmþnP mn

l ðFÞ ð27Þ

Zp
0

Pmn
l ðFÞPmn�

l0 ðFÞ sinFdF ¼ 2

2l þ 1
dll0 ð28Þ

The last equation says that the functions Pmn
l of different harmonics indices l

are orthogonal. By using the Equation (25) and taking account that the ODF is a
real function one obtains the following condition for the complex coefficients cmn

l :

c m; n
l ¼ ð�1Þmþncmn�

l ð29Þ

On the other hand, the normalization condition (4) for the ODF together
with Equation (28) impose c000 ¼ 1.
According to equation (14.160) of Bunge,1 the pole distribution function

defined by Equation (5) becomes:

phðyÞ ¼
XN
l¼0

2=ð2l þ 1Þ½ �
Xl
m¼ l

Xl
n¼ l

cmn
l expð�imbÞPm

l ðFÞ expðingÞPn
l ðCÞ ð30Þ

In this equation Pm
l is the adjunct Legendre function defined as follows

(x¼ cosF):

Pm
l ðxÞ ¼

ð�1Þl m

2l l!

2l þ 1

2

� �1=2 ðl þmÞ!
ðl �mÞ!

� �1=2
ð1� x2Þ m=2 dl m

dxl m
ð1� x2Þl ð31Þ
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There is an obvious relation between the functions Pm0
l and Pm

l :

Pm0
l ðFÞ ¼ P0m

l ðFÞ ¼ i m 2=ð2l þ 1Þ½ �1=2Pm
l ðFÞ ð32Þ

By replacing Equation (32) in Equations (26), (27) and (28) one obtains the
following properties for Pm

l :

Pm
l ðFÞ ¼ ð�1ÞmP m

l ðFÞ ð33Þ

Pm
l ðp� FÞ ¼ ð�1ÞlþmPm

l ðFÞ ð34Þ

and:

Zp
0

Pm
l ðFÞPm

l0 ðFÞ sinFdF ¼ dll0 ð35Þ

The reduced pole distribution Ph(y) accessible to the diffraction measurement is
obtained from Equation (30) according to Equation (11). When h is changed in
�h, F pass into p�F and b pass into p+ b. By using the property Equation
(34) one obtains for p h(y) Equation (30) with a supplementary factor (�1)l

inside the sum over l. Consequently, in Ph(y) only the terms with l even remain
from Equation (30). It is convenient to rearrange Equation (30) to contain only
real functions and positive indices m, n. By using Equations (29) and (33), Ph(y)
becomes:

PhðyÞ ¼
XN
l¼0

4=ð2l þ 1Þ½ �tlðh; yÞ; l ¼ even ð36Þ

tlðh; yÞ ¼ A0
l ðyÞP0

l ðFÞ þ
Xl
m¼1

Am
l ðyÞ cosmbþ Bm

l ðyÞ sinmb
� �

Pm
l ðFÞ ð37Þ

Am
l ðyÞ ¼ am0

l P0
l ðCÞ þ

Xl
n¼1

amn
l cos ngþ bmn

l sin ng
� �

Pn
l ðCÞ; ðm ¼ 0; lÞ ð38Þ

Bm
l ðyÞ ¼ gm0

l P0
l ðCÞ þ

Xl
n¼1

gmn
l cos ngþ dmn

l sin ng
� �

Pn
l ðCÞ; ðm ¼ 1; lÞ ð39Þ

The coefficients amn
l , bmn

l , gmn
l , dmn

l are obtained from the coefficients cmn
l by the

linear transformations given in Table 12.1.
If both the crystal and sample symmetry are triclinic, there are (2l+1)2

coefficients for a given value of l. For higher symmetries the number of
coefficients is reduced, some coefficients being zero and some being correlated.
Before finding the selection rules of the coefficients for all Laue classes, we must
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show how the crystal and the sample systems (xi) and (yi) are defined and,
consequently, how the polar and azimuthal angles of h and y, respectively, are
calculated.

12.1.4.2 Crystal and Sample Coordinate Systems, Calculation of the Polar and
Azimuthal Angles. As a rule the axis x3 of the crystal orthogonal system is
taken along the r-fold axis, (r¼ 2,3,4,6), and x1 along the two-fold axis normal
to the r-fold axis, if it exists, which is the case of the Laue classes mmm, 4/mmm,
3m, 6/mmm and the cubic classes. For the Laue classes 2/m, 4/m, 3 and 6/m
there is no two-fold axis normal to the r-fold axis and x1 can have an arbitrary
direction. For simplicity x1 is taken, if possible, like in the first case. Once the
crystal coordinate system (xi) is fixed the direction cosines (ai) of h are
calculated from the lattice parameters and the Miller indices. Finally, the
corresponding polar and azimuthal angles are:

cosF ¼ a3; tan b ¼ a2=a1 ð40Þ

Table 12.2 gives the crystal system (xi) and the corresponding direction
cosines for all Laue classes.
The sample coordinate system (yi) is defined in a manner similar with (xi) but

not totally identical. The axis y3 is taken along the sample r-fold axis or along the
cylindrical axis for a fibre texture, and y1 along the two-fold axis normal to the
r-fold axis, if this axis exists; if not, y1 has an arbitrary direction. A significant
difference from the crystal case is that the symmetry directions in the sample are
in general not known, although sometimes we can guess them. As a consequence
it is necessary to find these directions by Rietveld refinement together with the
spherical harmonics parameters. Let us consider the general diffraction geometry
described in Section 12.1.3. To change the sample orientation in the laboratory
system the specimen is rotated on a goniometer with the standard Euler angles
(o, w, f). When the goniometer is set to zero the axis o is coincident with f and
parallel to the axis l3 of the laboratory system and the axis w is parallel to l1. If we
denote by (os, ws, fs) three standard Euler angles defining the orientation of the
sample system (yi) with respect to the laboratory system (li) when the goniometer
is set to zero, then after the rotations (o,w,f) the sample system becomes:

yi ¼
X3
j¼1

Mijðos; ws;fs;o; w;fÞlj ð41Þ

Table 12.1 The relations between the coefficients amn
l , bmn

l , gmn
l , dmn

l and
cmn
l ¼ amn

l þ ibmn
l .

a00l ¼ a00l =2 a0nl ¼ a0nl b0nl ¼ b0nl

am0
l ¼ am0

l amn
l ¼ amn

l þ ð 1Þnam;�n
l bmn

l ¼ bmn
l þ ð 1Þnbm;�n

l

gm0
l ¼ bm0

l gmn
l ¼ bmn

l þ ð 1Þnbm;�n
l dmn

l ¼ amn
l ð 1Þnam;�n

l
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Table 12.2 Crystal axes (xi) and the direction cosines (ai) as function of the lattice parameters and Miller indices for all Laue
classes; d is the interplanar distance, 2/m (c) means monoclinic unique axis c, and 3ðRÞ denotes trigonal in
rhombohedral setting.

Laue group Lattice par. X3 X1 a1 a2 a3

�1 a, b, c, a, b, g c* a hd/a ðka hb cos gÞd=ðab sin gÞ ha� cosb� þ kb� cos a� þ lc�ð Þd
2/m (c) a, b, c, g c a hd/a ðka hb cos gÞd=ðab sin gÞ ld/c

2/m (b) a, b, c, b b c ld/c ðhc la cosbÞd=ðac sin bÞ kd/b

mmm a, b, c c a hd/a kd/b ld/c

4/m, 4/mmm a, c c a hd/a kd/a ld/c
�3; �3m1; 6=m; 6=mmm a, c c a hd/a ðhþ 2kÞd=ða 3

p
Þ ld/c

�31m a, c c 2a + b ð2hþ kÞd=ða 3
p

Þ kd/a ld/c
�3ðRÞ; �3m1ðRÞ a, a a + b + c a b ðh kÞd=a= 2ð1 cos aÞ

p
ðhþ k 2lÞd=a= 2ð1 cos aÞ

p
ðhþ kþ lÞd=a= 3ð1þ 2 cos aÞ

p
m�3;m�3m a c a hd/a kd/a ld/a

3
4
3
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Mðos; ws;fs;o; w;fÞ ¼ aðos; ws;fsÞaðo; w;fÞ ð42Þ

In Equation (42) a is the standard Euler matrix given by Equation (2) with (f1,
F0, f2) replaced by (os, ws, fs) and by (o, w, f). Now by using Equations (18)
and (41) one obtains the direction cosines of the scattering vector in the sample
and, further, the angles (C, g):

bi ¼ yyi ¼ � sin yMi1 þ cos y cos zMi2 þ cos y sin zMi3 ð43Þ

cosC ¼ b3; tan g ¼ b2=b1 ð44Þ

Note that any point (C, g) can be reached by varying only two Euler angles,
(o, w) or (w, f), the third angle being fixed at a convenient value. The sample
initial orientation angles (os, ws, fs) are refinable parameters. If the sample
symmetry belongs to a Laue class with an r-fold axis and a two-fold axis normal
to it, all three parameters must be refined. If the two-fold axis is absent y1 has an
arbitrary direction and one parameter must be fixed to an arbitrary value.
Finally, if the sample has a triclinic symmetry, all three-sample orientation
parameters must be fixed in the refinement. In practice the sample symmetry is
not known, a priori, and is found by successive trials starting the refinement from
a higher symmetry.

12.1.4.3 Selection Rules for all Laue Classes. The selection rules for the
harmonic coefficients are derived from the invariance of the pole distribution to
the operations of the crystal and sample Laue groups. The invariance condi-
tions are applied to every function tl (h, y) from Equation (36), as the terms of
different l in this equation are independent. If we compare Equations (38) and
(39) with (37) we observe that they have an identical structure. On the other side
the sample and the crystal coordinate systems were similarly defined. As a
consequence the selection rules for the coefficients amn

l , bmn
l , and respectively

gmn
l , dmn

l resulting from the sample symmetry must be identical with the
selection rules for the coefficients Am

l and Bm
l resulting from the crystal

symmetry, if the sample and the crystal Laue groups are the same. The
exception is the case of cylindrical sample symmetry that has no correspond-
ence with the crystal symmetry. In this case, only the coefficients am0

l and
gm0
l are different from zero, if they are not forbidden by the crystal symmetry.
An r-fold axis along x3 transforms b into b+2p/r and leaves F unchanged.

The invariance condition is:

tlðF;bþ 2p=r; yÞ ¼ tlðF; b; yÞ ð45Þ

The first term on the right-hand side of Equation (37) always fulfills this
condition; the rest only for Am

l and Bm
l that satisfy the following system of linear

homogenous equations:

Am
l ðyÞ cosð2pm=rÞ � 1½ � þ Bm

l ðyÞ sinð2pm=rÞ ¼ 0

�Am
l ðyÞ sinð2pm=rÞ þ Bm

l ðyÞ cosð2pm=rÞ � 1½ � ¼ 0
ð46Þ
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If m¼ kr, where k is an integer, the system has a non-trivial solution for both
Am
l and Bm

l . If, besides an r-fold axis in x3, there is a two-fold axis in x1, then
tl(h,y) must fulfill a supplementary invariance condition:

tlðp� F;�b; yÞ ¼ tlðF; b; yÞ ð47Þ

Replacing Equation (37) in (47) and taking into account Equation (34) and that
l is an even number one obtains:

ð�1ÞmAm
l ðyÞ ¼ Am

l ðyÞ; ð�1Þmþ1Bm
l ðyÞ ¼ Bm

l ðyÞ ð48Þ

It means that Am
l is different from zero only for m even and Bm

l only for m odd.
Table 12.3 summarizes the selection rules for all non-cubic Laue groups.
The cubic groups m3 and m3m are obtained by adding a three-fold axis

on the big diagonal of the orthorhombic and, respectively, of the tetragonal
4/mmm prism. By adding this axis some coefficients become zero and other
coefficients become correlated. To find them we cannot use the same procedure
as before because the transformations of F and b by the diagonal three-fold
axis are no longer linear. To solve the problem Bunge1 uses the Fourier
coefficients of the Legendre functions and the transformation (F,0)-
(p/2,F). An alternative approach by Popa and Balzar21 does not need the
Fourier coefficients. In place of F and b, Equation (37) for mmm is evaluated in
terms of direction cosines a1, a2, a3. In these variables tl is a homogenous
polynomial of degree l, the polynomial coefficients being linear combinations of
Am
l . The diagonal three-fold axis transforms (a1, a2, a3) into (a2, a3, a1) and

setting the invariance condition to this transformation results in a system of
linear homogenous equations for the coefficients Am

l . By solving this system one
obtains zero for some coefficients and linear correlations for other coefficients.
At least two coefficients are involved in every correlation. The selection rules
for the groupm3m are found from those ofm3 by setting to zero the coefficients
whose harmonic index m is not a multiple of 4. The functions tl(h,y) for the
cubic groups are given in the Table 12.4 for l¼ 2,8.

Table 12.3 Selection rules for the non-cubic Laue groups. The symbols A
and B designate Am

l (y) and Bm
l (y) for the crystal symmetry or amn

l ,
bmn
l and gmn

l , dmn
l for the sample symmetry.

m,n - 0 1 2 3 4 5 6 7 8 9 10 11 12

1 A AB AB AB AB AB AB AB AB AB AB AB AB
2/m A AB AB AB AB AB AB
mmm A A A A A A A
3 A AB AB AB AB
3m A B A B A
4/m A AB AB AB
4/mmm A A A A
6/m A AB AB
6/mmm A A A
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After application of the selection rules the pole distribution Equation (36)
becomes:

PhðyÞ ¼ 1þ
XN
l¼2

4=ð2l þ 1Þ½ �
XMðlÞ

m¼1

XNðlÞ

n¼1

emnl Cm
l ðF;bÞS

n
l ðC; gÞ; l ¼ even ð49Þ

Here Cm
l and Sn

l are symmetrized spherical harmonics that have the crystal and,
respectively, the sample symmetry. The indices m and n count these functions
for a given l. By taking Equation (35) into account we can prove that for
different indices l, m, n the symmetrized spherical harmonics are orthogonal:

Zp
0

Z2p
0

Cm
l ðF; bÞC

m0

l0 ðF;bÞ sinFdFdbBdll0dmm0 ð50Þ

A similar equation holds for Sn
l (C,g). The coefficients emnl in Equation (49) are

the non-zero, independent coefficients amn
l , bmn

l , gmn
l dmn

l . As an example, let us
presume m3 and 3m the crystal and the sample symmetry, respectively. For
l¼ 6, and taking into account Tables 12.3 and 12.4, M¼ 2 and N¼ 3; the
corresponding symmetrized harmonics and coefficients are:

C1
6ðF;bÞ ¼ P0

6ðFÞ � 14
p

P4
6ðFÞ cos 4b

C2
6ðF; bÞ ¼ P2

6ðFÞ cos 2b� 5=11
p

P6
6ðFÞ cos 6b

S1
6ðC; gÞ ¼ P0

6ðCÞ; S2
6ðC; gÞ ¼ P3

6ðCÞ sin 3g; S3
6ðC; gÞ ¼ P6

6ðCÞ cos 6g

e1n6 ðn ¼ 1; 3Þ : a006 ;b036 ; a066 ; e2n6 ðn ¼ 1; 3Þ : a206 ; b236 ; a266

12.1.4.4 Implementation in the Rietveld Method. When implemented in the
Rietveld codes the series Equation (49) is truncated at l¼L. The harmonics
coefficients emnl (together with the structural and other parameters) and the
optimum value of L are found by successive refinements by increasing L from a
small value up to a value for which the added coefficients do not improve the fit.

Table 12.4 Functions tl(h,y), l¼ 2,8 for the cubic group m3. For m3m,
A2

6ðyÞ ¼ 0.

t2ðh; yÞ ¼ 0

t4ðh; yÞ ¼ A0
4ðyÞ½P0

4ðFÞ þ 10=7
p

P4
4ðFÞ cos 4b�

t6ðh; yÞ ¼ A0
6ðyÞ½P0

6ðFÞ 14
p

P4
6ðFÞ cos 4b� þ A2

6ðyÞ½P2
6ðFÞ cos 2b 5=11

p
P6
6ðFÞ cos 6b�

t8ðh; yÞ ¼ A0
8ðyÞ½P0

8ðFÞ þ 56=99
p

P4
8ðFÞ cos 4bþ 130=99

p
P8
8ðFÞ cos 8b�
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Once the series convergence is reached the pole distributions can be calculated
from the refined harmonic coefficients. The standard error of the calculated
pole distribution is given by:

s2 PhðyÞ½ � ¼
XL
l¼2

4=ð2l þ 1Þ½ �2
XMðlÞ

m¼1

XNðlÞ

n¼1

s2ðemnl Þ½Cm
l ðF;bÞS

n
l ðC; gÞ�2 ð51Þ

When Equation (51) was derived the correlation matrix of emnl was considered
diagonal because the symmetrized spherical harmonics are orthogonal. In
practice some correlations exists [because only discrete points (F, b) and
(C, g) are involved] but they are small. We can also calculate the texture index
J and the texture strength J1/2. According to Bunge1 the texture index is defined
as follows:

J ¼ð1=8p2Þ
Z2p
0

Zp
0

Z2p
0

f 2ðj1;F0;j2Þ sinF0dj1dF0dj2

¼ 1þ
XL
l 2

ð2l þ 1Þ 1

4ða00l Þ2 þ 2
Pl
m 1

ðam0
l Þ2 þ ðgm0

l Þ2
h i

þ 2
Pl
n 1

ða0nl Þ2 þ ðb0nl Þ2
h i

þ
Pl
m 1

Pl
n 1

ðamn
l Þ2 þ ðbmn

l Þ2 þ ðgmn
l Þ2 þ ðdmn

l Þ2
h i

8>>><
>>>:

9>>>=
>>>;

ð52Þ

To derive the right-hand side of Equations (52), (28) and Table 12.1 were used.
Note that the texture index contributes not only to the refined coefficients but
also the coefficients linearly correlated from the cubic groups (a006 and also
a406 ¼ � 14

p
a006 in the example above).

Implementation in the Rietveld method of the general representation of the
texture by symmetrized spherical harmonics made possible a robust texture
correction in the structure refinement and transformed the Rietveld method
into a powerful tool for a quantitative determination of the texture itself. The
robustness of the texture correction is a direct consequence of the fact that the
symmetrized spherical harmonics are orthogonal functions.
For the determination of the orientation distribution function it is necessary

to record diffraction patterns successively by rotating the sample on a gonio-
meter, as was shown in Section 12.1.4.2. The patterns must be measured in a
large number of points (C, g) scattered more or less uniformly on a hemisphere.
It is difficult to evaluate beforehand how many such points are necessary for a
reliable determination of the ODF. For a calcite sample previously used in a
texture round robin16 Von Dreele15 recorded neutron time of flight diffraction
patterns in about 50 points (C, g). All patterns were processed by GSAS
simultaneously and six pole distributions calculated from the refined harmonic
coefficients were further used as input in the WIMV inversion routine. An ODF
similar to those obtained in the texture round robin resulted, but its dependence
on the number of points in the space (C, g) was not examined.
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If the quantitative texture analysis is not of interest the sample is not rotated
on a goniometer and only one or a small number of patterns are recorded.
Because the number of points in the space (C, g) is not sufficient, one expects
that the refined harmonic coefficients give only a rough description of
the texture, even if the texture correction is very good. An extreme case is
the Bragg–Brentano geometry. In this case in Equations (41–43) we must take
o¼ y, w¼f¼ 0, z¼ 0 and consequently Equation (44) becomes:

cosC0 ¼ a32ðos; ws;fsÞ; tan g0 ¼ a22ðos; ws;fsÞ=a12ðos; ws;fsÞ

Only one direction in sample is involved for the whole pattern and in place of
Equation (49) in the Rietveld programs one uses the density of poles in this
single direction:

Ph ¼ 1þ
XN
l¼2

4=ð2l þ 1Þ½ �
XMðlÞ

m¼1

eml C
m
l ðF;bÞ; l ¼ even ð53Þ

The refinable parameters are eml defined as follows:

eml ¼
XNðlÞ

n¼1

emnl Sn
l ðC0; g0Þ ð54Þ

We can have a good texture correction but no information about the texture
itself because the coefficients emnl cannot be refined. A similar situation appears
for the pattern recorded on a neutron time of flight diffractometer equipped
with only one detector battery.

12.2 MACROSCOPIC STRAIN AND STRESS

The stress state, where the stress can be both applied and residual, and the
associated strain influence many different material properties, which is especi-
ally important in engineering and technological applications. The residual
stress and strain can be advantageous or, on the contrary, can provoke a faster
failure of machine parts or other manufactured materials. There are different
methods to determine the strain and stress in materials: mechanical, acoustical,
optical and the diffraction of X-ray and neutrons. The diffraction method is
applicable for crystalline materials and is based on the measurements of the
elastic strain effects on the diffraction lines. There are two kinds of such effects,
a peak shift and a peak broadening. The strain modifies the interplanar
distances d. In a polycrystalline specimen a peak shift is produced if the average
of the interplanar distance modifications on the crystallites in reflection
is different from zero. If the dispersion of interplanar distance modifications
is different from zero, then a peak broadening occurs. The effect of the
strain on the peak breadth is described in Chapter 13. Here we deal only
with the peak shift effect caused by the macroscopic, or Type I strain/stress.
There is a substantial amount of literature on this subject. The comprehensive
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monographs by Noyan and Cohen22 and by Hauk23 are strongly recom-
mended. A rich reference list can be found in a recent review by Welzel et al.24

12.2.1 Elastic Strain and Stress in a Crystallite – Mathematical Background

If we denote by u(r)¼ u1(r)x1+ u2(r)x2+ u3(r)x3 the vector of a small defor-
mation in the point r of the crystallite, the strain tensor is:

eij ¼ ð1=2Þ @ui=@xj þ @uj=@xi
� �

; ði; j ¼ 1; 3Þ ð55Þ

By definition it is a symmetric second-rank tensor. The stress tensor sij,
(i, j¼ 1,3), is also a symmetric second-rank tensor defined as follows (Landau
and Lifchitz25): the element sij is the i component of the force acting on the unit
area normal to the axis xj. The symmetry of the stress tensor is imposed by the
condition of mechanical equilibrium.
In different reference systems the strain and stress tensors have different

components, the transformation being easily derived starting from the defini-
tions. Let us consider, for example, the sample reference system (yi) and denote
by Latin letters ekm and skm the components of the strain and stress tensors in
this system. If the transformation of the sample reference system (yi) into the
crystal reference system (xi) is given by Equation (1) then the transformations
of the strain tensors are the following:

eil ¼
X3
k¼1

X3
m¼1

aikalmekm; ekm ¼
X3
i¼1

X3
l¼1

aikalmeil ð56a;bÞ

Similar transformations occur between sil and skm.
The d-spacing variation caused by a strain along the lattice vector H(hkl) is

observable in a diffraction experiment:

½dðhklÞ � d0ðhklÞ�=d0ðhklÞ ¼ Dd=d0 ¼ �DH=H0 ¼ ehh ð57Þ

To calculate this quantity from the strain tensor components eij we must
define the reference system (k, l, h) with the axis k in the plane (x3, h) and
normal to h and l¼ h� k. The systems (k, l, h) and (xi) are connected by the
matrix m defined before by Equation (9a):

k

l

h

0
@

1
A ¼ mðF; bÞ

x1
x2
x3

0
@

1
A ð58Þ

A comparison of Equation (58) with Equation (1) shows how to obtain ehh by
using Equation (56a):

ehh ¼
X3
k¼1

X3
m¼1

m3kðF;bÞm3mðF;bÞekm ¼
X3
k¼1

X3
m¼1

akamekm ð59Þ
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Note that we used for this tensor element a notation with a Greek letter because
the system (k, l, h) is linked to the crystallite. Hereafter we will denote ehh simply
by eh. If the ekm on the right-hand side of Equation (59) are replaced by
Equation (56a) one obtains an equivalent expression for eh but with the strain
tensor components and the direction cosines of h from the sample reference
system:

ehh ¼ eh ¼
X3
k¼1

X3
m¼1

bkbmekm ð60Þ

As we will see later, sometimes it is advantageous to use Equation (60), whereas at
other times a large amount of calculation is saved by starting from Equation (59).
The stress and strain tensors are connected by the Hooke equations. In the

crystallite reference system these are the following:

sij ¼
X3
k¼1

X3
l¼1

Cijklekl ; eij ¼
X3
k¼1

X3
l¼1

Sijklskl ; ði; j ¼ 1; 3Þ ð61a;bÞ

Here Cijkl are the stiffness constants and Sijkl are the compliance constants.
They form two symmetric fourth-rank tensors with 81 elements inverse one to
another. For the triclinic symmetry only 21 elements are independent because
the strain and stress tensors are symmetric. Consequently the indices i, j and k, l
can be permuted and also can be permuted one pair with another. For a crystal
symmetry higher than triclinic the number of independent elastic constants is
less than 21.
We can take advantage of the symmetry of the strain, stress and elastic

constants tensors by using the reduced indices defined as follows:

11 ! 1; 22 ! 2; 33 ! 3; 23 ¼ 32 ! 4; 13 ¼ 31 ! 5; 12 ¼ 21 ! 6 ð62Þ

By using the reduced indices the strain and stress tensors are represented as
vectors of dimension 6 and the elastic constant tensors as symmetrical matrices
of dimensions 6� 6. In the literature two conventions can be found for
expressing the strain, stress and the elastic constants tensors in the reduced
indices. The first convention is:26

�ij ! �m if m ¼ 1; 2; 3
2�ij ! �m if m ¼ 4; 5; 6



Cijkl ! Cmn; m; n ¼ 1; 6

sij ! sm; m ¼ 1; 6
Sijkl ! Smn if m; n ¼ 1; 2; 3
2Sijkl ! Smn if m or n ¼ 4; 5; 6
4Sijkl ! Smn if m and n ¼ 4; 5; 6

8<
:

We prefer to use the second convention27 that keeps the values of the tensor
elements and, for crystal symmetry higher than triclinic, gives the same structure
for the matrices C and S:

eij ! em; m ¼ 1; 6 sij ! sm; m ¼ 1; 6
Cijkl ! Cmn; m; n ¼ 1; 6 Sijkl ! Smn; m; n ¼ 1; 6 ð63Þ
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By using Equation (63) the inversion relations between the matrices C and S are
S¼ (C0) 1 and C¼ (S0) 1, where C0 and S0 are obtained by partitioning C and S

in four blocks and multiplying the elements as follows: by 1 in the upper left
block, by 2 in the upper right and lower left blocks and by 4 in the lower right
block. Table 12.5 gives the matrices C for all Laue classes. The matrices S have
exactly the same structure. The elastic constant matrices, as given in Table 12.5,
were obtained by choosing the crystal reference system (xi) according to Section
12.1.4.2 (Table 12.2) and by setting the condition of invariance of the elastic free
energy per unit volume to the operations of the crystal point group.
We can resume now the basic equations that will be used later. They are

obtained by applying Equations (62) and (63) to Equations (56), (59), (60) and
(61) : the Hooke equations:

si ¼
X6
j¼1

Cijrjej ; ei ¼
X6
j¼1

Sijrjsj ð64a;bÞ

the transformations of the strain and stress tensors from crystal (Greek) to
sample (Latin) reference system and back:

ei ¼
X6
j¼1

Pijej ; ei ¼
X6
j¼1

Qijej ð65a;bÞ

si ¼
X6
j¼1

Pijsj ; si ¼
X6
j¼1

Qijsj ð66a;bÞ

and the strain along the reciprocal lattice vector:

eh ¼
X6
j¼1

Ejrjej ; eh ¼
X6
j¼1

Fjrjej ð67a;bÞ

Table 12.5 The matrix C of the stiffness constants for all Laue classes. The
matrix S of the compliance constants is identical, onlyC is replaced
by S. The last column gives the number of the independent
constants.

�1 21

2/m (c) C14 C15 C24 C25 C34 C35 C46 C56 0 13

mmm 2=mþ C16 C26 C36 C45 0 9

4/m 2=mþ C36 C45 0; C22 C11; C23 C13; C26 C16; C55 C44 7

4/mmm 4=mþ C16 0 6
�3 C16 C26 C34 C35 C36 C45 0; C22 C11; C23 C13,

C24 C14; C25 C15; C46 C15; C55 C44, C56 C14; C66

ðC11 C12Þ=2

7

�3m �3þ C15 0 6

Hexag. �3mþ C14 0 5

Cubic 4=mmmþ C13 C12; C33 C11; C66 C44 3

Isotropic Cubicþ C44 ðC11 C12Þ=2 2
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In Equations (64) and (67) the following notation was used:

ðr1; :::::; r6Þ ¼ ð1; 1; 1; 2; 2; 2Þ ð68Þ

ðE1; ::::;E6Þ ¼ ða21; a22; a23; a2a3; a1a3; a1a2Þ ð69Þ

ðF1; ::::;F6Þ ¼ ðb21; b22; b23; b2b3; b1b3; b1b2Þ ð70Þ

In Equations (65) and (66) the matrices Q and P¼Q 1 of dimensions (6,6) can
be expressed by four other matrices of dimensions (3,3):

Q ¼ L 2M
N O

� �
; P ¼ Lt 2Nt

Mt Ot

� �
ð71a;bÞ

Lkl ¼ a2kl ;Mlk ¼ alialj ;Nkl ¼ ailajl
Oij ¼ akkaji þ akiajk;Okk ¼ aiiajj þ aijaji

�
;

i; j; k; l ¼ 1; 3
i 6¼ j 6¼ k



ð72Þ

Finally, the Hooke equations in a crystallite can be written by using the
components of the strain and stress tensors in the sample reference system.
Denoting by g the triplet of Euler angles (j1, F0, j2) and using Equations
(64–66) we have:

si ¼
X6
j¼1

CijðgÞrjej ; ei ¼
X6
j¼1

SijðgÞrjsj ð73a;bÞ

Here Cil (g) and Sil (g) are the single-crystal stiffness and compliance tensors in
the sample reference system. They have the following expressions:

CilðgÞ ¼ r 1
l

X6
j¼1

X6
k¼1

CjkrkPijQkl ; SilðgÞ ¼ r 1
l

X6
j¼1

X6
k¼1

SjkrkPijQkl ð74a;bÞ

12.2.2 Strain and Stress in Polycrystalline Samples

12.2.2.1 Strains and Stresses of Types I, II and III. The elastic strain and
stress state of a crystallite is determined by the Hooke equations together with
the boundary conditions. In a polycrystalline sample the boundary conditions
are the result of the interaction of the crystallite with its neighbors and this
interaction depends on the crystallite shape and orientation. The resulting
strain and stress in the crystallite are not homogenous and in the most general
case are described by functions depending not only on the crystallite orient-
ation but also on the position vector in the crystallite. Let us denote by Rk the
position vector with respect to the sample reference system of the crystallite k
having the orientation in the range (g, g+ dg). The position vector of a point
within this crystallite will be Rk+ r and the strain at this point is ei (Rk+ r, g).
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Denoting the volume of this crystallite by Vk the average strain in this
crystallite is:

eiðRk; gÞ ¼ V 1
k

Z
eiðRk þ r; gÞdr ð75Þ

The micro-strain or the Type III strain is the difference between ei (Rk+ r, g)
and this average:

DeiðRk þ r; gÞ ¼ eiðRk þ r; gÞ � eiðRk; gÞ ð76Þ

Obviously, the average over r of the Type III strain is zero. Let us now denote
by Ng the total number (presumed large) of crystallites from the group of
orientation g and define the following average and difference:

eiðgÞ ¼ N 1
g

XNg

k¼1

eiðRk; gÞ ð77Þ

DeiðRk; gÞ ¼ eiðRk; gÞ � eiðgÞ ð78Þ

The strain ei(g) defined by Equation (77) is a macroscopic quantity called
Type I strain. The difference Equation (78) between the average strain on the
crystallite k of the group g and the Type I strain is a sub-macroscopic quantity
called Type II strain. Obviously, the average over k of the Type II strain is
also zero. Taking account of Equations (76) and (78) we can write the strain at
the point r of the crystallite k from the group g as a sum of these three types of
strains:

eiðRk þ r; gÞ ¼ eiðgÞ þ DeiðRk; gÞ þ DeiðRk þ r; gÞ ð79Þ

Similar expressions can be written for any strain or stress component in any
reference system. In Equation (79) ei is in fact a placeholder for ei, ei, si, si and
also for eh that gives the diffraction peak shift caused by the strain in a
crystallite. To calculate the peak shift for a polycrystalline sample, eh (Rk+ r, g)
given by Equation (79) must be averaged over r, k and g0, where g0 represents
those crystallite orientations for which h is parallel to y, the direction in
the sample of the scattering vector. Taking account that the sample could be
textured this multiple average is the following:

�hðyÞh i ¼
Z

do f ðg0ÞN 1
g0

XNg0

k¼1

V 1
k

Z
dr�hðRk þ r; g0Þ=

Z
do f ðg0Þ

¼ 1=2pð Þ
Z

do f ðg0Þ�hðg0Þ=phðyÞ:
ð80Þ

The contributions to the peak shift of the third and of the second terms from
Equation (79) are zero because the average of these terms over r and k,
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respectively, are zero. The peak shift is exclusively caused by the Type I strain,
in which case we will retain only the first term from the right-hand side
of Equation (79). Type II and Type III strains contribute only to the peak
broadening that is described in Chapter 13.

12.2.2.2 Macroscopic and Intergranular Strain/Stress. Similar to the case of
texture we can call ei(g)¼ ei(j1, F0, j2) the strain/stress orientation distribution
functions (SODF) (ei is still a placeholder). In contrast to the texture case, the
average of the SODF over all variables is not unity but is the macroscopic
strain/stress:

ei ¼ ð1=8p2Þ
Z2p
0

Zp
0

Z2p
0

eiðj1;F0;j2Þf ðj1;F0;j2Þ sinF0dj1dF0dj2 ð81Þ

The SODF is itself a macroscopic quantity, as is the following difference, called
intergranular strain/stress:

Deiðj1;F0;j2Þ ¼ eiðj1;F0;j2Þ � ei ð82Þ

Obviously, the integral over all variables of the intergranular strain/stress
weighted by texture is zero. The intergranular strain/stress may be originated
by elastic and plastic deformations, phase transformations, thermal treatments,
mismatch of d-spacing in composite materials and differences in the coefficients
of thermal expansion. In general both mean values Equation (81) and inter-
granular strains/stresses Equation (82) are necessary for a complete description
of the strain/stress state in a material.
The SODF is not accessible directly in diffraction measurements but the

strain pole distribution given by Equation (80). The strain pole distribution is
for the SODF the equivalent of the pole distribution for texture with an
important difference: in place of one distribution, six separate SODFs in a well-
defined linear combination [Equation (67)] are projected on the space (C, g).
The strain pole distribution given by Equation (80) contains as a normalizing
factor the texture pole distribution ph(y) that is not accessible to the diffraction
measurements. This can be replaced by the reduced pole distribution because
the peak positions for �h and h are not distinguishable. Therefore, the strain
pole distribution becomes:

ehðyÞh i ¼ 1

2PhðyÞ

1=2pð Þ
R
hjjy

doehðj1;F0;j2Þf ðj1;F0;j2Þ

þ 1=2pð Þ
R
hjjy

doehðj1;F0;j2Þf ðj1;F0;j2Þ

2
64

3
75 ð83Þ

Note that angular brackets o. . .4 are used for the average over the orientat-
ions of crystallites in reflection and a bar on the averaged quantity for the
average over all orientations in the Euler space.
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12.2.3 Status of the Strain/Stress Analysis by Diffraction

For many decades the principal aim of strain/stress analysis by diffraction was
the determination of the average strain and stress tensors e and s in materials.
The determination was based on the supposition that the elastic strain and
stress tensors e(g), s(g) in a crystallite are connected to the average tensors s, e
as follows:

eðgÞ ¼ S�ðgÞs; sðgÞ ¼ C�ðgÞe ð84a;bÞ

Here S*(g) and C*(g) are fourth-rank tensors describing the elastic behavior of
the crystallites in the polycrystalline material [not necessarily the single-crystal
compliance and stiffness tensors as in Equation (73)]. If Equations (84) are true
then the average strain measured by diffraction has the following expression:

ehðyÞh i ¼
X6
j¼1

RjðC; g;F;bÞsj ð85Þ

The coefficients Rj are called diffraction stress factors. The relations (84) are
only true if the elastic interactions of crystallites are considered. In other words
the right-hand sides in Equation (84) represent the elastically induced parts of
strain and stress in crystallites. Classical models like Voigt,28 Reuss29 and
Kroner30 describe these elastic interactions and the diffraction stress factors Rj

can be calculated analytically or numerically by using Equation (83). The
average stresses can be obtained by fitting Equation (85) to the measured data
for several peaks and directions in the sample. For isotropic (not-textured)
samples Equation (85) becomes linear in sin2C and sin2C and is the basic
equation of the traditional ‘‘sin2C’’ method.31,32 Most experimental data can
be processed by this method, even if the sample has a weak texture.
For textured samples the relation between the peak shifts and sin2C becomes

nonlinear and analytical expressions can be found only by approximating the
texture pole distribution by d functions on some prominent sample directions.33

This could be a rough approximation, especially if the grain elastic interactions
are not of the Reuss type, and numerical calculations of the diffraction stress
factors are preferable.
Determination of the stress in textured sample requires a prior, accurate

determination of the texture. To eliminate this time consuming step and to
increase the accuracy of the stress determination Ferrari and Lutterotti34

proposed to include the stress analysis into the Rietveld method, the stress
parameters being refined together with the texture spherical harmonics coeffi-
cients and the structural parameters. Balzar and coworkers35 also used the
Rietveld method with a Voigt type formula implemented in GSAS to determine
the average strain tensor from multiple time-of-flight neutron diffraction
patterns on Al/SiC composites. In GSAS [profile #5 (ref. [36])] are also
implemented formulae for all Laue groups describing the peak shift caused
by a hydrostatic pressure. These are useful to fit the effect of thermal expansion
and some solvent-dependent effects in highly hydrated crystals.
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Sometimes the dependence of the measured strain on sin2C becomes strongly
nonlinear, especially in metals after plastic deformation, and cannot be ex-
plained by the texture or by the stress gradient effect. In general, Equations (84)
are too restrictive because they do not take into account the plastically induced
part of the strain and stress. They must be replaced by the exact Equations (73):

eðgÞ ¼ SðgÞ sþ DsðgÞ½ �; sðgÞ ¼ CðgÞ eþ DeðgÞ½ � ð86Þ

In other words, the averaged strain and stress tensors and the whole intergran-
ular strains and stresses must be considered to explain the strongly nonlinear
dependence of the measured strain on sin2C. There are two possibilities
to account for the whole intergranular stress. The first is to calculate the
plastically induced part of the stress starting from the models of the plastic flow
of crystallites within a polycrystalline sample.37,38 The second possibility is
to construct the strain/stress orientation distribution functions ei(j1, F0, j2) by
inverting the strain pole distributions ehðyÞh i measured for several poles and in
a large number of points (C, g). No model is necessary to assume for the elastic
or plastic interactions of crystallites. Conversely, determination of the SODF
on elastically loaded or plastically deformed samples gives essential informa-
tion on the mechanisms of crystallite interactions.
To determine the SODF, Wang and coworkers39 42 and Behnken43 proposed

and tested an approach based on the representation of these functions by
generalized spherical harmonics. The Wang and the Behnken approaches
presume a prior determination of the ODF (texture) and individual peak fitting
to find the peak position. Only isolated peaks can be used for accurate position
determination, and then a large part of information contained in the diffraction
pattern is lost. To eliminate these drawbacks Popa and Balzar21 proposed to
implement the spherical harmonic analysis of the strain in the Rietveld method.
The strain harmonic coefficients are refined simultaneously with the texture
coefficients and with the structural and other parameters. In place of the
SODF, Popa and Balzar used WSODF, the strain orientation function
weighted by texture, and performed the spherical harmonic analysis for all
Laue classes. Note that in the Wang and Behnken approach only the cubic
crystal symmetry and the orthorhombic sample symmetry were considered. The
strain harmonic coefficients refined in the Rietveld method are further used to
construct the WSODF, and then the SODF, by Fourier synthesis or by direct
inversion methods such as WIMV. For every tensor component ei several pole
figures eiðh; yÞh i are calculated from the refined coefficients. Further, these pole
figures are used as input in the WIMV routine.
The following sections develop three subjects: the classical approximations

for the strain/stress in isotropic polycrystals, isotropic polycrystals under
hydrostatic pressure and the spherical harmonic analysis to determine the
average strain/stress tensors and the intergranular strain/stress in textured
samples of any crystal and sample symmetry. Most of the expressions that
are obtained for the peak shift have the potential to be implemented in the
Rietveld routine, but only a few have been implemented already.
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12.2.4 Strain/Stress in Isotropic Samples – Classical Approximations

The term isotropic for a polycrystalline sample denotes the absence of the
preferred orientation, in which case f(j1, F0, j2)¼ 1. Concerning the elastic
properties, on average this sample is isotropic but the behavior of crystallites,
with rare exceptions, is anisotropic. For this reason a non-textured poly-
crystalline sample can be also called quasi-isotropic.

12.2.4.1 Voigt Model. According to Voigt28 the intergranular strain in the
sample reference system is zero and then the strain tensor in the crystallite is
identical with the macroscopic strain:

eiðj1;F0;j2Þ ¼ ei ð87Þ

To find the stress tensor in the same system we place Equation (87) into
Equation (73a) and one obtains an expression similar to Equation (84b). To
obtain the macroscopic stress we must integrate this expression over the Euler
space. The integral acts only on the single-crystal stiffness tensor elements
Equation (74a) and can be calculated analytically. The macroscopic stress is:

si ¼
X6
j¼1

CV
ij rjej ð88Þ

In Equation (88) the CV
ij are the averaged elastic stiffness constants for the

isotropic polycrystal. They can be calculated from the single-crystal stiffness
constants as follows:

CV
11 ¼ ðC11 þ C22 þ C33Þ=5þ 2ðC12 þ C13 þ C23 þ 2C44 þ 2C55

þ 2C66Þ=15 ð89aÞ

CV
12 ¼ ðC11 þ C22 þ C33 � 2C44 � 2C55 � 2C66Þ=15þ 4ðC12 þ C13

þ C23Þ=15 ð89bÞ

The index V was added to distinguish these constants from the stiffness
constants obtained by inverting the tensor of averaged compliance constants,
calculated by integrating Equation (74b) over the Euler space.
To find the peak shift for the Voigt model, Equation (87) must be replaced in

Equation (67b) and further Equation (67b) in Equation (83). The average (83)
is trivial and one obtains:

ehðyÞh i ¼
X6
j¼1

Fjrjej ð90Þ

Equation (90) can be arranged similar to Equation (85). By inverting Equation
(88) and replacing ej in Equation (90) this equation becomes:

ehðyÞh i ¼½F1S
V
11 þ ðF2 þ F3ÞSV

12�s1 þ ½F2S
V
11 þ ðF1 þ F3ÞSV

12�s2
þ ½F3S

V
11 þ ðF1 þ F2ÞSV

12�s3 þ 2ðSV
11 � SV

12ÞðF4s4 þ F5s5 þ F6s6Þ ð91Þ
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In Equation (91), SV
ij is the compliance tensor obtained by inverting the stiffness

tensor CV
ij :

SV
11 ¼ ðCV

11 þ CV
12Þ=½CV

11ðCV
11 þ CV

12Þ � 2ðCV
12Þ

2� ð92aÞ
SV
12 ¼ �CV

12=½CV
11ðCV

11 þ CV
12Þ � 2ðCV

12Þ
2� ð92bÞ

We can see from Equations (90) or (91) that in the frame of the Voigt model of
the crystallite interactions the relative peak shifts do not depend on the Miller
indices, which frequently is contradicted by experiment. The Reuss model gives
such a dependence.

12.2.4.2 Reuss Model. In the Reuss29 hypothesis the intergranular stress in
the sample system is zero and then:

siðj1;F0;j2Þ ¼ si ð93Þ

To find the macroscopic strain, Equation (93) is placed in Equation (73b) which
is integrated on the Euler space and one obtains:

ei ¼
X6
j¼1

SR
ij rjsj ð94Þ

Here SR
ij are the averaged compliance constants for the isotropic polycrystals.

They are calculated from the single-crystal compliances with formulae similar
to Equations (89):

SR
11 ¼ ðS11 þ S22 þ S33Þ=5þ 2ðS12 þ S13 þ S23 þ 2S44 þ 2S55

þ 2S66Þ=15 ð95aÞ

SR
12 ¼ ðS11 þ S22 þ S33 � 2S44 � 2S55 � 2S66Þ=15þ 4ðS12 þ S13

þ S23Þ=15 ð95bÞ

Note that SR
ij and SV

ij are different. Also the stiffness constants CR
ij obtained

by inverting SR
ij are different from CV

ij defined before.
To calculate the peak shift there are two possibilities that should give the

same result: starting from Equation (67b) as we did for the Voigt approxi-
mation or starting from Equation (67a). In the first case Equation (93) is
replaced in Equation (73b) and both Equations (73b) and (74b) are replaced in
Equation (67b); the peak shift becomes:

ehðyÞh i ¼
X6
i¼1

Firi
X6
l¼1

sl
X6
j¼1

X6
k¼1

Sjkrk PijQkl

� 
ð96Þ
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In the second case Equation (93) is replaced in Equation (66b), (66b) in
Equation (64b), (64b) in (67a) and the peak shift is:

ehðyÞh i ¼
X6
i¼1

Eiri
X6
l¼1

sl
X6
j¼1

Sijrj Qjl

� 
ð97Þ

Obviously, Equation (97) is much more convenient than Equation (96) as there
are only 36 integrals to calculate in place of 1296. Behnken and Hauk44 adopted
a derivation path starting from the strain components in the sample reference
system. In this report the condition of invariance of the peak shift to the
operations of the point group is violated for some Laue classes. Later, Popa45

reported invariant expressions for all Laue groups that were derived starting
from Equation (97). Here we follow this derivation.
The averages in the right-hand side of Equation (97) are the following:

Qij

� 
¼ ð1=2pÞ

Z2p
0

doQijðj0
1;F

0
0;j

0
2Þ ð98Þ

The matrix elements Qij under the integral are given by Equations (71) and (72)
and the Euler matrices of angles ðj0

1;F
0
0;j

0
2Þ for which h is parallel to y are

given by Equations (7) and (8). The integrals (98) can be calculated analytically
and one obtains Equation (99):

Qij

� 
¼

ð3Fj � 1ÞEi=2þ dið1� FjÞ=2 for j ¼ 1; 2; 3

3FjEi � diF for j ¼ 4; 5; 6



ðd1; :::::; d6Þ ¼ ð1; 1; 1; 0; 0; 0Þ

ð99Þ

By replacing Equation (99) in Equation (97) and rearranging the terms the last
expression becomes:

ehðyÞh i ¼ ðts � syÞr2=2þ ð3sy � tsÞr4=2 ð100Þ

Here ts and sy are the trace of s and, respectively, the macroscopic stress
along y:

ts ¼ s1 þ s2 þ s3; sy ¼
X6
i¼1

Firisi ð101a;bÞ

The dependence of the peak shifts on the Miller indices is given by the factors r2
and r4 that are quadratic and quartic forms, respectively, of the direction
cosines ai. For the triclinic symmetry these factors are the following:

r2 ¼ðS11 þ S12 þ S13Þa21 þ ðS12 þ S22 þ S23Þa22 þ ðS13 þ S23 þ S33Þa23
þ 2ðS14 þ S24 þ S34Þa2a3 þ 2ðS15 þ S25 þ S35Þa1a3
þ 2ðS16 þ S26 þ S36Þa1a2 ð102Þ
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r4 ¼S11a
4
1 þ S22a

4
2 þ S33a

4
3 þ 2ðS23 þ 2S44Þa22a23 þ 2ðS13 þ 2S55Þa21a23

þ 2ðS12 þ 2S66Þa21a22 þ 4ðS14 þ 2S56Þa21a2a3 þ 4ðS25 þ 2S46Þa1a22a3
þ 4ðS36 þ 2S45Þa1a2a23 þ 4S24a

3
2a3 þ 4S34a2a

3
3 þ 4S15a

3
1a3 þ 4S35a1a

3
3

þ 4S16a
3
1a2 þ 4S26a1a

3
2 ð103Þ

For higher symmetries r2 and r4 can be derived taking account Table 12.5.
They are given in Tables 12.6 and 12.7, respectively.
In Table 12.7 we see that r4 for the group 4/m differs by one term from r4 for

the group 4/mmm. The extra-term in 4/m splits those reflections that are non-
equivalent but coincident in the absence of the macrostress. The same is valid
for the trigonal group 3. The anisotropic peak broadenings caused by micro-
stress are also different for coincident but non-equivalent peaks.46

12.2.4.3 The Hill Average. The Voigt and the Reuss models are two extreme
cases of crystallite interactions that roughly describe the strain/stress state of
isotropic polycrystalline samples. Concerning the elastic constants calculated
with the two models Hill47 observed that they are the upper and the lower limits
of the real elastic constants, and the arithmetic averages are close enough to the
real values. Consequently, a very good description of the peak shift is obtained
in practice by using the arithmetic average of the Voigt and Reuss peak shifts
Equations (91) and (100). Even better is to use a weighted average with the
weight w (0owo 1) refinable in a least-square analysis:

ehðyÞh i ¼ w ehðyÞh iVþð1� wÞ ehðyÞh iR ð104Þ

12.2.4.4 Kroner Model. A model for crystallite interaction that is better than
the Voigt or the Reuss models was proposed by Kroner.30 According to Kroner
every crystallite is an inclusion in a continuous and homogenous matrix that
has the elastic properties of the polycrystal. For the isotropic polycrystal the
strain in the inclusion is the following:

Table 12.6 Quadratic forms r2 for symmetries higher than triclinic.

2/m (c) ðS11 þ S12 þ S13Þa21 þ ðS12 þ S22 þ S23Þa22 þ ðS13 þ S23 þ S33Þa23
þ 2ðS16 þ S26 þ S36Þa1a2

2/m (b) ðS11 þ S12 þ S13Þa21 þ ðS12 þ S22 þ S23Þa22 þ ðS13 þ S23 þ S33Þa23
þ 2ðS15 þ S25 þ S35Þa1a3

mmm ðS11 þ S12 þ S13Þa21 þ ðS12 þ S22 þ S23Þa22 þ ðS13 þ S23 þ S33Þa23

Tetrag., Trig., Hex. ðS11 þ S12 þ S13Þða21 þ a22Þ þ ð2S13 þ S33Þa23

Cubic S11 þ 2S12
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eiðgÞ ¼
X6
j¼1

SR
ij þ tijðgÞ

h i
rjsj ð105Þ

In this expression, similar to Equation (84a), the first term is the strain of the
isotropic matrix given by Equation (94). The second term is the strain induced
in crystallite by the matrix and is given by the Eshelby48 theory for an
ellipsoidal inclusion. The tensor tij(g) accounts for the differences between
the compliances of the inclusion and of the matrix and has the property tij ¼ 0.
To calculate the peak shift, Equation (105) is replaced in Equation (67b), which
is further replaced in Equation (83). Analytical calculations can be performed
only for a spherical crystalline inclusion that has a cubic symmetry. For the
peak shift an expression similar to Equation (91) is obtained but with different
compliances. According to Bollenrath et al.49 the compliance constants in
Equation (91) must be replaced as follows:

SV
11 ! SR

11 þ T11 � 2T0G; SV
12 ! SR

12 þ T12 þ T0G ð106a;bÞ

T0 ¼ T11 � T12 � 2T44; G ¼ a22a
2
3 þ a21a

2
3 þ a21a

2
2 ð106c;dÞ

The compliances T11, T12 and T44 are calculated from the single-crystal com-
pliances by bulky algebraic expressions reproduced in many papers.24,33,49,50

Table 12.7 Quartic forms r4 for symmetries higher than triclinic. In square
brackets is the term to be added to r4 of 4/mmm and of 3m to
obtain r4 of 4/m and of 3, respectively.

2/m (c) S11a
4
1 þ S22a

4
2 þ S33a

4
3 þ 2ðS23 þ 2S44Þa22a23 þ 2ðS13 þ 2S55Þa21a23

þ 2ðS12 þ 2S66Þa21a22 þ 4ðS36 þ 2S45Þa1a2a23 þ 4S16a
3
1a2 þ 4S26a1a

3
2

2/m (b) S11a
4
1 þ S22a

4
2 þ S33a

4
3 þ 2ðS23 þ 2S44Þa22a23 þ 2ðS13 þ 2S55Þa21a23

þ 2ðS12 þ 2S66Þa21a22 þ 4ðS25 þ 2S46Þa1a22a3 þ 4S15a
3
1a3 þ 4S35a1a

3
3

mmm S11a
4
1 þ S22a

4
2 þ S33a

4
3 þ 2ðS23 þ 2S44Þa22a23 þ 2ðS13 þ 2S55Þa21a23

þ 2ðS12 þ 2S66Þa21a22

4=mmm

4=m

S11ða41 þ a42Þ þ S33a
4
3 þ 2ðS13 þ 2S44Þða21 þ a22Þa23 þ 2ðS12 þ 2S66Þa21a22

þ ½4S16ða21 a22Þa1a2�

3m

3

S11ða21 þ a22Þ
2 þ S33a

4
3 þ 2ðS13 þ 2S44Þða21 þ a22Þa23 þ 4S14ð3a21 a22Þa2a3

þ ½4S15ða21 3a22Þa1a3�

Hexagonal S11ða21 þ a22Þ
2 þ S33a

4
3 þ 2ðS13 þ 2S44Þða21 þ a22Þa23

Cubic S11ða41 þ a42 þ a43Þ þ 2ðS12 þ 2S44Þða22a23 þ a21a
2
3 þ a21a

2
2Þ
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The matrix compliances SR
11 and SR

12 are given by Equation (95) for the special
case of cubic symmetry.

12.2.4.5 The Method ‘‘sin2C’’. The peak shift Equations (91) and (100) can
be arranged in the following form, which is convenient for experimental data
processing:

ehðyÞh i ¼S1ðs1 þ s2 þ s3Þ þ ð1=2ÞS2s3

þ ð1=2ÞS2ðs1 cos2 gþ s2 sin
2 g� s3 þ s6 sin 2gÞ sin2 C

þ ð1=2ÞS2ðs4 sin gþ s5 cos gÞ sin 2C
ð107Þ

The factors S1 and S2 are called diffraction elastic constants. For the models
examined above they are the following:

S1 ¼ �SV
12; S2 ¼ 2ð �SV

11 � �SV
12Þ �Voigt

S1 ¼ ðr2 � r4Þ=2; S2 ¼ 3r4 � r2 �Reuss
S1 ¼ �SR

12 þ T12 þ T0G; S2 ¼ 2ð �SR
11 � �SR

12 þ T11 � T12 � 3T0GÞ �Kroner ðcubicÞ
ð108Þ

Except for the Voigt model, the diffraction elastic constants are dependent on
the Miller indices.
If we consider the peak shifts for g and g+ p at the same value of C,

Equation (107) is split into two linear equations, one in sin2 C and the other
in sin 2C:

ehh iþ¼ ehðC; gÞh i þ ehðC; gþ pÞh i ¼ 2S1ðs1 þ s2 þ s3Þ þ S2s3

þ S2ðs1 cos2 gþ s2 sin
2 g� s3 þ s6 sin 2gÞ sin2 C

ð109Þ

ehh i ¼ ehðC; gÞh i � ehðC; gþ pÞh i ¼ S2ðs4 sin gþ s5 cos gÞ sin 2C ð110Þ

Consequently, if the peak shifts for one or more peaks are measured as
a function of C in the range (0, p/2) at g and g+ p for three fixed values of g
(e.g., 0, p/4 and p/2) the stress tensor elements si can be determined from the
intercept and the slopes of these lines. It is presumed that the single-crystal
elastic constants are known and the diffraction elastic constants in Equations
(109) and (110) can be calculated following one of the models presented before.
This is the conventional ‘‘sin2 C’’method. Alternatively Equation (107) can
be used in a least-square analysis or implemented in the Rietveld codes.
If diffraction patterns measured in several points (C, g) are available the
stress tensor elements si can be refined together with the structural and other
parameters. The implementation in GSAS is the Voigt formula Equation (90)
and not Equation (107). In this case refinable parameters are the strain tensor
elements ei.

12.2.4.6 Determination of the Single-crystal Elastic Constants. The depend-
ence of the diffraction elastic constants on the Miller indices can be exploited to
find the single-crystal elastic constants from powder diffraction data. Indeed,
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let us presume that an axial, known stress s3 is applied to a polycrystalline
sample. All other components of the stress tensor are zero and then Equation
(107) becomes:

ehðyÞh i ¼ ½S1 þ ð1=2ÞS2 cos
2 C�s3

By measuring the peak shift for C¼ 0 and C¼ p/2 both S1 and S2 can be
determined. If the measurement is repeated for many peaks the single-crystal
elastic constants can be calculated by minimizing a w2 calculated with the
differences between the measured diffraction elastic constants and those
calculated with one of the models presented above (except Voigt). For a given
Laue group the number of measured diffraction peaks must be greater than the
number of independent single-crystal elastic constants. A comparison of the
single-crystal elastic constant determined in this way on aluminium, copper and
steel50 with those measured on a single-crystal by ultrasonic pulse proved the
reliability of the diffraction method.

12.2.5 Hydrostatic Pressure in Isotropic Polycrystals

A hypothesis not yet examined in the literature is that the intergranular strain
in the crystallite reference system is zero and then:

eiðj1;F0;j2Þ ¼ ei ð111Þ

To obtain the strain tensor in the sample reference system, Equation (111) is
replaced in Equation (65a); to obtain the stress tensor, Equation (111) is
replaced in Equation (64a) and (64a) in (66a). We have:

eiðgÞ ¼
X6
j¼1

PijðgÞej ; siðgÞ ¼
X6
l¼1

rlel
X6
j¼1

PijðgÞCjl ð112a;bÞ

To calculate the macroscopic strains and stresses, Equations (112) are averaged
over the Euler space. The average acts only on the matrix P and, presuming
isotropic polycrystals, one obtains:

Pij ¼
1=3 if i; j ¼ 1; 3
0 if i or j > 3



ð113Þ

The macroscopic strains and stresses are then the following:

e1 ¼ e2 ¼ e3 ¼ e ¼ ðe1 þ e2 þ e3Þ=3; e4 ¼ e5 ¼ e6 ¼ 0 ð114aÞ

s1 ¼ s2 ¼ s3 ¼ s ¼ ð1=3Þ
X6
l¼1

rlelðC1l þ C2l þ C3lÞ; s4 ¼ s5 ¼ s6 ¼ 0 ð114bÞ

The structure of Equations (114) is specific for the strain/stress state in a
sample under a hydrostatic pressure.
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To calculate the peak shift we replace Equation (111) in Equation (67a),
(67a) in (83) and one obtains:

ehh i ¼ e1a21 þ e2a22 þ e3a23 þ 2e4a2a3 þ 2e5a1a3 þ 2e6a1a2 ð115Þ

As expected, the peak shift is independent of direction in sample. The peak shift
must be invariant to the operations of the Laue group that imposes constraints
on the strains ei. For crystal symmetries higher than triclinic the peak shift is
given in Table 12.8.
These formulae can be easily implemented in Rietveld codes with ei refinable

parameters. In fact they were already implemented in GSAS (profile #5) but
the derivation presented in the GSAS manual36 is different, the concrete
connection of the refined parameters with the macroscopic hydrostatic strain
and stress not being revealed.
The present hypothesis fully describes the hydrostatic strain/stress state in

isotropic samples. Indeed, from the refined parameters ei the macroscopic strain
and stress e, s can be calculated and also the intergranular strains and stresses
Dei(g), Dsi(g), both different from zero. Note that nothing was presumed con-
cerning the nature of the crystallite interaction, which can be elastic or plastic.
From Equations (112) it is not possible to obtain relations of the type (84) but
only of the type (86). For this reason a linear homogenous equation of the
Hooke type between the macroscopic stress and strain cannot be established.
Finally, we note that the hydrostatic state can be also described in the

frame of the classical models, but this is not a full description as one or
another intergranular strain/stress is ignored. If in Equation (107) we set
s1 ¼ s2 ¼ s3 ¼ s; s4 ¼ s5 ¼ s6 ¼ 0, one obtains ehh i ¼ ð3S1 þ S2=2Þs. There is
no dependence of ehh i on the Miller indices for the Voigt and the Kroner model.
For the Reuss model the dependence is similar to those from Equation (115)
and Table 12.8 but with only one refinable parameter for all Laue groups, the
macrostress s, and very probably the refined value of s will be wrong.

Table 12.8 Peak shift �hh i caused by hydrostatic stress in isotropic samples for
all Laue groups higher than triclinic. Parameters �i are refinable in
the Rietveld codes.

2/m (c) �1a21 þ �2a22 þ �3a23 þ 2�6a1a2

2/m (b) �1a21 þ �2a22 þ �3a23 þ 2�5a1a3

mmm �1a21 þ �2a22 þ �3a23

Tetrag., Trig., Hex. �1ða21 þ a22Þ þ �3a23

Cubic �1
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12.2.6 The Macroscopic Strain/Stress by Spherical Harmonics

Arguments for recent developments of the spherical harmonics approach for
the analysis of the macroscopic strain and stress by diffraction were presented
in Section 12.2.3. Resuming, the classical models describing the intergranular
strains and stresses are too rough and in many cases cannot explain the strongly
nonlinear dependence of the diffraction peak shift on sin2 C, even if the texture
is accounted for. A possible solution to this problem is to renounce to any
physical model to describe the crystallite interactions and to find the strain/
stress orientation distribution functions SODF by inverting the measured strain
pole distributions ehðyÞh i. The SODF fully describe the strain and stress state of
the sample.
Similar to the ODF for texture, SODF can be subjected to a Fourier analysis

by using generalized spherical harmonics. However, there are three important
differences. The first is that in place of one distribution (ODF), six SODFs are
analyzed simultaneously. The components of the strain, or the stress tensor can
be used for analysis in the sample or in the crystal reference system. The second
difference concerns the invariance to the crystal and the sample symmetry
operations. The ODF is invariant to both crystal and sample symmetry
operations. By contrast, the six SODFs in the sample reference system are
invariant to the crystal symmetry operations but they transform similarly to
Equation (65) if the sample reference system is replaced by an equivalent one.
Inversely, the SODFs in the crystal reference system transform like Equation
(65) if an equivalent one replaces this system and remain invariant to any
rotation of the sample reference system. Consequently, for the spherical har-
monics coefficients of the SODF one expects selection rules different from those
of the ODF. As the third difference, the average over the crystallites in
reflection (83) is structurally different from Equations (5)+(11). In Equation
(83) the products of the SODFs with the ODF are integrated, which, in
comparison with Equation (5), entails a supplementary difficulty.
In the literature three different approaches were reported based on the

spherical harmonics representation of the SODFs: by Wang et al.,39,40 by
Behnken43 and by Popa and Balzar.21 Wang et al.39,40 represent by spherical
harmonics the stress tensor si (g) in the sample reference system. Consequently,
the harmonic coefficients of l¼ 0 are the macroscopic stresses si, but to
calculate the macroscopic strains ei the coefficients with l¼ 0,2,4 are necessary.
Behnken43 proposed to expand in spherical harmonics both ei(g) and si(g)
independently. In this case ei and si are the coefficients with l¼ 0 of the two
series but the volume of calculations by least square to find the harmonic
coefficients is higher. In Equation (83), both Wang and Behnken used for eh(g)
the expression given by Equation (67b). Then, when the strain pole distribution
ehðyÞh i is calculated starting from the harmonic series of si (g), the single-crystal
compliances in the sample reference system appear in Equation (83) as sup-
plementary factors to SODF and ODF. Behnken performs the integrals of
Equation (83) numerically. Wang et al. used the spherical harmonics represent-
ation of the ODF and the Clebsch–Gordan coefficients to express the product
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of the SODF, ODF and single-crystal compliances in a series that is further
integrated like the ODF for texture. Both Wang and Behnken considered only
the case of cubic crystal symmetry and orthorhombic sample symmetry and
constructed the corresponding symmetrized spherical harmonics according to
the invariance and non-invariance properties in the Euler space described
before. The third approach reported by Popa and Balzar21 is similar to those
of Wang and Behnken, but with an important distinction that makes the
problem of determination of components of the strain tensor equivalent to the
texture problem and significantly simplifies the mathematical formalism. This
approach, described below, is extended to any crystal and sample symmetry
and has the potential to be implemented in the Rietveld codes.

12.2.6.1 Strain Expansion in Generalized Spherical Harmonics. In the
approach by Popa and Balzar21 the representation by spherical harmonics is
performed not on the SODFs but on the product of the SODFs and the ODF,
that is the SODFs weighted by texture (WSODF):

tiðj1;F0;j2Þ ¼ eiðj1;F0;j2Þ f ðj1;F0;j2Þ ð116Þ

In this product the strain tensor components in the crystallite reference
system are used for the SODFs. With this choice the calculation of the
macroscopic strains and stresses ei and si requires only the harmonic coeffi-
cients of l¼ 0 and l¼ 2 (see Section 12.2.6.3). Similar to the ODF [Equation
(23)], the WSODFs are expanded in a series of generalized spherical harmonics:

tiðj1;F0;j2Þ ¼
XN
l¼0

Xl
m¼ l

Xl
n¼ l

cmn
il expðimj2ÞPmn

l ðF0Þ expðinj1Þ ð117Þ

The integral over the Euler space gives c00i0 ¼ ti ¼ ei, and then the term l¼ 0
of Equation (117) represents the hydrostatic strain/stress state of the isotropic
polycrystal discussed in Section 12.2.5. The rest of the terms describe the
deviation of the real strain/stress state from the hydrostatic state of the
isotropic polycrystal. To calculate the peak shift, Equation (67a) is replaced
in Equation (83) and ti which appear after this operation are replaced by
Equation (117). The calculations follow those in Section 12.1.4.1 and one
obtains:

ehðyÞh iPhðyÞ ¼
XN
l¼0

4=ð2l þ 1Þ½ �Ilðh; yÞ; l ¼ even ð118Þ

Ilðh; yÞ ¼a21t1lðh; yÞ þ a22t2lðh; yÞ þ a23t3lðh; yÞ
þ 2a2a3t4lðh; yÞ þ 2a1a3t5lðh; yÞ þ 2a1a2t6lðh; yÞ

ð119Þ

tilðh; yÞ ¼ A0
ilðyÞP0

l ðFÞ þ
Xl
m¼1

Am
il ðyÞ cosmbþ Bm

il ðyÞ sinmb
� �

Pm
l ðFÞ ð120Þ
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Am
il ðyÞ ¼ am0

il P0
l ðCÞ þ

Xl
n¼1

amn
il cos ngþ bmn

il sin ng
� �

Pn
l ðCÞ; ðm ¼ 0; lÞ ð121Þ

Bm
il ðyÞ ¼ gm0

il P0
l ðCÞ þ

Xl
n¼1

gmn
il cos ngþ dmn

il sin ng
� �

Pn
l ðCÞ; ðm ¼ 1; lÞ ð122Þ

The coefficients amn
il , bmn

il , gmn
il , dmn

il are obtained from the coefficients cmn
il by

linear transformations similar to those given in Table 12.1. Equations
(118–122) are the general formulae for the diffraction line shift determination
valid for triclinic crystal and sample symmetries. For a given value of l the total
number of coefficients is 6(2l+1)2. If the crystal and sample symmetries are
higher than triclinic, the number of coefficients is reduced, some coefficients
being zero and some being correlated.

12.2.6.2 Selection Rules for all Laue Classes. To find the selection rules for
all Laue classes the invariance conditions to rotations are applied to the peak
shift weighted by texture ehðyÞh iPhðyÞ. As the terms of different l in Equation
(118) are independent, the invariance conditions must be applied to every Il.
We begin with the selection rules imposed by the crystal symmetry. An r-fold

axis along x3 transforms F, b, a1, a2 as follows: F-F, b- b+2p/r, a1- a1
cos(2p/r)� a2 sin(2p /r) and a2- a1 sin(2p /r)+ a2 cos(2p /r). By applying the
invariance conditions to Equation (119) one obtains a system of six linear
equations:

tilðF; bþ 2p=r; yÞ ¼
X6
k¼1

fikðrÞtklðF;b; yÞ ð123Þ

These equations are just the transformations Equation (65) for a particular
value of r. Further, if Equation (120) is replaced in Equation (123) one obtains
a system of homogenous equations in Am

il and Bm
il that has a non-trivial solution

only for certain values of m. If, besides the r-fold axis in x3, there is an 2-fold
axis along x1, then Am

il and Bm
il must fulfill supplementary conditions resulting

from the invariance of Il to the transformations F- p�F, b-� b, and
(a2, a3)- (� a2,� a3). Tables 12.9–12.12 give the selection rules imposed by the
crystal symmetry for the non-cubic Laue groups.
Note that coefficients belonging to different strain tensor components are

correlated, but in all correlations only two coefficients are involved. The three-
fold axis added on the main diagonal of the mmm and 4/mmm prism to obtain
the cubic groups m3 and m3m introduces supplementary correlations between
the coefficients Am

il and Bm
il of the orthorhombic and tetragonal group, respecti-

vely. These correlations involve more than two coefficients and are found
by evaluating Il in terms of the direction cosines ai and setting the condition of
invariance to the transformation (a1, a2, a3)- (a2, a3, a1). Tables 12.13 and
12.14 give the supplementary correlations added to mmm and 4/mmm, respecti-
vely, by the cubic three-fold axis.
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For textured samples under stress two sample symmetries must be distin-
guished: texture and strain/stress sample symmetry. Sometimes they are iden-
tical, but generally the strain/stress sample symmetry is lower. A simple
example is offered by Equation (107). The texture has a spherical symmetry
but the strain sample symmetry is in general triclinic. The texture sample
symmetry must form a super group of the strain sample symmetry because
Ph(y) must be invariant to both sample symmetries. Concerning the selection
rules imposed by the sample symmetry, one expects them to be identical to
those for the texture of the same sample symmetry. Indeed, the invariance
conditions act directly on Equation (121) and (122) that are identical to
Equations (38) and (39). Hence, the selection rules in the index n for the
coefficients amn

il , bmn
il , gmn

il and dmn
il are those from the Table 12.3.

Table 12.9 Selection rules imposed by the crystal symmetry for the Laue
groups 2/m and mmm.

2/m mmm

i ¼ 1; 2; 3; 6 :
A0

il

Am
il ;B

m
il ;m ¼ 2k



i ¼ 1; 2; 3 :

A0
il

Am
il ;m ¼ 2k




i ¼ 4; 5 : Am
il ;B

m
il ; m ¼ 2k 1 Bm

4l ;m ¼ 2k 1

Am
5l ;m ¼ 2k 1

Bm
6l ;m ¼ 2k

Table 12.10 Selection rules imposed by the crystal symmetry for the Laue
groups 4/m and 4/mmm.

4/m 4/mmm

A0
1l

Am
1l ;B

m
1l ; m ¼ 2k



A0

1l

Am
1l ; m ¼ 2k




A0
2l ¼ A0

1l

Am
2l ¼ ð 1ÞkAm

1l ; B
m
2l ¼ ð 1ÞkBm

1l ; m ¼ 2k



A0

2l ¼ A0
1l

Am
2l ¼ ð 1ÞkAm

1l ; m ¼ 2k




A0
3l

Am
3l ;B

m
3l ; m ¼ 4k



A0

3l

Am
3l ; m ¼ 4k




Am
4l ;B

m
4l ; m ¼ 2k 1 Bm

4l ; m ¼ 2k 1

Am
5l ¼ ð 1Þk�1Bm

4l ; B
m
5l ¼ ð 1ÞkAm

4l ; m ¼ 2k 1 Am
5l ¼ ð 1Þk�1Bm

4l ; m ¼ 2k 1

Am
6l ;B

m
6l ; m ¼ 4k 2 Bm

6l ; m ¼ 4k 2
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Table 12.11 Selection rules imposed by the crystal symmetry for the Laue
classes 3 and 3m. For 3m there are two distinct situations: for m
even, at the left-hand side of the vertical bar, and for m odd, at
the right-hand side of the bar.

�3 �3m

A0
1l

Am
1l ;B

m
1l ; m 3k 2; 3k 1; 3k



A0

1l

Am
1l jBm

1l ; m 3k 2; 3k 1; 3k




A0
2l A0

1l

Am
2l Am

1l ;B
m
2l Bm

1l ; m 3k
Am

2l Am
1l ;B

m
2l Bm

1l ; m 3k 2; 3k 1

8<
:

A0
2l A0

1l

Am
2l Am

1l jBm
2l Bm

1l ; m 3k
Am

2l Am
1l jBm

2l Bm
1l ; m 3k 2; 3k 1

8<
:

A0
3l

Am
3l ;B

m
3l ; m 3k



A0

3l

Am
3l jBm

3l ; m 3k




Am
4l ;B

m
4l ; m 3k 2; 3k 1 Am

4l jBm
4l ; m 3k 2; 3k 1

Am
5l Bm

4l ;B
m
5l Am

4l ; m 3k 2
Am

5l Bm
4l ;B

m
5l Am

4l ; m 3k 1



Bm
5l Am

4l jAm
5l Bm

4l ; m 3k 2
Bm
5l Am

4l jAm
5l Bm

4l ; m 3k 1




Am
6l Bm

1l ;B
m
6l Am

1l ; m 3k 2
Am

6l Bm
1l ;B

m
6l Am

1l ; m 3k 1



Bm
6l Am

1l jAm
6l Bm

1l ; m 3k 2
Bm
6l Am

1l jAm
6l Bm

1l ; m 3k 1




Table 12.12 Selection rules imposed by the crystal symmetry for the Laue
classes 6/m and 6/mmm.

6/m 6/mmm

A0
1l

Am
1l ;B

m
1l ; m 6k 4; 6k 2; 6k



A0

1l

Am
1l ; m 6k 4; 6k 2; 6k




A0
2l A0

1l

Am
2l Am

1l ;B
m
2l Bm

1l ; m 6k
Am

2l Am
1l ;B

m
2l Bm

1l ; m 6k 4; 6k 2

8<
:

A0
2l A0

1l

Am
2l Am

1l ; m 6k
Am

2l Am
1l ; m 6k 4; 6k 2

8<
:

A0
3l

Am
3l ;B

m
3l ; m 6k



A0

3l

Am
3l ; m 6k




Am
4l ;B

m
4l ; m 6k 5; 6k 1 Bm

4l ; m 6k 5; 6k 1

Am
5l Bm

4l ;B
m
5l Am

4l ; m 6k 5
Am

5l Bm
4l ;B

m
5l Am

4l ; m 6k 1



Am

5l Bm
4l ; m 6k 5

Am
5l Bm

4l ; m 6k 1




Am
6l Bm

1l ;B
m
6l Am

1l ; m 6k 4
Am

6l Bm
1l ;B

m
6l Am

1l ; m 6k 2



Bm
6l Am

1l ; m 6k 4
Bm
6l Am

1l ; m 6k 2
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12.2.6.3 Determination of the Average Strains and Stresses. For the calcula-
tion of both ei and si, only the coefficients amn

il , bmn
i , gmn

il and dmn
il with l¼ 0 and

l¼ 2 are needed. This is easy to see by combining Equations (117) and (65a)
into Equation (81) written for ei and Equations (117), (66a) and (64a) into
Equation (81) written for si [remember that in Equation (81) ei is a placeholder
for any strain or stress component]. The integrals of the terms with l¼ 1 and
l4 2 are zero because the elements of the matrix P are the sum of products
of two Euler matrix elements and the generalized harmonics are orthogonal.
So, retaining from Equation (117) only the terms with l¼ 0 and l¼ 2, and
rearranging to have only positive indices m, n, in place of Equation (117) in

Table 12.13 Selection rules imposed by the crystal symmetry for the cubic m3:
the following constraints must be added to the selection rules for
mmm.

l 0 A0
30 A0

20 A0
10

l 2 A2
12 ð2=3Þ1=2ðA0

12 þ 2A0
32Þ; A2

22 ð2=3Þ1=2ðA0
22 þ 2A0

32Þ
A2

32 ð2=3Þ1=2ðA0
12 A0

22Þ þ 2ðB1
42 A1

52Þ
B2
62 ð3=2Þ1=2ðA0

12 þ A0
22 þ A0

32Þ=2þ ðB1
42 þ A1

52Þ=2

l 4 A4
14 3ð2=35Þ1=2A0

14 þ 8ð2=35Þ1=2A0
34 þ 2A2

14=7
1=2

A4
24 3ð2=35Þ1=2A0

24 þ 8ð2=35Þ1=2A0
34 2A2

24=7
1=2

B3
44 2ðA0

14 þ 3A0
24Þ=351=2 þ ð27=4ÞA0

34=35
1=2 ð1=2Þð6A2

24 þ 5A2
34Þ=141=2

ð3B1
44 þ 4A1

54Þ=71=2 þ ð1=4ÞA4
34=2

1=2

A3
54 2ð3A0

14 þ A0
24Þ=351=2 ð27=4ÞA0

34=35
1=2 ð1=2Þð6A2

14 þ 5A2
34Þ=141=2

þ ð4B1
44 þ 3A1

54Þ=71=2 ð1=4ÞA4
34=2

1=2

B2
64 ð2=5Þ1=2ðA0

14 þ A0
24 2A0

34Þ ðA2
14 A2

24Þ=2 21=2ðB1
44 þ A1

54Þ
B4
64 ð2=35Þ1=2ðA0

14 A0
24Þ þ ðA2

14 þ A2
24 þ 3A2

34=2Þ=71=2 ð2=7Þ1=2ðB1
44 A1

54Þ

Table 12.14 Selection rules imposed by the crystal symmetry for the cubic
m3m: the following constraints must be added to the selection
rules for 4/mmm.

l ¼ 0 A0
30 ¼ A0

10

l ¼ 2 A2
12 ¼ ð2=3Þ1=2ðA0

12 þ 2A0
32Þ; B2

62 ¼ ð3=2Þ1=2ðA0
12 þ A0

32=2Þ þ B1
42

l ¼ 4 A4
14 ¼ 3ð2=35Þ1=2A0

14 þ 8ð2=35Þ1=2A0
34 þ 2A2

14=7
1=2

B3
44 ¼ 8A0

14=35
1=2 þ ð27=4ÞA0

34=35
1=2 þ 3A2

14=14
1=2 71=2B1

44 þ ð1=4ÞA4
34=2

1=2

B2
64 ¼2ð2=5Þ1=2ðA0

14 A0
34Þ A2

14 81=2B1
44
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Equation (81) is replaced the following truncated WSODF:

t0iðj1;F0;j2Þ ¼
X25
k¼0

gikRkðj1;F0;j2Þ ð124Þ

Here the functions Rk (j1, F0, j2) are linear combinations of terms like
cos(mj2� nj1) Qmn

l (�cos F0) or sin(mj2� nj1) Qmn
l (�cos F0), where

Qmn
l ¼Pmn

l for m+ n even and Qmn
l ¼ iPmn

l for m+ n odd. The elements of
the matrix g are the harmonic coefficients with l¼ 0,2. The row i of this matrix
is the following:

gi ¼
a00i0 ; a

00
i2 ; a

01
i2 ; b

01
i2 ; a

02
i2 ; b

02
i2 ; a

10
i2 ; a

11
i2 ; b

11
i2 ; a

12
i2 ; b

12
i2 ; g

10
i2 ; g

11
i2 ;

d11i2 ; g
12
i2 ; d

12
i2 ; a

20
i2 ; a

21
i2 ; b

21
i2 ; a

22
i2 ;b

22
i2 ; g

20
i2 ; g

21
i2 ; d

21
i2 ; g

22
i2 ; d

22
i2

0
@

1
A ð125Þ

After combining Equation (124) with Equation (65a) or with (66a) and (64a)
into Equation (81) there are 936 integrals to calculate on the Euler space of the
products of the functions Pij and Rk. Although an analytical calculation is
possible they were calculated numerically. Only 73 are different from zero. The
macroscopic strain tensor is the following:

e1; e2 ¼ð2=3Þðg10 þ g20 þ g30Þ þ ð1=15Þðg11 þ g21 � 2g31Þ
� ð 3=2
p

=30Þð�g14 � g24 � 2g34 þ 2g4;11 þ g1;16 � g2;16 þ 2g6;21Þ
� ð1=20Þð2g59 þ 2g4;14 þ g1;19 � g2;19 þ 2g6;24Þ ð126aÞ

e3 ¼ð2=3Þðg10 þ g20 þ g30Þ � ð2=15Þðg11 þ g21 � 2g31Þ
þ ð 3=2
p

=15Þð2g4;11 þ g1;16 � g2;16 þ 2g6;21Þ ð126bÞ

e4 ¼� ð 3=2
p

=30Þðg13 þ g23 � 2g33Þ
þ ð1=60Þðg58 þ g4;13 þ 3g1;18 � 3g2;18 þ 6g6;23Þ ð126cÞ

e5 ¼� ð 3=2
p

=30Þðg12 þ g22 � 2g32Þ
þ ð1=60Þðg57 þ g4;12 þ 3g1;17 � 3g2;17 þ 6g6;22Þ ð126dÞ

e6 ¼� ð 3=2
p

=30Þðg15 þ g25 � 2g35 þ g16 þ g26 � 2g36Þ
þ ð1=20Þð2g5;10 þ 2g4;15 þ g1;20 � g2;20 þ 2g6;25Þ ð126eÞ

The elements of the macroscopic stress tensor si have exactly the same expres-
sions; only the matrix g must be replaced by g0 defined as follows:

g0jk ¼
X6
l¼1

Cjlrlglk ð127Þ

In Equation (127) Cjl are the single-crystal stiffness constants.
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12.2.6.4 Simplified Harmonics Representation of the Peak Shift. When it is
not necessary to find the WSODFs and the average strain and stress tensors is
not of interest, one can choose a different approach that corrects only for the
line shifts caused by stress. In this case, an alternative representation for Il with
fewer parameters is possible. To accomplish this, the angles (F, b) in Equation
(120) are replaced by the direction cosines ai. After introducing this into
Equation (119) and rearranging, Il becomes:

Ilðh; yÞ ¼
Xkl
k¼1

MklðC; gÞJk;lþ2ða1; a2; a3Þ ð128Þ

Here Jk,l12 are homogenous polynomials of degree l+2 in the variables a1, a2,
a3, invariant to the Laue class symmetry operations. For l¼ 0 and l¼ 2 they can
be extracted from Tables 12.6 and 12.7, for l¼ 4 these polynomials are given in
Table 12.15.
The functions Mkl (C,g) are linear combinations of Amn

il ðC; gÞ and Bmn
il ðC; gÞ

and then can be written as follows:

MklðC; gÞ ¼ m0klP
0
l ðCÞ þ

Xl
n¼1

mnkl cos ngþ nnkl sin ng
� �

Pn
l ðCÞ ð129Þ

For sample symmetries higher than triclinic the coefficients mnkl and nnkl follow
the selection rules of the texture with the same sample symmetry. The maxi-
mum number kl of functionsMkl in the series expansion Equation (128) must be

Table 12.15 Invariant polynomials Jk,6 for all Laue classes. Additional terms
that should be added to mmm to obtain 2/m, etc. are enclosed in
square brackets.

mmm

þ ½2=m�
a61; a

6
2; a

6
3; a

4
1a

2
2; a

2
1a

4
2; a

4
1a

2
3; a

2
1a

4
3; a

4
2a

2
3; a

2
2a

4
3; a

2
1a

2
2a

2
3;

½a51a2; a1a52; a31a32; a31a2a23; a1a32a23; a1a2a43�

4=mmm

þ ½4=m�
a61 þ a62; a

6
3; ða41 þ a42Þa23; ða21 þ a22Þa43; a21a22a23; ða21 þ a22Þa21a22;

½ða21 a22Þa1a2a23; ða41 a42Þa1a2�

3m

þ ½3�
ða21 þ a22Þ

3; a63; ða21 þ a22Þ
2a23; ða21 þ a22Þa43; ða21 þ a22Þð3a21 a22Þa2a3;

ð3a21 a22Þa2a33; a61 15a41a
2
2 þ 15a21a

4
2 a62;

½ða21 þ a22Þða21 3a22Þa1a3; ða21 3a22Þa1a33; ð3a21 a22Þða21 3a22Þa1a2�

6=mmm

þ ½6=m�
ða21 þ a22Þ

3; a63; ða21 þ a22Þ
2a23; ða21 þ a22Þa43; a61 15a41a

2
2 þ 15a21a

4
2 a62;

½ð3a21 a22Þða21 3a22Þa1a2�

m3 a41a
2
2 þ a42a

2
3 þ a43a

2
1; a41a

2
3 þ a42a

2
1 þ a43a

2
2

m3m a41a
2
2 þ a42a

2
3 þ a43a

2
1 þ a41a

2
3 þ a42a

2
1 þ a43a

2
2
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equal or smaller than the total number of functions Amn
il , Bmn

il in Equations (119)
and (120), but for crystal symmetry higher than triclinic, it is frequently much
smaller. For example, for the Laue class 3 and l¼ 4 the total number of Amn

il ,
Bmn
il is 18 but k4¼ 10. This is important in Rietveld refinement, as the number

of refinable parameters must be kept to a minimum. On the other hand, it is not
possible to obtain the WSODFs and the average strain and stress tensors from
the coefficients mnkl and nnkl.

12.2.6.5 Implementation in the Rietveld Codes. In the practical applications
reported to date by Behnken43 by Wang et al.41,42,51 and recently by Popa
et al.52 the least-square method was used to fit the calculated peak shifts with
the measured peak shifts determined by individual peak fitting. This procedure
presumes a prior determination of the pole distribution Ph(y). The procedure is
time consuming and only a limited number of peaks can be used because the
extraction of position becomes inaccurate for overlapped peaks.
The variant of the spherical harmonics analysis of the WSODFs presented

above is similar to those of the ODF and consequently is suitable for imple-
mentation in Rietveld codes that would allow the use of all the information
contained in the diffraction patterns. The strain parameters are refined together
with the texture, the structure and other parameters. There are three possible
levels of implementation. The easiest is to implement Equations (118)+(128)
for any value of l. This allows a fit of the peak positions shifted by stress, but
the average strain and stress tensors as well as the WSODFs are not accessible.
A mixed implementation with the term l¼ 2 according to Equations
(118)+(119), the rest by using Equations (118)+(128), allows a fit of the peak
positions and to determine ei and si, but without reconstruction of the
WSODF. Implementation of Equations (118)+(119) for any value of l allows
a full determination of the average and the intergranular strain and stress
tensors. By using the coefficients with l even obtained from the Rietveld
refinement, the WSODFs can be calculated directly from Equation (117) and
then ei(g), si(g). Alternatively, as for texture,15 with the refined strain harmonic
coefficients the weighted strain pole distribution ti (h,y) can be constructed and
further the strain and stress pole distributions ei(h,y) and si(h,y). An inversion
of these strain/stress pole figures by a direct inversion method like WIMV
should be possible, in principle, but so far this possibility has not been
examined.

REFERENCES

1. H. J. Bunge, Texture Analysis in Material Science, Butterworth, London,
1982.

2. R. D. Williams, J. Appl. Phys., 1968, 39, 4329.
3. J. Imhof, Textures Microstruc., 1982, 5, 73.
4. S. Matthies and G. W. Vinel, Phys. Status Solidi B, 1982, 112, K111.
5. S. Matthies, H. R. Wenk and G. W. Vinel, J. Appl. Crystallogr., 1988, 21,

285.

373Microstructural Properties: Texture and Macrostress Effects



6. H. R. Wenk, S. Matthies and L. Lutterotti, Mater. Sci. Forum, 1994,
157–162, 473.

7. S. Matthies, L. Lutterotti and H. R. Wenk, J. Appl. Crystallogr., 1997
30, 31.

8. A. Le Bail, H. Duroy and J. R. Fourquet, Mater. Res. Bull., 1988, 23, 447.
9. W. A. Dollase, J. Appl. Crystallogr., 1986, 19, 267.
10. A. March, Z. Kristallogr., 1932, 81, 285.
11. R. A. Young and D. B. Wiles, J. Appl. Crystallogr., 1982, 10, 262.
12. A. C. Larson and R. B. Von Dreele, GSAS – General Structure Analysis

System, Report LAUR 86-748, Los Alamos National Laboratory,
New Mexico, 1986.

13. M. Ahtee, M. Nurmela, P. Suortti and M. Jarvinen, J. Appl. Crystallogr.,
1989, 22, 261.

14. N. C. Popa, J. Appl. Crystallogr., 1992, 25, 611.
15. R. B. Von Dreele, J. Appl. Crystallogr., 1997, 30, 517.
16. H. R. Wenk, J. Appl. Crystallogr., 1991, 24, 920.
17. C. J. Howard and E. H. Kisi, J. Appl. Crystallogr., 2000, 33, 1434.
18. R. J. Roe, J. Appl. Phys., 1965, 36, 2024.
19. H. J. Bunge, Z. Metallkd., 1965, 56, 872.
20. H. J. Bunge,Mathematische Methoden der Texturanalyse, Akademieverlag,

Berlin, 1969.
21. N. C. Popa and D. Balzar, J. Appl. Crystallogr., 2001, 34, 187.
22. I. C. Noyan and J. B. Cohen, Residual Stress, Springer-Verlag, New York,

1987.
23. V. Hauk, Structural and Residual Stress Analysis by Nondestructive

Methods, Elsevier, Amsterdam, 1997.
24. U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen and E. J. Mittemeijer,

J. Appl. Crystallogr., 2005, 38, 1.
25. L. Landau and E. Lifchitz, Theorie de l’elasticite, Edition Mir, Moscow,

1967.
26. J. F. Nye, Physical Properties of Crystals, University Press, Oxford,

1957.
27. W. A. Wooster, Tensors and Group Theory for Physical Properties of

Crystals, Clarendon Press, Oxford, 1973.
28. W. Voigt, Lehrbuch der Kristallphysik, Teubner Verlag, Berlin-Leipzig,

1928.
29. A. Reuss, Z. Angew. Math. Mech., 1929, 9, 49.
30. E. Kroner, Z. Phys., 1958, 151, 504.
31. V. Hauk, Arch. Eisenhuttenwesen, 1952, 23, 353.
32. A. L. Christenson and E. S. Rowland, Trans. ASM, 1953, 45, 638.
33. H. Dolle, J. Appl. Crystallogr., 1979, 12, 489.
34. M. Ferrari and L. Lutterotti, J. Appl. Phys., 1994, 76, 7246.
35. D. Balzar, R. B. Von Dreele, K. Bennett and H. Ledbetter, J. Appl. Phys.,

1998, 84, 4822.
36. R. B. Von Dreele, http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/public/

gsas/manual/, 2004.

374 Chapter 12



37. A. Baczmanski, K. Wierzbanowski and J. Tarasiuk, Z. Metallkd., 1995, 86,
507.

38. K. Van Acker, J. Root, P. Van Houtte and E. Aernoudt, Acta Mater.,
1996, 44, 4039.

39. Y. D. Wang, R. Lin Peng and R. McGreevy, Proceedings of the Twelfth
International Conference on Textures of Materials ICOTOM – 12, Canada,
August 9-13, NRC Research Press, Ottawa, 1999, p. 553.

40. Y. D. Wang, R. Lin Peng, X. H. Zeng and R. McGreevy, Mater. Sci.
Forum, 2000, 347–349, 66.

41. Y. D. Wang, R. Lin Peng and R. McGreevy, Philos. Mag. Lett., 2001, 81,
153.

42. Y. D. Wang, X. L. Wang, A. D. Stoica, J. W. Richardson and R. Lin Peng,
J. Appl. Crystallogr., 2003, 36, 14.

43. H. Behnken, Phys. Stat. Sol. A, 2000, 177, 401.
44. H. Behnken and V. Hauk, Z. Metallkd., 1986, 77, 620.
45. N. C. Popa, J. Appl. Crystallogr., 2000, 33, 103.
46. N. C. Popa, J. Appl. Crystallogr., 1998, 31, 176.
47. R. Hill, Proc. Phys. Soc. London Ser. A, 1952, 65, 349.
48. J. D. Eshelby, Proc. Phys. Soc. London Ser. A, 1957, 241, 376.
49. F. Bollenrath, V. Hauk and E. H. Muller, Z. Metallkd., 1967, 58, 76.
50. T. Gnaupel-Herold, P. C. Brand and H. J. Prask, J. Appl. Crystallogr.,

1998, 31, 929.
51. Y. D. Wang, R. Lin Peng, X. L. Wang and R. McGreevy, Acta Mater.,

2002, 50, 1717.
52. N. C. Popa, D. Balzar, G. Stefanic, S. Vogel, D. Brown, M. Bourke and

B. Clausen, Adv. X-Ray Anal., 2005, 47, CD–ROM.

375Microstructural Properties: Texture and Macrostress Effects



CHAPTER 13

Microstructural Properties: Lattice
Defects and Domain Size Effects

PAOLO SCARDI

Department of Materials Engineering and Industrial Technologies,
University of Trento, 38050 via Mesiano 77, Trento, Italy

13.1 INTRODUCTION

The analysis of line profiles in Powder Diffraction patterns is a topic nearly as
old as diffraction itself. However, despite the long time that has passed since the
pioneering studies of Scherrer (1918),1 and the rich literature and textbooks2 5

produced over many decades, line profile analysis is still a subject of active
research.6,7

LPA is used to investigate features of the microstructure and lattice defects in
materials. The main applications concern the study of: crystalline domain size
and shape, also considering dispersion effects (i.e. presence of a size distri-
bution);2 5,8,9 the nature and density of line defects (typically dislocations, but
also disclinations);10 12 planar defects (e.g. twin and stacking faults);2,3,6,13 anti-
phase domains in materials undergoing disorder/order transformations;2,3,14 16

microstrains produced by misfitting inclusions;17,18 grain surface relaxation in
nanocrystalline materials;19 and compositional fluctuations.20

This chapter briefly describes the origin of line broadening in PD, considering
the most common sources, and illustrates the potential of LPA, especially in
relation to the current development towards full pattern methods.7

After the Introduction (Section 13.1), the useful concept of PD in reciprocal
space is used to discuss the origin of line broadening, mostly concerning size
and strain broadening; some additional sources (faulting, anti-phase domains
and instrument) are outlined (Section 13.2). Traditional methods are then
briefly reviewed, before describing the general philosophy of present-day
methods, which tend to rely on a full pattern analysis for studying microstruc-
ture and lattice defects, very much like the Rietveld method21 is used for
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structural refinement (Section 13.3). The last part is dedicated to some appli-
cations of full pattern modelling methods (Section 13.4).

13.2 ORIGIN OF LINE BROADENING

13.2.1 Size Broadening

As described in Chapter 1, for a perfect, infinite crystal the reciprocal lattice is
made of points, each representing a set of planes with Miller indices (hkl). The
diffraction condition in reciprocal space is then defined in terms of a geo-
metrical relation: diffraction takes place when incident and diffracted beam are
such that the scattering vector d� ¼ ðv� v0Þ=l connects the origin with an (hkl)
point:

v� v0
l

¼ d�
hkl ð1Þ

For PD, the fact that this condition, represented in Figure 13.1, holds for all
equivalent points laying on the diffraction, or Ewald, sphere (Chapter 1), leads
to the concept of peak multiplicity and systematic overlap.22

v0

d∗2θ

2/�

(000)

v/�

/�

Figure 13.1 Reciprocal space (2D) representation of the diffraction condition: Ewald
sphere (radius 1/l), limiting sphere (radius 2/l) and PD sphere (double
line, radius d�). Left: Enlargement of the intersection between PD sphere
and reciprocal space point, with approximating tangent plane (dash). The
arrow shows the direction of expansion of the diffraction sphere during a
PD measurement.
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The size of the points, for a perfect crystal, is uniquely determined by
instrumental factors (including radiation emission and optics) and absorption,
so the diffracted intensity is confined to a small region around each point
(Figure 13.2a), and the FWHM is quite small. Instrumental effects on peak
broadening and line-shape are described in greater detail in Chapters 4 and 5.
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Figure 13.2 Schematic representation of the (001) diffraction condition (right) and
amplitude of the diffracted intensity (left) in reciprocal space for an
ideally perfect crystal (a) and for cubic crystalline domains of edge D
[inset of (b)]. The profile for a dispersed system of cubic crystallites
(dashed line) is also sketched out in (b).
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When the crystalline domains (or crystallites, i.e. coherently scattering
regions) have a finite extension, the diffracted intensity is no longer confined
to a point, but spreads over a region whose size and shape are related to the
crystallite size and shape.22

For example, if crystalline domains of a cubic phase are cubes of edge
D¼Na (where N is a positive integer), the corresponding reciprocal space
points have the same symmetry and the diffracted intensity in reciprocal
space is given by the so-called interference function.3 For a (00l) point, as in
Figure 13.2b, the intensity can be written as:

Yðd�Þ / sin2 pNas00lð Þ
pas00lð Þ2

ð2Þ

The expression is different for other (hkl ) and crystallite shapes, thus providing
intensity profiles with different width and shape.
During a powder diffraction measurement the Ewald sphere expands in

reciprocal space, crossing points whenever Equation (1) is satisfied. This means
that the signal collected in a powder measurement is the integral of the
diffracted intensity in reciprocal space, over the intersection surface between
the diffraction sphere and the reciprocal space points (Figure 13.1). This rather
cumbersome integration over a spherical cross section of each reciprocal space
point can be replaced, with minimal consequences, with an integration over the
cross section given by the plane tangent to the Ewald sphere at that point
(Figure 13.1).2,23,w

For the specific case shown in Figure 13.2 the intersection surface has a
constant square shape, independent of s00l, and the integration simply results in
scaling Equation (2) by a constant term. The peak profile observed in a PD
pattern is, therefore, given by the same functional form as that of Equation (2).
For different (hkl) the integration surface is a function of the reciprocal space
variable shkl, and the PD peak profile is also different in width and shape. As an
example, Figure 13.3 shows the (100), (110) and (111) PD profiles for a powder
made of cubic crystallites with edge D¼ 10 nm.
The integral breadth, defined as the ratio between integrated intensity (peak

area) and peak maximum, is frequently considered as a measure of the peak
width. For the case of (00l) reflections from cubic crystallites of edge D¼Na,
the IB of the PD peak profile is readily obtained using the properties of the
profile function of Equation (2):

bðsÞ ¼

RN
N

IðsÞds

Ið0Þ ¼

RN
N

sin2ðpNasÞ
ðpasÞ2 ds

Lim
s!0

sin2ðpNasÞ
ðpasÞ2

¼ Na

ðNaÞ2
¼ 1

D
ð3Þ

wThe tangent plane approximation is valid for sufficiently small points with equiaxial shapes. It
cannot be used, for example, when faulting is present and some reciprocal space points are rods
extended along the stacking direction (Section 13.2.3). In this case, integration over a spherical (or
at least cylindrical) cross section is necessary.2
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This is the well-known Scherrer equation, relating the peak width with the
crystallite size, in this case IB in reciprocal space and cube edge, respectively.
The inverse proportionality between IB and domain size is valid whatever the
crystal shape (and symmetry of the lattice).24,25 In a more general form,
Equation (3) can be written as:

bðsÞ ¼ Kb

D
ð4Þ

where the Scherrer constant, Kb, can be calculated for different (hkl) reflections
and crystallite shapes2,8,9 [Kb¼ 1 for (00l) lines from cubic crystallites].
It may be more convenient to consider the IB in 2y space, directly referred to

the peak profiles observed in a powder pattern. The change of variable from
reciprocal to 2y space can be made according to:

ds ¼ d
1

d
� 1

dhkl

� �
¼ d

2 sin y
l

� 2 sin yhkl
l

� �
¼ð2 cos y=lÞdy

¼ðcos y=lÞd2y
ð5Þ

Even if Equation (5) is formally valid for infinitesimal quantities, in the limit of
not too large profiles, it can also be used for the IB in Equation (4), leading to:

bð2yÞ ¼ lKb

D cos y
ð6Þ

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e 
in

te
ns

ity

s  (nm)-1

(111)

(110)

(100)

1.0

Figure 13.3 PD (100) (line), (110) (dash) and (111) (dot) peak profiles for a system
made of cubic crystallites (edge D¼ 10 nm). Normalized profiles in
reciprocal space.
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In real life one is not likely to observe fine features like those of the (00l ) profile
(Figure 13.3), because crystallites, even if may have the same shape, tend to
have a distribution of sizes. As a consequence, the peak profile is smeared into a
bell-shaped curve, as shown schematically in Figure 13.2b.
For polydisperse systems the Scherrer equation is still valid, i.e. peak width is

still inversely proportional to domain size, but the meaning of the size param-
eter changes. For instance, if the crystallites have the same shape but different
sizes, it can be shown that:

bð2yÞ ¼ l
oL4V cos y

ð7Þ

where oL4V¼M4/KbM3, with M3 and M4, respectively, third and fourth
moments of the size distribution.8,9 For this reason oL4V is considered a
volume-weighted mean size. Evidently, from these considerations, the inter-
pretation of the size parameter of the Scherrer equation may not be straight-
forward as it depends on the features of the studied material. As a consequence
oL4V is also called the apparent domain size. The simple case of Equation (6)
is obtained only for monodisperse systems, i.e. when the size distribution is a
delta function centred in D: the meaning of the size parameter is quite different
for samples with arbitrary crystallite shape and size distributions.
The inverse proportionality between peak width and mean size stated by the

Scherrer equation places practical limits to the range of domain sizes that
produce measurable effects in a powder pattern. While the lower bound [a few
(E2) nm, depending on the specific phase] is related to the approximations
used,2,26z the upper bound depends on the instrumental resolution, i.e. on the
width of the instrumental profile. Traditional laboratory powder diffractome-
ters, using standard commercial optics, typically allow the detection of domain
sizes up to E200 nm. Above this value, domain size effects can hardly be
distinguished from the instrumental broadening. This limit, however, can
considerably be extended by using suitable high resolution optics, as is the
case of many diffractometers in use with synchrotron radiation. In this case the
practical limit can reach several micrometres.

13.2.2 Strain Broadening

Most real crystals contain imperfections producing local distortions of the
lattice, resulting in a non-homogeneous strain field. The effect on position,
shape and extension of reciprocal space points, and consequently on PD peak
profiles, is usually more complex than that of the domain size. A formal
treatment of the strain broadening is beyond the scope of the present book:
interested readers can refer to the cited literature.2 4,10 In the following a
simplified, heuristic approach is proposed.2,27

zFor domain sizes of the order of a few nanometers surface effects become important, and basic
diffraction laws, like the Bragg’s law, need to be reconsidered.26
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First consider the effect of a macroscopically homogeneous strain (or
macrostrain), expressed as e¼Dd/d. By differentiating Bragg’s law (assuming
a constant wavelength):

0 ¼ 2Dd sin yþ 2dDy cos y ð8Þ

Introducing the strain and rearranging the terms:

D2y ¼ �2 tan y
Dd
d

¼ �2e tan y ð9Þ

This well-known result is the foundation of the residual stress (actually residual
strain) analysis by diffraction techniques, dealt with in Chapter 12. As shown
schematically in Figure 13.4b, macrostrain produces a shift in PD reflections.
The effect can be measured for different sample orientations and different
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Figure 13.4 PD peak profile for zero strain (no macrostrain and no microstrain) (a),
(tensile) macrostrain (b), microstrain (c) and combined effect of micro
strain and macrostrain (d). Strain (e) is plotted on the left as a function of
the position within a material microstructure sketched in the middle
drawing.
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peaks, thus providing a rather detailed amount of information on the strain
tensor and, after suitable modelling, on the stress tensor.28

If the strain field is not homogeneous on the length scale of the crystallite size
or smaller, according to Equation (9), different parts of the material diffract at
slightly different angles, thus producing a broadened profile. Profile width and
shape will evidently depend on the strain distribution across the sample.2

Considering the root mean square strain (or microstrain), he2i1/2, Equation
(9) suggests that:

bð2yÞ / e2
� �1=2

tan y ð10Þ

Microstrain has a rather peculiar effect on reciprocal lattice points – taking into
account the cos y/l transformation factor [Equation (5)] from 2y to reciprocal
space, Equation (10) implies that:

bðsÞ / 2 sin yhkl
l

¼ d�
hkl

Therefore, while domain size gives the same effect (i.e. same width and shape)
for all reciprocal space points (Figure 13.2), strain broadening varies from
point to point, generally increasing with the diffraction order (Figure 13.5).

(000) 

(001) 

(002) 

(100) (002)

(101) 

(102) 

(201)

(202)

Figure 13.5 Strain broadening effect in reciprocal space. In this schematic picture,
according to Equation (10), points spread increasingly with the distance
from the origin.
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As shown schematically in Figure 13.4c, the strain can change among
different crystallites, e.g. as a consequence of plastic deformation in an elasti-
cally anisotropic medium, but can also vary across each crystallite, e.g. because
of the presence of dislocations (the two terms are sometimes referred to as
strain of the second and third kind, respectively). Notably, a strain broadening
effect can be observed even if the macrostrain (mean value of the strain
distribution) is zero (Figure 13.4c), as in a powder sample. Otherwise, the
simultaneous effect of macrostrain and microstrain results in a shift and
broadening of the diffraction profile (Figure 13.4d).

13.2.3 Other Sources of Line Broadening

As discussed in Section 13.1, line broadening sources are manifold. In the
previous subsections two of the most common ones were considered: ‘‘size’’
(Section 13.2.1) and ‘‘strain’’ (Section 13.2.2) broadening. It is therefore legit-
imate to wonder to what extent different line broadening sources can be
distinguished from the effects observed in a PD pattern. To discuss this point,
two types of lattice defects that affect the line profile are considered.
Faulting, a two-dimensional ‘‘mistake’’ in the crystal structure, is a frequent

defect in materials. The characteristic of faulting is that the disorder along
the direction of stacking of atomic planes alters, or even destroys, the coherency
of diffraction along that direction.2 It is, therefore, possible to observe that
some points are extended into rods along a given direction in reciprocal
space, whereas some other points are unaffected. This feature gives a distinctive
mark to the diffraction line broadening, so that faulting can be studied in
detail.2,7

In general, the presence of faulting acts as limiting the coherence length, thus
reducing the apparent domain size along specific directions. In a simplified
form, valid in the limit of low staking (a) and twin (b) fault probabilities,3 the
measured domain size can be regarded as an effective size, Leff, related to the
actual mean size, oL4, and to a mean faulting size, oL4F, as:

1

Leff
E

1

oL4
þ 1

oL4F
ð11Þ

where oL4F depends on a, b, and (hkl). Selection rules for fcc, bcc
and hcp, determining which reflection is broadened and by what amount,
can be found in the literature.3 It is worth underlining that selection rules
may be different for different (hkl) combinations of a {hkl} reflection: conse-
quently, faulting causes a complex change in peak shape in a powder pattern,
even more so if one considers the slight peak shift and asymmetry also due to
faulting.29

Anti-phase domain boundaries, are three-dimensional mistakes typical of
several intermetallic systems undergoing disorder/order transformations. APBs
also act on the apparent domain size, but selection rules are totally different
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from those of faulting.3,14,15 Cu3Au is a typical example of a material forming
APBs: the disordered structure is fcc, and turns into a L12 ordered superstructure
below 390 1C. As a consequence, the disorder/order transition is accompanied by
the appearance of superstructure lines in addition to the fundamental reflections
observed also for the disordered phase [(111) and (002) in Figure 13.6]. On
cooling from the high-temperature disordered phase, the ordering process
starts at several positions in the material, thus forming domains that grow and
eventually come in contact, forming boundaries.
Since the ordering process can start at non-equivalent atomic sites, the

boundary can result in a discontinuity, dividing regions with a different phase
relation. Such boundaries are therefore called APBs (Figure 13.6).
For energetic reasons, APBs in Cu3Au are more likely to occur on the {001}

planes, corresponding to a half diagonal glide, in such a way to avoid gold
atoms becoming first neighbours.2,3 The effect on PD peak profiles is rather
peculiar, as it only concerns superstructure reflections, whereas fundamental
reflections are unaffected by the APBs. For the {00l} APBs in Cu3Au the IB of
superstructure reflections is related to g, the probability of crossing an APB:

bð2yÞ ¼ lg hj j þ kj jð Þ
a cos y h2 þ k2 þ l2ð Þ1=2

ð12Þ

where Miller indices must be selected so that h and k have the same parity.3

Figure 13.6 shows the PD pattern of an ordered Cu3Au phase obtained by
cooling from the high-temperature disordered phase and annealing at 360 1C
for 1/2 h. Detection of APBs is supported by the different width of superstruc-
ture lines and absence of line broadening in fundamental lines. Even if APBs
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Figure 13.6 Antiphase domains and APB in Cu3Au (left). Diffraction pattern of the
ordered phase (right). Superstructure lines (sharp and very intense) are
truncated. Data (J) from Figure 12.9 of ref. 3. The WPPM result (line)
is also shown, with the difference between experimental and modelled
data (residual, lower line).16a
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give an apparent size effect, it is quite evident that this type of line broadening
cannot be mistaken for the domain size effect of Section 13.2.1.
In conclusion, different line broadening sources – e.g. size, strain, faulting,

APBs, . . . – tend to produce different effects on the line profiles. Consequently,
all these features can be studied by profiting from the specific dependence of
line broadening on the scattering vector and on the Miller indices of each given
diffraction peak. Most LPA methods, as shown in the following section, are
then based on using the line broadening information from several peak profiles
to separate the various contributing effects.
To conclude this overview on the most common sources of line broadening it

is worth considering the instrumental profile. As discussed in Chapters 5 and 6,
wavelength dispersion, sample absorption and instrument optics generally
produce a finite width IP2,5 that is regarded as an extrinsic profile, even if
absorption is actually a sample related property. The IP is always present in a
PD pattern, combined with the intrinsic profile produced by microstructural
features and lattice defects present in the studied sample.
The traditional approach to treat the IP is based on deconvolution tech-

niques. In fact, it can be shown that the PD profile is a convolution (�) of
profile components produced by different sources [IP, size (S), strain (D),
faulting (F), etc.]:5

IðsÞ ¼ IIPðsÞ � ISðsÞ � IDðsÞ � IFðsÞ � . . . ð13Þ

The Fourier Transform of I(s) is equal to the product of the FTs of the various
profile components on the right-hand side of Equation (13). This makes it
possible to separate the extrinsic component following the Stokes proce-
dure.3,5,30 In addition to the PD pattern of the sample under study, it is
necessary to collect a pattern of the same sample after a suitable treatment to
remove any source of intrinsic line broadening, e.g. by means of a high-
temperature annealing.5 Assuming that peak profiles are sufficiently well sep-
arated, and that the background is properly removed, one can obtain the FT of
a profile, both for the studied sample and for the corresponding annealed
sample. The ratio between the FTs of the studied sample and annealed sample
gives the FT of the intrinsic profile component, which can be used directly for a
LPA (e.g. using Fourier methods, see Section 13.3) or to reconstruct a purely
intrinsic profile by Fourier back-transform.
In principle this is a robust method, but it has several practical drawbacks.

Eliminating background and overlap with other peak profiles can be difficult, if
not impossible in many cases of practical interest: the broader the profiles (i.e.
the more suitable to a LPA) the more peak overlapping is inevitably present in
the PD pattern. In addition, the Stokes method involves a numerical procedure
for the Fourier analysis, so it is exposed to all the downsides related to signal
sampling and truncation.31

Two valid alternatives have been proposed so far. The first relies on a profile
fitting stage, preliminary to the LPA.32 The IP of most PD instruments can be
satisfactorily modelled by simple analytical profile functions, like Voigt,
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pseudo-Voigt or Pearson VII [see Chapter 4]. By using profile fitting for the
pattern of a suitable line profile standard (e.g. LaB6 SRM 660a distributed by
the NIST33), one can obtain a parametric description of the IP for the
instrument used, i.e. the trend of the IP parameters, typically width and shape,
as a function of the PD angle 2y. The so-determined IP can then be used for a
deconvolution procedure (numerical or analytical32,34,35).
A viable alternative is using the so-called Fundamental Parameters

Approach to synthesize the IP (Chapters 5 and 6). In fact, the IP is itself given
by a convolution of profiles, chiefly those produced by wavelength dispersion,
optical components and absorption.5 If the geometry of the PD instrument is
known and sufficiently accurate, the FPA can provide a calculated IP without
the need for using powder standards.36,37

It is, finally, worth mentioning that in addition to deconvolution methods it
is also possible to use a convolution approach. The advantage of the latter is
that LPA can be performed in a one-step procedure, directly on the measured
data, provided that the procedure can make use of a parametric description of
the IP preliminarily determined. Software packages are available for this type
of analysis.38

13.3 TRADITIONAL VERSUS INNOVATIVE METHODS

13.3.1 Integral Breadth Methods

As a natural extension of the methods shown in Section 13.2, IB expressions for
the various sources of line broadening can be combined. This is the basis of the
Williamson–Hall method, introduced in the late 1940s.5,39 41 Considering
Equations (7) and (10), size and strain contributions can be combined as:

bðsÞE 1

oL4V
þ 2e � d�

hkl ð14Þ

where e should be regarded as an upper limit of the microstrain2,5 (within the
limits of the assumptions of Stokes and Wilson:5,42 e¼ 1.25o e241/2).
According to this expression, the slope of a regression line in a plot of b(s)

versus d�
hkl (known as a WH plot) gives 2e, whereas the intercept gives the

inverse of the apparent size, oL4V. It is implicitly assumed that b(s) refers to
the intrinsic profile, i.e. the IP component has been removed.
As an example of the application of the WH method, Figure 13.7 shows the

diffraction pattern of a ceria stabilized-zirconia powder sample [with a 20wt.%
addition of standard silicon (SRM 640b distributed by the NIST)], together
with the corresponding WH plot for the tetragonal zirconia phase. The
WH plot points out the presence of both size and strain effects (respectively,
non-zero intercept and slope), and the best fit of Equation (14) gives:
oL4V¼ 18(1) nm and e¼ 0.0024(3).38

Equation (14) can also be modified to include terms accounting for fault-
ing.43 45 It is also possible to consider the strain anisotropy arising from the
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Figure 13.7 XRD pattern of a ceria stabilized zirconia powder mixed with 20 wt.% of
standard silicon (asterisks).38 Experimental data (J) profile fitting result
(line) and difference between data and fit (residual, lower line) (a); WH
plot for the stabilized zirconia phase, with indication of Miller indices,
regression line and 95% confidence range (b). (Reprinted from ref. 38
with the permission of the International Union of Crystallography.)
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anisotropy of the elastic medium and of the specific defect considered42

(e.g. dislocations43 47).
The weak point of Equation (14) is that the additivity of integral breadths is

an arbitrary choice, valid only under rather restrictive conditions. In fact,
owing to the mechanism of convolution of various profile components shown
by Equation (13), the way the IB components add up depends on specific
features of the broadening sources (and relevant profile components). In
particular, Equation (14) can be justified if IS(s) and ID(s) both have a
Lorentzian shape. For Gaussian profiles, instead, one should write:5

b2ðsÞE 1

oL4V

� �2

þ4e2 � d�2 ð15Þ

Unfortunately, few cases can be properly described under the assumptions of
Equations (14) or (15) (or by other possible combinations5,39,47): real life cases
usually do not match perfectly any simple combination of Lorentzian or
Gaussian profiles. Generally speaking the additivity rule for different IB
components is not known a priori, so using Equations (14), (15) or other
combinations of terms is somewhat arbitrary, unless specific assumptions are
made on the line broadening sources.45

Despite all of this, IB methods are very popular, because they are simple and
can provide a quick estimate of the main sources of line broadening. When
properly used, IB methods can also be rather informative and resolutive.48

However, as a general rule, IB methods should be regarded only as simple and
useful tools for a qualitative, preliminary assessment of the main sources of line
broadening.

13.3.2 Fourier Methods

As suggested by Equation (13) and the related discussion in Section 13.2.3,
Fourier analysis is a natural choice for treating line profiles that makes it
possible to separate the various sources of line broadening in a much better and
more general way than using IB methods.
The Warren–Averbach method3 starts from this consideration and takes into

account the simultaneous presence of size and strain effects. Once the IP has
been properly considered (e.g. by a deconvolution procedure), the Fourier
expansion of the intrinsic profile can be written as:

IðsÞ ¼ kðsÞ
XN

L¼ N

ALe
2piLs ð16Þ

where L¼ n � dhkl (with n integer) is the Fourier length and k(s) groups
constants and known functions of s (Lorentz-polarization factor, square of
the structure factor, etc.). Owing to the convolution principle expressed by
Equation (13), the Fourier coefficients AL can be written as the product of the
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coefficients for the contributing size (S) and strain (D) effects:

AL ¼ AS
LA

D
L ð17Þ

The WA method gives an approximate expression for the strain coefficients in
terms of the r.m.s. strain oe2hklðLÞ41=2. Written in logarithmic form, Equation
(17) becomes:3

ln ALð Þ ffi ln AS
L

� �
� 2p2L2 e2hkl Lð Þ

� �
d�2
hkl ð18Þ

Profiting from the fact that only the strain term depends on the scattering
vector, Equation (18) can be used to separate domain size and microstrain
terms: at least two reflections of the same (hkl) plane family are necessary to
solve Equation (18) for AS

L and oe2hklðLÞ41=2.
The WA plot3 is shown in Figure 13.8 for the stabilized-zirconia powder

of Figure 13.7: ln(AL) is plotted as a function of d�2
0ll for three reflections of

the (0ll ) family, (011), (022) and (033). According to Equation (18), from the
intercept and slope of the regression lines, respectively, size Fourier coefficients
and microstrain can be obtained for different Fourier lengths, L.
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Figure 13.8 WA plot for the sample of Figure 13.7: Logarithm of the Fourier
coefficients of the (0ll) profiles of the stabilized zirconia phase for several
values of Fourier length (on the right, in nm), plotted as a function of the
square of the reciprocal space variable. (Reprinted from ref. 38 with the
permission of the International Union of Crystallography.)
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The results of the WA analysis for the (0ll) planes are shown in Figure 13.9,
where AS

L (a) and oe2hklðLÞ41=2 (r.m.s.) (b) are plotted as a function of the
Fourier length.
Instead of an average microstrain (o e241/2) or an upper limit (e) given by

IB methods (Section 13.3.1), the WA method provides much more detailed
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length. The arrow in (a) shows the tangent at L¼ 0 [see text and
Equation (20)]. (Reprinted from ref. 38 with the permission of the
International Union of Crystallography.)
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information, i.e. r.m.s. strains for each distance L between cells along the
scattering directions. Also, the information on domain sizes is much richer, as
we now have the entire representation, in Fourier space, of the domain size
contribution to the PD profile.
Using the properties of the Fourier coefficients and the normalization

condition (AS
L 0¼ 1), the equivalent of the IB result for the mean domain size

is given by:2,4,9,24

oL4V ¼
X
L

AS
L ð19Þ

where the sum extends to all (positive and negative) values of L for which
AS
La 0 (AS

L is by definition an even function of L).2

As pointed out by Bertaut,3,4,49 the derivative of the size Fourier coefficients
(Figure 13.9) is also related to a mean domain size according to:

�dAS
L

dL

����
L¼0

¼ 1

oL4S
ð20Þ

The mean size oL4S in Equation (20) is an area-weighted mean size, and
should not be confused with oL4V given by Equation (19) and by IB
methods. The two quantities are generally different, the difference being smaller
for narrow size distributions.24

If one considers each crystalline domain as made of columns of unit cells
(actually the unit cells are projected along the specific [hkl] direction con-
sidered), then the scattering domain can be described by a column length
distribution p(L), which gives the fraction of columns of length L. Continuing
the analysis introduced by Bertaut it can be demonstrated that p(L) is propor-
tional to the second derivative of AS

L:
3,4,49

pðLÞ / d2AS
L

dL2
ð21Þ

The distribution L � p(L) shown in Figure 13.10 was obtained from the size
Fourier coefficients of Figure 13.9a: in this specific context, L is called column
length. From this distribution one can obtain both the area-weighted mean size
[same as that of Equation (20)] and the volume-weighted mean size [same as
that of Equation (19)], which are likewise called area-weighted and volume-
weighted mean column lengths, respectively:3,4

oL4S ¼
X
L

LpðLÞ
,X

L

pðLÞ ð22aÞ

oL4V ¼
X
L

L2pðLÞ
,X

L

LpðLÞ ð22bÞ

Values obtained from Equation (19) and (20) [or by Equation (22)] are, for the
case shown in Figure 13.7, oL4S¼ 11(1.5) nm, oL4V¼ 17(1) nm. Even if
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theWA analysis is referred to a specific (hkl), whereas the IB method gives a sort
of average over different (hkl), the volume-weighted mean size given by the WA
is in good agreement with the value obtained from the IB analysis (Figure 13.7).
Microstrains are also in reasonable agreement: the IB value [0.0024(3)]

corresponds to the r.m.s. strain around LEoL4S in Figure 13.9b. In this
case WH and WA methods give consistent results, but this should not be
considered a rule. As the underlying hypotheses of the two LPA methods are
different, results may not necessarily agree.
The discussion above explains why the LPA results may require some further

analysis to be compared with size values obtained by other techniques (e.g.
HREM). The mean size values of Equation (22) are not referred to the
dimensions (e.g. the diameter) of crystalline domains observable in a TEM
picture. The interpretation of the size effect in terms of column length distri-
bution is quite general, but requires some assumption on the actual domain
shape and possibly on the size distribution to give a result directly comparable
with those of other techniques. For polydisperse systems made of crystalline
domains with the same shape, one can write:9

oL4S ¼ 1

Kk

M3

M2
ð23aÞ

oL4V ¼ 1

Kb

M4

M3
ð23bÞ
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Figure 13.10 Column length distribution [L � p(L)] obtained from the size Fourier
coefficients of Figure 13.9. (Reprinted from ref. 38 with the permission
of the International Union of Crystallography.)

393Microstructural Properties: Lattice Defects and Domain Size Effects



where Kk is the Scherrer constant for the area-weighted mean size, which can be
found in the literature for several simple crystallite shapes,2,8,9 and the Mi are
moments of the size distribution as in Equation (7). For domain shapes with
just one length parameter (e.g. sphere, cube, tetrahedron, octahedron,. . .)
dispersed according to a simple, two-parameter (e.g. mean and variance)
distribution, the equation system (23) can be solved: if the two weighted mean
sizes are known from the LPA, the domain size distribution can be obtained.
For example, for the specific case of spherical domains with a lognormal
distribution of diameters, the system:9,50

oL4S ¼ 2

3
exp½mþ ð5=2Þs2� ð24aÞ

oL4V ¼ 3

4
exp½mþ ð7=2Þs2� ð24bÞ

can be solved for the lognormal mean m and variance s.
Also the interpretation of the r.m.s. strain (Figure 13.9b) is not straightfor-

ward. To obtain information on the excess energy of the lattice defects
responsible for the observed microstrain, it is necessary to make some assump-
tions on the specific defect type and relative strain field.17 Examples are
considered in the next section.
Finally, even if the WA analysis is considered a robust LPA method, it is

important to recognize that its applicability is in any case limited by the validity
of the underlying hypotheses and approximations.3,11,17,31 Besides the theoreti-
cal issues, some practical considerations are also important: as observed for
the IB methods, peak profile overlap and background can make it difficult, if
not impossible, to reliably extract the information on single peak profiles, as
required by the traditional WH and WA methods, without truncating the
important information in the peak tails. To circumvent this problem, most of
the present day LPA procedures use a profile fitting stage (see Chapters 4 and 5),
whose application in conjunction with LPA is the subject of the next section.

13.3.3 Profile Fitting and Traditional LPA Methods

Owing to the presence of a complex background, and to peak overlap, most
traditional LPA methods cannot be reliably applied in interesting cases such as
nanocrystals and heavily deformed materials, and in general to the most
interesting cases, i.e. when peak profiles are broad.
A handy solution is using profile fitting to decompose the PD pattern into its

constituent profiles and background, and then use LPA methods (IB or Fourier
analysis). This procedure is used for the example discussed so far: Figure 13.7a
shows the results of a Whole Powder Pattern Fitting obtained using theMarqX
code.38

Advantages of using a profile fitting stage, and a WPPF in particular, are
many: patterns with peak overlap, complex background, and multiple phases
can be readily analysed; the procedure is fast and flexible, in the sense that it can
be used on various different problems, even in absence of detailed structural
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information on the present phases; the IP can be included in the analysis, as in
the case shown in Figure 13.7: a parameterized expression of the IP, obtained
from a preliminary analysis of a profile standard (Section 13.2.3) can be used to
account for the extrinsic profile components; if necessary, integrated intensities
can be constrained by a suitable structural model, then transforming the WPPF
into a Rietveld method (see Chapter 9).
Further aspects, pros and cons of WPPF, are discussed in Chapter 5. Here it is

important to underline the fact that the validity of profile fitting is limited by the
basic assumption of using an a priori selected profile function without any sound
hypothesis that the specific functional form is appropriate to the case of study.
The consequence of this arbitrary assumption can be quite different. For
example, in most practical cases, profile fitting can provide reliable values of
peak position and area, whereas the effects on the profile parameters are less
known and rarely considered. The arbitrary choice of a profile function tends to
introduce systematic errors in the width and shape parameters, which invariably
introduce a bias in a following LPA, whose consequences can hardly be evalu-
ated. It is therefore a natural tendency, for complex problems and to obtain
more reliable results, to remove the a priori selected profile functions – leading
to the following section dedicated to ‘‘Whole Powder Pattern Modelling’’
methods.

13.3.4 Whole Powder Pattern Modelling

To avoid using arbitrary (a priori selected) profile functions, whose parameters
are not directly and univocally related to physically observable quantities, a
different approach can be followed: line profiles can be described directly in
terms of physical models of the microstructure and lattice defects present in the
studied material. This is the foundation of the WPPM method:9,16a,51 57 in this
respect, modelling is opposed to fitting as the former involves the use of physical
information at all stages of the analysis, whereas the latter uses an a priori
selected (though flexible) form for the PD profiles.
A brief overview of the physical basis of WPPM is given here, together with

some examples of applications to real cases of study. Interested readers can find
further details in the cited literature.9,16a,51 57 The basic expression of WPPM
considers the FT of a {hkl} peak profile:

IfhklgðshklÞ ¼ kðshklÞ �
X
hkl

whkl

ZN
N

ChklðLÞexp 2piLðshkl � dhklÞ½ �dL ð25Þ

The sum extends to all equivalent (hkl) planes composing a {hkl} family (that
for a cubic system means all permutations of h,k,l, sign included). whkl and dhkl
are, respectively, weight and shift from the Bragg condition (caused by lattice
defects, e.g. by faulting)3 for the (hkl) component. In this way the possibility
that lattice defects might produce different effects on different (hkl)s is explicitly
considered.
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The core of Equation (25) is the FT, ChklðLÞ, which, owing to Equation (13),
can be written as the product of the FTs of all contributing extrinsic and
intrinsic profile components:

ChklðLÞ ¼ TIP
pV � AS

fhklg � AD
fhklg � ðAF

hkl þ iBF
hklÞ � AAPB

fhklg � . . . ð26Þ

Terms included in Equation (26) are the IP, which can be expressed by the FT
of a pseudo-Voigt function (TIP

pV) obtained from a suitable line profile standard
(Section 13.2.3), contributions from size (AS

{hkl}), dislocations (AD
{hkl}), faulting

(AF
hkl+ iBF

hkl), anti-phase domain boundaries (AAPB
{hkl}). Expressions for various

FTs are reported in the Appendix.
The advantage of this formulation, which is implicit in Equation (13), is that

additional line broadening sources can easily be included by adding corre-
sponding terms to Equation (26).19 Peak areas may be free modelling param-
eters or may be constrained by a structural model54 (as in the Rietveld
method),21 whereas the background can be modelled by a suitable polynomial
(power or Chebyshev).57 Bragg peak positions are related to the lattice para-
meters (also considered as modelling parameters). Typical instrumental aberra-
tions of the powder diffraction geometry (e.g. 2y zero and sample displacement
from instrument axis)57 can also be considered.
All in all, the WPPM approach can provide a simultaneous structure and

microstructure refinement, based on physical models of the phases under study,
without using any arbitrary profile function. Considering the terms of Equation
(26), refinement parameters to be optimized in a least-squares analysis are
relatively few, namely, mean (m) and variance (s) of a suitable distribution of
coherent domain sizes, dislocation density (r), effective outer cut-off radius (Re)
and character (fE, effective fraction of edge dislocations), twin fault (b),
deformation fault (a) and APB (g) probabilities.

13.4 WPPM: EXAMPLES OF APPLICATION

13.4.1 Heavily Deformed Metal Powders

WPPM applications have been reported in several recent publications concerning
nanocrystalline powders19,54,56,58 and heavily deformed ceramic57,59 and metallic
materials.53,55,60

Ball-milled metal powders are among the best case studies to illustrate the
potential of WPPM. The example shown in the following is taken from a more
general work on the microstructure and lattice defects of ball milled metals.61

The material considered is an iron alloy (Fe1.5Mo) powder with the a-Fe bcc
structure. The metal powders were ground in a planetary ball mill (Fritsch
Pulverisette 4) using tempered Cr steel balls (100Cr6) and jars (X210Cr12,
80mL volume), with a 10 : 1 ratio between ball and powder weight. Different
powder samples were ball milled in a sealed Ar atmosphere for increasing times,
keeping a O¼ 300 rpm rotation speed for the main disk and a ratio o/O¼�1.8
between jar revolution and main disk speed.
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Powder diffraction measurements were carried out at the ID31 beamline of
ESRF, Grenoble (F), using the standard capillary geometry. Powder samples
were loaded into borosilicate glass capillaries (diameter 0.3–0.5mm, depending
on powder size). Sealed capillaries were spun at 3000 rpm during the data
collection between 41 and 1001 (2y) at 41min 1, using monochromatic radiation
with wavelength l¼ 0.063250 nm. Details of the beamline geometry and pro-
cedures can be found elsewhere.62 The instrumental profile had been previously
measured using the NIST LaB6 standard powder (SRM 660a)33 following the
procedure outlined in Section 13.2.3.
Data were analysed by WPPM, considering the 28 bcc reflections, from (110)

to (444), encompassing the 4–1001 range. Structural constraints were used to
refine the intensities of overlapping reflections [e.g. (330) and (411)], thus
reducing further the number of free modelling parameters. As an example of
graphical result of the WPPM analysis, Figure 13.11 shows the experimental
and modelled pattern of two powder samples ball milled for 2 h (a) and 96 h (b),
respectively. The log scale plots in the insets are shown to highlight details
in the peak tail and background region. The modelling result is quite
good: besides the peculiarities of the ID31 instrument – high flux, high
energy, monochromaticity, high resolution – that provide unique conditions
of counting statistics and instrumental resolution, WPPM is particularly
effective because the patterns include several multiple order reflections for
different crystallographic directions: (110)/(220)/(330)/(440), (200)/(400)/(600),
(211)/(422), (310)/(620) and (222)/(444). The anisotropic line broadening
due to dislocations can then be separated reliably from the other sources of
broadening.
Figure 13.12 shows the domain size distributions for some of the samples ball

milled for different times. The WPPM analysis was carried out assuming
spherical domains and a lognormal distribution of diameters, a model sup-
ported by several literature observations (see ref. 55 and references therein).
Ball milling causes a rapid reduction of domain size from B120 nm of the
starting powder to 40–50 nm, and this value is approximately constant up to
32 h. During this initial stage a strong plastic deformation occurs: electron
microscopy shows a dramatic shape change of the metal particles, which take a
plate-like aspect and a tendency to incorporate smaller particles and to partly
solder. After this plasticity region, extended work hardening causes grain
comminution to start, leading to the formation of nearly equiaxial grains.
Correspondingly, after 32 h of ball milling the domain size distributions in
Figure 13.12 become narrower and shift to smaller values, down to B18 nm of
mean final dimension.
Even if both size and dislocation effects contribute to the observed line

broadening, the main contribution in this case is that of dislocations generated
by the heavy mechanical treatment. The dislocation type corresponds to the
f110g 111

� �
primary slip system of bcc a-Fe (Burgers vector modulus

bj j ¼ a 3
p

=2), for which the average contrast factor Cfhklg was calculated using
the elastic constants of pure iron (c11¼ 237, c12¼ 141, c44=116GPa). Calcu-
lated values of Cfhklg are shown in Figure 13.13 as a function of
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Figure 13.11 WPPM results for Fe1.5Mo powders ball milled for 2 h (a) and 96 h (b).
Experimental data (J) profile fitting result (line) and difference
between data and fit (residual, lower line). Insets: Log scale plots and
Miller indices of Bragg peaks.
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H¼ h2k2+ k2l2+ l2h2/(h2+ k2+ l2)2 [according to Equation (A10) in the
Appendix].
The values in Figure 13.13 for edge and screw dislocations define upper and

lower bounds for Cfhklg. As the average contrast factors for the limiting cases of
screw and edge dislocations are given, the dislocation character, expressed as
the effective edge dislocation fraction fE [see Equation (A11) in the Appendix],
can be refined by WPPM together with the average dislocation density, r, and
the effective outer cut-off radius, Re.
WPPM refined values of dislocation densities are plotted together with the

mean domain size in Figure 13.14. The trend of the dislocation density is
somewhat opposite to that observed previously for the domain size: after an
initial increase up to rE 0.3� 1016m 2, the dislocation density is about
constant up to 32 h of ball milling, then it increases again reaching values
around 2.0� 1016m 2 for extensive grinding up to 128 h.
Figure 13.15 shows the refined values of the effective edge dislocation

fraction for increasing ball milling time. The so-called Wilkens parameter,
Re r

p
, is also shown, which is a measure of the dislocation interaction and

screening effects.11,63 A physical interpretation of these two parameters should
always be considered carefully, as the basic hypotheses of the underlying
Wilkens–Krivoglaz model for the dislocation line broadening are usually rather
idealized with respect to the real world. Line defects can be much more complex
and heterogeneous than the straight edge or screw dislocations considered here,

0 20 40 60 80 100 120 140 160
0.00

0.02

0.04

0.06

0.08

0.10
    0 h

 2 h

 16 h 

 32 h 

 64 h 

 128 h 

D
om

ai
n 

si
ze

 d
is

tr
ib

ut
io

n,
 g

(D
)

D (nm)

Figure 13.12 Domain size distribution for Fe1.5Mo powder samples having under
gone ball milling for increasing times from 0 (starting powder) to 128 h.
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and the dislocation system can be quite far from resembling the restrictedly
random distribution assumed by Wilkens.11,63

Beyond any possible physical interpretation, the results of Figure 13.15
provide information on the plausibility of the adopted models. The choice of
the dislocation model and of the f110g 111

� �
slip system is supported by the

refined values of fE, between 0.5 and 0.6, within the limits of the pure edge or
pure screw dislocation cases. The Wilkens parameter, being always well above
unity, confirms that the Wilkens–Krivoglaz approach is appropriate to treat
this case. The decrease observed in Re r

p
above 32 h suggests an increase in

the dislocation interaction for extensive ball milling, and nicely matches the
trend of the dislocation density, domain size and grain morphology with the
treatment time.
Measuring lattice parameters of heavily deformed, nanocrystalline materials

can be a difficult task on a laboratory instrument with the usual flat-sample
Bragg–Brentano geometry. Errors due to sample morphology (roughness) and
positioning inside the instrument can be rather large and affect systematically
the peak positions. From this point of view the capillary-sample, parallel-beam
geometry of ID31 provides much more reliable results. It is therefore possible
to observe, as shown in Figure 13.16, the slight but progressive increase of
lattice parameters, mimicking the trend observed for the dislocation density. In
addition to the effects of progressive contamination due to ball milling,61 the
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lattice parameter increase can be related to the volume change produced by
lattice defect incorporation.55

Further speculation is possible using the WPPM results. For instance one
could be interested in comparing domain size and dislocation density to
estimate the number of dislocations present in each crystalline domain.
Assuming a random distribution of straight dislocations, which is of course a
rather crude approximation, the mean dislocation distance is given by 1= r

p
.

The parameter Dh i r
p

can therefore provide an estimate of the mean number of
random dislocations per crystalline domain. Despite the complex evolution of r
and hDi with the ball milling time, a roughly constant Dh i r

p
E2�3 is obtained

from the values of Figure 13.14.

13.4.2 Nanocrystalline Cerium Oxide Powder

One of the major motivations for the development of the WPPM approach is
provided by the growing field of nanomaterials. Knowing the distribution of
crystalline domains is a basic piece of information in nanotechnology. In many
cases, as in the example considered below, this information is particularly
valuable because it is equivalent to the grain size distribution. It is frequently
observed in nanocrystalline materials that grains are single crystalline domains:
in these cases, one can expect a close match between WPPM results and a size
distribution obtained by other techniques, like HREM.
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This is the case of a sol–gel derived powder of cerium oxide analysed recently
by WPPM.58 In the sample considered, a xerogel heat-treated at 400 1C, the
main line broadening effect is that of domain size, even if a comparatively small
but non-negligible contribution is given by microstrain, presumably due to
growth dislocations.19,56 TEM pictures show that particles are actually single
equiaxial crystalline domains; therefore, the WPPM approach can be used
assuming the presence of spherical crystallites with a distribution g(D) of
diameters. Given the preponderance of the size effect, it is worth studying in
more detail the size distribution, possibly without constraining the analysis by
using an a priori decided distribution curve. To this purpose (see Appendix),
g(D) is represented by a histogram, to be refined during the WPPM procedure.
The starting (prior) g(D) is a uniform distribution, representing the most
general and unbiased condition: the least-squares minimization gives the final
shape to the g(D), refining independently each column height.
Figure 13.17 shows the WPPM result: despite the strong overlap between line

profiles, there is a fairly good agreement between model and experimental data.
Even if the pattern was collected on a traditional laboratory instrument using
copper radiation,58 the number of reflections is sufficiently high to model
reliably.
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Figure 13.17 WPPM results for a nanocrystalline cerium oxide powder. Experimental
data (J) profile fitting result (line) and difference between data and fit
(residual, lower line). Inset: Log scale plot and Miller indices of Bragg
peaks. (Reprinted from ref. 58 with the permission of the International
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The corresponding domain size distribution is shown in Figure 13.18,
together with the distribution obtained from HREM pictures.19,56,58 In the
same figure we also show the (uniform) prior g(D). WPPM and HREM are
in remarkably good agreement, and show a distribution approximately
log–normal, with a mean size slightly below 5 nm.
Despite the preponderance of the size effect, a small but non-negligible

microstrain effect could be measured. Assuming the presence of growth dislo-
cations19,56 an average dislocation density of 1.4(4)� 1016m 2 was refined. Such
a relatively high value can in part be due to the corresponding (abnormally) low
values of effective outer cut-off radius (r and Re tend to correlate), but is in any
case not so unrealistic considering the small domain size. In general, however,
when the size effect prevails, as in this case, the microstrain effect gives just a
correction to the profile modelling: numerical results derived by minority strain
terms are very likely affected by large errors and should be considered with
caution, more as correction terms than as sound physical information.
Notably, such detailed information on the size distribution shown by the

example of Figures 13.17 and 13.18 can only be obtained under specific conditions:

a. In general, sufficient information must be available; the pattern must
include as many reflections as possible, to reduce errors and to stabilize
the modelling algorithm.
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Figure 13.18 Domain size (diameter) distribution for the nanocrystalline cerium oxide
powder of Figure 13.17. WPPM result (plain bar), HREM result (hatched
bar) and WPPM starting g(D) (dotted bar). (Reprinted from ref. 58 with
the permission of the International Union of Crystallography.)
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b. The statistical quality of the data must be high; this is also a general point,
not strictly related to WPPM. Fine details such as the shape of the size
distribution can only be studied on high quality diffraction patterns.

c. Point (b) is even more true when broad or multimodal distributions are
present. Noise in the data has a tremendous impact on the modelling of
line broadening from complex distributions of domain size.58

d. The possibility of separating size, strain, faulting and the many other
possible sources of line broadening is also limited by the quantity and
quality of available information. In any case, best results are obtained for
the dominant effect, even if correlations among different effects can be
limited by rules [e.g. (hkl) dependent] valid for specific line broadening
sources, like those involved in Equations (A5)–(A7) or in Equations
(A8)–(A11) for faulting and dislocations, respectively.
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LIST OF PRINCIPAL SYMBOLS

a Unit cell parameter of a cubic phase
AS
{hkl}, A

D
{hkl}, A

APB
{hkl}, Fourier Transform of the profile

AF
hkl+ iBF

hkl, A
C
{hkl} component due to, respectively, domain size,

dislocations, APB, faulting and stoichiometry
fluctuations

APBs Anti-Phase Domain Boundaries
b Burgers vector
ChklðLÞ Fourier Transform for the (hkl) profile component
Cfhklg Average dislocation contrast factor
dhkl Interplanar distance between (hkl) planes
d� Scattering (reciprocal space) vector (d*¼ 2 sin y/l)
d�
hkl Scattering vector in Bragg condition for the (hkl)

planes
f*(Z) Wilkens function
fE Effective fraction of edge dislocations
FPA Fundamental Parameters Approach
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FT Fourier Transform
FWHM Full Width at Half Maximum
g(D) Distribution of diameters of spherical crystalline

domains
HREM High-resolution Transmission Electron Microscopy
I(y), I(s) Diffracted intensity in a powder pattern (in 2y or in

reciprocal space unit)
IB Integral Breadth
IP Instrumental Profile
Kb, Kk Scherrer constant for volume-weighted and

area-weighted mean size, respectively
L¼ n � dhkl (with n integer) Fourier length
oL4S Surface-weighted mean column length
oL4V Volume-weighted mean column length
LPA Line Profile Analysis
Mi ith Moment of the size distribution
p(L) Column length distribution
PD Powder Diffraction
pV pseudo-Voigt profile function
Re Dislocation effective outer cut-off radius
shkl ¼ d� � d�

hkl Distance, along d�, from the (hkl)
reciprocal space point

TIP
pV Fourier Transform of the pV function modelling

the IP
TEM Transmission Electron Microscopy
V(D) Crystallite volume (D length parameter)
whkl, dhkl Weight and shift, respectively, from Bragg condition

of the (hkl) component
WA Warren–Averbach
WH Williamson–Hall
WPPF Whole Powder Pattern Fitting
WPPM Whole Powder Pattern Modelling
Y(d*) Diffracted intensity in reciprocal space
a, b Deformation and twin fault

probability, respectively
b(s), b(2y) Integral breadths in reciprocal and 2y space,

respectively
bG, bC Gaussian and Lorentzian IB components,

respectively
g Probability of crossing an APB
he2i1/2 Root mean square strain (microstrain)
Z Mixing parameter of the pV profile function
yhkl Bragg angle for the (hkl) planes
l Radiation wavelength
m, s Mean and variance of the coherent domain size

distribution, respectively,
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v0, v Incident and diffracted beam unit vectors (versors),
respectively

r Average dislocation density
ss HWHM in reciprocal space
o (HWHM) Half Width at Half Maximum

APPENDIX: FOURIER TRANSFORMS OF PROFILE COMPONENTS

Instrumental Profile (IP)

A parametric description of the IP can be obtained by modelling the pattern of
a line profile standard with pseudo-Voigt functions (see Chapters 4 and 5 and
Section 13.2.3 in this chapter):35

pVðxÞ ¼ I0 ð1� ZÞexp � px2

b2G

 !
þ Z 1þ px

bC

� �2
" # 1

8<
:

9=
; ðA1Þ

where x¼ shkl or x¼ 2y – 2yhkl, according to whether the integral breadths of
the Gaussian (bG) and Lorentzian (bC) components are written in reciprocal or
in 2y space, respectively; Z is the mixing parameter (or Lorentzian fraction) and
I0 is the peak maximum intensity. If o is the half width at half maximum, then
bG ¼ o � p=Lnð2Þ

p
, and bC¼o � p. In this way, the trend of o and Z with 2y

can be determined and used to calculate the FT of the pV:

TIP
pV ¼ ð1� kÞexp �p2s2sL

2=ln 2
� �

þ k exp �2pssLð Þ ðA2Þ

where k ¼ 1þ ð1� ZÞ
.

Z p ln 2
p	 
h i 1

and ss¼o cos yhkl/l is the half-width

at half-maximum (HWHM) in reciprocal space.

Domain Size (S)

The FT of the domain size component produced by a system of crystallites of
volume V(D) and size dispersed according to a g(D) distribution can be written
in the general form:

AS
fhklgðLÞ ¼

RN
L�KcðhklÞ

AS
c ðL;DÞg Dð ÞVðDÞdD

RN
0

gðDÞVðDÞdD
ðA3Þ

where crystallites have simple one-parameter (D) convex shapes (e.g. sphere,
cube, tetrahedral, octahedral).9 AS

c (L, D) is the FT of a single crystallite, easily
calculated using Wilson’s common-volume function,2,24 whereas Kc(hkl) is a
function of the crystallite shape and (hkl ) considered. Expressions of AS

c (L, D)
and Kc(hkl) can be found in the literature.9,55
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Equation (A3) can be dealt with analytically, assuming a given g(D),24 or
numerically, considering g(D) as a generic histogram whose column heights are
to be refined.58 As an example of the former option, considering a system of
spheres distributed according to a lognormal g(D) with mean m and variance s:

AS
l ðLÞ ¼

1

2
Erfc

ln Lj j m 3s2

s 2
p

� �
3

4
Lj jErfc ln Lj j m 2s2

s 2
p

� �
exp m

5

2
s2

� �

þ 1

4
Lj j3Erfc ln Lj j m

s 2
p

� �
exp 3m

9

2
s2

� � ðA4Þ

The subscript {hkl} was omitted as superfluous for the case considered
(spherical crystallites). Expressions for other distributions are also available:9,55

the extension of Equation (A3) to the case of more complex grain shapes and
distributions can be cumbersome, but is always possible in principle.

Faulting (F)

Faulting can be treated according to different approaches.2,3,13,64 Within the
limit of small probabilities, twin (b) and deformation (a) faults in fcc materials
can be dealt with using a corrected version of Warren’s theory,3,29 leading to
the following expressions for the real and imaginary parts of the FT:

AF
hklðLÞ ¼ 1� 3a� 2bþ 3a2

� � 1
2
Ld�

hklf g�
Lo

h2o

sLo

��� ���
ðA5aÞ

BF
hklðLÞ ¼ �sLo �

L

Lj j �
Lo

Loj j � b
.

3� 6b� 12a� b2 þ 12a2
� �1=2 ðA5bÞ

where L0¼ h+ k+ l, h20¼ h2+ k2+ l2, and sLo is a sign function, defined as:

sL0
¼

þ1 ! L0 ¼ 3N þ 1
0 ! L0 ¼ 3N N ¼ 0;�1;�2; . . .
�1 ! L0 ¼ 3N � 1

8<
: ðA6Þ

Faulting also produces a shift from the Bragg position given by:

dhkl ¼
1

2p
arctan

3� 12a� 6bþ 12a2 � b2
� �1=2

1� b

" #
� 1

6

( )
d�
fhklg �

Lo

h2o
sLo ðA7Þ

Dislocations (D)

Generalized line defects, like dislocations and disclinations, are known to pro-
duce a markedly anisotropic line broadening, i.e. a line broadening dependent
on the observed [hkl] direction in the crystalline domain. This is due to the
combined effect of the anisotropy of the elastic medium (described by the
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elastic tensor, e.g. the stiffness cij) and of the orientational anisotropy of the line
defect (e.g. dislocation line and Burgers vector).
According to theWilkens–Krivoglaz approach,10,11,63 the FT of the diffraction

profile produced by a system of dislocations with average density r, Burgers
vector b and effective outer cut-off radius Re, can be written as:11,63

AD
fhklgðLÞ ¼ exp �1

2
p bj j2Cfhklgrd

�2
fhklg � L2f �ðL=ReÞ

h i
ðA8Þ

where f*(Z) is the Wilkens function,11,63 given by:

f �ðZÞ ¼ 256

45pZ
� 1

Z2
11

24
þ ln 2Z

4

� �
for Z41 ðA9aÞ

and:

f �ðZÞ ¼ 7

4
� ln 2� ln Zþ 256

45pZ
þ 2

p
1� 1

4Z2

� �ZZ
0

arcsin x

x
dx

� 1

90p
769

2Z
þ 41Zþ 2Z3

� �
1� Z2

p

� 1

p
11

12Z2
þ 7

2
þ Z2

3

� �
arcsin Zþ Z2

6
for 0 	 Zo1

ðA9bÞ

Cfhklg is the average contrast factor, which accounts for the main effect of
anisotropy.11,65,66 It can be shown that the contrast factor can be written in
terms of the fourth order crystallographic invariant for the Laue group of the
studied phase.66 In other words, Cfhklg can be written for any lattice symmetry,
for instance using the invariants given by Popa.66,67

Explicit expressions for the average contrast factor and calculated values for
any symmetry can be found in the literature.66,68,69 For the cubic case the
invariant form is:53

Cfhklg ¼ Aþ BH ¼ Aþ B
h2k2 þ k2l2 þ l2h2

h2 þ k2 þ l2ð Þ2
ðA10Þ

where A and B can be calculated given the elastic tensor for the studied phase
for any dislocation slip system (hkl)[h0k0l0] (i.e. knowing dislocation line and
Burgers vector).66 A general expression for the cubic case, considering edge (E)
and screw (S) dislocations, is:

Cfhklg ¼ fECE;fhklg þ ð1� fEÞCS;fhklg

¼ fEAE þ ð1� fEÞAS½ � þ fEBE þ ð1� fEÞBS½ �H
ðA11Þ

where fE, the edge fraction, can be regarded as an effective parameter repre-
senting the mean dislocation character. If the contrast factor for edge and screw
dislocations (AE, BE, AS, BS) is known, line broadening can be described by just
three modelling parameters in Equation (A8): r, Re and fE.
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Further consideration and a more rigorous implementation of Wilkens’
theory can be found in the cited literature.65

Anti-phase Domain Boundaries (APB)

Line broadening due to APBs is somewhat similar to faulting,3 even if the FT in
this case is real and there is no peak shift. According to Wilson, AAPB

{hkl}(L) can be
written as an exponential function of L. For the case of APBs in Cu3Au
(Section 13.2.3):2,14

AAPB
fhklgðLÞ ¼ exp �2gd�

hklL � f ðh; k; lÞ
 �

ðA12Þ

where the f(h,k,l) depends on the specific APB considered. AAPB
{hkl}(L)¼ 1 for the

fundamental lines. For APBs in Cu3Au along {100} with no gold-gold
contact (Section 13.2.3), f(h,k,l)¼ (|h|+ |k|)/(h2+ k2+ l2) (with l as unpaired
index). f(h,k,l) expressions for different APB orientations are given in the
literature.14,15

Stoichiometry Fluctuation (C)

Stoichiometry fluctuations are also responsible for a line broadening effect that,
with the exception of cubic phases, is also (hkl) dependent.20 The effect on the
line profile is directly related to the nature of the fluctuation: if the composi-
tional variation is described by a suitable function, e.g. a Gaussian curve, then
the resulting peak profile component is also Gaussian and the FT for this effect
can be written as:

AC
fhklgðLÞ ¼ e pb2L2 ðA13Þ

where the integral breadth b is related to the invariant for the corresponding
Laue group:20

b2 /
X

HþKþL¼4

SHKL � hHkKlL ðA14Þ

The SHKL can be treated as refinement parameters, subject to the symmetry
restriction of the specific Laue group. For example, for an hexagonal phase:X

HþKþL¼4

SHKL � hHkKlL ¼S400 h4 þ k4 þ 3h2k2 þ 2h3kþ 2hk3
� �

þ S202 h2l2 þ k2l2 þ hkl2
� �

þ S004l
4

ðA15Þ

with the additional condition: S202¼�2(S400S004)
1/2. If the relation between

lattice parameters and composition is known (e.g. see the case of a and c
parameters in e-FeNx)

20 a further constraint can be added to the modelling.
One can think of several other possible line broadening sources. Expressions

for the FT may be analytical but also numerical in some cases, as for the grain
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surface relaxation effect.19 In any case, the way each line broadening contri-
bution enters the WPPM algorithm is the same, as described by Equation (26).
Combining different line broadening sources is straightforward in WPPM.
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48. D. Louër, J. P. Auffrédic, J. I. Langford, D. Ciosmak and J. P. Niepce,
J. Appl. Crystallogr., 1983, 16, 183.

49. F. Bertaut, C.R. Acad. Sci. Paris, 1949, 228, 492.
50. C. E. Krill and R. Birringer, Philos. Mag., 1998, 77, 621.
51. P. Scardi, M. Leoni and Y. H. Dong, Mater. Sci. Forum, 2001, 378–381,

132.
52. P. Scardi, M. Leoni and Y. H. Dong, CPD Newsletter, 2001, 24, 23.
53. P. Scardi and M. Leoni, Acta Crystallogr., Sect. A, 2002, 58, 190.
54. P. Scardi, Z. Kristallogr., 2002, 137, 420.
55. P. Scardi andM. Leoni, inDiffraction Analysis of Materials Microstructure,

ed. E. J. Mittemeijer and P. Scardi, Springer Series in Materials Science,
vol. 68, Springer-Verlag, Berlin, 2004, p. 51.

56. M. Leoni, R. Di Maggio, S. Polizzi and P. Scardi, J. Am. Ceram. Soc.,
2004, 87, 1133.

57. M. Leoni, T. Confente and P. Scardi, Z. Kristallogr. Suppl., 2006, 23, 249.
58. M. Leoni and P. Scardi, J. Appl. Crystallogr., 2004, 37, 629.
59. M. Leoni, G. De Giudici, R. Biddau and P. Scardi, Z. Kristallogr. Suppl.,

2006, 23, 111.
60. P. Scardi, Z. Metall., 2005, 96, 698.
61. M. D’Incau, M. Leoni and P. Scardi, J. Mater. Res., 2007, 22, 1744.
62. O. Masson, E. Dooryhée, R. W. Cheary and A. N. Fitch, Mater. Sci.

Forum, 2001, 378–381, 300.
63. M. Wilkens, Phys. Status Solidi A, 1970, 2, 359.
64. E. Estevez-Rams, M. Leoni, P. Scardi, B. Aragon-Fernandez and H. Fuess,

Philos. Mag., 2003, 83, 4045.
65. N. Armstrong, M. Leoni and P. Scardi, Z. Kristallogr. Suppl., 2006, 23, 81.
66. M. Leoni, J. Martinez-Garcia and P. Scardi, J. Appl. Crystallogr., 2007, 40,

719.
67. N. Popa, J. Appl. Crystallogr., 1998, 31, 176.
68. P. Klimanek and R. Ku�zel, J. Appl. Crystallogr., 1988, 21, 59.
69. R. Ku�zel and P. Klimanek, J. Appl. Crystallogr., 1988, 21, 363.

413Microstructural Properties: Lattice Defects and Domain Size Effects



CHAPTER 14

Two-dimensional Diffraction Using
Area Detectors

BERND HINRICHSEN, ROBERT E. DINNEBIER AND
MARTIN JANSEN

Max Planck Institute for Solid State Research, Stuttgart, Germany

14.1 TWO-DIMENSIONAL DETECTORS

The first two-dimensional detector in X-ray diffraction was conventional film.
It remained for decades the detector of choice for both single crystal as well as
powder diffraction experiments. In the field of two-dimensional detection it was
surpassed initially by image plates and later by CCD cameras (Figure 14.1).
Today virtually no film is in use, with perhaps the exception of Polaroid used
for single-crystal images. To be able to compare various detectors with one
another, and to select the most appropriate detector for a specific experiment,
certain key technical qualities are important. These are in general the detective
quantum efficiency, the spatial response characteristics, the size, speed and
dynamic range.1

The detective quantum efficiency (DQE)2 is a measure of the signal-to-noise
degradation caused by the instrument. It is defined in Equation (1):

DQE ¼
I2out
s2out

h i
I2
in

s2
in

� � ¼ 1

NR2
out

ð1Þ

where I and s represent the input (Iin) and output (Iout) intensities and the input
(sin) and output (sout) standard deviations of the signal intensities, N is the
number of incident X-ray photons and Rout is the relative variance of the
output signal. A detector with a DQE of 50% has to count twice the time a
detector with a DQE of 100% has to count to record a signal of equal variance.
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The spatial response characteristics3 are normally characterized by the point
spread function (PSF) – the detector’s signal following a delta function
stimulus. Ideally the point spread is also a delta function. Experimentally this
is seldom the case as detector characteristics generally give the signal a
Gaussian spread. It is often the point spread function that is the main cause
of the limited resolution in powder diffraction experiments.
The size of the detector is an important factor, determining the size of the

accessible reciprocal (or q-) space. Larger detectors offer a greater area and thus
a greater q-space that can be imaged in one exposure. Greater size also opens
the possibility of moving the detector further from the sample to improve
resolution.
Speed is of ultimate importance when acquiring data at a synchrotron beam

line. The readout time should be minimal to ensure a high time resolution for
in situ experiments and a most efficient use of the costly synchrotron rays.
The dynamic range of the detector limits the intensity differences that are

recordable on one image. The higher the dynamic range the better one is able to
characterize signals having a strong contrast.

14.1.1 CCD Detectors

Probably the most widely used detector type in X-ray crystallography is the
CCD camera. These detectors are in use in many fields and their general
ongoing development has been of benefit to the relatively small X-ray detector
segment. The great advantages of these detectors are their high resolution and
short readout times. This is of importance especially in single-crystal diffraction
in which dead-times can make up a great part of the measurement time. The

Figure 14.1 Detector types. Five different detector designs are shown in their
fundamental units. (This is an adaptation of an image in ref. 4.)
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drawbacks stem from three basic elements of the detector. First, the fluorescent
screen has to be optimized for the required wavelength: higher energy radiation
requires a thicker layer to fully absorb the incident rays. Thicker layers are
disadvantageous as the PSF increases with the thickness of the layer due to the
spherical dissipation of excited electrons within the fluorescent layer. Second,
fibre optical tapers channel the light from the large fluorescent layer to the
smaller CCD chip. The tapering often leads to an imperfect representation of
the original image onto the CCD. This has to be corrected as much as possible
within the detector electronics (firmware). Some detectors have a CCD area of
equal size to the fluorescent layer and can circumvent this source of errors.
Finally, one major drawback is the substantial dark current from the CCD
chip, which requires permanent cooling to reduce.

14.1.2 Imaging Plate Detectors

Imaging plates were the first digital technology to replace films in synchrotron
and laboratory equipment. The concept is extremely simple. A layer of
BaF(Br,l):Eu21 which contains colour centres is deposited on a robust film-
like base ‘‘plate’’. The plate is then exposed to X-rays. The image is later
scanned by an online, or a more cumbersome offline, scanner. Scanning the
image consists of exciting the colour centres and then detecting the induced
radiation. Stimulating colour centres does not require much energy, generally
red lasers suffice. The stimulated green light is detected by a photomultiplier
following the path of the laser.
The great advantages of imaging plates are their large size, low cost and their

high dynamic range. The latter quality has made it the detector of choice for
two-dimensional powder diffraction. Their major drawback is the high dead
time associated with the time-consuming scanning. This can take the best part of
two minutes for large images. RigakuMSC has developed a practical solution to
this problem. The detector system consists of two or even three detectors. When
one is being scanned the other can be exposed. A precision rotation system
transports the imaging plate from one position to the other. The future for this
detector type does seem rather bleak, though, especially in view of flat panel
detectors and the single photon counting hybrid pixel detectors.

14.1.3 Flat Panel Detectors

Thin film transistor (TFT) arrays are produced inexpensively and in large
numbers for use in modern computer monitors and televisions. This readout
system can be combined with amorphous hydrated silicon or amorphous
selenium which is deposited over the large surface of the TFT array and acts
as the X-ray conversion layer. Having established themselves firmly as an X-ray
detector for medical imaging already, they have until now failed to make an
impact on the field of crystallography,5 their high noise level being the main
drawback. It can be surmised with some confidence that this type of detector
will become standard equipment in the near future.
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A very general categorization into direct and indirect conversion types can be
made for these detectors.4 With direct converters X-rays are transformed into
electrons in a single step, e.g. by a layer of amorphous selenium. One further step
is required for the indirect sensors: here a scintillating layer (photo-
conductor) converts the X-rays into visible light, which is in turn converted into
an electronic charge by a further amorphous silicon layer. This brings with it the
inevitable resolution loss associated with the radial diffusion of photons and
again their interaction with the amorphous silicon. As with all detection layer
systems they can be optimized using various layer thicknesses and scintillating
substances, which can be selected according to the X-ray wavelength and the
photon detection properties of the lower layer. Currently, vapour grown CsI:Tl is
an extremely popular material. It grows in columnar structures and can act as a
guide in a similar fashion to fibre optics, thereby reducing lateral scattering. Its
high atomic number secures a high X-ray absorption and thus good conversion.
Other materials under study as possible photoconductors are HgI2, PbI2 and
CdZnTe (CZT). Especially, CZT, grown using a high-pressure Bridgeman
technique, has been rapidly implemented in a wide variety of medical detectors.6

14.1.4 Hybrid Pixel Detectors

Silicon pixel array detectors are based, as the name suggests, on silicon as the
primary detecting layer. The photoelectric effect causes one electron/hole pair
to be created for each 3.65 eV of incident X-rays. This leads to 3220 electrons
from each X-ray photon at 12 keV in a one millimetre layer, which absorbs
98% of that radiation. In contrast a CCD would only produce roughly 10
electrons. The readout time of a few nanoseconds also contrasts impressively
with all other detector systems. Further, no distortions are to be expected as no
intermediary tapering or disconnected readout systems are involved. Despite
these overwhelming advantages the price of prototyping and the expense of the
readout electronics design has inhibited the speedy development of this detector
type. Nevertheless, a few groups have been working on realizing a detector
specifically for crystallography. Christian Broennimann et al.7,8 have succeeded
in building a six mega-pixel detector for protein crystallography with a pixel
size of 172� 172 mm2. Although this might be larger than the pixels of a CCD
the perfect point spread function of a single pixel still represents a marked
resolution improvement over the CCD detector types. The detector was built
up of an array of 18 modules covering a total area of 210� 240mm2. A full
frame readout time of this detector takes 6.7ms, allowing a continual rotation
single-crystal data collection without the shutter closing between frames.
Detectors of this type are already in operation9 in the field of powder

diffraction. Large manufacturers of diffraction equipment have these detectors
among their products, disappointingly, though, reduced to point detectors and
not implemented as area detectors. An installation at the material science beam
line at the Swiss Light Source (SLS) of the Paul Scherrer Institute (PSI) in
Switzerland is an equatorial type detector, covering a fixed angle of 601 in 2y.
Again, this is not a real two-dimensional detector. It has a faster readout time
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than the two-dimensional detector mentioned earlier and can acquire entire
diffractograms in a fraction of a second. Most probably this type of detector
will establish itself in the field of two-dimensional diffraction.

14.2 DIFFRACTION GEOMETRY

Early powder diffraction experiments relied mostly on the Debye–Scherrer
experiment to record a diffractogram. A broad film strip set into a cylindrical
chamber produced the first known two-dimensional powder diffraction data.
In contrast to modern methods the thin equatorial strip was the only part
of interest and intensities merely optically and qualitatively analysed. This
changed drastically with the use of electronic scintillation counters. Intensities
were no longer a matter of quality but quantity. Inevitably the introduction
of intensity correction functions long known to the single-crystal metier, i.e.
Lorentz and polarization corrections (see Section 14.3), made their way into the
field of powder diffraction.
Continuous detector development brought about the next revolution in the

field of powder diffraction. Large area detectors made their debut in powder
diffraction at synchrotron beam-lines in the beginning of the 1990s, having first
been used in the field of single-crystal diffraction. First experiments only
utilized thin equatorial strips10 of the image but with the introduction of freely
available software,11 the integration of the entire image to a standard one-
dimensional powder diffraction pattern became commonplace.
The term two-dimensional powder diffraction does not imply any specific

geometry; it merely states the two-dimensionality of the detected signal.
Conceivably, this detector could be cylindrical, as in a Weissenberg camera.
Such detectors are still common in modern single-crystal diffractometers in
both standard laboratories12 as well as at neutron beam-lines;13 however, the
concept has never gained great popularity in the modern powder diffraction
field. The ubiquity of large flat image plate detectors, their unparalleled
dynamic range as well as a speedy read-out time are the reasons for their
current prominence in the field.
A precise determination of the experimental geometry is a prerequisite for

highly accurate and well-resolved diffraction angles, peak profiles, absorption
effects or even good filtering. Especially, the separation of micro-structural
effects from the instrumental contribution to the peak profile needs exact 2y
values. An accurate calibration remains the single most significant factor in the
extraction of high quality powder diffractograms from two-dimensional images.
Generally the detectors are set up perpendicular to the primary beam, with

the intersection of the primary beam at the detector centre. This setting has
some advantages: the entire Bragg cones are detected and the deviation of the
cone projection from an ideal circle is usually small. Sometimes a detector can
be placed off-centre and non-orthogonally to the primary beam. This can
enlarge the detectable q-space in a very cost effective manner. The downsides
are the strongly elliptical conical projections and the loss of the entire azimuthal
information of a diffraction cone.
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Extraction of standard powder diffractograms from two-dimensional images
requires knowledge of the diffraction angle at each pixel. These angles have to
be known to a precision equal to or less than the detector resolution. The
detector resolution is mainly governed by the point spread function (PSF). In
addition the calculation of air absorption would require the sample to pixel
distance in each case. The azimuthal angle is vital for the application of the
Lorentz and polarization corrections, as is the incident angle for a detector
dependent correction. The next section deals with the derivation of all possible
geometrical values that could be of importance during data reduction.

14.2.1 Resolution and FWHM in Two-dimensional Diffraction

The resolution of a two-dimensional detector is governed to a dominant extent
by the PSF. This can be very well observed by the behaviour of the FWHM
distribution of reflections over an image plate. The PSF of a standard image
plate is roughly 300 mm. The projection Dl of the diffracted beam width d on the
image plate in the case of a fully parallel beam is given by:

d

cosðCÞ ¼ Dl ð2Þ

This would result in the projection of the diffracted beam leaving a larger
footprint on the image plate at higher incident angles (C); we should therefore
expect higher FWHM of the diffracted beams at higher incident angles.
Experimentally we find an inverted relation. How can this seemingly aberrant
behaviour be explained? The answer lies in the PSF of the detector. Detectors
do not resolve differences in the half-width of the incident beam if they lie well
below the point spread of the detector. The increasing footprint of the incident
beam is overshadowed by the detectors point spread, thus leading to no
discernable angle dependence. So it is no surprise that with changing incident
angle and sample distance the ‘‘number of points (pixels) across the peak . . .
is not changed’’.10 The reduction in the FWHM of the diffracted X-rays at
higher incident angles is more intrinsically connected to the angular resolution
per pixel (Figure 14.2).
Taking into account both the effect of the incident angle and the distance of

the detector from the sample, the resolution of an experimental set-up can be
calculated as the half-width (FWHM) of the diffracted beam by its diffraction
angle (2y), the PSF of the detector and the sample to detector distance (D)
(Figure 14.3). For simplicity we assume that the detector tilt is negligible. The
radius is then related to the sample detector distance and the diffraction angle
by the following equation (see Figure 14.5):

D tan 2y ¼ r ð3Þ

Adding the FWHM resulting from the point spread contribution would lead to:

D tanð2yþ FWHMÞ ¼ rþ PSF ð4Þ
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As Equation (3) still holds Equation (4) would become:

D tanð2yþ FWHMÞ ¼ D tan 2yþ PSF ð5Þ

Solving for FWHM in terms of 2y and the PSF then leads to:

FWHM ¼ arctan
D tan 2yþ PSF

D

� �
� 2y ð6Þ

Figure 14.2 Effect of the incident angle on the sharpness of the final angular
projection. The point spread of the detector does not change. The
difference in the angular resolution between the perpendicular and the
tilted detector is the cause of the sharper peak.

Figure 14.3 Effect of the point spread of a two dimensional detector upon the
FWHM of a diffracted beam. The detector is assumed to be ideally
aligned normal to the primary beam. The point spread is taken to
be 300 mm. Sample contributions to the peak width have not been
considered.
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To show the effect of the PSF on the FWHM of a diffracted beam a surface
spanning a 2y range from 01 to 801 and a detector distance range from 100
to 1000mm has been calculated, estimating the point spread to be 300 mm
(see Figure 14.4)
The detector resolution can be estimated as a convolution of the footprint

with the PSF. Placing this in Equation (6) would lead to the following formula,
again for an idealized non-tilted detector:

FWHM ¼ arctan
D tan 2yþ PSFconv

D

� �
� 2y ð7Þ

As both the footprint and the PSF can be described by a Gaussian function the
FWHM of their convolution is given by:

PSFconv ¼ PSF2 þ ðd sec 2yÞ2
q

ð8Þ

The resolution is computed for a typical image plate PSF of 0.3mm, a FWHM
of the diffracted beam of 0.3mm, and a sample to detector distance of 100mm,
for a diffraction angle range from 01 to 701 (see Figure 14.4).
It is possible to estimate the line width of the diffraction experiment by

knowing the width of the diffracted beam, the PSF of the detector and the
distance to the detector. Adding tilt to the two-dimensional detector makes
the situation a lot more complicated. Essentially an azimuthal factor is
added to the incident angle as well as to the angular resolution, which results
in an azimuth-dependent FWHM of the diffraction image. The dependence of
the line width on the detector orientation is given in its complete form by
Equation (9). This equation is deduced in the same manner as Equation (6),
starting, however, from the more complex formulation of a tilted detector given

Figure 14.4 An example of the resolution contributions of an ideally aligned typical
image plate detector placed 100mm from the sample. The footprint of a
0.3mm diffracted beam and the PSF of 0.3mm of the detector contribute
varying amounts to the resolution over the diffraction angle range.
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by Equation (13):

FWHM ¼
arctan

ðxPSF cosðrotÞþyPSF sinðrotÞÞ2 cos2ðtiltÞþðyPSF cosðrotÞ xPSF sinðrotÞÞ2

ðDþðxPSF cosðrotÞþyPSF sinðrotÞÞ sinðtiltÞÞ2

r

� arctan ðx cosðrotÞþy sinðrotÞÞ2 cos2ðtiltÞþðy cosðrotÞ x sinðrotÞÞ2

ðDþðx cosðrotÞþy sinðrotÞÞ sinðtiltÞÞ2

r
;

xPSF ¼ xþ PSF ; yPSF ¼ yþ PSF

ð9Þ

For a precise explanation of the terms rot and tilt please refer to Figures 14.6
and 14.8. The line width can also be expressed in the more general terms of
diffraction angle (2y), azimuthal angle (a), detector orientation (D, rot, tilt)
and the detector point spread (PSF). To deduce the formula we start with
Equation (3) but alter it to fit a tilted detector. This implies adding a distance z
to the sample to detector distance. It represents the change of the distance to
the reflection point on the detector projected onto the primary beam vector.
This change is brought about by the tilt and can easily be derived as is
shown in Figure 14.7a. The factor narrowing the effective width of the
tilted beam (Figure 14.2) has to be added, leading to the modified form of
Equation (5):

Dþ zð Þ tan 2yþ FWHM cos tilt cos að Þð Þð Þ ¼ Dþ zð Þ tan 2yþ PSF ð10Þ

The change in distance is given by the following equation:

z ¼ r sinðtiltÞ ð11Þ

The radius has been derived and is given below by Equation (38). Substituting
all values of z and r in Equations (11) and (10), solving for the FWHM and
simplifying leads to the fundamental formulation of Equation (10):

FWHM ¼ arc cot
num

den

� �
secðtilt cos aÞ � 2y;

num ¼DþDðcos aþ cosðtiltÞ tanðtiltÞ tan 2y;

den ¼PSF þ tan 2y
DþD sinðtiltÞ tan 2y
þ cos a tanðtiltÞðPSF þD tan 2yÞ

� � ð12Þ

Such a situation can be simplified only if a thin Debye–Scherrer type strip along
an azimuthal angle is considered.10

When using focusing optics14 the detector distance to the optics is fixed and
the focal spot of the beam well below the PSF of the detector. The resolution is
governed solely by the PSF of the detector. To decrease the resulting line width
the only solution is to increase the distance between the sample and the
detector, as tilting the detector would move it out of the focal point.

14.2.2 Diffraction Angle Transformation

The fundamental function relating the non-orthogonality of the detector to the
primary beam and the sample to detector distance into diffraction angles is
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given by Equation (13). This equation can easily be deduced from two rotations
of the plane out of its position orthogonal to the cone axis. The first rotation is
performed around the x-axis. As can be seen in Figure 14.5, it causes the conic
section to become elliptical. The axis of the cone now intersects the plane at a
focal point of the ellipse. What was the radius in the circular conic section now
has become the semi-latus rectum (Figure 14.10). A second rotation is
performed around the plane normal centred on the focal point which is the
intersection of the cone axis. The effect of this rotation is shown in Figure 14.8.
This transformation provides a general formulation of a conic section using
experimentally accessible parameters,

2y ¼ arctan
cos2ðtiltÞ x cosðrotÞ þ y sinðrotÞð Þ2þ �x sinðrotÞ þ y cosðrotÞð Þ

� �2
Dþ sinðtiltÞ x cosðrotÞ þ y sinðrotÞð Þð Þ2

vuuut
ð13Þ

The parameters x, y, tilt, rotation and D are depicted in Figures 14.5–14.8. A
derivation of this equation is given in ref. 11 and is described with the aid of
Figures 14.5–14.8. A good overview of the transformations involved in
calculating the conic section can be found in ref. 15. However, in that work
three angles are used to describe the detector orientation relative to the

Figure 14.5 A circular conic section resulting from an orthogonal detector to primary
X ray beam setting. On the left is a view perpendicular to the detector, on
the right is a side view, showing the primary beam entering from the
right. The primary and diffracted beams from the sample S intersect the
detector on the detector plane. The primary beam intersects the detector
at the centre of the circle. For clarity only one diffraction cone has been
drawn. The distance from the sample to the detector along the primary
beam is given by D. The detector coordinate system is denoted in x and y
relative to the beam centre.
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scattering cone. As any detector orientation can be described by two angles
alone, this is the transformation we chose to use.
Figure 14.5 displays a conic section normal to the cones axis. The diffraction

angle, which is half the cone opening angle, is given by Equation (14). All the
coordinates are given in the cone coordinate system wherein z is the cone axis,
and x and y describe the plane perpendicular to it. The position of the plane is
at a distance D from the cone’s apex along the cone axis:

x2 þ y2 ¼ D2 tan2 2y ð14Þ

In our case the cone axis is synonymous with the primary beam. For the
conic section to change from a circle to an ellipse the angle between the plane
normal and the cone axis has to be greater than zero.
This is realized in Figures 14.6 and 14.7 by rotating the cone axis around the

horizontal plane axis, this is equal to the x-axis. For compatibility with the
established formulation11 the detector is tilted around the y-axis. The coordi-
nate system changes to that of the tilted detector and is denoted by x0 and y0

(Figure 14.7):

Dx0 cosðtiltÞ
Dþ x0 sinðtiltÞ

� �2

þ Dy0

Dþ x0 sinðtiltÞ

� �2

¼ D2 tan2 2y ð15Þ

Equation (15) then simplifies to Equation (16):

x02 cos2ðtiltÞ þ y02 ¼ Dþ x0 sinðtiltÞð Þ2tan2 2y ð16Þ

Figure 14.6 Elliptical conic section resulting from a tilting of the detector around a
horizontal axis. This results in an ellipse that is mirror symmetrical along
the central vertical axis.
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Adding a rotation angle around the normal to the focus of the ellipse leads us to
the general ellipse represented in Figure 14.8.
This adds a cosine and a sine term of the rotation to the x and y values in the

following form. Again a separate notation is used to denote the rotated values
x00 and y00:

x0 ¼ x00 cosðrotÞ þ y00 sinðrotÞ
y0 ¼ y00 cosðrotÞ � x00 sinðrotÞ ð17Þ

Figure 14.8 General description of an arbitrary tilt. The added rotation angle suffices
to describe any possible detector tilt.

Figure 14.7 Constructions after Kumar15 to deduce the tilted x0 and y0 values in terms
of the orthonormal x and y values. (a) The construction used to calculate
the relation between x and x0. The similarity of the triangle spanned by D
and x (small triangle), and the triangle spanned by D+x sin(tilt) and
x0cos(tilt) is used to set up the relation. (b) The construction used to
elucidate the relation between y and y0. Here again the similarity of the
smaller and larger triangles is used to set up the relation.
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On inserting these rotational equations into Equation (16) one obtains
Equation (18):

x00 cosðrotÞ þ y00 sinðrotÞð Þ2cos2ðtiltÞ þ y00 cosðrotÞ � x00 sinðrotÞð Þ2
¼ Dþ x00 cosðrotÞ þ y00 sinðrotÞð Þ sinðtiltÞð Þ2tan2 2y

ð18Þ

Equation 18 can be rearranged to the initial form equalling Equation (13).

2y ¼ arctan
x00 cosðrotÞ þ y00 sinðrotÞð Þ2cos2ðtiltÞ þ y00 cosðrotÞ � x00 sinðrotÞð Þ2

Dþ x00 cosðrotÞ þ y00 sinðrotÞð Þ sinðtiltÞð Þ2

s

ð19Þ

14.2.3 Incident Angle and Ray Distance Calculations

The incident angle of the reflected beam onto the detector is utilized in a factor
often described as correcting for the flatness of a detector. The diffracted beam
penetrates into the image plate or fluorescent layer of the detector. The
penetration length depends on the angle of incidence and the linear attenuation
factor for the utilized wavelength and fluorescent material.
As can be seen from Figure 14.9 the minimum and the maximum incident

angle are given by Equation (20):

Cmin ¼ 2y� tilt
Cmax ¼ 2yþ tilt

ð20Þ

The tilt can be replaced with the effective tilt, tilteff according to:

tilteff ¼ tilt sinða� rotÞ ð21Þ

resulting in an effective incident angle of:

Ceff ¼ 2y� tilt sinða� rotÞ ð22Þ

To determine the distance of the diffracted ray from the sample to each point
on the detector we use the construction presented in Figure 14.9. Application of
the sine rule results in Equation (23):

sinð90� �CÞ
D

¼ sin 180� � 2y� ð90� �CÞð Þ
ray distance

ð23Þ

This simplifies to:

ray distance ¼ D cos 2yþ sin 2y tanCð Þ ð24Þ

14.2.4 General Transformations

As most pattern recognition algorithms use conventional geometric parameters
of ellipses, namely semi-major and semi-minor axes and eccentricity, this
section will deduce all the necessary transformations between the
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crystallographic and standard systems. Further transformations are needed
to calculate the exact Cartesian coordinates of a reflection on the detector.
This corresponds to the determination of x,y¼ f(2y,a,D,tilt,rot,X0,Y0). This
information is important for calculating and plotting theoretical ellipse
positions.
The semi-latus rectum is independent of the tilt and can be given in terms of

the scattering angle and the sample to detector distance as in Equation (25):

D tan 2y ¼ l ð25Þ

From Figures 14.9, 14.10 and the sine rule we can deduce the following
relation:

sinð2yÞ
a� c

¼ sinð90� � 2yþ tiltÞ
D

ð26Þ

Figure 14.9 Incident angle calculation. The small triangle containing the comple
mentary angle to the incident angle C and tilt is used to deduce the
formula for the calculation of the incident angle.
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This can be reformulated as:

c ¼ a�D secðtilt� 2yÞ sin 2y ð27Þ

However, we also know from Figures 14.9, 14.10, and the sine rule, that the
following relation holds:

sinð2yÞ
aþ c

¼ sinð90� � 2y� tiltÞ
D

ð28Þ

This can be reformed to:

c ¼ �aþD secðtilt� 2yÞ sin 2y ð29Þ

Setting Equations (27) and (29) and equal and solving for a leads to the
following formulation:

D cosðtiltÞ sin 4y
cosð2tiltÞ þ cos 4y

¼ a ð30Þ

The same method can be used to find an expression of c in alignment
variables. This leads to the very similar formulation:

2D sinðtiltÞ sin2 2y
cosð2tiltÞ þ cos 4y

¼ c ð31Þ

al ¼ b2 ð32Þ

Figure 14.10 Common ellipse parameters. The centre is denoted by C, one focal point
by F, the semi major axis by a, the semi minor axis by b and the semi
latus rectum by l.
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Because of the well-known identity Equation (32) the semi-minor axis can be
described using the scattering angle, the tilt and the detector to sample distance,
as given in Equation (33):

D cosðtiltÞ
p

sin 2y
p

tan 2y
p

cosð2tiltÞ þ cos 4y
p ¼ b ð33Þ

Now a and c can be inserted into the well-known identity e¼ c/a to denote
the eccentricity in calibration parameters:

tanðtiltÞ tan 2y ¼ e ð34Þ

14.2.4.1 Detector Coordinate Transformations. We now attempt to deduce
the detector coordinates from the calibration values and the reflection
parameters. Some well-known elliptical identities:

e ¼ 1� b2

a2

r
ð35Þ

c ¼ a2 � b2
p

ð36Þ

shall be used in these calculations. The ellipse radius as measured from the
focus can be described in terms of eccentricity, semi-major axis and the angle of
the azimuth:

rfocus ellipse ¼
að1� e2Þ

1þ e cosðaÞ ð37Þ

Inserting Equation (34) into Equation (37) leads to:

rfocus ellipse ¼
D tan 2y

1þ cos a tanðtiltÞ tan 2y ð38Þ

The Cartesian coordinates take the following values:

yd ¼ rfocus ellipse sinða� rotÞ ð39Þ

xd ¼ rfocus ellipse cosða� rotÞ ð40Þ

Here xd and yd are the x and y positions relative to the focus. The ellipse has
been made non-parallel to the axes by subtracting the rotation from the
azimuth angle.

14.3 INTENSITY CORRECTIONS

As important as the diffraction angles are to the exact lattice parameters, the
intensities are crucial for the precise determination of atomic position,
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elemental species, and their occupation and displacement parameters. The great
popularity of equatorial point detectors and later one-dimensional position
sensitive detectors in laboratory diffractometers has hindered the spread of
generally applicable correction formulae for 2D geometries and canonized
equatorial specific corrections. These are often incorrectly applied to data
collected from two-dimensional detectors. Important experimental factors
influencing the intensity of a diffracted beam are discussed and the corresponding
two-dimensional correction functions are given.

14.3.1 Lorentz Corrections

Lorentz corrections applied to powder diffraction data are slightly different to
those applied to single-crystal data. Whereas the single-crystal correction only
consists of a rotational factor, the powder correction contains an additional
statistical factor.24 This corrects for the likelihood of a crystallite being in
diffraction position. This factor has a simple (siny) 1 dependence, and is found
in the common Lorentz correction

L 1 ¼ sin2y sin y ð41Þ

The well-known correction for the speed of the transition of a reflection
through the Ewald membrane is attributed to a lecture given by Lorentz.25

In its form applicable to a perfect single crystal it normalizes the intensity of a
single reflection to the shortest traversal of the Ewald sphere. This motion is
brought about by the rotation of the crystal in direct space. A consequence is
that the correction is not only dependent upon the rotation vector of the crystal
but also on the detection method. The general formulation takes the form:

Fhklj j2/ ðdz=dsÞ
Z

IxyðsÞds ð42Þ

Here Ixy is the reflection intensity measured as a function of a scan variable s;
z is the direction normal to the Ewald sphere at the reflection position.
Integrating over s for a typical four-circle diffractometer26 and approximating
sine and cosine values for the small angular range of a reflection leads to the
following formalism:

L 1 ¼ � Doi sin g cos n þ Dwi sino sin nþ
Dji cos w sin g cos n � coso sin w sin nð Þ

� �
ð43Þ

When regarding rotation around a single axis, an experimental set-up most
commonly used in two-dimensional powder diffraction, the function reduces to:16

L 1 ¼ cosm sing cosn ð44Þ

where m¼ angle between axis of sample rotation and the primary beam normal
plane, g¼ angle of horizontal reflection displacement and n¼ angle of vertical
reflection displacement.
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The well-known equatorial form of Equation (44) is obtained when setting
the axis of rotation perpendicular to the primary beam and reducing the
vertical displacement to zero. g is then the diffraction angle:

L 1 ¼ sin2y ð45Þ

Reduction from the two-dimensional form to the one-dimensional equatorial
form was a requirement of the equatorial diffractometer geometries utilizing
point detectors or at most linear position sensitive detectors. Importantly,
this correction is neither applicable to the Bragg–Brentano nor to the flat
transmission geometry, but is only valid for the Debye–Scherrer geometry.
With the onset of area detection in powder diffraction a two-dimensional

correction has to be applied (Figure 14.11). A formulation of Equation (44)
independent of the more accessible scattering angle 2y and the azimuthal angle
a has been derived:

L 1 ¼ cos m
cos a tan 2y

1þ cos2 a tan2 2y
p

1þ sin2 a tan2 2y
p ð46Þ

Combining this with the statistical factor leads to the general formulation of the
Lorentz correction for powder samples rotated within the beam:

L 1 ¼ sin y cos m
cos a tan 2y

1þ cos2 a tan2 2y
p

1þ sin2 a tan2 2y
p ð47Þ

Figure 14.11 Two dimensional single crystal Lorentz correction for an ideally
aligned detector. Note the zero values in the central valley. These
cause divergent intensities as they are multiplied with the inverse of the
Lorentz correction. Therefore, the intensities in that region have no
meaning. The central valley is parallel to the sample rotation axis.
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Lorentz Correction for Highly Collimated Beams. The rotational correction
should be used if the powder sample is rotated within the beam in the single
crystal sense, i.e. all crystallites should complete their rotation within the beam.
Should the beam be collimated to dimensions below those of the sample
containment then this further reduces the rotational impact on the cumulative
Lorentz factor. A term RL can be introduced to quantify the rotational Lorentz
factor from 0 for no rotational element to 1 for full rotation of all crystallites
within the beam (Figure 14.12). The introduction of this factor leads to:

L 1 ¼ sin yRL cos m
cos a tan 2y

1þ cos2 a tan2 2y
p

1þ sin2 a tan2 2y
p ð48Þ

RL has been deduced for the case of the rotational axis being normal to the
primary beam. The common Lorentz formulation is valid if a crystallite is
rotated within the beam by o¼ 2p. For a certain number of crystallites with a
rotational radius less than the beam radius this is true. Crystallites outside this
radius experience a rotation oeff that is dependent upon their rotational radius
and the width of the primary beam. It can be given as:

oeff ¼ 4 arcsin W=Rð Þ ð49Þ

where W is the beam width and R is the rotational radius. As all crystallites
between R¼W and R¼L (where L is capillary diameter) are affected differ-
ently by rotational radius an integration over that range has to be made:

Oeff ¼
Z1
y

oeff ðyÞdy ¼2ðp� 2 1� y2
p

� 2y arcsin yÞ; y ¼ W=L ð50Þ

Figure 14.12 Relative Lorentz factor. The image depicts a perpendicular section of a
capillary of diameter L being illuminated by a beam of width W. Only
crystallites falling in the light grey inner circle are rotated completely
(2p) within the beam. Crystallites outside this region but still within the
beam path only experience a limited rotation o, thus reducing the
effective single crystal Lorentz factor to be applied to them.
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Interestingly, the integration tends to a value of roughly 331 as the beam width
to sample radius ratio tends to zero:

lim
y!0

Z1
y

oeff ðyÞdy ¼ p=2� 1 ð51Þ

Now this rotation needs to be put into relation to the entire illuminated area.
The normalization takes the form of the average rotational angle of the entire
illuminated area relative to the full 2p rotation of the standard Lorentz
correction:

RL ¼ 2pf þ Oeff fo

2p f þ foð Þ ð52Þ

where f is the area in which the crystallites experience a complete rotation in the
collimated primary beam and fo is the area in which the crystallites only
experience a partial rotation within the beam (Figure 14.13). These are
computed in the following manner:

A ¼ 1=4 L2 cos 1 W

L

� �
�W L2 �W2

p� �
ð53Þ

f ¼ 2p W=2ð Þ2 ð54Þ

fo ¼ 2p L=2ð Þ2�f � 2A ð55Þ

Figure 14.13 Relative Lorentz factor. The image depicts the surface of the correction
factor for a primary beam that is collimated to below the sample size.
Should the primary beam be larger than the sample, the factor is unity.
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Reforming Equation (55) and simplifying leads to Equation (56):

fo ¼ 1=2 L2pþW �pW þ L2 �W2
p� �

� L2 cos 1 W

L

� �� �
ð56Þ

Equation (52) then becomes:

RL ¼ 2pf þ Oeff fo

2p 2p L=2ð Þ2�2A
� � ð57Þ

When reduced to the fundamental parameters the function takes the final
form of:

RL

p2W2 þ 1
4

L2pþW pW þ L2 W2
p� �

L2 arccos W
L

� 	� �
p 2 1 W2

L2

q
2W arcsin W

Lð Þ
L

� �

p L2pþW L2 W2
p

2L2 arccos W
L

� 	� �
ð58Þ

To see the effect this correction factor has for differing beam sizes and
capillaries a simple two-dimensional plot has been made. In Figure 14.13 you
can see that as the beam size approaches zero so does RL approach zero,
whereas when the beam size equals or is larger than the sample diameter the
standard correction factor of unity is applied.

14.3.2 Polarization Correction

When X-rays are diffracted by a lattice plane they are partially polarized. This
leads to an intensity reduction that can be expressed as a function of the
diffraction angle. For a completely unpolarized primary beam this leads to the
following correction:17

P ¼ 1

2
1þ cos2 2y
� 	

ð59Þ

Should the primary beam be polarized this changes the correction to:18 21

P ¼ P0 � P0 ð60Þ

P0 ¼
1

2
1þ cos2 2y
� 	

ð61Þ

P0 ¼ 1

2
J0 cos 2a sin2 2y ð62Þ

where:

J0 ¼ Ip � mIs
mðIp þ IsÞ

ð63Þ
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Here Ip and Is are the vertical and horizontal intensities, respectively. The
monochromator angle is related to m by:

m ¼ cos2 2ym ð64Þ

With knowledge of the monochromator angle (2ym) and that of the initial
polarization of the X-ray beam one can calculate the effective polarization
factor. However, it is possible to refine this parameter against two-dimensional
reflection intensities, and thereby retrieve a reliable value (Figure 14.14).

14.3.3 Incident Angle Correction

An intensity correction based on the angle at which the reflected beam strikes
the detector plane was initially proposed by Gruner2 in his work on CCD
detectors. Since then the development of this correction has been mainly driven
by electron density researchers striving to attain high quality intensity data
from area detectors. From Figure 14.15 it becomes clear how the incident angle
affects the path of the beam through the detecting layer. The distance traversed
by the beam in the detecting layer is d/cosC, whereC is the incident angle and d
is the thickness of the detecting layer.
If the absorption of the visible light generated within the layer is disregarded

then the correction22 is independent of the detector type (CCD or IP)
(Figure 14.16):

K ¼ 1� e
md

cosCð Þ
1� e md

¼ 1� e
lnT#
cosC

� 	
1� T#

ð65Þ

with:

Icorr ¼ Iobs=K ð66Þ

Figure 14.14 Two dimensional polarization correction for an ideally aligned detector.
The polarization factor has been set (from left to right) to 0.1, 0.5 and
0.99. The polarization correction is displayed as a three dimensional
rendered surface hovering over an image depicting the same information
in greyscale. The correction is applied by dividing the intensities by the
displayed correction values.
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and Tk being the transmission of the detector layer at normal incidence. This
leads to the complete correction function of:

I# ¼ Iobs
1� T#

1� e lnT#=cosCð Þ ð67Þ

Figure 14.16 Incident angle correction factor. The correction factor of ref. 22 has
been calculated for an incident angle range from 01 to 901 and for a
vertical transmission ratio from 0 to 1. The correction is applied by
dividing the observed intensities by correction factor K. Clearly, the
correction factor remains unity for complete X ray absorption as well
as for incident angles of 01.

Figure 14.15 Incident angle correction. The path of the incident ray through the
detecting layer of thickness d depends upon the incident angle C. The
length travelled within the layer is then d/cosC. This correction is
necessary should the beam not be completely absorbed by the layer.
Reflections at high incident angles would have a falsified higher intensity
because of the greater detection length. This correction attempts to
normalize the intensity to an incident reflection normal to the plain.
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An empirical correction that is used by some single-crystal diffractometers
equipped with CCD cameras takes the following form:

K ¼ 1þmð1� cosCÞ ð68Þ

Here m is a coefficient that parameterizes a detector–wavelength combination.
For example, a CCD detector optimized for copper radiation used m¼ 0.1763.
One optimized for molybdenum radiation had m¼ 0.3274. No derivation of
this formulation has to date been published.
The correction implemented in the Fit2D package11 is given by:

K ¼ cos3 C ð69Þ

Again no formal derivation of this correction has been published.
A more complex function for imaging plates taking into consideration

additional absorption of the excitation and emitted light has been proposed:23

IFf ðx; y; z; n; k;CÞ ¼ kIxz I
e
y

¼ kIðx; yÞ exp �mg


cos n þ mp



cos k� my



cosC

� 	
zp

� �
ð70Þ

This was reported to provide a better normalization when applied to single-
crystal data collected for electron density studies of CeB6. In Equation (70), mg,
mp and my represent the linear absorption coefficients of the excitation, X-ray
and emitted light within the image plate layer. The corresponding incident
angles are n, k and C. The vector of the incident X-ray is given by z.
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CHAPTER 15

Powder Diffraction under Non-ambient
Conditions
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Norway; b Max-Planck-Institut für, Chemische Physik fester Stoffe,
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15.1 INTRODUCTION

Powder diffraction is very well suited for studies at non-ambient conditions.
Naturally, one of the early applications of powder diffraction was high
temperature studies of phase transformations. Development of equipment for
low temperature and high-pressure studies quickly followed. Later, application
of powder diffraction for in situ, time-resolved and in operando studies were
successfully pursued.
Powder diffraction is a non-contact and non-destructive characterization

method, which allows a great deal of information regarding crystal structure,
phase composition and microstructure to be obtained. It is possible to construct
sample environment chambers for many types of non-ambient studies. One of
the challenges in using X-ray powder diffraction for non-ambient and in situ
studies is the need to penetrate containers and sample holders. This is for
instance the case in high-pressure experiments, where X-ray radiation must
penetrate, for example, a diamond anvil cell, or for in situ studies of catalysts,
where the reaction cell may be a steel container. In addition, the need for good
time resolution for time-resolved experiments has been a limiting factor. The
use of neutrons, which will easily penetrate most metal containers, has made
in situ studies of materials inside containers possible. However, large samples
are needed and the low neutron flux limits the time resolution considerably. The
development of synchrotron X-ray sources has had a major impact on non-
ambient powder diffraction. The very high X-ray intensity of synchrotron
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sources and the development of powerful insertion devices make it possible to
perform time-resolved experiments with very good time resolution. In addition,
by using high energy synchrotron X-ray radiation it is possible to obtain
information from materials contained in even fairly thick-walled metal
containers. By using a focussed high energy X-ray beam, it is also possible to
obtain good diffraction data from tiny amounts of materials inside a high-
pressure diamond anvil cell.
In parallel with the development of powerful X-ray and neutron sources,

development of increasingly more efficient detectors has made it possible to
obtain very good powder diffraction data in a very short time. The use of
position sensitive and area detectors allow a large part of the diffraction pattern
to be collected simultaneously. Therefore, non-ambient and in situ powder
diffraction studies which were unthinkable a few decades back can now be
performed routinely.

15.2 IN SITU POWDER DIFFRACTION

The term ‘‘in situ powder diffraction’’ is used for many different types of
experiments, and there is no strict agreement on the definition. It may be
argued that all non-ambient experiments are by definition in situ, as they must
be performed at the required conditions, e.g. high temperature or high pressure.
High-pressure studies are described later in the chapter. Here we discuss:

� Dynamic powder diffraction where time-resolved experiments are per-
formed to follow materials during chemical or physical reactions and
processes.

� Static experiments where information about materials under steady-state
conditions in a complex system is obtained, e.g. catalysts in a reactor at
operating conditions.

In in situ experiments a system or a material is studied at non-ambient
conditions where chemical or physical processes occur. This could be time-
resolved studies of chemical reactions, such as in materials synthesis (solid
state, sol/gel, hydrothermal, thin film growth etc.), cathode and anode mate-
rials in lithium batteries during charge/discharge cycles, adsorption/desorption,
ion exchange and intercalation reactions of layered or microporous materials.
It could be studies of catalysts under operating conditions, hydrogen storage
materials during uptake and release of hydrogen or studies of electrochemical
reactions just to mention a few. It could also be studies of materials during
physical processes or interactions. For instance, piezoelectric materials in
oscillating electrical fields, studies of strain/stress development during mechanic
treatment of metals or reaction to changes in an external magnetic field.
We have not made any distinction between in situ and in operando experi-

ments. In operando requires the system studied to be under identical conditions
as in, for example, an industrial process, while in situ could describe simulated
conditions such as time-resolved studies of synthesis and chemical reactions.
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It is difficult to pinpoint the emergence of in situ powder diffraction to one
particular event. However, some of the very early in situ experiments aimed at
obtaining structural information and kinetic data were performed using neutron
powder diffraction.1 3 The possibility of using metal containers and large
sample volumes made neutron diffraction a favourable choice, despite the low
flux, which limits the time resolution obtainable. The use of a position sensitive
detector at the neutron powder diffractometer D1B at ILL made it possible to
follow, for example, the hydration of gypsum2 with a time resolution of 3–5min.
Figure 15.1 shows a three-dimensional representation of time-resolved powder
diffraction patterns during reaction, where the formation of the hydrated phase
is clearly visible.
These studies were of great interest to understand cement hydration and

since then many in situ studies have been performed following the reactions
using neutron and synchrotron X-ray powder diffraction. The development in
time resolution is demonstrated by a synchrotron study of the hydration of
tricalcium aluminate, C3A, which is an important component of Portland
cement.4 Using a time resolution of down to 0.3 s a hitherto unknown short-
lived intermediate phase was detected in the very early stage of hydration.
The early experiments spurred a great interest in using in situ powder

diffraction for many other systems. In situ powder diffraction is still a fast
developing research field, which has expanded to increasingly more challenging
experiments.
The main reason for the explosive development in in situ powder diffrac-

tion experiments is the development of high intensity synchrotron X-ray
sources. The very high intensity allows good time resolution, which makes
it possible to follow even very fast reactions. In addition, the accessibility
of high energy X-ray radiation has enabled in situ studies in even thick
walled steel containers, making it possible to study materials under operating
conditions.

Figure 15.1 Example of the changes in diffraction pattern from a sample undergoing
reaction. Each pattern is separated in time by 5min. The sample is CaSO4

at different levels of hydration.2
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Due to the large number of in situ powder diffraction experiments being
performed, the following will not attempt to present a comprehensive record of
in situ experiments, but will try to focus on important aspects that should be
considered when performing in situ powder diffraction experiments.

15.2.1 Techniques and Instrumentation

15.2.1.1 Synchrotron X-ray Radiation. Both energy dispersive and angle
dispersive diffraction is used for in situ powder diffraction studies using
synchrotron X-ray radiation.
In energy dispersive X-ray diffraction (EDXRD), a beam containing a broad

spectrum of X-ray energies (white beam) is incident on the sample. An energy
discriminating detector, e.g. a solid state Si or Ge detector, is positioned at a
fixed angle, and the energy/intensity distribution of the scattered beam is
analysed. By using multiple detectors at different scattering angles, a wider
range of d-spacings may be covered, and interference from fluorescence and
absorption edges in the material or container can be reduced. In in situ energy
dispersive powder diffraction the use of multiple detectors is now common,
e.g. experiments at Daresbury,5,6 where a three-element detector system was
developed for in situ studies (Figure 15.2).
There are many advantages of using energy dispersive diffraction for in situ

studies. There are no moving parts during exposure, and fixed angles are used.
This makes it less complicated to design specific reaction cells and also makes it
easier to combine experimental techniques in one experiment. By using low
detector angles, diffraction occurs at high energies, which has the added benefit
of allowing for the use of thick containers. Another important aspect is that it is

Figure 15.2 Schematic diagram of the three element detector at Station 16.4 of the
Daresbury Laboratory, employed for the study of the synthesis of
microporous materials. Note that the bottom detector is kept at an
angle of between 1.11 and 1.41 so that reflections having d spacings in the
range 0.5 20 Å can be observed.6
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possible to obtain diffraction selectively from a small volume element in the
sample by using collimators on the incident and diffracted beam. This may
be used to eliminate diffraction from container materials or other materials in
the system, which is a great advantage when studying buried interfaces, multi-
layered structures (e.g. batteries or fuel cells) or hydrothermal synthesis. Short
exposure may be used and the readout time is short, resulting in good time
resolution.
Disadvantages of energy dispersive powder diffraction are the low resolution

obtained due to the limited energy resolution of the detectors, making it
difficult to determine accurate unit cell parameters. Fluorescence lines and
absorption edges will also influence the collected spectrum and it is generally
difficult to obtain structural information, e.g. from Rietveld refinement, from
energy dispersive diffraction data.
Angle dispersive diffraction is used for most X-ray powder diffraction

experiments using conventional or synchrotron sources. A monochromatic
X-ray beam is used, and the scattered intensity is recorded as a function of
diffraction angle. Very good unit cell parameters can be obtained and it is
possible to collect data that are suitable for structural investigations using
Rietveld refinement. The time resolution obtained depends strongly on the
detector system. The detector may be a point detector, a one-dimensional
(position sensitive) detector or an area detector. The use of one- or two-
dimensional detectors significantly increases the counting efficiency, as a large
part of the pattern is collected simultaneously. In addition, it is important for
time-resolved (and temperature resolved) powder diffraction experiments to
collect the total powder diffraction pattern in the shortest possible time,
preferably simultaneously collecting the entire pattern. This is not only to
improve the time resolution; if a scanning detector (point detector or small
position sensitive detector) is used, the material may change between the start
and the end of the scan. Thus, analyses of the patterns, especially when
extracting structural information, may be problematic. When collecting the
entire pattern using a large position sensitive or area detector, any changes
taking place during measurement/exposure is reflected in the entire collected
pattern.
It is important to realize that when using a one- or two-dimensional detector

(without focusing geometry), the angular resolution (i.e. the width of the
diffraction peaks) obtained is to a large extent determined by the size of the
sample. Therefore, the sample size must be kept small, which makes the design
of reaction cells for in situ studies a challenge. In addition, it is more difficult
to design environmental cells or to perform combined experiments without
obstructing the diffracted beam path. The angular resolution may be improved
by increasing the distance between the sample and the detector. However, this
limits the angular range available due to the limited size of the detector. When
using a one-dimensional detector, a longer sample–detector distance also means
that a smaller fraction of the Debye–Scherrer ring is sampled. Thus, it is often
necessary to find a compromise between resolution, angular range sampled and
intensity. In general, the angular resolution obtained using an area detector on
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the synchrotron is comparable to high-resolution laboratory powder diffracto-
meters using CuKa1 radiation.
The use of two-dimensional detectors, where the entire, or a significant part

of, the Debye–Scherrer rings are collected will, in addition to improved
counting statistics, limit the negative effect of small samples, i.e. non-statistical
number of crystallites and, to some extent, texture. Geometric effects of these
detectors are described in detail in Chapter 14.
The use of high-resolution synchrotron X-ray powder diffraction for

time-resolved in situ studies is limited by the obtained intensity, and thereby
the time resolution. The use of multiple analyser crystals will reduce the time
required for each data set. In addition, the availability of high-resolution
powder diffractometers on insertion device beam lines (wiggler or undulator)
with multiple analyser crystals, such as ID31 at ESRF or 11-ID at APS, makes
it possible to perform experiments where very high-resolution data are obtained
with good time resolution. This development will significantly contribute to the
use of in situ powder diffraction for attacking increasingly more complex
problems.

15.2.1.2 Home Laboratory X-ray Sources. It must be emphasized that
laboratory X-ray sources, either sealed tube or rotating anode, in many cases
will be excellent for in situ experiments, especially when equipped with a
position sensitive detector. There are of course many challenges and limitations
regarding time resolution and absorption in the sample or container. Most
powder diffractometers use copper radiation, which will be attenuated signifi-
cantly by thick samples. However, it is often sufficient to collect data over a
limited 2y range, which is useful for experiments where one follows the
development of a few reflections. By using a point detector fast scans may be
made. When using a small position sensitive detector, the detector may be in
a fixed position, which will make it possible to obtain a time resolution
below 1min.
Notably, in many cases a single-crystal diffractometer with Mo-radiation

and an area detector is available in the home laboratory. This may be an
excellent instrument for in situ powder diffraction studies. It is often possible to
build a heating system for capillary samples, and to incorporate a reaction cell
on the instrument. The higher energy of the molybdenum X-ray radiation
compared to copper radiation reduces the problems with absorption. The
collection of the entire Debye–Scherrer rings gives data with good statistics
using short exposure times. The readout time for most systems is short, making
it possible to obtain a good time resolution. However, the angular resolution of
powder diffraction data collected on a standard single-crystal diffractometer
with a divergent beam is not very good, resulting in diffraction patterns with
broad reflections. It is in most cases not possible to obtain reliable unit cell
parameters. Often, however, the phases involved are well known, and the poor
resolution is not a big obstacle. When following the development or transfor-
mation of phases, high intensity is often more important than good resolution.
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The time resolution obtainable using a laboratory source is in many cases
sufficient to follow chemical reactions and to study materials in a given
environment. Many chemical reactions and synthesis may take hours to com-
plete, and here good results may be obtained using the laboratory experiment.
In addition it is a valuable tool when preparing for synchrotron experiments.

15.2.1.3 Neutron Diffraction. The use of neutron diffraction for in situ
studies offers many advantages. The scattering power is not a function of the
atomic number, as neutrons scatter on the nuclei. Neutron scattering is sensi-
tive to some light atoms as hydrogen and deuterium, and neutron diffraction is
for instance very suitable for in situ studies of hydrogen storage materials. The
penetrating power of neutrons means that large samples may be used, and that
containers may be penetrated easily, when the container material is chosen
carefully. Vanadium is often used due to the low scattering cross section.
A reaction cell developed for in situ neutron powder diffraction studies
of hydrothermal reactions was constructed from a null scattering Ti-Zr alloy
(67.7 at.% Ti, 32.2 at.% Zr)7,8 (Figure 15.3). The null scattering refers to the
fact that the coherent scattering cross-section is zero due to the opposite signs

Figure 15.3 Schematic of the Oxford/ISIS hydrothermal reaction cell for recording
in situ neutron powder diffraction data.
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of the scattering factor for Ti and Zr, such that the resulting intensity for all
Bragg reflections from the autoclave material is zero.
The neutron flux from neutron sources is much lower than for X-ray sources,

and the interactions are weaker. The time resolution obtainable is therefore
lower than for X-ray sources, and efficient detectors (one- or two-dimensional)
and/or high-flux neutron sources (e.g. spallation sources) are necessary for
time-resolved studies.

15.2.1.4 Reaction Cells and Sample Setup. A great deal of ingenuity is being
displayed in developing setup and reaction cells for attacking specific materials
science problems using in situ powder diffraction. In situ studies are often
demanding, and many studies require development of a custom-made setup for
a single or a series of experiments. However, several more generally applicable
sample holders and reactors have been developed, which are versatile enough to
be used for many different experiments. Many of the in situ powder diffraction
studies, which have been performed previously, have been devoted to devel-
oping and refining techniques for studies of materials under various conditions.
This has created an experience basis, and the number and complexity of the
problems that may be investigated is expanding. The field has matured, and
now more and more studies result in new knowledge of the processes studied.
The development of the technique will continue, and significant emphasis will
be on combining experimental techniques, so that complementary information
may be extracted from a single experiment. A few examples of reaction cells are
given below.
Reactions between solids and gases are common in in situ powder diffraction

studies, whether studying catalysts under real or realistic conditions, oxidation/
reduction of solids, adsorption/desorption under controlled conditions or
synthesis involving gaseous species.
Several cells are available; the simplest is to use a generally available high-

temperature chamber where a solid is deposited on a platinum strip that is
heated by passing a current through it. The chamber is usually filled or flushed
with an inert gas, but the sample may be exposed to other atmospheres. The
method is limited to gases that do not attack the filament or the chamber. This
means, for example, that hydrogen at high temperature is not feasible, as it will
destroy the platinum strip. Likewise, care must be exercised when using very
oxidizing and corrosive gases. In this setup large temperature gradients exist,
and the conditions and concentrations experienced by the sample are not very
well defined.
Improved control over the reaction conditions may be obtained by using

flow-through cells, where temperature and concentration gradients are reduced.
Many reaction cells have been developed for both reflection and transmission
geometry.
Pioneering development of a capillary based micro reaction cell was pub-

lished by Clausen et al.,9,10 for studies of catalysts under real operating
conditions. The reaction cell was suited for both in situ EXAFS and transmis-
sion geometry powder diffraction studies (and was also used for combined
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XAS/XRD experiments). The reaction cell was based on standard quartz
glass capillaries mounted in Swagelok fittings using ferrules. This allows a
gas flow to be directed through the cell, making it possible to analyse the
exhaust gas to correlate observed changes to catalytic reactivity. Part of the
capillary is heated using a hot air blower or a resistance heater. This setup
makes it possible to use also aggressive or reducing gasses; the volume of gas is
very small and the gas is in contact only with the capillary and the sample at
high temperature. Furthermore, very good control over pressure and gas
composition is obtained. It is also possible to obtain a specific water vapour
pressure by moisturizing or by using a mass flow controller for liquids to
introduce controlled amounts of water into the gas stream. Standard quartz
glass capillaries (0.5 or 0.7mm o.d.) may withstand a pressure of up to 50–100
bar (depending on reaction conditions), making it possible to study even
medium-pressure catalytic reactions. The capillary walls are 0.01mm (10 mm)
thick, which makes absorption very low. If higher pressures are needed, the
reaction cell may be made of steel tubing, but then higher energy (and high
intensity) radiation must be used to penetrate the sample holder and obtain
diffraction patterns from the sample within. Recent developments in this setup
has been the use of single-crystal sapphire (corundum) tubes.11 These have a
larger wall thickness than the quartz glass capillaries, but allow higher pressures
to be used. These cells are suitable mainly for synchrotron based in situ powder
diffraction experiments.
Reaction cells for reflection geometry have been developed based on a setup

where gas is passed through a ceramic frit with the powder placed on top (e.g.
ref. 12 and Figure 15.4).
The X-ray radiation must be able to pass into the sample cell, and the cells

are often covered by a dome of a weakly scattering and absorbing materials
such as boron nitride, making it possible to control the flow and environment in
the cell. The pressure is limited due to the large surface area of the dome
enclosing the cell. By using a dome shaped enclosure, the reflected beam is
perpendicular to the enclosure wall at all scattering angles, reducing the
absorption and ensuring that the absorption is not angle dependent.
Reaction cells have been developed also for time-resolved studies of hydro-

thermal and solvothermal synthesis. In addition to obtaining kinetics informa-
tion on the crystallization of the materials, intermediate or transient phases
may be identified. To study crystallization involving liquids above its boiling
point, it is necessary to apply a pressure. Two approaches to studying hydro-
thermal and solvothermal reactions have been followed.
One type of micro-reaction cell has been developed based on the capillary cell

for studies of catalysts described above. Instead of using a flow-through cell, a
closed quartz glass capillary (e.g. 0.7mm o.d.) is filled with the reaction mixture
and mounted in a Swagelok fitting. A pressure of an inert gas (e.g. N2) is
applied to the surface of the reaction mixture, and a part of the capillary is
heated to the desired temperature (Figure 15.5).
When the applied pressure is higher than the vapour pressure of the reaction

mixture at the reaction temperature, hydrothermal or solvothermal conditions
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Figure 15.5 Schematic of a glass capillary (A) mounted on a goniometer head (B) with a
Swagelok T piece (C). A nitrogen pressure can be applied through the con
nected tubing (D). An expanded view of the capillary is shown on the left.13

Figure 15.4 Cutaway view of a high temperature cell fit on a Siemens D 500 gonio
meter. The image on the right (b) is a blow up of the sample chamber at
the centre of the furnace shown on the left (a).12
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are obtained.13,14 Figure 15.6 shows one example of time-resolved in situ
powder diffraction data obtained for hydrothermal conversion of a zeolite.
The quartz glass capillary cell can withstand pressures of up to at least 25 bar

(depending on the chemical environment; when using alkaline conditions at
high temperature the quartz glass is attacked and the capillary may break after
a short time). This means that hydrothermal reactions up to ca. 260 1C may be
studied. If higher temperature, and consequently higher pressure, is needed, a
steel tube and a hydraulic pressure may be used. This was, for example, used for
studies of high temperature hydrothermal reaction at temperatures above
350 1C and pressures of several hundred bar.15

One disadvantage of the capillary based system is the small volume com-
pared to laboratory synthesis, which may influence the crystallization mech-
anisms. In addition, only a small part of the capillary is heated, so care must be
taken to avoid convection effects due to thermal gradients. To minimize effects
from thermal gradients, the heated part of the capillary must be much larger
than the X-ray beam.
Another approach to studies of hydrothermal and solvothermal reactions is

to use energy dispersive diffraction. A normal size laboratory autoclave is used
with a thinning of a small part to allow X-rays to penetrate the wall.6 Collimated
slits are used to obtain diffraction from only a small volume element inside the
autoclave. Stirring is necessary to prevent sedimentation of the materials.

Figure 15.6 Three dimensional plot of powder diffraction profiles as a function of
time during the hydrothermal conversion of zeolite Li/Na LTA to zeolite
Li A(BW). The temperature was ramped to 200 1C in 5min and kept at
that temperature.13
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15.3 POWDER DIFFRACTION AT HIGH PRESSURE

15.3.1 Introduction

Pressure is a fundamental state variable like temperature or composition and is,
thus, a suitable means to modify the properties of solids. Its application induces
a continuous shortening of interatomic distances, within the stability ranges of
structural phases. Different types of chemical bonding will generally exhibit
dissimilar changes upon application of pressure, resulting in different com-
pressibility for covalent and metallic solids (Figure 15.7), for example.
Correspondingly, low-symmetry atomic or molecular arrangements comprising

different types of chemical bonds normally exhibit pronounced anisotropy of
the compressibility. Structural reorganizations due to pressure-induced phase
transitions are associated with discontinuous volume decreases and normally
increasing coordination numbers. These structural changes not only modify
the coordination environment in the crystal structure but frequently also the
electronic properties of the solid.
Since the 1990s the combination of diamond anvil cell (DAC) techniques

with imaging plate detectors has turned the investigation of compressibility and
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structural changes almost into a routine procedure. The accessible pressure
range amounts to about 50GPa with a standard laboratory sealed-source setup
and up to several hundred GPa at third-generation synchrotron sources when
specially designed pressure cells are used. Experiments exceeding 100GPa
frequently end with a destruction of the anvils made from diamonds. Temper-
atures between approximately 4K and several thousand K can be realized
with specially designed cryostat systems or heating devices (laser, electrical
resistance).
In the following sections we assume that the application of pressure is non-

directed, i.e. hydrostatic or quasi-hydrostatic (see below). The usual unit of
pressure is the Giga-Pascal GPa (1 Pa¼ 1Nm 2), but older literature often
refers to kbar (1 kbar¼ 0.1GPa).

15.3.2 The Diamond Anvil Cell

For pressure generation in X-ray diffraction and spectroscopy, the Diamond
Anvil Cell is the most versatile tool. Using diamond as the anvil material
combines the advantages of mechanical hardness and transparency for electro-
magnetic radiation.16

The principle of the DAC as a high-pressure tool for X-ray diffraction is
given below (Figure 15.8).
The diamonds have typical sizes of a few millimetres with masses of about 0.2

to 0.5 carat. During the initial development of DAC techniques, the tips of
brilliant-cut diamonds were removed so that culets with typical diameters
between 0.1 and 1mm resulted. Today, simplified shapes providing an
improved performance are used. The anvils are located on seats that transmit
the force from the cell body to the diamond tables. The supports are subject to
maximal forces of typically 10 kN and stresses of about 2GPa for customarily
sized diamonds. Thus, seats are often made from a hard material like tungsten
carbide, although steel or materials prepared from elements with a low atomic
number like beryllium or boron are also used. Within the holders, cylindrical or
conical holes provide optical access to anvil tips and sample. The diamonds are
frequently fixed with commercial epoxy glue onto the seats, but for certain
experiments, e.g., at high temperatures, metal rings machined from copper or
steel keep the anvils in place. The design of the support usually provides
possibilities for aligning orientation (parallel tables with minimized tilt) and
lateral position (congruent table location) of the diamonds.
Between the diamonds a metallic seal is positioned that is typically 0.2mm

thick. This metal foil is pre-indented to characteristically 40 mm by cold pressing
between the diamond anvils. The resulting shape is optimally fitted to the
diamonds and guarantees the required lateral support for the conical faces of
the diamonds in the regions close to the tips. To reach ultrahigh pressures
exceeding 100GPa (Figure 15.9), small culets o0.3mm are used and the outer
part of the diamond tip is beveled by at obtuse angle.
The seal is normally manufactured from metals like stainless steel or beryl-

lium, but hard metals like molybdenum, tungsten, scandium or rhenium have

451Powder Diffraction under Non-ambient Conditions



also been used, especially for reaching ultrahigh pressures. A hole drilled in the
centre serves as the high-pressure chamber for sample, pressure sensor and
medium. Centering of the hole with respect to the indented polygon is essential
for the stability under load. The volume not taken by the sample is filled with a
pressure medium that is usually a liquid. When force is applied by the parallel
oriented diamond tips, the gasket is deformed plastically and the pressure that
results from the reduction of volume is transferred to the sample by the
medium. To reach high pressures, stability of the hole diameter and position
upon compression is essential. It requires some experience to reach the maximal
possible pressure since the stability is dependent on the compressibility of
sample, pressure medium and gasket material, the size-ratio of hole and tips,
which must not exceed 1/3, the height of the cylindrical drilling (the thickness of
the gasket) and the friction coefficient between anvil faces and gasket. The
small tips of the diamonds (culets) have to be exactly aligned, i.e. oriented
absolutely parallel and positioned precisely on top of each other. Even small
misalignments can cause large shear forces and, thus, fatal failure of the anvils.
The force to produce the pressure may be generated by screws17,18 or gas

membranes19 and is transferred to the diamonds by the seats. The different

Figure 15.8 Details of a Diamond Anvil Cell. Top: Set up with supports. Bottom:
Inner part with diamonds and gasket.
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diamond anvil cell designs and the alignment procedures have been reviewed in
detail.20

15.3.3 Pressure Media

Within the cylindrical hole serving as a sample chamber, a suitable, normally
liquid, pressure transmitting medium is used to provide hydrostatic pressure
conditions. However, soft salts like CsCl with low shear strength have also been
employed in some experiments. One of the conditions for a suitable pressure
medium is that even under irradiation by X-rays it does not undergo chemical
reactions with the investigated sample.
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Figure 15.9 Diffraction diagrams of germanium in the megabar (100GPa) region
measured with synchrotron radiation. The intensity changes indicate a
structural phase transition from a primitive hexagonal arrangement into
an orthorhombic crystal structure.44
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Upon pressure increase, liquid media tend to solidify and the samples are
subject to some directed pressure components, i.e. stress and strain. This
compression condition is often labelled as quasi-hydrostatic. The frequently
used mixture methanol/ethanol in a ratio of 1 : 4 undergoes a transition into a
glass at approximately 10GPa.21 The solidified mixture may exhibit pressure
gradients of up to 15% in typically-sized gasket holes at a pressure around
50GPa.22 The radial pressure distribution in a DAC at even higher pressures is
a serious issue that has been investigated experimentally.23 If the positions of
pressure sensor and X-ray beam differ significantly, the pressure differences due
to the gradient cause a systematic error of the measurement. Pronounced
pressure inhomogeneity can cause a destruction of sample crystals and a severe
profile broadening in X-ray powder diffraction diagrams. These problems can
be lessened by using nitrogen or noble gases as pressure transmitting media.
Although they also solidify at high pressures, their low shear strength impedes
the transmission of significant strain forces so that they represent widely
accepted pressure media.24,25 Especially, helium is well suited with respect to
its quasi-hydrostatic behaviour (even at low temperatures), but the procedures
to load the noble gas into the sample chamber are technically demanding. They
involve either liquefaction by cooling down to 4K or pressurizing to approxi-
mately 0.2GPa.

15.3.4 Diffraction Measurements

The design of the pressure cell means that the X-ray beam penetrates those
parts that are machined from materials with low atomic number like beryllium
or diamond. However, for molybdenum Ka radiation between 50% and 90%
of the primary intensity are absorbed. The exact amount depends on the design
of the pressure cell and especially the size of the diamonds. Furthermore, the
accessible scattering angle is limited by the highly absorbing parts of the
pressure device, which are manufactured from steel or tungsten carbide. This
shading at high scattering angles can be compensated by using hard X-rays.
The utilization of short wavelengths enables measurements of diffraction lines
down to small d-values (Figure 15.10).
Synchrotron sources combine the advantages of tunable wavelength with

high-brilliance and low-divergence so that diffraction images with superb
resolution and signal-to-noise ratio can be recorded. Moreover, typical beam
diameters of 30 mm or even less permit one to measure just the area close to the
centre of the diamond anvil cell where pressure gradients are small. The result is
a well-resolved diffraction pattern with significantly smaller line-widths than
those of sealed-source measurements. However, the small beam diameter may
cause the problem of a poor powder average, i.e. there are not a sufficient
number of crystallites fulfilling the reflection condition to guarantee a random
distribution of orientation. Thus, synchrotron diffraction experiments require a
reduction of the average powder particle size well below 10 mm and oscillation
of the diamond anvil cell during the measurement by typically �31. In com-
bination with modern 2D detectors, most samples can be prepared with a
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quality that is sufficient for measuring diffraction patterns suitable for least-
squares refinements using full diffraction profiles (Figure 15.11).
The introduction of two-dimensional imaging plates as X-ray detectors has

considerably reduced the problems associated with missing powder average.
Additionally, the gain in sensitivity and the recording of complete diffraction
rings, or large parts thereof, has significantly improved the realized signal-
to-noise ratio in powder diffraction experiments. For data analysis, the
2D images are converted into conventional one-dimensional (intensity versus
diffraction angle) data by azimuthal integration of the intensities.26 Today, even
elements with low scattering power like hydrogen or lithium can be measured
using area detectors in combination with third-generation synchrotron sources
(Figure 15.12).
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Figure 15.10 Diffraction diagrams of a high pressure modification of bismuth. The
lower diagram shows diffraction data recorded with a conventional
sealed source, the upper one data measured with synchrotron radiation
(unpublished results).
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Single-crystal measurements at high pressures are complicated by the high
refractive index of diamond, which hampers the procedure of optical sample
centering. Additionally, the mechanical set-up of diamond anvil cells constrains
the optical access to certain directions. Thus, a preliminary orientation matrix
is determined by measuring the exact positions of symmetry equivalent reflec-
tions. The exact position of the single crystal and the required translation for an
alignment in the center is calculated from these data.27 After an adjustment, the
procedure is repeated several times so that a centering is achieved by an
iterative procedure.
The limits of the accessible scattering angles cause a shading of parts of the

Ewald sphere in high-pressure experiments. When the geometry of the set-up is
exactly known, the shaded areas can be calculated and reflections located in
these regions are either excluded from the measurement or removed in the
process of data reduction. Finally, the absorption effects of diamond and
beryllium have to be taken into account. A solution for the generally complex
absorption problem is the use of backing plates with a large conical opening
and diamonds with an almost spherical shape so that the absorption becomes
direction independent.28

Crystals with high symmetry allow for a collection of complete data sets
within the accessible angle range in many cases. For compounds with low
symmetry, the crystal can be re-oriented and re-measured after the first
data collection. Since this process is in many cases fatal for the investigated
specimen, it is often preferred to perform the least-squares refinements with a
smaller number of reflections and, correspondingly, a reduced number of
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Figure 15.11 Structure refinement using full diffraction profiles of a tetragonal high
pressure modification of caesium (unpublished results).
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parameters, by using an isotropic description of the atomic displacement
and by further constraining of parameters. To record diffraction data in an
acceptable time, large crystals are preferred. However, the specimen cannot
be larger than half the size of the pressure chamber since the available volume
may be significantly reduced upon application of force and a squeezing of the
sample by the diamonds or the metallic gasket results in destruction of the
crystal.

15.3.5 Pressure Measurement

In situ pressure measurements within the diamond anvil cell are performed by
means of calibration substances that are embedded in the pressure chamber
together with the sample and the transmitting medium. Frequently used
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Figure 15.12 Diffraction diagram of lithium measured at high pressures and low
temperatures. The upper diagram shows the raw data after integration
of a 2D imaging plate pattern, the lower intensities result after back
ground correction. The background is attributed to the Compton
scattering of the diamonds.
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techniques are the laser induced luminescence of a ruby crystal.29,30 The
wavelength of the emission maximum is strongly pressure dependent and even
with small crystals the signal is intense enough to be recorded with a standard
optical spectrometer (Figure 15.13).
Also the pressure-dependent wavelength of the fluorescence maximum of a

samarium-doped borate has been calibrated. The compound has the advantage
of allowing for more precise determinations at very high pressures (above
approximately 100GPa) and it was demonstrated that, in contrast to ruby, the
line position exhibits only a negligible temperature dependence.31

Another method for pressure calibration is to add a powdered salt32 or
metal33 for which the equation of state has been determined precisely. In these
experiments, the diffraction lines of the calibrant have to be measured simul-
taneously with the sample. The observed line positions are used to calculate
lattice parameters by application of least-squares refinements and, thus, exper-
imental volumes are determined that can be used to calculate the pressure by
employing a calibrated equation of state. At extremely high-pressures, micro-
crystalline powder of metals like tantalum34 may be used. A disadvantage of
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Figure 15.13 Luminescence spectra of ruby chips irradiated with the blue 488 nm line
of an argon ion laser. The double line structure shifts with pressure in
the direction of increasing wavelength by 2.74GPa nm–1 (ref. 30). The
broadening visible in the measurement performed at 11GPa is attri
buted to pressure inhomogeneity and strain in the employed pressure
medium paraffin.
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this type of pressure measurement is that the diffraction lines of the calibrant
may overlap the intensity data of the sample.

15.3.6 Thermodynamic Considerations

Diffraction experiments at high pressures provide information concerning the
compression-induced changes of lattice parameters and, thus, sample volume.
In pure phases of constant chemical composition and in the absence of external
fields, the thermodynamic parameters volume V, temperature T and pressure P
are related by equations of state, i.e. each value of a state variable can be
defined as a function of the other two parameters. Some macroscopic quantities
are partial differentials of these equations of state, e.g. the frequently used
isothermal bulk modulus B0 of a phase at a defined temperature and zero
pressure B0¼�V0 (@P/@V) for T¼ constant and P¼ 0, with the reciprocal of
B0(V) being the isothermal compressibility k. Equations of state can also be
formulated as derivatives of thermodynamic functions like the internal energy
U or the Helmholtz free-energy F. However, for practical use the macroscopic
properties of solids are often described by means of semi-empirical equations,
some of which will be discussed in more detail.
For small volume changes, the bulk modulus can be expanded as a power

series of the pressure at P¼ 0:

BðPÞ ¼ �VðdP=dVÞ ¼ B0 þ B 0
0Pþ . . . ð1Þ

with : B0 ¼ �Vð@P=@VÞ at V ¼ V0 ð2Þ

and : B0
0P ¼ ð@B=@PÞ at P ¼ 0 ð3Þ

B0
0 describes the pressure-dependent change of the isothermal bulk modulus

B0, i.e. the stiffening of a material upon application of pressure. If only the
first two terms of the expansion series are taken into consideration, integration
for constant temperature leads to the well-known Murnaghan equation of
state:35

PðVÞ ¼ ðB0=B
0
0Þ � ½ðV0=VÞB0

0 � 1� ð4Þ

Solving the equation for P results in the frequently-used inverse Murnaghan
equation:

VðPÞ ¼ V0½1þ PðB0
0=B0Þ� 1=B0

0 ð5Þ

An independent approach for the derivation of the relation between pressure
and volume was developed by Birch. Under the assumption of isotropic
deformation the strain tensor eij can be treated as a scalar quantity e.36 Then,
the Helmholtz free energy is expanded as a power series of this isostatic strain e
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and the relation between elastic deformation and volume:

V0=V ¼ ð1� 2eÞ3=2 ð6Þ

is taken into account. Differentiation of the first three terms of the sum for V
leads under the assumption of constant temperature to the Birch equation:

PðVÞ ¼3=2B0½ðV0=VÞ7=3 � ðV0=VÞ5=3�f1� 3=4ð4� B0
0Þ

� ½ðV0=VÞ2=3 � 1�g
ð7Þ

It can be shown that for DV0/V0 - 0 Murnaghan- and Birch-type equations
of state are equivalent.
In an alternative microscopic model,37 42 a universal relation between binding

energy and interatomic distance is presumed. The validity of this assumption
was demonstrated for interfaces between metals, gases absorbed on metals and
finally pure metals. The interdependence of binding energy E(a) and distance a
can be decomposed into a product of a function E*(a*) and the cohesion energy
E0 at equilibrium distance a0:

EðaÞ ¼ E0E
�ða�Þ ð8Þ

a� ¼ ða� a0Þ=L ð9Þ

The adjustment of the universal function E(a*) is realized by a determination
of a scaling length L. For covalent solids, the same type of relation between
binding energy and bond length holds whereas the potentials for Coulomb and
van der Waals interactions are different for increasing interatomic distances.
However, for decreasing volumes the overlap of wave functions dominates the
pressure–volume relation for all types of bonding, thus causing a universal
behaviour concerning the compression of solids. The pressure P can be calcu-
lated as a derivative of the cohesion energy function with respect to the volume:

PðVÞ ¼ �ðE0=4pr2Þð1=LÞE� 0ða�Þ ð10Þ

After introducing a function for the force and using Hook’s law, application
of a scaling procedure results in a universal function that can be simplified into
a pressure–volume relation:

P ¼ 3B0ðV=V0Þ2=3½1� ðV=V0Þ1=3 � eZ� ð11Þ

with:

Z ¼ 1:5ðB0
0 � 1Þ � ½1� ðV=V0Þ1=3� ð12Þ

A discussion of a large number of equations of state and various theoretical
as well as experimental aspects can be found in an earlier review.43

For reversible phase transitions in thermodynamic equilibrium conditions,
the relation between Gibb’s free energy G, internal energy U, temperature T,
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entropy S, volume V and pressure P is given by the expression:

DG ¼ DU � TDS þ PDV ¼ 0 ð13Þ

or:

DU ¼ TDS � PDV ð14Þ

Temperature-induced phase transitions are typically associated with small
volume changes so that the change of the internal energy is dominated by the
entropy term TDS. For pressure-induced phase transitions with volume
changes of the order of 10%, the PDV term dominates and the entropy term
can be neglected at room temperature. The corresponding work DW is defined
as:

DW ¼ �
Z

P @V at T ¼ constant ð15Þ

and amounts to approximately 1% of the Madelung part of the lattice energy
for typical ionic crystals such as ZnS.
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CHAPTER 16

Local Structure from Total Scattering
and Atomic Pair Distribution Function
(PDF) Analysis

SIMON BILLINGE

Department of Physics and Astronomy, 4268 Biomedical Phys. Sciences
Building, Michigan State University, East Lansing, MI 48824, USA

16.1 INTRODUCTION

Increasingly, the materials that are under study for their interesting techno-
logical or scientific properties are highly complex. They are made of multiple
elements, have large unit cells and often low dimensional or incommensurate
structures.1 Increasingly also, they have aperiodic disorder: some aspect of the
structure that is different from the average crystal structure. In the case of
nanoparticles the very concept of a crystal is invalid as the approximation of
infinite periodicity is no longer a good one. Still we would like to study the
structure of these materials. Powder diffraction is an important method for
characterizing these materials, but we have to go beyond the Bragg equation
and crystallographic analysis.
The ‘‘total scattering’’ approach treats both the Bragg and diffuse scattering

on an equal basis.2 Powder diffraction data are measured in much the same way
as in a regular powder measurement. However, explicit corrections are made
for extrinsic contributions to the background intensity from such things as
Compton scattering, fluorescence, scattering from the sample holder, and so
on, and the measured intensity is normalized by the incident flux. The resulting
coherent scattered intensity, I(Q), is a continuous function of Q, the magnitude
of the scattering vector, where:

Q ¼ Qj j ¼ 2k sin y ¼ 4p sin y
l
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Sharp intensities are observed where there are Bragg peaks with broad features,
the diffuse scattering, in between. In general we like to work with a normalized
version of this scattering intensity, S(Q), that is in absolute units of scattering-
per-atom.2 To obtain this we divide I(Q) by the number of scatterers, N, and
the average scattering power per atom. In the case of X-rays the average
scattering per atom is given by the square of the atomic form factor, f(Q), and
in the case of neutrons it is the coherent scattering cross-section. If more than
one type of atom (or in the case of neutrons, more than one isotope) is present,
an additional incoherent scattering term (the Laue monotonic diffuse scattering)
must also be subtracted. The resulting S(Q) is known as the ‘‘total-scattering
structure function’’. It is a dimensionless quantity and the normalization is such
that the average value, hS(Q)i¼ 1. Here the angle brackets indicate an average
over Q. Despite the tricky definition, it is worth remembering that S(Q) is
nothing other than the powder diffraction pattern that has been corrected for
experimental artifacts and suitably normalized. There is no reason why one
could not carry out a Rietveld refinement directly on S(Q), though in practice
this is never done as there is little point in making all the explicit corrections
that are accounted for with parameterized equations in the Rietveld refinement
code. This may change in the future as computing power increases and we push
towards solving problems of greater complexity. An example of S(Q) is shown
in Figure 16.1.
In practice, the S(Q) determined for total scattering studies is measured over a

wide range of Q-values. The coherent intensity (the features) in S(Q) dies out
with increasing Q due to the Debye–Waller factor, which comes from thermal
and quantum zero-point motion of the atoms as well as any static displacive
disorder in the material. By a Q-value of 30–50 Å 1 (depending on temperature
and stiffness of the bonding) there are no more features in S(Q) and there is no
need to measure to higher-Q. Still, this is much higher than conventional powder
diffraction experiments using laboratory X-rays or reactor neutrons. The max-
imumQ attainable in back-scattering from a copper Ka tube is around 8 Å 1 and
from aMo Ka tube, 16 Å

1. Routine total-scattering measurements can be made
using laboratory sources with Mo or Ag tubes; however, for the highest real-
space resolution, and the best statistics, synchrotron data are preferred. In the
case of neutron scattering, spallation neutron sources, which have large fluxes of
short-wavelength epithermal neutrons, are ideal for this type of experiment.
Total scattering S(Q) functions appear different to standard powder diffrac-

tion measurements because of the Q-range studied, but also because of an
important aspect of the normalization: the measured intensity is divided by the
total scattering cross-section of the sample. For neutrons, this scattering cross-
section is simply hbi2, where b is the coherent neutron scattering length of the
atoms of the material in units of barns. The angle brackets denote an average
over the different types of nuclei (chemical and isotopic variants) in the sample.
This will be discussed in greater detail later. The scattering length, b, is constant
as a function of Q and so is just part of the overall normalization coefficient.
However, in the case of X-ray scattering, the sample scattering cross-section is
the square of the atomic form-factor, hf(Q)i2, which becomes very small at
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high-Q. Thus, during the normalization process the data at high-Q are ampli-
fied (by being divided by a small number). This has the effect that even rather
weak intensities at high-Q, which are totally neglected in a conventional
analysis of the data, become rather important in a total-scattering experiment.
Because the signal at high-Q is weak it is important to collect the data in that
region with good statistics and so one runs into the somewhat paradoxical
situation that a large amount of counting time can be devoted to measuring
rather flat and relatively featureless data in the high-Q region, to the surprise of
colleagues visiting the beamline or laboratory. This is illustrated in Figure 16.2.
Thus, the value added of a total scattering experiment over a conventional

powder diffraction analysis is both in the inclusion of diffuse scattering and
Bragg peak intensities in the analysis, and also the wide range of Q over which
data are measured and the increased weighting given to the high-Q

Figure 16.1 Examples of reduced S(Q) functions (Q[S(Q) 1]) from semiconductor
alloy samples from the system InxGa1� x As. Data were measured
using X rays at the CHESS synchrotron source at Cornell University
in New York. (Reprinted with permission from ref. 4,r 2001, American
Physical Society.)
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Figure 16.2 Comparison of raw data and normalized reduced total scattering struc
ture function F(Q)¼Q[S(Q) 1]. The sample is a charge density wave
organic and the data are X ray data from CHESS synchrotron source.
The raw data are shown in the top panel, on expanded scales in the insets.
The high Q data in the region 20oQo 45 is smooth and featureless.
However, after normalizing and dividing by the square of the atomic
form factor, important diffuse scattering is evident in this region of the
diffraction pattern (lower panel).2
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information. In fact, the total scattering name comes from the fact that all the
coherent scattering in all of Q-space is measured.
Total scattering data can be analyzed by fitting models directly in reciprocal-

space [i.e., the S(Q) function is fit]. However, an alternative and intuitive
approach is to Fourier transform the data to real-space to obtain the atomic
pair distribution function (PDF), which is then fit in real-space. The reduced
pair distribution function, G(r), is related to S(Q) through a sine Fourier
transform according to:

GðrÞ ¼ 2

p

ZN
0

Q½SðQÞ � 1� sinðQrÞdQ ð1Þ

Figure 16.3 shows examples of G(r) functions. These were obtained from the
same data as shown in Figure 16.1.
The PDF is a probability distribution function in real-space. It is a measure

of the probability of finding pairs of atoms in the material separated by a

Figure 16.3 G(r) functions obtained from the structure functions in Figure 16.1 for
the semiconductor alloy InxGa1� xAs. (Reprinted with permission from
ref. 4, r 2001, American Physical Society.)

468 Chapter 16



distance, r. Peaks in the function coincide with a high probability and the
function returns to its baseline if there is zero probability of finding atoms
separated by that distance. There are a whole family of distribution functions
that are used in different circumstances, all with subtly different definitions and
normalizations (and units),2,3 but they all contain the same information: the
probability of finding atoms at separation r.
To find our way around this function we can consider Figure 16.3. There are

no peaks (other than low-r measurement artifacts) below the nearest neighbor
peak atB2.5 Å,4 which is the Ga–As separation in GaAs and at slightly larger-
r for the In–As separation in InAs. This is because atoms cannot approach each
other closer than this nearest neighbor separation and there is, therefore, a zero
probability of finding two atoms separated by that distance. There is a high
probability of finding atoms at exactly the nearest neighbor distance of B2.5 Å
as they are bonded to each other precisely at that distance, then a zero
probability of finding atoms at any other distance until we find the second-
neighbor coordination shell at around 3.5 Å, then the third neighbor coordi-
nation shell at 4.5 Å and so on. This pattern is characteristic of a crystalline
material, with sharp, well-defined coordination shells whose position is deter-
mined by the crystal structure. Fitting these peaks therefore allows us to learn
about the crystal structure. In more disordered materials, such as liquids and
amorphous materials, the second and third neighbor shells become broad and
the features in the PDF smear out rapidly with increasing r.
In crystals, in addition to the nearest-neighbor information, valuable struc-

tural information is contained in the pair-correlations extending to much
higher values of r. In fact, with high Q-space resolution data, PDFs can be
measured out to tens to hundreds of nanometres (hundreds to thousands of
angstroms) and the structural information remains quantitatively reliable
(Figure 16.4).5

As we discuss later, PDFs can be fit using structural models, allowing us to
extract quantitative structural information about the local and intermediate

Figure 16.4 PDF shown extending out to high r. The PDF is from Zn4Sb3 taken at
two different temperatures as shown. See ref. 5 for details. The range of
the data is limited only by the resolution of the measurement. The high
resolution neutron data were collected at the NPDF instrument at Los
Alamos National Laboratory Higher resolutions, and, therefore, wider
ranges of r for the PDF are possible at X ray synchrotron sources.
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range structure. Recently, ab initio structure determination from the PDF has
also been demonstrated for a nanoparticle.6

What do we gain scientifically from taking this approach? We will discuss
this in more detail below, but the diffuse scattering gives information about
local distortions to the structure that are not periodic. One can think of
crystallography as giving the average, or mean-field, structural solution. In
physics, the mean-field approximation in a model neglects fluctuations. Going
beyond the mean-field means exploring local fluctuations that are sometimes
important, e.g., near a second-order phase transition. This may also be the case
structurally where local deviations from the average structure can give rise to
important properties in the material (an example is the insulating phase of
colossal magnetoresistant manganites7). A second important asset of this
approach is that Bragg and diffuse intensity is treated in an unbiased way,
which means that samples that contain both Bragg and diffuse intensities, or
features that are half way between Bragg and diffuse scattering such as from
nanoparticles, can be treated straightforwardly.
There are now many classes of problems that have been studied using total

scattering analysis. Traditionally it was used for liquids and amorphous mate-
rials,12,13 more recently for the study of disorder in crystalline materials, and now
with increasing popularity it is used to study nanostructured materials. Several
recent reviews2,8,9 give examples of modern applications of the PDF method.

16.2 THEORY

16.2.1 Single Component Systems

16.2.1.1 The PDF is an Experimentally Measurable Function. The basis of
the total scattering method is the normalized, measured, scattering intensity
from a sample: the total scattering structure function, S(Q).2,10,11 The wave-
vector, Q, is a vector quantity and in general the intensity variation, S(Q), will
depend on which direction one looks in Q-space. However, when the sample is
isotropic, for example, a powder, it depends only on the magnitude of Q and
not its direction. The greatest utility of the technique to date has been to study
the isotropic scattering from powdered, liquid or glassy samples. In this case,
the scattered intensity from a sample is given by the Debye Equation:14

IcohðQÞ ¼
X
m;n

fmðQÞf �n ðQÞ sinQr

Qr
ð2Þ

where each of the sums runs over all scattering centers in the sample. This equa-
tion is obtained from an orientational average of the standard scattering equation:

IcohðQÞ ¼
X
m;n

fmðQÞf �n ðQÞeQ:ðrm rnÞ ð3Þ

Here rm is the position vector of the mth atom, and again each of the sums run
over every atom in the solid.
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Finally, S(Q) can be written in terms of the coherent scattering intensity from
Equation (2) as:

SðQÞ ¼ 1

N f ðQÞh i2
IcohðQÞ þ f ðQÞh i2� f 2ðQÞ

� �h i
ð4Þ

The angle brackets denote an average over atom types (and isotopes in the case
of neutrons). In the most general case, close to an absorption edge, the X-ray
scattering factors, f, are complex [see Equation (30) below] and for complete-
ness we reproduce these averages explicitly here:

f ðQÞh i2¼
X
ab

cacb ð faðQÞ þ f 0aÞð fbðQÞ þ f 0bÞ þ f 00a f
00
b

h i
ð5Þ

and:

f 2ðQÞ
� �

¼
X
ab

c2a faðQÞ þ f 0a
� �2þ f 00a

� �2h i
ð6Þ

It is readily seen that for a single element system hf(Q)i2¼hf2(Q)i and:

SðQÞ ¼ IcohðQÞ
N f ðQÞh i2

The other terms account for an incoherent elastic background that comes about
because of the different scattering length of atoms on different sites.
Similarly, the Fourier transform of the scattered intensity in the form of S(Q),

yields the reduced atomic pair distribution function,G(r), defined by Equation (1).
This is strictly correct when the sample is made of a single element. We will discuss
later an approximate extension, which works excellently in practice, to the more
interesting case of multiple elements.
The inverse transformation of Equation (1) can be defined and it yields the

structure function S(Q) in terms of G(r):

SðQÞ ¼ 1þ 1

Q

ZN
0

GðrÞ sinðQrÞ dr ð7Þ

There are several similar correlation functions related to G(r) by multiplicative
and additive constants. They contain the same structural information but are
subtly different in some detail. Their interrelationship has been discussed in detail
in the literature.3 G(r) is the function obtained directly from the Fourier trans-
form of the scattered data. The function oscillates around zero and asymptotes to
zero at high-r. It also tends to zero at r¼ 0 with the slope �4pr0, where r0 is the
average number density of the material. From a practical point of view G(r) is an
attractive function because the random uncertainties on the data (propagated
from the measurement) are constant in r. This means that fluctuations in the
difference between a calculated and measured G(r) curve have the same signif-
icance at all values of r. Thus, for example, if the observed fluctuations in the
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difference curve decrease with increasing r, this implies that the model is
providing a better fit at longer distances (perhaps it is a model of the average
crystallographic structure). This inference cannot be made directly from a
difference curve to other differently normalized functions [such as r(r) or g(r)
(ref. 2)]. A further advantage of the G(r) function is that the amplitude of the
oscillations gives a direct measure of the structural coherence of the sample. In a
crystal with perfect structural coherence, oscillations in G(r) extend to infinity
with a constant peak–peak amplitude.15 In a real measurement, the G(r) peak–
peak amplitude of the signal gradually falls off due to the finite Q-resolution of
the measurement, which is then the limitation on the spatial coherence of the
measurement rather than the structural coherence itself. A higher Q-resolution
results in data extending over a wider range of r. In samples with some degree of
structural disorder, the signal amplitude in G(r) falls off faster than dictated by
theQ-resolution and this becomes a useful measure of the structural coherence of
the sample. For example, it can be used to measure the diameter of nanoparticles.
Another function often denoted g(r) is called the pair distribution function.

It is normalized so that, as r-N, g(r)- 1 and has the property that for
r shorter than the distance of closest approach of pairs of atoms g(r) becomes
zero. It is closely related to the pair density function, r(r)¼ r0g(r). Clearly, r(r)
oscillates about, and then asymptotes to, the average number density of the
material, r0 at high-r and becomes zero as r- 0. The relationship between
these correlation functions is given by:

GðrÞ ¼ 4prðrðrÞ � r0Þ ¼ 4pr0rðgðrÞ � 1Þ ð8Þ

Finally, we describe the radial distribution function (RDF), R(r) given by:

RðrÞ ¼ 4pr2rðrÞ ð9Þ

which is related to G(r) by:

GðrÞ ¼ RðrÞ
r

� 4prr0 ð10Þ

The R(r) function is important because it is the most closely related to the
physical structure since R(r)dr gives the number of atoms in a spherical shell of
thickness dr at distance r from another atom. For example, the coordination
number, or the number of neighbors, NC, is given by:

NC ¼
Zr2
r1

RðrÞdr ð11Þ

where r1 and r2 define the beginning and ending positions of the RDF peak
corresponding to the coordination shell in question.

16.2.1.2 The PDF is a Structurally Determined Function. This suggests a
scheme for calculating PDFs from atomic models. Consider a model consisting
of a large number of atoms situated at positions rn with respect to some origin.
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Expressed mathematically, this amounts to a series of delta functions, d(r� rn).
The RDF is then given as:

RðrÞ ¼ 1

N

X
n

X
m

dðr� rnmÞ ð12Þ

where rnm¼ |rn� rm| is the magnitude of the separation of the n-th and m-th
atoms and the double sum runs twice over all atoms in the sample. Later we
address explicitly samples with more than one type of atom, but for complete-
ness we give here the expression for R(r) in this case:

RðrÞ ¼ 1

N

X
n

X
m

bnbm

bh i2
dðr� rnmÞ ð13Þ

where the b’s are the Q-independent coherent scattering lengths for the nth and
mth atoms and hbi is the sample average scattering length. In the case of X-rays
the b’s are replaced with atomic number, Z.
The specification of R(r) given in Equation (12) has the required property

that if we integrate R(r)dr over some range, for example the near-neighbor
coordination shell, we get the average number of atom neighbors in that range
(i.e., the coordination number), since the integral of a delta-function is unity
and there is one delta-function for each atom-pair.

16.2.2 Multicomponent Systems

For a single element sample the properly normalized R(r) gives directly the
coordination number through Equation (11). For multi-element systems we have
defined R(r) according to Equation (13). If this is substituted into Equation (11)
we do not get the coordination number directly, but a coordination weighted by
the scattering lengths of the atoms involved. If we know the atomic species
involved we can extract the coordination, but not otherwise. Also, we could have
chosen a different weighting scheme. The one used is by far the most common and
is due to Faber and Ziman.16 We define a partial pair distribution function, Gab(r),
that is equivalent to G(r) but gives the distribution of atom pairs in the material
coming only from atoms of type b around atoms of type a.17 The totalG(r) is then
simply the properly weighted sum, over the atom types a, of all the partials.
There is an equivalent relationship between the partial structure functions,

Sab(Q) and the total structure function, S(Q). In the Faber–Ziman scheme, the
weighting is chosen such that each partial structure factor, Sab(Q), has the same
property of the total structure factor that as Q-N, Sab(Q)¼ 1. This means
that we can define the Fourier couple between Sab(Q) and Gab(r) in the same
way as for the total structure function, i.e.:

GabðrÞ ¼
2

p

ZN
0

Q½SabðQÞ � 1� sinðQrÞdQ ð14Þ
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The price we pay for this convenience is that the total functions, S(Q) and G(r),
are not simply the sum of the partials, but weighted sums:

SðQÞ ¼
X
a

X
b

cacbbabb

bh i2
SabðQÞ

GðrÞ ¼
X
ab

cacbbabb

bh i2
GabðrÞ;

ð15Þ

where bh i ¼
P

a caba and ca is the atomic fraction of species a in the sample. In
this case we get the partial radial distribution function:

RabðrÞ ¼
1

N

P
a
caba

� �2

cacbbabb

X
n2fag

X
m2fbg

d r� rnm
� �

ð16Þ

and:

GabðrÞ ¼

P
a
caba

� �2

cacbbabb

1

Nr

X
n2fag

X
m2fbg

d r� rnm
� �

� 4prr0 ð17Þ

the number of b atoms around an a atom is given by Nab
C from which we get:

NC ¼
X cacbbabb

bh i2
Nab

C ðrÞ ð18Þ

A problem arises in the case of X-rays because the X-ray equivalent of the
scattering length, b, is the Q-dependent scattering factor, f(Q). Having this
factor Q-dependent breaks the simple Fourier couple in Equation (1), an
approximation, since the structure function is given by:

SðQÞ ¼
X
ab

cacbfaðQÞf �b ðQÞ
f ðQÞh i2

SabðQÞ ð19Þ

where the asterisk denotes the complex conjugate and the weighting factor:

wabðQÞ ¼
cacbfaðQÞf �b ðQÞ

f ðQÞh i2

is Q-dependent. In this case the total PDF is not exactly the weighted sum of par-
tial PDFs. It can be made to approximate this situation by separating the absolute
value of f(Q) and its Q-dependence: the so-called Morningstar–Warren approx-
imation.18 The Q-dependence of the average form factor is found according to:

�f ðQÞ ¼

P
a
cafaðQÞP

a
cafað0Þ

ð20Þ
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and the approximation is then made that faðQÞ ¼ Za
�f ðQÞ, where Za is the atomic

number of the a-th element, which is approximately equal to fa(0). Now the
weighting factors, wab, are then roughlyQ-independent. Although this appears to
be a somewhat poor approximation, the success with which multiple element X-
ray PDFs from multicomponent systems can be fit by structural models suggests
that it is valid.
Other weighting schemes are possible, e.g., the Bathia and Thornton scheme

that is sometimes used in binary systems. Interested readers are referred to
other sources for details.2,10

A normal total-scattering powder diffraction measurement measures the
chemically unresolved total-PDF. Chemically resolved information can be
recovered through modeling and this is done routinely with profile-fitting
programs such as PDFfit.19 However, for complex materials, sometimes it is
desirable to recover chemically resolved information directly to help in the
analysis. This information is available on a very local scale in complementary
measurements such as extended X-ray absorption fine structure (EXAFS).20 It
is also possible to determine chemically resolved information in a PDF meas-
urement. This is done using differential methods.17 Two measurements are
made that are identical except that the scattering power of one of the chemical
constituents changes. By taking a difference between these two measurements
the differential PDF can be recovered that gives the structural environment
around the target chemical species. In terms of the partial PDFs defined above,
the differential PDF (DPDF), Ga, is:

GaðrÞ ¼
X
b

cbbb

bh i GabðrÞ ð21Þ

In terms of DPDFs the total PDF is given by:

GðrÞ ¼
X
a

caba

bh i GaðrÞ ð22Þ

The DPDF is related to the differential structure function (DSF):

SaðQÞ ¼
X
b

cbbb

bh i SabðQÞ ð23Þ

through the Fourier-transformation:

GaðrÞ ¼
2

p

ZN
0

Q½SaðQÞ � 1� sinðQrÞdQ ð24Þ

Similarly, the DSF is related to the total structure function by:

SðQÞ ¼
X
a

caba

bh i SaðQÞ ð25Þ
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In principal, the partial PDFs can be determined by taking second and higher
order differences. For an n-element compound there are n(n+1)/2 partials
and therefore n(n+1)/2 independent measurements of the same sample
are required to determine the full set of partials. For example, for a binary
n¼ 2 and 3 therefore independent data-sets are required to recover the three
partials.
Experimentally, the differential PDF can be determined using isotopic sub-

stitution in the case of neutrons, and using anomalous X-ray scattering in the
X-ray case. The neutron case is the more straightforward. Different isotopes of
an element are chemically identical but have different scattering powers for
neutrons. Thus, two identical samples can be synthesized using different
isotopes (or different levels of isotopic enrichment) of a particular element. If
we define the scattering from the sample with isotope 1 of species a with
scattering length ba1 we get:

S1ðQÞ ¼ 1

b1h i2
caba1ð Þ2SaaðQÞ þ 2caba1

X
b 6¼a

cbbbSabðQÞ þ
X
bg 6¼a

cbcgbbbgSbgðQÞ
" #

ð26Þ

with:

b1h i ¼ caba1 þ
X
b 6¼a

cbbb ð27Þ

The difference in the intensity, DI, between two experiments carried out with
isotopes 1 and 2 of element a is:

DIðQÞ ¼ b1h i2S1ðQÞ � b2h i2S2ðQÞ ð28Þ

which after, substituting in Equation (26) and simplifying, gives:

DIðQÞ ¼ 2ca ba1 � ba2ð ÞSaðQÞ ð29Þ

The difference in intensity, therefore, directly yields the differential structure
function, Sa(Q), and by Fourier transformation the DPDF.
This method is more commonly applied in measurements of glasses and

liquids but can be equally well applied to complex crystals or nanocrystals. The
principle problem with this approach is the cost and availability of suitable
isotopes and the effort required in synthesizing multiple samples. A poor man’s
version is the chemical substitution method in which an element is replaced by
another element with very similar chemical nature and different scattering
length.
In the X-ray anomalous scattering method21 we make use of the fact that the

scattering length of an element changes appreciably near an absorption reso-
nance and is given by:

f ðQ;EÞ ¼ f0ðQÞ þ f 0ðEÞ þ if 00ðEÞ ð30Þ
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f 0(E) and f 00(E) are the real and imaginary parts of the anomalous scattering
factor, which are zero away from a resonance but become finite near the absorp-
tion edge. Figure 16.5 shows an example of the energy dependence of f 0 and f 00.22

From Equation (15) we get that the total S(Q) determined at energy 1 is
given by:

S1ðQÞ ¼ 1

fh i21

X
ab

cacbfaf
�
b ðQÞSabðQÞ;

¼ 1

fh i21
cAfA1

X
b

cbf
�
b ðQÞSAbðQÞ þ c:c:þ

X
a;b 6¼A

cacbfaf
�
b ðQÞSabðQÞ

 !
;

ð31Þ

where c.c. denotes the complex conjugate, and we have separated out the terms
involving element A from the double sum. Similarly at energy 2 we get:

S2ðQÞ ¼ 1

fh i22
cAfA2

X
b

cbf
�
b ðQÞSAbðQÞ þ c:c:þ

X
a;b 6¼A

cacbfaf
�
b ðQÞSabðQÞ

 !

ð32Þ

Figure 16.5 Anomalous dispersion of In scattering factors calculated near the
K absorption edge. (Top) imaginary part, f00; (bottom) real part, f0.
(Reprinted with permission from ref. 22, r 2000, American Institute of
Physics.)
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After rescaling to put these functions on the same scale we can define the
difference:

DSðQÞ ¼ fh i21S1ðQÞ � fh i22S2ðQÞ ð33Þ

which from Equations (31) and (32) is given by:

DSðQÞ ¼ cADfA
X
b

cbf
�
b ðQÞSAbðQÞ þ c:c: ð34Þ

where DfA¼ fA1� fA2. The only changes in the scattering factor, Df, are due to
the anomalous corrections, which, after taking the real part results in:

DSðQÞ ¼ 2cADf 0A
X
b

cb f0bðQÞ þ f 0b

� �
SAbðQÞ þ 2cADf 00A

X
b

cbf
00
b SAbðQÞ ð35Þ

We seek the differential structure function given by Equation (23) above.
Combining Equations (23) and (35) and rearranging we get the differential,
SA(Q):

SAðQÞ ¼ DSðQÞ
2cADf 0A

P
b
cb f0bðQÞ þ f 0b

� �
þ 2cADf 00A

P
b
cbf

00
b

ð36Þ

In general we can use the fact that Df 00A{Df 0A giving an approximate expres-
sion:17

SAðQÞ ¼ DSðQÞ
2cADf 0A

P
b
cb f0bðQÞ þ f 0b

� � ð37Þ

The differential PDF can be obtained directly by Fourier transformation
according to Equation (1).
Experimentally we determine DS(Q) by taking two data-sets at different

energies, one close to the absorption edge and another some distance away.
From Equation (37) we see that the signal in DS(Q) scales with Df 0A and the best
experiment would be made when this is as large as possible. Looking at the
shape of f 0AðEÞ in Figure 16.5 we see that for the edge-measurement it is
important to get as close as possible to the cusp in f 0AðEÞ that is centered at the
absorption edge. However, for practical reasons even though f 0 changes most
rapidly right at the edge, it is advisable to stay a little below the edge. One
reason is that the absorption factor changes rapidly near the edge, making the
absorption correction very difficult. Additionally, in the region below the
edge f 00AðQÞ changes very slowly, which makes the approximation used to get
Equation (37) much better, and the fluorescence from the sample is much less
than in the region right above the edge; experiments are carried out below the
absorption edge of the sample.
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16.3 EXPERIMENTAL METHODS

The objective of total scattering experiments is to measure S(Q) of a sample
with high accuracy. Total scattering measurements have basically the same
requirements as any powder diffraction measurement and the methods are
described in detail in Chapter 2. However, total scattering measurements have
special additional requirements for high-quality data and often the geometries
and setups used are somewhat different. Requirements for high quality total
scattering data include:

1. Data measured over a wide Q-range. This requires wide scattering angles
and/or short-wavelength incident radiation.

2. Good statistics, especially at high-Q where the scattering signal is weak.
3. Low background scattering. It is important to measure weak diffuse

scattering signals accurately, which is difficult on top of high back-
grounds.

4. Stable set-up and accurate incident intensity monitoring. The data are
normalized by incident intensity. It is important that the incident beam
and detector characteristics do not change in an uncontrolled way during
the experiment, or that this can be corrected, e.g. by monitoring the
incident beam intensity as is done at synchrotron X-ray and spallation
neutron measurements.

X-ray experiments can be carried out using laboratory diffractometers with Mo
or Ag sources, which give Q-ranges up to QmaxE 14 Å 1 and 20 Å 1, respec-
tively. These are less than optimal values for Qmax, but acceptable for straight-
forward characterization of nanostructured materials at room temperature.
Experiments have also been attempted using tungsten sources, though these are
currently not standard in diffraction and it is not possible to buy diffraction
grade high-voltage power supplies for this type of source and there are no off-
the-shelf diffraction instruments with tungsten sources.
Optimally, total scattering X-ray experiments are carried out at X-ray

synchrotron sources using high incident energy X-rays. These can be done
with incidence energies in the vicinity of 30–45 keV in conventional Debye–
Scherrer geometry (for instance using beamline X7A at NSLS, or beamlines
such as X31 at ESRF or X11A at APS that are constructed for regular powder
diffraction). However, increasingly common these days is to use the rapid
acquisition PDF (RAPDF) mode23 in which data for a PDF is collected in a
single-shot using a planar 2D detector. This is illustrated in Figure 16.6.
A dedicated beamline has been constructed at APS for this purpose (ID11B)

with similar beamlines planned for NSLS and ESRF. In this geometry, incident
X-rays of energy 70–150keV are fired through a sample and collected on a large
area image-plate detector placed behind the sample. The experiment consists of
ensuring that the beam is perpendicular and centered on the detector and the
sample, then exposing the image plate. Depending on the strength of scattering
and the sensitivity of the detector, exposures for good PDFs in excess of
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Qmax¼ 30 Å 1 can be obtained in as little as 30ms, and typically a few seconds to
minutes. This compares to data collection times of 8–12 hours with conventional
non-parallel counting (i.e., point detector) approaches, even at the synchrotron.
The RAPDF measurement is ideal for time-resolved and parametric measure-
ments,57 of local structure through phase transitions for example. The Q-
resolution of these measurements is very poor because of the geometry, and this
limits the r-range of the resulting PDFs from crystalline materials. However, most
modeling is carried out over rather narrow ranges of r and this represents a very
good tradeoff. Where a wide r-range is necessary for the measurement (to study
some aspect of intermediate range order on length-scales of 5–10nm, for exam-
ple) the Debye–Scherrer geometry diffractometers described in Chapter 2 can be
used. In this case the counting-time is slower and often a lower Qmax is accessible
as they cannot be operated at very high X-ray energies. Combining data from
both methods gives data with high resolution in both real- and reciprocal-spaces,
which will increasingly be important in studies of complex materials.
For neutron measurements, the requirement of short-wavelength really limits

experiments to time-of-flight spallation neutron sources. Reactor sources with
hot moderators would give good quality data for PDF studies, but are in short
supply. The requirements for a spallation neutron powder diffractometer are
laid out in the list of experimental requirements above. Normal t-o-f powder

Figure 16.6 Schematic of the rapid acquisition RAPDF X ray data collection
method. Intense high energy X ray beams that emerge from the syn
chrotron (top right) are collimated and monochromated before passing
through the sample, where they are scattered into the 2D detector
behind. Moving anticlockwise around the figure we see that the 2D
data are reduced to a 1D function that is corrected and normalized to
obtain the total scattering structure function, which is Fourier trans
formed to obtain the PDF. This can be fit to gain structural information
about the material. (Figure adapted from ref. 8.)
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diffractometers can be used provided the length of the flight-path and frequency
of operation are such to allow good fluxes of neutrons with short wavelength
(0.1–0.4 Å). Currently, neutron guides do not propagate these short-wavelength
neutrons effectively and so shorter flight-path diffractometers with, or without,
guides give the best data. At present, the instruments of choice are NPDF at the
Lujan Center at Los Alamos National Laboratory in the USA and GEM at
ISIS, Rutherford Laboratory, in the UK. The former was upgraded with PDF
experiments in mind and has excellent stability on a water moderator and low
backgrounds, though data collection time is not quite at the level of GEM.
Instruments suitable for total scattering are under construction at next gener-
ation spallation neutron sources: SNS in the US and J-PARC in Japan.
Once the data are collected they must be corrected and normalized. Several

data correction programs are available for free download and these take care of
the corrections and normalizations needed to obtain PDFs from raw data.
These can be browsed at the ccp14 software website.24 Currently, the easiest
and most commonly used programs are PDFgetN25 and Gudrun26 for spallat-
ion neutron data and PDFgetX2 (refs. 27,28) for X-ray data. PDFgetX2 has
the corrections implemented for accurate analysis of RAPDF data from 2D
detectors, though currently the data must be preprocessed using the 2D data
analysis suite FIT2D.29 Details of the corrections are beyond the scope of this
chapter, but can be found in some detail in Egami and Billinge.2

16.4 STRUCTURAL MODELING

As with any powder diffraction experiment, structural information is extracted
through modeling. Modeling is carried out in real-space (by calculating the PDF
of the model and comparing it to the PDF determined experimentally) or in
reciprocal-space (by calculating the total-scattering structure function using the
Debye equation). Although strictly speaking the information is the same in real-
and reciprocal-spaces (they are the direct transform of each other) these different
modeling approaches lend themselves to extracting different information. Fitting
the PDF is generally done with models described by a small number of atoms in a
unit cell (which may or may not be the crystalline unit cell) and yields informa-
tion about the very local structure. Fitting in reciprocal space is generally carried
out on larger models of a few thousand atoms using a Monte Carlo simulated
annealing type of approach and yields more information about intermediate
range order. Both approaches can successfully be used to gain insight about the
structure in question. These approaches are briefly described below.

16.4.1 Model Independent Structural Information from the PDF

Information can be extracted directly from the PDF in a model-independent
way because of its definition as the atom-pair correlation function described in
Equation (13).
Peak position- bond length: The position of a peak in the PDF indicates the

existence of a pair of atoms with that separation. There is no intensity in R(r)
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for distances less than the nearest-neighbor distance, ro rnn and a sharp peak
at rnn. This behavior is very general and true even in atomically disordered
systems such as glasses, liquids and gasses. In amorphous materials the second
neighbor distance is less well defined, the PDF peak being broader, but will still
be apparent even in disordered materials. In crystals, because of the long-range
order of the structure, all neighbors at all lengths are well defined and give rise
to sharp PDF peaks. The positions of these peaks gives the separations of pairs
of atoms in the structure directly.
Peak integrated intensity- coordination number: When a well-defined PDF

peak can be observed, we can determine information about the number of
neighbors in that coordination shell around an origin atom by integrating the
intensity under that peak, as shown in Equation (11). By way of example we can
consider crystalline Ni which has four Ni atoms in the unit cell (fcc structure).
Each nickel atom has 12 neighbors at 2.49 Å.30 When we construct our PDF
using Equation (12) we will therefore place 48 units of intensity at position
r¼ 2.49 Å. This can be seen as follows. Place one nickel atom at the origin and
count the number of neighbors at r¼ 2.49 Å; there are 12. We repeat this process
by placing every atom in the material at the origin in turn. In a crystalline
material all the atoms with distinct environments are included in the unit cell (by
definition) which is periodically repeated to generate the full structure. We can
therefore obtain the accurate PDF of the structure by placing at the origin only
the atoms in the unit cell. Therefore, in the nickel example we systematically
place each of the four atoms in the unit cell at the origin. In fact they are all
equivalent with 12 neighbors, so 48 units of intensity appear at r¼ 2.49 Å. We
then divide by N, the number of atoms that we summed over at the origin
[Equation (12)], to obtain the PDF, in this case 4. This gives the nickel
coordination as 12, as expected. Thus, integrating the first peak in the properly
normalized experimental RDF will yield 12, which is the coordination number
of Ni. The same information can be obtained from multi-element samples if the
chemical origin of the PDF peak, and therefore the weighting factor, is known.
If, as is often the case, PDF peaks from different origins overlap this process
becomes complicated. In that case, information can be extracted by measuring
the chemical specific differential or partial-PDFs directly, by fitting the peaks
with a series of Gaussian functions, or better, by full-scale structural modeling.
Peak width- thermal or static disorder: Atomic disorder in the form of

thermal and zero-point motion of atoms, and any static displacements of atoms
away from ideal lattice sites, gives rise to a distribution of atom–atom dis-
tances. The PDF peaks are therefore broadened resulting in Gaussian shaped
peaks. The width and shape of the PDF peaks contain information about the
real atomic probability distribution. For example, a non-Gaussian PDF peak
may suggest an anharmonic crystal potential.

16.4.2 Modeling the PDF

Modeling the data reveals much more information that straight model inde-
pendent analysis. The most popular approach for real-space modeling is to use
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a full-profile fitting method analogous to the Rietveld method31 but where the
function being fit is the PDF. This is implemented in the popular PDFfit
program.19 A new version of this program with significant usability enhance-
ments, PDFgui,32 has recently become available. This is available for free
download.33

Parameters in the structural model, and other experiment-dependent param-
eters, are allowed to vary until a best-fit of the PDF calculated from the model
and the data derived PDF is obtained, using a least-squares approach. The
sample dependent parameters thus derived include the unit cell parameters
(unit cell lengths and angles), atomic positions in the unit cell expressed in
fractional coordinates, anisotropic thermal ellipsoids for each atom and the
average atomic occupancy of each site.
We highlight here the similarities and differences with conventional Rietveld.

The main similarity is that the model is defined in a small unit cell with atom
positions specified in terms of fractional coordinates. The refined structural
parameters are exactly the same as those obtained from Rietveld. The main
difference from conventional Rietveld is that the local structure is being fit that
contains information about short-range atomic correlations. There is addi-
tional information in the data, which is not present in the average structure,
about disordered and short-range ordered atomic displacements. To success-
fully model these displacements it is often necessary to utilize a ‘‘unit cell’’ that
is larger than the crystallographic one. It is also a common strategy to
introduce disorder in an average sense without increasing the unit cell. For
example, the example where an atom is sitting in one of two displaced minima
in the atomic potential, but its probability of being in either well is random, can
be modeled as a split atomic position with 50% occupancy in each well. This is
not a perfect, but a very good, approximation of the real situation and is very
useful as a first order attempt at modeling the data.
This ‘‘Real-space Rietveld’’ approach is proving to be very useful and an

important first step in analyzing PDFs from crystalline materials. This is
because of two main reasons. First, its similarity with traditional Rietveld
means that a traditional Rietveld derived structure can be compared quantita-
tively with the results of the PDF modeling. This is an important first step in
determining whether there is significant evidence for local distortions beyond
the average structure. If evidence exists to suggest that local structural distor-
tions beyond the average structure are present, these can then be incorporated
in the PDF model. The second strength of the real-space Rietveld approach is
the simplicity of the structural models, making it quick and straightforward to
construct the structural models. This also makes it straightforward and quick
to gain physical understanding from the models. A screenshot from a PDFgui
refinement is shown in Figure 16.7 and the resulting fit of the calculated PDF to
the data is shown in Figure 16.8.
PDFfit was originally designed to study disorder and short-range order in

crystalline materials with significant disorder such as nanoporous bulk mate-
rials. It has also found extensive use in studying more heavily disordered
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Figure 16.7 Multiple refinements and plots of refined parameters from a PDFgui
modeling project.
(Figure courtesy of Christopher Farrow.)

Figure 16.8 Resulting PDF and fully converged fit with a difference curve below. In
this case the data are neutron powder diffraction data from the NPDF
instrument from a sample of La0.8Ca0.2MnO3 measured at low temper
ature. The nearest neighbor Mn O peak at rB 2 Å is negative because of
the negative neutron scattering length of Mn for neutrons.
(Figure courtesy of Emil Bozin.)
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materials such as nanocrystalline materials and nanoporous materials and this
looks set to increase in the future.

16.4.3 Modeling Total Scattering in Reciprocal Space

Fitting models to reciprocal space total scattering data generally involves larger
models of thousands of atoms that are refined using Monte Carlo simulated
annealing,34 or some other global optimization scheme. Conventional simu-
lated annealing is an approach used to find the global minimum in a compli-
cated potential energy landscape. Parameters of the system, such as atom
positions, are allowed to vary in some random way. After each change the
energy of the system is calculated using the specified potential energy function.
If a change reduces the energy of the system it is accepted. If it raises the energy
of the system then it can be accepted or rejected. This decision is made
randomly according to an underlying probability. In simulated annealing the
underlying acceptance probability for bad moves is given by the Boltzmann
relation:

P ¼ e
DE
kBT

� �
ð38Þ

where DE is the change in energy, kB is the Boltzmann constant and T is the
‘‘temperature’’ of the system, which is initially set by the experimenter. When T
is higher, more ‘‘bad’’ moves are accepted and more of the energy landscape is
probed by the simulation (it is easier to get out of local minima). The temper-
ature can then be systematically lowered to guide the simulation into the global
energy minimum. This is a widely used and powerful method in statistical
physics and the computational technology is well developed.35

When this approach is used to minimize the difference between a calculated
and an experimental diffraction pattern, i.e., to minimize w2 instead of an
energy, the approach is known as reverse Monte Carlo or RMC.36 In this case a
large box of atoms is used as the structural model. These are allowed to arrange
themselves, with the minimum of constraints, in such a way as to give good
agreement with the diffraction data. In the most unconstrained case the
boundaries of the box and local hard-sphere repulsions, which prevent atoms
overlapping, are the only constraints. This approach is very widely used in the
sphere of disordered materials, where methods derived from crystallography
are not so helpful. A strength of this approach is that it is unbiased. The
resulting structural model gives a solution that is unprejudiced but consistent
with the data. The expectation is that any structural motifs that emerge in the
model, such as local tetrahedral atomic arrangements in network glasses, are
probably real. The reason is that the simulated annealing, by its very nature,
will find the most probable, and therefore most disordered, structural solution
that is consistent with the data. Any atomic correlations (ordered atomic
arrangements) that emerge in the model must be more or less uniquely specified
in the data themselves. A caveat is that this is an assumption that cannot be
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proved and it is possible that more than one distinct structural motif can
emerge from the same data. The prerogative is with the user to probe the phase
space somewhat by making multiple runs that begin with different random
seeds, and to validate results against other knowledge and data on the system.
Additional structural constraints can be introduced where necessary to reduce
this degeneracy, though at the possible expense of introducing bias. When used
carefully, RMC is a powerful method for learning about short and intermediate
range order in a material.
We note in passing that the ‘‘Monte-Carlo’’ aspect of RMC is the choice of

Monte Carlo simulated annealing as the regression algorithm. In principle,
other global optimizers could be used instead, such as genetic algorithms, and
the same structural solution would be found (if indeed all the algorithms found
the global, rather than a local, minimum!). Scientifically, the important aspect
of this modeling approach is less the Monte Carlo aspect and more that large
models are being used to simulate intermediate range order from total scatter-
ing data with a goodness-of-fit parameter as the cost function being minimized.
Approaches to modeling the data that are intermediate between the RMC and

PDF fitting approaches described above are now appearing that can be thought
of as RMC-refinement.37 In these cases a known structure (e.g., the crystal
structure) is given as a starting model which is then refined using Monte Carlo
updates without allowing the crystal to melt by keeping it at lower temperature,
or by simultaneously fitting diffraction data at low-Q and total-scattering data
over a wide range ofQ. This amounts to using MC as a local search method and
other regression methods could also be used. Sometimes data are fit in both real
and reciprocal space at the same time,38 which is a powerful way of satisfying
both the long-range and the local order at the same time.
RMC has recently been extended to study not just structure but atom

dynamics. The ability to extract phonon and lattice dynamical information
from total scattering data has been under debate for some time,39 42 with the
consensus ultimately being that incomplete, but potentially highly useful, lattice
dynamical information can be obtained directly from total scattering data.
RMC has recently been shown to be useful for extracting that information.43

Several RMC modeling and refinement codes are freely available. The list
of RMC programs supported by the ISIS group can be found at http://
www.isis.rl.ac.uk/rmc/. A versatile and straightforward to use program for
data simulation and structure refinement from single crystal and powder/
amorphous data, with built in RMC routines based on the McGreevy algo-
rithms, is DISCUS, which is available at http://diffuse.sourceforge.net.

16.4.4 Emerging Modeling Approaches

16.4.4.1 Complex Modeling. As we seek to model increasingly complex
materials, we increasingly run into the situation that data from a single
measurement is not sufficient to constrain a unique solution. In this situation
the problem is not well conditioned and needs to be regularized. This can be
done by adding more independent data to the optimization, or by removing
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degrees of freedom from the model by specifying constraints and bringing
to bear other prior knowledge. We refer to this generically as ‘‘complex
modeling’’,1 where the sense of the word ‘‘complex’’ here is not complicated,
but mixed; just as a complex number is a mixture of a real and an imaginary
part. This is illustrated schematically in Figure 16.9.
Many approaches already do this, for example, by incorporating known

chemical constraints, densities or hard-sphere repulsions. Many of the emerg-
ing methods described below have this flavor, and as time goes on our ability to
complex our data and our modeling approaches will only increase.

16.4.4.2 Empirical Potential Based Modeling Schemes. Degrees of freedom
in large-scale models can be reduced by incorporating prior information. One
way to do this is to specify empirical pair potentials as a function of separation
between each atom type. Then the number of atoms the model can be increased
but the number of parameters depends only on the number of atomic species. In
principle the pair potentials themselves should give the equilibrium structure of

Figure 16.9 Schematic of the Complex Modeling paradigm. Data from different
experiments, as well as theoretical inputs, are used as constraints in a
coherent global optimization scheme.
[With help from I. Levin]
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the material and there is no need for an experiment at all! In practice, we still
need crystallography because the approximations in first-principles and empir-
ical potentials (for realistic sized systems) give uncertainties that are larger than
the differences between competing structures. Total energy minimization of
models can therefore only be used as guide without input from data. An
attractive approach to incorporate information about the energetics as a priori
knowledge in a refinement is to make interatomic potential parameters refin-
able. The process is then to find the arrangement of the atoms that minimizes
the energy, calculate the scattering function from this configuration and
determine the difference to the measured data, update the potential parameters
and iterate until convergence is reached. This has a complete energy minimi-
zation calculation in each step of the regression and so efficient convergence of
the regression is paramount. Such an approach has been successfully imple-
mented in the empirical potential structure refinement approach, which has
been applied principally to liquids.44 A model is set up with initial values for the
pair potential parameters and the potential of mean force, U(r), calculated for
each pair of atoms. This is related directly to the measured atomic pair
distribution function through:

UðrÞ ¼ �kBT ln
rðrÞ
r0

� �
¼ �kBT lnðgðrÞÞ ð39Þ

The reference potential used for the model is denoted Um(r) and the potential
implied from the data UD(r). We would like to think of a way to modify Um(r)
to bring it closer to UD(r). To do this we add a perturbation to the original
reference potential, Um

0 (r) that is the difference between Um(r) and UD(r). i.e.,
the new potential:

Um
1 ðrÞ ¼ Um

0 ðrÞ þ kT ln
gmðrÞ
gDðrÞ

� �

Using Monte Carlo, the model is then relaxed using the new potential, resulting
in a new calculated g(r). The process is then iterated until it reaches conver-
gence. This approach, known as Empirical Potential Structure Refinement
(EPSR) has proved very powerful in the study of complex liquids, and of the
solvation states of molecules in solution. It is particularly successful when it has
as target functions a number (though not necessarily the complete set) of
DPDFs from the system in question.
Along similar lines is the experimentally constrained molecular relaxation

(ECMR) that has been used recently to generate both structurally and energet-
ically reasonable models for glasses such as GeSe2.

45 This approach uses an RMC
methodology for updating atomic positions, but incorporates a first principles
total energy relaxation in the regression cycle to ensure that the resulting
configurations are energetically favorable, as well as fitting the data well.
Inverse Monte Carlo approaches have also been used to extract information

from single-crystal diffuse scattering data. For example, effective pair interac-
tions were extracted from vanadium hydride, an important potential hydrogen
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storage system, using this approach.46,47 The use of highly simplified ‘‘toy
model’’ potentials (e.g., Ising model Hamiltonian and springs between molec-
ular units) combined with Monte Carlo energy minimization has also proved
very effective to understand diffuse scattering in crystalline materials.48 Theory
and experiment has also been successfully combined in a highly exhaustive
search of the solution space when a large number of experiments and theoret-
ical simulations are brought to bear on the same experimental system, in this
case amorphous Si3B3N7.

49 Here the experimental data are used to filter the
theoretical predictions to find the most appropriate one.

16.4.4.3 Chemical Constraints. Rather than using energetics to constrain
structural solutions, it is possible to build into the problem aspects of the
known chemistry. This is standard in single-crystal structure solutions of
organic solids, as discussed in Chapter 9 and ref. 50, and also in macromolec-
ular crystallography, where knowledge of the molecular topology is a prereq-
uisite for many structure solutions. For example, instead of representing a
molecule by the coordinates of its atoms, it is possible to represent it as a Z-
matrix50 where the atom positions are specified with respect to their neighbors
by bond lengths and bond angles. This is a very convenient way of specifying
the molecule in terms of its internal degrees of freedom, which may be a small
number of internal dihedral rotations about C–C single bonds, for example. In
this way the fixed geometry of the molecule appears automatically as a
constraint in the problem.
This approach of geometric constraints has been extended to inorganic

systems and network systems in an approach called geometric modeling.51

The difficulty in these systems is that they are 3D infinite networks with
bridging atoms. The bridging atoms link two distinct geometric objects (such
as tetrahedra or octahedra) at a vertex. If, as is the case in general, the system is
not fully relaxed, the bridging atoms will become frustrated. They will not be
able to satisfy both of the neighboring geometric objects. The geometric
modeling approach creates ‘‘ghosts’’ of the ideal size and shape. The actual
atoms in the material are then tethered to the vertices of the ghosts with a
harmonic spring. In this way the atoms can move away from the ideal positions
that define the geometric object, but only with an energy cost. This is shown
schematically in Figure 16.10.52

Disorder is introduced into the system and then it is relaxed to find the
energy minimum. This approach has recently been extended to solve the inverse
problem in a process called geometric refinement.53 The problem is set up in the
same way, but instead of attaching atoms to the vertices with springs the atoms
and the geometric templates are moved using a Monte Carlo simulated
annealing approach and where acceptance of the moves is governed by a fit
to the data: a kind of reverse geometric modeling in analogy with RMC. This
approach was recently successful in describing the short-range order of Jahn–
Teller distorted octahedra in LaMnO3 at high temperature.53

16.4.4.4 Ab Initio Nanostructure Determination. The PDF profile fitting
methods described earlier are refinement techniques. A good initial guess of
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the structure is essential and the program ‘‘refines’’ model parameters such as
atomic positions and atomic displacement parameters to optimize the fit. The
optimization algorithm uses a local search, i.e., finds the nearest local minimum
in the parameter space. This is different from an ab initio structure solution,
where a search for the global minimum is carried out and the structure
determined from a completely arbitrary (often random) starting point. This
problem is, obviously, much more difficult to solve. The power of crystallo-
graphy is that this global search problem has been largely solved with, more
recently, progress made also in solving this problem from powder diffraction
data, as described in Chapter 8. However, these crystallographic methods have
not been applied at atomic resolution to reconstruct 3D structures of nano-
structured materials. RMC modeling and related methods such as EPSR are,
actually, ab initio methods: the structural configuration is formed from an
initial random (or other) starting point. However, they are only applicable for
disordered materials where there are many degenerate solutions that are
consistent with the data. These methods are not currently efficient enough to
solve nanostructures with unique structural solutions, such as the C60 bucky-
ball molecule.
Great progress is being made in this important area. Two-dimensional

images with micron54 to subnanometer55 resolution have been reconstructed
from diffraction data using phase reconstruction in a process known as lensless

Figure 16.10 Schematic of the geometric modeling scheme. The grey objects are
geometric templates that encode the local structural geometry coming
from the chemistry; in this case, corner shared octahedra. The red dots
are bridging atoms that are shared by more than one template. The
atoms are connected to the templates by springs. The relaxation occurs
by an iterative approach of reorienting and shifting the templates to
give the best fit to the atoms, then shifting the atoms to minimize the
spring energy, then reorienting and shifting the templates, and so on
until convergence. (Reprinted with permission from ref. 52, r 2006,
American Physical Society.)
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imaging.56 These approaches look promising for structure reconstruction at
the atomic scale. Taking a different approach, ab initio determination of
nanostructure has been demonstrated directly from PDF data. In this
case the brute-force Monte Carlo approach failed for small nanoparticles of
20 atoms or so, but a novel algorithm (named ‘‘Liga’’), developed for the
purpose, was successful at reconstructing clusters up to B200 atoms from
synthetic data, and solving the structure of C60 uniquely from real PDF data.6

In the same paper, an adapted genetic algorithm was also successful, though
less efficient than Liga. These developments are still at an early stage, but look
very promising for the future.

REFERENCES

1. S. J. L. Billinge and I. Levin, Science, 2007, 316, 561.
2. T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural

Analysis of Complex Materials, Pergamon Press, Elsevier, Oxford, England,
2003.

3. D. A. Keen, J. Appl. Crystallogr., 2001, 34, 172.
4. I.-K. Jeong, F. Mohiuddin-Jacobs, V. Petkov, S. J. L. Billinge and

S. Kycia, Phys. Rev. B, 2001, 63, 205202.
5. H. J. Kim, E. S. Bozin, S. M. Haile, G. J. Snyder and S. J. L. Billinge, Phys.

Rev. B, 2007, 75, 134103.
6. P. Juhas, D. M. Cherba, P. M. Duxbury, W. F. Punch and S. J. L. Billinge,

Nature, 2006, 440, 655.
7. X. Qiu, Th. Proffen, J. F. Mitchell and S. J. L. Billinge, Phys. Rev. Lett.,

2005, 94, 177203.
8. S. J. L. Billinge and M. G. Kanatzidis, Chem. Commun., 2004, 749.
9. T. Proffen, S. J. L. Billinge, T. Egami and D. Louca, Z. Kristallogr., 2003,

218, 132.
10. B. E. Warren, X-ray Diffraction, Dover, New York, 1990.
11. H. P. Klug andL. E. Alexander, X-Ray Diffraction Procedures for Poly-

crystalline and Amorphous Materials, , Wiley, New York, 1974.
12. A. C. Wright, Glass. Phys. Chem., 1998, 24, 148.
13. A. C. Barnes, H. E. Fischer and P. S. Salmon, J. Phy. IV, 2003, 111, 59.
14. P. Debye, Annalen der Physik (Berlin, Germany), 1915, 46, 809.
15. V. A. Levashov, S. J. L. Billinge and M. F. Thorpe, Phys. Rev. B, 2005, 72,

024111.
16. T. E. Faber and J. M. Ziman, Philos. Mag., 1965, 11, 153.
17. D. L. Price and M.-L. Saboungi, in Local Structure from Diffraction, ed.

S. J. L. Billinge and M. F. Thorpe, Plenum, New York, 1998, p. 23.
18. B. E. Warren, H. Krutter and O. Morningstar, J. Am. Ceram. Soc., 1936,

19, 202.
19. T. Proffen and S. J. L. Billinge, J. Appl. Crystallogr., 1999, 32, 572.
20. B. K. Teo, EXAFS: Basic Principles and Data Analysis, Springer-Verlag,

New York, 1986.

491Local Structure from Total Scattering



21. P. H. Fuoss, P. Eisenberger, W. K. Warburton and A. I. Bienenstock,
Phys. Rev. Lett., 1981, 46, 1537.

22. V. Petkov, I.-K. Jeong, F. Mohiuddin-Jacobs, T. Proffen and S. J. L.
Billinge, J. Appl. Phys., 2000, 88, 665.

23. P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey and S. J. L.
Billinge, J. Appl. Crystallogr., 2003, 36, 1342.

24. URL: http://www.ccp14.ac.uk.
25. URL: http://pdfgetn.sourceforge.net/.
26. Information can be found at the ISIS disordered materials group website:

http://www.isis.rl.ac.uk/disordered/dmgroup_home.htm.
27. X. Qiu, J. W. Thompson and S. J. L. Billinge, J. Appl. Crystallogr., 2004,

37, 678.
28. URL: http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX2/.
29. A. P. Hammersley, S. O. Svenson, M. Hanfland and D. Hauserman, High

Pressure Res., 1996, 14, 235.
30. R. W. G. Wyckoff, Crystal Structures, Wiley, New York, 1967, vol. 1.
31. R. A. Young, The Rietveld Method, vol. 5 of International Union of

Crystallography Monographs on Crystallography, Oxford University
Press, Oxford, 1993.

32. C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bo�zin, J. Bloch,
T. Proffen and S. J. L. Billinge, J. Phys: Condens. Matter, 2007, 129,
1386–1392.

33. URL: http://www.diffpy.org.
34. N. Metropolis and S. Ulam, J. Am. Stat. Assoc., 1949, 44, 335–341.
35. K. Binder and D. W. Heerman, Monte Carlo Simulation in Statistical

Physics, Springer-Verlag, Berlin, 1992.
36. R. L. McGreevy, J. Phys.: Condens. Matter, 2001, 13, R877.
37. M. G. Tucker, M. T. Dove and D. A. Keen, J. Appl. Crystallogr., 2001, 34,

630.
38. M. G. Tucker, A. L. Goodwin, M. T. Dove, D. A. Keen, S. A. Wells and

J. S. O. Evans, Phys. Rev. Lett., 2005, 95, 255501.
39. D. Dimitrov, D. Louca and H. Röder, Phys. Rev. B, 1999, 60, 6204.
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CHAPTER 17

Computer Software for Powder
Diffraction

LACHLAN M. D. CRANSWICK

Canadian Neutron Beam Centre, National Research Council Canada,
Building 459, Chalk River Laboratories, Chalk River ON, Canada, K0J 1J0

17.1 INTRODUCTION

Modern powder diffraction necessitates the use of computer software perform-
ing a range of data collection and analysis options. As the bulk of a powder
diffractionist’s working time will be spent performing data analysis, it is advis-
able to take a keen interest in the range of available software, and to select the
most appropriate. The editors requested hints and recommendations to be
provided on which software might be most appropriate to use first. The reader
should note this is of course rather biased to the limited personal experiences of
the author. Space restrictions have also forced overgeneralizations in many
cases. References are provided in the tables of the relevant sections, and Internet
addresses for the software are given in Appendix 1.
If a reader’s favorite program is missing, or functionality not suitably

elaborated, the author apologizes in advance and invites comments in the
event of a new edition of this book being prepared. Quite radical changes and
improvements in software can be announced at the near blink of an eye. Thus
keeping an interest in new software developments may offer new methods of
more effective analysis that can both save time and/or increase the quality of
information obtained from powder diffraction data.

17.2 FINDING AND TESTING SOFTWARE

17.2.1 Locating New Software

New powder diffraction software tends to be announced in one or all of a small
group of publications and forums. The main forums are: the IUCr Journal of
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Applied Crystallography; IUCr Commission on Powder Diffraction Newsletter;
the SDPD (Structure Determination by Powder Diffractometry) mailing list;
the Rietveld Users Mailing list, CCP14 website, and the sci.techniques.xtallo-
graphy ‘‘Usenet’’ newsgroup. Lists of software are maintained on the CCP14
and IUCr Sincris websites. These sites can be straightforwardly located by
using a search engine such as Google. Instructions for joining the Rietveld
mailing list can be found at the mailing list home-page:
http://lachlan.bluehaze.com.au/stxnews/riet/intro.htm and the SDPD list at:
http://www.cristal.org/sdpd/

17.2.2 Selecting Software

There are two main routes to determine the most appropriate software to use
for a particular problem. A quick and effective method is to ask colleagues in
the local institute, geographical region, or field of science. The advantage of
taking advice from colleagues is it is more likely the most appropriate software
will be recommended, and assistance with software problems might be more
readily available. Another more rigorous, but time consuming, method is to
determine the range of available software and quickly evaluate these for
yourself. On evaluation, it can become apparent which packages are more
likely to be of immediate assistance. Evaluating a wide range of software can
also identify new approaches and analysis methods, and the knowledge gained
from personal evaluation can be usefully applied to future problems.

17.2.3 Re-locating Software on the Internet

The Internet can be very unstable with respect to weblinks and websites.
Scientific software websites can move around due to changed employment of
the authors, changes in institute network policies or extinction of research
groups or institutes. If known weblinks no longer work, the quickest route to
refind software is to use search engines such as Google. If this fails, posting to
some relevant mailing lists or Internet newsgroups is the next best method for
locating hard to re-find software.

17.3 AVAILABLE SOFTWARE

17.3.1 Third-party Diffractometer Control Software

A desire for cost effective diffractometer hardware upgrades, or general
discontent with vendor control software, may make the use of third-party
hardware control software desirable (Table 17.1). Third-party software can
often be more intuitive and easier to use than the default vendor diffractometer
control software. If non-standard methods of data collection are required, a
third-party vendor may be more flexible in making this functionality available.
Also, if requested, third-party software is more likely to directly write files in
the required analysis formats (e.g., directly into the Rietveld format of interest).
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However, some required methods of data collection may be unavailable from
some vendors. For instance, at time of writing, Bede were the only known
hardware or software vendor to include a general ‘‘Variable Count Time’’
(VCT) data collection capability.

17.3.2 Phase Identification and Search-match Software

The computer based identification of crystalline phases in powder diffraction
patterns normally requires two separate components: (a) a powder diffraction
database containing reference information and (b) a search-match program
that loads the diffractogram and accesses the database to attempt to match the
diffraction data to known phases in the database.

Table 17.1 Available third-party powder diffractometer control software.

Software References
Diffractometer/
specializations

ADM connect ADM connect, (2005),
RMSKempten, Kaufbeurer
Str. 4, D 87437 Kempten,
Germany

Many different brands
including Philips,
PANalytical, Siemens,
Bruker, ENRAF
(including CPS 120)

MDI DataScan DataScan, Materials Data,
Inc., 1224 Concannon
Blvd., Livermore, CA
94550, USA

Many different brands
including upgrades to
non digital
diffractometers

PC 1710 for
Windows/
PC 1800 for
Windows

PC 1710 for Windows/
PC 1800 for Windows,
Mark Raven, (2005)
CSIRO Land and Water,
Urrbrae South Australia,
5064, Australia

Philips PW1710 and
PW1800 XRDs

PW1050 (GPL’d) PW1050, J. Kopf, (2005),
Institut fuer Anorganische
Chemie,
Roentgenstrukturanalyse,
Martin Luther King Platz
6, D 20146 Hamburg,
Germany

Interfaces to a UDS2
Programmable
Controller for X ray
Diffractometers,
Steuerungstechnik
Skowronek,
Antoniusstrasse 3, PO
Box 1346, 5170 Julich,
Germany, Tel/Fax:
+49 (0)2462 55756
(J. Appl. Crystallogr.
1992, 25, 329 330)

TXRDWIN TXRDWIN, Omni Scientific
Instruments, Inc. (2005)

Controls various different
XRD hardware

SPEC SPEC, Certified Scientific
Software, PO Box 390640,
Cambridge, MA, 02139
0007, USA

Variety of hardware for
synchrotron, neutron
and home built
laboratory
diffractometers
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17.3.2.1 Search-match Databases. By default, it is considered best to obtain
the complete ICDD (International Center of Diffraction Data) PDF-2 data-
base of D-spacings (D’s), Intensities (I’s) and extra phase information. How-
ever, the ICDD database is expensive, and it can be initially confusing to
determine which ICDD product is the most appropriate to purchase. A newly
set up XRD laboratory can face phase identification problems if the ‘‘default’’
purchase of a PDF-1 ICDD database is undertaken, instead of the more
comprehensive information within the PDF-2 ICDD database. Owing to the
expense of the ICDD, less complete databases may be useable, including the
creation of in-house databases when dealing with a small collection of phases
(e.g., the limited dozen or so phases commonly found in Lead Acid Batteries)
(Table 17.2). Users should be wary that databases can, and do, have errors,
more commonly in the form of reference patterns missing trace peaks, or
including extra spurious peaks. Pattern calculation or a quick Rietveld refine-
ment can be useful to cross check the results from the Search-Match software.

Table 17.2 Available search-match databases.

Software References Specializations

ICDD Powder
Diffraction
Files on
CD ROM

International Centre for
Diffraction Data, 12
Campus Boulevard,
Newtown Square, PA,
19073 3273, U.S.A.

Comprehensive for X ray
powder diffraction data

MacDiff MacDiff a programme for
analysis and display of
X ray powder diffracto
grammes on Apple
Macintosh platforms,
R. Petschick, Geologisch
Paläontologisches Institut,
Johann Wolfgang Goethe
Universität Frankfurt am
Main, Senckenberganlage
32 34, 60054 Frankfurt am
Main, Germany

Free mineral database with
powder X ray diffraction
data of more than 500
minerals for use within the
freeware MacDiff software

The Nickel
Nichols
Mineral
Database

E. N. Nickel and M. C.
Nichols, Mineral Reference
Manual, Van Nostrand
Reinhold, New York, 1991,
250 pp. and The Nickel
Nichols Mineral Database,
Materials Data, Inc., 1224
Concannon Blvd.,
Livermore, CA 94550, USA

Mineral database including
strongest peaks for X ray
diffraction data for
Hanawalt type strongest
peaks searching

Pauling File The PAULING FILE Binaries
Edition, Ed. P. Villars,
(2002) ASM International,
Materials Park, Ohio, USA,
ISBN 0 87170 786 1

Pure elements and binary
compounds with a
Hanawalt strongest peaks
search option for X ray
diffraction data
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Most powder diffraction databases only serve ‘‘angular dispersive’’ X-ray
diffraction. ‘‘Energy dispersive’’ X-ray diffraction data can be transformed into
an angular dispersive equivalent that can then be used in conventional search-
match software. Users of neutron diffraction data are currently limited to
performing phase identification using a list of crystal structures imported into a
Rietveld program. It is wise to first run samples destined for neutron diffraction
sample in a powder XRD prior to confirm phase purity, and to use calculated
patterns to assist in phase identification of possible undesired phases due to
ancillary equipment or sample environment.

17.3.2.2 Search-match and Phase Identification Software. It would be desir-
able to have at least two or three search-match programs, as where one
program fails to give a good match, another might succeed. However, as most
search-match software is commercial and expensive, for a cost conscious
institute it can be a struggle to purchase a single search-match program. It
can also be impractical to evaluate a range of programs to see which is most
appropriate for local usage. Much search-match software is purchased from the
hardware vendor with a new X-ray diffractometer. However, there is the
increasing practise of third-party vendors to distribute evaluation versions of
their programs. The most advanced software tends to use what are called ‘‘third
generation’’ (or a higher generation number) search-match algorithms. Effective
search-match software not only allows for computer searching, but also allows
the user to input extra information in an effective manner, such as chemistry or
a list of expected phases. A good test for evaluating search-match software is to
not only challenge them with difficult multi-phase data, but also examples where
you wish to confirm a known answer by requesting specific phases to be
displayed from the power diffraction database (Table 17.3). Less effective
search-match programs limit the input of user knowledge about the sample,
and force the analysis of ‘‘known’’ samples via an ab initio search-match process.

17.3.3 Crystal Structure Databases

The three main databases (Cambridge Organic/Organometallic; ICSD Inor-
ganic/Minerals/Intermetallics and CrystMet Metals/Alloys/Intermetallics) are
currently licensed on a yearly basis (Table 17.4). The ICSD is traditionally
considered only as containing inorganic phases and minerals, but it has started
to add intermetallics. A ‘‘one-time purchase’’ database is the Pauling Binaries
file, which includes other information such as phase diagrams, but only
contains elemental and binary compounds. Several mineral and specialist
databases (Zeolites, incommensurate) are freely available on the web. An open
source crystal structure database (COD) is also under development. The ICSD
has one of the more effective methods of data retrieval via a very friendly
web/intranet interface designed by Marcus, Peter and Alan Hewat. Some
countries (such as the UK based EPSRC CDS) have national licenses for many
of these structure databases, which can be accessed freely via the Internet by
academic researchers and students working in these respective countries.
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Table 17.3 Available search-match and phase identification software.

Software References or contact information
Freely
available

AXES H. Mändar and T. Vajakas, AXES a
software toolbox in powder
diffraction, Newsletter Int. Union
Crystallogr, Commission Powder
Diffr., 1998, 20, 31 32 and AXES1.9:
new tools for estimation of crystallite
size and shape by Williamson Hall
analysis, H. Mändar, J. Felsche,
V. Mikli and T. Vajakas, J. Appl.
Crystallogr., 1999, 32, 345 350

Bede Search/Match Bede Scientific Instruments Ltd, Belmont
Business Park, Durham, DH1 1TW, U

CMPR & Portable
LOGIC

CMPR a powder diffraction toolkit,
B. H. Toby, J. Appl. Crystallogr.,
2005, 38, 1040 1041

Yes

Crystallographica
Search Match

Oxford Cryosystems Ltd, 3 Blenheim
Office Park, Lower Road, Long
Hanborough, Oxford OX29 8LN,
United Kingdom

DIFFRACplus

SEARCH
Bruker AXS GmbH, Oestliche

Rheinbrueckenstr. 49, D 76187
Karlsruhe, Germany

DRXWin Vicent Primo Martı́n, El Instituto de
Ciencia de los Materiales, Universitat
de València Avda. Blasco Ibáñez, 13.
46010, València, Spain

Jade Jade, Materials Data, Inc., 1224
Concannon Blvd., Livermore,
CA 94550, USA

MacDiff MacDiff a programme for analysis and
display of X ray powder
diffractogrammes on Apple
Macintosh platforms, R. Petschick,
Geologisch Paläontologisches
Institut, Johann Wolfgang Goethe
Universität Frankfurt am Main,
Senckenberganlage 32 34, 60054
Frankfurt am Main, Germany

Yes

MacPDF ESM Software, 2234 Wade Court,
Hamilton, OH, 45013, USA

MATCH! CRYSTAL IMPACT, K. Brandenburg
& H. Putz GbR, Postfach 1251,
D 53002 Bonn, Germany

Pulwin PULWIN: A program for analyzing
powder X ray diffraction patterns,
S. Brückner, Powder Diffr., 2000,
15(4), 218 219

Yes

RayfleX GE Inspection Technologies, GmbH,
Robert Bosch Str. 3, 50354 Huerth,
Germany

(Continued)
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17.3.4 Powder Data Conversion

17.3.4.1 General Overview. It is more effective, and time saving, to use data
collection software that writes directly into the required data analysis formats.
Where this is not possible, or when distributing diffractograms, data conver-
sion may be required. While in theory a trivial operation, when performed
routinely on large numbers of data files it can become a significant drain on
time. In theory, IUCr CIF (Crystallographic Information File/Crystallographic
Information Framework; which includes PowderCIF) is the standard for
diffraction data transfer. Nexus is another possible standard, while XML has
made an appearance as an Open Format. However, none of these formats have
yet to be routinely applied in the powder diffraction community. Vendor
hardware or data collection software tends to define the default file formats
for most laboratories. Many vendor based XRD data formats are binary, and
potentially not readable into the distant future. If using cryptic binary or ASCII
file formats, a comprehensive definition of the file formats should be obtained
and safely stored. In theory, it would be desirable if all laboratory diffraction
data was converted into an open format such as CIF and protected using an
appropriate local and offsite backup strategy.

Table 17.3 (Continued ).

Software References or contact information
Freely
available

SIeve International Centre for Diffraction Data
(ICDD), (2005), 12 Campus
Boulevard, Newtown Square,
PA 19073 3273 U.S.A.

Traces GBC Scientific Equipment, Monterey
Road, Dandenong, Victoria, Australia

TXRDWIN Omni Scientific Instruments, Inc.
WinDust32 Ital Structures S.r.l., Via Monte Misone

11/d, 38066 Riva del Garda (TN),
Italy

WinXPow STOE & Cie GmbH, Hilpertstr. 10,
D 64295 Darmstadt, Germany

WinXRD Thermo Electron Corporation
X0Pert HighScore PANalytical B.V, Lelyweg 1, 7602 EA

Almelo, The Netherlands
Xplot for Windows Xplot for Windows, Mark Raven, (2005)

CSIRO Land and Water, Urrbrae
South Australia, 5064, Australia

XPowder Quetzal Com S.L. La Carrera 5. 18110
HIJAR Las Gabias. Granada, Spain

XSPEX XSPEX, DIANOCORP, (2005), http://
www.dianocorp.com/

ZDS System ZDS System, Biskupsky dvur 2,
CZ 11000 Praha 1, Czech Republic
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Table 17.4 Available crystal structure databases and their specializations.

Software References or contact information Specialization Freely Available

American
Mineralogist
Crystal Structure
Database

The American Mineralogist Crystal Structure
Database, R. T. Downs and M. Hall Wallace,
Am. Mineral., 2003, 88, 247 250

Minerals Yes

CCDC/Cambridge
Structure Database

The Cambridge Structural Database: a quarter of a
million crystal structures and rising, F. H. Allen,
Acta Crystallogr., Sect. B, 2002, 58, 380 388

Organics and Organometallics

CDS (EPSRC funded
Chemical Database
Service)

‘‘The United Kingdom Chemical Database
Service’’, D. A. Fletcher, R. F. McMeeking,
D. J. Parkin, Chem. Inf. Comput. Sci., 1996, 36,
746 749

Access to a large number of
scientific databases to UK
based academics and students,
including all the main
crystallographic databases

Yes (within the
UK)

COD
(Crystallography
Open Database)

Crystallography Open Database, (2005) htp://
www.crystallography.net/

Open Access Database including
predicted structures

Yes

CRYSTMET CRYSTMET, Toth Information Systems, Inc.,
2045 Quincy Avenue, Ottawa, Ontario, K1J
6B2, Canada

Metals and Alloys

ICDD (International
Centre for
Diffraction Data)
PDF 4+

International Centre for Diffraction Data, 12
Campus Boulevard, Newtown Square, PA,
19073 3273, U.S.A.

Includes crystal structure
co ordinates from the Pauling
File

ICSD (Inorganic
Crystal Structure
Database)

CD ROM: http://www.fiz informationsdienste.de/
en/DB/icsd/WEB: http://icsd.ill.fr/icsd/

Inorganic and Minerals

(Continued )
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Table 17.4 (Continued ).

Software References or contact information Specialization Freely Available

Incommensurate
phases database

A database of incommensurate phases, R. Caracas,
J. Appl. Crystallogr., 2002, 35, 120 121

Incommensurate

LAMA
Incommensurate
Structures
Database

Incommensurate Structures Database,
E. Kroumova, J.A. Luna, G. Madariaga and
J.M. Pérez Mato, Bilbao Crystallographic
Server, Euskal Herriko Unibertsitatea/
University of the Basque Country, 2005, http://
www.cryst.ehu.es/icsdb/

Incommensurate and Composites Yes

MINCRYST Information calculating system on Crystal
Structure data for Minerals (MINCRYST),
A. V. Chichagov, D. A. Varlamov, R. A.
Dilanyan, T. N. Dokina, N. A. Drozhzhina,
O. L. Samokhvalova, T. V. Ushakovskaya,
Crystallogr. Rep., 2001, 46(5), 876 879
[translated from Kristallografiya, 2001, 46(5),
950 954]

Minerals Yes

Pauling File The PAULING FILE Binaries Edition, ed. P.
Villars, ASM International, Materials Park,
Ohio, USA, 2002, ISBN 0 87170 786 1

Binary Compounds including
oxides, alloys; and phase
diagrams

PDB (Protein Data
Bank)

The Protein Data Bank, H. M. Berman,
J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov and P. E. Bourne,
Nucleic Acids Res., 2000, 28, 235 242

Proteins and Biological
Macromolecules

Yes

Zeolite Structures
Database

Zeolite Structures Database, Ch. Baerlocher, L. B.
McCusker, W. M. Meier and D. H. Olson,
http://www.iza structure.org/, 9 October 2003

Zeolites: known and hypothetical Yes
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17.3.4.2 Converting Two-dimensional Powder Diffraction Data into One-
dimensional Data. Fit2D is the benchmark program in use for 2D to 1D
conversion due to its age, free availability, recognizing various image formats,
running on a range of operating systems and has various other features (Table
17.5). However, some MS-Windows specific conversion programs are more
intuitive to use.

17.3.4.3 Interconverting One-dimensional Powder Diffraction Data. The
ConvX for Windows software can be very effective due to its user friendliness
and ability to convert a number of files in a single pass (Table 17.6). The
Powder v4 software can be good for converting ill-defined ASCII format data
into a standard format while PowDLL can convert some of the latest vendor
binary formats. Summing of multiple data files (where different count times
may have been used) is available in some converters, but use of a spreadsheet
program is recommended as an independent check. The procedure for the
general summing of data files and calculation of ESDs is provided on the
CCP14 website.
Care must be taken, as many file formats are ill-defined; and where software

does not convert some file formats into the described specifications. An
example of the later is that of file converters which convert GSAS STD format
files without including the ‘‘STD’’ flag in the second header line (line 2).
Some resulting files may require major to minor editing by hand. For the

above GSAS example, this would involve adding the STD flag to the end of the
second line. Most ASCII data formats are easily checked for starting angle, end
angle and step width, by viewing in a text editor (Table 17.7). However, some can
be quite cryptic. An example of this is the GSAS Rietveld STD and ESD formats,
where the start angle and step is in deci-degrees, and number of datapoints stated
instead of an end angle. A moderately common pitfall is that of intermixing
UNIX and DOS ASCII files on different computer systems. For MS-Windows,
the freeware PFE file editor displays whether the file is UNIX or DOS ASCII and
can save into one or the other via the File, Save-As command. For copying or
inserting columns of data, the freeware ConTEXT editor is effective and saves
time in comparison to importing the file into a spreadsheet program.

17.3.5 Structure Data Conversion and Transformation

With CIF becoming a more used standard in the powder diffraction commu-
nity, structure data conversion is becoming less needed on a day-to-day basis.
The Powder Cell format is probably the next best format due to its relative
simplicity compared to CIF. Most structure databases can export files into CIF
format, and some to Powder Cell format. Eric Dowty’s Cryscon software is
currently the most comprehensive structure data conversion and transforma-
tion (Table 17.8). However, due care should be shown and results checked.
Normally, the programs are robust, and it is more a case of users selecting
options without understanding the consequences.
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17.3.6 Powder Diffraction Pattern Viewing and Processing

For quick checking of single and multiple diffraction data files, the author has a
bias for the XFIT/Koalariet software, but this software is no longer developed
(Table 17.9). WinPLOTR, part of the Fullprof Rietveld Suite, is an excellent
program for data visualization and processing. It imports various common

Table 17.5 Available software for integrating of 2D powder diffraction data
into 1D data.

Software Reference Capability

Datasqueeze Datasqueeze Program for analyzing 2D
diffraction data, especially small angle and
powder diffraction. Paul Heiney,
pheiney@datasqueezesoftware.com, PMB
252, 303 West Lancaster Ave., Wayne,
PA 19087 3938 U.S.A. Available at http://
www. datasqueezesoftware.com/. First
release 2002, last update February 2005

Can integrate full 2D
cones of diffraction

FIT2D FIT2D V9.129 Reference Manual V3.1, A. P.
Hammersley, (1998) ESRF Internal Report,
ESRF98HA01T and Two Dimensional
Detector Software: From Real Detector to
Idealised Image or Two Theta Scan, A. P.
Hammersley, S. O. Svensson, M. Hanfland,
A. N. Fitch, and D. Häusermann, High
Pressure Res., 1996, 14, 235 248

Can integrate full 2D
cones of diffraction

MAUD MAUD (Material Analysis Using Diffraction):
a user friendly {Java} program for {Rietveld}
Texture Analysis and more, L. Lutterotti,
S. Matthies and H. R. Wenk, Proceeding of
the Twelfth International Conference on
Textures of Materials (ICOTOM 12), 1999,
Vol. 1, p. 1599

Debye Scherrer film
integration and of
full 2D cones of
diffraction

NIH Image NIH Image program (developed at the U.S.
National Institutes of Health and available
on the Internet at http://rsb.info.nih.gov/
nih image/)

Usable for Debye
Scherrer film
integration

Powder3D Powder3D 1.0: A multi pattern data reduction
and graphical presentation software,
B. Hinrichsen, R.E. Dinnebier and M.
Jansen, 2004; http://www.fkf.mpg.de/xray/
html/powder3d.html

Integration of full 2D
cones of diffraction:
under development

SImPA SImPA (Simplified Image Plate Analysis),
K. Lagarec and S. Desgreniers (1995 2005),
Laboratoire de physique des solides denses,
Université d’Ottawa, 150, rue Louis
Pasteur, Ottawa, Ontario, Canada, K1N
6N5

Can integrate full 2D
cones of diffraction

XRD2DScan XRD2DScan: new software for polycrystalline
materials characterization using two
dimensional X ray diffraction, A. B.
Rodriguez Navarro, J. Appl. Crystallogr.,
2006, 39, 905 909

Windows software
optimized for area
detectors
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Table 17.6 Available powder diffraction data conversion software and supported file types.

Software References Imported file formats Exported file formats
Converstion
functionality

AXES H. Mändar and T. Vajakas,
AXES a software toolbox
in powder diffraction,
Newsletter Int. Union
Crystallogr, Commission
Powder Diffr. 1998, 20,
31 32; and AXES1.9: new
tools for estimation of
crystallite size and shape by
Williamson Hall analysis, H.
Mändar, J. Felsche, V. Mikli
and T. Vajakas, J. Appl.
Crystallogr., 1999, 32,
345 350

Siemens Diffrac AT 1 & 3,
Bruker DiffracPlus 1.01
RAW, Siemens UXD,
DBWS+WYRIET,
RIETAN, XRS 82,
Allmann DIFFRAC,
ICDD *.REF, ICDD
*.PD3, SCANPI,
Y only, X Y pairs,
DiffracINEL, HUBER
G600 and G670,
Synchrotron SRS,
PROFIT, FULLPROF,
Guinier Tübingen,
GSAS standard,
DIFFaX, Philips *.RD,
Philips *.UDF, Seifert
ASCII, EXTRA, STOE
Binary v1.04

Siemens Diffrac AT 1 & 3,
Bruker DiffracPlus 1.01
RAW, Siemens UXD,
PEAK 91,
DBWS+WYRIET,
RIETAN, XRS 82,
Allmann DIFFRAC,
ICDD *.REF, ICDD
*.PD3, Y only, X Y
pairs, HUBER G670,
PROFIT, FULLPROF,
GSAS standard,
EXTRA, STOE Binary
v1.04

Summation

CMPR CMPR, Brian Toby, NIST
Center for Neutron
Research, 100 Bureau Drive,
Stop 8562, National Institute
of Standards and
Technology, Gaithersburg,
MD, 20899 8562, USA

SPEC, BT 1, pdCIF,
COM CAT, CPI,
DBWS/ Fullprof, APS
DND, GSAS EXP,
GSAS raw data, NIST/
ICP

CSV, TXT, GSAS, XDA Summation and
interpolation
of multiple
datasets

ConvX ConvX Data File Conversion
Software for Windows, M.E.

Philips VAX APD,
Philips PC APD (RD

Philips VAX APD,
Philips PC APD (RD

(Continued )
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Bowden, Int. Union
Crystallogr., Commission
Powder Diffr. Newsletter,
2000, No. 23, 21

format), RIET7
Rietveld, GSAS, ASCII
2 theta,I lists, SCANPI,
Philips PC APD (SD
format)

format), RIET7
Rietveld, GSAS, ASCII
2 theta and I lists,
SCANPI, Sietronics
CPI, Siemens
DiffracPlus, FullProf

Fullprof Suite/
WinPLOTR

WinPLOTR: A Windows tool
for powder diffraction
pattern analysis, T. Roisnel
and J. Rodriguez Carvajal,
EPDIC 7: European Powder
Diffraction, Pts 1 and 2
Materials Science Forum
378 3: 118 123, Part 1&2
2001

X Y, DBWS/Fullprof, Old
D1A (ILL), D1B (ILL),
Brookhaven sync, G4.1,
D2B/3T2/G4.2, HRPT/
DMC (PSI), RX
(Socabim), VCT/SR5
(Variable Count Time
Madsen and Hill),
GSAS, CPI,
PANalytical, ISIS
normalized, ESRF
multi, LLB Saclay
formats, UXD
Multscans (Socabim)
6T2

Multicolumns ASCII, XY
INSTM 0,

Normalization
and
summation of
multiple
datastes

MacDiff MacDiff a programme for
analysis and display of X ray
powder diffractogrammes on
Apple Macintosh platforms,
R. Petschick, Geologisch
Paläontologisches Institut,
Johann Wolfgang Goethe

Philips ‘‘.RD’’ APD
VMS, Philips ‘‘.RD’’
APD MSDOS, Philips
APD ASCII MSDOS
(APD ’’View Scan’’),
Philips APD APD
UDF ASCII MSDOS,

Philips APD APD UDF
ASCII MSDOS,
‘‘.MDI’’ ASCII,
Sietronic ‘‘.CPI’’ ASCII,
MacXFit of H.Stanjek,
Text ASCII (angle,
count [, base] several

Table 17.6 (Continued ).
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Universität Frankfurt am
Main, Senckenberganlage
32 34, 60054 Frankfurt am
Main, Germany

Siemens ‘‘.RAW’’
RAW2 MSDOS,
Siemens ‘‘.RAW’’
New RAW1, Siemens
‘‘.RAW’’ Old RAW
format, ‘‘.MDI’’ ASCII
Text, ‘‘.OUT’’ ASCII
Text, Sietronic ‘‘.CPI’’
ASCII Text, Lauterjung
ASCII Text, SCINTAG
2000 ASCIII

delimiters possible),
MacDiff DIFF format

Powder3D Powder3D 1.0: A multi pattern
data reduction and graphical
presentation software, B.
Hinrichsen, R. E. Dinnebier
and M. Jansen, 2004; http://
www.fkf.mpg.de/xray/html/
powder3d.html

CHI, XY, XYE, DAT,
GSA, UXD

Array, CHI, XYE, GSAS,
Fullprof

Normalizing
multiple
patterns

Powder Cell POWDER CELL a program
for the representation and
manipulation of crystal
structures and calculation of
the resulting X ray powder
patterns., W. Kraus and
G. Nolze, J. Appl.
Crystallogr., 1996, 29, 301
303

Diffrac AT&Plus, STOE
Raw, XY, UDF, CPI,
Riet7/ LHPM, APX 63
VAL

X Y, Siemens RAW, CPI

Powder v4 PowderV2: a suite of
applications for powder
X ray diffraction

DBWS, GSAS ESD and
STD, LHPM, Philips
PC UDF, Riet7,

DBWS, GSAS ESD and
STD, LHPM, Philips
PC UDF, Riet7,

Normalization of
multiple
datasets
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calculations, N. Dragoe, J.
Appl. Crystallogr., 2001, 34,
535

Scintag, Siemens ASCII,
Sietronics CPI, Wppf
Profit, Y free ASCII,
X,Y free ASCII, X,Y,
Z free ASCII, MXP18
UNIX Binary, Mac
Science Windows
Binary, Philips RD/SD
Binary, custom format

Scintag, Siemens,
Sietronics CPI, Wppf
Profit 1, Wppf Profit 2,
Y free ASCII, X,Y free
ASCII, X,Y,Z free
ASCII, DPLOT,

PowderX PowderX: Windows 95 based
program for powder X ray
diffraction data processing,
C. Dong, J. Appl.
Crystallogr., 1999, 32, 838

Mac Science ASCII, BD90
(Raw), X Y, Rigaku
(DAT), Sietronics (CPI),
TsingHua Rigaku
(USR) Siemens ASCII
(UXD), Siemens Binary
(RAW), Philips ASCII
(UDF), Philips Binary
(RD) Mac Science Raw,
RIET7 (DAT), ORTEC
Maestro (CHN)

ALLHKL (POW),
Sietronics (CPI),
FOURYA/ XFIT/
Koalariet (XDD),
Fullprof (DAT), GSAS
(DAT), Rietan (INT),
Simpro (DUO), X Y
(XRD), DBWS (DAT),
LHPM (DAT)

PowDLL PowDLL: A reusable. NET
component and XRD data
interconversion utility,
N. Kourkoumelis (2004 05),
http://users.uoi.gr/
nkourkou/powdll.htm

Bruker/Siemens RAW
(versions 1 3), Philips
RD, Scintag ARD,
powderCIF, Sietronics
CPI, Riet7 DAT,
DBWS, GSAS (CW
STD), Jade MDI,
Rigaku RIG, Philips

Bruker/Siemens RAW
(versions 1 3), Philips
RD, Scintag ARD,
Sietronics CPI, Riet7
DAT, DBWS, GSAS
(CW STD), Jade MDI,
Rigaku RIG, Philips

Table 17.6 (Continued ).
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UDF, UXD, XDA,
XDD, ASCII XY

UDF, UXD, XDA,
XDD, ASCII XY

POWF POWF: a program for powder
data file conversion, R.J.
Angel, (2005), Virginia Tech
Crystallography Laboratory,
3076 Derring Hall, Virgina
Tech, Blacksburg, VA 24060,
USA; http://
www.crystal.vt.edu/crystal/
powf.html

ASCII XY, GSAS CW
data, Stoe RAW,
Siemens UXD, Scintag
ARD, DBW, MDI
ASCI, MDI MDI,
GSAS Cif, Stoe ASCII,
Philips UDF

ASCII XY, GSAS CW
data, Stoe RAW,
Siemens UXD, Scintag
ARD, DBW

Pulwin PULWIN: A program for
analyzing powder X ray
diffraction patterns, S.
Brückner, Powder Diffr.,
2000, 15(4), 218 219

X Y, X, INEL CPS 120
(*.adf), PHILIPS
(*.udf), SIEMENS
(*.uxd)

X Y, X, INEL CPS 120
(*.adf), PHILIPS
(*.udf), SIEMENS
(*.uxd)

VCTCONV VCTCONV, M.E. Bowden,
CRI IRL, Lower Hutt, New
Zealand, (2005)

Variable Count Time
RIET7/SR5

GSAS ESD

WinFIT WinFit 1.2.1, S. Krumm, (June
1997), Institut fur Geologie,
Scholssgarten 5, 91054,
Erlangen, Germany

DFA, SIEMENS RAW,
TRU, X Y, ICDD PD3,
ZDS, CRI, Philips UDF
and RD, Stoe RAW,
MDI Jade, MacDIFF
DIF, XDA

SIEMENS (*.raw),
PHILIPS (*.rd), ASCII,
XDA
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formats and can display the data in 2-theta, D-spacing, Q, Sin theta/lambda,
making it very useful for comparing data taken at different wavelengths. For
large numbers of datasets the new Powder3D is very effective. Powder3D is
designed for displaying hundreds to thousands of datasets as part of non-
ambient in situ diffraction runs. The ‘‘2D film mode’’ within Powder3D is a
useful visualization method for obtaining an overview of tens to thousands of
datasets.

17.3.7 Peak Finding and Peak Profiling

Again, the author has a bias for using XFIT/Koalariet. While peak selection is
manual, XFIT’s Marquardt fitting is extremely robust and stable compared to
other programs, and includes Fundamental Parameters peak profiling for
Bragg–Brentano XRD geometries. However, as XFIT is no longer developed,
WinPLOTR is actively developed and worth using. WinPLOTR includes
automatic and manual peak finding, peak profiling, and passing the results
onto several indexing programs. Fityk is an open source GPL’d program for
peak fitting. It runs under Linux, FreeBSD, MS Windows and MacOS X, has
many common peak-shape functions, and the ability to apply user-defined
functions (Table 17.10).

17.3.8 Powder Indexing

17.3.8.1 Powder Indexing Software. Due to indexing being considered a
tedious bottleneck in structure solution from powder diffraction data, it is
advisable to use as wide a number of programs as possible (Table 17.11).
Traditionally, the three main indexing programs of choice have been Dicvol,
Treor and Ito. However, the trend is for indexing programs that are moderately
insensitive to impurity peaks, and can handle data of lower quality. Dicvol has
been updated with Dicvol2004 and Dicvol 2006; and Treor to Treor2000
(within the EXPO structure solution software). X-Cell, Topas Indexing,
MAUD and McMaille are new programs that are more likely to cope with
impurity peaks and/or poorer quality data. At present, the indexing options

Table 17.7 Some text editors and spreadsheet programs with useful features
for powder diffraction data conversion.

Software Useful feature

ConTEXT Freeware software with good column editing accessible via
‘‘[CONTROL] L’’

DPLOT User friendly re binning of variable step data into constant 2 theta
steps

MS Excel Simple Mathematical operations for summing and data
interconversion

PFE Flexible intuitive freeware text editor with good search and replace
features, and inter converting DOS ASCII to UNIX ASCII
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Table 17.8 Available structure data conversion and transformation software.

Software References Imported file formats Exported file formats

AXES H. Mändar and T. Vajakas, AXES a
software toolbox in powder diffraction,
Newsletter Int. Union Crystallogr.,
Commission Powder Diffr. 1998, 20, 31 32
and AXES1.9: new tools for estimation of
crystallite size and shape by Williamson
Hall analysis, H. Mändar, J. Felsche,
V. Mikli and T. Vajakas, J. Appl.
Crystallogr., 1999, 32, 345 350

ICSD *.txt, MolDraw, Powder
Cell, GSAS EXP, Fullprof PCR

ICSD *.txt, LazyPulvarix,
PrecPlot, Schkal,
MolDraw, Powder
Cell, Fullprof PCR

Cryscon Cryscon: crystallographic conversion and
utility software, Eric Dowry, Shape
Software, 521 Hidden Valley Road
Kingsport, TN, 37663, USA, http://
www.shapesoftware.com/

Freeform, CCDC FDAT, Shelx
INS, CIF, DBWS, LHPM,
ISCD formats, ORTEP,
XtalView, Rietan, GSAS,
American Mineralogist
Database, Fullprof, PDB,
ATOMS, VIBRAT VBR, Raval
ATOMS, WIEN2K

Freeform, CCDC FDAT,
Shelx INS, CIF,
DBWS, LHPM, ISCD
formats, ORTEP,
Rietan, GSAS,
Fullprof, Raval
ATOMS.

Gretep LMGP Suite Suite of Programs for the
interpretation of X ray Experiments, by
J. Laugier and B. Bochu, ENSP/
Laboratoire des Matériaux et du Génie
Physique, BP 46. 38042 Saint Martin
d0Hčres, France

Gretep, Poudrix, Shelx,
Lazy_Pulverix, Powder Cell,
CIF

Shelx, GRETEP, CIF

MolXtl MolXtl: molecular graphics for small
molecule crystallography, D. W. Bennett,
J. Appl. Crystallogr., 2004, 37, 1038

MolXtl, Shelx, Xmol XYZ, CIF,
PDB, Z matrix

MolXtl, Xmol XYZ, CIF,
PDB, Z matrix, Xtl
Cartesian XTC

Open Babel Open Babel. http://
openbabel.sourceforge.net/ (accessed
Mar 2005), 2005

Wide variety of primarily Cartesian
molecular modeling formats

Wide variety of primarily
Cartesian molecular
modeling formats

(Continued )
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Table 17.8 (Continued ).

Software References Imported file formats Exported file formats

ORTEP III for
Windows

ORTEP 3 for Windows a version of
ORTEP III with a Graphical User
Interface (GUI), L. J. Farrugia, J. Appl.
Crystallogr., 1997, 30, 565

Shelx, CIF, GX, Platon SPF,
ORTEP, CSD FDAT, CSSR
XR, Crystals, GSAS EXP, Sybyl
MOL, Sybyl MOL2, MDL
Molfile, XYZ, PDB, Rietica
LHPM, Fullprof PCR

ORTEP, Shelx, XYZ

Platon Single crystal structure validation with the
program PLATON, A. L. Spek, J. Appl.
Crystallogr., 2003, 36, 7 13

Includes Structure Tidy

Powder Cell POWDER CELL a program for the
representation and manipulation of
crystal structures and calculation of the
resulting X ray powder patterns.,
W. Kraus and G. Nolze, J. Appl.
Crystallogr., 1996, 29, 301 303

Powder Cell, Shelx, ICSD (TXT) Powder Cell, Shelx, Opal
(XTL), BGMN (STR)

Structure Tidy STRUCTURE TIDY a computer program
to standardize crystal structure data,
L. M. Gelato and E. Parthé, J. Appl.
Crystallogr., 1987, 20, 139 143 and
Inorganic crystal structure data to be
presented in a form more useful for
further studies, S. Zu Hu and E. Parthe,
Chin. J. Struct. Chem. 2004, 23(10), 1150
1160

Puts crystal structures into
standardized co ordinates for
comparison with other
structures

WinGX WinGX suite for small molecule single
crystal crystallography, L. J. Farrugia,
J. Appl. Crystallogr., 1999, 32, 837 838

CSSR, Shelx, Cif, CSD/CCDC
FDAT, GX

Shelx, CIF, GX, SPF/
Platon, CACAO
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Table 17.9 Available powder diffraction pattern viewing and processing
software.

Software References Data formats

AXES H. Mändar and T. Vajakas,
AXES a software toolbox in
powder diffraction, Newsletter
Int. Union Crystallogr.,
Commission Powder Diffr.,
1998, 20, 31 32 and AXES1.9:
new tools for estimation of
crystallite size and shape by
Williamson Hall analysis,
H. Mändar, J. Felsche, V.
Mikli and T. Vajakas, J. Appl.
Crystallogr., 1999, 32, 345
350

Siemens Diffrac AT 1 & 3, Bruker
DiffracPlus 1.01 RAW,
Siemens UXD,
DBWS+WYRIET,
RIETAN, XRS 82, Allmann
DIFFRAC, ICDD *.REF,
ICDD *.PD3, SCANPI,
Y only, X Y pairs,
DiffracINEL, HUBER G600
and G670, Synchrotron SRS,
PROFIT, FULLPROF,
Guinier Tübingen, GSAS
standard, DIFFaX, Philips
*.RD, Philips *.UDF, Seifert
ASCII, EXTRA, STOE
Binary v1.04

CMPR CMPR, Brian Toby, NIST
Center for Neutron Research,
100 Bureau Drive, Stop 8562,
National Institute of
Standards and Technology,
Gaithersburg, MD, 20899
8562, USA

SPEC, BT 1, pdCIF, COM CAT,
CPI, DBWS/ Fullprof, APS
DND, GSAS EXP, GSAS raw
data, NIST/ICP

Fityk Marcin Wojdyr, Institute of High
Pressure Physics, Warsaw,
Poland, http://
www.unipress.waw.pl/fityk/

X Y, RIT, CPI, MCA, Siemens/
Bruker RAW

Fullprof Suite/
WinPLOTR

WinPLOTR: A Windows tool for
powder diffraction pattern
analysis, T. Roisnel and
J. Rodriguez Carvajal,
EPDIC 7: European Powder
Diffraction, Pts 1 and 2
Materials Science Forum 378
3: 118 123, Part 1&2 2001

X Y, Old D1A, D1B,
Brookhaven Synchrotron,
G4.1, D2B, RX (Socabim),
VCT, GSAS, CPI,
Panalytical, normalized ISIS

OpenGenie Open GENIE Reference Manual,
F. A. Akeroyd, R. L.
Ashworth, S. I. Campbell,
S. D. Johnston, C. M.
Moreton Smith, R. G.
Sergeant and D. S. Sivia,
Rutherford Appleton
Laboratory Technical Report
RAL TR 1999 031

ISIS Raw File, GENIE II, Open
GENIE

Powder 3D Powder3D 1.0: A multi pattern
data reduction and graphical
presentation software,
B. Hinrichsen, R. E.
Dinnebier and M. Jansen,
2004; http://www.fkf.mpg.de/
xray/html/powder3d.html

CHI, XY, XYE, DAT, GSA,
UXD

Powder Cell POWDER CELL a program
for the representation and
manipulation of crystal

Diffrac AT&Plus, STOE Raw,
XY, UDF, CPI, Riet7/
LHPM, APX 63 VAL

(Continued)
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Table 17.9 (Continued ).

Software References Data formats

structures and calculation of
the resulting X ray powder
patterns., W. Kraus and
G. Nolze, J. Appl.
Crystallogr., 1996, 29, 301
303

Powder v4 PowderV2: a suite of applications
for powder X ray diffraction
calculations, N. Dragoe,
J. Appl. Crystallogr., 2001, 34,
535

DBWS, GSAS CW, GSAS CW,
GSAS ESD, GSAS ALT,
LHPM, Philips RD/SD
binary, Philips UDF, MXP18
Binary, RIET7, Scintag,
Siemens ASCII, Sietronics
CPI, WPPF/Profit, Y free
ascii, XY free ascii, XYZ free
ascii. Line; X, XY, XYZ.

PowderX PowderX: Windows 95 based
program for powder X ray
diffraction data processing,
C. Dong, J. Appl. Crystallogr.,
1999, 32, 838

Mac Science ASCII, BD90
(Raw), X Y, Rigaku (DAT),
Sietronics (CPI), TsingHua
Rigaku (USR) Siemens ASCII
(UXD), Siemens Binary
(RAW), Philips ASCII
(UDF), Philips Binary (RD)
Mac Science Raw, RIET7
(DAT), ORTEC Maestro
(CHN)

Pulwin PULWIN: A program for
analyzing powder X ray
diffraction patterns, S.
Brückner, Powder Diffr., 2000,
15(4), 218 219

X Y, X, INEL CPS 120 (*.adf),
PHILIPS (*.udf), SIEMENS
(*.uxd)

WinFIT WinFit 1.2.1, S. Krumm, (June
1997), Institut fur Geologie,
Scholssgarten 5, 91054,
Erlangen, Germany

DFA, SIEMENS RAW, TRU,
X Y, ICDD PD3, ZDS, CRI,
Philips UDF and RD, Stoe
RAW, MDI Jade, MacDIFF
DIF, XDA

XFIT Axial Divergence in a
Conventional X ray Powder
Diffractometer. II.
Realization and Evaluation in
a Fundamental Parameter
Profile Fitting Procedure,
R. W. Cheary and A. A.
Coelho, J. Appl. Crystallogr.,
1998, 31, 862 868, and R. W.
Cheary and A. A. Coelho,
1996, Programs XFIT and
FOURYA, deposited in
CCP14 Powder Diffraction
Library, Engineering and
Physical Sciences Research
Council, Daresbury
Laboratory, Warrington,
England

RIET 7, XDD, XDA, SCN, CPI,
CAL, CPT, XY
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Table 17.10 Available peak finding and peak profiling software.

Software Reference Peak Find
Peak
Profiling Data Formats

AXES H. Mändar and T. Vajakas, AXES
a software toolbox in powder
diffraction, Newsletter Int. Union
Crystallogr., Commission Powder
Diffr., 1998, 20, 31 32 and
AXES1.9: new tools for
estimation of crystallite size and
shape by Williamson Hall
analysis, H. Mändar, J. Felsche,
V. Mikli and T. Vajakas, J. Appl.
Crystallogr., 1999, 32, 345 350

Yes Siemens Diffrac AT 1 & 3, Bruker
DiffracPlus 1.01 RAW, Siemens
UXD, DBWS+WYRIET,
RIETAN, XRS 82, Allmann
DIFFRAC, ICDD *.REF, ICDD
*.PD3, SCANPI, Y only, X Y
pairs, DiffracINEL, HUBER
G600 and G670, Synchrotron
SRS, PROFIT, FULLPROF,
Guinier Tübingen, GSAS
standard, DIFFaX, Philips *.RD,
Philips *.UDF, Seifert ASCII,
EXTRA, STOE Binary v1.04

CMPR CMPR and Portable Logic, Brian
Toby, NIST Center for Neutron
Research, 100 Bureau Drive, Stop
8562, National Institute of
Standards and Technology,
Gaithersburg, MD, 20899 8562,
USA

Yes SPEC, BT 1, pdCIF, COM CAT,
CPI, DBWS/ Fullprof, APS
DND, GSAS EXP, GSAS raw
data, NIST/ICP

Fitykt Marcin Wojdyr, Institute of High
Pressure Physics, Warsaw,
Poland, http://
www.unipress.waw.pl/fityk/

Yes Yes X Y, RIT, CPI, MCA, Siemens/
Bruker RAW

Fullprof Suite/
Winplotr

WinPLOTR: A Windows tool for
powder diffraction pattern
analysis, T. Roisnel and
J. Rodriguez Carvajal, EPDIC 7:

Yes Yes X Y, Old D1A, D1B, Brookhaven
Synchrotron, G4.1, D2B, RX
(Socabim), VCT, GSAS, CPI,
Panalytical, normalized ISIS
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European Powder Diffraction, Pts
1 and 2 Materials Science Forum
378 3: 118 123, Part 1&2 2001

GSAS RawPlot General Structure Analysis System
(GSAS), A.C. Larson and R.B.
Von Dreele, Los Alamos
National Laboratory Report
LAUR 86 748 (1994)

Yes GSAS

Powder3D Powder3D 1.0 : A multi pattern data
reduction and graphical
presentation software,
B. Hinrichsen, R. E. Dinnebier
and M. Jansen, 2004; http://
www.fkf.mpg.de/xray/html/
powder3d.html

Yes CHI, XY, XYE, DAT, GSA, UXD

Powder v4 PowderV2: a suite of applications for
powder X ray diffraction
calculations, N. Dragoe, J. Appl.
Crystallogr., 2001, 34, 535

Yes DBWS, GSAS CW, GSAS CW,
GSAS ESD, GSAS ALT, LHPM,
Philips RD/SD binary, Philips
UDF, MXP18 Binary, RIET7,
Scintag, Siemens ASCII,
Sietronics CPI, WPPF/Profit,
Y free ascii, XY free ascii, XYZ
free ascii. Line; X, XY, XYZ

PowderX PowderX: Windows 95 based
program for powder X ray
diffraction data processing, C.

Yes Mac Science ASCII, BD90 (Raw),
X Y, Rigaku (DAT), Sietronics
(CPI), TsingHua Rigaku (USR)
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Dong, J. Appl. Crystallogr., 1999,
32, 838

Siemens ASCII (UXD), Siemens
Binary (RAW), Philips ASCII
(UDF), Philips Binary (RD) Mac
Science Raw, RIET7 (DAT),
ORTEC Maestro (CHN)

PRO FIT Whole powder pattern fitting
without reference to a structural
model: Application to X ray
powder diffractometer data,
H. Toraya, J. Appl. Crystallogr.
1986, 19, 440 447

Yes Profit

PULWIN PULWIN: A program for analyzing
powder X ray diffraction
patterns, S. Brückner, Powder
Diffr., 2000, 15(4), 218 219

Yes X Y, X, INEL CPS 120 (*.adf),
PHILIPS (*.udf), SIEMENS
(*.uxd)

SHADOW Simultaneous Crystallite Size, Strain
and Structure Analysis from
X ray Powder Diffraction
Patterns, S. A. Howard and R. L.
Snyder, NYS College of Ceramics
Technical Publication, New York
State College of Ceramics, Alfred
University, Alfred, NY 14802,
USA

Yes XDA

WinFit WinFit 1.2.1, S. Krumm, (June
1997), Institut fur Geologie,
Scholssgarten 5, 91054, Erlangen,
Germany

Yes DFA, SIEMENS RAW, TRU, X Y,
ICDD PD3, ZDS, CRI, Philips
UDF and RD, Stoe RAW, MDI
Jade, MacDIFF DIF, XDA
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XFIT Axial Divergence in a Conventional
X ray Powder Diffractometer. II.
Realization and Evaluation in a
Fundamental Parameter Profile
Fitting Procedure, R. W. Cheary
and A. A. Coelho, J. Appl.
Crystallogr., 1998, 31, 862 868,
and R. W. Cheary and A. A.
Coelho, 1996, Programs XFIT
and FOURYA, deposited in
CCP14 Powder Diffraction
Library, Engineering and
Physical Sciences Research
Council, Daresbury Laboratory,
Warrington, England

Yes RIET 7, XDD, XDA, SCN, CPI,
CAL, CPT
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Table 17.11 Available powder indexing software.

Software References Within suites

Dicvol 91 Indexing of powder diffraction patterns
for low symmetry lattices by the
successive dichotomy method,
A. Boultif and D. Louër, J. Appl.
Crystallogr., 1991, 24, 987 993

CMPR, Crysfire,
Fullprof Suite
Winplotr, Powder v4

Dicvol 2004 Powder pattern indexing with the
dichotomy method, A. Boultif and D.
Louer, J. Appl. Crystallogr., 2004, 37,
724 731

Eflect/Index EFLECH/INDEX a program pair for
peak search/fit and indexing,
J. Bergmann and R. Kleeberg,
Newsletter Int. Union Crystallogr.,
Commission Powder Diffr., 1999, No.
21, p. 5

Fjzn The Crysfire 2002 System for Automatic
Powder Indexing: User’s Manual,
R. Shirley, (2002) The Lattice Press,
41 Guildford Park Avenue,
Guildford, Surrey GU2 7NL,
England

Crysfire

Ito A Fully Automatic Program for Finding
the Unit Cell from Powder Data,
J. W. Visser, J. Appl. Crystallogr.,
1969, 2, 89 95

Crysfire, Fullprof Suite
Winplotr, Powder v4

Kohl/TMO Trial and error indexing program for
powder patterns of monoclinic
substances, F. Kohlbeck and E. M.
Hörl, J. Appl. Crystallogr., 1978, 11,
60 61

Crysfire

Lzon New powder indexing programs for any
symmetry which combine grid search
with successive dichotomy, R. Shirley
and D. Louër, Acta Crystallogr., Sect.
A, 1978, 34, S382

Crysfire

MAUD (whole
profile
indexing)

MAUD (Material Analysis Using
Diffraction): a user friendly {Java}
program for {Rietveld} Texture
Analysis and more, L. Lutterotti,
S. Matthies and H. R. Wenk,
Proceeding of the Twelfth
International Conference on Textures
of Materials (ICOTOM 12), 1999,
Vol. 1, p. 1599

McMaille Monte Carlo Indexing with McMaille,
A. Le Bail, Powder Diffr. 2004, 19,
249 254

Produces Chekcell
summary files.

Supercell SuperCell, J. Rodriguez Carvajal,
Laboratoire Léon Brillouin, Saclay,
France, December 1998 and
WinPLOTR: A Windows tool for

Fullprof Suite Winplotr

(Continued )
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Table 17.11 (Continued ).

Software References Within suites

powder diffraction pattern analysis,
J. Rodriguez Carvajal and T. Roisnel,
EPDIC 7: European Powder
Diffraction, Pts 1 and 2 Materials
Science Forum 378 3: 118 123, Part
1&2 2001

Taup/Powder Enhancements in powder pattern
indexing, D. Taupin, J. Appl.
Crystallogr., 1989, 22, 455 459 and A
powder diagram automatic indexing
routine, D. Taupin, J. Appl.
Crystallogr., 1973, 6, 380 385

Crysfire

Topas/Iterative
Least
Squares
SVD
Indexing

Indexing of powder diffraction patterns
by iterative use of singular value
decomposition, A. A. Coelho, J. Appl.
Crystallogr., 2003, 36, 86 95,
TOPAS Academic by Alan Coelho,
ISIS and TOPAS V3: General profile
and structure analysis software for
powder diffraction data. User’s
Manual, (2005) Bruker AXS,
Karlsruhe, Germany

Topas/Monte
Carlo
whole
profile
indexing

TOPAS Academic by Alan Coelho, ISIS
and TOPAS V3: General profile and
structure analysis software for
powder diffraction data. User’s
Manual, (2005) Bruker AXS,
Karlsruhe, Germany

Treor90 TREOR, a semi exhaustive trial and
error powder indexing program for all
symmetries, P. E. Werner, L.
Eriksson and M. Westdahl, J. Appl.
Crystallogr. 1985, 18, 367 370

CMPR, Crysfire,
Fullprof Suite
Winplotr, Powder v4,
Powder X

Treor 2000 New techniques for indexing: N TREOR
in EXPO, A. Altomare, C.
Giacovazzo, A. Guagliardi, A. G. G.
Moliterni, R. Rizzi and P. E. Werner,
J. Appl. Crystallogr., 2000, 33, 1180
1186

EXPO2000

VMRIA/
AUTOX

AUTOX A program for autoindexing
reflections from multiphase
polycrystals, V. B. Zlokazov, Comput.
Phys. Commun., 1995, 85, 415 422
and Renewed interest in powder
diffraction data indexing,
J. Bergmann, A. Le Bail, R. Shirley
and V. B. Zlokazov, Z. Kristallogr.,
2004, 219, 783 790

X Cell X Cell: a novel indexing algorithm for
routine tasks and difficult cases,
M. A. Neumann, J. Appl.
Crystallogr., 2003, 36, 356 365
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within the Topas suite seem the best for difficult data. Topas also includes a
whole profile Monte-Carlo indexing where there is no need for the user to select
peaks. Failure to index by these various packages can be considered an incentive
for the use of Transmission Electron Microscopy (TEM) for obtaining a cell, or
putting more effort into the growing of single crystals.

17.3.8.2 Powder Indexing Suites. The Crysfire suite by Robin Shirley, linking
to over eight different indexing programs, was the main recommended indexing
suite. However, with the death of the author from Hepatitis A in March 2005, it
is no longer under development. The WinPLOTR software, part of the Fullprof
Suite, is a popular, effective and maintained, alternative (Table 17.12).

17.3.9 Space Group Assignment

Most indexing programs produce a cell, but not a recommended space group.
There are two main methods of determining the space group from powder data,
which are discussed below.

17.3.9.1 Non-whole Profile Space Group Assignment. Traditional space
group assignment involves comparing the list of allowed HKLs to the observed
peaks. What was previously a rather manual process has been automated to a
large extent by modern software. The author’s favorite is the Chekcell program
by Jean Laugier and Bernard Bochu, which has a graphical interface for both
manual and automatic space group assignment. Chekcell also allows the user to
explore possible supercell and subcells, and links to the LEPAGE program of
Ton Spek. The Topas indexing software will do this by suggesting a list of
possible space groups as part of its solution list. An optimized space group
assignment algorithm for powder diffraction exists inside the Extsym program,
which uses the output from Pawley fitting to assign the most probable space
group(s) (Table 17.13).

17.3.9.2 Whole Profile Space Group Assignment. In the case of significant
peak overlap, Le Bail or Pawley fitting compatible Rietveld program can
perform whole profile space group assignment by manually inputting all the
possible space groups. A Le Bail or Pawley fit is performed, and tabulating the
fit parameters and Rietveld plot vs. the space group. Some Rietveld programs,
such as MAUD, will perform this procedure automatically.

17.3.10 Space Group Information Software and Databases

Various software exists that outputs information on space groups. It is best to
use two or more of these programs in tandem to check for consistency of results
(Table 17.14).
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17.3.11 Unit Cell Refinement

Nearly all unit cell refinement programs assume that a list of peak positions will
be provided in some form. A personal favorite for quick unit cell refinement is
the graphical Celref for Windows software of Jean Laugier and Bernard Bochu.
Celref also understands space groups and includes a facility to automatically
match HKL positions to observed peaks. For use of internal standard, the
XLAT software of Bernhard Rupp, despite its age, is very effective. However,

Table 17.12 Available powder indexing suites.

Software References Within the suite/feature

AXES H. Mändar and T. Vajakas, AXES a
software toolbox in powder
diffraction, Newsletter Int. Union
Crystallogr., Commission Powder
Diffr. 1998, 20, 31 32 and AXES1.9:
new tools for estimation of crystallite
size and shape by Williamson Hall
analysis, H. Mändar, J. Felsche,
V. Mikli and T. Vajakas, J. Appl.
Crystallogr., 1999, 32, 345 350

Dicvol, Ito, Treor

CMPR CMPR, Brian Toby, NIST Center for
Neutron Research, 100 Bureau Drive,
Stop 8562, National Institute of
Standards and Technology,
Gaithersburg, MD, 20899 8562, USA

Dicvol, Ito, Treor

Crysfire The Crysfire 2002 System for Automatic
Powder Indexing: User’s Manual,
R. Shirley, (2002) The Lattice Press,
41 Guildford Park Avenue, Guildford,
Surrey GU2 7NL, England

Dicvol91, FJZN,
Ito12, Kohl/TMO,
Lzon, Taup,
Treor90

Powder v4 PowderV2: a suite of applications for
powder X ray diffraction calculations,
N. Dragoe, J. Appl. Crystallogr., 2001,
34, 535

Dicvol, Ito, Treor

PowderX PowderX: Windows 95 based program
for powder X ray diffraction data
processing, C. Dong, J. Appl.
Crystallogr., 1999, 32, 838

Treor

Fullprof
Suite/
Winplotr

WinPLOTR: AWindows tool for powder
diffraction pattern analysis, T. Roisnel
and J. Rodriguez Carvajal, EPDIC 7:
European Powder Diffraction, Pts 1
and 2 Materials Science Forum 378 3:
118 123, Part 1&2 2001

Dicvol, Treor, Ito,
Supercell

Chekcell LMGP Suite Suite of Programs for the
interpretation of X ray Experiments,
by J. Laugier and B. Bochu, ENSP/
Laboratoire des Matériaux et du
Génie Physique, BP 46. 38042 Saint
Martin d0Hčres, France

Graphical evaluation
and analysis of
Crysfire and
McMaille indexing
results
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where speed is an issue, or for unit cell refinement of large numbers of datasets,
a whole profile fitting method (such as Le Bail fitting) should be considered
(Table 17.15).

17.3.12 Full Profile Fitting (Pawley, Le Bail)

Full profile fitting can be useful for various tasks including unit cell refinement
involving peak overlap, space group assignment, extracting intensities prior to
structure solution, and pre-structure refinement fitting of the powder pattern.
The two main methods are listed below.

17.3.12.1 Le Bail Software. A Rietveld program could be considered
somewhat antiquated if it did not have some form of Le Bail fitting option

Table 17.13 Available non-whole profile space group assignment software
and resources.

Software References

Absen (within
Ortex)

ABSEN a PC computer program for listing systematic
absences and space group determination, P. McArdle,
J. Appl. Crystallogr., 1996, 29, 306

Chekcell LMGP Suite Suite of Programs for the interpretation of X ray
Experiments, by J. Laugier and B. Bochu, ENSP/
Laboratoire des Matériaux et du Génie Physique, BP 46.
38042 Saint Martin d0Hčres, France

Extsym A probabilistic approach to space group determination from
powder diffraction data, A. J. Markvardsen, W. I. F.
David, J. Johnston and K. Shankland, Acta Crystallogr.,
Sect. A, 2001, 57, 47

International Tables
vol A.

International Tables for Crystallography Volume A: Space
group symmetry, ed. Theo Hahn, Published for the
International Union of Crystallography by Springer. Fifth
edition, April 2002, ISBN 0 7923 6590 9

ISOTROPY ISOTROPY, H. T. Stokes and D. M. Hatch, (2002), http://
stokes.byu.edu/isotropy.html

MAUD MAUD (Material Analysis Using Diffraction): a user friendly
Java program for Rietveld Texture Analysis and more,
L. Lutterotti, S. Matthies and H. R. Wenk, Proceeding of
the Twelfth International Conference on Textures of
Materials (ICOTOM 12), 1999, Vol. 1, p. 1599

Platon Single crystal structure validation with the program PLATON,
A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7 13

Topas Indexing of powder diffraction patterns by iterative use of
singular value decomposition, A. A. Coelho, J. Appl.
Crystallogr., 2003, 36, 86 95, TOPAS Academic by Alan
Coelho, ISIS and TOPAS V3: General profile and structure
analysis software for powder diffraction data. User’s
Manual, (2005) Bruker AXS, Karlsruhe, Germany

WinGX WinGX suite for small molecule single crystal crystallography,
L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837 838
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Table 17.14 Available space group information software and databases.

Software References Interface Input/caveates

Bilbao Crystallographic
Server

Bilbao Crystallographic Server,
Euskal Herriko Unibertsitatea/
University of the Basque Country,
2005, http://www.cryst.ehu.es/

Web interface Variety of space group tools:
including Space Groups
Retrieval Tools, Wyckoff
Positions of Space Groups,
Group Subgroup Relations
of Space Groups

cctbx sgtbx Explore
symmetry

The Computational Crystallography
Toolbox: crystallographic
algorithms in a reusable software
framework, R. W. Grosse
Kunstleve, N. K. Sauter, N. W.
Moriarty, P. D. Adams, J. Appl.
Crystallogr., 2002, 35, 126 136

Web interface. Source code
available

Herman Mauguin (H M), Hall
Symbol, Space Group
number, Schönflies,
symmetry operators

GETSPEC A real space computer based
symmetry algebra, U. D. Altermatt
and I. D. Brown, Acta Crystallogr.,
Sect. A, 1987, 43, 125 130

Fortran source code.
Standalone version
available as LMGP
suite Wgetspec

Large variety of different cell
settings. Herman Mauguin
(H M), Hall Symbol, Space
Group number

Hypertext Book of
Crystallographic Space
Group Diagrams and
Tables

J. K. Cockcroft, A Hypertext Book of
Crystallographic Space Group
Diagrams and Tables, Dept of
Crystallography, Birkbeck College,
London, UK, 1999

On CD Rom and written in
HTML:

Includes alternative axes and
origins and spacegroup
diagrams. Does not include
list of general and special
positions.

International Tables vol A. International Tables for
Crystallography Volume A: Space
group symmetry ed. Theo Hahn,
Published for the International
Union of Crystallography by

Book form with
spacegroup diagrams
and online for IUCr
Subscribers

Includes list of general and
special positions
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Springer. Fifth edition April 2002,
ISBN 0 7923 6590 9

SGInfo Algorithms for Deriving
Crystallographic Space Group
Information, R. W. Grosse
Kunstleve, Acta Crystallogr., Sect.
A, 1999, 55, 383 395

Web interface, standalone
program and source
code: superceded by
cctbx sgtbx

Herman Mauguin (H M), Hall
Symbol, Space Group
number, Schönflies,
symmetry operators

Space Group Explorer Space Group Explorer, (2005),
Calidris, http://www.calidris
em.com/archive.htm

Standalone MS Windows
program

Herman Mauguin (H M), Hall
Symbol, Space Group
number

Space Group Info Crystallographic Fortran 90 Modules
Library (CrysFML): a simple
toolbox for crystallographic
computing programs, J.
Rodrı́guez Carvajal and J.
González Platas, IUCr Comput.
Commission Newsletter, 2003, 1,
63 69, and WinPLOTR: A
Windows tool for powder
diffraction pattern analysis, T.
Roisnel and J. Rodriguez Carvajal,
EPDIC 7: European Powder
Diffraction, Pts 1 and 2 Materials
Science Forum 378 3: 118 123, Part
1&2 2001

Standalone program Herman Mauguin (H M), Hall
Symbol, Space Group
number

Superspace groups for 1D
and 2D Modulated
Structures

Crystallography of Quasiperiodic
Structures, A. Yamamoto, Acta

HTML based text All superspace groups for one
dimensionally modulated
structures (756 superspace
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Crystallogr., Sect. A, 1996, 52, 509
560

groups, excluding
enantiomorphic pairs), a
provisional list of all (3355)
superspace groups for two
dimensionally modulated
structures (superspace
groups, excluding
enantiomorphic pairs), a
provisional list of all (11764)
superspace groups for three
dimensionally modulated
structures (superspace
groups, excluding
enantiomorphic pairs)

Wgetspec LMGP Suite Suite of Programs for
the interpretation of X ray
Experiments, by J. Laugier and
B. Bochu, ENSP/Laboratoire des
Matériaux et du Génie Physique,
BP 46. 38042 Saint Martin d0Hčres,
France and A real space computer
based symmetry algebra, U. D.
Altermatt and I. D. Brown, Acta
Crystallogr., Sect. A, 1987, 43, 125
130

Standalone Windows
binary.

Large variety of different cell
settings. Point and click
mouse selection of Herman
Mauguin (H M), Hall
Symbol, Space Group
number

Table 17.14 (Continued).
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Table 17.15 Available unit cell refinement software.

Software References

Can overlay
raw
diffraction
data

Can use an
internal
standard

Celref LMGP Suite Suite of Programs for
the interpretation of X ray
Experiments, by J. Laugier and
B. Bochu, ENSP/Laboratoire des
Matériaux et du Génie Physique,
BP 46. 38042 Saint Martin
d0Hčres, France

Yes

Eracel CELREF unit cell refinement
program written in FORTRAN
for the IBM360, J. Laugier (1976),
CELREF a Fortran program for
unit cell refinement, J. Laugier and
A. Filhol, 20/10/78 and ERACEL:
a port of the CELREF unit cell
refinement software, A. Le Bail,
1982 1983, Laboratoire des
Oxydes et Fluorures, CNRS
UMR 6010, Université du Maine,
Faculté des Sciences, Avenue
Olivier Messiaen, 72085 LE
MANS Cedex 9, France

LAPOD Powder pattern programs, J. I.
Langford, J. Appl. Crystallogr.,
1971, 4, 259 260 and The accuracy
of cell dimensions determined by
Cohen’s method of least squares
and the systematic indexing of
powder data, J. I. Langford,
J. Appl. Crystallogr., 1973, 6,
190 196

LAPODS LAPODS: a computer program for
refinement of lattice parameters
using optimal regression, C. Dong
and J. I. Langford, J. Appl.
Crystallogr., 2000, 33, 1177 1179

Powder v4 PowderV2: a suite of applications for
powder X ray diffraction
calculations, N. Dragoe, J. Appl.
Crystallogr., 2001, 34, 535

Yes

Refcel The PROFIL Suite of Programs by
Jeremy Karl Cockcroft,
Department of Crystallography,
Birkbeck College, Malet Street,
London WC1E 7HX, United
Kingdom

UNITCELL Unit cell refinement from powder
diffraction data: the use of
regression diagnostics, T. J. B.

(Continued)
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(Table 17.16). A feature that increases the stability and effectiveness of the
Le Bail fitting process is the ability to recycle the intensities into the next round
of fitting. GSAS and Fullprof are two common Rietveld programs with well-
developed Le Bail fitting options. With GSAS, the user should be aware that
running POWPREF resets the Le Bail intensities, whereas in Fullprof a special
flag is used to reset or recycle the Le Bail intensities. Armel Le Bail’s ‘‘Overlap’’
program is a small utility that can remove reflections that are excessively
overlapped, sometimes aiding the structure solution when using a list of HKLs
and intensities.

17.3.12.2 Pawley Software. Due to early limitations on computing powder,
and relative difficulty of implementation in existing Rietveld software, a less
common fitting option is that of Pawley fitting. Pawley fitting is now available
in the GSAS Rietveld software (Table 17.17).

17.3.13 Texture Analysis Software

A list of traditional pole figure software vs. whole profile software analysis is
listed in Table 17.18.

17.3.14 Size Strain Analysis

Most Rietveld software can perform size-strain analysis, even though this
may require some manual calculations based on the software output. Some
powder diffraction peak profiling programs also provide simple options for
size-strain analysis. Table 17.19 gives a miscellaneous non-comprehensive list of
programs.

Table 17.15 (Continued ).

Software References

Can overlay
raw
diffraction
data

Can use an
internal
standard

Holland and S. A. T. Redfern,
Mineral. Mag., 1997, 61, 65 77

UNITCELL The determination of unit cell
parameters from Bragg reflection
data using a standard reference
material but without a calibration
curve, H. Toraya, J. Appl.
Crystallogr., 1993, 26, 583 590

XLAT XLAT Least Squares Refinement of
Cell Constants, B. Rupp, Scripta
Metall., 1988, 22, I

Yes
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Table 17.16 Available software relevant for Le Bail fitting.

Software References

ARITVE Modelling the Silica Glass Structure by the Rietveld Method. A.
Le Bail, J. Non Cryst. Solids, 1995, 183, 39 42, and Reverse
Monte Carlo and Rietveld Modelling of the NaPbM2F9
(M¼Fe, V) Fluoride Glass Structures, A. Le Bail, J. Non
Cryst. Solids, 2000, 271, 249 259

BGMN BGMN a new fundamental parameters based Rietveld
program for laboratory X ray sources, its use in quantitative
analysis and structure investigations, J. Bergmann, P. Friedel
and R. Kleeberg, Int. Union Crystallogr., Commission Powder
Diffr. Newsletter 1998, No. 20, pp. 5 8

EXPO/EXPO2004 EXPO: a program for full powder pattern decomposition and
crystal structure solution, A. Altomare, M. C. Burla, M.
Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo,
A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Rizzi,
J. Appl. Crystallogr., 1999, 32, 339 340 and Automatic
structure determination from powder data with EXPO2004,
A. Altomare, R. Caliandro, M. Camalli, C. Cuocci,
C. Giacovazzo, A. G. G. Moliterni and R. Rizzi, J. Appl.
Crystallogr., 2004, 37, 1025 1028

EXTRACT EXTRACT A Fortran Program for the Extraction of Integrated
Intensities from a Powder Pattern, Ch. Baerlocher, (1990)
Institut für Kristallographie, ETH, Zürich, Switzerland

Fullprof FULLPROF. A Program for Rietveld Refinement and Pattern
Matching Analysis, J. Rodriguez Carvajal, Abstracts of the
Satellite Meeting on Powder Diffraction of the XV Congress
of IUCr, (1990) Toulouse, France, p. 127

GeneFP GENEFP: a full profile fitting program for X ray powder
patterns using the genetic algorithm, Z. J. Feng and C. Dong,
J. Appl. Crystallogr., 2006, 39, 615 617

GSAS General Structure Analysis System (GSAS), A.C. Larson and
R.B. Von Dreele, Los Alamos National Laboratory Report
LAUR 86 748 (1994)

Jana Jana2000. The crystallographic computing system. V. Petricek,
M. Dusek, and L Palatinus, (2000) Institute of Physics, Praha,
Czech Republic and Refinement of modulated structures
against X ray powder diffraction data with JANA2000,
M. Dusek, V. Petrı́cek, M. Wunschel, R. E. Dinnebier and S.
van Smaalen, J. Appl. Crystallogr., 2001, 34, 398 404

Overlap Overlap, A. Le Bail, Laboratoire des Fluorures, Université du
Maine, 72017 Le Mans Cedex, France 1987, Version D, July
1999

Powder Cell POWDER CELL a program for the representation and
manipulation of crystal structures and calculation of the
resulting X ray powder patterns, W. Kraus and G. Nolze,
J. Appl. Crystallogr., 1996, 29, 301 303

RIETAN (GPL’d) A Rietveld analysis program RIETAN 98 and its applications to
zeolites, F. Izumi and T. Ikeda,Mater. Sci. Forum, 2000, 321–
324, 198 203 and F. Izumi, ‘‘Development and Applications
of the Pioneering Technology of Structure Refinement from
Powder Diffraction Data,’’ J. Ceram. Soc. Jpn., 2003, 111,
617 623

(Continued)
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17.3.15 Single Crystal Suites useful to Powder Diffraction

Various single crystal suites have programs useful for structure analysis,
including finding the reduced cell, checking if the structure has already been
solved, structure visualization and structure validation. Most Rietveld

Table 17.16 (Continued ).

Software References

Rietica LHPM: a Computer Program for Rietveld Analysis of X ray and
Neutron Powder Diffraction Patterns, B. A. Hunter and C. J.
Howard (February 2000), Lucas Heights Research
Laboratories, Australian Nuclear Science and Technology
Organisation and Rietica A visual Rietveld program, Brett
Hunter, Int. Union Crystallogr., Commission Powder Diffr.
Newsletter, 1998, No. 20, p. 21

Topas TOPAS Academic by Alan Coelho, ISIS and TOPAS V3:
General profile and structure analysis software for powder
diffraction data. User’s Manual, (2005) Bruker AXS,
Karlsruhe, Germany

WinMprof WinMProf : a visual Rietveld software, A. Jouanneaux, Int.
Union Crystallogr., Commission Powder Diffr. Newsletter,
1999, No. 21, p. 13

XND XND code: from X ray laboratory data to incommensurately
modulated phases. Rietveld modelling of complex materials,
J. F. Bérar and G. Baldinozzi, Int. Union Crystallogr.,
Commission Powder Diffr. Newsletter, 1998, No. 20, pp. 3 5

Table 17.17 Available software that can perform Pawley fitting.

Software References

GSAS General Structure Analysis System (GSAS), A. C. Larson and R. B.
Von Dreele, Los Alamos National Laboratory Report LAUR 86 748
(1994)

PRODD Extraction and use of correlated integrated intensities with powder
diffraction data, J. P. Wright, Z. Kristallogr., 2004, 219(12), 791 802

Simpro Simultaneous structure refinement of neutron, synchrotron and X ray
powder diffraction patterns, J. K. Maichle, J. Ihringer and
W. Prandl, J. Appl. Crystallogr., 1988, 21, 22 27 and A quantitative
measure for the goodness of fit in profile refinements with more than
20 degrees of freedom, J. Ihringer, J. Appl. Crystallogr., 1995, 28,
618 619

Topas TOPAS Academic by Alan Coelho, ISIS and TOPAS V3: General
profile and structure analysis software for powder diffraction data.
User’s Manual, (2005) Bruker AXS, Karlsruhe, Germany

WPPF Whole powder pattern fitting without reference to a structural model:
Application to X ray powder diffractometer data, H. Toraya,
J. Appl. Crystallogr., 1986, 19, 440 447
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programs do not offer various structure validation procedures, and the use of
single crystal suites such as WinGX for MS-Windows or Platon/System S for
UNIX can be useful (Table 17.20).

17.3.16 Powder Diffraction Suites

Suites for powder diffraction that can span a moderately comprehensive range
of powder diffraction analysis are relatively uncommon, but some do exist and
are listed in Table 17.21.

17.3.17 Structure Solution Software Specifically for Powder Diffraction

Various programs exist, many of which focus on specific types of phases
(organics, zeolites, etc.). When starting out with structure solution, the EXPO
Direct Methods software can be the easiest and quickest to use. If direct

Table 17.18 Available texture and pole figure analysis software.

Software References

BEARTEX BEARTEX: a Windows based program system for quantitative
texture analysis, H. R. Wenk, S. Matthies, J. Donovan and
D. Chateigner, J. Appl. Crystallogr., 1998, 31, 262 269

GSAS General Structure Analysis System (GSAS), A. C. Larson and R. B.
Von Dreele, Los Alamos National Laboratory Report LAUR
86 748 (1994)

LABOTEX LaboTex: The Texture Analysis Software, K. Pawlik and P. Ozga,
Göttinger Arbeiten zur Geologie und Paläontologie, SB4, 1999

MAUD for Java
(GPL’d)

MAUD (Material Analysis Using Diffraction): a user friendly
{Java} program for {Rietveld} Texture Analysis and more,
L. Lutterotti, S. Matthies and H. R. Wenk, Proceeding of the
Twelfth International Conference on Textures of Materials
(ICOTOM 12), 1999, Vol. 1, p. 1599

POFINT POFINT: a MS DOS program tool for POle Figure INTerpretation
and file transformations, D. Chateigner, 1994 2005, http://
www.ecole.ensicaen.fr/Bchateign/qta/pofint/

PopLA popLA, Preferred Orientation Package Los Alamos, U. F. Kocks,
J. S. Kallend, H. R. Wenk, A. D. Rollett, and S. I. Wright, Los
Alamos National Laboratory, Los Alamos, NM, 87545, USA,
LA CC 89 18 (1998)

STEREOPOLE STEREOPOLE: software for the analysis of X ray diffraction pole
figures with IDL, I. Salzmann and R. Resel, J. Appl.
Crystallogr., 2004, 37, 1029 1033

TexTools TexTools, Resmat Corporation, (2005) Suite 320, 3637 University
Montreal, QC, Canada, H3A 2B3, http://www.resmat.com/

TexturePlus TexturePlus, M. D. Vaudin, Ceramics Division, National Institute
of Standards and Technology, Gaithersburg, MD 20899 8522,
USA. Program available on the Web: http://
www.ceramics.nist.gov/staff/vaudin.htm. Also on written
request: E mail: mark.vaudin@nist.gov; fax: (301) 775 5334

531Computer Software for Powder Diffraction



Table 17.19 Available size-strain analysis software.

Software References

BGMN BGMN a new fundamental parameters based Rietveld program for
laboratory X ray sources, its use in quantitative analysis and
structure investigations, J. Bergmann, P. Friedel and R. Kleeberg,
Int. Union Crystallogr., Commission Powder Diffr. Newsletter,
1998, No. 20, pp. 5 8

BREADTH BREADTH a program for analyzing diffraction line broadening,
D. Balzar, J. Appl. Crystallogr., 1995, 28, 244 245

CMWP fit MWP fit: a program for multiple whole profile fitting of diffraction
peak profiles by ab initio theoretical functions, G. Ribárik,
T. Ungár and J. Gubicza, J. Appl. Crystallogr., 2001, 34, 669 676

Fullprof
Suite

Line broadening analysis using FullProf: Determination of
microstructural properties, J. Rodriguez Carvajal and T. Roisnel,
European Powder Diffraction EPDIC 8, Materials Science Forum
443 4: 123 126, 2004 and WinPLOTR: A Windows tool for
powder diffraction pattern analysis, T. Roisnel and J. Rodriguez
Carvajal, EPDIC 7: European Powder Diffraction, Pts 1 and 2
Materials Science Forum 378 3: 118 123, Part 1&2 2001

GENEFP GENEFP: a full profile fitting program for X ray powder patterns
using the genetic algorithm, Z. J. Feng and C. Dong, J. Appl.
Crystallogr., 2006, 39, 615 617

MAUD MAUD (Material Analysis Using Diffraction): a user friendly {Java}
program for {Rietveld} Texture Analysis and more, L. Lutterotti,
S. Matthies and H. R. Wenk, Proceeding of the Twelfth
International Conference on Textures of Materials (ICOTOM 12),
1999, Vol. 1, p. 1599

MudMaster MudMaster: A program for calculating crystallite size distributions
and strain from the shapes of X ray diffraction peaks. D. D. Eberl,
V. Drits, J. Srodon, and R. Nüesch, U.S. Geological Survey Open
File Report 96 171, (1996) 46 pp and XRD measurement of mean
thickness, thickness distribution and strain for illite and illite/
smectite crystallites by the Bertaut Warren Averbach technique.
V. Drits, D. D. Eberl and J. Srodon, Clays Clay Minerals, 1998,
46, 38 50

Powder Cell POWDER CELL a program for the representation and
manipulation of crystal structures and calculation of the resulting
X ray powder patterns, W. Kraus and G. Nolze, J. Appl.
Crystallogr., 1996, 29, 301 303

Topas A fundamental parameters approach to X ray line profile fitting,
R. W. Cheary and A. A. Coelho, J. Appl. Crystallogr., 1992, 25,
109 121, Fundamental Parameters Line Profile Fitting in
Laboratory Diffractometers, R. W. Cheary, A. A. Coelho and
J. P. Cline, J. Res. Natl. Inst. Stand. Technol., 2004, 109, 1 25 and
Convolution based profile fitting, A. Kern, A. A. Coelho and R.
W. Cheary, in Diffraction Analysis of the Microstructure of
Materials, ed. E. J. Mittemeijer, and P. Scardi, Materials Science,
Springer, 2004, ISBN 3 540 40510 4, 17 50

WinFIT WinFit 1.2.1, S. Krumm, (June 1997), Institut fur Geologie,
Scholssgarten 5, 91054, Erlangen, Germany
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Table 17.20 Available single crystal suites.

Software References

Included or linked
structure solution
software

Included or linked
refinement
software

Crystals CRYSTALS version 12:
software for guided
crystal structure
analysis, P. W.
Betteridge, J. R.
Carruthers, R. I.
Cooper, K. Prout and
D. J. Watkin, J. Appl.
Crystallogr., 2003, 36,
1487

Sir92, Sir97,
Shelxs86,
Shelxs97,
Superflip

Crystals

DS*SYSTEM DS5: direct searcher
automatic system
version 5 for small
molecules running on
Windows personal
computers, K. Okada
and P. Boochathum,
J. Appl. Crystallogr.,
2005, 38, 842 846

ShakePSD,
ShakePSDL,
Multan

LSBF

LinGX
(GPL’d)

LinGX: A free
crystallographic GUI,
Ralf Müller, (2005),
http://www.xtal.rwth
aachen.de/LinGX/

Sir97, Sir2004,
Shelxs97

Shelxl97, Fullprof,
Jana2000

NRCVax NRCVAX an interactive
program system for
structure analysis, E. J.
Gabe, Y. Le Page, J. P.
Charland, F. L. Lee
and P. S. White,
J. Appl. Crystallogr.,
1989, 22, 384 387

NRCVAX Solver
(Multan like)

NRCVax

ORTEX ORTEX2.1 a 1677 atom
version of ORTEP with
automatic cell outline
and cell packing for use
on a PC, P. McArdle,
J. Appl. Crystallogr.,
1994, 27, 438 439

Shelxs86, Shelxs97 Shelxl97

Platon/System
S

Single crystal structure
validation with the
program PLATON,
A. L. Spek, J. Appl.
Crystallogr., 2003, 36,
7 13

Sir97, Sir2004,
Shelxs86,
Shelxs97,
Dirdif, Flipper

Shelxl97

Sir2004/CAOS SIR2004: an improved
tool for crystal
structure determination
and refinement, M. C.

Sir2004 CAOS

(Continued)
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methods fail, a more involved real space program may have to be applied. A
real space program of preference for both inorganic and organic materials, is
the open-source Fox software (Table 17.22).

17.3.18 Structure Solution Using Single Crystal Software

While overshadowed by dedicated powder diffraction based structure solution
software, single crystal structure solution programs can still be used where a list
of HKLs and intensities are available and can be usefully applied (Table 17.23).
This allows not only the use of Direct Methods, but also Patterson and
Patterson-based fragment searching. Armel Le Bail’s ‘‘Overlap’’ program
(listed in Table 17.16) can remove reflections that are excessively overlapped,
sometimes aiding single crystal software based structure solution.

17.3.19 2D to 3D Molecular Model Generation

For solving organic, and perhaps organometallic, it can be time saving to convert
a 2D model into a 3D model suitable for input in some of the available structure
solution software (Table 17.24). It is possible that the conversion may get the
confirmation of the more complex molecules incorrect. Thus the user must
enable the required molecular flexibility within the structure solution software.

Table 17.20 (Continued ).

Software References

Included or linked
structure solution
software

Included or linked
refinement
software

Burla, R. Caliandro,
M. Camalli, B.
Carrozzini, G. L.
Cascarano, L. De Caro,
C. Giacovazzo, G.
Polidori and R.
Spagna, J. Appl.
Crystallogr., 2005, 38,
381 388

WinGX WinGX suite for small
molecule single crystal
crystallography, L. J.
Farrugia, J. Appl.
Crystallogr., 1999, 32,
837 838

Dirdif, Shelxs86,
Shelxs97,
ShelxD, Patsee,
Sir92, Sir97,
Sir2004

Shelxs97, Crystals,
Jana2000, Xtal

Xtal (GPL’d) Xtal3.7 System. S. R. Hall,
D. J. du Boulay and R.
Olthof Hazekamp,
Eds., University of
Western Australia.
(2000) http://
xtal.sourceforge.net/

Crisp, Patsee,
Shape

CRILSQ,
CRYLSQ,
LSLS

534 Chapter 17



Table 17.21 Available powder diffraction suites.

Software References Range of functionality

AXES H. Mändar and T. Vajakas, AXES
a software toolbox in powder
diffraction, Newsletter Int. Union
Crystallogr., Commission Powder
Diffr., 1998, No. 20, 31 32 and
AXES1.9: new tools for
estimation of crystallite size and
shape by Williamson Hall
analysis, H. Mändar, J. Felsche,
V. Mikli and T. Vajakas, J. Appl.
Crystallogr., 1999, 32, 345 350

Links to a wide range of
programs and includes a
range of data processing
and display functions

CPMR/EXPGUI/
GSAS

CMPR and Portable Logic, Brian
Toby, NIST Center for Neutron
Research, 100 Bureau Drive, Stop
8562, National Institute of
Standards and Technology,
Gaithersburg, MD, 20899 8562,
USA, EXPGUI, a graphical user
interface for GSAS, B. H. Toby,
J. Appl. Crystallogr., 2001, 34,
210 213 and General Structure
Analysis System (GSAS), A. C.
Larson and R. B. Von Dreele,
Los Alamos National Laboratory
Report LAUR 86 748 (1994)

Importing through to
structure refinement,
Fourier contour maps
and visualization.
Routine structure
solution performed in
other softare

DANSE
(Distributed
Data Analysis
for Neutron
Scattering
Experiments)

A Virtual Test Facility for the
Simulation of Dynamic Response
in Materials, J. Cummings,
M. Aivazis, R. Samtaney,
R. Radovitzky, S. Mauch,
D. Meiron, J. Supercomputing,
August 2002, Volume 23, Issue 1

Framework system for
connecting programs for
neutron scattering
analysis

Topas TOPAS Academic by Alan Coelho,
ISIS and TOPAS V3: General
profile and structure analysis
software for powder diffraction
data. User’s Manual, (2005)
Bruker AXS, Karlsruhe,
Germany

Importing through to
structure solution,
structure refinement,
and visualization. No
Fourier contour map
generation

WinPLOTR/
Fullprof

FULLPROF. A Program for
Rietveld Refinement and Pattern
Matching Analysis, J. Rodriguez
Carvajal, Abstracts of the
Satellite Meeting on Powder
Diffraction of the XV Congress of
IUCr, (1990) Toulouse, France,
p. 127 and WinPLOTR: A
Windows tool for powder
diffraction pattern analysis,
T. Roisnel and J. Rodriguez
Carvajal, EPDIC 7: European
Powder Diffraction, Pts 1 and 2
Materials Science Forum 378 3:
118 123, Part 1&2 2001

Importing through to
structure refinement,
Fourier contour maps
and visualization.
Routine structure
solution performed in
other softare
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Table 17.22 Available powder structure solution software.

Software References
Methods and/or
specialization

BGMN BGMN a new fundamental
parameters based Rietveld program
for laboratory X ray sources, its use
in quantitative analysis and
structure investigations,
J. Bergmann, P. Friedel and
R. Kleeberg, Int. Union
Crystallogr., Commission Powder
Diffr. Newsletter, 1998, No. 20, pp.
5 8

Direct space and energy
minimization

Dash Routine determination of molecular
crystal structures from powder
diffraction data, W. I. F. David,
K. Shankland, N. Shankland,
Chem. Commun., 1998, 931 932

Organics and
pharmaceuticals

Endeavour Combined Method for ‘‘Ab initio’’
Structure Solution from Powder
Diffraction Data, H. Putz, J. C.
Schoen, M. Jansen, J. Appl.
Crystallogr., 1999, 32, 864 870

Direct space and energy
minimization

EXPO/
EXPO2004

EXPO: a program for full powder
pattern decomposition and crystal
structure solution, A. Altomare,
M. C. Burla, M. Camalli, B.
Carrozzini, G. L. Cascarano,
C. Giacovazzo, A. Guagliardi,
A. G. G. Moliterni, G. Polidori and
R. Rizzi, J. Appl. Crystallogr., 1999,
32, 339 340 and Automatic
structure determination from
powder data with EXPO2004,
A. Altomare, R. Caliandro, M.
Camalli, C. Cuocci, C. Giacovazzo,
A. G. G. Moliterni and R. Rizzi,
J. Appl. Crystallogr., 2004, 37,
1025 1028

Direct methods and
real space

ESPOIR
(GPL’d)

ESPOIR: A program for solving
structures by monte Carlo analysis
of powder diffraction data, A.
Le Bail, Mater. Sci. Forum, 2001,
378–381, 65 70

Real space

Focus Zeolite structure determination from
powder diffraction data:
Applications of the FOCUS
method, R.W. Grosse Kunstleve,
L.B. McCusker, Ch. Baerlocher,
J. Appl. Crystallogr. 1999, 32,
536 542

Chemical Information,
Zeolites

Fox (GPL’d) FOX, ‘free objects for
crystallography’: a modular

Real space, dynamic
occupancy

(Continued)
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Table 17.22 (Continued ).

Software References
Methods and/or
specialization

approach to ab initio structure
determination from powder
diffraction, V. Favre Nicolin and
R. Cerný, J. Appl. Crystallogr.,
2002, 35, 734 743

correction and atom
merging

Fullprof Suite FULLPROF. A Program for Rietveld
Refinement and Pattern Matching
Analysis, J. Rodriguez Carvajal,
Abstracts of the Satellite Meeting
on Powder Diffraction of the XV
Congress of IUCr, (1990) Toulouse,
France, p. 127

Direct space for
magnetic structures

Gest GEST: a program for structure
determination from powder
diffraction data using genetic
algorithm, Z. J. Feng and C. Dong,
J. Appl. Crystallogr., 2007, 40,
583 588

Real space, primarily
for solving organic
structures using a
genetic algorithm

GRINSP Inorganic structure prediction with
GRINSP, A. Le Bail, J. Appl.
Crystallogr., 2005, 38, 389 395

Structure prediction of
inorganics suitable
for ‘‘search match’’
structure solution

Organa Organa a program package for
structure determination from
powder diffraction data by direct
space methods, V. Brodski,
R. Peschar and H. Schenk, J. Appl.
Crystallogr., 2005, 38, 688 693

Direct space

Powder Solve PowderSolve a complete package for
crystal structure solution from
powder diffraction patterns, G. E.
Engel, S. Wilke, O. König, K. D.
M. Harris and F. J. J. Leusen,
J. Appl. Crystallogr., 1999, 32,
1169 1179

Direct space

RMCPOW RMCA Version 3, R. L. McGreevy,
M. A. Howe and J. D.Wicks,
(1993), available at http://
www.studsvik.uu.se/ and Reverse
Monte Carlo modelling of neutron
powder diffraction data, A.
Mellergård and R. L. McGreevy,
Acta Crystallogr., Sect. A, 1999, 55,
783

Direct Space for
magnetic structures

Ruby Ruby, Materials Data, Inc., 1224
Concannon Blvd., Livermore, CA
94550

Direct Methods and
Direct Space

SARAh A new protocol for the determination
of magnetic structures using
Simulated Annealing and

Direct Space

(Continued)
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17.3.20 Single Crystal Refinement Programs and Helper Programs to Assist

in Building up the Structure

Compared to powder diffraction software, single crystal refinement programs
are currently more advanced for routine structure refinement (Table 17.25).
Compared to existing Rietveld software, it can be less time consuming to use a

Table 17.22 (Continued ).

Software References
Methods and/or
specialization

Representational Analysis
SARAh, A. S. Wills, Physica B,
2000, 276, 680

Superflip Superflip computer program for
solution of crystal structures by
charge flipping in arbitrary
dimensions, L. Palatinus and
G. Chapuis (2006), http:/
superspace.epfl.ch/superflip and
Charge flipping combined with
histogram matching to solve
complex crystal structures from
powder diffraction data, Ch.
Baerlocher, L. B. McCusker,
L. Palatinus, Z. Kristallogr., 2007,
222(2), 47 53

Uses the charge flipping
algorithm on
extracted intensities
to solve in the P1
spacegroup. The
algorithm is also use
to solve
incommensurate and
quasicrystal
structures

TOPAS Whole profile structure solution from
powder diffraction data using
simulated annealing, A. A. Coelho,
J. Appl. Crystallogr., 2000, 33,
899 908, TOPAS Academic by
Alan Coelho, ISIS and TOPAS V3:
General profile and structure
analysis software for powder
diffraction data. User’s Manual,
(2005) Bruker AXS, Karlsruhe,
Germany

Direct space, energy
minimization and
charge flipping

WinCSD/
CSD

Use of the CSD program package for
structure determination from
powder data. L. G. Akselrud,
P. Zavalii, Yu. N.Grin, V. K.
Pecharsky, B. Baumgartner,
E. Wolfel, 2nd European Powder
Diffraction Conference: Abstract of
papers, Enschede, The
Netherlands, 41, (1992); Mater. Sci.
Forum, 1993, 133–136, 335 340

Direct methods and
Patterson methods

ZEFSA II A biased Monte Carlo scheme for
zeolite structure solution, M.
Falcioni and M. W. Deem, J. Chem.
Phys., 1999, 110(3), 15

Real Space, Zeolites
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Table 17.23 Available single crystal structure solution software.

Software References
Methods and/or
specialization

Crisp (GPL’d) CRISP: Crystal Iterative Solution Program, Doug
du Boulay & Syd Hall, Xtal3.7 System. Eds.
S.R. Hall, D.J. du Boulay & R. Olthof
Hazekamp. University of Western Australia

Direct Methods

Crunch CRUNCH: solving structures using Karle
Hauptman matrices, R.A.G. de Graaff and
R. de Gelder, Acta Crystallogr. Sect. A, 1996,
46(Suppl.), C 53

Direct Methods

Dirdif The DIRDIF 99 program system, P. T.
Beurskens, G. Beurskens, R. de Gelder,
S. Garcia Granda, R. O. Gould, R. Israel and
J. M. M. Smits (1999), Crystallography
Laboratory, University of Nijmegen, The
Netherlands

Patterson,
Fragment
searching

Patsee Structure solution with PATSEE, E. Egert,
K. Wagner and J. Hirschler, Z. Kristallogr.,
2001, 216(11), 565 572

Fragment searching

Shake’n’Bake
(SnB)

The design and implementation of SnB v2.0,
C. M. Weeks and R. Miller, J. Appl.
Crystallogr., 1999, 32, 120 124

Direct Methods
Shake’n’Bake

ShakePSD DS5: direct searcher automatic system version 5
for small molecules running on Windows
personal computers, K. Okada and
P. Boochathum, J. Appl. Crystallogr., 2005,
38, 842 846

Direct Methods
Shake’n’Bake

Shelxs86/
Shelxs97/
ShelxD

SHELX97 Programs for Crystal Structure
Analysis (Release 97 2). G. M. Sheldrick,
Institüt für Anorganische Chemie der
Universität, Tammanstrasse 4, D 3400
Göttingen, Germany, 1998; SHELXS86.
Program for the solution of crystal structures.
G. M. Sheldrick, (1986), Univ. of Gottingen,
Federal Republic of Germany and
Substructure solution with SHELXD, T. R.
Schneider and G. M. Sheldrick, Acta
Crystallogr., Sect. D, 2002, 58, 1772 1779

Direct Methods,
Patterson, SnB
(Shake’n’Bake)

Sir92/Sir97/
Sir2004

SIR92 a program for automatic solution of
crystal structures by direct methods, A.
Altomare, G. Cascarano, C. Giacovazzo,
A. Guagliardi, M. C. Burla, G. Polidori and
M. Camalli, J. Appl. Crystallogr., 1994, 27,
435, SIR97: a new tool for crystal structure
determination and refinement, A. Altomare,
M. C. Burla, M. Camalli, G. L. Cascarano,
C. Giacovazzo, A. Guagliardi, A. G. G.
Moliterni, G. Polidori and R. Spagna, J. Appl.
Crystallogr., 1999, 32, 115 119 and SIR2004:
an improved tool for crystal structure
determination and refinement, M. C. Burla,
R. Caliandro, M. Camalli, B. Carrozzini,
G. L. Cascarano, L. De Caro, C. Giacovazzo,
G. Polidori and R. Spagna, J. Appl.
Crystallogr., 2005, 38, 381 388

Direct Methods,
SnB
(Shake’n’Bake)
style
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Le Bail or Pawley extracted list of intensities with single crystal software such as
Shelxl or Crystals to perform early cycles of refinement to find missing atoms,
and graphically examine the structure. This is also an area where it might be
helpful to Armel Le Bail’s ‘‘Overlap’’ program (listed in Table 17.16) to remove
reflections that are excessively overlapped.

Table 17.24 Available 2D to 3D molecular model generators.

Software References Notes

Dirdif The DIRDIF 99 program system, P. T.
Beurskens, G. Beurskens, R.
de Gelder, S. Garcia Granda, R. O.
Gould, R. Israel and J. M. M. Smits
(1999), Crystallography Laboratory,
University of Nijmegen, The
Netherlands

In built database,
and DOS
command line
style interface

Momo MOMO Molecular Modelling
Program, Version 2.00, E. Gemmel,
H. Beck, M. Bolte and E. Egert,
Universität Frankfurt (1999)

From the makers of
Patsee

Xdrawchem/
WinDrawChem
and Build3D

XDrawChem (software), Bryan Herger,
(2002) http://xdrawchem.
sourceforge.net/

Open source with 3D
builder option

Table 17.25 Available single crystal refinement and structure building software.

Software References

Crystals CRYSTALS version 12: software for guided crystal structure
analysis, P. W. Betteridge, J. R. Carruthers, R. I. Cooper,
K. Prout and D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487

Platon/System S Single crystal structure validation with the program PLATON,
A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7 13

Shelxl97 SHELX97 Programs for Crystal Structure Analysis (Release
97 2). G. M. Sheldrick, Institüt für Anorganische Chemie der
Universität, Tammanstrasse 4, D 3400 Göttingen, Germany,
1998

Sir2004/CAOS SIR2004: an improved tool for crystal structure determination and
refinement, M. C. Burla, R. Caliandro, M. Camalli,
B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo,
G. Polidori and R. Spagna, J. Appl. Crystallogr., 2005, 38,
381 388 and Crystallographic software for a mincomputer,
S. Cerrini and R. Spagna (1977), IV Eur. Crystallgr. Meet.,
Oxford, UK, Abstract A 212

Xtal (GPL’d) Xtal3.7 System. S. R. Hall, D. J. du Boulay and R. Olthof
Hazekamp, Eds., University of Western Australia. (2000) http://
xtal.sourceforge.net/

WinGX WinGX suite for small molecule single crystal crystallography,
L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837 838
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17.3.21 Rietveld Structure Refinement

While GSAS (using Brian Toby’s EXPGUI Graphical User Interface), Fullprof
and Topas are generally the most popular ‘‘general’’ Rietveld programs in
current use, many Rietveld programs have regionalized followings (e.g.,
Rietica/LHPM in Australasia; RIETAN in Japan) (Table 17.26). Other Riet-
veld programs are optimized for certain classes of structures (e.g., Jana and
XND for incommensurates, DEBVIN for polymers, XRS-82 for zeolites). As
first time use of Rietveld refinement can be quite challenging and intimidating,
it can be useful to determine which programs are being used locally and make
first use of these. This allows a chance of obtaining tutorial assistance from a
local source. An alternative source of tuition is to search for workshops
emphasizing computer based hands-on Rietveld tutorials. Participants should
not expect too much from ‘‘hands-on’’ Rietveld workshops organized in
conjunction with conferences, as often both workshop organizers and attendees
find out on the day that access to computers were not arranged.

17.3.22 Pair Distribution Function Software

This is an area of powder diffraction that has suffered from a lack of available,
user-friendly software for data processing and data analysis. While this is
slowly changing, it has mostly been due to the software development efforts of
teams led by or involving Robert McGreevy, Simon Billinge, Thomas Proffen,
and Reinhard Neder (Table 17.27).

17.3.23 Hydrogen Placement Using Single Crystal and Ancillary Software

Automatic and manual hydrogen placement can be tedious when performed
within most Rietveld programs. Software made for single crystal applications
can be more user-friendly and time-effective. This not only includes the
placement of hydrogens off carbons, but that of hydrides. In modern single
crystal methods it is generally expected that all hydrogens will be visible in
the Fourier map, allowing the validation of calculated hydrogens. This is not
the case in powder diffraction and the user should be more cautious in the
calculated placement of hydrogens (Table 17.28).

17.3.24 Free Standing Powder and Single Crystal Fourier Map Generation

and Display Software

While more noisy than single crystal generated Fourier maps, powder diffraction
generated Fourier maps are still useful for locating missing atoms. While
programs such as Fullprof, BRASS, GSAS and Jana have integrated Fourier
Map generation and viewing, there are free standing programs available for the
generation of Fourier maps. Free-standing Fourier map viewers are also avail-
able, of which DRAWxtl and Marching Cubes are worth a first evaluation.
An article by Fujio Izumi was published in the November 2005 issue of the
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Table 17.26 Available Rietveld structure refinement software.

Software References
Methods and/or
specialization

Fourier map
capability

ARITVE ARITVE User Guide, A. Le Bail, Universite du Maine, France
(2000)

Modeling glass structures

BGMN BGMN a new fundamental parameters based Rietveld program
for laboratory X ray sources, its use in quantitative analysis and
structure investigations, J. Bergmann, P. Friedel and
R. Kleeberg, Int. Union Crystallogr., Commission Powder Diffr.
Newsletter 1998, No. 20, pp. 5 8

Fundamental parameters
Rietveld with macro
language

Yes

BRASS BRASS 2003: The Bremen Rietveld Analysis and Structure Suite,
J. Birkenstock, R. X. Fischer and T. Messner, Ber. DMG, Beih.
z. Eur. J. Mineral., 2003, 15(1), 21

Inorganic materials Yes

DBWS DBWS 9411, an Upgrade of the DBWS, R. A. Young,
A. Sakthivel, T. S. Moss and C. O. Paiva Santos (1995)

General refinement

DDM Full profile refinement by derivative difference minimization,
L. A. Solovyov, J. Appl. Crystallogr., 2004, 37, 743 749

Derivative Difference
Minimization

DEBVIN DEBVIN a program for Rietveld refinement with generalized
coordinates subjected to geometrical restraints, S. Brückner and
A. Immirzi, J. Appl. Crystallogr., 1997, 30, 207 208

Polymers

DIFFaX+ Simultaneous refinement of structure and microstructure of layered
materials, M. Leoni, A. F. Gualtieri and N. Roveri,
J. Appl. Crystallogr., 2004, 37, 166 173

Disordered layered
materials

EXPGUI EXPGUI, a graphical user interface for GSAS, B. H. Toby,
J. Appl. Crystallogr., 2001, 34, 210 213

Windows, Linux and Mac
Graphical User
Interface for GSAS

EXPO/EXPO2004 EXPO: a program for full powder pattern decomposition and
crystal structure solution, A. Altomare, M. C. Burla,
M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo,
A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Rizzi,

Refinement of EXPO
solved structures

Yes
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J. Appl. Crystallogr., 1999, 32, 339 340 and Automatic
structure determination from powder data with EXPO2004,
A. Altomare, R. Caliandro, M. Camalli, C. Cuocci,
C. Giacovazzo, A. G. G. Moliterni and R. Rizzi, J. Appl.
Crystallogr., 2004, 37, 1025 1028

Fullprof FULLPROF. A Program for Rietveld Refinement and Pattern
Matching Analysis, J. Rodriguez Carvajal, Abstracts of the
Satellite Meeting on Powder Diffraction of the XV Congress
of IUCr, (1990) Toulouse, France, p. 127 and WinPLOTR: A
Windows tool for powder diffraction pattern analysis, T.
Roisnel and J. Rodriguez Carvajal, EPDIC 7: European Powder
Diffraction, Pts 1 and 2 Materials Science Forum
378 3: 118 123, Part 1&2 2001

Normal, microstructure,
magnetic and
incommensurates. GUI
interface based around
the WinPLOTR
software

Yes

GSAS General Structure Analysis System (GSAS), A. C. Larson and
R. B. Von Dreele, Los Alamos National Laboratory Report
LAUR 86 748 (1994)

Combined refinement,
proteins, large numbers
of restraints. EXPGUI
GUI interface by Brian
Toby

Yes

IC POWLS IC POWLS: A program for calculation and refinement of
commensurate and incommensurate structures using powder
diffraction data, W. Kockelmann, E. Jansen, W. Schäfer and
G. Will, Berichte des Forschungszentrums Jülich, Report
Jül 3024 (1995)

Incommensurate and
magnetic structures

Yes

Jana Jana2000. The crystallographic computing system. V. Petricek,
M. Dusek, and L Palatinus, (2000) Institute of Physics, Praha,
Czech Republic and Refinement of modulated structures
against X ray powder diffraction data with JANA2000,
M. Dusek, V. Petrı́cek, M. Wunschel, R. E. Dinnebier and
S. van Smaalen, J. Appl. Crystallogr., 2001, 34, 398 404

Incommensurate and
composite structures

Yes

(Continued )
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Koalariet A fundamental parameters approach to X ray line profile fitting,
R. W. Cheary and A. A. Coelho, J. Appl. Crystallogr., 1992, 25,
109 121

Fundamental parameters
Rietveld. No longer
developed.

MAUD for Java
(GPL’d)

MAUD (Material Analysis Using Diffraction): a user friendly
{Java} program for {Rietveld} Texture Analysis and more,
L. Lutterotti, S. Matthies and H. R. Wenk, Proceeding of the
Twelfth International Conference on Textures of Materials
(ICOTOM 12), 1999, Vol. 1, p. 1599

GUI Interface and
microstructural
modeling

MXD (MiXeD
crystallographic
executive for
diffraction)

MXD: a general least squares program for non standard
crystallographic refinements, P. Wolfers, J. Appl. Crystallogr.,
1990, 23, 554 557

Magnetic and
incommensurate; single
crystal and powder
diffraction

PFLS Application of total pattern fitting to X ray powder diffraction
data, H. Toraya and F. Marumo, Rep. Res. Lab. Engin. Mat.,
Tokyo Inst. Tech., 1980, 5, 55 64 and Crystal structure
refinement of alpha Si3N4 using synchrotron radiation powder
diffraction data: unbiased refinement strategy, H. Toraya,
J. Appl. Crystallogr., 2000, 33, 95 102

General Rietveld
refinement

Powder Cell POWDER CELL a program for the representation and
manipulation of crystal structures and calculation of the
resulting X ray powder patterns., W. Kraus and G. Nolze,
J. Appl. Crystallogr., 1996, 29, 301 303

General Rietveld
refinement

PREMOS Rietveld analysis of the modulated structure in the
superconducting oxide Bi2(Sr,Ca)3Cu2O81x, A. Yamamoto,
M. Onoda, E. Takayama Muromachi, F. Izumi, T. Ishigaki and
H. Asano, Phys. Rev. B, 1990, 42, 4228 4239

Incommensurately
modulated structures

PRODD PRODD Profile Refinement of Diffraction Data using the
Cambridge Crystallographic Subroutine Library (CCSL),
J. P. Wright and J. B. Forsyth, Rutherford Appleton
Laboratory Report RAL TR 2000 012, Version 1.0, May 2000

Concepts and algorithms
development

Table 17.26 (Continued ).
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Profil The PROFIL Suite of Programs by Jeremy Karl Cockcroft,
Department of Crystallography, Birkbeck College, Malet
Street, London WC1E 7HX, United Kingdom

Organics and
organometallics
requiring restrained
refinement

Riet7/SR5/LHPM LHPM: a Computer Program for Rietveld Analysis of X ray and
Neutron Powder Diffraction Patterns, R. J. Hill, and C. J.
Howard (1986) AAEC Report No. M112 and QPDA A User
Friendly, Interactive Program for Quantitative Phase and
Crystal Size/Strain Analysis of Powder Diffraction Data, I. C.
Madsen and R. J. Hill, Powder Diffr., 1990, 5, 195 199

General refinement

RIETAN (GPL’d) A Rietveld analysis program RIETAN 98 and its applications to
zeolites, F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000,
321–324, 198 203 and F. Izumi, ‘‘Development and
Applications of the Pioneering Technology of Structure
Refinement from Powder Diffraction Data,’’ J. Ceram. Soc.
Jpn., 2003, 111, 617 623

Whole pattern fitting
based on the
maximum entropy
method (MEM). Using
PRIMA for MEM
analysis and VENUS
for structure and map
visualization

Yes

Rietica/LHPM LHPM: a Computer Program for Rietveld Analysis of X ray and
Neutron Powder Diffraction Patterns, B. A. Hunter and C. J.
Howard (February 2000), Lucas Heights Research
Laboratories, Australian Nuclear Science and Technology
Organisation and Rietica A visual Rietveld program, Brett
Hunter, Int. Union Crystallogr., Commission Powder Diffr.
Newsletter, 1998, No. 20, p. 21

GUI Interface Yes

Simref Simultaneous structure refinement of neutron, synchrotron and
X ray powder diffraction patterns, J. K. Maichle, J. Ihringer
and W. Prandl, J. Appl. Crystallogr., 1988, 21, 22 27 and A
quantitative measure for the goodness of fit in profile
refinements with more than 20 degrees of freedom, J. Ihringer,
J. Appl. Crystallogr. 1995, 28, 618 619

Incommensurate and
composite structures,
refinement of multiple
powder data sets

(Continued )
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Topas A fundamental parameters approach to X ray line profile fitting,
R. W. Cheary and A. A. Coelho, J. Appl. Crystallogr., 1992, 25,
109 121, Fundamental Parameters Line Profile Fitting in
Laboratory Diffractometers, R. W. Cheary, A. A. Coelho and
J. P. Cline, J. Res. Natl. Inst. Stand. Technol., 2004, 109, 1 25,
TOPAS Academic by Alan Coelho, ISIS and TOPAS V3:
General profile and structure analysis software for powder
diffraction data. User’s Manual, (2005) Bruker AXS,
Karlsruhe, Germany

Fundamental parameters
Rietveld with macro
language

VMRIA VMRIA a program for a full profile analysis of powder
multiphase, neutron diffraction time of flight (direct and
Fourier) spectra, V. B. Zlokazov, V. V. Chernyshev, J. Appl.
Crystallogr., 1992, 25, 447 451 and DELPHI based visual
object oriented programming for the analysis of experimental
data in low energy physics, V. B. Zlokazov, Nucl. Instrum.
Methods Phys. Res. A, 2003, 502(2 3), 723 724

Rietveld refinement of
TOF data

WinMprof WinMProf : a visual Rietveld software, A. Jouanneaux, Int.
Union Crystallogr., Commission Powder Diffr. Newsletter, 1999,
No. 21, 13

Organics and
organometallics
requiring restrained
refinement

Yes

XND XND code: from X ray laboratory data to incommensurately
modulated phases. Rietveld modelling of complex materials,
J. F. Bérar and G. Baldinozzi, Int. Union Crystallogr.,
Commission Powder Diffr. Newsletter, 1998, No. 20, 3 5

Incommensurate and
composite structures,
refinement of multiple
powder data sets

XRS 82/DLS 76 The X ray Rietveld System XRS82, Ch. Baerlocher, (1982) Institut
für Kristallographie und Petrographie, ETH Zentrum, Zürich
and DLS76. A Fortran Program for the Simulation of Crystal
Structures by Geometric Refinement. Ch. Baerlocher, A. Hepp
and W. M. Meier, (1977) Institut für Knstallographie, ETH,
Zürich, Switzerland

Zeolites

Table 17.26 (Continued ).
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IUCr Commission on Powder Diffraction Newsletter elaborated on the availabil-
ity of Fourier Map software based around MPF Maximum-entropy-method
Profile Fitting, which also offers an alternative to conventional Rietveld refine-
ment for the solution and refinement of difficult crystal structures from powder
diffraction data (Table 17.29).

Table 17.27 Available pair distribution function software.

Software References

DERB and
DERFFT

Powerful new software for the simulation of WAXS and SAXS
diagrams, D. Espinat, F. Thevenot, J. Grimoud and K. El
Malki, J. Appl. Crystallogr. 1993, 26, 368 383

DISCUS DISCUS, a program for diffuse scattering and defect structure
simulations Update, Th. Proffen and R. B. Neder, J. Appl.
Crystallogr., 1999, 32, 838 and DISCUS, a program for diffuse
scattering and defect structure simulations, Th. Proffen and R.
B. Neder, J. Appl. Crystallogr. 1997, 30, 171

MCGRtof MCGRtof: Monte Carlo G(r) with resolution corrections for
time of flight neutron diffractometers, M. G. Tucker, M. T.
Dove and D. A. Keen, J. Appl. Crystallogr., 2001, 34, 780 782

PDFFIT/
PDFgui

PDFFIT a program for full profile structural refinement of the
atomic pair distribution function, Th. Proffen and S. J. L.
Billinge, J. Appl. Crystallogr. 1999, 32, 572. PDFgui and
PDFfit2 replace PDFFIT: C. L. Farrow, P. Juhas, J. W. Liu,
D. Bryndin, E. S. Bo�zin, J. Bloch, Th. Proffen and S. J. L.
Billinge, J. Phys: Condens. Matter, 2007, 19, 335219

PDFgetN PDFgetN: A user friendly program to extract the total scattering
structure function and the pair distribution function from
neutron powder diffraction data, P. F. Peterson, M. Gutmann,
Th. Proffen and S. J. L. Billinge, J. Appl. Crystallogr., 2000, 33,
1192

PDFgetX2 PDFgetX2: a GUI driven program to obtain the pair distribution
function from X ray powder diffraction data, X. Qiu, J. W.
Thompson and S. J. L. Billinge, J. Appl. Crystallogr., 2004, 37,
678

RAD RAD, a program for analysis of X ray diffraction data from
amorphous materials for personal computers, V. Petkov, J.
Appl. Crystallogr., 1989, 22, 387

RMC Reverse Monte Carlo modelling of neutron powder diffraction
data, A. Mellergård and R. L. McGreevy, Acta Crystallogr.,
Sect. A, 1999, 55, 783 789

RMC++ G. Evrard, L. Pusztai, Reverse Monte Carlo Modelling of the
structure of disordered materials with RMC++: a new
implementation of the algorithm in C++, J. Phys.: Condens.
Matter, 2005, 17(5), S1 S13

RMCprofile Reverse Monte Carlo modelling of crystalline disorder, D. A.
Keen, M. G. Tucker and M. T. Dove, J. Phys. Condens.
Matter, 2005, 17(5), S15 S22

RMCAW95 Reverse Monte Carlo modelling of neutron powder diffraction
data, A. Mellergård and R. L. McGreevy, Acta Crystallogr.,
Sect. A, 1999, 55, 783 789
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17.3.25 Quantitative Phase Analysis

Nearly every Rietveld program in existence will also perform quantitative phase
analysis, though some manual calculations may be required for some pro-
grams. Thus Table 17.30 mainly concentrates on programs that are more
focused on quantitative phase analysis, both Rietveld and non-Rietveld based.

17.3.26 Powder Pattern Calculation

While most Rietveld programs can calculate powder patterns, it can be easier to
use a dedicated program. An excellent program for pattern calculation is the
Powder Cell program. However, if attempting to calculate accurate patterns for
non-tube wavelengths, the Poudrix software should be considered (Table 17.31).

17.3.27 Structure Validation

While computer-based structure validation is integrated in single crystal soft-
ware, it is somewhat lagging in the powder diffraction community. Ton Spek’s

Table 17.28 Available hydrogen placement software.

Software References

Crystals CRYSTALS version 12: software for guided crystal
structure analysis, P. W. Betteridge, J. R. Carruthers,
R. I. Cooper, K. Prout and D. J. Watkin, J. Appl.
Crystallogr., 2003, 36, 1487

Hydrogen/CalcOH Modeling hydroxyl and water H atoms, M. Nardelli, J.
Appl. Crystallogr., 1999, 32, 563 571

Platon/System S Single crystal structure validation with the program
PLATON, A. L. Spek, J. Appl. Crystallogr., 2003, 36,
7 13

Shelxl97 SHELX97 Programs for Crystal Structure Analysis
(Release 97 2). G. M. Sheldrick, Institüt für
Anorganische Chemie der Universität,
Tammanstrasse 4, D 3400 Göttingen, Germany, 1998

Sir2002/CAOS SIR2004: an improved tool for crystal structure
determination and refinement, M. C. Burla, R.
Caliandro, M. Camalli, B. Carrozzini, G. L.
Cascarano, L. De Caro, C. Giacovazzo, G. Polidori
and R. Spagna, J. Appl. Crystallogr., 2005, 38, 381
388

Xhydex Indirect Location of Hydride Ligands in Metal Cluster
Complexes, A. G. Orpen, J. Chem. Soc., Dalton
Trans., 1980, 2509 2516

Xtal (GPL’d) Xtal3.7 System. S. R. Hall, D. J. du Boulay and R.
Olthof Hazekamp, Eds., University of Western
Australia. (2000) http://xtal.sourceforge.net/

WinGX: GUI Hydrogen/
CalcOH; GUI Xhydex

WinGX suite for small molecule single crystal
crystallography, L. J. Farrugia, J. Appl. Crystallogr.
1999, 32, 837 838
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Table 17.29 Available Fourier Map software.

Software References Caveates/features

DRAWxtl DRAWxtl, an open source computer
program to produce crystal structure
drawings, L. W. Finger, M. Kroeker and
B. H. Toby, J. Appl. Crystallogr., 2007,
40, 188 192

Views GSAS GRD,
Jana, Vasp,
Fullprof, CIF
FoFc, O, Jana
FoFc and Exciting

FOUE FOUE: program for conversion of GSAS
binary Fourier Map files to other
formats, Scott Belmonte (2000)

Converts GSAS
binary Fourier
Map files into
ASCII DUMP,
WinGX and
Marching Cubes/
Crystals format
files

Fox FOX, ‘free objects for crystallography’: a
modular approach to ab initio structure
determination from powder diffraction,
V. Favre Nicolin and R. Cerný, J. Appl.
Crystallogr., 2002, 35, 734 743

GSAS Fourier Maps

GFourier/
Fullprof
Suite

GFourier, J Gonzalez Platas and J.
Rodriguez Carvajal, University of
La Laguana, Tenerife, Spain and
Laboratoire Léon Brillouin, Saclay,
France, March 2004 and WinPLOTR: A
Windows tool for powder diffraction
pattern analysis, T. Roisnel and
J. Rodriguez Carvajal, EPDIC 7:
European Powder Diffraction, Pts 1 and 2
Materials Science Forum 378 3: 118 123,
Part 1&2 2001

Requires hkl’s and
structure factors in
Fullprof format

MCE
Marching
Cubes

MCE program for fast interactive
visualization of electron and similar
density maps, optimized for small
molecules, M. Husák and B. Kratochvı́l,
J. Appl. Crystallogr., 2003, 36, 1104

Views Crystals/
WinGX ASCII
FOU, GSAS
Fourier and GSAS
GRD files

OpenDX 2002 OpenDX.org General scientific
viewer for large
amounts of data.
Jana can write
maps for OpenDX

Platon/
Fourier3D

Single crystal structure validation with the
program PLATON, A. L. Spek, J. Appl.
Crystallogr., 2003, 36, 7 13 and
Fourier3D: visualisation of electron
density and solvent accessible voids in
small molecule crystallography, D. M.
Tooke and A. L. Spek, Fourier3D,
J. Appl. Crystallogr., 2005, 38, 572 573

Platon requires Shelx
format FCF
format files to
generate maps

VENUS F. Izumi and R. A. Dilanian, ‘‘Structure
refinement based on the maximum
entropy method from powder diffraction
data’’ in Recent Research Developments

Includes Maximum
Entropy method
and can input and
output various 3D

(Continued)
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Table 17.29 (Continued ).

Software References Caveates/features

in Physics, Transworld Research
Network, Trivandrum, 2002, Vol. 3, Part
II, pp. 699 726 and F. Izumi, ‘‘Beyond
the ability of Rietveld analysis: MEM
based pattern fitting,’’ Solid State Ionics,
2004, 172, 1 6

mesh data
including: MEED,
ALBA,
MacMolPlt,
SCAT, VASP,
VEND 3D,
WIEN2k, XSF
format of
XCrySDen

WinGX WinGX suite for small molecule single
crystal crystallography, L. J. Farrugia,
J. Appl. Crystallogr., 1999, 32, 837 838

Requires Shelx
format FCF files
to generate the
Fourier Map; or a
WinGX format
MAP file

Table 17.30 Available quantitative phase analysis software (also refer to list
of Rietveld structure refinement software).

Software References Method
Freely
available?

BGMN BGMN a new fundamental parameters
based Rietveld program for laboratory
X ray sources, its use in quantitative
analysis and structure investigations,
J. Bergmann, P. Friedel and
R. Kleeberg, Int. Union Crystallogr.,
Commission Powder Diffr. Newsletter,
1998, No. 20, pp. 5 8

Rietveld

Fullpat FULLPAT: a full pattern quantitative
analysis program for X ray powder
diffraction using measured and
calculated patterns, S. J. Chipera and
D. L. Bish, J. Appl. Crystallogr., 2002,
35, 744 749

Fullpattern
using a
corundum
internal
standard

Yes

MAUD MAUD (Material Analysis Using
Diffraction): a user friendly {Java}
program for {Rietveld} Texture
Analysis and more, L. Lutterotti,
S. Matthies and H. R. Wenk,
Proceeding of the Twelfth International
Conference on Textures of Materials
(ICOTOM 12), 1999, Vol. 1, p. 1599

Rietveld Yes

Quanto Quanto: a Rietveld program for
quantitative phase analysis of
polycrystalline mixtures, A. Altomare,
M. C. Burla, C. Giacovazzo,

Rietveld Yes

(Continued)
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Platon is one of the best programs available for the checking and validation of
crystal structures, but tends to be optimized for organics and organometallics.
The Addsym function in the Platon program is used for finding missing
symmetry and should be considered a mandatory check of all solved and
refined structures using powder diffraction data. Platon also includes the
Structure-Tidy program of Erwin Parthe (1928–2006), making it easier to
compare related structures, and easier to check if polymeric inorganic or
intermetallic structures have already been solved. Other programs for geometry
checking and bond-valence analysis are also available (Table 17.32).

Table 17.30 (Continued ).

Software References Method
Freely
available?

A. Guagliardi, A. G. G. Moliterni, G.
Polidori and R. Rizzi, J. Appl.
Crystallogr., 2001, 34, 392 397

Powder Cell POWDER CELL a program for the
representation and manipulation of
crystal structures and calculation of
the resulting X ray powder patterns.,
W. Kraus and G. Nolze, J. Appl.
Crystallogr., 1996, 29, 301 303

Rietveld Yes

Rietquan Quantitative analysis of silicate glass in
ceramic materials by the Rietveld
method, L. Lutterotti, R. Ceccato,
R. Dal Maschio and E. Pagani,Mater.
Sci. Forum., 1998, 278-281, 93 98

Rietveld Yes

RIQAS RIQAS, Materials Data, Inc., 1224
Concannon Blvd., Livermore,
CA 94550, USA

Rietveld

Rockjock User guide to RockJock A program for
determining quantitative mineralogy
from X ray diffraction data, D. D.
Eberl, USGS Open File Report OF 03
78, (2003) 40p and Quantitative
mineralogy of the Yukon River
system: Changes with reach and
season, and determining sediment
provenance, D. D. Eberl, Am.
Mineral., 2004, 89(11 12), 1784 1794

Fullpattern
with the
option of
using
zincite
internal
standard

Yes

Siroquant Computer Programs for Standardless
Quantitative Analysis of Minerals
Using the Full Powder Diffraction
Profile, J. C. Taylor, Powder Diffr.,
1991, 6, 2 9

Rietveld

Topas TOPAS V3: General profile and structure
analysis software for powder
diffraction data. User’s Manual,
(2005) Bruker AXS, Karlsruhe,
Germany

Rietveld
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Table 17.31 Available powder pattern calculation software (also refer to list
of Rietveld structure refinement software).

Software References
Compatible structure file
formats

Lazy Pulverix LAZY PULVERIX, a computer
program, for calculating X ray and
neutron diffraction powder
patterns, K. Yvon, W. Jeitschko
and E. Parthé, J. Appl. Crystallogr.,
1977, 10, 73 74

Lazy Pulverix

Lazy Pulverix via
the ICSD web
interface

LAZY PULVERIX, a computer
program, for calculating X ray and
neutron diffraction powder
patterns, K. Yvon, W. Jeitschko
and E. Parthé, J. Appl. Crystallogr.,
1977, 10, 73 74 and ICSD for
WWW, Inorganic Crystal
Structure Database, Hewat,
A. (2002). http://icsd.ill.fr/icsd/ and
http://icsdweb.fiz karlsruhe.de/

CCSL, CIF, ICSD,
Shelx, Lazy Pulverix,
Rietveld ILL,
SERC Cambridge,
DBWS, Fullprof,
PDB

Lazy Pulverix for
Windows
within
WinGX

LAZY PULVERIX, a computer
program, for calculating X ray and
neutron diffraction powder
patterns, K. Yvon, W. Jeitschko
and E. Parthé, J. Appl. Crystallogr.,
1977, 10, 73 74 and WinGX suite
for small molecule single crystal
crystallography, L. J. Farrugia,
J. Appl. Crystallogr., 1999, 32,
837 838

Shelx, CIF, CSD
FDAT, CSSR XR

Platon Single crystal structure validation with
the program PLATON, A. L. Spek,
J. Appl. Crystallogr., 2003, 36, 7 13

Platon, CIF, Shelx,
CSD FDAT, PDB

Powder Cell for
Windows

POWDER CELL a program for the
representation and manipulation of
crystal structures and calculation of
the resulting X ray powder
patterns., W. Kraus and G. Nolze,
J. Appl. Crystallogr., 1996, 29, 301
303

Powder Cell, Shelx,
ICSD (TXT)

Powdis and
Powutl/
ORTEX Suite

POWDIS and POWUTL PC
programs for the display and
simulation of X ray powder
patterns, P. McArdle and D.
Cunningham, J. Appl. Crystallogr.,
1998, 31, 826

Shelx

Poudrix for
Windows

LMGP Suite Suite of Programs for the
interpretation of X ray
Experiments, by J. Laugier and
B. Bochu, ENSP/Laboratoire des
Matériaux et du Génie Physique,
BP 46. 38042 Saint Martin d0Hčres,
France

Shelx, Powder Cell,
Lazy Pulverix LZY,
CIF
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Table 17.32 Available structure validation software.

Software References Main feature/caveat

Addsym (with
Platon)

MISSYM1.1 a flexible new release,
Y. Le Page, J. Appl. Crystallogr.,
1988, 21, 983 984, Computer
derivation of the symmetry
elements implied in a structure
description, Y. Le Page, J. Appl.
Crystallogr., 1987, 20, 264 269 and
Single crystal structure validation
with the program PLATON, A. L.
Spek, J. Appl. Crystallogr., 2003,
36, 7 13

The benchmark for
general validation
of crystal structures
including the
Addsym program
for finding missing
(higher) symmetry
in solved and
refined crystal
structures

Bond Str/Fullprof Bond Str distances, angles and bond
valence calculations, J. Rodriguez
Carvajal, Laboratoire Léon
Brillouin, Saclay, France, March
2005 and WinPLOTR: A Windows
tool for powder diffraction pattern
analysis, T. Roisnel and J.
Rodriguez Carvajal, EPDIC 7:
European Powder Diffraction, Pts 1
and 2 Materials Science Forum 378
3: 118 123, Part 1&2 2001

Bond Valence
calculations

Bond Valence
Wizard

Program for predicting interatomic
distances in crystals by the bond
valence method, I. P. Orlov, K. A.
Popov and V. S. Urusov, J. Struct.
Chem., 1998, 39(4), 575 579 and
Predicting bond lengths in
inorganic crystals, I. D. Brown,
Acta Crystallogr., Sect. B, 1977, 33,
1305 1310

Bond Valence
calculations

CHKSYM CHKSYM a PC program that checks
the symmetry properties of the unit
cell and its contents, P. McArdle, P.
Daly and D. Cunningham, J. Appl.
Crystallogr., 2002, 35, 378

Checking the
symmetry of a
refined crystal
structure

Crystals CRYSTALS version 12: software for
guided crystal structure analysis,
P. W. Betteridge, J. R. Carruthers,
R. I. Cooper, K. Prout and D. J.
Watkin, J. Appl. Crystallogr., 2003,
36, 1487

Links to CCDC
Mogul

dSNAP dSNAP: a computer program to
cluster and classify Cambridge
Structural Database searches,
G. Barr, W. Dong, C. J. Gilmore,
A. Parkin and C. C. Wilson, J.
Appl. Crystallogr., 2005, 38, 833
841

Checking structures
against the CCDC
organics and
organometallics
structure database

MISSYM MISSYM1.1 a flexible new release,
Y. Le Page, J. Appl. Crystallogr.,

Original algorithm by
Y. LePage.

(Continued)
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17.3.28 Crystallographic Structure Visualization: During Structure Solution

and Refinement

Unlike modern single crystal suites, most Rietveld programs do not have the
ability to graphically track the progress of the refinement by displaying a real-
time plot of the structure. Exceptions to this include developments within the
Fullprof Suite, MAUD and BRASS. Thus use of a free-standing structure

Table 17.32 (Continued ).

Software References Main feature/caveat

1988, 21, 983 984 and Computer
derivation of the symmetry
elements implied in a structure
description, Y. Le Page, J. Appl.
Crystallogr., 1987, 20, 264 269

Implemented in
Addsym within
Platon

Mogul Retrieval of Crystallographically
Derived Molecular Geometry
Information, I. J. Bruno, J. C. Cole,
M. Kessler, J. Luo, W. D. S.
Motherwell, L. H. Purkis, B. R.
Smith, R. Taylor, R. I. Cooper,
S. E. Harris and A. G. Orpen,
J. Chem. Inf. Comput. Sci., 2004,
44(6), 2133 2144

Validation of bond
lengths, angles and
torsions against the
Cambridge
database

Ortex ORTEX2.1 a 1677 atom version of
ORTEP with automatic cell outline
and cell packing for use on a PC,
P. McArdle, J. Appl. Crystallogr.,
1994, 27, 438 439

Includes void finding

softBV Relationship between bond valence
and bond softness of alkali halides
and chalcogenides, St. Adams, Acta
Crystallogr., Sect. B, 2001, 57, 278
287

Bond Valence
calculations with
web based input of
Shelx and CIF files

SVDdiagnostic SVDdiagnostic, a program to diagnose
numerical conditioning of Rietveld
refinements, P. H. J. Mercier, Y.
Le Page, P. S. Whitfield and L. D.
Mitchell, J. Appl. Crystallogr.,
2006, 39, 458 465

diagnosis of ill
conditioned
Rietveld
refinements

Valence VALENCE: a program for calculating
bond valences, I. D. Brown, J. Appl.
Crystallogr., 1996, 29, 479 480

Bond Valence
parameters

VaList VaList, A. S. Wills and I. D. Brown,
CEA, France, 1999, Program
available from ftp://ftp.ill.fr/pub/
dif/valist/

Bond Valence
calculations

WinGX WinGX suite for small molecule
single crystal crystallography, L. J.
Farrugia, J. Appl. Crystallogr.,
1999, 32, 837 838

Includes and links to
wide variety of
validation software
including Platon
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viewing program may be of assistance. Of the available software, the ORTEP-
III for Windows can be effective due to its ability to import various crystal
structure formats, including GSAS (Table 17.33).

17.3.29 Visualization and Photo Realistic Rendering of Crystal Structures

Most commercial crystal structure viewing software can handle all the require-
ments that a user may want of them. For freeware software, a collection of
programs may be required to match this (e.g., one program for annotated ball
and stick display, another program for polyhedral structure display). Most
structure viewing programs should be able to import CIF files. It is best to
check the bond-length and angle output, as well as use different programs
to cross-check the correctness of the output. This is especially so with poly-
hedral structure display software, where possible errors may not be apparent
until compared with a similar structure plot generated in a separate program
(Table 17.34).

Table 17.33 Software for crystallographic structure visualization during
structure solution and refinement.

Software References
Compatible file
formats

Gretep LMGP Suite Suite of Programs for the
interpretation of X ray Experiments, by
J. Laugier and B. Bochu, ENSP/
Laboratoire des Matériaux et du Génie
Physique, BP 46. 38042 Saint Martin
d0Hčres, France

Poudrix, Shelx,
Lazy_Pulvarix,
Powder Cell, CIF

ORTEP III
for
Windows

ORTEP 3 for Windows a version of
ORTEP III with a Graphical User
Interface (GUI), L. J. Farrugia, J. Appl.
Crystallogr., 1997, 30, 565

Shelx, CIF, GX, SPF/
Platon, ORTEP,
CSD/CCDC
FDAT, CSSR
XR, Crystals,
GSAS, Sybol
MOL/MOL2,
MDL MOL, XYZ
file, Brookhaven
PDB, Rietica
LHPM, Fullprof

Platon Single crystal structure validation with the
program PLATON, A. L. Spek, J. Appl.
Crystallogr., 2003, 36, 7 13 and A. L.
Spek, (1998) PLATON, A Multipurpose
Crystallographic Tool, Utrecht
University, Utrecht, The Netherlands

CIF, Shelx, PDB,
Platon SPF

Powder Cell POWDER CELL a program for the
representation and manipulation of
crystal structures and calculation of the
resulting X ray powder patterns,
W. Kraus and G. Nolze, J. Appl.
Crystallogr., 1996, 29, 301 303

Powder Cell, Shelx,
ICSD TXT
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Table 17.34 Available software for visualization and photo realistic rendering of crystal structures.

Software References
Ball and
Stick

ADPs/
ORTEPs Polyhedral Magnetic Freeware

ATOMS ATOMS, Shape Software, 521 Hidden Valley Road,
Kingsport TN 37663 USA, http://
www.shapesoftware.com/

Yes Yes Yes Yes

Balls and Sticks Balls&Sticks: easy to use structure visualization and
animation program, T. C. Ozawa and S. J. Kang
, J. Appl. Crystallogr., 2004, 37, 679

Yes Yes Yes

BALSAC BALSAC software by K. Hermann, Fritz
Haber Institut der MPG, Berlin (C) Copyright
1991 2004 Klaus Hermann. All Rights Reserved

Yes Yes

Cameron CAMERON, D. J. Watkin, C. K. Prout and L. J.
Pearce, 1996, Chemical Crystallography
Laboratory, Oxford, UK

Yes Yes Yes

Carine CaRIne Crystallography (c)C. Boudias and
D. Monceau, 1989 2004: The crystallographic
software for research and teaching 3D
Modeling: Unit cells, Crystals, Surfaces,
Interfaces Simulation and analysis: X Ray
diffraction patterns, Stereographic projections,
Reciprocal lattices. http://pro.wanadoo.fr/
carine.crystallography/

Yes Yes

Crystallographica Crystallographica a software toolkit for
crystallography, J. Appl. Crystallogr. 1997, 30,
418 419

Yes Yes Yes

Crystal Maker CrystalMaker 6 for Mac OS X. CrystalMaker
Software Ltd., 5 Begbroke Science Park, Sandy
Lane, Yarnton, OX5 1PF, UK

Yes Yes Yes
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Crystal Studio Crystal Studio Crystallography Software Package,
(C)1999 2005, Crystal Systems Co., Ltd.,
(www.crystalsoftcorp.com), PO Box 7006, Wattle
Park, VIC 3128, Australia

Yes Yes Yes

CrystMol CrystMol, 6209 Litchfield Lane, Kalamazoo, MI,
49009 9159, US

Yes Yes

Diamond Diamond Crystal and Molecular Structure
Visualization Crystal Impact K. Brandenburg
and H. Putz GbR, Postfach 1251, D 53002 Bonn

Yes Yes Yes

DrawXTL DRAWxtl, an open source computer program to
produce crystal structure drawings, L. W. Finger,
M. Kroeker and B. H. Toby, J. Appl.
Crystallogr., 2007, 40, 188 192

Yes Yes Yes Yes Yes

FpStudio FpStudio, L. C. Chapon and J. Rodriguez Carvajal,
Rutherford Appleton Laboratory, UK and
Laboratoire Léon Brillouin, Saclay, France,
March 2005

Yes Yes Yes Yes

GRETEP LMGP Suite Suite of Programs for the
interpretation of X ray Experiments, by
J. Laugier and B. Bochu, ENSP/Laboratoire des
Matériaux et du Génie Physique, BP 46. 38042
Saint Martin d0Hčres, France

Yes Yes Yes

Mercury New software for searching the Cambridge
Structural Database and visualising crystal
structures, I. J. Bruno, J. C. Cole, P. R.
Edgington, M. K. Kessler, C. F. Macrae,
P. McCabe, J. Pearson and R. Taylor, Acta
Crystallogr., Sect. B, 2002, 58, 389 397

Yes Yes Yes
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MolXtl MolXtl: molecular graphics for small molecule
crystallography, D. W. Bennett, J. Appl.
Crystallogr., 2004, 37, 1038

Yes Yes

OLEX OLEX: new software for visualization and analysis of
extended crystal structures, O. V. Dolomanov,
A. J. Blakem, N. R. Champness and M. Schröder,
J. Appl. Crystallogr., 2003, 36, 1283 1284

Yes Yes

ORTEP III M. N. Burnett and C. K. Johnson, ORTEP III: Oak
Ridge Thermal Ellipsoid Plot Program for
Crystal Structure Illustrations, Oak Ridge
National Laboratory Report ORNL 6895, 1996

Yes Yes Yes

ORTEP III for
Windows

ORTEP 3 for Windows a version of ORTEP III
with a Graphical User Interface (GUI), L. J.
Farrugia, J. Appl. Crystallogr., 1997, 30, 565

Yes Yes Yes

ORTEX/Oscail X ORTEX2.1 a 1677 atom version of ORTEP with
automatic cell outline and cell packing for use on
a PC, P. McArdle, J. Appl. Crystallogr., 1994, 27,
438 439; and ‘‘A method for the prediction of the
crystal structure of ionic organic compounds?
The crystal structures of o toluidinium chloride
and bromide and polymorphism of bicifadine
hydrochloride’’, P. McArdle, K. Gilligan,
D. Cunningham, R. Dark and M. Mahon,
CrystEngComm, 2004, 6, 303

Yes Yes Yes

Platon/Pluton Single crystal structure validation with the program
PLATON, A. L. Spek, J. Appl. Crystallogr.,
2003, 36, 7 13 and A. L. Spek, 1998, PLATON,
A Multipurpose Crystallographic Tool, Utrecht
University, Utrecht, The Netherlands

Yes Yes Yes

Table 17.34 (Continued ).
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Powder Cell POWDER CELL a program for the
representation and manipulation of crystal
structures and calculation of the resulting X ray
powder patterns., W. Kraus and G. Nolze,
J. Appl. Crystallogr., 1996, 29, 301 303

Yes Yes

PRJMS ‘‘Structure factor of modulated crystal structures’’
by A. Yamamoto, Acta Crystallogr. Sect. A,
1982, 38, 87 92

Yes Yes

Schakal ‘‘SCHAKAL 99, a computer program for the
graphic representation of molecular and sold
state structure models’’, E. Keller, Universitaet
Freiburg, Germany, 1999

Yes Yes Yes

Struplo STRUPLO 2003. A new program for crystal
structure drawing., R. X. Fischer and T.
Messner, Ber. DMG, Beih. z. Eur. J. Mineral.,
2003, 15(1), 54

Yes Yes Yes Yes

Struplo for
Windows

STRUPLO84, a Fortran plot program for crystal
structure illustrations in polyhedral
representation, R. X. Fischer, J. Appl.
Crystallogr., 1985, 18, 258 262; VRML as a tool
for exploring complex structures, A. Le Bail,
Acta Crystallogr., Sect. A, 1996, 52, suppl. C78,
and WinGX suite for small molecule single
crystal crystallography, L. J. Farrugia, J. Appl.
Crystallogr., 1999, 32, 837 838

Yes Yes

Struvir VRML as a tool for exploring complex structures,
A. Le Bail, Acta Crystallogr., Sect. A, 1996, 52,
suppl. C78. and STRUPLO84, a Fortran plot
program for crystal structure illustrations in
polyhedral representation, R. X. Fischer, J. Appl.
Crystallogr., 1985, 18, 258 262

Yes Yes

(Continued )
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Venus (includes
PRIMA)

Structure refinement based on the maximum
entropy method from powder diffraction data,
F. Izumi and R. A. Dilanian, in Recent Research
Developments in Physics, Transworld Research
Network, Trivandrum, 2002, Vol. 3, Part II, pp.
699 726 and Beyond the ability of Rietveld
analysis: MEM based pattern fitting, F. Izumi,
Solid State Ionics, 2004, 172, 1 6

Yes Yes Yes Yes Yes

XmLmctep LMCTEP: software for crystal structure
representation, A. Soyer, J. Appl. Crystallogr.,
1993, 26, 495

Yes Yes Yes

X Seed X Seed A software tool for supramolecular
crystallography, L. J. Barbour, J. Supramol.
Chem., 2001, 1, 189. and Molecular graphics:
from science to art, J. L. Atwood and L. J.
Barbour, Cryst. Growth Des. 2003, 3, 3

Yes Yes

Xtal 3D Databases linked to electronic publications,
A. Hewat, Acta Crystallogr. Sect. A, 2002,
58, (Supplement), C216

Yes Yes Yes Yes Yes

XtalDraw The American Mineralogist Crystal Structure
Database. R. T. Downs and M. Hall Wallace,
Am. Mineral., 2003, 88, 247 250

Yes Yes Yes Yes

Table 17.34 (Continued ).
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Table 17.35 Miscellaneous Internet based resources useful to powder
diffractionists.

Software
Overview (web links are included in
Apendix to this chapter)

CCP14 (Collaborative Computational
Project Number 14 for Single Crystal
and Powder Diffraction)

A first port of call for checking out
available crystallographic software.
Links to and mirrors of single crystal
and powder crystallographic software.
Includes tutorials for some of the
software and lists of available software

Crystallographic Nexus CD ROM for
crystallographers isolated from the
internet

Free CD ROM containing various
Internet available single crystal and
powder diffraction software and
resources. Mainly intended for
academics and students in the
developing world

Google Search Engine Currently, the best internet search engine
in terms of giving relevant hits
(providing your scientific keyword is
not associated with a more
mainstream non scientific topic)

Internet course: Powder Diffraction
Course

Internet course teaching powder
diffraction from fundamentals
through to Rietveld refinement

Internet course: Quantitatively Determine
the Crystallographic Texture of
materials

Internet course teaching materials
analysis by texture methods

Internet course: Structure Determination
by Powder Diffractometry (SDPD)

Internet course teaching the solving of
crystal structures from powder
diffraction data

IUCr (International Union of
Crystallography)

Main umbrella organization for
crystallographers (including powder
diffractionists)

IUCr Commission on Powder Diffraction
Newsletter

Free on line and hardcopy newsletter for
powder diffractonists. Each issue
normally has a theme, as well as
attracting general announcements and
articles of interest

IUCr Commission on Crystallographic
Computing Newsletter

A free on line newsletter for those who
are (or wish to) develop
crystallographic software, as well as
those who like to see what is under the
hood of existing crystallographic
software

IUCr Sincris Crystallographic Software
Library

Links to a very wide variety of
crystallographic software (not just
single crystal and powder diffraction)

IUCr Crystallography World Wide
Educational Resources

Links to various crystallographic
educational resources

IUCr Crystallography World Wide
Employment Resources

A first port of call for those interested in
crystallographic employment

Free Linux based single crystal and
powder crystallographic software on

(Continued)
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17.3.30 Miscellaneous Resources

Some useful resources are listed in the Table 17.35, including Internet based
discussion lists, employment, tutorials and training courses.

APPENDIX 1: INTERNET LINKS FOR CITED SOFTWARE

AND RESOURCES

Absen: http://www.nuigalway.ie/cryst/software.htm
ADM-connect: http://www.RMSKempten.de/ and http://freenet-homepage.
de/RMSKempten/admvbal.html

Addsym: is implemented within Platon
AmericanMineralogist Crystal Structure Database: http://www.geo.arizona.edu/
AMS/

ARITVE: http://sdpd.univ-lemans.fr/aritve.html
ATOMS: http://www.shapesoftware.com/
AUTOX: included with VMRIA http://www.ccp14.ac.uk/ccp/web-mirrors/
vmria/

Table 17.35 (Continued ).

Software
Overview (web links are included in
Apendix to this chapter)

Kcristal Linux versions and ports of
powder diffraction software on free
downloadable CD

CD ROM. Includes a surprisingly
wide variety of crystallographic
programs, and ports of DOS/Windows
programs to Linux.; Ref: Kcristal:
Linux ‘live CD’ for powder
crystallography, V. H. S. Utuni, A. V.
C. Andrade, H. P. S. Correa and C. O.
Paiva Santos, J. Appl. Crystallogr.,
2005, 38, 706 707

Rietveld Users Mailing List Not only a good place for learning about
available Rietveld software, jobs and,
answering of general queries: but also
to observe the cut, thrust and parry of
crystallographic argument

Sci.techniques.xtallography Internet
newsgroup

General crystallography, which includes
powder diffraction. Quite sparse in
activity but a good place to check for
software announcements, jobs on offer
and communal problem software

SDPD (Structure Determination by
Powder Diffractometry) mailing list

A good mailing list for advice and hints
on structure solution, as well as
announcements on new software
updates and jobs on offer

Strategies in Structure Determination
from Powder Data by Armel Le Bail

Advice and examples from one of the
world experts and developers of
structure solution from powder
diffraction data

562 Chapter 17



AXES: http://www.physic.ut.ee/Bhugo/axes/
BABEL: refer to OpenBabel
Balls and Sticks: http://www.toycrate.org/
BALSAC: http://www.fhi-berlin.mpg.de/Bhermann/Balsac/
BGMN: http://www.bgmn.de/
BEARTEX: http://eps.berkeley.edu/Bwenk/TexturePage/beartex.htm
Bede Search/Match: http://www.bede.co.uk/
Bilbao Crystallographic Server: http://www.cryst.ehu.es/
Bond Str: within the Fullprof Suite
Bond Valence Wizard: http://orlov.ch/bondval/
BRASS: http://www.brass.uni-bremen.de/
BREADTH: http://www.du.edu/Bbalzar/breadth.htm
Cameron: within Crystals and WinGX
CAOS: within Sir2004 and freestanding at http://www.ic.cnr.it/caos/
Carine: http://pros.orange.fr/carine.crystallography/
CCDC/Cambridge Structure Database: http://www.ccdc.cam.ac.uk/
CCP14 (Collaborative Computational Project Number 14 for Single Crystal
and Powder Diffraction): http://www.ccp14.ac.uk/

cctbx-sgtbx Explore symmetry: http://cci.lbl.gov/cctbx/explore_symmetry. html
CDS (EPSRC funded Chemical Database Service): http://cds.dl.ac.uk/
Celref: http://www.ccp14.ac.uk/tutorial/lmgp/#celref and http://www.ccp14.
ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/

Chekcell: http://www.ccp14.ac.uk/tutorial/lmgp/#chekcell and http://www. ccp14.
ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/

CHKSYM: http://www.nuigalway.ie/cryst/software.htm
CMPR & Portable LOGIC: http://www.ncnr.nist.gov/xtal/software/cmpr/
CMWP-fit: http://www.renyi.hu/cmwp/
COD (Crystallography Open Database): http://www.crystallography.net/
ConTEXT: http://www.context.cx/
ConvX: http://www.ccp14.ac.uk/ccp/web-mirrors/convx/
Crisp: http://xtal.sourceforge.net/
Crunch: http://www.bfsc.leidenuniv.nl/software/crunch/
Cryscon: http://www.shapesoftware.com/
Crysfire: http://www.ccp14.ac.uk/tutorial/crys/ and http://www.ccp14.ac.uk/
ccp/web-mirrors/crys-r-shirley/

Crystallographic Nexus CD-ROM for crystallographers isolated from the
Internet: http://lachlan.bluehaze.com.au/stxnews/nexus/

Crystal Maker: http://www.crystalmaker.co.uk/
Crystals: http://www.xtl.ox.ac.uk/
Crystal Studio: http://www.crystalsoftcorp.com/CrystalStudio/
CRYSTMET: http://www.tothcanada.com/
Crystallographica and Crystallographica Search-Match: http://www.
crystallographica.co.uk/

CrystMol: http://www.crystmol.com/
DANSE: http://wiki.cacr.caltech.edu/danse/index.php/Main_Page
Dash: http://www.ccdc.cam.ac.uk/products/powder_diffraction/dash/

563Computer Software for Powder Diffraction



Datasqueeze: http://www.datasqueezesoftware.com/
DBWS: http://www.physics.gatech.edu/downloads/young/DBWS.html
DEBVIN: http://users.uniud.it/bruckner/debvin.html
DERB and DERFFT: http://www.ccp14.ac.uk/ccp/web-mirrors/derb-derfft/
DDM: http://icct.krasn.ru/eng/content/persons/Sol_LA/ddm.html
Diamond: http://www.crystalimpact.com/
Dicvol 91: various internet sites including http://sdpd.univ-lemans.fr/ftp/
dicvol91.zip

Dicvol 2004: http://www.ccp14.ac.uk/ccp/web-mirrors/dicvol/
Dicvol 2006: http://www.ccp14.ac.uk/ccp/web-mirrors/dicvol/
DIFFaX+: E-mail Matteo Leoni (matteo.leoni@unitn.it)
DIFFRACplus SEARCH: http://www.bruker-axs.de/
Dirdif: http://www.xtal.science.ru.nl/documents/software/dirdif.html
DISCUS: http://www.uni-wuerzburg.de/mineralogie/crystal/discus/ and ftp://
ftp.lanl.gov/public/tproffen/

DPLOT: http://www.dplot.com/
DrawXTL: http://www.lwfinger.net/drawxtl/
DRXWin: http://icmuv.uv.es/drxwin/
dSNAP: http://www.chem.gla.ac.uk/snap/
DS*SYSTEM: http://www.ccp14.ac.uk/ccp/web-mirrors/okada/
Eflect/Index: http://www.bgmn.de/related.html
Endeavour: http://www.crystalimpact.com/endeavour/
Eracel: http://sdpd.univ-lemans.fr/ftp/eracel.zip
Explore symmetry: refer to cctbx
EXPGUI: http://www.ncnr.nist.gov/programs/crystallography/software/expgui/
EXPO/EXPO2004: http://www.ic.cnr.it/
EXTRACT: http://www.crystal.mat.ethz.ch/Software/XRS82/
Extsym: http://www.markvardsen.net/projects/ExtSym/main.html
FIT2D: http://www.esrf.fr/computing/scientific/FIT2D/
Fjzn: http://www.ccp14.ac.uk/tutorial/crys/ and http://www.ccp14.ac.uk/ccp/
web-mirrors/crys-r-shirley/

Fityk: http://www.unipress.waw.pl/fityk/
Focus: http://olivine.ethz.ch/LFK/software/ and http://cci.lbl.gov/Brwgk/focus/
FOUE: http://www.ccp14.ac.uk/ccp/web-mirrors/scott-belmonte-software/foue/
Fourier3D: http://www.cryst.chem.uu.nl/tooke/fourier3d/
Fox: http://objcryst.sourceforge.net/Fox/
FpStudio: within the Fullprof Suite
Fullpat: http://www.ccp14.ac.uk/ccp/web-mirrors/fullpat/
Fullprof Suite: http://www.ill.fr/dif/Soft/fp/
GeneFP: http://crystallography.zhenjie.googlepages.com/GeneFP.html
GEST: http://crystallography.zhenjie.googlepages.com/GEST.html
GETSPEC: http://www.ccp14.ac.uk/ccp/web-mirrors/i_d_brown/getspec/ (see
Wgetspec for Windows binary)

Gfourier: within the Fullprof Suite and freestanding via http://www.ill.fr/dif/
Soft/fp/

Google Search Engine: http://www.google.com/
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Gretep: http://www.ccp14.ac.uk/tutorial/lmgp/#gretep and http://www.ccp14.
ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/

GRINSP: http://sdpd.univ-lemans.fr/grinsp/ and http://www.cristal.org/grinsp/
GSAS: http://www.ncnr.nist.gov/xtal/software/downloads.html; http://www.
ccp14.ac.uk/solution/gsas/; http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/
public/gsas/

Hydrogen/CalcOH: http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/nardelli/pub/
nardelli/ and GUI version within WinGX

Hypertext Book of Crystallographic Space Group Diagrams and Tables: http://
img.chem.ucl.ac.uk/sgp/

ICDD Powder Diffraction Files on CD-ROM: http://www.icdd.com/
IC-POWLS: E-mail Winfried Kockelmann (W.Kockelmann@rl.ac.uk)
ICSD (Inorganic Crystal Structure Database): http://www.
fiz-informationsdienste.de/en/DB/icsd/ and http://icsd.ill.fr/

Incommensurate phases database: http://www.mapr.ucl.ac.be/Bcrystal/
International Tables vol A.: http:// it.iucr.org/
Internet course: Powder Diffraction Course: http://pd.chem.ucl.ac.uk/pd/
welcome.htm

Internet course: Quantitatively Determine the Crystallographic Texture of
materials: http://www.ecole.ensicaen.fr/Bchateign/qta/

ISOTROPY: http://stokes.byu.edu/isotropy.html
Ito: various internet sites including http://sdpd.univ-lemans.fr/ftp/ito13.zip
IUCr (International Union of Crystallography): http://www.iucr.org/
IUCr Commission on Crystallographic Computing Newsletter: http://www.
iucr.org/iucr-top/comm/ccom/newsletters/

IUCr Commission on Powder Diffraction Newsletter: http://www.iucr.org/
iucr-top/comm/cpd/html/newsletter.html and http://www.iucr-cpd.org/
Newsletters.htm

IUCr Sincris Crystallographic Software Library: http://www.iucr.org/sincris-top/
IUCr Crystallography World Wide Educational Resources: http://www.
iucr.org/cww-top/edu.index.html

IUCr Crystallography World Wide Employment Resources: http://www.
iucr.org/cww-top/job.index.html

Jade: http://www.materialsdata.com/products.htm
Jana: http://www-xray.fzu.cz/jana/Jana2000/jana.html and ftp://ftp.fzu.cz/
pub/cryst/jana2000/

Kcristal – Linux versions and ports of powder diffraction software on free
downloadable CD.: http://labcacc.iq.unesp.br/kcristal/

Koalariet: No longer developed. http://www.ccp14.ac.uk/ccp/web-mirrors/
xfit-koalariet/ Sequel is the Topas Rietveld program.

Kohl/TMO: http://www.ccp14.ac.uk/ccp/web-mirrors/kohl-tmo/
LABOTEX: http://www.labosoft.com.pl/
LAMA Incommensurate Structures Database: http://www.cryst.ehu.es/
icsdb/

LAPOD: http://www.ccp14.ac.uk/ccp/web-mirrors/lapod-langford/
LAPODS: http://www.ccp14.ac.uk/ccp/web-mirrors/powderx/lapod/
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Lazy Pulverix: Erwin Parthe (1928-2006). Software is also available within
various programs including WinGX and the ICSD for Web.

LinGX: http://www.xtal.rwth-aachen.de/LinGX/
Lzon: http://www.ccp14.ac.uk/tutorial/crys/ and http://www.ccp14.ac.uk/ccp/
web-mirrors/crys-r-shirley/

MacDiff: http://servermac.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/
RainerE.html

MacPDF: http://www.esm-software.com/macpdf/
MATCH!: http://www.crystalimpact.com/match/
MAUD: http://www.ing.unitn.it/Bmaud/
MCE-Marching Cubes: http://www.vscht.cz/min/mce
MCGRtof: E-mail Matt Tucker at m.g.tucker@rl.ac.uk
McMaille: http://sdpd.univ-lemans.fr/McMaille/
MDI DataScan: http://www.materialsdata.com/ds.htm
Mercury: http://www.ccdc.cam.ac.uk/products/mercury/
MINCRYST: http://database.iem.ac.ru/mincryst/
Mogul: http://www.ccdc.cam.ac.uk/products/csd_system/mogul/
MolXtl: http://www.uwm.edu/Dept/Chemistry/molxtl/
Momo: http://www.chemie.uni-frankfurt.de/egert/html/momo.html
MS Excel: http://office.microsoft.com/
MudMaster: ftp://brrcrftp.cr.usgs.gov/pub/ddeberl/MudMaster/
MXD (MiXeD crystallographic executive for diffraction): http://cristallo.
grenoble.cnrs.fr/LDC/PRODUC_SCIENTIFIQUE/Programme_Wolfers/
ProgCristallo.html

Missym: implemented within NRCVax. There is also an enhanced implemen-
tation of Missym within Platon under the name of Addsym

Nickel–Nichols Mineral Database: http://www.materialsdata.com/
MINERALS.htm

NIH-Image: http://rsb.info.nih.gov/nih-image/
NRCVax: contact Peter White by E-mail: pwhite@unc.edu
OLEX: http://www.ccp14.ac.uk/ccp/web-mirrors/lcells/
OpenBabel: http://openbabel.sourceforge.net/
OpenDX: http://www.opendx.org/
OpenGenie: http://www.isis.rl.ac.uk/OpenGENIE/
Organa: Contact René Peschar by E-mail: rene@science.uva.nl
ORTEP III: http://www.ornl.gov/ortep/ortep.html
ORTEP III for Windows: http://www.chem.gla.ac.uk/Blouis/software/
ORTEX/Oscail X: http://www.nuigalway.ie/cryst/software.htm
Overlap: http://sdpd.univ-lemans.fr/ftp/overlap.zip
Patsee: http://www.chemie.uni-frankfurt.de/egert/html/patsee.html
Pauling File: http://www.asminternational.org/
PC-1710 for Windows/PC-1800 for Windows: http://www.clw.csiro.au/services/
mineral/products.html

PDB (Protein Data Bank): http://www.rcsb.org/pdb/
PDFFIT: http://sourceforge.net/projects/discus/
PDFFIT2/PDFgui: http://www.diffpy.org
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PDFgetN: http://sourceforge.net/projects/pdfgetn/
PDFgetX2: http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX2/
PDFgui: http://www.diffpy.org
PFE: http://www.ccp14.ac.uk/ccp/web-mirrors/pfe/people/cpaap/pfe/
PFLS: http://www.crl.nitech.ac.jp/Btoraya/software/
Platon/System S: http://www.cryst.chem.uu.nl/platon/ UNIX: ftp://xraysoft.
chem.uu.nl/pub/ Win: http://www.chem.gla.ac.uk/Blouis/software/

Platon/Fourier3D: Refer to Fourier3D
Pluton: implemented within Platon. Some free-standing versions are still
available via various software distributions.

POFINT: http://www.ecole.ensicaen.fr/Bchateign/qta/pofint/
PopLA: http://www.lanl.gov/orgs/mst/cms/poplalapp.html
Poudrix for Windows: http://www.ccp14.ac.uk/tutorial/lmgp/#gretep and
http://www.ccp14.ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/

Powder3D: http://www.fkf.mpg.de/xray/html/powder3d.html
Powder Cell: http://www.ccp14.ac.uk/ccp/web-mirrors/powdcell/a_v/v_1/
powder/e_cell.html and ftp://ftp.bam.de/Powder_Cell/

Powder Solve: http://www.accelrys.com/products/cerius2/
Powder v4: http://www.ccp14.ac.uk/ccp/web-mirrors/ndragoe/html/software. html
PowderX: http://www.ccp14.ac.uk/ccp/web-mirrors/powderx/Powder/
Powdis and Powutl: http://www.nuigalway.ie/cryst/software.htm
PowDLL: http://users.uoi.gr/nkourkou/
POWF: http://www.crystal.vt.edu/crystal/powf.html
PREMOS: http://quasi.nims.go.jp/yamamoto/
PRIMA: refer to VENUS
PRODD: http://www.ccp14.ac.uk/ccp/web-mirrors/prodd/Bjpw22/
Profil: http://img.chem.ucl.ac.uk/www/cockcroft/profil.htm and ftp://img. cryst.
bbk.ac.uk/

PRO-FIT: http://www.crl.nitech.ac.jp/Btoraya/software/
Pulwin: http://users.uniud.it/bruckner/pulwin.html
PW1050: E-mail Prof. Juergen Kopf at kopf@xray.chemie.uni-hamburg.de,
http://aclinux1.chemie.uni-hamburg.de/Bxray/

Quanto: http://www.ic.cnr.it/
RAD: http://www.pa.msu.edu/Bpetkov/software.html
RayfleX: http://www.geinspectiontechnologies.com/
Refcel: http://img.chem.ucl.ac.uk/www/cockcroft/profil.htm and ftp://img.
cryst.bbk.ac.uk/

Riet7/SR5/LHPM: ftp://ftp.minerals.csiro.au/pub/xtallography/sr5/ and http:/
/www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/csirominerals-anon-ftp/pub/
xtallography/sr5/

RIETAN: http://homepage.mac.com/fujioizumi/rietan/angle_dispersive/
angle_ dispersive.html

Rietica: http://www.rietica.org/
Rietquan: http://www.ing.unitn.it/Bluttero/
Rietveld Users Mailing List: http://lachlan.bluehaze.com.au/stxnews/riet/
welcome.htm
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RIQAS: http://www.materialsdata.com/ri.htm
RMC: via ISIS website: http://www.isis.rl.ac.uk/
RMC++: http://www.szfki.hu/Bnphys/rmc++/opening.html
RMCAW95: http://sdpd.univ-lemans.fr/glasses/rmca/rmcaw95.html
RMCPOW: via ISIS website: http://www.isis.rl.ac.uk/
RMCprofile: E-mail Matt Tucker at m.g.tucker@rl.ac.uk
Rockjock: ftp://brrcrftp.cr.usgs.gov/pub/ddeberl/RockJock/
PRJMS: http://quasi.nims.go.jp/yamamoto/
Ruby: http://www.materialsdata.com/products.htm
SARAh: http://www.chem.ucl.ac.uk/people/wills/ and ftp://ftp.ill.fr/pub/dif/sarah/
Schakal: http://www.krist.uni-freiburg.de/ki/Mitarbeiter/Keller/
Sci.techniques.xtallography Internet newsgroup: news:sci.techniques.
xtallography ; Homepage: http://lachlan.bluehaze.com.au/stxnews/stx/
welcome.htm

SDPD (Structure Determination by Powder Diffractometry) mailing list:
http://www.cristal.org/sdpd/

SGInfo: http://cci.lbl.gov/sginfo/
sgtbx Explore symmetry: refer to cctbx
SHADOW: Various old copies on the internet including http://www.ccp14.
ac.uk/ccp/ccp14/ftp-mirror/snyder/SOURCE/SHADOW/ and http://www.
du.edu/Bbalzar/breadth.htm. Commercial version sold by Materials Data
Inc: http://www.materialsdata.com/

Shake’n’Bake (SnB): http://www.hwi.buffalo.edu/SnB/
ShakePSD: http://www.ccp14.ac.uk/ccp/web-mirrors/okada/
Shelxl97/Shelxs86/Shelxs97/ShelxD: http://shelx.uni-ac.gwdg.de/SHELX/
Simref: http://www.uni-tuebingen.de/uni/pki/simref/simref.html
SimPA: http://www.science.uottawa.ca/phy/eng/profs/desgreniers/SImPA/
simpa.htm

Simpro: http://www.uni-tuebingen.de/uni/pki/simref/simpro.html
Sir92/Sir97/Sir2004/CAOS: http://www.ic.cnr.it/
Siroquant: http://www.sietronics.com.au/products/siroquant/sq.htm
SIeve: http://www.icdd.com/
SoftBV: http://kristall.uni-mki.gwdg.de/softbv/
Space Group Explorer: http://www.calidris-em.com/archive.htm
Space Group Info: is within the Fullprof Suite
SPEC: http://www.certif.com/
STEREOPOLE: http://www.if.tugraz.at/amd/stereopole/
Strategies in Structure Determination from Powder Data by A. Le Bail: http://
sdpd.univ-lemans.fr/iniref/tutorial/indexa.html

Structure Tidy: Erwin Parthe (1928-2006). Software also included within
Platon

Struplo: latest version now within the BRASS Rietveld suite : http://www.
brass.uni-bremen.de/

Struplo for Windows: http://www.chem.gla.ac.uk/Blouis/software/
Struvir: http://sdpd.univ-lemans.fr/vrml/struvir.html and http://www.cristal.
org/vrml/struvir.html
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Supercell: http://www.ill.fr/dif/Soft/fp/
Superflip: http://superspace.epfl.ch/superflip/
Superspace groups for 1D and 2D Modulated Structures: http://quasi.nims.
go.jp/yamamoto/spgr.html

SVDdiagnostic: http://www.tothcanada.com/software_exe/SVDdiagnostic. exe
Taup/Powder: http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/taupin-indexing/
pub/powder/

Topas/Topas SVD Indexing: http://www.dur.ac.uk/john.evans/topas_
academic/topas_main.htm ; http://members.optusnet.com.au/Balancoelho/
and http://www.bruker-axs.de/index.php?id=topas

TexTools: http://www.resmat.com/
TexturePlus: http://www.ceramics.nist.gov/webbook/TexturePlus/texture. htm
Traces: http://www.gbcsci.com/
Treor90: various internet sites including http://sdpd.univ-lemans.fr/ftp/treor
90.zip

Treor 2000: within EXPO2000: http://www.ic.cnr.it/
TXRDWIN: http://www.omniinstruments.com/txrd.html and http://www.
omniinstruments.com/demos.html

UNITCELL (Holland and Redfern): http://www.esc.cam.ac.uk/astaff/holland/
UnitCell.html and ftp://www.esc.cam.ac.uk/pub/minp/UnitCell/

UNITCELL (Toraya): http://www.crl.nitech.ac.jp/Btoraya/software/
VALENCE: http://www.ccp14.ac.uk/ccp/web-mirrors/i_d_brown/bond_valence_
param/

VALIST: http://www.chem.ucl.ac.uk/people/wills/ and ftp://ftp.ill.fr/pub/dif/
valist/

VCTCONV: http://www.ccp14.ac.uk/ccp/web-mirrors/convx/
VENUS (includes PRIMA): http://homepage.mac.com/fujioizumi/
visualization/VENUS.html

VMRIA: http://www.ccp14.ac.uk/ccp/web-mirrors/vmria/
Wgetspec: http://www.ccp14.ac.uk/tutorial/lmgp/index.html#pdw and http://
www.ccp14.ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/

WinCSD/CSD: http://imr.chem.binghamton.edu/zavalij/CSD.html
WinDust32: http://www.italstructures.com/
WinFIT: http://www.geol.uni-erlangen.de/index.php?id=58&L=3 and http://
www.geol.uni-erlangen.de/fileadmin/template/Geologie/software/windows/
winfit/winfit.zip

WinGX: http://www.chem.gla.ac.uk/Blouis/software/
Winplotr: is within the Fullprof Suite (and freestanding)
WinXPow : http://www.stoe.com/
WinXRD: http://www.thermo.com/
WPPF: http://www.crl.nitech.ac.jp/Btoraya/software/
Xcell: http://www.accelrys.com/
XFIT: No longer developed: http://www.ccp14.ac.uk/tutorial/xfit-95/xfit.htm
and download from http://www.ccp14.ac.uk/ccp/web-mirrors/xfit-koalariet/

Xhydex: http://xray.chm.bris.ac.uk/software/XHYDEX/ and GUI version
within WinGX
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XLAT: http://ruppweb.dyndns.org/; http://ruppweb.dyndns.org/new_comp/
xlat_new.htm and http://ruppweb.dyndns.org/ftp_warning.html

XmLmctep: http://www.lmcp.jussieu.fr/Bsoyer/Lmctep_en.html
XND: ftp://ftp.grenoble.cnrs.fr/xnd/
X’Pert HighScore: http://www.panalytical.com/
Xplot for Windows: http://www.clw.csiro.au/services/mineral/xplot.html
Xpowder: http://www.xpowder.com/
Xdrawchem: WinDrawChem and Build3D: http://xdrawchem.sourceforge.
net/

XRD2Dscan: http://www.ugr.es/Banava/xrd2dscan.htm
XRS-82/DLS-76: http://www.crystal.mat.ethz.ch/Software/XRS82/
X-Seed: http://x-seed.net/
XSPEX: http://www.dianocorp.com/software.htm
Xtal : http://xtal.sourceforge.net/
Xtal-3D: http://www.ill.fr/dif/3D-crystals/xtal-3d.html
XtalDraw: http://www.geo.arizona.edu/xtal/xtaldraw/xtaldraw.html
ZDS System: http://krystal.karlov.mff.cuni.cz/xray/zds/zdscore.htm
ZEFSA II: http://www.mwdeem.rice.edu/zefsaII/
Zeolite Structures Database: http://www.iza-structure.org/databases/
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