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PREFACE 

What do an Olympic athlete, your favorite music artist, and Albert Einstein have i n  common? They all became 

experts in their fields through practice. To understand physics and to do well in your course, you must practice. 

When you learned to walk, ride a bike, and drive a car; you had to practice to master those skills. It would be 

silly to think you can learn physics by listening to lectures and skimming the book. This study guide is designed 

to help you practice and to build a deep understanding of physics. 

Expert problem solvers in physics follow a systematic approach in their problem solving. Elite athletes also fol

Iow a systematic approach in their training to reach the upper level of their sport. You should also follow a sys

tematic approach in your physics course to fully develop your skills. To encourage you in building good 

problem-solving skills, this study guide follows a systematic problem-solving procedure throughout-the Iden

tify, Set Up, Execute, and Evaluate procedure developed in the textbook. 

In the Identify phase of the problem, you should identify the relevant concepts. Decide which physics concepts 

can be used to solve the problem. Identify the target variable in the problem, and keep this target variable in 

mind as you solve the problem. Don't think you can save time by skipping this step and jumping right into an 

equation search. You need to plan a strategy for solving the problem: Decide what you know, where you are 

going, and how to proceed to the solution. 

In the Set Up phase of the problem, you should select the equations you will use to solve the problem and how 

to use them to determine the solution. Make sure you select equations that are appropriate for the physics of 

the problem, and don't select equations based solely on the variables in the equation. You should sketch each 

problem to help you visualize the physical situation and guide you to the solution. Rarely do physicists discuss 

cutting-edge research problems without first sketching their ideas. 

When you proceed to Execute the solution, work through the solution step-by-step. Identify all of the known 

and unknown quantities in the equations, making a note of the target variable. Then do the calculations to find 
the solution, writing down all of your work so you may return and check it later. If you run into a dead end, 

don't erase your work as you may find it useful in a later phase of the problem. Try another avenue when you 

get stuck and you will eventually find the solution. 

After completing the problem, Evaluate your result. Your goal is to learn from the problem, and build your 

physics intuition. Does the answer make sense? If you were estimating how high an elephant can jump, you'd 

expect it ought to be less than a meter or two. Consider how this problem compares to the last problem you 

completed, the example in the text, and the example shown in class. Physicists constantly compare and contrast 

their new results to previous work as they observe natural phenomena, find patterns, and build principles to 

connect various phenomena. 

Questions and problems chosen for this study guide cover the most critical topics you' ll encounter. Working 

through the guide will better prepare you for homework (including MasteringPhysics) and exams as well as 

v 



-vi Preface 

assist in developing a deeper understanding of physics. One way to build confidence is to try working through 

the questions and problems in the guide for practice, referring to the solutions only when you get stuck. 
Building confidence before an exam reduces stress during the exam, improving performance. Several 'Try It  

Yourself' problems are included at the end of each chapter to help build your confidence. Solution check
points are included for each of these problems to help you if you get stuck. Summaries, Objectives, Concepts 
and Equations, and Problem Summaries are ancillary materials that help bring the physics topi cs of each 
chapter into coherence. Taking advantage of all of the components in this study guide will help build your 

problem-solving repertoire. 

This study guide is but one of many resources at your disposal when learning physics. Your instructor, class, 

and textbook are also important resources. But you should also consider who approaches the material from the 

same level and perspective as yourself-your fellow students. The best untapped resource in a physics class is 

often other students learning physics for the first time. Discuss physics as a group and confront your questions 

together, just as many professionals collaborate in the workplace. 

We know physics has a reputation for being challenging. While it can be challenging, many students have suc

ceeded in learning physics. Their success was built on a series of small steps, regular practice, and following a 

systematic approach. Follow their footsteps and you will master physics as they did. You'll also find physics 

to be a rich and beautiful subject. 

Good luck and enjoy learning physics! 

Dedicated to Marley, a 45-pound lab mutt that brought a petaton of happiness to our lives. 

Laird Kramer 

Miami, Florida, 2007 



Summary 

Units, Physical Quantities, 
and Vectors 

Physics is the study of natural phenomena. In physics, we build theo
ries based on observations of nature, and those theories evolve into 
physical laws. We often seek simplicity: Models are simplified ver
sions of physical phenomena that allow us to gain insight into a phys
ical process. This chapter covers foundational material that we will 
use throughout our study. We begin with measurements that include 
units, conversions, precision, significant figures, estimates, orders of 
magnitude, and scientific notation. We will also examine physical 
quantities. Scalar quantities, such as temperature, are described by a 
single number. Vector quantities, such as velocity, require both a mag
nitude and a direction for a complete description. We will delve 
deeper into vectors, as they are used throughout physics. We' ll also 
include a summary of critical mathematics skills you will apply 
throughout your physics career. Techniques developed in this chapter 
will be used throughout our investigation of physics. 

Objectives 
After studying this chapter, you wil1 understand 

• The process of experimentation and its relation to theory and laws. 
• The SI units for length, mass, and time and common metric prefixes. 
• How to express results in proper units and how to convert between 

different sets of units. 
• Measurement uncertainties and how significant figures express 

preCIsIOn. 
• The use and meaning of scalar and vector quantities. 
• Various ways to represent vectors, including graphical, component, 

and unit-vector representations. 
• How to add and subtract vectors, both graphically and componentwise. 
• How to multiply vectors (the dot product and the cross product). 
• The six most critical mathematics techniques you will encounter in 

physics. 



2 CHAPTER 1 

Concepts and Equations 

Term 

Physical Law 

Model 

Systeme International (SI) 

Significant Figures 

Scalar Quantity 

Vector Quantity 

Component of a Vector 

Magnitude of a Vector 

Vector Addition and Subtraction 

Description 

A physical law is a well-established description of a physical phenomenon. 

A model is a simplified version of a physical system that focuses on its most 

important features. 

The Systeme International (SI) is the system of units based on metric mea

sures. It established refined definitions of units, including definitions of the 
second, meter, and kilogram. 

The accuracy of a measurement is indicated by the number of significant fig

ures, or the number of meaningful digits, in a value. In multiplying or divid

ing, the number of significant figures in the result is no greater than in the 

factor with the fewest significant figures. In adding or subtracting, the result 

can have no more decimal places than the term with the fewest decimal places. 

A scalar quantity is expressed by a single number. Examples include tempera

ture, mass, length, and time. 

A vector quantity is expressed by both a magnitude and a direction and is 

often shown as an arrow in sketches. Vectors are frequently represented as 

single letters with arrows above them or in boldface type. Common examples 

include velocity, displacement, and force. 

The vector 1 lying in the xy plane has components Ax parallel to the x-axis and 

Ay paragel to the y-axis; Ax and Ay are the x and y component vectors of A. 
Vector A can be described by unit vectors-vectors that have unity magnitude 

and that align along a particular axis. The unit vectors 7,], and k respectively 

align along the x-, y-, and z-axes of the rectangular coordinate system. Here, 

1 = A) + Ayj. 

The magnitude of a vector is the length of the vector. Magnitude is a scalar 

quantity that is always positive. It has several representations, i ncluding 

Magnitude of 1 = A = 11 I. 

The magnitude can be found from the component vectors as 

A = VA; + A;. 
Two vectors, 1 and B, are added graphically by placing the tail of 1 at the tip of B: 

AI+�=�A 
B 

Vector B is subtracted from vector 1 by reversing the direction of B and then 

adding it to 1: 

-B � --+ �+(-jj) A =A-B 



Scalar Product 

Vector Product 
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Vector addition can also be done with component vectors. For components A( 
and Ay of the vector A and componen� Bx and By of the vector B, the compo� 
nents R( and Ry of the resultant vector R are given by 

Rx = Ax + Bx and Ry = Ay + By. 

The scalar, or dot, product C = A . B of two vectors A and B is a scalar quan
tity. It can be expressed in terms of the magnitudes of A and B and the angle 
¢ between the two vectors -that is, 

A· B = ABcos¢ = IAI IBlcos¢, 

or in terms of the components of A and B-that is, 

A . B = AxBx + Ay By + Az Bz. 

The scalar product of two perpendicular vectors is zero. 

The vector, or cross, product C = A X B of two vectors A and B is a vector 
quantity. The magnitude of A X B depends on the magnitudes of A and Band 
the angle ¢ between the two vectors. The direction of It X B is perpendicular 
to the plane in which vectors A and B lie and is given by the right-hand rule. 
The magnitude of C = A X B is 

and the components are 

C = ABsin¢ 

A x ii is perpendicular 

to the plane of A and ii. 

(Magnitude of A x ii) = AB sin 4> 

The vector product of two parallel or anti parallel vectors is zero. 
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Mathematics Review: Top Six Math Skills 
You Will Need in Introductory Physics 
Mathematics is the main language of physics. You will rely on mathematics throughout your study of 
physics and therefore must become comfortable with mathematical techniques. Here, we present the 
six most important mathematical techniques you will use throughout your physics career. We strongly 
encourage you to review these materials thoroughly. When your knowledge of mathematics becomes 
second nature, your understanding of physics will blossom. 

Math 1: Trigonometry 
We will use trigonometry throughout physics; problems involving objects tossed into the air, ramps, 
velocities, and forces all require trigonometry. The basic trigonometric functions relate the lengths of the 
sides of a right triangle to the inside angle. We define sinO, cos O, and tanO for the right triangle shown: 

Adjacent side 

Opposite 
side 

. opposite side adjacent side opposite side 
sm 0 = , cos 0 = , tan 0 = ---"-'=-------

hypotenuse hypotenuse adjacent side 
Often, the triangle is formed in an xy coordinate system, as is seen in Figure 1.1. Note that the two 
inside angles complement each other (add to 90°), so two sets of relations can be used: 

x y y cos O = -, sinO = -, and tanO = -r r x 
y .  x x 

coscjJ = -, smcjJ = -, and tan 0 = -. r r y 

y 

�o+--------- x 

Figure 1 .1 xy coordinate system. 

Watch sines and cosines! One common mistake is to automatically associate the x
component with cosine and the y-component with sine. As you can see from Figure 1.1, this associa
tion does not always hold. One of the most common mistakes encountered in physics is confusing 
components of sines and cosines. By checking components every time, you avoid this mistake. 
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We will also need to manipulate trigonometric relations, so we will use common trigonometric identi
ties, including the following: 

sinO 
tanO = -

cos O 
sin20 + cos20 = 1 

sin 2a = 2 sina cosa 
cos 2a = cos2a - sin2a 

Other trigonometric identities are in Appendix B .  

Math 2: Derivatives 
Physics often investigates changes and rates of changes of various quantities . Derivatives provide the 
instantaneous rate of change of a quantity. Derivatives are therefore the natural choice for finding rates 
of change in physics. They are especially useful when we have functional definitions of quantities. 
Speed is the rate of change of position. If we are given speed in terms of a position function, we can 
easily find the speed by taking the derivative of position. The most common derivatives you will 
encounter in physics are given in Table 1 .  

Math 3: Integrals 

TABLE 1:  Common 
derivatives. 

d 
- x" = n x,,-I dx 

d 
-sinax = acosax 
dx 

d 
dx cos ax = -asinax 

d 
_eax = ae"x 
dx 

d 1 
-lnax = -dx 

x 

In physics, we also need to sum various quantities-quantities that are often given in terms of func
tions. Integrals sum functions and therefore are used to sum physical quantities .  For example, one may 
find the total mass of an object by integrating its density function. The most common integrals you will 
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encounter in physics are given in Table 2. In addition, you may want to review integration by parts and 
trigonometric substitution for integrals in order to solve the more complicated ones. 

Math 4: Graphs 

TABLE 2 :  Common integrals. 

I x"+! x"dx = --n + 1 (n"* -1) 

I � = Inx 

I sinaxdx = -�cosax 

I I. cosaxdx = -;-smax 

I eGXdx = �e(lX 
I dx x 

Y 
= arcsm-

a2 - x2 a 

f dx =In(x + Yx2 + a2) 
Yx2 + a2 f dx 1 x 

= -arc tan-
x2 + a2 a a f dx 1 X 
(x2 + a2)3/2 = a2 Yx2 + a2 f xdx 1 
(x2 + a2)3/2 -

Yx2 + a2 

Graphs are common in many fields, including physics, in which data or information is plotted as a 
function of time. However, many students do not gain a full appreciation of graphs, and instructors 
often take graph interpretation for granted. In physics, graphs provide added insight into complex phe
nomena. We will review important features of graphs to help your physics interpretations, as well as to 
help your interpretation of graphs wherever you encounter them. 

Let's begin by examining the graph in Figure 1 .2. Here , position is plotted as a function of time for 
three different objects . As time increases, the positions of all three objects increase, so the object is 
moving away from the origin. The slope gives the rate of change of the position-the speed-of the 
object: 

� (position ) 
slope = rate of change of position = speed = ( . ) � tIme 

All three lines are straight lines, indicating that the speed is constant for each object. Both objects A 
and B start at the same initial position. Object A's line has the greatest slope, so object A moves the 
fastest or has the greatest speed. Object C starts away from objects A and B and moves away at a 
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slower rate than the other two. Where the lines intersect, objects A and C are at the same position at the 
same time. After the intersection, object A moves away from object C and so passes object C. 

Position 

Object C 
Object B 

-+--------- Time 

Figure 1 .2 Position-versus-time graph. 

Moving on to a more interesting case, we see that the slope in Figure 1 .3 is not constant; calculus will 
be necessary to interpret this graph. The rate of change of the position varies, so we will need to con
sider the instantaneous slope, or the derivative of the position: 

. . � (position ) dx Instantaneous slope = hm�l_o A ( . ) =-. 
.u time dt 

Graphically, the instantaneous slope is the tangent to the line in the position-versus-time graph. 
If we look at the figure, we see that the object moves away from the initial position, remains at a 

constant position for a period of time, and then moves toward the initial position. How it moves is 
found by looking at the slope . The slope of the line increases between point A and point B, indicating 
that the object begins by moving slowly and then speeding up as it moves away. After point B, the 
slope decreases until point C, where the slope becomes zero. Thus, the object begins slowing down at 
point B and stops at point C. At point D, the slope decreases and then becomes constant, indicating that 
the object moves back toward its initial position. The slope past point D is negative, indicating that the 
object moves in the direction opposite that of its initial movement. Points E and F show the instanta
neous slope at two points on the curve . The slope at point E is greater than the slope at point F, indicat
ing that the object is moving faster at point E. 

Position 

C 
D 

--.=::'------------- Time 

Figure 1 .3 Position-versus-time graph. 

The speed of another object is plotted in Figure 1 .4. From this graph, we can use calculus to determine 
the distance the object travels in a given time interval. The distance traveled by an object between 
times ta and tb is the area under the curve , or the shaded area shown in the figure . The area under the 
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curve is the speed multiplied by the time, which is the distance traveled, as we will learn in Chapter 2. 
To find the area, we will need to sum up, or integrate, the speed over time: 

tb 

distance = f (speed) dt. 

Speed 

fa 

� I: i 
I I 
I I I I 

+-_---,J'-_---:'-I 
---Time 

fa tb 
Figure 1.4 Speed-versus-time graph. 

We have now seen somewhat how calculus and certain graphs are intertwined. Derivatives and inte
grals, respectively, give us the slope and the areas under a curve. We will see that switching back and 
forth between graphs and the mathematics of calculus will help develop our physics intuition and 
skills. When you're confused about integrals, consider using a graph to clarify your understanding. 

Math 5: Solving quadratic equations 
We will encounter quadratic equations throughout our physics investigations. We can either factor the 
equation to obtain the solutions or use the quadratic equation. It is often easier to apply the quadratic 
equation and not even attempt to factor, as the quadratic equation leads directly to the solutions. For a 
quadratic equation of the form ax2 + bx + c = 0 with real numbers a, b, and c, the solutions are given 
by the quadratic equation: 

x =  

Math 6: Solving simultaneous equations 
Our goal in solving problems is to determine unknown quantities in equations. When we have multiple 
unknowns, we will need multiple equations to find solutions. We will need at least as many equations 
as we have unknowns to solve any problem. 

When we are presented with multiple equations, one option is to rewrite one of the equations, solv
ing for one unknown in terms of the other unknown(s), and substitute the result into the other equa
tion(s) to eliminate one variable . For example, if we need to solve for both x and y, given two 
equations, we first rewrite one equation to solve for x in terms of y. Then we replace the x terms in the 
second equation with the solution of the first equation, leaving an equation having only y terms. 
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A second technique comes from linear algebra. We multiply each equation by a factor and then add or 
subtract the two equations. By choosing the proper factor, we eliminate one variable in the process. For 
example, with the equations 

3x + 2y = 3 
4x - 3y = 7 

we multiply the top equation by 4 and the bottom equation by 3 ,  leaving 
l 2x + 8y = 12 
l 2x - 9y = 2 1  

If we now subtract the two equations, the x variable i s  eliminated. We can also multiply the top equa
tion by 3 and the bottom equation by 2 and add the two equations to eliminate y. The key in this 
process is to multiply all terms of each equation by the same factor. 

Other mathematical topics 
Other mathematical relations that we will encounter as we cover the material of this course include the 
following: 

• Circumference, area, surface area, and volume of spheres and cylinders 
• Exponentials, logarithms, and their identities 
• The binomial theorem 
• Power series expansions of algebraic, trigonometric, and exponential functions 
• Multivariable calculus, including derivatives and integrals in two and three dimensions. 

It is best to review the preceding topics as you encounter them in the course . Appendix B includes a 
summary of these topics .  You may also want to consult your mathematics textbooks or the Internet for 
more information. 

Don't be afraid to review math! Knowing math will let you focus on physics and save 
time when you solve problems. 
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conceptual Questions 
1: Sketch the situation 
A man uses a cable to drag a trunk up the loading ramp of a mover 's truck. The ramp has a slope angle 
of 20.0°, and the cable makes an angle of 30.0° with the ramp. Make a sketch of this situation. 

Solution 

Figure 1 .5 Sketch of trunk 
being dragged up a loading ramp. 

I D E N T I FY, S ET U P, AN D E X E C U T E : The sketch is shown in Figure 1.5. The ramp makes an angle 
of 20° with the ground. The trunk is on the ramp and the cable is attached to the trunk. The cable 
makes an angle of 30° with respect to the ramp, clearly marked. The mover is shown pulling the trunk 
up the ramp. 

EVALUAT E :  Understanding the physical situation in physics problems is critical for a correction inter
pretation. You should always draw a diagram (or diagrams) of the physical system you are investigat
ing. Even when a figure is provided, it is often useful to sketch the important aspects. Only after creating 
a diagram should you proceed to interpret the physics and determine the proper equations to apply. 

2: Dimensional analysis practice 
Based only on consistency of units, which of the following formulas could not be correct? In each case, 
x is distance, v is speed, and t is time. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f )  

t = � 9.8 2;/S2 
x = vt + (4.9 m/s2 ) t  

(9.8 m/s2 )x 
v = vosinO + --'----------'-----'--

vocosO 

2 2v6sinO 2v2 
x - - = 0 9.8 m/s2 9.8 m/s2 

v2 = v6 - 2(9.8 m/s2 )( votanO - �(9.8 m/s2 ) t2) 
v2 + (4.9 m/s2 )x 

t = -----'-----'-----'--
( 3 .0 m/s2 )x 
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I D E N T I FY, S ET U P, A N D  E X E C U T E :  For each of the six equations, carefully examine the units of 
each term in the equation. Equations (a), (c), and (d) are dimensionally correct; however, (b), (e) , and 
(f) are incorrect. The far-right term in equation (b) has units of (mJs), while the other two terms have 
units of (m). In equation (e), the left term inside the rightmost set of parentheses ( the term va tane )  
has units of (mJs), which, when combined with the (m/ S2 ) outside of the left parenthesis, would result 
in units of (m2/s3 ) . The other three terms in the equation have units of ( m2/s2 ) .  The fraction in equa
tion (f) has no units, while the left-hand side has units of (s). 

Thus, an error exists in each of the three equations ((b), (e), and (f)), since the units on the two 
sides of the equation do not agree . The next step would be to recheck our derivation to locate the 
source of the mistake . 

EVALUAT E :  Dimensional analysis is a powerful technique to help keep you from making errors. 
Catching the three errors in this problem would save time while reducing confusion. Always check 
your units ! 

3: Maximum and minimum magnitudes of a vector 
� � 

Given vector A with magnitude 1 .3 N and vector B with magnitude 3 .4 N, what are the minimum and � � 
maximum magnitudes of A + B? 

Solution 
I D E N T I FY, S ET U P, A N D E X E C UT E :  The maximum magnitude is achieved when the two vectors 
are parallel and point in the same direction. The minimum magnitude is achieved when the two vectors 
are parallel and point in opposite directions. (The vectors are then called antiparallel.) 

For parallel vectors, the magnitude is the sum of their magnitudes, 4.7 N in this case . For antiparal
leI vectors, the magnitude is the difference of their magnitudes, 2. 1 N here . 

EVALUAT E :  This example helps illustrate the fact that vectors do not add like ordinary scalar num-� � 
bers. They do not subtract like scalar numbers either. The magnitude of A + B for any arbitrary align-
ment of the two vectors must lie between 2. 1 N and 4.7 N. 

4: Finding paral lel and perpendicular vectors 
If you are given two vectors, how can you determine whether the vectors are parallel or perpendicular? 

Solution 
I D E N T I FY, S E T  U P, A N D  E X EC U T E :  The cross product of two parallel vectors is zero. The dot 
product of two perpendicular vectors is zero. By taking the cross and dot products of the two vectors, 
you will determine whether they are parallel or perpendicular. 
EVALUAT E :  There are circumstances in which you cannot easily identify parallel and perpendicular 
vectors, such as vectors lying in the xyz plane and that are given in terms of their components. Here, 
the best way to identify their orientation is to take dot and cross products. 
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Problems 
1: Convert knots to m/s 
A yacht is traveling at 18.0 knots. (One knot is 1 nautical mile per hour.) Find the speed of the yacht in 
m/s. 

Solution 
ID E N T I FY A N D  S E T  U P : We'll use a series of conversion factors to solve this problem. Appendix E 
has I nautical mile = 6080 ft and 1 rni = 5280 ft = 1.609 kIn. We know that 1 kIn = 1000 m and that 1 hour = 60 min = 60 X (60 s ) = 3600 s .  
E X E C UT E :  We apply the conversion factors to the speed in knots to solve: 

18.0 knots = 

(18.0nauti€-al-miieS )( 6080ft )(1.609kn1)(1000m)( III ) 
= .26 m

/
s .  

III 1 nautieatmile 5280 ft 1 kn1 3600 s 9 
EVALUAT E :  Using a combination of several conversion factors, we have found that 18.0 knots is 
equal to 9.26 m/s. The last four quantities in parentheses are each equal to unity; hence, multipl ying 18.0 knots by  several factors of unity doesn't  change the magnitude of the quantity. Crossing out the 
units helps prevent mistakes. 

2: Finding components of vectors 
� � 

Find the x and y components of the vector A in Figure 1.6. The magnitude of vector A is 26.2 cm. 

Solution 

y 

�o�------------- x 
Figure 1 .6 Problem 2. 

y 

�o�--------------- x 
Figure 1 .7 Problem 2 with 
components. 
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I D E N T I  FY A N D  S ET U P : We will find the components of a vecto r by  examining the t riangle fo rmed 
by  the vecto r and the coo rdinate axes. Figu re 1 .7 shows Figu re 1 .6 red rawn to include the component 
vecto rs . -> 
E X E CU T E : The x component of A is located opposite the 67.P angle; hence, we' ll use the sine 
function :  

A x  = A sin67 . 1  0 = ( 26.2 cm ) sin 67. 1 0 = 24. 1 cm. 
-> 

The y component of A is located adjacent to the 67. 1 0  angle; thus, we'll use the cosine function: 

Ay = A cos67 . 1 °  = (26.2 cm ) cos 67. 1 0 = 1 0.2 cm. 
The vecto r has an x component of 24. 1 cm and a y component of 10.2 cm. 

EVALUAT E :  Finding the components of the vecto r requi red appl ying the sine and cosine functions. 
Often, but not always, the ho rizontal components will use cosine and the vertical components will use 
sine. This example illust rates an exception to that gene ral asse rtion. It is impo rtant to examine a prob
lem carefull y in o rder to identify the proper t rigonometric function fo r each component. 

3: Vector addition 
-> -> 

Find the vector sum A + B of the two vecto rs in Figu re 1 . 8 .  Express the results in te rms of components. 

Solution 

y 

y 

A(l5.0 N) 

�--�-----------x 

8(10.0 N) 
Figure 1.8 Problem 3 .  

����----��----------x o 
Figure 1.9 Sketch of Problem 3.  

I D E N T I FY A N D  S ET U P :  Figu re 1 .9 shows a sketch of the two vecto rs added togethe r, head to tail. 
The sketch indicates that we should expect a resultant in the fi rst quadrant, with positive x and y com
ponents. We will add the vecto rs b y  adding thei r x and y components, using the Cartesian coo rdinate 
s ystem provided. 
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EXECUTE : We find the components of the vectors by  examining the triangles made by  the vectors and ---+ 
their components. For A, 

---+ 
For B, 

Ax = Acos 60.0° = ( 15 .0 N ) cos 60.0° = 7 .50 N, 
Ay = A sin60.0° = ( 15 .0 N) sin60.0° = 1 3 .0 N. 

Bx = Bsin40.0° = ( 10.0 N) sin40.0° = 6.43 N, 
By = -Bcos40.0° = - ( 10.0 N) cos40.0° = -7.66 N. 

We can now sum the components : 
Rx = Ax + Bx = 7.50 N + 6.43 N = 1 3 .9 N, 
Ry = Ay + By = 1 3 .0 N - 7.66 N = 5 .34 N. 

The resultant vector has an x component of 1 3 .9 N and a y component of 5 .34 N. 
EVALUAT E :  The resultant vector has positive components and resides in the first quadrant, as 
expected. Note how the components of the two vectors include both sine and cosine terms (i.e., vector 
A's x component includes the cosine component, and vector B's x component includes the sine compo
nent). This results from how the vectors' angles were given: vector A's angle was with respect to the 
horizontal axis and vector B's angle was with respect to the vertical axis. It is critical not to automati
call y associate all hori zontal components with the cosine and all vertical components with the sine. 

Practice Problem: Find the magnitude and direction of the resultant vector. Answer: The magnitude is 
14.9 N, and its direction is 2 1 .0° above the positive x-axis. 

4: Determine displacement on a lake 
Marie paddles her canoe around a lake. She first paddles 0.75 km to the east, then paddles 0.50 km 
30° north of east, and finally paddles 1 .0 km 50° north of west. Find the resulting displacement from 
her origin. 

Solution 
I D E N T I FY :  Displacement is a vector indicating change in position. The displacement vector points 
from the starting point of a journey to the endpoint. If we represent each of the three segments of the 
journey as a vector, the displacement vector is the sum of the three vectors. The goal is to find the sum 
of the three displacement vectors. 

y 

��--���-------x 

Figure 1.10 Problem 4. 
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SET U P :  Figure 1 . 10 shows a sketch of the three displacement segments (labeled it, B, and C) and the -> 
resultant displacement vector ( R) .  We will add the three vectors, using the Cartesian coordinate system 
in the figure. 

E X E C UT E :  We find the components of the vectors by examining the triangles made by the vectors and -> 
their components. For A, there is only a horizontal component: 

-> 
For B, 

-> 
For C, 

Ax = A = 0.75 km, 
Ay = O. 

Bx = Bcos 30° = ( 0.50 km )cos 30° = 0.443 km, 

B y  = Bsin30° = ( 0.50 km) sin 30° = 0.250 km. 

Cx = -Ccos 50° = - ( 1 .0 km) cos 50° = -0.643 km, 
Cy = Csin50° = ( 1 .0 km) sin 50° = 0.766 km. 

The x component is negati ve, as it points to the west. We can now sum the components : 

Rx = Ax + Bx + Cx = 0.75 km + 0.443 km - 0.643 km = 0.550 km, 
Ry = Ay + B y  + Cy = 0 km + 0.250 km + 0.766 km = 1 .0 16  km. 

The resultant displacement vector has an x component of 0.55 km and a y component of 1 .02 km. We 
can express the displacement vector in terms of magnitude and direction. To find the magnitude, we 
use the Pythagorean theorem: 

R = 
YR; + R; = 

Y( 0.550 km ) 2 + ( 1 .0 16 km ) 2 = 1 . 16 km. 

The inverse tangent gi ves us the angle: 
Ry 1 .0 16  km 

() = tan-1- = tan-1 = 6 1 .6°. 
Rx 0.550 km 

The resultant displacement vector has a magnitude of 1 . 1 6 km and points 6 1 .6° above the positi ve x-axis. 

EVALUAT E :  Marie paddled a total of 2.25 km, only to end up 1 . 1 6  km away from her starting point. 
This shows how the magnitude of a vector sum can be smaller than the sum of the magnitudes of the 
individual vectors. Note that we carried an extra significant figure through the calculations and rounded 
off only in the final step. 

5: Finding the dot product 
---t ---t ---t A A A ---t A A ,.. 

Find the dot product of vectors A and B if A = 5 .0 i  + 2.3j - 6.4k and B = 1 2.0 i - 4.7j + 9.3k. 

Solution 
I D E N T I FY A N D  S ET U P :  We are given the x, y, and z components of the two vectors . We will find 
the scalar product by using the component form of the dot-product relation. 
E X  E C U T  E :  The dot product is the sum of the products of the components of the vectors : 
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For our two vectors, 

AoS = ( 5 .0 ) ( 1 2.0 ) + ( 2 . 3 ) ( -4. 7) + ( -6.4 ) ( 9.3 ) 
= 60 - 1 0.8  - 59.5 
= - 10.3 .  

The dot product is - 10.3 . 
EVALUAT E :  The result is a negative number, indicating that the projection of one vector onto the 
other points in the direction opposite that of the other. The vectors are not perpendicular, since the dot 
product is not zero. 

We could have attempted to sketch these vectors, but since they are in three-dimensional xyz space, 
it is difficult to represent them accuratel y on a two-dimensional page. Building intuition in two
dimensional space helps us when we work in three-dimensional space. 

6: Finding the cross product 
--+ --+ --+ " A. ,, --+  " '" " 

Find the cross product A X B, given A = 5 .0 i  + 2.3j - 6.4k and B = 1 2.0 i  - 4. 7j + 9 .3k. 

Solution 
I D E N T I FY A N D  S ET U P : We are given the x, y, and z components of the two vectors. We will find 
the cross product by  using the component form of the cross-product relation. 
E X E C U T E : The three components of the cross product are given b y  various products of the compo
nents of the two vectors : 

For this problem, the components are 

Cx = AyBZ - AZBy 
Cy = AzBx - AxBz 
Cz = AxBy - AyBx· 

Cx =  ( 2.3 ) ( 9 .3 ) - ( -6.4 ) ( -4.7 ) = ( 2 1 .4 )  - ( 30. 1 )  = -8.7 
Cy = ( -6.4) ( 12 .0)  - ( 5.0 ) ( 9.3 ) = ( -76. 8 )  - ( 46.5 ) = - 123 .3 
Cz = ( 5 .0 ) (  -4.7 ) - ( 2.3 ) ( 1 2.0) = ( -23 .5 ) - ( 27.6 ) = - 5 1 . 1 .  

--+ " " " 

The cross product is C = - 8 .7 i - 1 23 .3 j  - 5 1 . 1 k. 

EVALUAT E :  The result is a vector, as is expected for the cross product. The vectors are not parallel, 
since the cross product is not zero. 
Practice Problem: Find the magnitude of the resultant vector. Answer: The magnitude is 1 33 . 8 .  

7:  Review of simultaneous equations 
Solve the following expressions for TA and TB. 

27TA + 13TB = 0 
32TA + 52TB = 22. 
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I D E N T I FY A N D  S ET U P :  Both of the exp ressions involve two unknowns, so we cannot find a solu
tion by  using onl y one equation. We will multipl y the fi rst equation by  32, multiply the second by  27, 
and then subt ract the second equation from the fi rst. 
E X E C UT E :  Multipl ying the fi rst exp ression by  32 and the second exp ression by  27 gives 

864TA + 4 16Ts = 0 
864TA + 1404Ts = 594 

Subt racting the second equation from the fi rst gives 
864TA + 4 16Ts - 864TA - 1404Ts = 0 - 594, 

988Ts = 594, 
594 

TB = 
988 

= 0.60 1 .  

Substituting the value fo r Ts back into eithe r exp ression to find TA yields 

32TA + 52 ( 0.60 1 ) = 22, 
TA = -0.289. 

The two equations togethe r result in TA = -0.29 and TB = 0.60. 
EVALUAT E :  An alte rnative solution would be to write TB in te rms of TA, using the fi rst exp ression, and 
then substitute fo r TB into the second exp ression. This gives the same result. You may choose the 
method you p refe r and may end up appl ying both to particula r classes of p roblems. 

If we encounter t hree unknowns in an exp ression, how many equations will we need to solve fo r each 
unknown simultaneousl y? Three equations will be needed to solve fo r the th ree unknown quantities. 

8: Review of the quadratic formula 
The position of a ball tossed in the ai r depends on the initial speed of the ball and the time elapsed and 
is given b y  

y = vat - (4.9 m/s2 ) t2, 
whe re va is the initial speed and t is the time elapsed. Fo r a ball tossed with an initial speed of 30.0 m is, 
find the time(s) when the ball is at a height of 1 2.5 m. 

Solution 
I D E N T I  FY A N  D S ET U P :  We recognize that the equation is quad ratic, since it has a t2 te rm, a t te rm, 
and a constant te rm. If we t ry to rewrite the equation in te rms of t alone, we find that we cannot easily 
isolate the t te rm. We will emplo y the quad ratic fo rmula to solve the p roblem. 

E X E C U T E :  We rewrite the equation, substituting the given values : 

12 .5 m = ( 30.0 m/s ) t  - ( 4.9 m/s2 ) t2 . 

The quad ratic fo rmula requi res that the equation be written as ax2 + bx + c = 0, so we rea rrange 
te rms to yield 

( -4 .9 m/s2 ) t2 + ( 30.0 m/s ) t  + ( - 12.5 m)  = O. 
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From this rearrangement, we see that a = -4.9 m/s2, b = 30.0 mis, and c = - 12.5 m. The solutions 
of the quadratic equation are 

x =  

Substituting our values into the quadratic equation gives 

- ( 30.0 m/s )  ± v' ( 30.0 m/s ) 2 - 4 (  -4.9 m/s2 )( - 1 .25 m ) t = --�----�----�----���--�----��------� 
2 (  -4.9 m/s2 ) 

Multiplying out the terms and canceling the units produces 

- ( 30.0 m/g) ± V( 900.0 - 245 .0) (.n?/�) -30.0 ± 25 .59 t = 
- 9. 8 ( mist) 

= ----9.-8-- s = 0.445 s, 5.67 s .  
There are two times when the ball is at a height of 1 2.5 m: 0.445 s and 5.67 s. These are, respectively, 
when the ball is rising to its maximum height and when it is falling from its maximum height. 
EVALUAT E :  You must learn to recognize quadratic equations . Once you identify a quadratic equation, 
the solution is straightforward (although it requires careful algebra) . Quadratic equations result in two 
solutions, and you must be able to interpret their meanings. In this case, the two solutions corre
sponded to the upward and downward motion of the ball. You may need only one of the solutions for 
your situation. If neither solution seems reasonable, then you should check your work. We' ll encounter 
quadratic equation problems again in Chapter 2. 

Watch units! It is important to check units every time you write equations . If we found 
incorrect units when we solved for time, we would have discovered a mistake that would have been 
quickly corrected. 

Problem Summary 
The problems in this chapter represent a foundation that you will use throughout your physics course. 
Common elements make up good problem-solving techniques, including 

• Identifying a procedure to find the solution. 
• Making a sketch when no figure is provided. 
• Adding appropriate coordinate systems to the sketch. 
• Identifying the known and unknown quantities in the problem. 
• Finding appropriate equations to solve for the unknown quantities . 
• Checking for consistency of units in derived equations. 
• Evaluating results to check for inconsistencies. 

We will see how these techniques apply to a wide variety of problems as we progress . Although they 
may seem cumbersome right now, they will help you solve the problems you encounter. 



Summary 

Motion along a Straight 
Line 

We will introduce kinematics, the study of an object's motion, or 
change of position with time, in this chapter. Motion includes dis
placement, the change in position of an object; velocity, the rate of 
change of position with respect to time; and acceleration, the rate of 
change of velocity with respect to time. We introduce average velocity 
and average acceleration as changes over a time interval and instan
taneous velocity and instantaneous acceleration as changes over an 
infinitel y short time interval . We' ll learn relationships between dis
placement, velocity, and acceleration and see how they are modified 
for freel y falling objects . We' ll restrict ourselves to motion along a 
straight line, or one-dimensional motion, in this chapter and expand 
our examination to motion in two or three dimensions in the next 
chapter. This is our first step into understanding mechanics, the study 
of the relationships among force, matter, and motion that we' ll cover 
in the upcoming chapters . 

Objectives 
After studying this chapter, you will understand 

• The definitions of kinematic variables for position, velocity, and 
acceleration. 

• How to calculate and interpret average and instantaneous velocities. 
• How to calculate and interpret average and instantaneous 

accelerations . 
• How to appl y the equations of motion for constant acceleration. 
• How to apply equations of constant acceleration to freel y falling 

objects. 
• How to analyze motion when acceleration is not constant. 

19 
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Concepts and Equations 

Term Description 

Average Velocity A particle's average x-velocity Vav -x over a time interval /).t is its displace

ment /).X divided by the time interval /).t: 

Instantaneous Velocity 

Average Acceleration 

Instantaneous Acceleration 

Motion with Constant Acceleration 

Freely Falling Body 

Motion with Varying Acceleration 

/). x  --
/).( 

The SI unit of velocity is meters per second (rn/s). 

A particle's instantaneous velocity is the limit of the average velocity as /).t 

goes to zero, or the derivative of position with respect to time. The x compo

nent is defined as 

The term velocity refers to the instantaneous velocity. 

The average x acceleration of a particle over a time interval /).t is the change in 

the x component of velocity, /).v x = V2x - V Ix' divided by the time interval /).t: 

The SI unit of acceleration is meters per second per second (rn/s2). 

A particle's instantaneous acceleration is the limit of the average acceleration 

as /).t goes to zero, or the derivative of the velocity with respect to time. The 

x component is defined as 

The term acceleration refers to the instantaneous acceleration. 

When the x acceleration is constant, position, x velocity, acceleration, and 

time are related by 

Vx = vox + axt 

v; = v6x + 2aAx - xo ) 
_ ( vox + Vx ) 

x - Xo - 2 
t. 

A freely falling body is a body that moves under the influence of the gravity. 

The acceleration due to gravity is denoted by g, is directed downwards, and 

has a value of 9.8 m/s2 near the surface of the earth. 

When the acceleration is not constant, we can find the position and velocity 

as a function of time by integrating the acceleration function: 

x = Xo + fVxdt o 
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1: Velocity and acceleration at the top of a ball's path 
A ball is tossed vertically upward. (a) Describe the velocity and acceleration of the ball just before it 
reaches the top of its flight. (b) Describe the velocity and acceleration of the ball at the instant it 
reaches the top of its flight. (c) Describe the velocity and acceleration of the ball just after it reaches the 
top of its flight. 

(a) (b) (c) 
Figure 2.1 Question 1 .  

Solution 

I D E N T I FY, S ET U P, A N D  E X E C U T E :  Figure 2 . 1  shows the three time frames we will examine. Dur
ing its flight, the ball undergoes acceleration due to gravity. The initial velocity is directed upward, 
slowing to zero at the top of the flight. Then the velocity increases downward. 

PART (A) : The velocity is directed upward and is very small just before the top of the flight. The 
acceleration due to gravity is directed downward. 

PA RT (B) : The velocity is zero at the top of the flight. The acceleration due to gravity remains con
stant and is directed downward. The acceleration has caused the velocity to decrease from its small 
positive value in part (a) to zero. 

PA RT (C) : The velocity is directed downward and is very small just after the top of the flight. The 
acceleration due to gravity remains constant and directed downward. The acceleration has caused the 
velocity to increase downward from zero in part (b) . 

EVALUAT E :  The acceleration due to gravity causes a change in the velocity of the ball during its 
flight. The ball starts with an upward velocity, which slows, drops to zero, and then increases down
ward. The acceleration due to gravity is constant throughout the motion. The velocity is zero for an 
instant at the top, changing from slightly upward to slightly downward around this instant. 

CAUTI O N  Gravity doesn't turn off! A common misconception i s  that there i s  no acceleration due to 
gravity at the top of an object's trajectory, but how would gravity know to turn off at that instant? 
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2: Comparing two cyclists 
The position-versus-time graph depicting the paths of two c yclists is shown in Figure 2.2. (a) Do the 
c yclists start from the same position? (b) Are there any times that they have the same velocity? 
(c) What is happening at the intersection of lines A and B? 

x 

Figure 2.2 Question 2. 

Solution 

I D E N T I FY, S E T  U P, A N D  E X E C U T E  PART (A) : We find the starting location b y  examining the 
position when time is zero (i .e. , b y  looking at the x-intercept) . At t = 0, the two cyclists are at different 
locations. 

PA RT (8) : The velocity is found b y  examining the slope of the position-versus-time graph. The 
slopes of the two lines are different; hence, the c yclists never have the same velocity. 

PA RT (C) : At the intersection of lines A and B, both c yclists are at the same position at the same time. 
At this point, c yclist A is passing c yclist B, since c yclist A started closer to the origin and has a higher 
velocity. 

EVALUAT E :  These three questions show only a small part of what can be learned from graphs, which 
offer a parallel representation of physical phenomena. The interpretation of graphs is an important tool 
in physics and, indeed, science in general. 

3: Interpreting a position-versus-time graph 
Figure 2.3 shows a position-versus-time graph of the motion of a car. Describe the velocity and accel
eration during segments OA, AB, and Be. 

x 

c 

o 

Figure 2.3 Question 3 .  
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I D E N T I FY, S ET U P, A N D  E X E C U T E :  Velocity is the change in position with respect to time and 
acceleration is the change in velocity with respect to time. We can describe the velocity by  examining 
the slope of the position-versus-time graph, and we can describe the acceleration by  noting how the 
velocity changes. 

In segment OA, the slope is positive and constant, indicating that the velocity is positive and con
stant. With constant velocity, there is no acceleration. 

In segment AB, the slope is increasing smoothly, indicating that the velocity is increasing. There 
must be acceleration in order for the velocity to increase. 

In segment Be, the slope is again constant, indicating that the velocity is constant. This velocity is 
greater in magnitude than the velocity in segment OA, since the slope is larger. With constant velocity, 
there is no acceleration. 

EVA L U AT E :  This question illustrates how we can describe the velocity and acceleration from the 
position-versus-time graph. 

4: A fal l ing ball 
A ball falls from the top of a building. If the ball takes time tA to fall halfway from the top of the build
ing to the ground, is the time it takes to fall the remaining distance to the ground equal to, greater than, 
or smaller than t A ?  

Solution 

I D E N T I FY, S ET U P, A N D  E X E C U T E :  We can break the problem up into two segments: the first half 
and the second half. In the first segment, the falling ball starts with an initial velocity of zero. In the 
second segment, the ball has acquired velocity, so it has an initial velocity. The time to complete the 
second segment must be shorter than tA -

EVALUAT E :  If you watch a ball fall, you should be able to see that it spends more time in the first half 
of the motion than in the second half. We can also look at the equation for the position of a falling 
body: 

_ + + I 2 
Y - Yo vo/ "ia/ . 

For the first half of the motion, the velocity term is zero; for the second half, it is not zero. Given equal 
time and equal acceleration, a segment with an initial velocity will cover a larger distance, or cover the 
same distance in a shorter time. 
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Problems 

1: Throwing a bal l  upward 
Robert throws a ball vertically upward from the edge of a ISO-m-tall building. The ball falls to the 
ground 9.5 s after leaving Robert's hand. Assume that the ball leaves Robert's hand when it is 2.0 m 
above the roof of the building. Find the initial velocity of the ball and the time the ball reaches its max
imum height. 

Solution 

(\ 
, \ 

� t' \ 
Vo \ 

1 1 1 1 1 1 1 1 1 I 1 I 1 1 1 
I 1 1 1 1 

y 
Ymax 

y = 2 m 
y = O 

,---,-I _----L_ Y = - 150 m 
Figure 2.4 Problem I .  

I D E N T I FY:  The ball undergoes constant acceleration due to gravity, so we will use the constant
acceleration kinematics equation to solve the problem. 

S ET U P :  Figure 2.4 shows a sketch of the problem. Once thrown, the ball has an initial upward veloc
ity and will undergo downward gravitational acceleration. 

We ignore effects due to the air. A vertical coordinate system is shown in the diagram, with the ori
gin located at the edge of the building and positive values directed upward. 

E X E CU T E :  We first determine the initial velocity of the ball. We know the initial and final positions, 
times, and accelerations of the ball; therefore, we use the equation for position as a function of time: 

Y = Yo + VOyt + 1ayt2. 
The initial position of the ball (Yo ) is +2.0 m, the final position (y) is - 150 m (the ground is below the 
edge of the building), the acceleration is - g, and the time is 9.5 s. Solving for the initial velocity VOy 
gIves 
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Substituting the given values yields 

( - 150 m )  - ( 2.0 m)  - H  - 9.8 m/s2 ) ( 6.5 s ) 2 _ I ( ) - 8.5 m s . 6.5 s 
The initial velocity of the ball is 8.5 mis. The value is positive, indicating that the initial velocity is 

directed upward. To find the time taken to reach the maximum height, we know that the velocity at that 
height is momentarily zero, so we can use the equation for velocity as a function of time: 

Vy = VOy + ai. 

We now solve for the time t when the velocity Vy is zero 

( 0  - 8.5 m/s ) 

( I 2 ) 
= 0.87 s .  

-9.8  m s 
The ball reaches its maximum height 0.87 s after leaving Robert's hand. 

EVA LUAT E :  This is a straightforward application of constant-acceleration kinematics. We identified 
the known and unknown quantities and substituted into appropriate equations to find the unknown 
quantities . 

P RACT I C E  P R O B L E M :  Find the maximum height Ymax of the bal l .  Answer: Ymax = 5.7 m above the 
top of the building. 

2: Dropping a stone from a moving helicopter 
A helicopter is ascending at a constant rate of 1 8  mis . A stone falls from the helicopter 1 2  s after it 
leaves the ground. How long does it take for the stone to reach the ground? 

y 
// -.. \ Ymax 

� i  
" 

____ � ______ _L __________ �y = O 
Figure 2.5 Problem 2. 

Solution 

I D E N T I  FY :  There are two segments of the stone's motion: ( 1 )  moving upward with the helicopter at 
constant velocity and (2) free fall after the stone breaks free of the helicopter. To solve the problem, we 
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will apply the constant-acceleration kinematics equations to the two segments, using the final quanti
ties from the first segment as the initial quantities in the second. 

S ET U P :  The two segments of the stone's motion are sketched in Figure 2.5 .  As it moves upward with 
the helicopter, the stone has a constant velocity Vyo . When it breaks loose and begins to fall freely, the 
stone has an initial velocity that is the same as the helicopter's and undergoes acceleration due to grav
ity. We need to know the position, velocity, and time at the end of the first segment to solve for the sec
ond segment. The velocity and time are given in the statement of the problem. 

We ignore effects due to the air. A vertical coordinate system is shown in the diagram, with the origin 
located on the ground and positive values directed upward. 

E X E C UT E :  The position is found from the equation for position as a function of time with zero 
acceleration: 

Y = Yo + VOyt. 

The initial position is zero (the helicopter starts at the ground) and the helicopter is ascending, so 
VyO is + 1 8  m/ s and the time is 12 s .  Substituting yields 

Y = Yo + vo/ = 0 + ( 1 8 m/s ) ( 1 2 s ) = 2 16 m. 

For the second segment, the initial position is 2 16  m, the initial velocity is + 1 8  mis, the final posi
tion is zero, and the acceleration is - g . The equation for position as a function of time with constant 
acceleration can be used to find the time: 

Substituting values gives 

o = ( 2 1 6  m)  + ( 1 8 m/s ) t + H -9.8  m/s2 ) t2 . 

We cannot solve this equation directly for t, so we resort to the quadratic equation. In this case, 
a = -4.9 m/s2, b = 18 mis, and c = 216  m. The result is given by 

-b ± Vb2 - 4ac 
t =-------

2a 

Substituting and solving yields 

- ( 1 8 m/s ) ± V( 1 8 m/s ) 2 - 4 ( -4.9 m/s2 ) ( 2 16  m)  
t = 

2 ( -4.9 m/s2 ) 
= -5 . 1  s, + 8 .7 s .  

The positive solution, 8 .7 s, corresponds to the time the stone hits the ground. The stone hits the 
ground 8 .7 s after falling from the helicopter, or 20.7 s after the helicopter originally left the ground. 

EVALUAT E :  We applied the equations for motion with constant acceleration to each of the two seg
ments in this problem, using the results from the first part as input into the second part. The negative 
solution of the quadratic equation corresponds to the time the stone would have left the ground, assum
ing that it was thrown from the ground. Because this aspect of the motion doesn't apply to our prob
lem, we ignore that solution. 
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A speed trap is made by placing two pressure-sensitive tracks across a highway, 1 50 m apart. Suppose 
you are driving and you notice the speed trap and begin slowing down the instant you cross the first 
track. If you are moving at a rate of 42 mls and the speed limit is 35 mis, what must your minimum 
acceleration be in order for you to have an average speed within the speed limit by the time your car 
crosses the second track? 

Solution 

I D E NTI F Y :  For the average speed over the interval to be under the speed limit, the final speed at the 
second track must be less than the speed limit. We will use the kinematic equations to find the acceler
ation necessary to avoid a speeding ticket. 

S ET U P :  A sketch of the problem is shown in Figure 2.6. We determine the final speed by writing the 
average speed in terms of the initial and final speeds, setting the average speed to the speed limit, and 
solving for the final speed. Once we determine the final speed, we find the acceleration from the kine
matics equations. 

---..--------------�.�------x 
Track 1 

x = 0 

Figure 2.6 Problem 3.  

Track 2 
x = 150 m 

E X E C U T E :  The average speed (for constant acceleration) is 

Substituting and solving for the final speed gives 

Vol' = 2av, x - vox = 2 ( 35 m/s ) - ( 42 m/s ) = 28 m/s. 
The final speed must be 28 mls in order for the average speed to be 35 mls. We use the equation for 

velocity as a function of position with constant acceleration, or 

v; = V6x + 2ax ( x - xo ) · 

In our coordinate system, the difference between the final and initial positions is 1 50 m. Substitut
ing and solving for the acceleration gives 

( 28 m/s ) 2 - ( 42 m/s ) 2 
2 ( 1 50 m)  

You will need to accelerate at a rate of -3 .3 m/s2 to avoid a ticket, with the minus indicating that 
you will need to slow down. 

EVALUAT E :  The challenge in this problem was to recognize that we needed a final velocity that 
would result in the correct average velocity. A common mistake is to take the desired average velocity 
as the final velocity. Understanding the difference can help you avoid errors (and a ticket ! ) .  
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4: Graphical solution to an accelerating car 
A car undergoing constant acceleration moves 250 m in 8.5 s .  If the speed at the end of the 250 m seg
ment is 33 rn/s, what was the car's speed at the beginning of the segment? 

Solution 

I D E NT I F Y :  We can approach this problem in two ways. First, we can use the kinematics equations to 
solve the problem, but doing so will require several equations. Second, we can use the velocity-versus
time plot and solve the problem graphically. We will choose the graphical method in this case. 

S ET U P :  A sketch of the problem is shown in Figure 2.7. We realize that there is no single kinematics 
equation that ties these quantities together, so we construct the velocity-versus-time graph. The graph 
must start with initial velocity va and result in final velocity v j .  The slope of the line between the two 
velocities must be constant, since the car exhibits constant acceleration. The time interval between the 
two velocities must be the given 8 .5 s, so we construct the graph shown in Figure 2 .8 .  

� = 33 m l s  
� 

r<----6t = 8.5 -----?! 

� 6x = 250 m -"i  
Figure 2.7 Problem 4 sketch. 

Velocity 

� � �Z 
I I I I I I I I I I 

'----'-----'--- Time 
'; If 

Figure 2.8 Problem 4 velocity
vs.-time graph. 

Examining the graph, we realize that the area under the velocity line is the distance the car travels .  
We can therefore find the initial velocity by calculating the area under the curve. 

EX E CUT E :  The area under the curve is the sum of the area of the rectangle and the area of the triangle 
shown in the figure. We find these areas by multiplying the time by the velocities : 

Area = vat + H V I  - va ) t. 
The area under the curve is just the distance the car travels, 250 m. We rewrite the equation to solve 

for the initial velocity Va: 
_ 2Area - v l t  _ 2 ( ( 250 m) - ( 33 m/s ) ( 8 .5 s ) ) _ 

/ Va - - ( 8  ) - 25 . 8  m s . t .5 s 

The initial velocity is 25 .8  rn/s. 
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EVALUAT E :  The example illustrates how graphical analysis can lead to a straightforward solution. 
The key was to realize that the area under the curve is the distance the car traveled, or its displacement. 
If we were to solve the problem with kinematics equations, we would have had two unknowns (initial 
velocity and acceleration), requiring us to utilize two equations in the solution. 

5: Two objects fall ing from a building 
A ball is dropped from the top of a tall building. One second later, another ball is thrown from the top 
of the building with a velocity of 30 rn/s directed vertically downwards. Will the balls ever meet? If so, 
when and where? 

Solution 

I D E N T I F Y :  Both balls undergo acceleration due to gravity after being dropped or thrown, so we will 
apply constant-acceleration kinematics. We will use separate sets of kinematic equations for the two 
balls; ball 1 will be the dropped ball and ball 2 will be the thrown ball. 

S ET U P : A sketch of the problem is shown in Figure 2.9. We are interested in where the balls meet, so 
we will use the position equations, setting their positions equal to each other to find out whether they 
meet at any point in time. The coordinate system is shown in the sketch, with the origin at the top of the 
building and positive values directed downward. 

CD @ _ x = O  
YOI = 0 J. Y02 t + x 

Figure 2.9 Problem 5 .  

E X E C UT E :  The equation for the position as a function of time for ball I ,  the dropped ball, is 

Xl = XOI + VOl t + �axt2 = �gt2. 
The equation for the position as a function of time for ball 2, the thrown ball, is 

X2 = X02 + V02 t '  + � axt '2 = V02 ( t - 1 s ) + �ax ( t - 1 S ) 2, 
where we have included the initial velocity V02 and the replaced the time t' with ( t - 1 s ) . For the two 
balls to meet, the two positions must be the same. We set the two equations equal to each other and 
solve for the time they meet: 

�axt2 = V02 ( t - 1 s ) + �ax ( t - 1 s ) 2 
�gt2 = V02 t - v02 l s + �gt2 + �g ( -2t s ) + �g ( l  S ) 2. 

The t 2 term cancels, leaving 

0 = v02 t - V02 l s + �g ( -2t s ) + �g ( 1  S ) 2. 
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Solving for t gives 

4g ( s )  - V02 4 { 9 .8 m/s2 ) ( s )  - ( 30 m/s ) t = = = 1 24 s 
g ( s )  - V02 ( 9.8 m/s2 ) ( s )  - ( 30 m/s ) 

. . 

The balls meet 1 .24 s after the first ball is dropped. The position of the balls at this time is 

Xl = 4gt2 = 4 ( 9. 8  m/s2 ) ( 1 .24 S ) 2 = 7.57 m. 
The balls meet 7 .57 m below the top of the building. 

EVALUAT E :  We check our results and see that the balls meet 1 .24 s after the first ball is dropped, or 
0.24 s after the second ball is thrown. Since the balls meet after the second ball is thrown, we conclude 
these times represent a reasonable result. They meet 7.57 m below the top of the building. (A positive 
value indicates that they meet below the top of the building.) We also see that the building must be at 
least 7.57 m tall. 

6: Nonconstant acceleration 
A particle has an initial velocity of 12.0 mls and starts at X = 14.2 m. It moves along the X axis and pos
sesses an acceleration given by 

a = bt2 x , 
where b is a constant equal to 3 .5  m/s4. Find the particle's velocity and position as a function of time. 

Solution 

I D E  N T I  FY A N  0 S ET U P :  The acceleration varies with time, so we cannot use the constant
acceleration kinematic equations. Instead we integrate the acceleration to find the velocity as a function 
of time and we integrate the velocity to find the position as a function of time. Both the initial position 
and initial velocity are zero. 

E X E C UT E :  We begin by integrating the acceleration to find the velocity: 

Vx = VOx + faxdt. 
o 

For our problem, VOx is 1 2.0 rn/s and ax is given. Substituting and solving, we obtain 

Vx = ( 1 2.0 m/s ) + fbt2dt 
o 

( 1 2.0 m/s )  + �bt3 1 � 
( 1 2.0 m/s ) + � bt3 . 

To find the position as a function of time, we integrate the velocity: 

X = Xo + fVxdt. 
o 
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Substituting Xa = 14.2 m as given and the value of Vx that we found and solving yields 

Vx = f [ ( 1 2.0 m/s ) + t bt3 J dt 
a 

( 14.2 m) + [ ( 12 .0 m/s ) t  + /2bt4J lo 

( 14.2 m) + ( 1 2.0 m/s ) t  + tzbt4. 

We have found both the position and velocity as a function of time. 

EVALUAT E :  We can check our integration by taking derivatives of our results . When we do, we find 
the original acceleration. 

Try It Yourself! 
Learning physics requires that you practice problems without having solutions next to the problem. To 
help you prepare for homework problems and exams, we have included sample problems with check
points to help you through them. We encourage you to try these problems on your own and refer to the 
checkpoints only when you get stuck. So go ahead and Try It Yourself! 

1: Police chase 
A speeder traveling at a constant speed of 1 00 kmIhr passes a waiting police car that immediately starts 
from rest and accelerates at a constant 2.5 m/s2 . (a) How long will it take for the police car to catch the 
speeder? (b) How fast will the police car be traveling when it catches the speeder? (c) How far will the 
police car have traveled when it catches the speeder? 

Solution Checkpoints 

I D E N T I FY A N D  S ET U P :  Constant-acceleration kinematics are appropriate in this problem. Two 
separate sets of kinematics equations should be used to represent the police car and the speeder. We set 
appropriate values equal to each other to solve the problem. 

E X  E C U T  E :  The positions of the police car and speeder must be the same when the police car catches 
the speeder: 

_ I 2 Va, speedert - '2 at . 

This leads to the conclusion that the speeder is caught 22.2 s after passing the police car. Kinematics 
then indicates that the police car had a velocity of 200 kmIhr and a position of 6 1 6  m. 

EVALUAT E :  Would you expect the police car to accelerate at a constant rate or the speeder not to slow 
down? How would these changes affect the result? t = a s is also a solution of the equation. To what 
event does t = a s correspond? 

2: Don't hit the truck 
A car traveling 100 kmIhr is 200 m away from a truck traveling 50 kmIhr in the same direction. What 
minimum acceleration must the car have in order to avoid hitting the truck? Assume constant accelera
tion during braking. 
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Solution Checkpoints 

I D E N T I FY A N D  S ET U P :  Constant-acceleration kinematics are valid in this problem. Two sets of 
kinematics equations should be used to represent the car and truck separately. Choose an appropriate 
coordinate system. 

EX E CUT E :  To avoid the collision with the minimum acceleration, the car and truck will meet at the 
same point at the same time and with the same velocity. Setting the car's and truck's position equations 
equal to each other gives 

+ 1 2 _ + VOcart 2: at - XOtruck VOtruckt. 
This equation has two unknowns, so you will need to set the velocities equal to each other and solve by 
using both relations. You should find that the magnitude of the acceleration is 0.48 m/s2. 

EVALUAT E :  What is the sign of the acceleration you found? Is it what you would expect for a car 
slowing down? 

3: Throwing a ball upward 
A ball is thrown vertically upward from a 125-m-high building with an initial velocity of 45 m/s. 
(a) What is the ball 's maximum height? (b) What is its velocity as it passes the top of the building on its 
way down? (c) How long does it take the ball to reach the ground? 

Solution Checkpoints 

I D E N T I FY A N D  S ET U P : Constant-acceleration kinematics are valid in this problem. You will need 
equations for position as a function of time and velocity as a function of time. Choose an appropriate 
coordinate system. 

E X E C U T E  (A) : At the maximum height, the velocity is zero. Solving will give a height of 103 m 
above the building. 

(b) On the way down, the velocity of the ball when it passes the top of the building will have the same 
magnitude as the initial velocity, but will be opposite in direction. 

(c) The equation for position as a function of time can be used to find the time taken for the ball to hit 
the ground. The position equation will lead to a quadratic equation and a result of 1 1 .4 s .  

EVA LUAT E :  The quadratic equation of part (c) had two roots . Why did you omit one root? What is the 
physical interpretation of the omitted root? 



Summary 

Motion in Two or Three 
Dimensions 

In this chapter we expand our kinematics to motion of bodies in two 
or three dimensions. In doing so, we will find that we can simultane
ously apply our one-dimensional kinematics equations to multiple 
axes independently. Displacement, velocity, and acceleration take on 
their vector qualities as we expand to more dimensions, requiring us 
to work with components of each quantity. Our new skills will allow 
us to investigate projectile motion and the interesting case of uniform 
circular motion. We will also learn to analyze motion viewed from 
different moving reference frames. By the end of this chapter, we will 
have laid a strong foundation in kinematics and will be ready to inves
tigate the causes of motion. 

Objectives 
After studying this chapter, you will understand 

• How to describe a body's position, velocity, and acceleration in 
terms of vector quantities. 

• How to apply equations of motion to bodies moving in a plane. 
• How to describe and analyze the motion of projectiles. 
• How to analyze an object in uniform circular motion. 
• How to combine components of acceleration that are parallel and 

perpendicular to a body's path. 
• How to relate the velocities of objects to different reference 

frames. 

33 
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Concepts and Equations 

Term 

Position Vector 

Average Velocity 

Instantaneous Velocity 

Average Acceleration 

Instantaneous Acceleration 

Projectile Motion 

Description 

The position vector 1 of a point P in space is the displacement vector from 
the origin to P. It has components x, y, and z. 

The average velocity vav during a time interval I:lt is the displacement I:l 1 
divided by I:lt: 

A body's instantaneous velocity is the derivative of 1 with respect to time: 

--> 1:l1 d7 
v = lim - = -. 

/-->00 I:l t dt 

The instantaneous velocity has components 

dz Vz = -. 
dt 

The average acceleration aav during a time interval I:lt is the change in veloc

ityl:lv divided by I:lt: 

A body's instantaneous acceleration is the derivative of l! with respect to 

time: 

--> I:lv dv 
a = lim - = -. 

/-+00 I:lt dt 

The instantaneous velocity has components 

The component of acceleration parallel to the velocity affects the speed of the 

body. The component of acceleration perpendicular to the velocity affects the 

body's direction of motion. A body has acceleration if either its speed or 

direction changes. 

A body undergoes projectile motion when it is given an initial velocity and 

then follows a path determined entirely by the effect of a constant gravita

tional force. The path, or trajectory, is a parabola. The projectile's vertical 
motion is independent of its horizontal motion. The horizontal acceleration is 

zero and the vertical acceleration is -g. The coordinates and velocities of a 

projectile with an initial velocity of magnitude Vo and direction ao (measured 

with respect to the ground) are given as a function of time by 

x = ( vocos ao ) t, 
y = ( vosin ao ) t - !gt2, 

Vx = vocos ao, 

Vy = vosin ao - gt. 



Uniform Circular Motion 

Relative Velocity 
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A particle moving in a circular path of radius R and constant speed u is said 

to move in uniform circular motion. The particle possesses an acceleration of 
magnitude 

directed toward the center of the circle. If the particle's speed is not constant 
in circular motion, then the radial component of acceleration remains as just 
given and there is also a component parallel to the path of the particle. 

When a body P moves relative to a reference frame B, and B moves relative 

to a second reference frame A, the velocity of P relative to B is denoted 

by V P/B, the velocity of P relative to A is denoted by V PIA >  and the velocity of 

B relative to A is denoted by VB/A- These velocities are related by 

vp/A = vp/B + VB/A-

conceptual  Questions 

1: Velocity and acceleration at the top of a projectile's path 
A projectile is launched with initial nonzero x and y velocities. (a) Describe the velocity and accelera
tion just before the projectile reaches the top of its trajectory. (b) Describe the velocity and acceleration 
at the instant the projectile reaches the top of its trajectory. (c) Describe the velocity and acceleration 
just after the projectile reaches the top of its trajectory. 

Solution 

y .", v 

(a) (b) 

Figure 3.1 Question 1 .  

(c) 

I D E N T I FY A N D  S ET U P : Figure 3 . 1  shows the three time frames we will examine. During the flight, 
the projectile undergoes acceleration due to gravity. The projectile's initial velocity has both x and y 
components; the x component remains constant while the y component is accelerated by gravity. We 
have to consider each component of velocity separately. 

E X E C U T E  PART (A) : The x component of velocity is constant and directed to the right, and the y 
component of velocity is directed upward and is very small just before the top of the flight. The accel
eration due to gravity is directed downward. 
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PART (8) : The x component of velocity is constant and directed to the right, and the y component of 
velocity is zero at the top of the flight. The acceleration due to gravity remains constant and directed 
downward. 
PA RT (C) : The x component of velocity is constant and directed to the right, and the y component of 
velocity is directed downward and is very small just after the top of the flight. The acceleration due to 
gravity remains constant and directed downward. 

EVALUAT E :  The acceleration due to gravity causes a change in velocity during the flight, but affects 
only the vertical component of velocity. The ball starts with a nonzero velocity, which decreases, 
drops to a minimum value at the top, and then increases downward. The acceleration due to gravity 
is constant throughout the motion. The velocity is changing throughout the motion. Question 1 from 
Chapter 2 is similar to this problem. 

2: Launching a marble off the edge of a table 
A marble is launched off the edge of a horizontal table and lands on the floor. Draw the trajectory of the 
ball from the table to the floor. Draw a second line showing the trajectory of the marble if it were given 
a smaller initial velocity. Draw a third line showing the trajectory if the marble were given a larger ini
tial velocity than the original initial velocity. 

Figure 3.2 Question 2. 

Solution 
I D E N T I FY, S ET U P, A N D  E X ECUTE : The table and marble are sketched in Figure 3 .2. The initial 
trajectory is shown and labeled " 1 ." The marble follows a parabolic path, starting with an initial 
nonzero horizontal velocity. For the smaller initial velocity, the marble also follows a parabolic path, 
but with a termination point closer to the edge of the table. This path is shown in the figure and is 
labeled "2." For the larger initial velocity, the marble again follows a parabolic path, but with a termi
nation point farther from the edge of the table. This path is shown in the figure and is labeled "3." 

EVALUAT E :  The paths are similar; their differences owe to the different initial velocities. How does 
the time the marble spends in the air compare for the three paths? All three take the same amount of 
time to reach the ground, as they all start with zero initial vertical velocity and fall the same distance. 
Since they spend the same time in the air, those with larger initial velocities reach greater horizontal 
distances. 
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Figure 3.3 graphs the paths of two projectiles in the xy plane. If we ignore air resistance, how do the 
initial velocities compare (magnitude and direction)? 

y 

B 

�--------�--------�� x 
Figure 3.3 Question 3 .  

Solution 
I D E NT I FY, S ET U P, A N D  E X E C U T E : At the origin, we see that the two paths begin identically. This 
indicates that the initial directions of the velocities of both projectiles are the same. 

The graph does not include a time axis, so we need to look to other clues to compare the magnitudes of 
the initial velocities. Trajectory B reaches a greater height, indicating that its initial vertical component 
of velocity was larger than trajectory A's initial vertical component. Therefore, trajectory B has a 
greater magnitude of initial velocity. 

EVALUAT E :  Without a time axis, examine the x motion and we cannot assume that trajectory B has a 
greater magnitude of initial velocity. 

How do the horizontal components of the initial velocities compare? Both projectiles have the same 
initial launch angle; therefore, the ratio of their velocity components must be the same. If the vertical 
component of B's velocity is larger, so must B's horizontal velocity component be larger. 

4: Comparing projectiles again 
Figure 3 .4 shows the graph of the paths of two projectiles in the xy plane. If we ignore air resistance, 
how do the initial velocities compare (in magnitude and direction)? Which projectile lands first? 

y 

B 

L-__________ � __________ _L ____ x 
Figure 3.4 Question 4.  
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Solution 
I D E N T I  FY, S ET U P, A N  D E X EC UT E :  We see that the paths do not coincide at the origin: Projectile A 
has a larger launch angle. 

Again, the graph does not include a time axis, so we need to look to other clues to compare the mag
nitudes of the initial velocities. Both trajectories reach the same maximum height, indicating that both 
have the same vertical velocity components. However, their initial directions were different, requiring 
their initial horizontal components to be different. Trajectory B reaches a greater horizontal distance, 
so must have a larger initial horizontal velocity. Therefore, trajectory B has a greater magnitude of ini
tial velocity. 

Since both trajectories reach the same maximum height and have the same initial vertical velocity, 
they must end at the same time. 

EVALUAT E :  As an alternative analysis, we could have considered the time first and the velocity sec
ond. In that case, it might have been easier to see that the initial horizontal velocity of projectile B was 
larger because it covered more distance in the same time. 

5: Falling luggage 
A piece of luggage falls out of the cargo door of a airplane flying horizontally at a constant speed. In 
what direction should the pilot look to follow the luggage to the ground so that it can be recovered? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C UT E :  When the piece of luggage falls from the airplane, its initial 
velocity is the same as the plane's velocity. As it falls, the luggage accelerates in the vertical direction 
and its horizontal velocity remains constant (assuming no air resistance). Since the plane and the piece 
of luggage are moving at the same horizontal velocity, the luggage falls directly below the plane. The 
pilot should look straight down to see where the luggage will land. 

EVALUAT E :  You might expect that the piece of luggage would fall behind the airplane. Now, what 
would cause it to fall behind the plane? For it to fall behind the plane, the luggage would have to slow 
down, or accelerate in a direction opposite that of its horizontal motion. Air resistance could slow 
down the bag, because air resistance opposes the motion of a body. 

Problems 

1: Water Balloon Launch 
Your physics professor is walking past the physics building at a constant 3.5 mls. You're on the third
floor balcony (25 m above the ground) of the building with your new water balloon launcher. The 
launcher allows you to adjust the speed of the water balloon, but you can launch the balloon only hori
zontally. What launch speed should be set for the balloon to land on your professor if you launch it just 
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as she passes below? What will be your professor's horizontal distance from the building when the bal
loon hits her, as measured from a point on the ground directly below you? 

Solution 

8 8 81 8 
8 8 8 8  
B 8 8 8  

Figure 3.5 Problem I .  

y 

� "-" \ \ \ \ \ \ \ \ \ \ 

x 

I D E NTI F Y :  Once launched, the water balloon will undergo gravitational acceleration in the vertical 
direction and continue with constant velocity in the horizontal direction. We will apply the constant
acceleration kinematics equations separately to the horizontal and vertical components to solve the 
problem. 

S ET U P :  Figure 3 .5 shows a sketch of the situation. We ignore effects due to the air. Your professor is 
roughly 1 .7 m tall, but we'll ignore her height and determine the position where the balloon hits the 
ground. An xy coordinate system is shown in the diagram. 

We first determine the launch speed. Since there is no acceleration in the horizontal direction, the 
water balloon must be launched at the same speed as your professor is walking, 3 .5 mls. 

E X E CU T E :  To find where the balloon hits her, we find the time from the start of the vertical motion 
and use that to find the horizontal distance the water balloon travels as it falls. The vertical position for 
constant acceleration is given by 

_ I 2 Y - Yo + VOy t + 2. at . 

We've set the origin at the ground; therefore, the initial position becomes 25 m and the final posi
tion becomes O. The launcher imparts only a horizontal velocity, so the initial vertical velocity is zero. 
The acceleration is -g, since the positive vertical axis is directed upward. Combining these parameters 
gIves 

Solving for t produces 

t =  
2 ( 25 m ) 
( I 2 ) = 2.26 s .  
9.8 m s 

It takes 2.26 s for the balloon to fall to the ground. During this time, it is traveling with constant hor
izontal velocity. We find the horizontal distance it travels from the formula 
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Your origin is directly below your position on the balcony (xo = 0 ) .  Substituting the horizontal 
velocity and time we calculated, we find the horizontal distance: 

x = voxt = ( 3 .5 m/s ) ( 2.26 s )  = 7.9 m. 
The water balloon will hit your professor a horizontal distance 7 .9 m away from your location. 

EVA LUAT E :  This is a straightforward application of two-dimensional kinematics. We solved for one 
component of the motion and substituted the result into the equation for the other component to arrive 
at the solution. Note that we solved for the vertical motion and substituted the result into the equation 
for the horizontal motion, the opposite order of the previous problem. Practicing solving a variety of 
problems will build proficiency in solving problems involving motion in a plane. 

2: Hitting a Baseball  in Fenway Park 
You win a chance to try hitting a baseball over the "Green Monster" in Fenway Park. The Green Mon
ster is a 37.2-ft ( l 1 .3-m)-high wall in left field of the ballpark. The left end is closest to home plate, 
3 1 0  ft (94.5m) away. If you give the ball an initial speed of 33 m/s at an initial angle of 47°, by how 
much does the baseball clear (or miss) the top of the wall? 

y = l l .3 m 

�-----------------------------ll�-- x 
x = 94.5 m 

Figure 3.6 Problem 2 sketch. 

Solution 
I D E N T I F Y :  The baseball has a nonzero initial velocity, undergoes acceleration due to gravity in the 
vertical direction, and has no acceleration in the horizontal direction. Constant-acceleration kinematics 
equations will be applied separately to the horizontal and vertical components to find the solution. 

S ET U P :  We sketch the problem in Figure 3 .6 . We ignore effects due to the air. The ball is hit roughly 
I m or so above the ground, but we'll neglect this small distance and set the origin at ground level. An 
xy coordinate system that coincides with this choice is shown in the diagram. 

We will solve for the time the baseball arrives at the wall by using the horizontal-position equation. 
Then we will substitute into the vertical-position equation to find the vertical position of the ball at the 
wall. 

E X E C U T E : The horizontal position is given by 

x = Xo + voxt. 
In this case, we start at the origin (xo = 0 )  and the x component of velocity includes a cosine term: 

x = voxt = vocosOt. 
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We wish to find the time t when the baseball is located at the wall (x = 94.5 m ) :  

x ( 94.5 m )  
t = = = 4.20 s .  

vocos (} ( 33 m/s ) cos47° 

After 4.20 s, the baseball's horizontal position is 94.5 m. We now find the vertical position at that 
time. The vertical position is given by 

_ I 2 Y - Yo + VOyt + 'iat 

Again, we start at the origin (Yo = 0 ) ,  the acceleration is directed downward (negative) and is of 
magnitude g, and the y-component of velocity includes a sine term: 

We can now substitute our values into the equation to find the height of the ball: 

y = ( 33 m/s ) ( sin47° ) (4.20 s ) + H -9.8 m/s2 ) ( 4.20 s ) 2 = 14.9 m. 

At the wall, the ball's height is 14.9 m, or 3.6 m above the 1 1 .3-m-high wall. The ball clears the 
Green Monster by 3 .6 m!  

EVALUAT E :  This i s  another straightforward application of two-dimensional kinematics. We solved 
for one component of the motion and substituted the result into the equation for the other component to 
arrive at the solution. We will follow this procedure often to solve problems involving motion in a 
plane. 
Practice Problem: Find the x and y components of the baseball's velocity at the wall. Answer: 
Vx = 22.5 mIs, Vy = - 17.0 m/s. 

Don't Mix x and y! It is easy to mix up x and y components for position, velocity, and 
acceleration. You must label each of these carefully to ensure that you don' t  make mistakes. Only time 
is common to both the x and y components. 

3: Acceleration of a Propel ler Tip 
The Wright Brothers' plane had a 2A-m-Iong propeller that operated at a constant 350 rpm. Find the 
acceleration of a particle at the tip of the propeller. 

Solution 
I D E N T I F Y :  This is a uniform circular motion problem; the acceleration IS determined by the 
centripetal-acceleration formula. 

5 ET U P : We will need to find the velocity and radius from the information provided. A diagram of the 
problem is shown in Figure 3 .7 .  
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To find the centripetal acceleration, we need the radius and speed of a particle on the tip of the pro
peller. We are given the diameter of the propeller, and dividing that in half gives the radius. 

Figure 3.7 Problem 3. 

E X E C UT E :  The speed of a particle at the end of the propeller is found by dividing the circumference 
at the tip of the propeller ( 27fT) by the time it takes the propeller to make one revolution: ( T) 

2'TTr 
V = --. 

T 

The propeller makes 350 revolutions per minute, so we find the time it takes to make 1 revolution 
by dividing 1 minute by 350 revolutions: 

1 min 60 s 
T = = = 0. 1 7 1  s/rev. 

350 rev 350 rev 

The propeller takes 0. 1 7 1  s to make one revolution. We can now find the velocity: 
v 

= 
2'TTr 

= 
2'TT ( 1 .2 m) 

= 44. 1  m/s. 
T 0. 1 7 1  s 

The centripetal acceleration is then 

( 44. 1 m/s ) 2 _ 

/ 2 
( ) 

- 1620 m s . 
1 .2 m 

The centripetal acceleration of a particle on the tip of the propeller is 1 620 rnIs2• This is equivalent 
to 1 65 times the acceleration due to gravity ! 

EVALUAT E :  We have found the magnitude of the acceleration in this problem. Acceleration is a vec
tor, so where does it point? The acceleration is directed toward the center of the propeller, perpendicu
lar to the velocity. 

We did not include gravity in this problem. The particle is affected by attraction toward the ground 
throughout its motion; however, the resulting acceleration is very small compared with the centripetal 
acceleration. 
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4: Paddling across a River 
You wish to paddle north across a 350-m-wide river. The river has a l .2 m/s current from east to west, 
and you can paddle at a steady 1 .5 m/s pace. In what direction should you paddle, and how long will it 
take you to cross the river? 

350 m 

Figure 1.8 Problem 4. 

Solution 
I D E N T I FY :  You will need to paddle into the river current to compensate for the river's moving your 
boat downstream as you cross. 

S ET U P : Figure 3 .8 shows a sketch of the situation. We use relative velocities to solve the problem. 
The direction in which you must paddle is determined by setting north to be the direction of your 
resulting relative velocity with respect to the earth. 

Figure 1.8 Problem 4. 

E X E C U T E :  Figure 3 .9 combines your velocity with respect to the river ( VY/R ) with the river current's 
velocity with respect to the earth ( v  R/E) to form your relative velocity with respect to the earth ( vY/E) :  

VY/E = VY/R + VR/E' 
For you to land directly across from your starting point, the direction of VY/E must be northward. 

Therefore, the x component of V Y/R must be equal and opposite to VR/E' We find the direction in which 
you should paddle by equating those two magnitudes: 

(vY/R )x = VR/E' 
( vY/RL = vy/R sinO = VR/E' 

o = sin - ,  (��;) = sin -t� :j:) = 53° .  
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You will need to paddle 53° east of north to follow a northward path. The time it will take is found 
from the y component of the displacement. You are traveling at constant velocity, so the vertical com
ponent of the displacement is 

y - Yo = ( V Y/E ) yf. 

( V Y/E ) Y is the magnitude of VY/E' because VY/E has only a y component. ( VY/E )Y must also be equal to the 
y component of v Y/R. Solving for time gives 

y - Yo Y - Yo Y - Yo Y - Yo 350 m 
t - - - - - ------- = 390 s. - ( VY/E )Y - VY/E - ( v Y/R )Y 

- vY/Ecos 8 - ( 1 .5 m/s ) cos ( 53° ) 
It will take you 390 s to paddle across the river. 

EVALUAT E :  When you paddle across a river perpendicular to its flow, your relative velocity with 
respect to the earth is always less than your velocity with respect to the river. It also takes longer to 
cross a river that has a current compared with a calm river when your path is perpendicular to the river. 
The next practice problem lets you compare the time required to cross a calm river with the time you 
just found in dealing with a river that has a current. 
Practice Problem: How long would it take to paddle across the same river with no current? 
Answer: 230 s . 

Try It Yourself! 

1 :  Ball thrown from a cl iff 
A boy throws a ball from a cliff at an angle of 30.0° above the horizontal with an initial velocity of 
10.0 m/s. The ball lands 100.0 m from the base of the cliff. (a) How high is the cliff? (b) What is the 
time of flight of the ball? (c) What is the velocity of the ball just before impact? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P :  Constant-acceleration kinematics equations should be applied separately 
to the horizontal and vertical components of the ball's motion. The initial velocity should be broken 
down into x and y components. There is acceleration only in the vertical direction. 

E X E C U T E :  Equations for the x and y components of position and velocity can be found. The x posi
tion equation can be solved for time and substituted into the y position equation to find the height of the 
cliff. Doing this leads to 

y = xtan8 - � g [ x ]2, 
vocos 8 

from which you will find that the cliff is 595 m high. You can then substitute that number into the 
x position equation to find that the time is 1 1 .5 s .  

To find the velocity just before impact, you can find the velocity components from the kinematic 
equations . Knowing the components, you can find the magnitude and direction of the velocity. The 
velocity is 1 08 m/s, directed 85° below the x-axis .  

EVALUAT E :  We see that the velocity just before impact is almost straight down. Can it ever be exactly 
straight down? 



2: Kicking a soccer ball 
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A soccer ball is kicked 25 m in the horizontal direction. What is its initial velocity if it reaches a maxi
mum height of 6.0 m? 

Solution Checkpoints 
I D E N T I FY A N D  SET  U P :  Constant-acceleration kinematics equations should be applied separately 
to the horizontal and vertical components of the ball 's motion. Draw the ball 's path and choose an 
appropriate coordinate system. 

E X E C U T E :  The initial y component of velocity can be found from the formula 

v� = V6y + 2ay�y. 

This gives an initial vertical velocity of 1 0.8 mls. To find the initial horizontal component of veloc
ity, we determine the flight time from the vertical motion and combine that with the horizontal distance 
traveled. The result is an initial velocity of 1 5 .6 mls at an angle of 44° above the horizontal. 

EVALUAT E :  By this point, you have seen many kinematics problems. Can you summarize your 
problem-solving techniques? 

3: Archer and arrow 
An archer shoots an arrow into the air at an angle of 30° above the horizontal. It lands on a building 
1 00.0 m away at a height of 20.0 m. What was the initial speed of the arrow? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P :  Can constant-acceleration kinematics be used in this case? What assump
tions do you need to make? 

EX ECUTE : The x and y position equations can be rearranged to yield 

y = xtan 8 _ 4g [ x 12 . 
Va cos 8 

Rewriting the equation and the x and y positions at the building gives va = 4 1  m/s. 

EVALUAT E :  How can you check your result? How do you know that it is reasonable? 





Newton's Laws of Motion 

Summary 
We will define dynamics-the study of the relationship of motion to 
forces-in this chapter. Newton's laws of motion will lay the founda
tion for our studies and link forces to acceleration, which we investi
gated in the previous chapters. We will define force, mass, and weight 
and apply them to problems. We will use our knowledge of vectors to 
better understand forces and construct free-body diagrams. By the end 
of this chapter, we will have built a problem-solving framework that 
we will apply in the next chapter. 

Objectives 
After studying this chapter, you will understand 

• The concept of force and why it is a vector quantity. 
• How to identify forces acting on a body. 
• How to find the resultant force acting on an object by summing 

multiple forces. 
• Newton's three laws of motion. 
• The relation between net force, mass, and acceleration. 
• How to recognize an inertial frame of reference, in which New

ton's laws are valid. 
• How to use a free-body diagram to represent forces acting on an 

object. 
• How to use the free-body diagram as a guide in writing force equa

tions for Newton's laws. 

47 
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Concepts and Equations 

Term 

Force 

Combining Forces 

Contact Force 

Normal Force 

Friction Force 

Tension Force 

Newton's First Law 

Inertial Reference Frame 

Newton's Second Law 

Weight 

Description 

A force is a quantitative measure of the interaction between two objects, rep-

resented by a vector. The SI unit of force is the newton (N). One newton 

equals 1 kilogram-meter per second squared. 

--> 
The vector sum of forces acting on a body is the resultant, denoted R: 

� � --+ --+ 2, --+  R = FI + F2 + F3 + . . .  
= F. 

The effect of many forces acting on a body can be captured by the resultant 

force. This principle is called superposition of forces. 

A contact force is a force between two objects touching at a surface. A con-

tact force has two components:  a component perpendicular to the surface (the 

normal force) and a component parallel to the surface (the frictional force). 

The normal force is the component of a contact force between two objects that 

is perpendicular to their common surface. The normal force is denoted by n. 

The friction force is the component of a contact force between two objects 
--> 

that is parallel to their common surface. The friction force is denoted by f. 

Friction forces often act to resist the sliding of an object. 

--> 

A tension force is conveyed by the pull of a rope or cord and is denoted by T. 

Newton's first law states that when the vector sum of forces acting on an 

object is zero, the object is in equilibrium and has zero acceleration. The 

object will remain at rest or move with constant velocity when no net force 

acts upon it. The law is valid only in inertial reference frames. 

An inertial reference frame is a reference frame in which Newton's laws are 

valid. A common example of a noninertial reference frame is that of an accel-

erating airplane. 

Newton's  second law of motion states that an object which is not in equilib-

rium is acted upon by a net force and accelerates .  The acceleration is given in 

vector form by 

�
--> --> F = ma, 

where m is the object's mass, which characterizes the inertia of the object. 

Newton's second law can also be written in component form as 

�Fx = max � Fy = may � Fz = maz' 

An object's weight is the gravitational force exerted on the object by the earth 

or another astronomical body and is denoted by w. The magnitude of an 

object's weight is equal to the product of its mass and the magnitude of the 

acceleration due to gravity: 

w = m . g 



Newton's Third Law 

Free-Body Diagram 

conceptual Questions 
1: Winning a Tug-of-War 
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Newton's third law states that, for two interacting bodies A and B, each exerts 

a force on the other of equal magnitude and opposite in direction, or 

-t -t 

FA on B = - FB on A-

A diagram showing all  forces acting o n  an object. The object is represented 

by a point; the forces are indicated by vectors. A free-body diagram is useful 

in solving problems involving forces. 

In a tug-of-war shown in Figure 4. 1 ,  how does the force applied to the rope by the losing team compare 
with the force applied to the rope by the winning team? Is the magnitude of the force applied by the 
losing team less than, greater than, or equal to the magnitude of the force applied by the winning team? 
How does the winning team win? 

Figure 4.1 Question 1 .  

Solution 
I D E N T I  FY, S ET U P, A N  D E X E C U T E  The free-body diagram in Figure 4.2 will guide our analysis. 
Each team experiences four forces: the tension due to the tug-of-war rope (T), a frictional force with 
the ground (f), the weight of the team (w), and the normal force exerted upward from the ground (N). 
The subscripts indicate the winning (w) and losing (I) teams. Examining the diagrams, we see that the 
tension forces must be an action-reaction pair-hence the explicit notation. Therefore, by Newton's 
third law, the tensions must be equal. The force applied by the losing team on the rope must be of the 
same magnitude as, but opposite in direction to, the force applied by the winning team on the rope. 

Figure 4.2 Question 1 free-body diagrams. 

The vertical forces will not influence the horizontal interaction, so we look at the remaining force to 
determine how the winning team wins. The frictional forces must not be equal: The winning team 
exerts a larger frictional force on the ground than the losing team does in order to accelerate the losing 
team across the centerline. 

EVALUAT E  We see that free-body diagrams and Newton's third law were crucial in our solution. The 
free-body diagram helped reduce the complexity of the problem and helped show that the frictional 
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force was responsible for the win. After establishing that the tensions were an action-reaction pair, we 
saw from Newton's third law that the tensions were equal and opposite. 

Note that we assumed that the frictional force was between the team and the ground and that each 
team was able to grip the rope without sliding. There is also a frictional force between the teams' hands 
and the rope. Differences between the hand and rope frictional forces could also have led to the win. 

2: Flying groceries 
What force causes a bag of groceries to fly forward when you come to an abrupt stop in a car? 

Solution 
I D E N T I FY, S ET U P, AN D E X E C U T E  Suppose that, before you come to an abrupt stop, you are mov
ing at a constant velocity. Then no net force must act on you, the car, or the bag of groceries, according 
to Newton's first law. As you cause an abrupt stop by hitting the brakes, you increase the frictional 
force between the car and the road, creating a net force on the car. When you brake, the force on the 
bag of groceries doesn't change, so the bag of groceries continues at its initial velocity. (We're assum
ing that the frictional force between the bag of groceries and the car seat is small.) Therefore, no force 
causes the bag of groceries to fly forward when you come to an abrupt stop in a car. 

EVA LUAT E  The solution may seem a bit illogical, for consider how the situation would appear to 
someone outside of the car: The bag of groceries continues moving at a constant velocity after the 
brakes are applied. This scenario should be more plausible and is a clearer way to imagine the situation. 

This is one example of a noninertial frame of reference. The slowing car has negative acceleration 
and hence is an accelerated frame of reference. Newton's laws don't apply to noninertial frames of ref
erence, so we cannot apply our new force techniques to this problem. 

From inside the car, you may try to explain the situation by invoking a "force of inertia." This 
would be a fictitious force, however, and must be avoided. All of the forces we've encountered (and all 
of those we will later encounter) arise from known interactions . 

3: Does an Apple Accelerate When Placed on a Table? 
An apple is placed on a table. Can we describe the apple as having an acceleration of 9.8 m/s2 toward 
earth and a second acceleration of 9.8 m/ S2 upward due to the table, thus resulting in a net acceleration 
of zero? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  We have seen how forces can cause accelerations, have heard 
F = ma often, and know that an object's weight is mg, so it may appear logical to replace forces with 
mass times acceleration in equations . However, Newton's laws apply to combining forces, not acceler
ations. Newton's second law states that a net force on an object will lead to an acceleration equal to the 
net force divided by the object's mass. 

EVALUAT E  This question points up a common misconception about accelerations and forces . At 
times, replacing forces with mass times acceleration may lead to the same results as following the cor
rect procedures, but doing so often leads to confusion. An object that is stationary is not accelerating, 
because there is no net force acting on the object. 



4: Forces and Moving Objects 
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Does a force cause an object to move? Does a moving object "have" a force? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  A force does not necessarily cause an object to move. Your 
textbook is acted upon by gravity when placed on a desk, but it does not move. A net force can cause an 
object to acquire velocity through acceleration. 

An object moving at a constant velocity has no net force acting on it; therefore, the fact that an 
object is in motion does not indicate that a force is acting upon it. The fact that an object is accelerat
ing, however, would certainly indicate that at least one force is acting upon it. 

EVA LUAT E  Acceleration and motion are not equivalent. Acceleration is motion during which the 
velocity changes over time. An object can also have a constant velocity, which is motion without accel
eration. You must carefully distinguish between motion and acceleration in order to grasp physics. 

5: Definition of equilibrium 
Can a moving object be in equilibrium? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  Equilibrium occurs when the net force acting on an object is 
zero. Newton's first law states that objects with no net force acting on them remain at rest or continue 
with constant velocity. An object moving at constant velocity is in equilibrium. 

EVALUAT E  Equilibrium has a precise definition in physics, even though the word may have connota
tions of a stationary object. Physics relies upon precise definitions to build representations of physical 
processes. You must apply physics definitions carefully to build your physics understanding. 

Problems 

1: Combining several forces to find the resultant 
A mover uses a cable to drag a crate across the floor as shown in Figure 4.3 . The mover provides a 
300 N force and pulls the cable at an angle of 30.0° . The crate weighs 500 N, and the floor provides a 
350 N normal force on the crate and opposes his pull with a 1 50 N frictional force. Find the resulting 
force acting on the crate. Will the crate accelerate? 

Figure 4.3 Problem I .  
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Solution 
1 0  E N TI FY We will combine the forces acting on the crate to find the net force. If the net force is not 
zero, then there will be acceleration. 

S ET U P  We find the resultant force by adding the forces acting on the crate. Four forces act on the 
crate: the tension force due to the mover's pull (T), the crate's weight (w), and the normal force (n) and 
friction force (f) due to the floor. We represent the four forces as vectors in the free-body diagram of 
the crate in Figure 4.4. 

y 

n 

f�------------�--�--�----- x 
o Fx 

w 

FIGURE 4.4 Problem I free-body diagram. 

We have added an xy coordinate system to the free-body diagram as the forces act in two dimensions. 
We've also resolved the tension force into its x and y components. 

EVALUAT E  We add the four forces together by adding their components, writing separate equations 
for the x and y components . There are two x components, due to the horizontal components of the ten
sion force and the friction force: 

"LFx = Tcos 30° + ( -f) ·  

The x component of the tension force is to the right and is thus assigned a positive value, while the fric
tion force is to the left and is assigned a negative value. We proceed to the y components. There are 
three y components, one due to the normal force, a second due to the weight of the crate, and, finally, 
the vertical component of the tension force: 

"L Fy = n + ( -w ) + Tsin 30°. 
The y component of the tension force and the normal force are directed upward and are assigned posi
tive values, while the weight of the crate is directed downward and is assigned a negative value. We 
now substitute the values for the variables to find the net force along both axes: 

"LFx = Tcos 30° + ( -f) = ( 300 N ) cos 30° + ( - 150 N ) = + 1 10 N, 

"LFy = n + ( -w ) + Tsin 30° = ( 3S0 N ) + ( -SOO N ) + ( 300 N ) sin30° = O N. 

The resultant force on the crate has an x component of + 1 10 N and no y component, (i .e. , the resulting 
force is horizontal and points to the right) . There is also a resulting acceleration of the crate to the right, 
as there is a net force. 
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EVA LUAT E  This is a typical force problem in which we have used our vector addition skills to find the 
resultant force. We see that there is no net force in the vertical direction; therefore, the crate remains on 
the bed of the truck. 

P RACT I C E  P RO B L E M  At what rate does the crate accelerate? Answer: 2.2 m/s2. 

2: Using Newton's second law to find the mass of a cruise ship 
A tugboat pulls a cruise ship out of port. (See Figure 4.5.) You estimate the acceleration by noting that 
the tugboat takes 60 s to move the cruise ship 100 m, starting from rest. If the tugboat exerts 3 X 106 N 
of thrust, what is the mass of the cruise ship? Ignore drag due to the water, and assume that the tugboat 
accelerates uniformly. 

FIGURE 4.5 Problem 2. 

Solution 
I D E N T I FY We will use Newton's second law to find the mass of the cruise ship, given the net force 
and acceleration acting on the ship. 

S ET U P  The problem tells us the net force provided by the tugboat, and the acceleration can be deter
mined from the kinematics information. We ignore drag or friction with the water, so the only horizon
tal force acting on the cruise ship is due to the tugboat. 

EXECUTE  Newton's second law relates the net force to the mass and resulting acceleration: 

LFx = rna. 

The net force acting on the cruise ship is 3 X 1 06 N. The acceleration is found from the equation for 
position as a function of time with constant acceleration: 

x = xa + vat + 1at2. 
Here, the initial velocity is zero and we take the initial position to be zero. Substituting these values 
into the equation gives 

Solving for the acceleration yields 
2x 

a = 2' t 
Replacing the distance and time with the given values produces 

2x 2 ( 100 m) 2 a = 2 = 
( ) 2 

= 0.056 m/s . 
t 60 s 
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We now use Newton's second law to find the mass. Solving for the mass gives 

F ( 3 X 1 06 N)  . m = - = ( I 2
) 

= 54,000,000 kg = 54 kilotonnes. a 0.056 m s 
Our estimate shows that the cruise ship has a mass of 54 kilotonnes ( 1  kilotonne = 1 06 kg ) .  More 
correctly, the cruise ship has a mass of 50 kilotonnes, as the values stated in the problem have only one 
significant figure. 

EVA LUAT E  This problem shows how we can combine Newton's law with observations to make inter
esting conclusions about the mass of an object. 

3: Drawing free-body diagrams 
Draw a free-body diagram for each of the following situations : 
(a) A box slides down a smooth ramp. (See Figure 4.6.) 

FIGURE 4 .6 Problem 3a 

(b) A box slides down a rough ramp. (See Figure 4.7.) 

FIGURE 4 .7  Problem 3b 

(c) A block is placed on top of a crate, and the crate is placed on a horizontal surface. (See Figure 4.8 . ) 
Draw a free-body diagram of the crate. 

FIGURE 4.8 Problem 3c 

(d) A block is placed on top of a crate, and the crate is pulled horizontally across a rough surface. 
(See Figure 4.9.) The surface between the crate and the block is rough, and the block is held at rest 
by a string. Draw a free-body diagram of the crate. 

FIGURE 4.9 Problem 3d 
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I D E NT I FY We will draw free-body diagrams that show all of the forces acting on the object, repre
senting the forces as vectors. 

5 ET U P  The first step is to identify the object and then find the forces acting on it. We' ll look at the 
contact tension, normal and frictional forces, and the noncontact gravitational force. 

E X E C U T E  In part (a) , there is no friction, since the ramp is smooth. The only contact force acting on 
the box is the normal force due to the ramp. Gravity also acts on the box. The free-body diagram 
includes two forces acting on the box: the normal (n) force, directed perpendicular to the ramp; and the 
weight (w) of the box, directed downward. The free-body diagram of the box is shown in Figure 4. 10. 

n 

w 

FIGURE 4.10 Problem 3a 

free-body diagram 

In part (b), there is friction, since the ramp is rough. The contact forces acting on the box are the nor
mal and frictional forces due to the ramp. Gravity also acts on the box. The free-body diagram includes 
three forces acting on the box: the normal force (n) , directed perpendicular to the ramp; the frictional 
force (f), directed upward along the ramp (opposing the motion of the box); and the weight (w) of the 
box, directed downward. The free-body diagram of the box is shown in Figure 4. 1 1 .  

w 

FIGURE 4.1 1 Problem 3b 

free-body diagram 

In part (C), two contact forces act on the crate: the normal force due to the surface and the normal force 
due to the block. There are no frictional forces, as neither the crate nor the block is moving. Gravity 
acts on the box. The free-body diagram includes three forces acting on the crate: the normal force due 
to the surface ( nsurface ) ' directed upward; the normal force due to the block ( nblock ) , directed down
ward; and the weight (w), of the crate, directed downward. The free body diagram of the crate is shown 
in Figure 4. 12 .  

nsurfacc 

FIGURE 4.1 2  Problem 3c 

free-body diagram 
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In part (d), five contact forces act on the crate: the normal forces due to the surface and the block, the 
frictional forces due to the surface and the block, and the tension force provided by the pull. The sixth 
force acting on the crate is gravity. The free-body diagram includes six forces acting on the crate: the 
normal force due to the surface ( nsurface ) ,  directed upward; the normal force due to the block ( nblock ) '  
directed downward; the frictional forces due to the surface (fsurface ) and the block (fblock ) ,  both directed 
to the right; the tension force (T), directed to the left; and the weight (w) , of the crate, directed down
ward. The free-body diagram for the crate is shown in Figure 4. 1 3 .  

Ilsurface 

F �IOCk 
lIblock l 

w 

fsurface 

FIGURE 4.13 Problem 3d 

free-body diagram 

EVALUAT E  Drawing free-body diagrams should become second nature to you. We will see their 
importance when we solve problems in Chapter 5 .  Free-body diagrams help catch mistakes by identi
fying all the forces acting on an object, as well as help identify action-reaction pairs. 

4: Tension in a string connecting two blocks 
Two blocks are connected by a massless string, as shown in Figure 4. 14 .  A cable is attached to the 
upper block and is pulled upward with a 250 N force. Find the tension in the string connecting the two 
blocks. The upper block has a mass of 7.5 kg and the lower block has a mass of 1 2  kg. 

Solution 

FIGURE 4.1 4  

Problem 4 

I D E N T I FY We will use Newton's laws to solve this problem. 

SET U P  We cannot determine whether the system is in equilibrium or accelerating from the statement 
of the problem; therefore, we do not know whether to apply Newton's first law for a system in equilib
rium or Newton's second law for an accelerating system. Our first step, therefore, will be to determine 
whether the system is in equilibrium or accelerating. Then we will apply the appropriate one of New
ton's laws to find the tension in the string. 

We' ll use free-body diagrams to solve the problem. We can determine whether the blocks are acceler
ating by considering the two blocks as one system. The left panel of Figure 4. 1 5  shows a free-body dia
gram of the system with the two blocks combined. We can find the tension in the string by considering 
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the two blocks separately. The middle and right panels of Figure 4. 1 5  show the free-body diagrams of the 
two blocks separately. The top block is designated A, the bottom block B, to reduce confusion. 

A + B A B 

FIGURE 4 . 15  Problem 4 free-body diagram 

The forces in the free-body diagrams are identified by their magnitudes. The combined diagram 
includes the tension of the cable ( Tcable )  and the weight of the two blocks (W A + B ) . The other diagrams 
also include the tension of the string ( Tstring ) ,  and the weights of the blocks ( WA and WB ) . The upward
pointing vectors will be taken to be positive, the downward-pointing vectors negative. 

E X E C U T E  To determine whether the blocks are accelerating, we examine the net force acting on them. 
From the left-hand free-body diagram, we see that there are two forces, the tension of the cable and the 
weight of the blocks, acting on the combination of blocks: 

LFy = Tcable + ( -WA +B ) · 
The weight is the combined mass of the blocks times the gravitational constant. The net force is found 
by replacing the weight and tension by the given values: 

LFy = Tcable + ( -g ( mA + mB ) ) = 250 N + ( - ( 9.8 m/s2 ) ( 7.5 kg + 12 kg ) )  = 58 .9 N. 
The net force is not zero; therefore, the blocks are accelerating. We find the acceleration from New
ton's second law applied to the combined blocks: 

L Fy = (mA + mB)a. 
Solving for the acceleration yields 

L �' a = --==--'----
(mA + mB ) 

58 .9 N 
---------,- = 3 .02 m/s2. 
( 7 .5 kg + 1 2  kg ) 

We now apply Newton's second law to the lower block to find the tension in the string. Two forces are 
acting on the lower block: the tension due to the string (upward) and gravity (downward). Hence, 

L Fy = Tstring + ( -mBg ) = mBa. 
Solving for the tension in the string and substituting the value for acceleration gives 

Tstrino = msg + mBa = mB(g  + a ) = ( 1 2  kg ) ( 9 .8 m/s2 + 3 .02 m/s2 ) = 1 50 N. 
e 

The tension in the string is 1 50 N. 

EVALUAT E  We see that the tension force due to the string is less than the tension force due to the 
cable. This is expected, as the string provides force to accelerate the lower block, whereas the cable 
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provides force to accelerate both blocks. It is important not to assume that tensions are equal in prob
lems; you must consider each tension independently. 

Try It Yourself! 

1: Rock suspended by wire 
A rock of mass 4.0 kg is suspended by a wire. When a horizontal force of 29.4 kg is applied to the rock, 
it moves to the side such that the wire makes an angle f) with the vertical. Find the angle f) and the ten
sion in the wire. 

Solution Checkpoints 
I D E N T I FY A N D S ET U P  The net force on the rock is zero. Three forces act on the rock. By drawing 
a free-body diagram, we can see how to set the horizontal and vertical components of force to zero to 
solve the component force equations. 

E X E C U T E  The net horizontal and vertical forces acting on the rock are 

L Fx = FH - Tsinf) = 0 
L Fy = Tcos e - mg = O. 

Dividing one equation by the other leads to an angle of 37°. Substituting the angle into either equation 
leads to a tension of 49 N. 

EVALUAT E  We will often break the net force into horizontal and vertical components and solve each 
separately, much as we did in our two-dimensional kinematics problems. 

2: Tension in an elevator cable 
A 1000.0 kg elevator rises with an upward acceleration equal to g. What is the tension in the supporting 
cable? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  There is a net force on the elevator, so Newton's second law will be used to 
find the tension. 

E X E C U T E  The net vertical force acting on the elevator is 

L Fy = T - mg = ma = mg. 

Solving for the tension gives 19,600 N. 

EVALUAT E  We see that the tension in the cable is larger than the force of gravity on the elevator. Does 
this make physical sense? 



3: Acceleration in an elevator 
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A 1 00.0 kg man stands on a bathroom scale in an elevator. What is the acceleration of the elevator 
when the scale reading is (a) 1 50 kg, (b) 1 00 kg, and (c) 50 kg? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Two forces act on the man: the force of the scale and the force of gravity. 
Draw a free-body diagram to guide you. 

EXECUTE  The net vertical force acting on the man is 

L Fy = Fscale - mg = rna. 

Solving for the acceleration gives (a) a = 4.9 m/s2, (b) a = 0, and (c) a = -4.9 m/s2. 

EVA LUAT E  In which case(s) does the man feel heavier than normal? In which case(s) does he feel 
lighter than normal? In which case(s) does he feel as if he has normal weight? What is the significance 
of the signs in answers (a) and (c)? 





Applying Newton's Laws 

Summary 
In this chapter, we will apply Newton's laws of motion to bodies that 
are in equilibrium (at rest or in uniform motion) and to bodies that are 
not in equilibrium (in accelerated motion). We'll develop a consistent 
problem-solving strategy that utilizes a free-body diagram to identify 
the relevant forces acting on a body. We' ll also expand our catalog of 
forces by quantifying contact forces and friction forces, as well as 
examine forces on bodies in uniform circular motion. By the end of 
the chapter, you will have built a foundation for solving equilibrium 
and nonequilibrium problems involving any combination of forces, 
including forces that we' ll discover in later chapters. 

Objectives 
After studying this chapter, you will understand 

• How to efficiently represent forces acting on a body by using a 
free-body diagram. 

• How to use the free-body diagram as a guide in writing force equa
tions for Newton's laws. 

• How to use Newton's first law to solve problems involving bodies 
in equilibrium. 

• How to use Newton's second law to solve problems involving 
accelerating bodies. 

• How to apply contact forces and various friction forces to a variety 
of situations. 

• How to recognize action-reaction pairs and use Newton's third law 
to quantify their magnitudes. 

• How to apply Newton's laws of motion to bodies moving in uni
form circular motion. 

• How to use Newton's laws to solve problems proficiently. 

61 
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Concepts and Equations 

Term 

Using Newtons' First Law 

Applying Newton's Second Law 

Friction Force 

Kinetic Friction Force 

Static Friction Force 

Forces in Circular Motion 

Description 

A body in equilibrium (either at rest or moving with constant velocity) is 

acted upon by no net force:  The vector sum of the forces acting on the object 

must be zero according to Newton's first law of motion, 'ZF = o. 
When solving equilibrium problems, one starts with free-body diagrams, 

finds the net forces along two perpendicular components, and then solves by 

using the equations 

A body that is acted upon by a nonzero net force accelerates.  The acceleration 

is given by Newton's second law of motion, 

2:F = mao 
When solving nonequilibrium problems, one identifies the forces acting on 

the body with free-body diagrams, finds the net forces along two perpendicu

lar components, and determines the equations of motion given by 

2: Fx = max 2: Fy = may 
In problems with multiple interacting bodies, it may be necessary to 
apply Newton's laws to each body individually and solve the equations 

simultaneously. 

A friction force is that component of the contact force between two objects 

which is parallel to the surfaces in contact. Friction forces, denoted by ], are 

generally proportional to the normal force and include kinetic friction forces 

(when the objects move relative to each other), static friction forces (when 

there is no motion between the objects), viscosity and drag forces (for motion 

involving liquids and gases), and rolling frictional forces (for rolling objects). 

The kinetic friction force is the friction force between two objects moving 

relative to each other and is generally proportional to the normal force 

between the objects. The proportionality constant is the coefficient of kinetic 

friction (ILk ) ,  which depends on the objects' surface characteristics and has 

no units.The direction of the kinetic friction force is always opposite the 

direction of motion. Mathematically, 

fk = ILkn. 

The static friction force is the friction force between two objects that are not 

moving relative to each another. The maximum static friction is generally 

proportional to the normal force between the objects, where the proportional

ity constant is the coefficient of static friction (lLs) .  Often, ILs is greater than 

ILk for a given surface. The static friction can vary from zero to the maximum 

value; its magnitude depends on the component of the applied forces parallel 

to the surface. The direction of the static frictional force is opposite that of 

the parallel component of the net applied force. Mathematically, 

Is ::5 ILsn. 

For a body in uniform circular motion, the acceleration is directed toward the 

center of the circle. The motion is determined by Newton's second law, 

The body's acceleration is 

,, --> --> -L.. F = mao 



conceptual Questions 
1 :  Finding errors in a free-body diagram 
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Two weights are suspended from the ceiling and each other by ropes as shown in Figure S. l a. A free
body diagram is shown in Figure S . l b  for the upper block (A) .  Find the error in the free-body diagram 
and draw the correct diagram. 

Figure 5.1 Question 1 .  

Solution 
I D E NTI FY, S ET U P, A N D E X E C U T E  Three forces act on block A: two tension forces due to the 
ropes and the gravitational force on block A. The gravitational force on block B has been incorrectly 
included in the diagram. Block B is not in direct contact with block A; only the rope is in contact with 
block A. The corrected free-body diagram is shown in Figure 5.2 . 

Figure 5.2 Question 1 corrected 
free-bod y d iagram. 

EVALUAT E  When drawing free-body diagrams, one must include only those forces acting on the 
object. Identifying the forces acting on an object is necessary to apply Newton's laws correctly. 

2: Investigation of the normal force 
For which of the following figures is the normal force not equal to the object's weight? 

(a) (b) (c) 

(d) (e) 

Figure 5.3 Question 2 
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Solution 
I D E N T I  FY, S ET U P, AN D E X E C U T E  The normal force is not equal to the object's weight in fig
ures (a), (c), and (e) . In (a), the normal force is equal to the book's weight plus the force pushing down 
on the book. In (c), the book's weight is directed downward and the normal force is directed upward 
and to the left, perpendicular to the ramp's surface. Here, the normal force is equal to the weight multi
plied by the cosine of the ramp angle. In (d), the normal force is equal to the book's weight, but the 
applied force is along the surface; thus, it does not affect the vertical forces. In (e), a component of 
the applied force is parallel to the normal force, thus increasing the normal force by the amount of that 
component. The two forces are directed downward. 
EVA LUAT E  Often, the normal force is not equal to an object's weight. A common mistake initially 
encountered in force problems is assuming that the normal force is always equal to some object's 
weight. You must analyze all problems carefully to determine the proper normal force. 

3: Acceleration and tension in blocks connected by a rope 
Consider the situation shown in Figure 5 . 3 .  Cart A is placed on a table and is connected to block B by a 
rope that passes over a frictionless pulley. 

Figure 5.4 Question 3 .  

(a) How does the acceleration of cart A compare with that of block B?  

Solution 
I D E N T I F Y, S ET U P, AN D E X E C U T E  Both objects must accelerate at the same rate, since they are 
connected by the rope (as long as the rope doesn't stretch). To get a better intuitive grasp of this state
ment, note that cart A will move 10  cm when block B moves 10  cm. If block B moves the 1 0  cm in 
1 second, then cart A moves 10  cm in 1 second; their velocities are the same. If block B 's velocity 
changes by 2 mls in 1 second, then block A's velocity must change by 2 mls in 1 second; their acceler
ations are the same. We say that the rope constrains both objects to accelerate at the same rate. 

(b) How does the tension force acting on cart A compare with the weight of block B as the system 
accelerates? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  The tension force in the string is constant along the string, so 
the tension force is the same on block B as it is on cart A. Therefore, we compare the tension at block B 
with block B 's weight. Newton's second law tells us that the net force on an object is equal to its mass 
times its acceleration. Two forces act on block B :  B 's weight and the tension force. The net force on 
block B is its weight minus the tension force. This net force must be equivalent to the acceleration mul
tiplied by block B ' s  mass; therefore, the tension must be less than the weight. The tension force acting 
on cart A is less than the weight of block B .  
EVALUAT E  Solving this problem gives u s  two important results that we' ll apply repeatedly to later 
problems :  First, objects connected by a rope are constrained to have the same magnitude of accelera
tion; second, the tension force in a rope connected to an object is not always equal to the object's 
weight if the object is accelerating. 
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4: What can a hanging ball indicate 
A ball hangs on a string attached to the top of a box, as shown in Figure 5 .4. The box is placed on a 
horizontal truck bed and the truck moves over a fiat roadway. You observe the ball and find that it 
remains in the position shown in the figure for a long time. By looking only inside the box, what can be 
determined about the truck's motion? 

Figure 5.5 Question 4. 

Solution 
I D E NT I FY, S ET U P, A N D E X E C U T E  We see that the ball has swung to the left, so we may suspect 
that the truck is moving. Let's look at the forces acting on the ball: to investigate the motion. Two 
forces act on the ball: gravity and the tension force due to the string. Figure 5 .5 shows the free-body 
diagram. 

mg 

Figure 5.6 Question 4 
free-body diagram. 

We see that the tension force has components in both the vertical and horizontal direction. The vertical 
component of the tension force must be equivalent to the force of gravity, since the box moves hori
zontally and there is no vertical acceleration. There is only one horizontal force-the horizontal com
ponent of the tension force-so there is horizontal acceleration to the right. 

We can conclude that the truck is accelerating to the right in the horizontal direction and not at all in 
the vertical direction. We cannot determine the velocity of the truck; the horizontal velocity compo
nents could be zero or nonzero. For example, the truck could be moving to the left with decreasing 
velocity or it could be accelerating to the right from rest. Both of these motions would result in the 
ball 's being swung to the left. 
EVALUAT E  This problem shows that the absence of a net force results in zero acceleration of an 
object and the presence of a net force results in a nonzero acceleration of an object. We cannot deter
mine the velocity of an object by knowing only its acceleration; we need additional information. 
Practice Problem: How would the ball appear if the box moved with constant velocity? Answer: The 
ball would hang vertically, since no net force would act on it. 

5: Motion of a box on a rough surface 
A constant horizontal force is applied to a box on a rough floor. With a 15  N applied force, the box 
begins to slide. What is the motion of the box after it begins to slide, assuming that the applied force 
remains constant? 
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Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  Before the box slides, there is static friction. Once it begins 
to slide, the static friction becomes kinetic friction. Kinetic friction is smaller in magnitude than 
static friction; therefore, the applied force must be larger than the kinetic friction force, and the box 
accelerates. 

EVA LUAT E  This problem helps illustrate the fact that kinetic friction is generally less than static fric
tion. The reason is that the coefficient of kinetic friction is less than the coefficient of static friction. 

6: Frictional forces 
A box is placed on a rough floor. When you push horizontally against the box with a 20 N force, the 
box just begins to slide. What is the magnitude of the frictional force when you push against the box 
with a 10  N force? With a 1 5  N force? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  Since the box just begins to slide when the 20 N force is 
applied, the maximum static friction force is 20 N. When you push against the box with a 10  N force, 
you are pushing with less than the maximum static friction force. By Newton's third law, the box must 
push back with the same force; therefore, the static friction force must have a magnitude of 10  N. For 
the same reason, when you push with a 1 5  N force, the static friction force has a magnitude of 1 5  N. 

EVA LUAT E  Static friction varies from zero to its maximum value. The static friction force equals the 
net force acting against the friction force. Be careful not to assume that static friction is always at its 
maXImum. 

7:  A vertical frictional force 
A block is placed against the vertical front of an accelerating cart as shown in Figure 5 .6 . What condi
tion must hold in order to keep the block from falling? 

Figure 5.7 Question 7 .  

Is 
11 

mg 

Figure 5.8 Question 7 free-body diagram 
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Solution 
I D E N T I F Y, S E T  U P, A N D E X E C U T E  The free-body diagram shown in Figure 5 .7 indicates that 
three forces act on the box: gravity (mg, downwards), the normal force due to the cart (n, to the right), 
and the friction force at the block-cart surface (Is) . To keep the block from falling, the friction force 
must be equal and opposite to the gravitational force. The condition for equilibrium in the vertical 
direction gives 

�Fy = Is - mg = 0, Is = mg. 

The friction force must be due to static friction, in order to prevent the block from moving. The static 
friction force is given by 

Is < J.tsn. 

The gravitational force can then be related to the normal force and the coefficient of static friction: 

mg < J.tsn. 

The block accelerates to the right with acceleration a, so we can use Newton's second law to find an 
expression for the normal force: 

�Fx = n = mao 

Replacing the normal force with mass and acceleration gives 

mg < J.tsma, 

:> g 
J.ts - - . a 

The last inequality tells us that the coefficient of static friction must be equal to or greater than the 
gravitational constant divided by the cart's acceleration. 

EVALUAT E  Problems that initially appear complicated often have relatively straightforward solutions. 
Following a consistent problem-solving procedure helps identify the key points that you will need to 
solve the problem. 

8: Turning while riding in a car 
As you make a right tum in your car, what pushes you against the car door? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  As your car turns, your body tends to continue moving in a 
straight line; therefore, you push up against the car door. So you can say that no force actually pushes 
you against the door and your body tries to maintain a constant velocity due to Newton's first law. 
Once the car door comes in contact with you, it pushes you in the direction of the tum, accelerating you 
to the right. 

EVA LUAT E  From within the car, you may wonder what force pushes you to the side. However, since 
the car is turning to the right, it is accelerating, and the car is not an inertial reference frame. Therefore, 
we cannot apply Newton's laws inside the car. If we consider how the situation would appear to some
one outside of the car (in an inertial reference frame), we can apply Newton's laws: You would appear 
to continue moving in a straight line while the car moves to the right. 
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9:  Free-body diagram for a car on a hill 
Draw a free-body diagram for a car going over the top of a round hill at a constant speed. Is there a 
nonzero net force acting on the car if it is moving at constant speed? 

Solution 
S ET U P  A N D  S O LVE Two forces act on the car at the top of the hill: the normal force due to the road 
and gravity. The normal force is directed upward and gravity is directed downward. Figure 5 .8  shows 
the free-body diagram. 

n 

mg 

Figure 5.9 Question 9 free-body 
diagram. 

The force vectors in the free-body diagram are not drawn to have equal length: The gravitational force 
is larger than the normal force. This is because there is a nonzero net force acting on the car: The car's 
velocity is changing direction, so the car has a centripetal acceleration. The centripetal acceleration is 
downward, so the net force must be downward. 

There is a net force acting on the car even though the car is moving at constant speed. 
R E F L ECT Constant speed does not necessarily imply constant velocity. You must carefully interpret 
problems involving circular motion and constant speed. 

Problems 

1 :  Equilibrium in two dimensions 
A 322 kg block hangs from two cables as shown in Figure 5 .9. Find the tension in cables A and B .  

Figure 5. 10  Problem 1. 

Solution 
I D E  N T I  F Y  The block is in equilibrium, so we can apply Newton's first law to it. The cables have ten
sions in two dimensions, so we will have to apply the first law to two axes. The target variables are the 
two tension forces (labeled TA for cable A and TB for cable B) .  
S ET U P  The free-body diagram of the block is shown in Figure 5 . 1 0. Three forces act on the block: 
the two tension forces ( TA and TB )  and gravity Cmg) . The tensions act in two dimensions and gravity 
acts in the vertical direction. 



APPLY I N G  N EWTON ' S  LAWS 69 

y 

TAsin 35° T Bsin 48° 

TA TB 

___ -.... -_-- x 

mg 

Figure 5.1 1 Problem 1 free-body diagram. 

We have added an xy coordinate system to the figure to illustrate in what directions the forces act. 
We've also resolved the two tension forces into their x and y components. 

EXECUTE  We apply the equilibrium conditions to the block, writing separate equations for the 
x and y components :  

L Fx = 0, Tscos48° + ( - TAcos 35° ) = 0, 

L Fy = 0, Ts sin48° + TA sin35° + ( -mg )  = O. 

Note that components directed to the left and downward are negative, consistent with our coordinate 
system. We can rewrite the first equation as 

Substituting for Ts in the second equation 

cos 35° 

Solving for TA yields 

TA sin48° + TA sin 35° - mg = 0 
cos 48° 

( 322 kg ) ( 9 .80 m/s2 ) 
--'---..=....:..--'------'-----=--- = 2 1 30 N. 
( cos 35° tan48° + sin 35° ) 

Substituting the value for TA into the first equation gives 

cos 35° cos 35° 
Ts = TA = 2 130 N = 2600 N. 

cos 48° cos 48° 

The tension in cable A is 2 1 30 N and the tension in cable B is 2600 N. 

EVALUAT E  The sum of the magnitudes of the two tension forces (4730 N) is larger than the weight of 
the block (3 1 60 N). This is consistent because the tension forces are in two dimensions and their mag
nitudes are greater than their components. In addition, we check that the two horizontal components of 
the tension forces are equal in magnitude. Substituting into the terms in the first equation gives a mag
nitude of 1 740 N for each component, each having opposite signs. 
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2: Accelerated motion of a block on an inclined plane 
A block with mass 3 .00 kg is placed on a frictionless inclined plane inclined at 35 .0° above the hori
zontal and is connected to a second hanging block with mass 7.50 kg by a cord passing over a small, 
frictionless pulley (See Figure 5 . 1 1 ) .  Find the acceleration (magnitude and direction) of the 3 .00 kg 
block. 

Solution 

35° 7.5 kg 

Figure 5. 12  Problem 2. 

I D E N T I  FY The blocks are accelerating, so we apply Newton's second law to both blocks. The target 
variable is the acceleration of the blocks (a) . 

S ET U P  Both blocks accelerate, so we' ll apply Newton's second law to each block to find two equa
tions and solve these equations simultaneously to determine the acceleration. The free-body diagrams 
of both blocks are shown in Figure 5 . 1 2. 

T 

---+-- x 
o 

I 
y 

Figure 5 . 13  Problem 2 free-body diagrams. 

The forces are identified by their magnitudes. Acting on the left-hand block (block A) are gravity 
(mAg ) , the normal force (n) , and the tension force (n. The right-hand block (block B) is acted upon 
only by the tension force (n and gravity (mBg) .  The tension forces must be equal in magnitude and the 
accelerations must be equal in magnitude, since the cord connects the two blocks. (See Conceptual 
Question 3 .) As block B accelerates downward, block A accelerates up the ramp. We've added an xy 
coordinate system separately to each free-body diagram, with the positive axes aligned with the direc
tion of acceleration. Using two different coordinate systems is preferred in these situations. The coor
dinate system for the right-hand block is rotated to coincide with the inclined plane. A rotated axis 
simplifies the analysis for ramp problems. This rotated axis requires resolving the gravity force into 
two components, one parallel, and one perpendicular, to the incline. 

E X E C U T E  We apply Newton's second law to each block. Block A (with mass mA) accelerates in the 
x direction (along the ramp), so 

2,Fx = T + ( -mAg sin 35° ) = mAa. 

Block B (with mass mB) accelerates at the same rate in the y direction; hence, 
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Both equations include the tension force, so we solve for the tension force in the second equation and 
substitute into the first. Our second equation becomes 

T = mBg - mBa. 
Replacing the tension force in the first equation yields 

( mBg - mBa ) + ( -mAgsin35 ° )  = mAa, 
Solving for the acceleration gives 

mBg + ( -mAg sin35° ) = (mA + mB ) a, 

a = 
g (mB - mA sin 35° ) = ( 9 .80 m/s2 ) ( ( 7 .50 kg ) - ( 3.00 kg ) sin 35° ) 

= 5 39 m/s2 
( mA + mB) ( ( 7 .50 kg ) + ( 3 .00 kg ) )  

. .  

The 3 .00 kg block accelerates up the ramp at 5 .39 m/s2. The positive value of acceleration confirms the 
block's acceleration up the ramp. 
EVA LUAT E  The value of acceleration is less than g, consistent with expectations. If the cord were cut, 
block B would accelerate at g. When block B is connected to block A through the cord, block B accel
erates with an acceleration less than g. We say that block B has additional inertia when connected to 
block A. 

What would have happened if we chose the direction of acceleration incorrectly? We would have 
found a negative acceleration, indicating that the acceleration was down the incline. In this problem, 
the forces do not depend on the direction of motion, and a negative acceleration would not indicate an 
error. It does, however, serve as a checkpoint for our calculation: A negative result with our choice of 
axes would cause suspicion because the right mass is larger and we expect it to accelerate downward. 

Practice Problem: What mass must block A have for the system to remain at rest? Will that mass sim
ply be 7.50 kg? Answer: m ) = 1 3 . 1  kg, no. 

3: Frictional force on an accelerating block 
Two blocks are connected to each other by a light cord passing over a small, frictionless pulley as 
shown in Figure 5 . 13 .  Block A has mass 5 .00 kg and block B has mass 4.00 kg. If block B descends at 
a constant acceleration of 2.00 m/s2 when set in motion, find the coefficient of kinetic friction between 
block A and the table. 

Figure 5.14 Problem 3.  

Solution 
I D E  NT I F  Y The target variable is the coefficient of kinetic friction. The blocks are accelerating, so we 
apply Newton's second law to both blocks. We' ll find the friction force and determine the coefficient 
from that. 

S ET U P  Both blocks accelerate, so we'll apply Newton's second law to each block to find two equa
tions and solve those equations simultaneously. The free-body diagrams of the two blocks are shown in 
Figure 5 . 14. 
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Figure 5.1 5 Problem 3 free-body diagram. 

The forces are identified by their magnitudes. For block A, there is kinetic friction Uk) ,  gravity 
(mAg ) , the normal force (n), and the tension force (T). For block B there is the tension force (T) and 
gravity ( mBg ) .  The tension forces are equal in magnitude and the magnitudes of the acceleration are 
equal, as we have seen. As block B accelerates downward, block A accelerates to the right. To ensure 
that the acceleration of each block is in the positive direction, we added an .xy coordinate system sepa
rately to each free-body diagram, with the positive axes aligned with the direction of acceleration. All 
forces act along the coordinate axes, so we will not need to break the forces into components. 
E X E C U T E  We now apply Newton's second law to each block to find the friction force. Block A (with 
mass mA) accelerates in the x direction, so 

LFx = T + ( -fk) = mAa. 

Block B (with mass mB) accelerates at the same rate in the y direction; thus, 

L Fy = mBg + ( - T) = mBa. 

Both equations include the tension force, so we solve for the tension force in the second equation and 
substitute into the first. Our second equation is then 

T = mBg - mBa = mB ( g  - a ) . 
Replacing the tension force in the first equation gives 

mB (g - a )  + ( -fk) = mAa. 
Solving for the friction force yields 

fk = mB (g - a )  - mla = ( 4.00 kg ) ( 9.80 m/s2 - 2.00 m/s2 ) - ( 5 .00 kg ) ( 2.00 m/s2 ) = 2 1 .2 N. 
The friction force is related to the coefficient of kinetic friction through the normal force. We find the 
normal force by examining the vertical components of the forces acting on block A. There is no accel
eration in the vertical direction for block A, so we can apply the equilibrium condition to block A: 

L Fy = n - mAg = 0, n = mAg. 

Since there are no other vertical forces acting on block A, the normal force equals the weight of block A. 
The kinetic frictional force is given by 

which we can solve for ILk: 

fk fk ( 2 1 .2 N )  
ILk = n = mAg = 

( 5 .00 kg ) ( 9.80 m/s2 ) 
= 0.43 . 

We find the coefficient of kinetic friction between the block and the table to be 0.43 . 
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EVA LUAT E  A coefficient of kinetic friction equal to 0.43 compares reasonably well with values we've 
seen previously for smooth surfaces. Note that the tension is not equal to the weight of block B .  That it 
is is a common misconception arising from examining the free-body diagram for block B without real
izing that the block is accelerating. If we look at the rearranged second equation, the relation between 
the tension and the weight of block B becomes clearer: 

T = m8 (g - a ) .  
The tension force is equal to the weight only when block B 's acceleration is zero. Calculating the ten
sion for this problem, we obtain a value of 3 1 .2 N, 20% less than the weight of block B (39.2 N). 

4: Motion of a crate up a rough inclined plane at constant velocity 
A student pushes a crate up a rough inclined plane as shown in Figure 5 . 1 5 .  Find the magnitude of the 
horizontal force the student must apply for the crate to move up the incline at constant velocity. The 
crate has a mass of 15 .0 kg, the incline is sloped at 30.0°, and the coefficient of kinetic friction between 
the crate and the incline is 0.600. 

F 

30.0° 

Figure 5.1 6 Problem 4. 

Solution 
I D E N T I FY There is no acceleration, so we apply the equilibrium condition to the crate to find the 
applied force. 

SET U P  The free-body diagram of the crate is shown in Figure 5 . 16 .  The forces are identified by 
their magnitudes : kinetic frictional force Uk) , gravity (mg ) , the normal force ( n ) , and the applied 
force (F) . Kinetic friction opposes the motion up the incline and thus is directed down the incline. 
The rotated xy coordinate system is indicated in the diagram. This rotated axis requires resolving the 
gravity and applied forces into components parallel and perpendicular to the incline, as shown in the 
diagram. 

Figure 5.1 7  Problem 4 free-body diagram. 
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EXECUTE  We apply the equilibrium condition to the crate. In the x-direction, along the incline, we 
have 

'L Fx = Fcos 30° + ( -h)  + ( -mgsin 300 ) = O. 
We must apply the equilibrium condition in the y-direction to find the normal force in order to quantify 
the friction force. Thus, 

'L Fy = n + ( -mgcos 300 ) + ( -Fsin 300 ) = 0 
n = mgcos 30° + Fsin 30° . 

The kinetic friction is then 
fk = J-Lkn = J-Lkmgcos30° + J-LkFsin 30°. 

We now substitute this result into the first equation: 

Fcos 30° + ( -J-Lkmgcos 30° - J-LkFsin300 ) + ( -mg sin 300 ) = O. 

Solving for the applied force gives 
Fcos 30° - J-LkFsin 30° = J-Lkmgcos 30° + mgsin30° 
F ( cos 30° - J-L ksin 30° ) = mg (J-L  kCOS 30° + sin 30° ) 

mg (J-Lkcos 30° + sin 300 ) ( 1 5 .0 kg ) ( 9.80 m/s2 ) (  ( 0.600 ) cos 30° + sin300 ) 
F = = = 265 N. 

( cos 30° - J-Lk sin 30° ) ( cos 30° - ( 0.600 ) sin 30° ) 

The student must push with a horizontal force of 265 N to move the crate up the incline at constant 
velocity. 
EVA LUAT E  A force of 265 N is roughly equivalent to the weight of a 27 kg object. Would it be easier 
to push the crate up the incline by pushing parallel to the incline? Yes, it would be easier to push along 
the ramp. In this problem, the component of the applied force directed into the incline ( Fsin 30° ) does 
nothing to move the crate up the ramp. In fact, this component increases the normal force and therefore 
the friction force. 

Practice Problem: If the student pushed along the incline, the problem would be simplified. What 
force would be necessary along the incline to maintain the crate at constant velocity? Answer: 1 50 N, 
56% of the required horizontal force. 

5: Two blocks suspended by a pulley 
Two blocks are connected by a rope that passes over a small, frictionless pulley as shown in Fig
ure 5 . 17 .  Find the tension in the rope and the acceleration of the blocks. Block 1 has a mass of 1 5 .0 kg 
and block 2 has a mass of 8 .0 kg. 

• 

Figure 5.18 Problem S .  
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Solution 
I D E NT I FY Our target variables are the tension (T) and acceleration (a) . We will apply Newton's sec
ond law to the problem to find the tension and acceleration. 
S ET U P  The two blocks are separate objects, so we draw free-body diagrams of each block, shown in 
Figure 5 . 1 8 . Two forces act on each block: gravity (mg) and the tension force (T). There is no friction in 
the pulley and the string is considered to be massless, so the tension in the rope is the same throughout. 

We assume that the rope doesn't stretch, so the magnitudes of the two accelerations are the same, 
but the directions are opposite. Included in the diagrams are separate .xy coordinate axes with the posi
tive y-axis in the direction of the acceleration for both blocks (upward for block 2 and downward for 
block 1 ) .  This choice of axes simplifies our analysis. All of the forces act along the y-axes, so we will 
not need to break the forces into components. 

I I I 
Y 

T 

- - - - x 

Figure 5.1 9  Problem 5 free-body diagrams. 

E X E C U T E  Applying Newton's second law to both blocks gives 
2: Fy = mIg - T = m]a 

2: Fy = T - m2g = m2a 

We add both equations to eliminate T, leaving 

(Block 1) ,  

(Block 2). 

a = 

( m ] - m2 ) g  = ( ( 1 5 .0 kg ) - ( 8 .0 kg ) ) ( 9.8 m/s2 ) 
= 2.98 m/s2. 

m] + m2 ( 1 5 .0 kg ) + ( 8.0 kg ) 
We find the tension by substituting into the second-law equation for block 2, giving 

T = m2 ( g  + a ) = ( 8 .0 kg ) (9.8 m/s2 + 2.98 m/s2 ) = 102.2 N. 

Both blocks accelerate at 2.98 m/s2, block 1 downward and block 2 accelerates upwards. The tension 
in the rope is 102.2 N. 

EVALUAT E  We check that we get the same value for the tension by using the second-law equation for 
block 1 .  We find that the equation gives a tension of 102 N, so the result is the same. We also see that the 
acceleration is less than 9 .8 m/s2, as is expected, since the net force on either block is less than its 
weight. 

6: Friction force between two boxes 
Two boxes, one on top of the other, are being pulled up a ramp at constant speed by an applied force, as 
shown in Figure 5 . 19 .  The coefficient of kinetic friction between box A and the ramp is 0.35, and the 
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coefficient of static friction between the two boxes is 0.80. Box A has a mass of 3 .00 kg and box B has 
a mass of 8 .00 kg. What is the applied force? 

F 

� 
Figure 5.20 Problem 6. 

Solution 
I D E N T I FY Our target variable is the applied force F. We will use Newton's first law to find the forces 
acting on the two boxes and then solve for F. 

5 ET U P  The two boxes are separate objects, so we draw free-body diagrams of each box, shown in 
Figure 5 .20. Three forces act on box A:  gravity (mAg ) ,  the normal force due to box B ( nB on A ) ,  and 
static friction (Is) .  Static friction must point up the ramp in order for the net force on box A to be zero. 
Six forces act on box B: the applied force (F), gravity (mBg ) ,  the normal force due to box A ( nA on B ) , 
the normal force due to the ramp ( nramp ) , kinetic friction Uk) ' and static friction (Is) .  Static friction 
and the normal force due to box A are action-reaction pairs ; we set their directions opposite those of 
the forces acting on box A. 

Included in the diagrams are a separate xy coordinate axes with the positive y-axis in the direction 
of the motion of both boxes (up along the ramp). We will need to break the forces into components to 
solve the problem. 

x ,-,-F 

A 

Figure 5.21 Problem 6 free-body diagrams. 
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EXECUTE  Applying Newton's first law along both axes to both boxes gives 

(box A) 

2:Fy = nB on A - mAgcos 30.0° = 0 (box A) 

2:Fx = F - fk - Is - mBg sin 30.0° = 0 (box B) 

2:Fy = nramp - nA on B - mBgcos 30.0° = 0 (box B). 

We have four equations and five unknowns. To solve these equations we need the magnitude of the 
kinetic friction, which is 

fk = fLknramp' 

We begin by solving the first two equations for 15 and nB on A ' 
is = mAg sin30.0° = ( 3 .0 kg ) ( 9 .8 m/s2 ) sin 30.0° = 1 4.7 N 
nB on A = mAgcos 30.0° = ( 3 .0 kg ) ( 9.8  m/s2 ) cos 30.0° = 25 .5 N. 
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Next, we use the equation for the net force along the y-axis for box B to solve for the normal force due 
to the ramp, giving 

nramp = nAonB + mBgcos 30.0° = ( 25 .5 N) + ( 8 .0 kg) ( 9. 8m/s2)cos 30.0o = 93.4 N. 
We can finally find the applied force by using the equation for the net force along the x-axis for box B, 
along with the kinetic friction. This gives 

F = fk + Is + mBg sin 30.0° 

= fLknramp + Is + mBg sin 30.0° 
= ( 0 .35) ( 93 .4 N) + ( 14.7 N) + ( 8 .0 kg) ( 9.8 m/s2)sin30.0o = 86.6 N. 

The applied force is 86.6 N. 

EVA L U AT E  Is the coefficient of static friction large enough to keep box A from sliding off box B? We 
can find out by computing the maximum static friction 

fkmax = fLsnBonA = ( 0.80)( 25 .5 N) = 20.4 N.  
We see that the applied static friction force ( 14.7 N) i s  less than the maximum static friction force 
(20.4 N), so the box remains in place. 

We saw how Newton's third-law force pairs can be useful in identifying forces and their directions. 
In this problem, we used those pairs to find the directions of forces on box B. There are also cases in 
which the force pairs help us identify missing force pairs. For example, the normal force acting on box 
B due to box A is often omitted in solutions. If we omitted nA on B, but had labeled the force pairs care
fully, we would have realized that there was a missing normal force. 

7: Acceleration in a two-pulley system 
A mass is attached to a rope that is connected to the ceiling and passes through two light, frictionless 
pulleys. One pulley is attached to the ceiling and a second mass is attached to the other pulley, as 
shown in Figure 5 .2 1 .  Mass 1 is 5 .0 kg and mass 2 is 20.0 kg. Find the acceleration of each mass. 

Figure 5.22 Problem 7. 

Solution 

I D E N T I FY Our target variables are the two accelerations, al and a2 , of mass 1 and mass 2, respec
tively. We will apply Newton's second law to find these accelerations. 

S ET U P  The free-body diagrams for each mass are shown in Figure 5 .22. Two forces act on mass 1: 
gravity (mig) and the tension in the rope (T). Three forces act on mass 2 :  gravity ( mig) and the ten
sion in the rope on both sides of the pulley (two factors of T). 
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Included in the diagrams are xy coordinate axes with the positive y-axis in the direction of motion 
for each mass (upward for mass 2 and downward for mass 1 ) .  Also shown are the accelerations aj and 
a2 of the two masses. 

T 

----- x 

Figure 5.23 Problem 7 free-body diagrams. 

E X E C U T E  Applying Newton's second law to each mass gives 

2:Fy = mIg - T = mjaj (mass 1 )  

2:Fy = T + T - m2g = m2a2 (mass 2) . 

We have three unknowns in these two equations; thus, we will need more information to solve the 
problem. Let's examine the accelerations. As mass 1 moves down a distance L, mass 2 moves up a 
distance L/2. The change in position of mass 1 is twice the change in position of mass 2, so the veloc
ity and acceleration of mass 1 are twice the velocity and acceleration of mass 2; therefore, 

aj = 2a2' 
We now have enough information to solve the system of equations. We begin by replacing aj by a2: 

mjg - T = ml2a2 
2T - m2g = m2a2' 

Doubling the first equation and adding the two equations together gives 

2mjg - m2g = 4mja2 + m2a2 

( 2mj - m2 )g  
4m l + m2 

from which we obtain 

( 2 ( 20.0 kg ) - (5 .0 kg ) ) ( 9 .8 m/s2 ) _ / 2 
( ) ( ) - 4.04 m s , 

4 20.0 kg + 5.0 kg 

a l = 2a2 = 2 ( 4.04 m/s2 ) = 8.08 m/s2. 

Mass 1 accelerates downward at 8.08 m/s2 and mass 2 accelerates upward at 4.04 m/s2 . 

E VA L U AT E  This problem illustrates the fact that not all accelerations are equal when objects are con
nected by ropes. We must always evaluate the situation carefully to determine the relation between the 
accelerations. 

8: Coefficient of friction in a banked curve 
A circular section of road with a radius of 150 m is banked at an angle of 1 2° . What should be the min
imum coefficient of friction between the tires and the road if the roadway is designed for a speed of 
25 m/s? 
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Solution 

I D E  N T I  F Y  Our target variable is the coefficient of static friction, fLs' We will use Newton's second 
law to find fLs by finding the friction force. 

S ET U P  Figure 5 .23 is a free-body diagram of the car tire on the road, showing the three forces acting 
on the tire: the normal force due to the road (n), static friction with the road (f), and gravity (mg). For 
the tire not to slip, the vertical forces must be in equilibrium and there must be a net horizontal force 
toward the center. 

x----=� 
f mg 

Figure 5.24 Problem 8 free-body diagram. 

We have added an xy coordinate system to the figure, since the forces act in two dimensions. Note that 
we aligned the axes horizontally and vertically to coincide with the directions of the net forces. 

SOLV E  We apply the force equations to the tire, writing separate equations for the x and y compo
nents. In the vertical direction, there is no net force: 

ncos 1 2° - jsin 1 2° - mg = O. 

In the horizontal direction, we use Newton's second law with centripetal acceleration: 

v2 
n sin 1 2° + jcos 1 2° = m-. r 

Note that the downward components are negative, consistent with our coordinate system. The static 
friction force can be replaced with fLsn in our two equations : 

n cos 1 2° - fLsn sin 1 2° - mg = 0, 

v2 
n sin 1 2° + fLsncos 1 2° = m-. r 

We now rewrite the first equation in terms of n and substitute into the second equation: 

mg 
n = ----�---

cos 1 2° - fLssin 1 2° ' 

mg mg v2 
-----=----sin 1 2° + fLs cos 1 2° = m-. 
cos 1 2° - fLssin 1 2° cos 1 2° - fLssin 1 2° r 

The mass cancels and we can solve for fLs: 

v2 cos l 2° - rg sin 1 2° ( 25 m/s)2cos 12° - (I50 m)( 9.8 m/s2)sinI 2° 
fLs = 

v2 sin l 20 + rgcos l 20 
= 

( 25 m/s)2 sinI 20 + ( 1 50 m)(9.8 m/s2)cosI 20 = 0.20. 

The minimum coefficient of static friction between the tire and road is 0.20. 
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EVA L U AT E  The technique for solving this problem is similar to those set forth earlier in this chapter. 
The differences here were the inclusion of centripetal acceleration and the choice of axes that corre
sponded to our knowledge of the net forces. 

Practice Problem: What speed would require no frictional force? Answer: v = 1 8  m/s. 

9: Normal force on a roller coaster 
A roller coaster has a vertical loop of radius 45 m. If the roller coaster operates at a constant speed of 
35 m/s while in the loop, what normal force does the seat provide for a 75 kg passenger at the top of 
the loop? The roller coaster is upside down at the top of the loop. 

Solution 

I D E N T I FY Our target variable is the normal force n. We will apply Newton's second law to find the 
force. 

S ET U P  Figure 5 .24 shows a free-body diagram of the passenger on the roller coaster. The figure 
shows the two forces acting on the passenger: the normal force due to the seat (n) and gravity (mg). At 
the top of the loop, the net force is downward and the person is accelerating toward the center. We have 
added an xy coordinate system to the figure, with positive forces directed downward . 

....... ---- x 
rug 

n 

y 
Figure 5.25 Problem 9 free-body diagram 

SOLV E  The net force on the passenger is directed downward. Newton's second law with centripetal 
acceleration gives 

Solving for the normal force, we obtain 

v2 
n + mg = m-. r 

v2 (35 m/s ) 2 
n = m- - mg = (75 kg ) ( ) 

( 75 kg ) ( 9 .8 m/s2 ) r 45 m 

The seat exerts a force of 1 300 N on the passenger. 

1 300 N. 

RE F L E CT We see that the seat provides a force nearly twice the passenger's weight. A seat belt would 
not be needed to prevent a fall from the roller coaster at the top of the loop. Amusement park rides get 
their reputation for excitement from their ability to rapidly change the magnitudes and directions of 
forces applied to passengers. The normal force of the seat on the passenger is even larger at the bottom 
of the loop. 

Practice Problem: What normal force does the seat provide at the bottom of the loop? 
Answer: N = 2800 N. 
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A tetherball is attached to a vertical pole with a 2.0 m length of rope, as shown in Figure 5 .25. If the rope 
makes an angle of 25 .0° with the vertical pole, find the time required for one revolution of the tetherball. 

Solution 

25.0 1= 2.0 m 

Figure 5.26 Problem 10. 

I D E N T I F Y  Our target variable is the period of one revolution, T The period will be found from the 
ball's velocity and circumference. The velocity will be found by applying Newton's second law to the 
ball as it undergoes centripetal acceleration. 

S ET U P  The free-body diagram of the tetherball is shown in Figure 5 .26. Two forces act on the ball: 
gravity (mg) and the tension in the rope (T ) .  An .xy coordinate axis is included in the diagram. 

T 

x--------

Qrad mg 

Figure 5.27 Problem 10 free-body diagram. 

E X E C U T E  The tetherball undergoes centripetal acceleration in the horizontal direction and no net 
force in the vertical direction. Applying Newton's first law in the vertical direction gives 

2:Fy = Tcos 25.0° - mg = 0 

mg T = -----''----
cos 25.0° 

Applying Newton's second law in the horizontal direction gives 

v2 
2:Fx = T sin25.0° = marad = m-

R v2 = T-sin25 .0° = m 

R 

mg R 
25 00 sin25 .0° = Rgtan25 .0°. 

cos . m 
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We now have the velocity in terms of the radius, angle, and g. To find the radius, we use the length of 
the rope and the sine: 

R = Isin25.0° = (2.0 m ) sin 25.0° = 0.845 m. 

Thus, v = VRg tan25 .0° = V ( 0.845 m ) (9.8 m/s2 ) tan 25.0° = 1.97 m/s . 
The period is the time required for one revolution. The ball travels the circumference of a circle of 
radius R in one period. The period is then 

21TR 21T (0.845 m ) 
T = -v- = ( 1 .97 m/s ) = 2.69 s. 

The ball completes one revolution in 2.69 s. 

EVA L U AT E  This problem illustrates the inclusion of centripetal acceleration into force problems. We 
see that Newton's laws remain unchanged. We simply set the acceleration equal to the radial accelera
tion in these problems. 

Practice Problem: Does the period increase or decrease with larger angles? Find the period when the 
rope makes an angle of 50.0° with respect to the vertical. Answer: 2.28 s; the period decreased slightly. 

11: A rotating mass 
A mass attached to a vertical post by two strings rotates in a circle of constant velocity v. (See 
Figure 5 .27.) At high velocities, both strings are taut. Below a critical velocity, the lower string slack
ens .  Find the critical velocity. The mass is 1 .0 kg and is 1 .5 m from the post. 

III 

Figure 5.28 Problem 11. 

Solution 

I D E N T I FY Our target variable is the critical velocity, at which the tension in the lower string is zero. 
We will find the tension in the lower string and the velocity by applying Newton's second law. Then 
we' ll set the tension in the lower string to zero and solve for the critical velocity. 

S ET U P  The free-body diagram of the mass is shown in Figure 5.28. Three forces act on the mass: 
gravity (mg), the tension in the upper rope (T l ) ,  and the tension in the lower rope (T2 ) · An.xy coordi
nate axis is included in the diagram. 
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mg 

Figure 5.29 Problem II free-body diagram. 

E X E C U T E  The mass undergoes centripetal acceleration in the horizontal direction and no net force in 
the vertical direction. Applying Newton's first law in the vertical direction gives 

�Fy = T] sin30° - T2 sin 30° - mg = O. 

Applying Newton's second law in the horizontal direction gives 

We can solve for T 1  by multiplying the first equation by cos 30°, multiplying the second equation by 
sin 30°, and adding the two resulting equations. Doing this gives 

which reduces to 

Solving for T2 produces 

mg mv2 
T] = + ----

2 sin 30° 2Rcos 30° 

-mg mv2 
T2 = + ----

2 sin 30° 2R cos 30° 

At the critical velocity, T2 is zero. Solving for v, we obtain 

mg 
2 sin30° 2Rcos 30° ' 

fiR v= \j � = 

The critical velocity is 504 m/ s. 

( 9 .8 m/s2 ) ( 1 .5 m ) _ / ------- - 5.04 m s . 
tan 30° 

EVA LU AT E  For velocities less than the critical velocity, the bottom string is slack. Strings always 
have positive tensions. When they are slack, they provide no support. 

Practice Problem: What is the tension in the upper string at the critical velocity? Answer: 20 N. 
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Try It Yourself! 
1: Constant velocity on an incline 
Two weights are attached by a light cord that passes over a light, frictionless pulley as shown in 
Figure 5 .29. The left weight moves up a rough ramp. Find the weight W2 necessary to keep WI ( 15 .0 N) 
moving up the ramp at a constant rate once it is put in motion. The coefficient of kinetic friction is 0.25 
and the ramp is inclined at 30.0°. 

Figure 5.30 Try it yourself 1. 

Solution Checkpoints 

I D E N T I F Y  A N D S ET U P  To move at constant velocity, the net force on each weight must be zero. 
The rough surface indicates that there is friction between the weight and the ramp. Draw a free-body 
diagram and apply Newton's first law to solve. 

E X E C U T E  The net force acting on weight 1 along the ramp is 

LFx = T - f- wl sin8 = O. 

The net force acting on weight 2 in the vertical direction is 

LFy = T - W2 = O. 

These two equations have three unknowns. You need to find another expression to solve for W2. The 
expression will lead to 

E VA LU AT E  Can you explain why W2 has less weight than WI? 

2: Box sliding across rough floor 
A box is kicked, giving it an initial velocity of 2.0 m/s. It slides across a rough, horizontal floor and 
comes to rest 1 .0 m from its initial position. Find the coefficient of friction. 

Solution Checkpoints 

I D E N T I F Y  A N D  S ET U P  Begin with a sketch and free-body diagram. In the horizontal direction, the 
only force acting on the box is friction. Use the acceleration of the box and Newton's second law to 
find the friction. 

E X E C U T E  The net horizontal force acting on the box is 

LFx = f= rna. 

To find the acceleration, apply 
V
2 = v6 + 2a�x, 

one of the kinematics relations for constant acceleration that we've used in previous chapters . You 
should find that the coefficient of kinetic friction is 0.20. 
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EVA L U AT E  We see how we can combine kinematics with our force problems in this problem. Did we 
find a reasonable coefficient of kinetic friction? 

3: Three connected masses 
Three blocks are attached to each other with ropes that pass over pulleys as shown in Figure 5 .30. The 
masses of the ropes and pulleys can be ignored, and there is no friction on the surface over which the 
blocks slide or in the pulleys. Find the tension in the two ropes and the acceleration of the blocks. 

Figure 5.31 Try it yourself 2. 

Solution Checkpoints 

I D E N T I FY A N D S ET U P  Three objects are in motion, so you must draw three free-body diagrams. 
How does the acceleration of all three objects compare? You can apply Newton's laws to solve. 
Assume that the system accelerates clockwise. 

E X E C U T E  The net forces acting in the direction of the acceleration of the blocks are 

2:FA = T - T' - mAgsin8 = mAa 

2:FB = mBg - T = mBa 

2:Fe = T' - meg = mea. 

We can also find the net force acting on block A normal to the ramp. Using these equations to solve for 
the tensions gives 

Solving for the acceleration yields 

EVA L U AT E  How do we interpret the results if we find that the acceleration is negative? Do we need to 
rework the solution? Is the acceleration greater or less than g? 
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4: Tension along a heavy rope 
A heavy rope of mass 10.0 kg and length 5.0 m lies on a frictionless horizontal surface. If a certain hor
izontal force is applied, the rope accelerates at 1.5 m/s2. Find the tension in the rope at any point along 
its length. 

Solution Checkpoints 

I D E N T I F Y  A N D  S ET U P  To find the tension at any point in the rope, you must break the rope into 
many pieces and find the tension of any piece. It is easiest to pick a piece of the rope at the end where 
the force is applied, as shown in Figure 5 .3 1 .  By applying Newton's second law to this piece, you can 
find the tension anywhere in the rope. 

B D-F 
�I<-----------L ----------�)I 

(a) 

(b) 
Figure 5.32 Try it yourself 3. 

E X E C U T E  The net force required to accelerate the chain is 15.0 N .  The mass of the length x of the 
rope IS 

The net force on the piece of rope is 

x 
2:Fx = F - T = mxa = L rna. 

Solving for T to find the tension as a function of x: 

T = F ( 1 - x ) = ( 1O.0 N ) ( 1 _ _ x_) . L 5.0 m 

EVA L U AT E  This example illustrates how to apply Newton's second law to more complicated prob
lems. Does the tension in the rope increase or decrease as you move away from the end where the force 
is applied? 

5: Riding a carousel 
A 100.0 kg man stands on the outer edge of a carousel of 4.0 m radius . The coefficient of static friction 
between his shoes and the carousel is 0.30. What is the minimum period of rotation required for the 
man to remain on the carousel? 
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I D E N T I F Y A N D S ET U P  Three forces act on the man: gravity, the normal force, and friction. The 
condition required for him to slip is that the centripetal force exceed the static friction. The period is 
determined from the velocity. 

E X E C U T E  The net horizontal force acting on the man is 

This yields the critical velocity when the friction force is equal to the centripetal force. For velocities 
larger than the critical velocity, the man will slide off. The period is found from the velocity, given that 
the time required for one revolution is the distance traveled divided by the velocity. The minimum 
period is 7.4 s. 

EVA L U AT E  We see that the period and velocity are inversely related: Larger velocities result in 
shorter periods. How does the friction force vary when the period is greater than 7.4 s? 

Problem Summary 

Chapters 4 and 5 have examined a variety of problems with applied forces in diverse applications, but 
they share a common problem-solving foundation. For all problems, we 

• Identified the general procedure for finding the solution. 

• Sketched the situation when no figure was provided. 

• Identified the forces acting on the objects of interest. 

• Drew free-body diagrams of forces acting on the objects. 

• Added appropriate coordinate systems to the free-body diagrams. 

• Applied the equilibrium condition, Newton's second law, or both to the objects in order to find rela
tions among the forces, masses, and accelerations. 

• Solved the equations through algebra, trigonometry, and calculus. 

• Reflected on the results, thus checking for inconsistencies. 

This problem-solving foundation can be applied to all problems involving forces. Following this 
procedure enables one to master Newton's laws. 





Work and Kinetic Energy 

Summary 
We introduce two new concepts in this chapter: work and energy. Our 
investigation begins by learning how work can be used to solve prob
lems with variable forces. We will see how work is a form of energy 
transfer, leading us to learn about energy, one of the most important 
concepts in physics. We'll learn how work can be used to change a 
body's kinetic energy (the energy of motion), how to determine the 
work expended in many situations, and how power is the rate of 
change of work with respect to time. In the next chapter, we will intro
duce the law of conservation of energy and discover other forms of 
energy. The problem-solving skills we develop in these two chapters 
will prepare us for additional forms of energy that we'll encounter in 
later chapters. 

Objectives 
After studying this chapter, you will understand 

• The definition of work and how to calculate the work done by a 
force on a body. 

• The definition and interpretation of kinetic energy. 

• How to apply the work-energy theorem to problems. 

• How to use kinetic energy and work in problems involving varying 
forces applied along curved paths. 

• How to analyze springs and the elastic force. 

• The definition of power and how to calculate power for bodies per
forming work or on which work is performed. 

89 
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Concepts and E quations 

Term 
Work Done by a Force 

Kinetic Energy 

Work-Energy Theorem 

Work Done by a Varying Force 

along a Curved Path 

Elastic Force 

Power 

Description 
A constant force acting on and displacing a body does work. For a constant 
force F acting on a particle causing a straight-line displacement s at an angle 
cjJ with respect to the force, the work done by the force on the body is 

--+ --+ W = F· s = FscoscjJ. 

The SI unit of work is I joule = I newton-meter ( I J = IN· m ) . 

Kinetic energy K is the energy of motion of a particle with mass. Kinetic 

energy is equal to the amount of work required to accelerate a particle from 
rest to a speed v. A particle of mass m and velocity v has kinetic energy 

K = !mv2• 

The work-energy theorem states that the total work done by a net external 

force on a particle as it undergoes a displacement is equal to the change in 

kinetic energy of the particle: 

�ot = K2 - KJ = !::..K. 

The work done by a varying force on a particle as it follows a curved path is 

determined by 
P, P, P, 

W = f F ·if = f FcoscjJdl = f Fsdl. 

An elastic force is a force that restores a body to its original equilibrium posi

tion after deformation. For a spring, the deformation is approximately propor
tional to the applied force, as given by Hooke's law, 

Fspr = kx, 
where k is the force constant and x is the displacement of the spring from its 

equilibrium position. 

Power is the rate of change of work with respect to time. Average power is 

defined as 

where!::" W is the quantity of work performed during the time interval !::..t. 
Instantaneous power is defined as 

For a force acting on a moving particle, the instantaneous power is 

P = F-v. 
The SI unit of power is I watt = I joule/second ( I  W = I J / s ) . 



conceptual Questions 
1: Work done by the normal force 
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How much work does the normal force do on a box sliding across the floor? 

Solution 

I D E N T I F Y, S ET U P, A N D  E X E C U T E  Work is produced when a force acts on an object in the direc
tion the object is displaced. As a box slides across the floor, the normal force is perpendicular to its 
motion. Therefore, the normal force does no work on the sliding box. 

EVA L U AT E  Work has a strict definition in physics. The normal force prevents the box from falling 
into the floor, but it does no work thereby. You also do no work as you carry your backpack, even 
though you arm tires. 

2: Which force does the most work? 
Rank the four situations shown in Figure 6. 1 from most to least work done by the force. The displace
ment is the same in each case. 

20N t 
� 

Figure 6.1 Conceptual Question 2. 

Solution 

SN 
-

• 

I D E N T I F Y, S ET U P, A N D  E X E C U T E  Work is the dot product of force and displacement, or dis
placement times the component of force parallel to the displacement. All four situations have the same 
displacement, so we rank the components of the force parallel to the displacement. The parallel com
ponents of the forces are the magnitudes of the forces times the cosine of the angle between the force 
and the displacement vectors. 

We find that the parallel components for the four situations are, in order, 3 .47 N, 4.00 N, 5.36 N, 
and 5.00 N. Therefore, the ranking from greatest to least amount of work is (c), (d), (b), and (a). 

EVA LU AT E  We see that larger forces do not necessarily produce more work. Work depends on both 
the magnitude of the force and the direction of the force with respect to the displacement. The 20 N 
force produces much less work than the 5 N force. 

3: Ranking stopping distance 
Five identical shipping crates slide down a ramp onto a rough horizontal floor. Each crate carries a dif
ferent mass and has a different velocity at the bottom of the ramp, given in Table 1. Rank the distances 
required, from least to greatest, for each crate to stop. 
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Solution 

TABLE 1: Conceptual Problem 3. 
Mass (kg) Velocity at bottom of ramp (m/s) 

Crate 1 20.0 10.0 
Crate 2 30.0 20.0 
Crate 3 
Crate 4 
Crate 5 

20.0 
100.0 
200.0 

15.0 
10.0 
5.0 

I D E N T I F Y, S ET U P, A N D  E X E C U T E  At the bottom of the ramp, each crate has kinetic energy. As 
they slow, the crates lose kinetic energy because friction does work on them. The change in kinetic 
energy is equal to the work done by friction, which in turn is equal to the friction force (p,mg) times 
the displacement (x). Since the crates are identical, their coefficient of friction is the same. Alge
braically, the work done is 

W = D.K = K2 - K]> 

p,mgx = 0 - �mv2, 

p,gx = - �V2. 

We see that the displacement is proportional to the velocity squared. To rank the stopping distances, we 
compare the velocities at the bottom of the ramp. 

Crate 5 has the smallest velocity, crates I and 4 have the next-largest velocity, crate 3 has the next
largest velocity, and crate 2 has the largest velocity. The ranking of stopping distance for the crates is 
(5), ( 1) = (4), (3), and (2) . 

EVA L U AT E  We see that in this case the results do not depend on the mass of the object. Crate 4 has 
much more mass than crate 1, so crate 4 has more initial kinetic energy. However, the effect of friction 
on crate 4 is greater than the effect of friction on crate 1. These two effects cancel, resulting in the same 
stopping distance. 

We also see that the work done by friction is negative, because the change in kinetic energy is 
negative. 

4: Work in carnival ride 
A swing ride at a carnival consists of chairs attached by a cable to a vertical pole. The vertical pole 
rotates, causing the chairs to swing in a circle as shown in Figure 6.2. How much work is done by the 
tension in the cable as one chair (with a mass of 70 kg) makes one complete revolution? The length of 
the rope and angle are shown in the figure. 

I 
\ 

,/' 

-------

---

Figure 6.2 Conceptual Question 4. 

[2.0m 
------

---
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I D E N T I F Y, S ET U P, A N D E X E C U T E  As the chair swings, it is displaced along the circle. The ten
sion in the cable is directed perpendicular to the chair's displacement. Since work is the dot product of 
the force and displacement, the work done by the tension is zero. 

EVA L U AT E  Does the kinetic energy change? The chair moves at a constant rate, so the kinetic energy 
remains constant. No work is needed to keep the chair moving at the same speed. 

5: Work with equal forces 
A force is applied to several boxes. Rank the five situations shown in Figure 6.3 from least to most work 
done by the force. The same magnitude of force is applied to all boxes, and the mass of each box is given. 

(a) (b) 

� 20.0 kg EC 10.0 kg 

7/77 /J-=::q 7 7 7 7 f<E---- 5.0 m 777 l/� 7777;(777 �lO.Om 

(c) (d) 

j<E----- 10.0 m --3>j 

(e) 

Figure 6.3 Conceptual Question 5. j<E----- 10.0 m --3>j 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  Work is the dot product of force and displacement. All five sit
uations have the same magnitude of applied force, so we rank them on the basis of the displacement 
and the cosine of the angle between the force and the resulting displacement. 

In cases (a) and (b), the displacement is in the direction of the force. The box in (b) is displaced fur
ther, so more work is done by the force. In case (c), the force is applied at an angle of 45° with respect 
to the displacement and the box is displaced 10.0 m, resulting in less work than in (b), but more than in 
(a). The work in case (d) is negative, since the force is opposite the displacement. In case (e), no work 
is done, since the force is perpendicular to the displacement. 

The amount of work done by the force, from least to most, is (d), (e), (a), (c), and (b). 

EVA L U AT E  We see that the mass of the box does not influence the results: The work done by the force 
depends only on the force, the displacement, and the angle between them. 
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How much work is done on the box in (e)? The box could be moving at constant speed on a fric
tionless surface, in which case no work is done. Or another force may be acting on the box, creating 
work. From the information we have, we cannot determine which is correct. 

We also see that we can have negative work in problems. Negative work indicates that energy is 
being removed from the system, perhaps as the box slows to a stop. 

Problems 
1: Work done in pushing a crate up an inclined plane. 
A student pushes a crate 3 .50 m up a rough inclined plane with a constant horizontal force of 225 N, start
ing from rest as shown in Figure 6.4. Find the work done by the student, the work done by friction, the 
work done by gravity, and the change in the crate's kinetic energy. How does the work done by the stu
dent, friction, and gravity compare with the change in kinetic energy? The crate has a mass of 15.0 kg, the 
incline is sloped at 30.0°, and the coefficient of kinetic friction between the crate and the incline is 0.400. 

30.0° 

Figure 6.4 Problem l .  

Solution 

I D E N T I F Y  Each force is constant and the displacement is along a straight line, so we can find the 
work and kinetic energy from their definitions. 

S ET U P  We'll begin with a free-body diagram to find the work done by the three forces. Figure 6.S 
shows the free-body diagram with a rotated coordinate system that coincides with the incline to sim
plify the analysis. The forces are identified by their magnitudes: kinetic friction Uk), gravity (mg), the 
normal force (n), and the force applied by the student (P). Kinetic friction opposes the motion up the 
incline and thus is directed down the incline. Gravity and the applied force are resolved into compo
nents parallel and perpendicular to the incline. 

Figure 6.5 Problem I free
body diagram. 



E X E C U T E  The work done by the student pushing the crate is 
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Wstudent = Fscos¢ = ( 225 N)( 3.50 m) cos 30° = 682 J, 
where the angle between the force and the displacement is 30°. To find the work done by friction, we 
need to know the friction force. We apply the equilibrium condition in the y direction to find the normal 
force in order to quantify the friction force: 

2:Fy = n + ( -mgcos 300) + ( -Fsin 300) = 0, 

n = mgcos 30° + Fsin30° = ( 1 5 .0 kg)( 9.8 m/s2)( cos 300) + ( 225 N)( sin300) = 240 N. 

The kinetic friction force is then 

fk = JLkn = ( 0.400)( 240 N) = 95.9 N. 

Friction is directed opposite to the displacement, so the angle between them is 1 80°. The work done by 
friction is 

Rik = ikSCOS¢ = ( 95 .9 N)( 3 .50 m)cosI 80° = -336 J. 

The component of gravity along the displacement is also opposite to the displacement. The work done 
by gravity is 

Wgrav = Fgscos¢ = mgscos 1 20° = ( 1 5 .0 kg) ( 9.8  m/s2) ( 3 .50 m) cos 120° = -257 J. 

To find the change in kinetic energy, we need the initial and final velocities. The initial velocity is zero. 
The final velocity is found by applying Newton's second law and kinematics . In the x-direction, along 
the incline, Newton's second law gives 

2: Fx = Fcos 30° + (-ik) + ( -mgsin300) = ma. 

The acceleration of the box is then 

Fcos 30° + (-ik) + ( -mgsin300) 
a =  m 

_ ( 225 N)cos 30° - ( 95 .9 N) - ( 15.0 kg)( 9.8 m/s2)sin300) _ /2 - ( )  - 1 .70 m s . 
15 .0 kg 

Constant-acceleration kinematics gives the final velocity: 

v2 = v;-o + 2ax(x  - xo ) , 
v = VO + 2 (  1 .70 m/s2) ( 3 .50 m) = 3 .45 m/s. 

The change in kinetic energy is then 

�K = K2 - KJ = 1mv2 - 0 = H 1 5 .0 kg) ( 3 .45 m/s)2 = 89.3 J . 

In sum, we found that the student did 682 J of work on the crate, friction did -336 J of work on the 
crate, gravity did -257 J of work, and the kinetic energy increased by 89 J . When we add the work due 
to the three forces together, the total work is 89 J . The total work is equal to the change in kinetic 
energy. 

EVA L U AT E  This problem affords a thorough investigation of work and kinetic energy. It illustrates 
how to combine the work due to several forces into the total work and how the total work on a system 
is used to increase the kinetic energy of the system. 
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Watch Signs! You must evaluate the signs carefully when determining work and energy. 
Negative work indicates that the force is directed opposite to the displacement and often slows the 
object, as it does in this problem. 

2: Spring force between two blocks 
Two blocks are placed on a horizontal, frictionless surface and attached to each other by a spring with 
force constant 4500 N/m. If the right-hand block is pulled with a force of 150.0 N, find the displace
ment of the spring as the blocks accelerate. The left-hand block has a mass of 5.00 kg, and the right
hand block has a mass of 3 .00 kg. 

Solution 

I D E  N T I  F Y  Our target variable is the displacement of the spring. We can solve this problem with New
ton's second law. 

S ET U P  The displacement of the spring is proportional to the spring force. We find the spring force by 
applying Newton's second law to the blocks and then use Hooke's law to find the displacement. The 
first task is to sketch the situation, as shown in Figure 6.6. 

�F 
// 
Figure 6.6 Problem 2. 

Examining the sketch, we see the two blocks interact through the spring. We draw free-body diagrams 
for the two blocks, shown in Figure 6.7. 

y 
I 

11 

x 

y 
I 

11 

F 
.... ---+--...... �- x 

Figure 6.7 Problem 2 free-body diagram. 

The forces are identified by their magnitudes: force due to the spring (Fspr ) ,  gravity (mg), the normal 
force (n), and the applied force (F). Knowledge of the vertical forces will not be necessary to solve this 
problem. The blocks are connected to each other; therefore, both accelerate at the same rate and are 
acted upon by the same magnitude of spring force. The diagrams include a common .xy coordinate axis, 
with the positive x-axis in the direction of the acceleration. All of the forces act along the coordinate 
axes, so we will not need to break the forces into components . 

E X E C U T E  We apply Newton's second law to the horizontal forces acting on each block to determine 
the force due to the spring. For the right-hand block (with mass mR), 

LFx = F + ( -Fspr ) = mRa. 
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For the left-hand block (with mass mL) , 
2: Fx = Fspr = mLa. 

Examining these two equations, we find two unknowns: Fspr and a. We wish to find the spring force, so 
we rewrite the second equation in terms of acceleration: 

Substituting for the acceleration in the first equation yields 

Fspr F + ( -Fspr ) = mR-, mL 
mR ( mR ) 

F = Fspr + Fspr- = Fspr 1 + - , mL mL 

( 150 ) (5.00 kg ) 
( 3 .00 kg ) + (5.00 kg ) = 93.8 N. 

This gives us the magnitude of the force due to the spring. The direction is opposite to the displace
ment. We can now use Hooke's law, 

Fspr = kx, 

to solve for the displacement: 

Fspr ( 93 .8 N ) x = -= 
I 

= 0.0208 m = 2.08 cm. k 4500 N m 

The spring is displaced 2 .08 cm when the blocks are pulled. 

EVA L U AT E  We see that the force due to the spring is less than the applied force in this problem. That 
is reasonable, as the spring must provide force to accelerate only the right-hand mass, while the applied 
force must accelerate both masses. 

3: Block stopped by spring and friction 
AS .00 kg block is moving along a rough horizontal surface toward a spring with force constant 500 N/m. 
The velocity of the block just before it contacts the spring is 12.0 m/s. If the coefficient of kinetic 
friction between the block and the surface is 0.400, what is the maximum compression of the spring? 

Solution 

I D E N T I  F Y  We can apply the work-energy theorem to the problem. Two forces (friction and the 
spring force) do work to slow the block, taking away the kinetic energy from the block. The target vari
able is the spring's maximum compression. 

5 ET U P  Figure 6.8 shows a sketch of the situation. Just before contacting the spring, the block has 
kinetic energy and the spring is uncompressed. At maximum compression, the spring has been com
pressed a distance X, the block is not moving (K = 0 ) , and friction has done work on the block as it 
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moves the same distance X. The work-energy theorem tells us that the change in kinetic energy is 
equal to the total work done. 

Figure 6.8 Problem 3 sketch. 

Four forces act on the block as it slows: the force due to the spring ( Fspr ) , gravity (mg), the normal 
force (n), and the force of kinetic friction Uk)' These forces are shown in the free-body diagram in 
Figure 6.9. The normal force and gravity do no work on the block as it slows.  

y 

n 

f � �--�--+-------- x 
FSpring 

mg 

Figure 6.9 Problem 3 free-body 
diagram. 

E X E C U T E  The change in kinetic energy of the block is 

11K = K2 - Kl = 0 - �mv2 = 
The work done on the spring by the block is 

1 2 - 2:mv. 

TV - I k 2 I k 2 - I kX2 fYBlock on Spring - 2: X2 - 2: X I - 2: . 
The work done by the spring on the block is the negative of this value: 

The work done by friction on the block is 

W. - -21kX2. Spring = 

'Wf = FscoscfJ = (p,mg )scos 1800 = - jLmgX. 
The total work is the work due to the spring and the work due to friction. Setting the sum of these two 
quantities equal to the change in kinetic energy gives 

- �kX2 - jLmgX = - �mv2. 
This is a quadratic equation. Solving for X yields 

-(jLmg) ± Y(jLmg) 2 - 4(�k)( -�mv2) 
X = ---------------------------------

2(�k) 

-(19.6) ± Y(19.6) 2 + 4(15.0)(22.5) 
2(15.0) 

m = 0.735,-2.04m. 
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In this case, we require the positive root, 0.735 m. The spring compresses 0.735 m when the block 
comes to a momentary stop. 

EVA LU AT E  This problem illustrates how to use energy to work with varying forces. The analysis 
would have been more difficult had we used Newton 's second law, as we would then have had to inte
grate the force equation. 

Watch signs in work done by a spring! As you pull on a spring, you do positive work 
on it and the spring does negative work on you. Understanding the signs for work done on or by a 
spring will help you understand the proper signs for work and energy. 

4: A novel spring 
Suppose you have invented a novel spring that will slow a 2.5 kg toy car. The spring exerts a force that 
depends on position such that Fx = [10.0 N + (16.0 N/m2) x2] . What maximum speed of the toy car 
will the spring stop with a compression of 0.50 m? 

Solution 

I D E N T I F Y  The maximum work due to the spring occurs when the displacement is directed along the 
force, so we will take that direction as the direction of displacement. Our target variable is the speed of 
the toy car, and we will find it by using the work-energy theorem. 

S ET U P  Only the force due to the novel spring acts on the toy car. Initially, there is just the kinetic 
energy of the car. At the maximum compression, there is no kinetic energy. 

E X E C U T E  The force of the spring is in the direction of the motion. The work that the spring does on 
the toy car as the spring is compressed a distance X is 

x 

W= I Fxdx. 

o 

Substituting for the force and finding the work when X = 0.50 m yields 
x 

w� f[100N + (16.0�2)X'}X 
o 

� [( 10.0 N)x + (16.0 �2 );'][ 
= [ {lO O N)X + ( 160 �2 )�'] 
= [ ( l0.0 N) (0.50 m) + (16.0 �2 r 

0.5
� 

m)' ] 
= 6.33 J. 
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The spring can stop a toy car with up to 6.33 J of energy. The velocity of that car is determined from 
the kinetic energy: 

2 (  6.33 J) 
( ) 

= 2.25 m/s. 
2.5 kg 

The maximum velocity that the spring can stop is 2.25 m/s. 

EVA L U AT E  In this problem, the work is negative because the force due to the spring acts opposite to 
the direction of the displacement in order to reduce the kinetic energy. The change in kinetic energy is 
also negative, so the work-energy theorem is satisfied. 

5: Average power to run an escalator 
What average power does an escalator require to lift twenty 100.0 kg people 3 .0 m high in 1 minute? 

Solution 

I D E  N T  I F Y  The target variable is the power, or the amount of work done per unit time. 

S ET U P  The escalator provides work equivalent to the amount of work due to gravity as the people 
are lifted. We will find the work done by gravity and divide by the time. 

E X E C U T E  The work done by gravity is the weight of the people, multiplied by their change in height: 

W = mgh = ( 20 X 100 kg)(9.8 m/s2)( 3.0 m) = 58,800 J . 

The power is the work of gravity divided by time: 

L1 W ( 5 8,8001) 
P = 

Tt 
= 

( 60 s) 
= 980 W. 

The power needed to run the escalator is 980 W. 

EVA L U AT E  We see that the power is independent of the angle of the escalator. This is due to the fact 
that the gravitational work depends only on the change in vertical elevation. 

Try It Yourself! 
1: Box on a smooth incline 
A 10.0 kg box is pushed 2.0 m up a smooth inclined plane of angle 30.0° by a 100 N horizontal force, 
starting from rest. Find the work done on the box and the change in kinetic energy. 

Solution Checkpoints 

I D E N T I FY A N D  S ET U P  Start with a free-body diagram to identify the forces acting on the box. The 
work due to each force is equal to the dot product of the force and the displacement. The change in 
kinetic energy is equal to the total work done. 



E X E C U T E  Three forces act on the box. The work done by each is 
Wapplied = Fscos¢ = 173 J, 
Wnormal = 0, 

Wg = -98 J. 

The change in kinetic energy is 75 J. 
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EVA L U AT E  You can check your results by using Newton's second law to find the acceleration, which 
leads to the final velocity of the box and final kinetic energy of the box. Do they agree? 

2: Body sliding on a rough surface 
A body slides on a rough surface. If the body is given an initial velocity of 3.0 mis, it comes to a stop in 
1 .0 m. Find the coefficient of kinetic friction between the body and the surface . 

Solution Checkpoints 

I D E N T I F Y  A N D  S ET U P  Use the work-energy theorem to relate the change in kinetic energy to the 
work done by friction. Only one force acts in the direction of motion. 

E X E C U T E  Set the change in kinetic energy equal to the work done by friction. This results in a coeffi
cient of kinetic friction equal to 0.50. 

EVA LU AT E  Is the change in kinetic energy and in the work negative or positive? Why? 

3: Drag on an automobile 
An automobile has a lSO hp engine and a top speed of 100 mph. If you assume that half of the power of 
the engine is delivered to the tires on the road, find the net drag (air resistance and other dissipative 
forces) on the automobile. 

Solution Checkpoints 

I D E N T I  F Y  A N  D S ET U P  At constant velocity, the net force on the car must be zero and the force act
ing on the tires must be equal to the drag forces . Force is related to power. 

E X E C U T E  The power is equivalent to the force multiplied by the velocity. The units need to be 
converted to solve the problem: 

The force is 
100 mph = 147 ft/s . 

Ip 
F = � = 281 lb = 1250 N. v 

EVA L U AT E  Why was the power divided by 2 to get the force? 





Summary 

Potential Energy and 
Energy Conservation 

In this chapter, we'll continue our investigation of energy by defining 
potential energy and learning about conservation of energy. Potential 
energy is a form of energy storage that applies to gravitational and 
elastic forces. Conservation of energy is one of the most fundamental 
concepts in physics, and we will learn how it can be applied to prob
lems. We will learn the difference between conservative and noncon
servative forces. We'll conclude by learning how to find forces, given 
a potential-energy function. By the end of the chapter, we'll be able to 
apply energy concepts to the analysis of problems and be prepared to 
extend our methods to additional forms of energy that we'll encounter 
in later chapters. 

Objectives 
After studying this chapter, you will understand 

• The definition of potential energy . 
• How to use gravitational potential energy and elastic potential 
energy in a variety of problems. 

• The definitions of conservative and nonconservative forces. 
• How to apply conservation of energy to problems. 
• How to find the force, given a potential-energy function. 

1 03 
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Concepts and Equations 

Term 
Gravitational Potential Energy 

Elastic Potential Energy 

Conservation of Mechanical Energy 

Description 
Gravitational potential energy is the potential energy associated with the posi
tion of a particle relative to earth. For a particle of mass m at a vertical dis
tance y above the origin in a uniform gravitational field g, the gravitational 
potential energy of the system is 

Ugrau = mgy. 
Gravitational potential energy does not depend upon the location of the ori
gin; only differences in gravitational potential energy are significant. 

Elastic potential energy is the potential energy associated with an ideal 
spring. For a spring of force constant k stretched or compressed a distance x 

from equilibrium, the elastic potential energy is 

Uel = �kx2. 
When only conservative forces act on a particle, the total mechanical energy 
is constant; that is, 

where U is the sum of the gravitational and elastic potential energies. 

Nonconservation of Mechanical Energy When forces other than gravitation or elastic forces do work on a particle, the 
work Wother done by these other forces equals the change in the total mechani
cal energy: 

Conservative Forces and 

Conservation of Energy 

Determining Force from 

Potential Energy 

Forces are either conservative or nonconservative. Conservative forces are 
forces for which the work-kinetic-energy theorem is completely reversible 
and the work can be represented by potential-energy functions. Work done by 
nonconservative forces manifests itself as changes in the internal energy of 
the object. The sum of the kinetic, potential, and internal energy is always 
conserved: 

!lK + fl U  + !l Uinl = O. 
A conservative force is the negative derivative of its potential-energy function 
in one, two, or three dimensions: 

dU(x) 

dx '  
au 

ax ' 

au F = --, y ay 

au F =  --, z az 

.... ( a u �  a u �  aUA ) F = - - I + -} + -k . 
ax ay az 



conceptual Questions 
1: Launching a bal l  
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A compressed spring is used to shoot a ball straight up into the air. Compressing the spring a dis
tance of 10 cm results in a maximum height of 3.2 m. How high does the ball go if the spring is 
compressed 5.0 cm? 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  The spring stores elastic potential energy that is converted to 
gravitational potential energy at the top of the ball's flight. Elastic potential energy is proportional to 
the displacement squared, and gravitational potential energy is proportional to the height. One-half the 
compression reduces the potential energy of the spring by a factor of four, so the ball reaches one
fourth the height, or 0.8 m. 

EVA L U AT E  How does the velocity just above the spring compare for the two cases? Just above the 
spring, the elastic potential energy has been transformed to kinetic energy. Kinetic energy depends on 
the velocity squared; therefore, the velocity is proportional to the compression. One-half of the com
pression results in one-half the velocity just above the spring. 

2: An accelerating car 
A car accelerates from zero to 30 mph in 2.0 s. How long does it take to accelerate from zero to 60 mph? 

Solution 

I D E N T I  F Y, S ET U P, A N  D E X E C U T E  We assume that the power provided to the wheels is constant 
and that there is no friction. Kinetic energy is proportional to velocity squared, so a doubling of the 
final speed requires four times the energy. Power is energy per unit time; therefore, the time required to 
reach the final speed will increase by a factor of four, assuming constant power. The car will take 8.0 s 
to accelerate from zero to 60 mph. 

EVA L U AT E  This problem illustrates how energy principles provide alternative solutions to our earlier 
kinematics problems. How would you solve the problem by using forces? 

3: Multiple routes to bottom of a hill 
Figure 7. 1 shows four different routes to the bottom of a hill, all starting from the same initial height. If 
you and three of your friends slide down the four routes, how do the four speeds at the bottom of the 
hill compare? Each of the paths is frictionless, and everyone starts from rest. 

Figure 7.1 Question 3. 



1 06 CHAPTER 7 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  Gravitational potential energy depends only on changes in 
height. Therefore, the change in gravitational potential energy is the same for all four routes, as all four 
have the same change in height. The kinetic energy at the bottom of the hill will be the same for all of 
the friends; therefore, the speeds of all four friends will be the same at the bottom. 

EVA LU AT E  If the four speeds are the same at the bottom, what quantity differs? You can see that the 
four routes have different lengths and are shaped differently. If you compare path 2 with path 3 ,  you 
see that path 3 has a steep initial drop-off while path 2 has a shallower initial drop-off. The friend on 
path 3 will accelerate faster initially than the friend on path 2, will have a larger speed throughout, and 
will arrive at the bottom first. Therefore, the time to reach the bottom differs for the different paths. 

4: Swinging by vines 
Tarzan crosses a river gorge by starting from rest and swinging across the gorge on a vine. Can he ever 
reach a height above his starting point with this method? 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  From an energy standpoint, Tarzan converts gravitational 
potential energy into kinetic energy as he swings across the gorge . After he passes the low point of his 
path, his speed slows as his gravitational potential energy increases. At his starting height, he will come 
to a momentary stop after all of his kinetic energy has converted to potential energy. To get to a greater 
final height, he needs additional energy. He could increase his initial energy by starting with an initial 
velocity, using a running start, for example. 

EVA LU AT E  Without additional energy, Tarzan's final height cannot be greater than his initial height. 

Problems 
1 :  Velocity of a mass on a string 
A mass m is attached by a string of length 1 to the ceiling and is released from rest at an angle of 60° 
from the vertical . Find the velocity as a function of the angle. 

Solution 

I D E N T I F Y  Only gravity and tension act on the mass. Tension does no work, so we can use energy 
conservation to solve the problem. The target variable is the velocity. 

S ET U P  A sketch of the problem is shown in Figure 7.2. At the initial angle, the mass has only gravi
tational potential energy. As the mass falls, the potential energy transforms to kinetic energy. At any 
point, the sum of the potential and kinetic energy is equal to the initial gravitational potential energy. 
We will need to relate the height of the mass to the angle. The origin is placed at the bottom of the 
mass' path, below the anchor point. 
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Figure 7.2 Problem I. 

E X E C U T E  Energy is conserved, so the initial energy is equal to the energy at any other point: 
VI + KI = V2 + K2· 

The initial kinetic energy is zero (the mass starts from rest) , and the initial potential energy is 
VI = mgYI = mg (i - lcoseo) , 

where the initial angle eo = 60.0° . At any other point, the kinetic and potential energies are 

Equating the energies gives 

K - I 2 2 - 'imv , 
V2 = mgY2 = mg (i - lcose). 

mg (l  - lcoseo) = 1mv2 + mg (i - leose) . 
Rearranging to solve for v as a function of the angle gives 

v = Y2g1 (  cose - cos eo) 

= Y2g1( COSe-1 ) ' 

EVA L U AT E  What is the maximum velocity? The maximum velocity occurs at the bottom of the 
swing, where e = 0°, and is equal to v = "Vii, 

2: Professor landing on spring platform 
Your professor, with a mass of 60.0 kg, falls from a height of 2.50 m 
onto a platform mounted on a spring. As the springs compresses, she 
compresses the spring a maximum distance of 0.240 m. What is the 
force constant of the spring? Assume that the spring and platform 
have negligible mass. 

Solution 

I D E N T I F Y  Energy is conserved, as the only forces acting on the 
professor are gravity and the spring force. The target variable is the 
force constant of the spring. 

SET U P  Figure 7.3 shows a sketch of the situation. Initially, the pro
fessor has only Vgrav, since her velocity is zero (K = 0) and the spring is 
uncompressed ( Vel = 0). As she falls to the top of the platform, her 

y = 2.5 m 

y = o 
y = -0.24 m 

)' 

Inital 

Figure 7.3 Problem 2 sketch. 

1 
Final 
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kinetic energy increases and gravitational potential energy decreases. As she starts to compress the spring, 
she slows down as energy is transformed to the spring's elastic potential energy. At maximum compres
sion, she comes to a momentary stop (K = 0). At this point, she is below the origin, so she has negative 
gravitational potential energy. We' ll use energy conservation to solve for the spring's force constant. 

E X E C U T E  Energy conservation relates the initial and final energies: 
KI + VI = K2 + V2· 

Initially, there is only Vgrav. At the maximum compression, there are two potential-energy terms: Ugrav 
and Vel ' Also, 

Vgrav, l  = Vgrav,2 + Vel,2' 
Substituting the expressions for the energies yields 

- + Ikx2 mgYI - mgY2 "2 . 
The initial height is 2.50 m, and the final height and compression is -0.240 m. Solving for k gives 

_ 2mg (YI - Y2)  _ 2 (60.0kg ) ( 9. 80m/s2) (2.50m - ( -0.240m ) )  _ / k - 2 - ( ) 2 - 55 ,900 N m. x 0.240 m 
The force constant of the spring is 55 ,900 N/m. 

EVA LU AT E  Our choice of origin gave a negative Y2, but only differences in gravitational potential 
energies influence the result. This problem would have been much more challenging to solve with our 
force techniques, as the force of the spring varies with position. 

CAUT I O N  You set zero for gravitational potential energy! Only differences in gravitational 
potential energy are useful in energy problems. You may set the zero at any point. It is best to choose 
one that simplifies the solution. 

3: Designing a bungee jump 
You are entering the bungee-jumping business and must design the bungee cord. The jump will be 
from a bridge that is 100.0 m above a river. The design calls for 2.00 seconds of free fall before the 
cord begins to slow the fall , and the person just touches the water after jumping. Find the force con
stant and length of the bungee cord for a 100.0 kg person. 

Solution 

I D E N T I  FY The forces acting on the jumper are gravity and the spring force. There is no mechanical 
work done on the system, so we will use energy conservation to solve the problem. Our target variables 
are the force constant and the length of the bungee cord. 

S ET U P  Figure 7 .4 shows a sketch of the situation with the coordinate origin at the river. On the 
bridge, the jumper has gravitational potential energy. After he jumps, the energy transforms to kinetic 
and elastic potential energies. At the river, the jumper momentarily stops and all the energy has trans
formed into elastic potential energy. 



y 

y = 1 00 m 

y = o 

Figure 7.4 Problem 3 .  

Initial 
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Final 

We'll also need to recall our kinematics for freely falling objects to find the length of the bungee cord. 
The length of the bungee cord is found by determining its length when it becomes taut. We know that 
the cord becomes taut after 2.00 s, so we can use free-fall kinematics to solve for the distance the per
son falls in 2.00 s, which is equal to the length of the bungee cord. We'll ignore air resistance and any 
friction in the bungee cord. 

E X E C U T E  Energy conservation relates the initial and final energies: 
KI + UI = K2 + U2· 

Initially, there is only Ugrav at the bridge. At the river, there is only Uel . Hence, 
Ugrav = Uel· 

Replacing the energies gives 
- I kx2 mgYI - 2: , 

where m is the mass of the jumper, YI is height of the bridge, x is the stretch length of the bungee cord, 
and k is the force constant of the bungee cord. We need the amount of stretch in the bungee cord, so we 
first use constant = acceleration kinematics for freely falling objects to find the position where the 
bun gee cord becomes taut: _ + + I 2 Ytaut - Yo Voyl 2:a/ . 

Here, VOy is zero as the person starts from rest, Yo = 100 m, ay = -g, and t is 2.00 s. Solving for the posi
tion where the bun gee cord becomes taut, we have 

Ytaut = 1 00 m + H -9.8 m/s2 ) ( 2.00 S ) 2 = 80.4 m. 
Thus, Ytaut = 80.4 m is the vertical position above the river where the bungee cord becomes taut. The 
starting point was at Yo = 1 00 m, so the length of the bun gee cord is the difference between Yo and 
Ytaut: 100 m - 80.4 m = 1 9 .6 m. The stretch length is how much the cord is stretched from its origi
nal length, or 80.4 m in this case (i .e . , the distance from where the cord becomes taut to the river) . Sub
stituting into our energy expression to solve for the force constant yields 

_ 2mg (yo ) _ 2 ( 100.0 kg ) ( 9.8 m/s2 ) ( 100.0 m ) _ / k - x2 - ( 80.4 m) 2 - 30.3 N m. 
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You will need a bungee cord that is 19.6 m long with a 30.3 N/m force constant . 

EVA L U AT E  The spring constant was found to be relatively small , indicating that the person will be 
slowed gently. What will happen to a person with a mass of less than 100 kg? What about a person with 
a mass greater than 100 kg? The lighter person has less initial energy and so stops above the river. The 
heavier person has more initial energy and so stops under the surface of the river. (So the cord should 
be changed ! ) 

4: Toy car loop-the-Ioop 
A toy car is released from a spring launcher onto a horizontal track that leads to a vertical loop-the
loop , as shown in Figure 7.5 . What is the minimum compression needed for the launcher so that , when 
released, the car remains on the track throughout the loop? The mass of the car is 10.0 g, the force con
stant of the launcher is 20.0 N/m, the loop has a radius of 20.0 cm, and you may assume that the car 
moves along the track without friction. 

Figure 7.5 Problem 4. 
Solution 

I D E N T I FY We will use both energy conservation and Newton's second law to solve the problem. The 
target variable is minimum compression of the spring. 

S ET U P  The forces acting on the car are gravity, the spring force of the launcher while the car is in 
contact with the launcher, and the normal force of the ground or loop . There is no mechanical work 
done on the system, so energy is conserved . 
For the car to remain in contact with the track at the top of the loop , it must have sufficient velocity to 

maintain centripetal force . A free-body diagram for the car at the top of the loop is shown in Figure 7.6. 

11 
mg 

Figure 7.6 Problem 4 
free-body diagram. 

We place the origin at ground level . Our initial point ( 1 )  will be when the car is at rest and the launcher is 
compressed, storing all the energy in the spring. After the car is released, the elastic potential energy is 
transformed into kinetic energy and then into a combination of kinetic and gravitational potential energy 
when the car enters the loop . The final point (2) will be at the top of the loop , where there are both kinetic 
and gravitational potential energies. We'll use energy conservation to solve for the spring's compression. 
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E X E C U T E  Energy conservation relates the initial and final energies: 
KI + U1 = K2 + U2· 

Initially, there is only Uel stored in the spring. At the top of the loop, both K and Ugrav are stored, and 

Uel = Ugrav + K. 
Substituting with the expressions for the energies gives 

�kx
2 = mgY2 + �mv2

, 

where x is the spring compression, k is the force constant of the spring, m is the mass of the car, Y2 is 
twice the radius of the loop (the height at the top of the loop), and v is the speed of the car at the top of 
the loop. We find the velocity at the top of the loop by applying Newton's second law. To find the min
imum compression of the spring, we need the minimum velocity at the top of the loop. The minimum 
velocity corresponds to the minimum force on the car at the top; therefore, the only force acting on the 
car at the top is gravity, so 

mv2 

L Fy = mg = marad = -r-' 

Solving for v yields the velocity at the top of the loop: 

v = vg;. = V(9 . 80m/s2) (0.200m) = 1 .40m/s. 
Combining the results and solving for the displacement of the spring gives 

x = 
�m ( 4gr

k 

+ v' ) 
= 

0.0100kg(4(9 . 80m/s2) (0.200m) + ( l . 40m/s) 2) 
/ = 0.0700 m. 

20.0N m 
The minimum spring compression necessary to keep the car on the track throughout the loop is 7.00 cm. 

EVA L U AT E  We found the minimum compression of the spring. Additional compression would have 
resulted in greater total energy after the car is launched, which would also keep the car on the track. 
This problem illustrates how we'll sometimes combine our knowledge of previous materials (e . g . , 

forces) with our current topics . As we progress through the text, we will add to our knowledge base and 
not merely exchange one concept for another. 

5: Losing contact with the hill 
A frictionless puck slides down a large, round dome of radius 2.0 m. If the puck starts at the top of the 
dome with a very small initial velocity, how far below the starting point does the puck lose contact 
with the dome? 

Solution 

I D E  N T  I F Y  Gravitation and the normal force are the only forces acting on the puck. The normal force 
does no work, so we will use energy conservation. At the point where the puck loses contact with the 
dome, the normal force is zero. The target variable is the height at which the puck loses contact . 
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S ET U P  A sketch of the problem is shown in Figure 7.7. The origin is at the center of the dome and 
the target variable is the change in height, y. No mechanical work is done on the system, so energy is 
conserved. 

�_ -_ -=--=--=--=--=-9 
() / 
/ 

/ 
/ R  

/ 

_..._-- x 
Figure 7.7 Problem 5.  

The forces acting on the puck are gravity and the normal force, and the net force is a centripetal force 
directed toward the center of the dome. When the puck loses contact with the dome, the normal force is 
zero. A free-body diagram of the puck is shown in Figure 7.8. 

Figure 7.8 Problem 5 
free-body diagram. 

Our initial point ( 1) will be when the puck is at the top of the dome, where there is only gravitational 
potential energy. (We ignore the small quantity of kinetic energy at the top of the dome, to simplify the 
solution.) Our second point (2) will be the moment the puck leaves the dome, when there are both 
kinetic and gravitational potential energies. 

E X E C U T E  We write the change in height in terms of the radius and angle: 
y = R - Rcos e. 

We need to find the angle at which the puck leaves the dome. We start with the forces acting on the 
puck. The net force along the radius at any point is given by Newton's second law: 

v2 
2: Frad = mg cos e - n = marad = m/i' 

When the puck loses contact, the normal force goes to zero, producing the following relation between 
the angle and the velocity: 

v2 = gRcose. 
We now have e in terms of velocity. The v2 reminds us of energy, so we write the expression for energy 
conservation: 
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The potential energy at the top of the dome is mgR and the kinetic energy is zero. At a later point, the 
puck has both kinetic energy and potential energy. Substituting in the expressions for the energies gives 

mgR = mg(RcosO ) + �mv2. 
Substituting the expression from the forces results in 

mgR = mg(RcosO ) + �mgRcosO. 
Simplifying this equation yields 

Solving for y, we obtain 
�R = RcosO. 

y = R - RcosO 
2 = R - 'jR 

= tR = H 2.0 m ) = 0.67 m. 
The puck leaves the dome 0.67 m below the top. 

EVA L U AT E  We see that the result depends on neither the puck's mass nor gravity. If the puck and 
dome were transported to the moon, the puck would lose contact at the same position as on earth. 

6: Force from potential-energy function 
The potential-energy function of a particle is 

U(x, y )  = axy - 3bx2 + 2ei, 
where a, b, and e are constants. What is the force on the particle? 

Solution 

I D E N T I F Y  A N D  S ET U P  Given the potential-energy function, we find the force by taking partial 
derivatives. The potential-energy function depends on x and y, so we will find the negative partial 
derivative of the potential-energy function with respect to x and y. 

E X E C U T E  The x component of the force is 
au 

F = --x ax · 
Substituting the expression U and solving gives 

a 
Fx = - -(axy - 3bx2 + 2ei) = ay - 6bx. 

ax 
The y component of the force is 

au 
F = - -

Y ay · 
Substituting again and solving yields 

a 
Fy = - -(axy - 3bx2 + 2ei) = ax + 4ey. ay 
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The force is 
F = (ay - 6bx) 1 + (ax + 4cy)]. 

EVA L U AT E  This problem illustrates how we can find the force, given a potential-energy function. We 
see that it is easier to find the force from the potential energy than the potential energy from the force . 

Use both forces and energy! This problem shows how you can combine your knowl
edge of both forces and energy to solve complex problems. Without using the combined technique, the 
solution would have been more difficult . 

Try It Yourself! 
1 :  Mass on a spring 
A 0.5 kg box hangs from a spring whose unstretched length is 1 .0 m. The box stretches the spring 
0.5 m. The box is pulled 0.5 m from its equilibrium position and is released from rest . Find its max
imum velocity and height . 

Solution Checkpoints 

I D E  N T I F Y  A N D  S ET U P Start by finding the spring constant by using information from the first part 
of the problem. What forces act on the box? Can you use energy conservation to find the position and 
velocity of the box at any point? The initial kinetic energy of the box is zero when it is released. What 
is the initial elastic potential energy? 

E X  E C U T  E Energy conservation gives 
1k( 1 .0 m) 2 = mgy + 1mv2 + 1k( 1 .0 m - y) 2 

when the gravitational potential energy is initially zero. This gives a maximum velocity of 2.2 mls 
when y = 0.5 m and a maximum height of 1 .0 m when v = O. 

EVA L U AT E  Do you get the same result when you use a different origin? 

2: Two masses connected by a pulley 
For the frictionless system shown in Figure 7.9, find the velocity of the mass m when it hits the floor if 
it is released from a height L above the floor. 

Solution Checkpoints 

L 
""-------------' -----±. 

Figure 7.9 Problem 1 .  

I D E N T I F Y  A N D  S ET U P What forces act on the masses? Can you use energy conservation in this 
case? The initial kinetic energy is zero when mass m is released. 
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mgL = Hm + m ' ) v� + m 'gL sin (} 
when the origin is at the bottom of the incline. This equation results in a velocity of 

(m - m' ) 
2

( 
, ) gL. 

m + m  

EVA L U AT E  What is the velocity of m as (} approaches 90° (an Atwood's machine)? What is the veloc
ity as (} approaches 0° (a flat table)? Do these results agree with those of earlier problems in Chapter 5? 

3: Force from the potential-energy function 
The potential-energy function of a particle is 

U(x) = ax + �kX2. 
What is the force on the particle? What is the equilibrium position of the particle? 

Solution Checkpoints 

I D E N T I FY A N D  S ET U P  How do you find the force, given a potential-energy function? The equilib
rium position is where the force is zero and is found by setting the force equal to zero and solving for 
position. 

E X E C U T E  The force on the particle is the negative derivative with respect to position: 

Fx = - (a + kx). 

The force is zero when x = -a/k . 

EVA L U AT E  We see that this force is an elastic force. 

Problem Summary 

The previous two chapters have augmented our knowledge of forces and kinematics with our newly 
formed knowledge of energy analysis . Energy analysis shares many of the problem-solving principles 
we have encountered. In these problems, we 

• Identified the general procedure to find the solution. 
• Sketched the situation when no figure was provided. 
• Identified the energies involved and the forces acting in the system. 
• Applied energy principles, including conservation of energy (when possible). 
• Drew free-body diagrams of the objects when appropriate. 
• Applied Newton's laws when appropriate. 
• Solved the equations through algebra and substitutions. 
• Reflected on the results, checking for inconsistencies. 

This problem-solving foundation can be applied to all problems, including those that could be solved 
by force analysis. Following the procedure set forth here leads to mastery of many physics problems. 
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Summary 

Momentum, Impulse, 
and Collisions 

In this chapter, we' ll introduce two new concepts-momentum and 
impulse-which together will serve as our third major analysis tech
nique in mechanics. Like energy analysis, momentum and impulse 
analysis will expand our problem-solving repertoire and allow us to 
tackle collision problems that would be challenging with Newton's 
laws. Also, like energy, momentum is a conserved quantity that has 
important consequences throughout physics. We'll be able to apply 
momentum and impulse analyses to a wide variety of problems by the 
end of the chapter, and, when those analyses are combined with force 
and energy analyses, we will be able apply a powerful set of tools to 
investigate many natural phenomena. 

Objectives 
After studying this chapter, you will understand 

• The definition of momentum and the distinction between momen
tum and velocity. 

• The definition of impulse and the distinction between impulse and 
force. 

• How to restate Newton's law in terms of momentum and impulse. 
• How to use conservation of momentum to solve a variety of colli

sion problems. 
• How to identify elastic, inelastic, and totally inelastic collisions 

and how to apply conservation of energy appropriately to each of 
these situations. 

• The definition of the center of mass of a system and how to use the 
center of mass to solve problems. 

• How to apply momentum conservation to rocket propulsion prob
lems in which the rocket's mass changes. 

1 1 7 
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Concepts and E quations 

Term 
Momentum 

Impulse 

Conservation of Momentum 

Elastic Collision 

Inelastic Collision 

Center of Mass 

Motion of Center of Mass 

Description 
The momentum p of a particle of mass m moving with velocity v is defined as 

p = mv. 
Newton's second law states that the net force on a particle is equal to the rate 
of change of momentum of the particle: 

2:l = 
dp. dt 

The total momentum P of a system of particles is the vector sum of the indi
vidual momenta: 

The impulse 1 of the net force is the product of force and the time interval 

over which the force acts: 

For net forces that vary with time, the impulse is the integral of the net force 
over the time interval : 

(, 

J = J �Fdt. 
The change in a particle's momentum during a certain time interval equals 
the impulse of the net force acting on the particle during that interval: 

-+ -+ -+ -+ 
J = ilp = P2 - PI ·  

The total momentum of a system i s  constant when the net external force on 
the system is zero: --+ ", --+ P = constant if L-F = O. 
Each component of momentum is separately conserved. 

In an elastic collision between two bodies, the initial and final kinetic energies 
are equal and the initial and final relative velocities have equal magnitudes. 

In an inelastic collision between two bodies, the final kinetic energy is less 
than the initial kinetic energy. If the two bodies have the same final velocity, 
the collision is completely inelastic. 

The position vector rem for the center of mass of a system of particles is a 
weighted average of the positions rl> r2, . . . , of the individual particles: 

The total momentum of a system equals its total mass multiplied by the 
velocity of the center of mass: 



Rocket Motion 

conceptual Questions 
1: Jumping off a wall 
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The center of mass of a system moves as if all the mass were located at the 
center of mass: 

If the net external force on a system is zero, the velocity vern of the center of 
mass of the system is constant. 

Any analysis of rocket motion must include the momentum carried away by 
the spent fuel and the momentum of the rocket itself. 

If you fall off a 2-m-high wall, would you prefer to land on concrete or grass? Why? 

Solution 

Your speed at the ground will be the same in both cases . The change in your momentum, or impulse, as 
you come to rest will also be the same. Given the same impulse, the average force will be less if the 
time interval is longer. S ince you will be in contact with the grass longer as you land, grass is the pre
ferred landing material. 

This conceptual question illustrates why cushioning is used to reduce the average force exerted in a 
collision by increasing the duration of the collision. Consider this principle when you buy your next 
pair of running shoes or feel your car's padded dashboard. 

2: Beanbag versus tennis ball 
You wish to close your bedroom door from across the room. You can toss either a beanbag or a tennis 
ball at the door. (Both have the same mass). Which should you choose? 

Solution 

Consider how much momentum each object can impart to the door. Both the beanbag and the tennis 
ball have the same mass, and you give each the same velocity, so their initial momenta are the same. 
After colliding with the door, the beanbag falls to the floor while the tennis ball bounces back toward 
you. The beanbag ends with zero momentum, whereas the tennis ball has momentum in the direction 
opposite that of its original momentum. The change in momentum of the tennis ball is larger than the 
change in momentum for the beanbag, so you should use the tennis ball to close the door. 

Even though both objects have the same initial momentum, we see that the change in momentum 
determines the best choice. 

3: Getting off the ice 
You're standing on a frictionless ice rink. If you toss your physics book vertically upwards, will you 
move? 

Solution 

You will not move, since the book carries away no component of momentum parallel to the ice rink. 
You should toss your physics book horizontally to move along the ice. 
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Is momentum conserved in this case? Initially, there is no momentum. When you toss the book, you 
and the earth must move in the opposite direction. Since the mass of the earth is extremely large, the 
velocity imparted to the earth is tiny. 

4: Car-train collision 
If a train engine and a compact car collide, which exhibits the greatest impact force? Which exhibits 
the greatest change in momentum? Which exhibits the greatest acceleration? 

Solution 

Both the train engine and the compact car exhibit the same impact force, due to Newton's third law. 
Both also exhibit the same change in momentum, since the momentum is conserved. (The friction 
force with the ground is very small compared with the impact force and may be ignored.) However, the 
car exhibits the greatest acceleration, since it has the least mass. 

The preferred vehicle to be in during a crash is a larger vehicle, because you will experience 
less acceleration (and less force will be acting on you). Of course, it is far better to avoid the crash 
altogether. 

5: Collisions on a pool table 
A billiard ball can stop when it collides head-on with another ball of the same mass that is at rest. Can 
the ball stop if the collision is at a slight angle? 

Solution 

If the balls collide head-on, then all of the momentum is in one direction (the direction of the initial 
velocity) and momentum is conserved if the second ball moves away with the first ball 's initial veloc
ity. If the balls collide at an angle, the impact gives the second ball a component of momentum perpen
dicular to the first ball 's initial direction of motion. For the component of momentum perpendicular to 
the initial velocity to be conserved, the first ball must also have a perpendicular component of momen
tum and cannot stop. 

6: Walking in a canoe 
You are standing in a canoe. If you walk to the other end of the canoe, what happens to the canoe? You 
may neglect the resistance of the water. 

Solution 

No external forces act on you or the canoe (ignoring the resistance of the water) . The center of mass of 
you and the canoe remains at rest, and its location is constant. When you walk to the other end of the 
canoe, the canoe must move in the opposite direction to preserve the location of the center of mass . 

This conceptual question also illustrates how the frictional force is necessary for walking. As you 
walk, the frictional force between your shoes and the canoe pushes you in one direction while pushing 
the canoe in the opposite direction. 



Problems 
1 :  Tossing bubble gum 
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You throw your bubble gum at a stationary puck on a frictionless air-hockey table. The gum sticks to 
the puck, and both move away with a velocity of 1 .2 mls . If the puck has a mass of 0.30 kg and the 
bubble gum has a mass of 0.020 kg, find the initial speed of the bubble gum. 

Solution 

I D E N T I F Y  There are no horizontal external forces, so the x component of total momentum is the 
same before and after the collision. The target variable is the bubble gum's initial speed. 

S ET U P  Figure 8 . 1  shows the before and after sketches of the situation, including axes. Our system 
consists of the bubble gum and puck. Before the collision, the gum has a velocity v Ix and the puck is 
stationary. After the collision, the gum and puck move away at velocity V2x' All of the velocities and 
momenta have only x components. 

y 

Before �---x 

y 

After x 

Figure 8.1 Problem I. 

E X E C U T E  We solve the problem by using conservation of momentum. The initial momentum is that 
of the gum: 

The final momentum is that of the gum and puck together: 

P2x = (mg + mp ) v2x' 

Momentum is conserved, so we set the momenta equal to each other: 

Solving for v Ix yields 

(mg + mp ) v2x 
V lx = 

mgv lx = (mg + mp ) v2x' 

( ( 0.020 kg ) + ( 0.30 kg ) ) ( 1 .2 m/s ) _ / 
( 0.020 kg ) - 1 9  m s . 

The initial speed of the bubble gum is 1 9  mls. 

EVA L U AT E  This problem illustrates how we can determine a projectile's velocity by examining its 
collision with a larger object and applying conservation of momentum. 

Was the collision elastic? No, the collision was not elastic: The initial kinetic energy was 3.6 J, and 
the final kinetic energy was 0.23 J. This is an example of a totally inelastic collision, since the masses 
stuck together after the collision. 
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2: Ball hits the floor 
A golf ball of mass 0.045 kg bounces off a tile floor. The velocity of the ball just before it hits the floor is 
6.2 mls. If the ball is in contact with the floor for 0.012  s and the floor exerts an average force of 40.0 N, 
find the maximum height of the ball after its impact with the floor. 

Solution 

I D E  N T I  F Y  We can find the maximum height h by using conservation of energy, but we need to know 
the velocity of the ball just after impact with the floor. We are given the initial velocity and can deter
mine the impulse imparted by the floor. Since the impulse is the change in momentum, we can find the 
momentum (and velocity) after the impact. 

S ET U P  The motion is purely vertical, so we will use a single vertical axis with the positive direction 
taken to be upward as shown in Figure 8 .2. We will first use the impulse-momentum theorem to find 
the velocity V2y just after the ball's impact with the floor. We will then use energy conservation to find 
our target variable, the height h the ball reaches. The origin is located at the ground, so the golf ball 
only has kinetic energy immediately after the bounce. At the maximum height, the ball has pure gravi
tational potential energy. 

- y =  h 

Figure 8.2 Problem 2.  

E X E C U T E  Impulse is change in momentum, which is equal to the average force times the contact 
interval: 

ly = P2y - Ply = (FaJy6.t. 
We solve this equation for the final momentum: 

P2y = ( Fav ) y6.t + Ply 
= ( Fav ) y6.t + mV ly 
= (40.0 N ) ( 0.01 2  s ) + (0.045 kg ) (  -6.2 m/s ) 
= +0.201 kg · m/s .  

Note that the initial velocity is downward, or negative, with our choice of axis. The velocity just after 
impact is _ P2y _ ( +0.201 kg · m/s ) _ I V2y - - ( ) - 4.47 m s .  m 0.045 kg 

We can now apply conservation of energy to find the maximum height of the ball. We equate the 
kinetic energy of the ball just after impact with the gravitational potential energy gained by the ball 
when it reaches maximum height: 

I 2 - h 'imv2y - mg , 

imv�y V�y ( 4.47 m/s ) 2 
h = -- = - = = 1 .02 m. 

mg 2g 2 (9.8 m/s2 ) 
The maximum height reached by the golf ball after bouncing off of the tile floor is 1 .02 m. 
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EVA LU AT E  This problem illustrates the definitions of momentum and impulse in a relatively straight
forward way. In addition, it reminds us that we may need to recall problem-solving skills from earlier 
chapters-conservation of energy in this case. 

We also see how we must evaluate signs carefully, since momentum is a vector. The initial momen
tum is directed downward, which is negative, in our example. Had we omitted the negative sign, we 
would have calculated a final velocity of 1 6 .9 m/s. Clearly, this velocity is nonsensical, since it is 
greater than the velocity just before the bounce ! 

3: Stepping off a sled 
A 60.0 kg sled is traveling across an ice rink at 4.5 m/s. Irene, riding on the sled, jumps off and lands 
on the ice with a velocity of 1 .5 m/s in the opposite direction. What is the velocity of the sled after 
Irene jumps? Irene has a mass of 45 .0 kg. 

Solution 

1 0  E N T I  FY There are no external horizontal forces acting on the sled-plus-Irene system, so momen
tum is conserved. 

5 ET U P  We take the x-axis to lie along the direction of motion of the sled, with the positive direction 
taken to be in the initial direction of the sled as shown in Figure 8 .3 .  We are given the masses of the 
sled and Irene, the initial velocity of the sled (with Irene on it), and Irene's final velocity. Our target 
variable is v S2x, the final velocity of the sled. 

After 

Figure 8.3 Problem 3 .  

E X E C U T E  The x-component of total momentum before Irene jumps off is 

P I x  = mS vSlx + m l vl I x  

= ( 60.0 kg ) ( 4.5 m/s ) + ( 45.0 kg ) ( 4.5 m/s ) 
= 472.5 kg · m/s. 

(Note again that both the sled and Irene are moving with the same initial velocity.) After Irene jumps 
off, the x component of total momentum has the same value, so 

Solving for VS2r' gives 
P2x = mSvS2x + m,v,2x. 

mS 

( 472.5 kg · m/s ) - (45.0 kg ) ( - 1 .5 m/s ) 
( 60.0 kg ) 

= 9.0 mis, 
where Irene's final velocity is negative, since she ends up moving away from the sled. The final 
velocity of the sled is 9.0 mls in the positive direction. 
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EVA L U AT E  We check the result by noting that the final velocity of the sled is greater than the initial 
velocity. For Irene to move away from the sled, she had to give the cart an impulse that resulted in a 
larger final velocity. 

This problem illustrates how we can apply conservation of momentum to problems involving no net 
external force. Here, there is no explicit collision, but simply someone jumping off a sled. 

CAUT I O N  Watch out for signs! In  the last two problems, we paid careful attention to the direction, 
and therefore the sign, of the momentum. Note how an incorrect sign could have led to nonsensical 
results. Momentum is a vector, and you must always check and recheck the direction to ensure accurate 
results .  

4: Colliding pucks in two dimensions 
Two pucks collide on a frictionless air-hockey table. Initially, puck A is traveling at 3.50 rnIs and puck 
B is at rest. After the collision, puck A moves away at a speed of 2.50 rnIs and an angle of 30.0° from 
the initial direction. Find the final velocity of puck B. Puck A has a mass of 3 .0 kg and puck B has a 
mass of 5.0 kg. 

Solution 

I D E  N T  I F  Y There are no horizontal external forces, so both the x component and the y component of 
the total momentum are conserved in the collision. 

S ET U P  Figure 8.4 shows the before and after sketches of the situation, including axes. Our system 
consists of the two pucks. Before the collision, puck A moves with velocity v A 1 to the right. After the 
collision, puck A moves away at velocity v A2 30.0° above the x-axis and puck B moves away at veloc
ity v S2 at an angle () below the x-axis (to conserve momentum). The velocities are not along a single 
axis, so we will have to solve for both the x and y components of momentum. Our target variable is the 
final velocity v S2 of puck B. 

y 

Before �� ® x 

y 

� 
I 

A _ _  3ilo 
After x 

�-VB2 

Figure 8.4 Problem 4. 

E X E C U T E  Starting with the x components of momentum before and after the collision, we have 

Pix = mAvA 1x, 
P2x = mAvA2x + mSvS2x = mAVA2COs 30.0° + mSvS2x· 
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The x component of momentum is conserved, so we set the expressions for PIx and P2x equal to each other: 

mAuA lx = mAuA2 cos 30.0° + mBuB2x' 
Solving for u B2x yields 

( 3 .0 kg ) ( 3 .50 m/s ) - ( 3.0 kg ) ( 2.50 m/s ) cos 30.00 
( 5 .0 kg )  

= 0.801 m/s. 

We follow the same procedure for the y components of momentum. The initial y component of 
momentum is zero. The y components of the final momentum must sum to zero; that is, 

Solving for UB2y gives 

o = P2y = mAUA2y + mBUB2y = mAuA2 sin 30.0° + mBuB2Y' 

UB2y = -mAuA2 sin 30.0° 
mB 

- ( 2.50 m/s ) ( 3 .0 kg ) sin30.00 
( 5 .0 kg ) 

-0.75 m/s. 

The x and y components of puck B's velocity are 0 .80 mls and -0.75 mIs, respectively. Thus, puck B 
must travel into the fourth quadrant, as expected. We find the magnitude and direction of puck B's 
velocity from 

UB2 = VU�2x + U�2Y = V( 0. 80 m/s ) 2 + ( -0.75 m/s ) 2 = 1 . lO m/s, 

UB2y ( -0.75 m/s ) 2 4> = tan- I-- = tan- I = -43 .2°, 
UB2x ( 0.80 m/s ) 

Puck B's final velocity is 1 . 1 0  mis, directed at an angle of 43 .2° below the positive x-axis .  

EVA L U AT E  We can check our answer by examining the momentum components before and after the 
collision. Initially, puck A has an x component of momentum equal to 10.5 kg mls. After the collision, 
the x component of momentum of puck A is 6.5 kg mls and that of puck B is 4.0 kg mis, or a total of 
10.5 kg mis, as expected. There is no initial momentum along the y-axis .  After the collision, the y com
ponent of momentum of puck A is 3 .75 kg mls and that of puck B is - 3 .75 kg m/ s, also as expected. 

Solving momentum problems in two dimensions follows from the one-dimensional cases. You just 
need to remember that momentum is a vector that can have multiple components, each of which can be 
conserved individually. 

5: Elastic collision in one dimension 
Two gliders collide elastically on a frictionless, linear air track. Glider A has a mass of 0.60 kg and 
initially moves to the right at 3 .0 mls. Glider B has mass of 0.40 kg and initially moves to the left at 
4.0 mls. What are the final velocities of the two gliders after the collision? 
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Solution 

I D E  N T I F  Y There are no net external forces acting on the system, so the momentum of the system is 
conserved. The collision is elastic ; therefore, energy is conserved as well. 

5 ET U P  Figure 8.5 shows the before and after sketches of the situation including axes. Our system con
sists of the two gliders . Before the collision, glider A moves with velocity v A Ix = 3 .0 m/ s to the right and 
glider B moves with velocity v Blx = -4.0 m/s to the left. After the collision, glider A moves away with 
velocity v A2x and glider B moves away with velocity v B2x' Our target variables are the final velocities of 
the two gliders. We' ll need to use the relative velocity relation for elastic collisions in our solution. 

Before 

VAlx VB lx � -

<s . .. . . . . � .. .. .. �:.:.::.:::.:.« \ 
inA = 0.50 kg InB = 0.30 kg 

After 

VA2, VB2, 

vt:=---� 
Figure 8.5 Problem 5. 

E X E C U T E  From conservation of momentum, 

mAvA lx + mBvB lx = mAvA2x + mBvB2x, 
( 0.60 kg ) ( 3.0 m/s ) + ( 0.40 kg ) ( -4.0 m/s ) = ( 0.60 kg ) VA2x + ( 0.40 kg ) VB2x' 
0.20 m/s = 0.60VA2x + 0.40VB2x' 

The last equation has two unknowns, and we need more information to solve for the velocities. Since 
this is an elastic collision, we can apply the relative velocity relation to solve for the velocities: 

VB2x - VA2x = - ( VBlx - VA IJ 
VB2x - VA2x = - ( ( -4.0 m/s ) - ( 3.0 m/s ) ) = 7.0 m/s 
VB2x = VA2x + 7.0 m/s. 

Substituting the last expression into the earlier momentum conservation relation gives 

0.60VA2x + 0.40 ( VA2r + 7.0 m/s ) = 0.20 m/s 
VA2x = ( 0.20 m/s ) - ( 0.40 (7.0 m/s ) ) = -2.6 m/s 
VB2x = VA2x + 7.0 m/s = ( -2.6 m/s ) + 7.0 m/s = 4.4 m/s. 

After the collision, puck A moves to the left at 2.6 mls (v A2x is negative) and puck B moves to the right 
at 4.4 mls. 

EVA L U AT E  Both gliders reversed their directions in this elastic collision. Are the kinetic energies 
equivalent before and after the collision? The initial kinetic energy is 

Kj = �mAd lx + �mBv�lx = 1 ( 0.60 kg ) ( 3.0 m/s ) 2 + 1 ( 0.40 kg ) ( -4.0 m/s ) 2 = 5 .9 J. 
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Kf = imAd2x + imBv�2x = H O.60 kg ) (  -2.6 m/s ) 2 + H 0.40 kg ) (  4.4 m/sF = 5 .9 J. 
The initial and final kinetic energies are equivalent, as expected. 

6: Ballistic pendulum 
A 6.00 g bullet is shot through a 2 .00 kg block suspended on a 1 .00-m-Iong string. If the initial speed of 
the bullet is 650 m1s and it emerges with a velocity of 175 mIs, find the maximum angle through which 
the block swings after it is hit. 

Solution 

I D E N T I  F Y  We will analyze this problem in two stages. First, we' ll look at the interaction of the bullet 
with the block. Second, we' ll examine the swinging of the block on the string after the bullet passes 
through the block. 

In the first stage, the bullet passes through the block, giving the block an impulse. The bullet passes 
through the block very quickly, so the block has no time to swing any significant distance from its ini
tial position. The only force acting on the bullet-and-block system is between the bullet and block; 
there are no appreciable external forces acting on the system. We conclude that, during the first stage, 
the horizontal component of momentum is conserved. 

In the second stage, the block moves away from its initial position. The only forces acting on the 
block are gravity (a conserved force) and tensions due to the strings (which do no work as the block 
swings) . Mechanical energy is conserved as the block swings. 

S ET U P  Figure 8 .6 shows sketches of the two stages of the problem. We take the positive x-axis to be 
to the right and the positive y-axis upward. Our target variable for the first stage is the velocity V2x of 
the block after the bullet emerges from the block. We will use momentum conservation to find V 2x' Our 
target variable for the second stage is e, the angle the string makes with the vertical when the block 
stops momentarily after swinging to the right. We will use energy conservation to find the height h the 
block rises to after the collision and relate h to e. 

Stage I Stage 2 
Before After � 

8 I ' ,  l/:, 
V1x V2< 

i� 
� 

D D� 
V2<� V2'� 

Figure 8.6 Problem 6. 

E X E C U T E  In the first stage, conservation of momentum gives 

mv Ix = mV2x + MV2x' 
The velocity of the block is 

m( v lx - v2x ) V2 =
-----x M 

Y 

lo 

(0.006 kg ) (  650 m/s - 175 m/s ) 
(2.0 kg ) 

1 .43 m/s .  
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At the beginning of the second stage, the block has kinetic energy. Afterwards, the block swings up and 
comes to rest momentarily. At this point, the block's kinetic energy is zero and its gravitational poten
tial energy has increased by mgh. Energy conservation gives 

The block reaches a height 

1MVix = Mgh. 

vix h = - = 0. 1 04 m. 2g 
The angle between the vertical and the string when the block stops momentarily is 

1 - h () = cos- I _- = 26.4°. I 
The maximum angle the block swings to after the collision is 26.4°. 

EVA L U AT E  Where did most of the energy go? A quick check of the kinetic energies gives an initial 
energy of the bullet (before striking the block) of 1 270 J, a final energy of the bullet of 92 J, and a final 
energy of the block of 2.0 J. Most of the initial energy was dissipated in the deformation and heating of 
the bullet and block. 

7: Boat on a lake 
Luka is standing in a boat on a calm lake. His position is 5 .00 m from the end of the pier. As he walks 
towards the pier, the boat moves away from it. When Luka stops walking, he finds that the boat has 
moved 2.00 m away from the pier. If you ignore the boat's resistance to motion in the water, how far 
from the end of the pier is Luka when he stops walking? The mass of the boat is 80.0 kg, and Luka's 
mass is 60.0 kg. 

Solution 

I D E  N T I F Y  Since we can ignore friction between the boat and the water, the net external force on the 
boat-and-Luka system is zero. Momentum is therefore conserved. There is no initial motion, so the 
total momentum is zero and the velocity of the center of mass of the system is zero. The center of mass 
will remain at rest as Luka walks in the boat. 

S ET U P  We take the origin to be the end of the pier, since the measurements are given with respect to 
that point. Figure 8 .7 shows a sketch of the situation. Our target variable is the final position of Luka, XL2' 

Before 0 X After 0 X 

�� 
Figure 8.7 Problem 7. 

E X E C U T E  The initial coordinate of the center of mass of the boat-and-Luka system is given by the 
formula 
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The final coordinate of the center of mass of the system is given by the equation 

XL2mL + XB2mB 
Xcm = 

mL + mB 
Since the center of mass doesn't move, we set the two right-hand expressions equal to each other: 

xL lmL + xBlmB 
mL + mB 

XL2mL + XB2mB 
mL + mB 

The boat moves 2.0 m away from the end of the pier, so XB2 = XBl + 2.0 m. Substituting and solv-
109 gIves 

xL lmL + xB lmB = XL2mL + (XB l + 2.0 m )mB' 
( 5 .0 m ) (60.0 kg ) + xBl ( 80.0 kg ) = xL2 ( 60.0 kg ) + (XBl + 2.0 m ) ( 80.0 kg ) , 
XL2 = 2.3 m. 

EVA L U AT E  Since the boat and Luka's mass are similar, Luka moves a distance similar to the distance 
the boat moves. Luka's mass is less, so he moves a little farther than the boat moves. 

8: Falling sand 
Sand is dropped from a height of 1 .0 m onto a kitchen scale at the uniform rate of 100.0 g/s. Find the 
force on the scale and its reading if the scale is calibrated in kg. 

Solution 

I D E  N T I FY We need to find the force on the scale due to the falling sand. We can find the change in 
momentum of the falling sand and relate it to the force through impulse. The target variable is the force 
on the scale. 

S ET U P  We will first find the velocity of the sand as it hits the scale. We will then use that velocity to 
find the change in momentum as the sand strikes the scale. We will incorporate the change in momen
tum into the impulse formula and solve for the force on the scale. We will complete the problem by con
verting the force into a calibrated scale reading. We will take our vertical axis to be positive downward. 

E X E C U T E  As the sand falls 1 .0 m, it acquires a velocity 

v ly = V2;h, 
according to energy conservation. The sand stops after striking the scale. The change in momentum as 
the sand strikes the scale is 

!:1p = P2y - Ply = -!:1mv = -!:1mV2;h. 
The change in momentum is negative (directed upward) in our coordinate system. The force on the sand 
due to the scale is directed upward to stop the sand. The impulse imparted to the sand by the scale is 

J = -F!:1t = !:1p = -!:1mV2;h. 
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Rearranging terms and dividing both sides by 
I1t gives 

11 m � ;;:::-;-
F = I1 t V 2gh 

= ( 0. 100 kg/s )V2 ( 9.8  m/s2 ) (  1 .0 m) 
= 0.44 N. 

Here, the rate of change of mass per unit time is the given rate at which the sand falls. The scale is 
calibrated in terms of mass, so we divide the force by g to get the reading on the scale: 

F 0.44 N m = - = 
/ 2 = 0.045 kg. 

g 9 .8 m s 

The scale reads 0.045 kg as the sand falls. 

EVA L U AT E  This problem illustrates how we can use force, momentum, and impulse together to solve 
problems. 

Try It Yourself! 
1 :  Rocket motion 
A two-stage rocket traveling at 350 mls through space separates, with one stage having twice the mass 
of the other. If the final velocity of the larger stage is 120 mls in a direction opposite its initial direction, 
find the final velocity of the smaller stage. 

Solution Checkpoints 

I D E N T I F Y A N D S ET U P  Confirm that there are no net external forces acting on the rocket. Apply 
conservation of momentum along one axis. The target variable is the velocity of the smaller rocket 
stage. 

E X E C U T E  Momentum conservation gives 

Solving for v A2x yields 

EVA L U AT E  Do you expect the smaller stage to have a final velocity that is larger or smaller than the 
other velocities in the problem? Do you expect energy to be conserved in this case? 

2: Car collision 
A 2000 kg car moving at 30 kmIhr collides with a stopped 1000 kg car, and the two lock bumpers . 
What is their common velocity after the collision? What fraction of the initial energy is dissipated in 
the collision? 
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I D E N T I  F Y  A N  D S ET U P  Confirm that there are no net external forces acting on the cars just before 
and just after the collision. Apply conservation of momentum along one axis .  The target variables are 
the velocity of the combined cars and the fraction of energy lost in the collision. 

E X E C U T E  Momentum conservation gives 

mAvA 1x = (mA + mB ) v2x. 

Solving for the final velocity gives 20 krn!hr. The initial and final energies are 

E - 1 2 
1 - "2mAVA 1x 

E2 = 4 (mA + mB ) vL· 

Dividing the two demonstrates that two-thirds of the initial energy remains kinetic after the collision. 

E VA L U AT E  We will contrast this problem with the next one, in which the collision is elastic. 

3: Car collision revisited 
A 2000 kg car moving at 30 krn!hr collides with a stopped 1000 kg car, and the two have spring 
bumpers so that the collision is perfectly elastic. What is the velocity of each car after the collision? 

Solution Checkpoints 

I D E N T I FY A N D S ET U P  Confirm that there are no net external forces acting on the cars just before 
and just after the collision. Apply conservation of momentum along one axis . Apply conservation of 
energy, since the collision is elastic. The target variables are the velocities of the two cars. 

E X E C U T E  Momentum conservation gives 

Energy conservation gives 

These two equations can be solved to find vA2r = 1 0  km/hr and V2Bx = 40 km/hr. You may wish to 
consult the text for a derivation of velocities in elastic collisions. 

EVA LU AT E  In this elastic collision, we see that the lighter car ends up with a velocity greater than the 
heavier car after the collision. You can also check that the initial and final momenta and energies are 
equal. 

4: Putty hitting mass on spring 
A 0.75 kg mass of putty is hurled with a velocity of 2.0 rn/s against a 0.50 kg mass attached to a spring, 
as shown in Figure 8 .8 .  The mass attached to the spring slides across the frictionless horizontal surface, 
depressing the spring a maximum distance of 12.0 cm. Find the spring constant if the putty sticks to the 
mass on the spring. 

A B k 
0.5 kg 

Figure 8.8 Try It Yourself! 4. 
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Solution Checkpoints 

I D E N T I F Y  A N D S ET U P  Is the collision elastic or inelastic if the putty sticks to the mass? You can 
apply conservation of momentum to the initial collision (before the spring begins to compress). Then 
apply conservation of energy to the interval after the spring begins to compress. 

E X E C U T E  Momentum conservation gives 

mAvA 1x = (mA + mB) v2x' 
The velocity of the putty plus mass is 1 .2 rnfs just after the collision. Energy conservation applied to 
the interval after the collision gives 

I ( ) 2 _ l kx2 
2" mA + mB V2x - 2" • 

Substituting yields a spring constant of 125 N/m. 

EVA L U AT E  Energy and momentum conservation do not apply to the whole process; rather, the 
process must be broken into intervals during which energy and momentum can be applied. Can you 
repeat the problem, replacing the putty for a rubber ball that bounces elastically off the mass attached 
to the spring? 

5: Collision on a football field 
A 135 kg football player traveling at 5 .0 m/s collides with an 85 kg player at rest. The two slide 2.0 m 
on wet grass. Their collision is completely inelastic. What is the coefficient of friction between the 
grass and the players? How much energy is dissipated in the collision? 

Solution Checkpoints 

I D E N T I F Y A N D S ET U P  Confirm that there are minimal external forces acting on the players just 
before and just after the collision. Apply conservation of momentum to the two players as they collide. 
Then use the work-energy theorem to find the friction force. The energy dissipated is found by com
paring the energy just before and just after the collision. 

E X E C U T E  Momentum conservation applied to the collision gives 

mAvA 1x = (mA + mB )v2x' 
The work-energy theorem applied to the two players as they slide on the grass after they collide results in 

-f-L(mA + mB)gx = 0 - HmA + mB ) vL· 
Solving these equations, we obtain f-L = 0.24. The change in energy during the collision is 

!::.E = HmA + mB) vL - �mAv� lx' 
or 650 J dissipated during the collision. 

EVA L U AT E  In this collision, we had to split the process up into two intervals, to which we separately 
applied conservation of momentum and the work-energy theorem. We also found that almost one-third 
of the energy is dissipated in the totally inelastic collision of the players. 
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This chapter has augmented our knowledge of energy, forces, and kinematics with our newly formed 
knowledge of momentum analysis. Momentum analysis shares many of the problem-solving principles 
we have encountered. In the problems presented, we 

• Identified the general procedure to find the solution. 
• Sketched the situation, including before and after views. 
• Identified the momenta, energies, and forces in the system. 
• Applied conservation of momentum to the system. 
• Applied energy principles, including conservation of energy (when possible) . 
• Drew free-body diagrams of the objects when appropriate. 
• Applied Newton's laws when appropriate. 
• Solved for the target variable(s) algebraically from the equations we derived. 
• Reflected on the results, checking for inconsistencies . 





Rotation of Rigid Bodies 

Summary 
In this chapter, we will investigate the rotational motion of rigid 
bodies-objects that don't change size or shape as they move. We' ll 
describe first the kinematics of rotation for a rigid body and then its 
rotational kinetic energy. We'll see how these quantities are analo
gous to linear kinematics and translational kinetic energy. Finally, 
we' ll learn about the moment of inertia, how to calculate it, and how 
to use it to measure rotational inertia. We' ll use our new knowledge 
of rotational motion in the next chapter as we learn how to cause 
such motion. 

Objectives 
After studying this chapter, you will understand 

• How to use radians in angular measurements. 
• The definition and application of angular displacement, velocity, 

and acceleration. 
• How to solve problems involving constant angular acceleration. 
• How to define moment of inertia and apply it to systems of varying 

shapes. 
• How to calculate the moment of inertia. 
• How to solve conservation-of-energy problems that include rota

tional kinetic energy. 
• How to draw analogies between translational and rotational motion 

and energy. 

1 35 
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Concepts and E quations 

Term 
Rigid Body 

Radian 

Angular Velocity 

Angular Acceleration 

Rotation with 

Constant Angular Acceleration 

Connecting Linear 

and Angular Quantities 

Description 
A rigid body is an object that maintains an unchanging size and shape. We 
neglect squeezing, stretching, and twisting in our analysis of a rigid body. 

Angular displacements are usually measured in radians. A displacement 8 
measured in radians is the ratio of the arc length s to the radius r: 

s 
8 = -. 

r 

There are 21T radians in one revolution ( 3600 ) .  

The instantaneous angular velocity about the z-axis is the rate of change of 
angular displacement with respect to time: 

!J.8 d8 
w = lim- = -. Z t.1-O !J.t dt 

The term angular velocity refers to the instantaneous angular velocity. All 
pieces of a rigid object have the same angular velocity at any given instant. 
The direction of the angular velocity is given by the right-hand rule. 

The instantaneous angular acceleration about the z-axis is the rate of change 
of angular velocity with respect to time: 

!J.wz dw_ d28 
a = lim -- = -' = -. 

Z t.{-o !J.t dt dt2 

The term angular acceleration refers to the instantaneous angular accelera
tion. All pieces of a rigid object have the same angular acceleration at any 
given instant. The direction of the angular acceleration is the same as that of 
the angular speed when the object is speeding up and opposite that of the 
angular speed when the object is slowing down. 

When an object moves with constant angular acceleration, the angular dis
placement, velocity, acceleration, and time are related by the formulas 

8 = 80 + wOzt + 1azt2, 
Wz = wOz + azt, 
w; = w6z + 2az ( 8 - 80 ) ,  
8 - 80 = Hwz + woz ) t, 

where 80 and WOx are the initial values of the angular position and velocity, 
respectively. 

The tangential speed v of a particle rotating in a rigid body at a distance r 
from the axis of rotation is 

v = rw. 
The particle's acceleration a has a tangential component 

and a radial component 

dv rdw 
a tan = - = -- = ra dt dt 
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Energy of Rotating Body 

conceptual Questions 
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The moment of inertia, I, of a body is a measure of its rotational inertia and 
depends on how the body's mass is distributed relative to the axis of rotation. 
The moment of inertia is given by 

I = m lrT + m2r� + m3d + . . .  

For arbitrarily distributed masses, the moment of inertia is given by 

I = I r2dm. 

Moments of inertia for common shapes are given in Table 9.2 in the textbook. 
The parallel-axis theorem can be used to find the moment of inertia, Ip, about 
another parallel axis; that is, 

Ip = lem + Md2, 

where lem is the moment of inertia about the center of mass, M is the mass of 
the body, and d is the distance between the two axes. 

The kinetic energy of a rigid body rotating about a fixed axis is 

K = 11w2. 

This quantity is the sum of the kinetic energies of all of the particles that 
make up the rigid body. 

1: Rolling versus sliding down a hill 
A ball travels down a hill. Will the ball reach the bottom of the hill faster if it rolls or if it slides without 
friction down the hill? 

Solution 

I D E N T I F Y, S ET U P, A N D  E X E C U T E  No energy is lost as the ball travels down the hill, so we can 
use energy conservation to answer this question. At the top of the hill, the ball has gravitational poten
tial energy. As the ball descends, the gravitational potential energy is transformed into kinetic energy. 
When the ball rolls down the hill, the kinetic energy is shared between translational kinetic energy and 
rotational kinetic energy. When the ball slides down the hill without friction, the gravitational potential 
energy transforms into translational kinetic energy alone. There is no rotational kinetic energy in this 
case. Therefore, more energy is transformed into translational kinetic energy if the ball slides without 
friction than if it rolls down the hill. Since it acquires more translational kinetic energy, its velocity is 
higher and it reaches the bottom faster when it slides without friction. 

E VA L UAT E  This question shows how we must include both translational and rotational kinetic energy 
in our energy analyses. We' ll practice using rotational kinetic energy in the problem section. 

2: Comparing moments of inertia 
A light rod of length L has two lead weights of mass M attached at both ends of the rod. How does the 
system's moment of inertia compare when the rod is spun about an axis at its center as opposed to 
when it is spun around a point one-quarter along the length of the rod? 
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I D E N T I FY, S ET U P, A N D E X E C U T E  The moment of inertia of an object is 

I = m l rT + m2d + . .  '. 
The moment of inertia when the axis is at the center of the rod is then 

Ieenter axi s  = M(�r + M(�r = M( �2 ) = 1ML2, 
since each mass is positioned half of the length of the rod away from the axis .  When the axis is one
quarter along the length of the rod, the moment of inertia is 

11 /4 along rod = M(�r + M( 3�r = M(��) + M(91�2) = :�ML2, 
since one mass is iL from the axis and the other is �L from the axis .  The moment of inertia when the 
rod is spun one-quarter along its length is 25% larger than the moment of inertia when the rod is spun 
at the center. 

EVA LU AT E  The moment of inertia depends on both mass and the location of the mass .  Since the loca
tion from the axis enters as the square of the distance, moving the axis changes the moment of inertia. 
Do you get the same result if you apply the parallel-axis theorem? 

Practice Problem: What axis of rotation provides the largest moment of inertia? Answer: The axis 
located at one end of the rod gives the largest moment of inertia, I = ML 2. 
3: Rolling up a ramp 
A solid sphere and a thin-walled sphere roll without slipping along a horizontal surface. The two 
spheres roll with the same translational speed. The surface leads to a ramp. Which sphere rises to the 
greatest height on the ramp before stopping momentarily? 

I D E N T I F Y  A N D S ET U P  We' ll use conservation of energy and ignore air drag. Both spheres have 
initial translational and rotational kinetic energies that are transformed completely into gravitational 
potential energy when they stop momentarily on the ramp. The sphere with the greatest initial total 
kinetic energy will rise to the greatest height. 

E X E C U T E  The initial kinetic energy of each sphere is 

K - I 2 I ]  2 i - 2: msphereV em + 2: sphereW . 
The angular velocity is related to the velocity of the center of mass, since both spheres roll without 
slipping. Thus, 

Vern W = -
R ' 

where R is the radius of the sphere. The moment of inertia of the solid sphere is Isolid = 2!SmsolidR;olid' 
The kinetic energy of the solid sphere is then 
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The moment of inertia of the thin-walled sphere (shell) is Ishell = 2/3mShellR;hell . The kinetic energy of 
the shell is then 

Since the final gravitational potential energy depends on mass ( U  = mgh ) ,  the masses will cancel and 
we compare the leading fractions in the kinetic-energy terms to determine which sphere has the great
est initial kinetic energy. We see that the shell has more initial kinetic energy; therefore, the thin-walled 
sphere rises to the greatest height. 

EVA L U AT E  It is interesting to find that the results don't depend on either the mass or the radius of the 
two spheres . The results depend only on how the mass is distributed in the object. 

4: Racing down a ramp 
A thin-walled hollow cylinder, a solid cylinder, a solid sphere, and a thin-walled sphere start from rest 
at the same height and roll without slipping down a wide ramp. Rank the velocities of the four objects, 
from first to last. 

I D E N T I F Y  A N D S ET U P  We' ll use conservation of energy. All of the objects have gravitational 
potential energy that is transformed into translational and rotational kinetic energies. We will find the 
velocity at the bottom of the ramp in terms of the height and other factors . 

E X E C U T E  For any of the four objects, energy conservation applied to the starting point and the bot
tom of the ramp gives 

mgh = �mv2 + �lw2 . 
The angular velocity is related to the velocity of the center of mass, since all of the objects roll without 
slipping; thus, 

v w = 
R' 

where R is the radius of the object. Replacing the angular velocity yields 

1 2 1 ( V )2 mgh = 2 mv + 21 R . 

We now solve for the velocity of each of the four objects. The thin-walled hollow cylinder (TWHC) gives 

mTWHcgh = �mTWHCviwHC + HmTWHCR2) (_VTW_R_
H_C ) 2 = mTWHCv�WHC' 

VTWHC = -vgh. 
The solid cylinder (SC) results in 

-
.... -. . .., 
= 
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The solid sphere (SS) produces 

1 2 1 ( 2 2 ) ( VSS )2 7 2 mssgh = 2:mssVss + 2: smssR R = LOmSSvSS, 

vss = VIf-vlih. 
The thin-walled hollow sphere (TWHS) gives 

h - 1 2 + 1 ( 2 R2 ) ( VTWHS )2 - 5 v2 mTWHsg - "2mTWHSVTWHS "2 3mTWHS -R- - 6mTWHS TWHS, 

VTWHS = \.IIvIih. 
Comparing the leading factors, we see that the solid sphere has the largest velocity, followed by the 
solid cylinder, the thin-walled hollow sphere, and the thin-walled hollow cylinder. 

EVA LU AT E  The largest moment of inertias resulted in the smallest velocities at the bottom of the 
ramp, since energy went into rotational kinetic energy. We see that the radii and masses cancel in this 
problem: The velocity at the bottom is dependent only upon the distribution of mass in the object. 

In what order do the four objects reach the bottom? Since all the velocities depend on the square 
root of the height, those with the fastest velocity reach the bottom first. 

Problems 
1 :  Constant angular acceleration in a pottery wheel 
A pottery wheel is rotating with an initial angular velocity Wo when the wheel's drive motor is turned 
on. The wheel increases to a final angular velocity of 1 25 rpm while making 30.0 revolutions in 
25 .0 seconds. Find the initial angular velocity and angular acceleration, assuming that the latter is con
stant. A pottery wheel is essentially a cylinder rotating about a vertical axis driven by a motor. 

Figure 9.1 Problem 1 sketch. 

Solution 

I D E N T I  F Y  The wheel exhibits constant angular acceleration, so we use the equations for constant 
angular acceleration to solve the problem. The target variables are the initial angular velocity and the 
angular acceleration. 

S ET U P  Figure 9 . 1 shows a sketch of the pottery wheel. For consistency, we' ll use radians and sec
onds as our units and convert the given quantities. 

We are given the final angular velocity, the angular displacement, and the time. We need to find the 
initial angular velocity and the angular acceleration. None of the equations for constant angular accel
eration allow us to solve for both unknowns at once, so we' ll solve for the initial angular velocity first 
and then use the results to solve for the angular acceleration. 
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E X E C U T E  The angular displacement can be written in terms of the average angular velocity and the 
time interval as 

e - eo = Hwz + woJ t. 
Solving for the initial angular velocity gives 

The quantity ( e - eo )  is our angular displacement, 30.0 revolutions. The quantity Wz is the final angu
lar velocity, 1 25 rpm. We convert the revolutions to radians by multiplying by (27T rad/rev ) and the 
rpm to radians/second by multiplying by ( 27T rad/rev ) ( 1  min/60 s) . Solving for WOz gives 

2 ( 30.0 rev ) ( 27T rad/rev ) 
wOz = 

25.0 s 
- ( 1 25 rpm ) (27T rad/rev ) ( l min/60 s ) = 1 .99 rad/s .  

The initial angular velocity is 1 .99 rad/s, or 1 9.0 rpm. To find the angular acceleration, we use the rela
tionship between angular velocity, angular acceleration, and time: 

Wz = WOz + azt. 
Solving for the angular acceleration, we obtain 

Wz - wOz ( 1 25 rpm ) ( 27T rad/rev ) (  1 min/60 s ) - ( 1 .99 rad/s ) / 2 a = = = 0.444 rad s . z t 25.0 s 

The angular acceleration is 0.444 rad/s2. 
EVA L U AT E  This problem reminds us of the problems involving constant linear acceleration we first 
encountered in Chapter 2 .  The same problem-solving strategy applies : Draw a diagram, check for con
stant acceleration, find one or more equations that can be used to solve for the unknowns, and reflect 
upon the results. As we've seen here, we may need to use more than one equation for the solution, and 
we must watch our units carefully. 

2: A slowing pottery wheel 
A pottery wheel rotating at 30 revolutions per minute is shut off and slows uniformly, coming to a stop 
in 2 complete revolutions. Find the angular acceleration and the time it takes to come to a stop. 

Solution 

I D E N T I FY The wheel exhibits constant angular acceleration as it slows uniformly, so we use the 
equations for constant angular acceleration to solve the problem. The target variables are the angular 
acceleration and the time required to stop. 

S ET U P  We are given the initial angular velocity, the final angular velocity (zero), and the angular dis
placement for the wheel to come to a stop. We will use two of the equations for constant angular accel
eration to solve for the two unknowns. 

E X  E CUT E The angular displacement, velocity, and acceleration are related by the formula 

w; = w6z + 2az ( e - eo ) · 
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Solving for the angular acceleration gives 

( 0 ) 2 - ( 30 rev/min ) 2 
/ . 2(27T rad ) ( 1 min )2 

/ 2 
( ) 

= -225 rev mm -- = -0.393 rad s . 
2 2 rev rev 60 s 

To solve for time, we use the acceleration-velocity relation: 

Solving for the time yields 

( 0 )  - ( 30 rev/min ) . 
/ 2 = 0. 133 mm = 8 .0 s. 

-225 rev min 

The wheel slows to a stop at a rate of -0.393 rad/s2, stopping in 8 .0 s .  

EVA L U AT E  This problem reminds us of our earlier problems involving constant linear acceleration. 
You should be able to become proficient at these problems rather quickly. Just make sure that you 
watch your units ! 

3: Energy in a wheel-stone system 
A thin light string is wrapped around the rim of a spoked wheel that can rotate without friction around 
its center axle. An 8 .00 kg stone is attached to the end of the string as shown in Figure 9.2. If the stone 
is released from rest, how far does it travel before attaining a speed of 4 .80 m/s? The spoked wheel is 
made of a central hub (a solid uniform cylinder of radius 7 .50 cm and mass 22.0 kg) attached to a rim 
(a thin-walled hollow cylinder of radius 30.0 cm mass 12.0 kg) by spokes of negligible mass. 

Solution 

H- v = o 
I I I I 

0-0 V = 4.8 mls 
� 

Figure 9.2 Problem 3 .  

I D E N T I F Y  No work is done by external forces, so mechanical energy is conserved. The target vari
able is the height the stone falls. 
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5 ET U P  Initially, there is only gravitational potential energy. When the stone is released, the gravita
tional potential energy is transformed into kinetic energy of the stone and wheel. We' ll set the origin at 
the point where the stone reaches a speed of 4.80 m/s ; the starting position is a distance H above the 
origin, as we see in Figure 9.2. We' ll find the moment of inertia of the wheel by combining the moment 
of inertia of a solid cylinder with the moment of inertia of a thin-walled hollow cylinder. 

E X E C U T E  Energy conservation relates the initial and final energies : 

KI + VI = K2 + V2· 

Initially, there is only Vorav. At the origin, the gravitational potential energy has been transformed into " 
the kinetic energies of the stone and wheel: 

Vgrav = Kstone + Kwheel· 

Replacing the energies yields 

We need to find the moment of inertia of the wheel and its angular velocity when the stone reaches its 
final velocity. The moment of inertia of the wheel is the algebraic sum of the moment of inertia of the 
central hub plus the moment of inertia of the outer rim (the thin-walled cylinder.) Using Table 9.2 of 
the text, we find the total moment of inertia of the wheel: 

[wheel = [solid cyLinder + [thin-walled cylinder = �MhubR�ub + MrimR�m· 

The speed of the stone is the tangential speed of the wheel, so we can find the angular speed of the 
wheel from the equation 

v w = --. 
Rrim 

Substituting the two expressions we found into the energy relation gives 

mstonegH = �mstoneu
2 

+ H4MhubR�ub + MrimR;im ) (�)
2

. 
Rnm 

Solving for H results in 

1 [ I 2 I ( I 2 2 ) ( 
V )

2J 
H = 

m 
2:mstoneu + 2: 2:MhubRhub + MrimRrim R ' 

stoneg rim 

H = 1 / 2 )  [H S.OO kg ) (4.S0 m/s ) 2  + HH22.0 kg ) ( O.07S0 m) 2  + ( 12 .0 kg ) ( O.300 m) 2 ) (����/S ) 2J = 3.04 m. ( S.OO kg ) ( 9 .S m s  . m 
After the stone falls 3 .04 m, its speed will be 4.80 m/s. 

EVA L U AT E  If the stone had fallen freely, it would have attained the final speed when h = u/"V2g 
( 1 .08 m). Why does it take almost three times this distance to reach the final speed? Looking at the 
energy conservation equation, we see that the energy is shared between the kinetic energies of the stone 
and wheel. Roughly two-thirds of the energy goes into the kinetic energy of the wheel. 

Practice Problem: Repeat the problem with only the inner hub of the wheel. Answer : 1 .28 m. 
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4: Energy in a falling cylinder 
A thin, light string is wrapped around a solid uniform cylinder of mass M and radius R as shown in 
Figure 9 .3 .  The string is held stationary and the cylinder is released from rest. What is the cylinder's 
radius if it reaches an angular speed of 350.0 rpm after it falls 3 .00 m? 

Figure 9.3 Problem 4. 

Solution 

I D E N T I FY Gravity and tension are the only forces acting in this problem, so energy is conserved. The 
target variable is the cylinder's radius. 

S ET U P  Initially, there is only gravitational potential energy. When the cylinder is released, the gravi
tational potential energy is transformed into rotational and translational kinetic energy. We' ll set the 
origin 3 .00 m below the initial position. 

E X E C U T E  Energy conservation relates the initial and final energies : 

KI + Ui = K2 + U2· 
Initially, there is only Ugrav. At the origin, the gravitational potential energy has been transformed into 
the total kinetic energy of the cylinder: 

Ugrav = Ktranslational + Krotational' 

Replacing the energies, we obtain 

Mgh = �MV2 + �I()/. 
Now, recall that the moment of inertia of a solid uniform cylinder is �MR2. (See Table 9 .2 in the text.) 
The speed of the cylinder is the tangential speed of the wheel, so we can find the angular speed of the 
wheel from the relation 

v = wR. 
Substituting the preceding expressions into the energy relation gives 

Mgh = �MV2 + �Iw2 = �M(wR) 2 + H�MR2 )W2 = �M(wRY 
Solving for R, we get 

vfgh V�(9.80 m/s2 ) ( 3 .00 m )  R = -w- = 
( 350 rpm ) (  21T rad/rev ) ( I min/60 s )  

= 0. 1 7 1  m. 

The cylinder's radius is  17 . 1 cm. 
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EVA L U AT E  We see that the mass of the cylinder cancels in the conservation-of-energy equation; the 
results apply to a cylinder of any mass. 

Practice Problem: Repeat the problem with a thin hoop replacing the cylinder. Answer : 14 .8 cm. 

5: Cylinder rolling down a ramp 
A uniform hollow cylinder rolls along a horizontal floor and then up a flat ramp without slipping. The 
ramp is inclined at 20.00 • How far along the ramp does the cylinder roll before stopping if its initial for
ward speed is 1 2.0 rn/s? The hollow cylinder has a mass of 6.5 kg, an inner radius of 0. 1 3  m, and an 
outer radius of 0.25 m. 

Figure 9.4 Problem 5.  

Solution 

I D E N T I F Y There are no nonconservative forces (ignoring air drag), so we use energy conservation. 
The target variable is the distance up the ramp the cylinder travels before stopping momentarily. 

S ET U P  Figure 9.4 shows a sketch of the problem. Initially, the cylinder has translational and rota
tional kinetic energy. When the cylinder stops momentarily at the top of the ramp, the kinetic energy has 
been totally transformed to gravitational potential energy. We' ll set the origin at the base of the ramp. 

E X E C U T E  Energy conservation relates the initial and final energies: 

KI + VI = K2 + V2· 
Initially, the cylinder has only kinetic energy. At its highest point, the cylinder has only gravitational 
potential energy. Thus, 

Ktranslational + Krotational + 0 = 0 + Vgrav. 
Replacing the energies with their equivalent expressions yields 

1Mu2 + 1Iui = Mgy. 
Recall that the moment of inertia of a hollow uniform cylinder is �M(Ri + RD .  (See Table 9.2 in the 
text. )  The speed of the cylinder is the tangential speed of the wheel at the outer radius, so we can 
replace the speed with 

u W = - . R2 
Substituting these expressions into the energy relation gives 

�MU2 + �Iw2 = �MU2 + H�M(Ri + RD ) (;J2 = Mgy. 
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Solving for y, the maximum vertical height, we obtain 

_ U2[1 l(Ri + R� ) J _ ( 12.0 m/s ) 2[1 1( ( 0. 1 3 m ) 2 + ( 0.25 m ) 2 ) ] _ y - 2 + 4 2 -
( / 2 ) 2 + 4 ( ) 2 - 12.0 m. 

g R2 9 .8 m s 0.25 m 

The cylinder's maximum vertical height is 1 2.0 m. To find the distance along the ramp, we use the sine 
relation: 

L = Y 
sin20° 

( 12.0 m )  --- = 35. 1 m. 
sin20° 

The hollow cylinder rolls 35 . 1  m up along the ramp. 

EVA L U AT E  How far up the ramp would the cylinder travel without friction? It would move 21 .5 m 
along the ramp without friction. This result shows how the added initial rotational kinetic energy 
results in a greater distance along the ramp. 

6:  Moment of inertia of a rectangular sheet 
Find the moment of inertia of a uniform thin rectangular sheet of metal with mass M, length L, and 
width W about the x-axis in Figure 9.5 . 

z 

-----f------T---f--f--+--!--+-- y 

x 

�-----L -----_� 
Figure 9.S Problem 6. 

Solution 

I D E  N T I  F Y  The sheet is a continuous distribution of mass, so we must integrate to find the moment of 
inertia. We break the sheet up into thin strips along the x-axis as shown. The target variable is the 
moment of inertia. 

S ET U P  The mass density of the sheet is the total mass divided by the volume, or 

M 
P = WLt' 
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where t is the thickness of the sheet. The volume of the thin strip along the x-axis is 

dV = Wtdy. 
The mass of the strip is the density multiplied by the volume. We will integrate the product of the mass 
and r2 to find the moment of inertia. 

E X E C U T E  The moment of inertia is given by 

I = I r2dm. 
We will integrate from -L/2 to + L/2, since the sheet is centered on the origin. Replacing dm and 
adding the limits of integration gives 

L/2 
I = I r2pdV 

-L/2 
L/2 I y2�WtdY WLt 
-L/2 

L/2 
= � I/dY 

-L/2 

= M y3 1 L/2 = M[ (L/2)3 
L 3 -L/2 L 3 

ML2 
12 

The moment of inertia of the sheet rotating about the x-axis is ML2/12. 

EVA L U AT E  We see that the moment of inertia does not depend on the width or thickness of the sheet 
when it is rotated about the x-axis. If we look at other shapes in Table 9 .2, we see that neither does the 
moment of inertia depend upon dimensions along the axis of rotation. 

Practice Problem: Use the parallel-axis theorem to check that this result agrees with the moment of 
inertia of a thin rectangular plate rotated about the edge. 

Try It Yourself! 
1 :  Motion of flywheel 
A flywheel is a disk-shaped mass that rotates about its central perpendicular axis. A flywheel 1.0 m in 
diameter rotates with an initial velocity of 500 rpm. It increases its speed to 1000 rpm in 20.0 s. 
Assuming constant acceleration, find the angular acceleration and the angular displacement of the fly
wheel as it increases its speed from 500 to 1000 rpm. 
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Solution Checkpoints 

I D E N T I  F Y  A N  D S ET U P  Determine the target variables and identify the appropriate constant-angular
acceleration equations needed to find the target variables. 

E X E C U T E  The angular acceleration is found from the relation 

Wz = wOz + al· 
This gives an angular acceleration of 1 5 10 rev/min2. The angular displacement is found from the for
mula 

This gives an angular displacement of 248 rev. 

EVA L U AT E  We see that this problem closely parallels the linear kinematics problems we have seen 
throughout the previous chapters. We will continue to use angular kinematics as we investigate rotations. 

2: Energy in a grinding wheel 
How much energy is dissipated when a 2.0 kg grinding wheel of radius 0. 1 m is brought to rest from an 
initial velocity of 3000 rpm? What is the average power dissipated if the wheel stops in 10 rev? 
Assume constant angular acceleration. 

Solution Checkpoints 

I D E N T I FY A N D  S ET U P  The grinding wheel loses all of its energy as it stops, so you must find the 
initial kinetic energy. The moment of inertia of the wheel is that of a disk. To find the power, you must 
find the time it takes the wheel to stop and divide the energy by the time. The target variables are the 
energy and the power. 

E X E C U T E  The initial kinetic energy of the grinding wheel is given by 

K = �MR2W2. 

The final kinetic energy is zero, so the wheel loses 493 J. 
We find the time it takes the wheel to stop by directly combining two kinematics equations: 

w; = w6z + 2az (  8 - (0 ) and 
Wz = wOz + azt. 

These equations result in a time of 0.40 s. The power is then the energy lost divided by the time, giving 
1 .23 kW. 

E VA L U AT E  This problem combines energy, kinematics, and power. How can we best check our 
results? 



Summary 

Dynamics of Rotational 
Motion 

In this chapter, we will investigate the dynamics of rotational motion 
to learn what gives an object angular acceleration. We will define 
torque-the turning or twisting effort of a force-and learn how to 
apply it to both equilibrium and nonequilibrium situations. Work and 
power for rotating systems will also be investigated. Angular momen
tum will be introduced and become the basis of an important new con
servation law that will lead to an analysis of a spinning gyroscope and 
the motion called precession. The linear dynamics foundation we have 
developed throughout the text will help build our intuition about rota
tional dynamics .  

Objectives 
After studying this chapter, you will understand 

• The definition and meaning of torque. 
• How to identify torques acting on a body. 
• The equation of motion for rotational systems and how to apply it 

to problems. 
• How to apply work and power to rotational dynamics problems. 
• The definition of angular momentum and how it changes with 

time. 
• How to apply conservation of angular momentum to problems. 
• The concept of precession as it applies to gyroscopes. 

1 49 
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Concepts and E quations 

Term 
Torque 

Combined Translation and Rotation 

Work Done by a Torque 

Angular Momentum 

Rotational Dynamics and Angular 

Momentum 

Description 
Torque is the tendency of a force to cause or change rotational motion about a 
chosen axis. The magnitude of torque is the magnitude of the force (F) times 
the moment arm (I), which is the perpendicular distance between the axis and 
the line of force: 

T = Fl. 
For a force F applied at point 0 and a vector -; from the chosen axis to point 
0, the torque is given by 

T == r X F. 
The SI unit of torque is the newton-meter (Nm). 

The motion of a rigid body, moving through space and rotating, can be 
regarded as translational motion of the center of mass plus rotational motion 
about the center of mass. The kinetic energy, net force, and net torque are 
given respectively, by 

In the case of rolling without slipping, the motion of the center of mass is 
related to the angular velocity by 

Vern = Rw. 

The work done by a torque is given by 

For a constant torque, 

W = Tile. 
The power provided by a torque is the product of the torque and the angular 
velocity of the body: 

The angular momentum L of a particle with respect to point 0 is the vector 
product of the position vector and momentum of the particle: .... .... .... L = r X p. 
The angular momentum of a symmetrical body rotating about a stationary 
axis of symmetry is 

L == [w. 
Our convention is that counterclockwise rotations have positive L and clock
wise rotations have negative L. 

The net external torque on a system is equal to the rate of change of the 
angular momentum of the system: 

LT = 
dL. 
dt 

If the net external torque acting on a system is zero, the total angular momen
tum is conserved and remains constant. 



Conceptual Questions 
1: Ranking torques 
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In the following diagram, each rod pivots about the indicated axis with the indicated force: 

5NI 
x 

(a) (d) 

)( 

4N! � 
5N 

x 

(b) (e) 

IO
N x 

(c) 
Figure 1 0. 1  

Rank the diagrams in order of increasing torque. 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  Torque is given by 'T = rFsin¢, so we must examine the mag
nitude of the force, the location at which the force is applied, and the direction in which the force is 
applied. Comparing (a) and (b), we see that both forces act in the same direction, the force is larger in 
(a), and the moment arm is larger in (b). We estimate the moment arm in (a) as half the moment arm of 
(b) .  Since the force in (a) is less than double the force in (b), the torque in (b) is greater than that in (a). 
No torque is generated in (c), because the force acts along the moment arm . The force and moment arm 
are the same in (d) and (e), but the directions are different. However, since both forces act 30° from the 
horizontal, the components of the forces perpendicular to the moment arm are the same for both and 
the torque in (d) and (e) are the same. The vertical component of the force in (d) and (e) is 2.5 N, which 
is less than the force in (b) and less than half of the force in (a). Diagrams (d) and (e) both show less 
torque than diagrams (a) and (b) .  

Ranked in order of increasing torque, the diagrams are therefore (c), (d) = (e) , (a), (b) .  

EVA L U AT E  Torque is the most complicated quantity that we have discussed thus far. I t  depends on the 
magnitude and direction of the force responsible for it, as well as where that force acts relative to the 
rotation axis. Gaining intuition about torque will help guide you through problems. 

2: Massless versus massive pulleys 
Why were massless pulleys used in problems from the previous chapters? 

Solution 

I D E N T I F Y, S ET U P, A N D  E X E C U T E  Consider the net torque acting on a pulley with a rope resting 
on the pulley. The left segment of rope has a tension Tv and the right segment of rope has a tension TR• 
The net torque is then 
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Each tension creates a torque TR, since the rope will be perpendicular to the radius and the two torques 
are opposite in direction. Massless pulleys have no moment of inertia (since their mass is zero); there
fore, the net torque acting on the pulley is zero. If the net torque is zero, the torques in each segment 
must be equal and the tensions are equal in each rope. 

When we include the pulley's mass, the pulley has a moment of inertia. If the pulley accelerates, 
there must be a difference in the left and right torques and the tensions must also be different. Only 
when the angular acceleration is zero are the two tensions equal. 

Massless pulleys were used in earlier chapters to avoid having to include torque in our analysis. 
U sing massless pulleys simplified our analysis and let us focus on learning about forces. 

EVA L U AT E  From now on, we must assume that the tensions in segments of rope may vary and we 
must identify each segment's tension separately. 

How does the acceleration of each segment of rope compare when we include a pulley's mass? 
There is no change: Objects connected by the rope are constrained to have the same magnitude of 
acceleration. 

3: Spinning on a roundabout 
You are standing at the center of a rotating playground roundabout (a round, horizontal plate that spins 
about its center axis). As you move to the edge, will your angular speed increase, decrease, or stay the 
same? 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  To simplify our analysis, we ignore friction in the roundabout. 
Without friction, there is no torque to slow the roundabout, so angular momentum is conserved. As you 
move to the edge, the moment of inertia of the system increases. (Your mass moves to a greater radius .) 
For angular momentum to be conserved, the angular speed must be reduced. 

E VA L U AT E  Like linear momentum and energy, angular momentum is a conserved quantity. We could 
solve this problem numerically by picking initial and final angular momenta before and after you 
moved and setting them equal to each other. 

4: Standing on a turntable 
You are standing on a small frictionless turntable with your arms outstretched and spinning about the 
axis of the turntable. As you pull your arms in, you spin faster. Does your rotational kinetic energy 
increase, decrease, or stay the same? 

Solution 

I D E N T I F Y  A N D  S ET U P  There are no external torques acting on you or the turntable, so angular 
momentum is conserved. You spin faster, since you decrease your moment of inertia as you bring your 
arms in, leading to a greater angular velocity. Rotational kinetic energy is given by 

K = 1/ui. 
Since kinetic energy depends on both moment of inertia and angular velocity, and since both change, 
we' ll have to consider more information. Angular momentum is conserved, so lev is constant. 

E X E C U T E  We include angular momentum in the kinetic energy: 

K = 1Lev. 
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Since L is constant and w increases as you bring your arms in, the kinetic energy increases . 

EVA L U AT E  Where does the increased energy come from? You must do work to pull your arms in; 
doing work on the system increases its kinetic energy. 

This example also applies to a figure skater spinning on ice. 

Problems 
1 :  Balancing a food tray 
A waiter balances a tray of food on his hand. On the tray is a OAO kg drink and a 2.0 kg lobster dinner. 
The drink is placed 6.5 cm from one edge of the tray, and the lobster dinner is placed 8 .0 cm from the 
opposite edge. The tray has a mass of 1 .2 kg and a diameter of 42 cm. Where should the waiter hold the 
tray so that it doesn't tip over? 

Solution 

I D E  N T I F Y  Figure 10.2 shows a sketch, and a free-body diagram, of the food tray. The tray should be 
held so that it is in equilibrium and the net torque on it is zero. The target variable is the location at 
which the waiter's hand holds the tray. 

S ET U P  The forces on the food tray include the force of the waiter's hand holding the tray, the weight 
of the tray, and the normal forces due to the lobster dinner and drink. To find the location of the hand, 
we need to consider the torque acting on the tray. When the tray is in equilibrium, the net torque must 
be zero about any axis . We' ll take the axis to be the left edge, marked by an X. 

) 

2 1 cm 

FH a n d  
W Lobste r 

x 
Figure 1 0.2 Problem I sketch and free-body diagram. 

6.5cm 
� 

When we choose the left edge as the axis, we note that four torques act on the tray, corresponding to 
the four forces on the tray. Each of the four forces is applied perpendicular to the moment arm (the 
plane of the tray) ;  each torque is the magnitude of the force times the distance from the axis. We' ll take 
counterclockwise torques to be positive. 

E X E C U T E  Since the tray is in equilibrium, the net torque is zero: 

2. T = T tray + Tlobster + T drink + Thand = O. 
Writing the four torques explicitly, we have 
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The first term is the torque due to the weight of the tray; the moment arm is half the tray diameter (at 
the center of mass) .  The second and third terms are the torques due to the normal forces of the lobster 
dinner and drink, respectively. The normal force is equal to the weight of the objects, and the moment 
arm is the distance from the left edge of the tray. The first three terms are negative, since they are all in 
the clockwise direction. The last term is the torque due to the normal force of the waiter's hand and is 
the only positive term, because it is counterclockwise. We need to find this normal force of his hand to 
solve the problem. We find the force by using Newton's first law: 

�F = O. 

In the vertical direction, four forces act on the tray. We have 

Solving yields 

nhand = (mtray + mlobster + mdrink )g = ( ( 1 .2 kg ) + ( 2.0 kg ) + ( 0.40 kg ) ) ( 9.8 m/s2 ) = 35.3 N. 

We can now solve for the location of the waiter's hand: 

mtraygXtray + mlobstergxlobster + mdrinkgxdrink 
Xhand = 

( ( 1 .2 kg ) ( 0.2 1 m )  + ( 2.0 kg ) ( 0.080 m)  + ( 0.40 kg ) ( 0.42 m - 0.065 m )  ) ( 9 .8 m/s2 ) 
( 35.3 N )  

= 0. 1 5  m. 

The waiter should hold the tray 1 5  em from the left edge (closest to the lobster dinner) . 

E VA L U AT E  This equilibrium problem required us to apply both the equilibrium torque and the equi
librium force conditions to solve the problem. You should be familiar with the equilibrium force condi
tion and should need to gain expertise only in torque to solve similar problems. 

Experience shows that we may be able to simplify similar problems by picking an axis that coin
cides with the location at which a force is applied. This choice will reduce the number of torques in the 
problem. In the current problem, for example, we could have chosen the axis to be at the location of the 
lobster dinner, thus removing the torque due to the normal force of the lobster dinner. 

2: Tension in string attached to a falling cylinder 
A thin, light string is wrapped around the outer rim of a uniform hollow cylinder of mass 1 2.0 kg, inner 
radius 1 5 .0 cm, and outer radius 30.0 cm. The cylinder is released from rest. What is the tension in the 
string as the cylinder falls? 

Solution 

I D E N T I F Y  We will apply Newton's second law and its rotational analog to solve for the tension, the 
target variable. 
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S ET U P  Figure 1 0.3 shows a sketch, and a free-body diagram, of the situation. As the cylinder falls, it 
will accelerate downward and rotate about its central axis. In falling, the cylinder will rotate faster and 
undergo angular acceleration. The cylinder has both a net force and a net torque acting on it. 

T 

Figure 1 0.3 Problem 2 sketch and free-body diagram. 

E X E C U T E  We first apply Newton's second law to the translational motion of the center of mass in the 
vertical direction. The only forces acting in the vertical direction are gravity and tension. We have 

�Fy = Mg - T = Macm,y. 
The moment of inertia of the hollow cylinder is I = iM( Rtnner + R;uter ) .  The one torque acting on the 
cylinder as it rotates about its central axis is due to the tension force. Gravity acts on the center of mass, 
but creates no torque about the central axis. The torque acts perpendicular to the outer radius . Thus, 

We can relate the two accelerations, since the cylinder falls without slipping: 

Solving for the acceleration of the center of mass in the first equation yields 

Mg - T 
ay = 

M 

Substituting the last two equations into the torque result gives 

_ I ( 2 2 ) 
ay _ I ( 2 2 )

Mg - T 
TRouter - 2M Rinner + Router R - 2M Rinner + Router MR 

' 
outer outer 

(R;nner + R;uter ) Mg ( ( 1 5 .0 cm) 2 + ( 30.0 cm ) 2 ) ( 1 2.0 kg ) ( 9 .8 m/s2 ) 
T =  

Rtnner + 3R;uter 
= ( 1 5.0 cm ) 2 + 3 ( 30.0 cm) 2 = 45.2 N. 

The tension in the string is 45.2 N. 

EVA L U AT E  This problem resembles our earlier Newton's-law problems, but with the addition of 
torque. Once torque is included, the problem becomes a relatively straightforward algebraic one. We 
also see that the tension in the string is less than that for a stationary cylinder. If the cylinder were sta
tionary, the tension would have been 1 1 8  N. 

Practice Problem: At what rate does the cylinder accelerate? Answer: 6.03 m/s2. 
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3 :  Acceleration and tension of two blocks connected by a pulley 
Two blocks are connected to each other by a light cord passing over a pulley as shown in Figure 10.4. 
Block A has a mass of 5 .00 kg and block B has a mass of 4.00 kg. The pulley has a mass of 8 .00 kg and 
a radius of 4.00 cm. Find the acceleration of the blocks and the tensions in the horizontal and vertical 
segments of the cord. Assume that the pulley is a solid, uniform disk and there is no friction between 
block A and the table. 

Figure 1 0.4 Problem 3. 

Solution 

I D E N T I FY We' ll apply the net-force and net-torque equations to solve the problem. The accelerations 
of both blocks are the same, as we saw in Chapter 5. Our target variables are the two tensions and the 
acceleration of the blocks. 

S ET U P  Figure 1 0.5 shows the free-body diagram of the two blocks and the pulley. The forces on the 
blocks include tension, gravity, and the normal force (block A). We assume that the tensions of the two 
segments are not equal and label them TA and TB. The two tension forces lead to two torques acting on 
the pulley. (The axis of rotation is the center of the pulley.) 

y 
TB y 

B l o c k  
B x 

hA 
B l o c k  TA mB9 Pu l ley x 

A x 

y 
Figure 1 0.5 Problem 3 free-body diagrams. 

E X E C U T E  We first apply Newton's second law to each block. Block A (with mass mA) accelerates in 
the x direction due to tension TA, so 

LFx = TA = mAa. 
Gravity and tension TB act on block B (with mass mB) and that block accelerates at the same rate as 
block A in the y direction, so 

LFy = mBg + ( -TB ) = mBa. 
As block B falls, the pulley's rotational speed increases. The net torque on the pulley is 

LTz = TA - TB = Iaz, 
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where we have taken the counterclockwise torque as positive and clockwise torque as negative. The 
moment of inertia of a uniform cylinder is I = �MR2. We assume that the cord doesn' t  slip on the pul
ley, so we relate the angular acceleration of the pulley to the tangential acceleration of the cord (a): 

a 
az = --. R 

We included a minus sign in the equation because the pulley rotates clockwise (negative, according to 
our convention). The tension forces act perpendicular to the moment arm, so the torques are simply TR. 
Rewriting the net torque, we have 

L 'Tz = 'TA - 'TB = TAR - TBR = Iaz = �MR2 ( -;) . 
Simpifying yields 

TB - TA = �Ma . 

Our second-law equations are used to replace the tensions: 

- 1M  mBg - mBa - mAa - 2: a. 
Solving for the acceleration gives 

mBg a = ----------� 

mB + mA + �M 
( 4.00 kg ) ( 9.8 m/s2 ) _ / 2 

( ) ( ) 1 ( ) 
- 3 .02 m s . 

4.00 kg + 5 .00 kg + 2: 8 .00 kg 

Using this result to find the two tensions, we get 

TA = mAa = ( 5 .00 kg ) ( 3 .02 m/s2 ) = 1 5 . 1  N, 
TB = mBg - mBa = ( 4.00 kg ) ( 9. 80 m/s2 ) - ( 4.00 kg ) ( 3 .02 m/s2 ) = 27. 1  N. 

The blocks accelerate at 3 .02 m/s2, the tension in the horizontal segment of the cord is 1 5 . 1  N, and the 
tension in the vertical segment of the cord is 27 . 1  N. 

EVA LU AT E  The tensions in the two segments of the cord differ by almost a factor of two. Recall from 
our problems in Chapter 5 that the tension was constant in both segments of the cord. What causes this 
difference? The current problem includes the pulley's mass, resulting in some energy spent on increas
ing the pulley's angular velocity, leaving less energy available for the blocks. This problem also illus
trates why we let the first pulleys we encountered be massless . 

4:  Solid cylinder rol l ing down ramp 
A solid cylinder rolls without slipping down an incline of 40°. Find the acceleration and minimum 
coefficient of friction needed to prevent slipping. 

Solution 

I D E N T I  F Y  We' ll apply translational and rotational dynamics to the cylinder. Since the cylinder doesn't 
slip, we will use the relationship between the linear and angular acceleration of the cylinder. The target 
variables are the acceleration and coefficient of friction. 
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5 E T  U P  Figure 10.6 shows a sketch, and a free-body diagram, of the cylinder on the incline. Gravity, 
the normal force, and the frictional force act on the cylinder. If we set the axis of rotation at the center 
of the cylinder, a torque due to friction acts on the cylinder. We' ll apply the net-force and net-torque 
equations to solve the problem. 

A rotated coordinate system is included in the free-body diagram to simplify our analysis. 

y 

f 

Figure 1 0.6 Problem 4 sketch and free-body diagram. 

E X E C U T E  We first apply Newton's second law to the translational motion along the x-axis : 

LFx = MgsinO - Is = Max
The equation of motion for the rotation about the axis is 

L Tz = IsR = Iemcxz = �MR2cxz' 
where we included the moment of inertia (l = � MR2.) The translational and rotational accelerations are 
related by aem = cxzR, since the cylinder rolls without slipping. Combining and writing the second 
equation in terms of Is yields 

Is = �Max' 
We use this result in the first equation and solve for the acceleration: 

Mg sinO - �Max = Max, 
ax = hsinO = H9.80 m/s2 ) sin40° = 4.20 m/s2. 

To find the minimum coefficient of static friction, we use the equilibrium equation along the y-axis: 

The friction force is then 

Solving for fLs gives 

LFy = n - mgcos O = O. 

�ax H 4.20 m/s2 ) 
fLs = = ( / 2 ) 

= 0.280. 
g cos O 9.8 m s cos 40° 

The cylinder accelerates at 4.20 m/s2, and the minimum coefficient of static friction that will prevent 
slipping is 0.280. 

Evaluate This solution is a straightforward application of net-force and net-torque problem-solving 
techniques. We see that neither the mass nor the radius of the cylinder affect the results, which are 
valid for any cylinder rolling down a 40° incline. 
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A rod of mass 1 .0 kg and length 0.50 m is connected to the ceiling by a frictionless hinge. It is released 
from rest when it is in the horizontal position. What is its angular velocity when it is vertical? 

Solution 

I D E  N T I FY There are no dissipative forces, so we will use conservation of energy. The rod begins with 
only gravitational potential energy, which is subsequently transformed to kinetic energy. The target 
variable is the rod's angular velocity when the rod is vertical. 

S ET U P  Figure 1 0.7 shows a diagram of the rod as it falls. The center of mass of the rod is at the cen
ter of the rod; the gravitational potential energy depends on the position of the center of mass. As the 
rod falls, its rotational kinetic energy increases. 

We set the origin of the coordinate axis at the center of the rod when it is in the vertical position. 
The initial height of the rod in this coordinate system is h = L/2. 

I � 
Y t :  · ��- - - -o � , ,,,,� 

I � "  
: /" I ' 
I 
I e � 

Figure 1 0.7 Problem 5 sketch and free-body diagram, 

E X E C U T E  Conservation of energy gives 

K] + UI = K2 + U2· 
Initially, there is only gravitational potential energy (MgL/2 ) . When the rod is in the vertical position, 
there is only kinetic energy. The kinetic energy of the rod is 

K 
- ] I 2 - I ( I ML2 ) 2 -

2: Wz - 2: 3 wz · 
Combining these energies, we find that 

Solving for angular velocity gives 

UI = K2, 

Mg 
L = �ML2

w;. 
2 

w, � It � 
3 ( 9 .8 m/s2 ) ( 

) 
= 7 .67 rad/s. 

0.5 m 

The angular velocity of the rod when it is vertical is 7.67 rad/s. 
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EVA L U AT E  Could we have obtained this result by using rotational dynamics? We could have, although 
it would have required additional calculations . The forces and torques change with position; hence, the 
solution would have been more challenging. 

6: Baggage carousel 
A baggage carousel has a mass of 500.0 kg and can be approximated as a disk of radius 2.0 m. It is 
rotating freely at an angular velocity of 1 .0 rad/s when 10 pieces of baggage, each with a mass of 
20.0 kg, are dropped on the edge of the carousel. Assuming that no external torques act on the system, 
what is the final angular velocity of the system? 

Solution 

I D E  N T I F Y  Since there are no external torques, the total angular momentum of the system remains 
constant. We will find the initial angular momentum and set it equal to the final angular momentum. 
The target variable is the carousel 's angular velocity after the baggage is added. 

5 ET U P  The initial angular momentum is that of the carousel. As the bags are added, they share the 
angular momentum, resulting in a slower final angular velocity. 

E X E C U T E  The initial angular momentum is 

The final angular momentum will be the angular momentum of the carousel plus the angular momen
tum of the 10 bags: 

L2 = IcarouselW2 + 1 Ombagr�agW2 = ( 4McarouselR�arousel ) W2 + 1 Ombagr�agW2' 
Equating the initial and final angular momenta gives 

All of the radii are 2.0 m, so they cancel. Solving for the final angular velocity gives 

( 4 Mcarousel ) W I 
W2 = I ( 2: Mcarousel ) + 10mbao <> 

( 4 ( 500.0 kg ) ) ( 1 .0 rad/s ) 
/ --'-=----'-----=--'---'------'--------=----'---- = 0.556 rad s . 

( 4 ( 500.0 kg ) )  + 10 ( 20.0 kg ) 
The final angular velocity of the system is 0.556 rad/s. 

EVA L U AT E  We see how to apply conservation of angular momentum in this problem. Was energy 
conserved? Even though there were no external torques, there must have been external forces, since 
energy was not conserved. 

Practice Problem: How much energy was lost as the baggage was added? Answer : 2 1 8  J. 

7: Rotating mass on a string 
A 0. 10  kg block of mass is attached to a cord that passes through a hole in a horizontal frictionless sur
face. The block initially is rotating in a circle of radius 0.20 m at an angular velocity of 7.0 rad/s. A 
force is applied to the cord, shortening it to 0. 10 m. What is the new angular velocity of the block? 
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I D E N T I F Y  A N D S ET U P  There is no external torque, as the force exerts no torque at the hole. There
fore, the total angular momentum of the system remains constant. The target variable is the block's 
final angular velocity. 

E X E C U T E  The initial angular momentum is 

L l = I,UJ , = lnrTUJ I '  
The final angular momentum is 

Setting these equal to each other gives 

Solving results in 

The final angular velocity of the block is 28 rad/s. 

EVA L U AT E  We see that the final angular velocity is greater than the initial angular velocity, since the 
radius decreased. The final result does not depend on the mass of the block. We can go on to find the 
amount of work done by the force by comparing the initial and final kinetic energies. 

Practice Problem: How much work did the force do when shortening the cord? Answer: 0.29 J. 

Try It Yourself! 
1 :  Torque in a grinding wheel 
How much torque is required to bring a 2.0 kg grinding wheel of radius 0 . 1 m to rest from an initial 
velocity of 3000 rpm? The grinding wheel stops in 10 rev. How much work is done by the torque to 
bring the grinding wheel to a halt? Assume constant angular acceleration. 

Solution 

I D E N T I F Y A N D  S E T  U P  We apply our results from Try It Yourself! Problem 9.2 as a starting point. 
We begin by finding the angular acceleration and use that in combination with the moment of inertia to 
find the torque. The work is the torque times the angular displacement. 

E X E C U T E  The angular acceleration is -4.5 X 105 rev/rnin2, which, when combined with the 
moment of inertia, gives a torque of -7 .85 Nm. 

The work done by the torque is -493 J. 

EVA L U AT E  Why are the angular acceleration, torque, and work done all negative values? The nega
tive sign indicates that the grinding wheel is slowing. 
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2 :  Mass on a flywheel 
A cord is wrapped around the rim of a uniform flywheel of radius 02.0 m and mass 10.0 kg. A 1 0.0 kg 
mass is suspended from the cord 10.0 m above the floor. How much time does it take the mass to hit the 
floor? What is the tension in the rope as it falls? 

Solution 

I D E N T I F Y  A N D S ET U P  Apply the net-force and net-torque equations to solve the problem. The 
length of cord pulled from the flywheel is equal to the arc length r(J at the wheel. 

E X E C U T E  Combining the torque and force equations yields the relation 

g a = ---=-----
1 + mflywheel 

2mmass 
for the acceleration. This result can be combined with linear kinematics to find the time to fall, 1 .74 s .  
The tension in the rope i s  found from the net-force equation: 

The tension is 32.7 N. 

EVA L U AT E  Can energy conservation be used to check the results? 

3: Man on a turntable 
A turntable with moment of inertia of 2000 kgm2 makes one revolution every 5 .0 s . A man of mass 
100 kg standing at the center of the turntable runs out along a radius fixed on the turntable. What is the 
angular velocity of the turntable when the man is 3 .0 m from the center? 

Solution 

I D E N T I F Y  A N D  S ET U P  There are no external torques acting on the system, so angular momentum 
is conserved. As the man runs out, he changes the angular momentum of the system. 

E X E C U T E  Conservation of angular momentum gives 

This results in a final angular velocity of 0.14 revis, or one revolution every 7.25 s . 

EVA L U AT E  Does the man do positive or negative work on the system? Work is done on the man as he 
runs out. 
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These first 1 0  chapters of the book form the basis of kinematic and dynamic problem-solving tech
niques. Future chapters will expand to include additional forces and forms of energy, but still utilize 
the same problem-solving techniques. Our problem-solving methodology continues to encompass the 
following techniques: 

• Identifying the general procedure to find the solution. 
• Sketching the situation when no figure is provided. 
• Identifying the forces and torques acting on the bodies. 
• Identifying the forms of energy included in the problem. 
• Drawing free-body diagrams of the bodies. 
• Applying appropriate coordinate systems to the diagrams. 
• Applying the equations of motion to find relations among the forces, masses, and accelerations. 
• Applying conservation of energy and conservation of momentum when appropriate. 
• Solving the equations through algebra and substitutions . 
• Reflecting on the results and checking for inconsistencies. 

Expert problem solvers use this foundation at all levels of physics investigations, from introductory 
courses through cutting-edge research projects . 





Equilibrium and Elasticity 

Summary 
We will explore equilibrium and elasticity in this chapter. We will 
focus on extended bodies in equilibrium: bodies having no net force or 
torque acting on them. Bodies deform when forces act on them, so we 
will examine deformations that describe the stretching, twisting, and 
compressing of a body. New concepts and principles will be intro
duced to quantify deformations-ideas based on the concepts and prin
ciples we encountered in previous chapters . We will learn about stress, 
strain, and elastic modulus, and we will further clarify Hooke's law. 

Objectives 
After studying this chapter, you will understand: 

• The conditions required for a body to be in equilibrium. 
• The definition of center of gravity and how to apply it to a problem. 
• How to solve problems when bodies are in equilibrium. 
• How to analyze problems involving the deformation of bodies. 
• Stress and strain with respect to tension, compression, and shear 

forces. 
• How to use Young's, bulk, and shear moduli to predict the changes 

due to stress . 
• The limits of stress and strain. 

1 65 
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Concepts and Equations 

Term 
Equilibrium of a Rigid Body 

Center of Mass 

Stress and Strain 

Tensile and Compressive Stress 

Bulk Stress 

Description 
No net force and no net torque acts on a rigid body in equilibrium: 

The torque due to the weight of a body is found by assuming that the entire 

weight of the body is located at the center of gravity, given by 

The center of gravity is equivalent to the center of mass when gravity is 
constant. 

Stress characterizes the strength of a force that stretches, squeezes, or twists 

an object. Strain is the resulting deformation. Stress and strain are often 

directly proportional, with the proportionality-the elastic modulus-given 

by Hooke's law: 

stress 
elastic modulus = --.-. 

stam 

Tensile stress is the ratio of the perpendicular component of a force to the 

cross-sectional area where the force is applied: 

F.1 
Tensile stress = A 

The SI unit of stress is the pascal (Pa), equal to I newton per meter squared. 

Tensile strain is the ratio of the change in an object's length under stress to its 
original length: 

Tensile Strain 

Young's modulus Y is the elastic modulus: 

Tensile stress 
Y = -----

Tensile strain 

Compressive stress and strain are defined in the same manner. 

The pressure in a fluid is the force per unit area of the fluid: 

F.1 
p = -. 

A 

Bulk stress is the change in pressure, and bulk strain is the fractional change 

in volume, of the fluid. The bulk modulus is the elastic modulus: 

Bulk stress B = ---
Bulk Strain 



Shear Stress 

Limits of Hooke's law 

conceptual Questions 
1 :  Body in equilibrium 
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Shear stress is the force tangent to an object's surface, divided by the area on 

which the force acts. The shear modulus (S) is the ratio of shear stress to 

strain: 

S 
= Shear stress = FillA 

Shear strain xl h . 

There is a maximum stress for which stress and strain are proportional, 
beyond which Hooke's law is not valid. The elastic limit is the stress beyond 

which irreversible deformation occurs. 

A body is acted upon by no net force and no net torque. Is it at rest? 

Solution 

I D E N T I F Y, S ET U P, A N D E X E C U T E  A body that is moving with constant velocity is in equilibrium. 
A body could exhibit translational motion with a constant velocity or rotate with a constant angular 
velocity (or both) and remain in equilibrium. 

EVA LU AT E  Just as we saw with forces, constant velocity is a state of equilibrium. 

2 :  Ladder on a frictionless surface 
A ladder is placed against a wall . The wall is rough, but the floor is frictionless. Can the ladder be in 
equilibrium? 

Solution 

I D E N T I F Y, S ET U P, A N D  E X E C U T E  Four forces act on the ladder: the normal force due to the wall, 
the normal force due to the floor, gravity, and friction due to the wall. Three of the forces act in the ver
tical direction: gravity (acting downward), friction due to the wall (acting upward), and the normal 
force due to the floor (acting upward). These forces can sum to zero, since they act in different direc
tions. One force acts in the horizontal direction: the normal force due to the wall. Since there is only 
one force, the net force on the ladder cannot be zero and therefore the ladder cannot be in equilibrium. 

EVA L U AT E  Equilibrium is needed in order for us to use the ladder. How can we achieve equilibrium? 
Friction with the floor is needed to establish equilibrium. Can the ladder be in equilibrium if placed 
against a frictionless wall on a rough floor? Yes, the forces and torques can be in equilibrium in this case. 
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Problems 
1 :  Forces on a diving board 
A 4.0-m-Iong diving board with a uniform mass of 150.0 kg is mounted as shown in Figure 1 1 . 1 .  Find 
the forces holding the board in place when a 100.0 kg man is standing on the end of the board. 

j<E- I m 

Figure 1 1 .1 Problem 1 .  

Solution 

I D E N T I FY We' ll use the conditions of equilibrium to solve the problem. The board has two forces 
holding it in place: a downward force at the left end and an upward force at the pivot. The target vari
ables are the forces acting on the board. 

S ET U P  Figure 1 1 .2 shows the free-body diagram of the board. Forces A and B hold the board in 
place, the weight of the board acts at the board's center, and the weight of the man acts at the end. We 
will take counterclockwise torques as positive. 

y 

A 

r-----�------r-------------.----x 
� 1 m ----*"- 1 m ---7�---- 2 m -----+I 

A 

B mSoard g 
Figure 1 1 .2 Problem 1 free-body diagram. 

E X E C U T E  Newton's first law applied to the board gives 

L Fy = 0 = -FA + FB - mboardg - mmang. 
We have two unknowns in this equation, so we need to use the net torque equation. The net torque 

about the left end is zero: 
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Solving for the force at B gives 

FE = mboardg ( 2.0 ) + mmang (4.0 ) = 6860 N. 
Substituting and solving for the force at A gives 

FA = FE - mboardg - mmang = 441 ON. 
The force at the left end is 4410  N downward, and the force at the pivot point is 6860 N upward. 

EVA L U AT E  To simplify our analysis, we chose the axis for the net torque such that the torque due to 
force A was zero. We can double check the result by calculating the torque about the pivot point. If we 
do, we find the same result. 

2 :  Force on a support strut 
Find the force exerted by the wall on the uniform strut shown in Figure 1 l .3 if the strut weighs 1 00.0 N. 

5 m 

A 1=========� 
4 m  

300 N 
Figure 1 1 .3 Problem 2. 

Solution 

I D E  N T I  F Y  We' ll use equilibrium conditions to solve the problem. The strut has four forces acting on 
it; both the net force and the net torque are zero. The target variable is the force acting on the strut due 
to the wall. 

5 ET U P  Figure 1 1 .4 shows the free-body diagram of the strut. The weights of the strut and hanging 
mass, tension, and the force of the wall act on the strut. We assume that the force of the wall on the 
strut acts to the right and upward. The forces act in two directions, so we'll need to include net forces 
in those directions. We will take counterclockwise torques as positive. 

y 

T 

() �----�------�-----x 

Ws = 1 00 N Will = 300 N 
Figure 1 1 .4 Problem 2 free-body diagram. 
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E X E C U T E  Newton's first law applied in the x direction gives 

LFx = 0 = Fwx - TcosO. 

Newton's first law applied in the y direction gives 

LIS, = 0 = Fwy + TsinO - Ws - WM' 

We have three unknowns in these equations, so we need to use the net torque equation. The net 
torque about the left end of the strut is zero: 

L7 = 0 = -ws (2.0 m ) - wM(4.0 m ) + TsinO (4.0 m ) . 

Inspecting the figure, we see that the sine and cosine of the angle are 3/5 and 4/5, respectively. We 
solve the torque equation for tension, giving 

ws (2.0 m ) + WM ( 4.0 m ) 
T = = 583 N. 

sinO ( 4.0 m ) 
With the tension, we can solve for the components of the force due to the wall: 

Fwx = Tcos O = 467 N, 
Fwy = Ws + WM - TsinO = SO N. 

The magnitude of the force is 

and it acts at an angle 

above the positive x-axis .  

EVA L U AT E We see that we chose the correct directions for the force of the wall on the strut. If we hadn' t  
guessed correctly, we would have found negative results for one or both of the force components . 

You can double check the result by calculating the torque about any other point. Do you find the 
same result when you do? 

Pick pivots carefully! Carefully choosing your pivot point simplifies the net torque 
equation, as we have seen in the previous two examples. Note how the pivot point is chosen in the 
next two problems. 

3 :  Boom in equilibrium 
A horizontal wire supports a boom of length L. The boom supports a 200.0 N weight as shown in 
Figure 1 1 .5 .  The boom weighs 200.0 N. Find the tension in the wire and the force exerted by the 
ground on the boom. 
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A 

Figure 1 1 .5 Problem 3 .  

Solution 

I D E N T I  F Y  We' ll use equilibrium conditions to solve the problem. The boom has four forces acting on 
it; both the net force and the net torque are zero. The target variables are the tension and the force act
ing on the boom due to the ground. 

S ET U P  Figure 1 1 .6 shows the free-body diagram of the boom. The weights of the boom and the 
hanging mass, tension, and the force of the floor act on the boom. We assume that the force of the 
ground on the boom acts to the right and upward. The forces act in two directions, so we'll need to 
include net forces in those directions. We will take counterclockwise torques as positive. 

I<EI (-- L cos e --�) I 
---------"""'7"'-. C 

L sin e 

�------�----x 

Figure 1 1 .6 Problem 3 free-body diagram. 

E X E C U T E  Newton's first law applied in the x direction gives 

2: Fx = 0 = Fx - T .  
Newton's first law applied in the y direction gives 

2:Fy = 0 = Fy - w - w. 



1 72 CHAPTER 1 1  

We have three unknowns in these equations, so we need to use the net torque equation. The net 
torque about the bottom end of the boom is zero: 

2: T = 0 = LTsin8 - Lwcos 8 - �Lwcos 8. 

We solve the torque equation for tension, giving 

3 w cos 8 3 (200.0 N ) cos 60° 
T = = - = 1 73 N. 2 sin 8 

2 sin 60° 

With the tension, we can solve for the components of the force due to the ground: 

Fx = T = 173 N, 

Fy = - 2w = 400.0 N. 

The magnitude of the force is 

F = v'F� + F; = 436 N, 

and it acts at an angle 

above the positive x-axis. 

EVA L U AT E  We see that we chose the correct directions for the force of the ground on the boom. If 
we hadn't  guessed correctly, we would have found negative results for one or both of the force 
components. 

You can double check the result by calculating the torque about any other point. Do you find the 
same result when you do? 

4: Coefficient of friction for a strut 
Find the minimum coefficient of friction between the weightless horizontal strut and the wall in the 
system shown in Figure 1 1 .7 .  

30° = e A�------�----------� 
��----- � ----�)I 

4 

Figure 1 1 .7 Problem 4. 

Solution 

I D E  N T I  F Y  We'll use equilibrium conditions to solve the problem. The strut has four forces acting on it; 
both the net force and the net torque are zero. The target variable is the coefficient of friction at the wall. 
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5 ET U P  Figure 1 1 .8  shows the free-body diagram of the strut. The weights of the hanging mass, ten
sion, friction, and the normal force of the wall act on the strut. The forces act in two directions, so we' ll 
need to include net forces in those directions. We will take counterclockwise torques as positive. 

, I " 
I 

Y 
/I'" 

I " 
I , 

I " 
I " 

f / '" 
/ ' ................ T 

I 
I 

I 
I 

I 

��========�x 
n 

w 

Figure 11.8 Problem 4 free-body diagram. 

E X E C U T E  Newton's first law applied in the x direction gives 

2:Fx = 0 = n - Tcos 30°. 
Newton's first law applied in the y direction gives 

2:Fy = 0 = f + Tsin 30° - w. 
We have three unknowns in these equations, so we need to use the net torque equation. The net 

torque about the left end of the strut is zero: 

2: T = 0 = -w!L + Tsin30°L. 
We solve the torque equation for tension, giving 

w 
T =  . 

4 sin30° 
With the tension, we can solve for the normal and friction forces: 

wcos 30° 

For there to be no slipping, 

n = Tcos 30° = ---4 sin30° ' 
f = w - Tsin30° = w - !w = �w. 

f < I·Ln. 
Solving for the coefficient of friction gives 

f �w 
JL = - = --'--- = 3 tan 30° = 1 .73 .  

n w 
4tan 30° 

The minimum coefficient of friction is 1 .73 .  

E VA L UAT E  How can you double-check the result? Do you find the same result when you do? 
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5: Strain in a steel cable 
A 1 0.0 kg weight is hung from a steel wire having an un stretched length of 1 .0 m and a diameter of 
2.0 mm. How much does the wire stretch? 

Solution 
I D E N T I FY The force acting on the cable is the weight of the mass. Young's modulus will be used to 
find the change in length. 

S ET U P  We look up Young's modulus for steel and find that it is 2 X l Ol l  Pa. 

E X E C U T E  Young's modulus is 
F/A 

Y = --'---
I1L/Lo· 

Rearranging terms to find the change in length gives 

I1L = _FL_o = _m---=-gL_o=----
YA Y1T ( d/2 ) 2 

( 1 O.O kg ) ( 9 .8 m/s2 ) ( 1 .0 m )  
_ -4 _ 

( 11 / 2 ) ( / ) 2 - 1 .56 X 1 0  m - 0. 1 56 mm. 
2 X 10 N m 1T 0.002 mm 2 

EVA LU AT E  We see that the stretch is very small for the wire. This agrees with experience: Steel is a 
difficult material to stretch. 

6: Strain on an elevator cable 
A steel elevator cable can support a maximum stress of 9.0 X 107 Pa. If the maximum mass of the fully 
loaded elevator is 2 100 kg and the maximum upward acceleration is 3.0 m/s2, what should the diame
ter of the cable be? By how much does the cable stretch when the elevator is accelerating upward at 
3 .0 m/s2 and 120 m of cable has been released? (Young's modulus for steel is 2 X 1 011 Pa.) 

Solution 
I D E N T I F Y  We' ll use Newton's second law to find the tension in the elevator cable and then use the 
maximum stress to find the cable diameter. To solve the second part, we' ll use Young's modulus. The 
target variables are the cable diameter and the elongation of the cable. 

S ET U P  Figure 1 1 .9 shows the free-body diagram of the elevator. Gravity and tension act on the elevator. 

T 

Figure 11.9 Problem 6 free-body diagram. 

E X E C U T E  We' ll apply Newton's second law to find the maximum tension in the cable: 

� Fy = T - mg = may. 
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The tension is then 

T = m(g + aJ = (2100 kg ) ( (9.8 m/s2 ) + (3.0 m/s2 ) )  = 26,900 N. 
Stress is the force per unit area, or 

F T 
S = 

A = A· 
The area can be written in terms of the diameter as 

The diameter is then 

d=�T =2 
S'lT 

'lTd 2 A=-. 4 

(26,900 N )  
( 7) = 0.020 m = 2.0 cm, 9.0 X 10 'IT 

where we have replaced the stress with the maximum stress. Young's modulus then leads to the amount 
of cable stretch: 

Rearranging terms to find the cable stretch gives 

fll = 410; = (
4( 120 �1/26,900�: ) = 0.051 m = 5.1 cm. 'lTd Y 'IT 0.020 m 2.0 X 10 Pa 

The cable must have a 2.0 cm diameter and stretch 5.1 cm when 120 m of cable has been released. 

EVA L U AT E  We see that the 2-cm-thick cable stretches over 5 cm. This may appear to be a significant 
elongation, but it represents only 0.04% of the cable length. 

7: Compressibility of oil 
Find the compressibility of a 0.1 m3 sample of oil whose volume decreases 2.04 X 10-4 m3 when sub
jected to an increase in pressure of 1.02 X 107 Pa. 

Solution 
I D E N T I FY A N D  S ET U P  We will use the bulk modulus to find the compressibility. With the given 
information, the compressibility follows directly from the definition of the bulk modulus . 

E X E C U T E  The bulk modulus is given by 

B= 

Solving, we have 
flpVo B = ---= 

flV 



1 76 CHAPTER 1 1 

The compressibility is the inverse of the bulk modulus, or 
1 1 

k = - = = 2.0 X 10- 5/ atm. 
B 4.9 X 104 atm 

EVA LU AT E  We see that the oil does not compress when subjected to pressure. It requires an increase 
of 500 atmospheres of pressure to change the volume by 1 %. 

Try It Yourself! 
1: Tension in support cable 
Find the tension in the supporting cable and the force acting on the strut due to the wall for the weight
less horizontal strut shown in Figure 1 1 . 10. 

Solution Checkpoints 

5m 

e 

A +===========� 
o 4m 

300N 

Figure 11.10 Try it yourself 1. 

I D E N T I F Y  A N D  S ET U P  The strut is in equilibrium, so apply equilibrium conditions to solve the 
problem. Start with a free-body diagram, and include the force due to the weight hanging off the end of 
the strut, tension, and the force of the wall. Set the net forces and net torques equal to zero. 

E X E C U T E  Newton's first law applied in the x and y directions gives 

,LFx = 0 = Fwall x  - Tcose, 
,LFy = 0 = FwaUy + Tsine - w. 

The net torque about the right end of the strut is zero: 

,L T = 0 = - Fwall y (  4.0 m ) . 
Determine the sine and cosine of the angle and solve. 
The tension is 500.0 N. The force due to the wall is 400 N, directed perpendicular to the wall. 

EVA LU AT E  Choosing a good pivot point simplifies calculations. By calculating the torques about the 
right end of the strut, we immediately learned that there is no y component of force due to the wall. Do 
you get the same result if you set the pivot on the left end of the strut? 
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2: Force acting on a ladder 
A ladder of mass 25 .0 kg rests against a frictionless wall as shown in Figure 1 1 . 1 1 . Find all the forces 
acting on the ladder. 

Figure 11.11 Try it yourself 2. 

Solution Checkpoints 
I D E  N T I  FY A N D  S ET U P  The ladder is in equilibrium, so apply equilibrium conditions to solve the 
problem. Start with a free-body diagram, and include the forces due to the wall, the ground, and grav
ity. Set the net forces and net torques equal to zero. 

E X E C U T E  Newton's first law applied in the x and y directions gives 

.L Fx = 0 = Fgroundx -

n, 
.L Fy = 0 = Fgroundy -

w. 
The net torque about the bottom end of the ladder is zero: 

L . .L'T = 0 = 
-

-wcose + Ln sm8. 
2 

The normal force due to the wall is 7 1  N. The force due to the ground is 7 1  N in the positive x direc
tion and 245 N upward. 

EVA L UAT E  Does the wall exert a force in the vertical direction? How can you check your results? 

3: Friction force acting on a ladder 
A ladder of mass 25.0 kg rests against a frictionless wall as shown in Figure 1 1 . 1 1 .  What is the mini
mum coefficient of friction between the ladder and the ground that allows the ladder to stand without 
slipping? 

Solution Checkpoints 
I D E  N T I FY A N D  S ET U P  The x component of the force due to the ground is the friction force in the 
previous problem. Use the definition of friction to solve for the coefficient. 

E X E C U T E  The static friction force is 

The coefficient of static friction is 0.29. 
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EVA L U AT E: How did you find the normal force? 

4: Stress in wire 
A copper wire of cross-sectional area 0.050 cm2 and length 5 .0 m is attached end to end to a steel wire 
of length 3 .0 m and cross-sectional area 0.020 cm2. The wires are stretched under a tension of 200.0 N. 
Find the stress in each wire and the total change in length for the combination. 

Solution Checkpoints 
I D E N T I FY Tensile stress is the force per area. Young's modulus will be used to find the change in 
length. You can find Young's modulus for steel and copper from Table 11 .1  of the text. Then add the 
changes in lengths to find the total change in length. 

E X E C U T E  The stresses are 

F StressCopper = 
A = 4.0 X 107 Pa, 

F StreSSStee l = A = 1 .0 X 108 Pa. 

The change in length of the copper is 

!J.L = FLo = 1 .5 X 10- 3 m. fA 
For steel, the change in length is 1 . 8 X 10-3 m. The total length is 3 .3 X 10-3 m, or 3 .3 mm. 

E VA L UAT E  We see that the stretch is very small for combined length of wire. 



Gravitation 

Summary 
In this chapter, we will delve into the gravitational interaction by 
learning that the gravity we experience on earth also applies to planets 
and celestial objects and is responsible for their motion. We will see 
how to apply Newton's law of gravitation and gain a better under
standing of the concept of weight. We' ll use this knowledge to explain 
the orbits of satellites and planets. We will also examine an extreme 
case of gravity: black holes. 

Objectives 
After studying this chapter, you will understand 

• How to apply Newton's law of gravitation to pairs of masses. 
• The general definition of weight. 
• How to use the generalized expression for gravitational potential 

energy. 
• How satellites orbit astronomical bodies. 
• How to predict the motion of satellites. 
• Kepler's three laws of planetary motion. 
• The definition of a black hole and the properties of black holes. 

179 
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Concepts and Equations 

Term 
Newton's Law of Gravitation 

Weight 

Gravitational Potential Energy 

Orbits of Satellites 

Kepler's Laws 

Black Holes 

Description 
Newton's law of gravitation states that the magnitude of the force between 
two bodies with masses m 1 and m2, separated by a distance 1; is given by 

where G denotes the gravitational constant and is equal to 6.67 X 

10-11 N . m2/kg2• The gravitational force is always attractive and is directed 
along the line that separates the objects. 

The weight of an object is the total gravitational force exerted on the object 
by all other objects in the universe. Near the surface of the earth, an object's 
weight is very nearly equal to the gravitational force of the earth on the 
object alone. 

The gravitational potential energy of two bodies with masses m and mE' sepa
rated by a distance 1; is given by 

GmEm 
U= - --. 

r 

The potential energy is never positive and is zero only when the two objects 
are infinitely far apart. 

For a satellite moving in a circular orbit, the gravitational attraction between 
the satellite and the astronomical body provides the centripetal acceleration. 
The velocity v and period T of a satellite orbiting at a radius r are given, 
respectively, by 

v = �G;, 

27Tr3/2 
T = VCiM' 

where M is the mass of the astronomical body. 

Kepler's three laws describe the motion of a planet or satellite around the sun 
or another planet. They describe the elliptical motion and the area swept out 
per unit time in the orbit, as well as relate the period of the planet or satellite 
to the major axis of its orbit. 

A black hole is a nonrotating spherical mass distribution with total mass M 
contained within a radius Rs, the Schwarzschild radius, given by 

2GM 
Rs = -2-· 

C 

Gravity prevents matter and light from escaping from within a sphere with 
radius Rs. 



conceptual Questions 
1: Is the earth falling? 

G RAVITATION 1 81 

There is a net gravitational force between the earth and the sun, so why doesn't the earth fall into the sun? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  The earth is constantly falling toward the sun, but the earth 
doesn't  get closer to the sun, since the sun's surface curves away beneath the earth. Recall projectile 
motion from Chapter 3 .  If we launch an object parallel to the ground, it follows a parabolic path. If we 
give the object a larger initial velocity, then the object moves farther away from the launch site as it 
falls. The earth is round, so as the object moves farther away, the object will have a larger distance to 
fall. At a sufficiently high launch velocity, the object will make a complete revolution and not land on 
the ground. This is the same physical situation as the earth revolving around the sun. If the earth had a 
lower velocity, it would fall into the sun. 

EVA L U AT E  This result may seem a bit odd, but is indeed accurate. The result also shows how our 
understanding of one physical phenomenon helps us understand other phenomena: Our experience 
with projectile motion helped us interpret the motion of the earth around the sun. 

2: Does the earth maintain a constant speed? 
In the previous question, we saw that the earth is constantly falling. Does it maintain a constant speed? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  There is a net gravitational force acting on the earth due to the 
sun. The direction of the net force is toward the sun; however, the earth's velocity is perpendicular to 
the direction of force. The gravitational force can change only the direction of the earth's velocity 
around the sun and not the magnitude of the velocity. Thus, the earth maintains a constant speed as it 
orbits the sun. The earth does not maintain a constant velocity, since its direction is always changing. 

EVA L U AT E  We've come to know that a net force causes acceleration-a change in velocity. In the 
previous chapters, often the magnitude of an object's velocity changed when the object was acted upon 
by a net force. This chapter examines additional consequences of the influences of forces. 

3: Two satel l ites and the earth 
The moon and the international space station are located on opposite sides of the earth. How does the 
presence of the earth influence the gravitational force between the moon and the space station? 

Solution 
I D ENT I FY, S ET U P, AN D E X E C U T E  The gravitational force between two bodies depends only on 
the mass of the bodies and their separation, according to Newton's law of gravitation. The force 
between the moon and the space station is not affected by the presence of the earth. There are forces 
between the earth and the two orbiting satellites, but those forces do not affect the force between the 
satellites .  

EVA L UAT E Forces are between two bodies. The net force on a single body may include forces due to 
many bodies, but each force acts between two bodies. 
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Problems 
1: Gravitational force due to three masses 
Three masses are arranged as shown in Figure 12.1. Find the net force acting on the top mass (A). Each 
mass is S.OO kg. 

Solution 

A, 
I 
I 
I 
I 

!Oem : 
I 
I 
I 

tl---------. 
B 10 em C 

Figure 12.1 Problem 1. 

I D E  NT I F Y The net force on A is found by adding the force on A due to B and the force on A due to C. 
The target variable is the force on A. 

S ETU P A free-body diagram illustrating the two forces on A is shown in Figure 12.2. We'll need to 
add the two forces by using components. Newton's law of gravitation gives the magnitude of the 
forces. We'll use the coordinate axes provided in the figure. 

Figure 12.2 Problem I 

free-body diagram. 

E X E C U T E  To apply Newton's law of gravity, we need the distances between the masses. The distance 
between A and B is 10.0 cm. By summing the squares of the sides of the triangle and taking the square 
root, we find that the distance between A and C is 14.1 cm. The force of B on A is 

The force of C on A is 

( 6.67 X 1O-11 Nom2/kg2) (S.00 kg) (S.OO kg) 
_ -7 

( ) 2 - 1 .67 X 10 N. 0.100 cm 

( 6.67 X 1O-11 N° m2/kg2) (S.00 kg) (S.OO kg) 
_ -8 (0 ) 2 - 8.39 X 10 N . . 141 cm 

With the magnitudes of the forces determined, we simply add the two vectors together, using compo
nents. The force of C on A has the only x component: 

2:Fx = FConAsin4So = S.93 X 10-8 N. 
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The 45° angle results from the masses arranged as an isosceles triangle. Both forces have y components : 

L,Fy = 
-

FBonA - FC onA sin45° = - 2.26 X 1 0- 7 N. 
The negative result indicates that the y component points downward. We find the magnitude of the net 
force by combining the components: 

F = VF; + F; = 2.34 X 10- 7 N. 
The direction of the net force is found by using the tangent. We want to specify the angle ¢ with 
respect to the x-axis : 

The net force on A has magnitude 2.34 X 10-7 N and points 75.30 below the positive x-axis .  

EVA L UAT E  We see that the gravitational force between the masses is very small. To have an apprecia
ble gravitational force, we need at least one large mass, such as the earth. Also, we can see that New
ton's third law is valid: Reversing indices in the first two equations would result in a force of the same 
magnitude, but opposite in direction. 

2: Orbit of a weather satell ite 
Imagine you are designing a new weather satellite. The goal is to have the satellite orbit the earth in a 
circular orbit every 6 hours. At what distance above the earth's surface should the satellite be placed to 
obtain the correct period? 

Solution 
ID ENT I FY The force acting on the satellite is the force of gravitation between the satellite and the 
earth. The satellite follows a circular orbit and so has a radial acceleration toward the center of the 
earth. The target variable is the height of the satellite's orbit. 

S ET U P  Newton's law of gravitation gives the force on the satellite due to the earth. The acceleration 
of the satellite is centripetal. Combining the two equations will lead to the velocity of the satellite and 
the period of rotation. We solve for the distance by setting the period to 6 hours. 

E X E C U T E  Newton's law of gravitation gives the force on the satellite, namely, 
GmmE Fg = 2 ' r 

where m is the mass of the satellite, mE is the mass of the earth, and r is the distance from the center of 
the earth to the satellite. Newton's second law gives the net force on the satellite (the acceleration is 
v2/r) : 

Solving for v, we find that 
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We can also write the velocity in terms of the distance the satellite travels (21Tr) in one period (T): 
21Tr 

v = --. T 
To find the radius, we equate the last two equations and solve for r, obtaining 

r =  3 GmET2 
41T2 

where we replaced the 6 hour period with the equivalent 21,600 s. The satellite should be placed in an 
orbit of radius 16,800 krn. Subtracting the radius of the earth (6380 krn) from the radius of the satel
lite's orbit, we find that the satellite should be placed 10,400 krn above the earth's surface to achieve a 
6 hour orbital period. 
EVA LU AT E  We could have avoided our derivation and used the textbook's equation 12.12 to arrive at 
the solution directly. However, this review helps remind us how to find the solution without searching 
the book. 
Practice Problem: What does the free-body diagram of the satellite look like? Answer : A single vector. 

3: Velocity of rocket 
What velocity must a rocket have at the surface of the earth if it is to rise to a height equal to the earth's 
radius before it begins to descend? Ignore air resistance. 
Solution 
ID ENT I FY We'll use energy conservation to solve the problem. The target variable is the initial veloc
ity of the rocket. 
S ET U P  The rocket is given an initial kinetic energy for lift-off and has initial gravitational potential 
energy. At the top of the flight, its kinetic energy drops to zero, leaving only gravitational potential 
energy. We'll set these equal to each other to solve for the initial velocity. 
E X E C U T E  Energy conservation gives 

KI + UI = K2 + U2· 
Replacing both sides with the expressions for the two forms of energy gives 

where rE is the radius of the earth and K2 = O. Solving for the initial velocity, we obtain 
2 rearthg = � = V(9.8 m/s2) (6.36 X 106m) = 7.9 X 103m/s. rE 

The initial velocity of the rocket must be 7.9 X 103 m/s. 
EVA LU AT E  By examining the solution to the problem, we see why rockets must have large initial 
velocities to be propelled into space. The actual value is higher due to air resistance. 
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4: What if the sun were a black hole? 
What would the sun's radius need to be in order for the surface escape velocity to be c? 

Solution 
I D ENT I FY AN D S ET U P  A radius corresponding to an escape velocity of c is the Schwarz schild 
radius. We can use the expression for the Schwarzschild radius to solve the problem. 
E X E C U T E  The Schwarzschild radius is given by 

Substituting gives 

2GM 
Rs = -2-· C 

2GM 2 ( 6.67 X 1 0-11 Nm2/kg2) (  1 .99 X 1 030 kg) 
Rs = -2- = ( 8 I ) 2 

= 2960 m. 
c 3.0 X 10 m s 

The radius would be 2,960 m. 
EVA L UAT E  The sun would have to be compressed by a factor of over 200,000 to become a black hole. 
Practice Problem: What is the Schwarzschild radius for the earth? Answer: 8.8 mrn. 

Try It Yourself! 
1: Sun's gravity on earth 
The sun is a distance of 1 .48 X 1 0 1 1  m from earth and has a mass of 1 .99 X 1030 kg. Find the ratio of 
the sun's gravitational force to the earth's gravitational force on an object on the earth's surface. 

Solution Checkpoints 
I D ENTI F Y  AN D S ET U P  Newton's law of gravitation is used to find the force of gravity due to the 
earth and the force of gravity due to the sun. Taking their ratio solves the problem. 

Substituting the values given results in a ratio of 6.03 X 1 0-4 m/s. 
EVA LUAT E  Do you need to include the force of gravity due to the sun in physics problems on earth? 

2: Three masses positioned in a triangle 
Three 1000.0 kg masses are at the vertices of an equilateral triangle with sides of length 1.0 m. Find the 
force due to any two masses on the third. 

Solution Checkpoints 
I D ENT I FY AN D S ET U P  Newton's law of gravitation is used to find the force of gravitation due to 
the other masses. The two forces must be added as vectors. A free-body diagram should be used. 
E X E C U T E  The force between two masses is 

Gm l m2 Fg = 2 = 6.67 X 1 0-5 N. 
r 

The net force is 1 . 1 6  X 1 0-4 N, directed toward the line separating the other two masses. 
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EVA L U AT E  Did you use symmetry arguments to determine that the force has no component parallel to 
the line separating the two masses? 

3: Orbit of a communications satellite 
Communications satellites revolve in orbits over the earth's equator, adjusted so that their period of 
rotation is the same as the period of rotation of the earth about its axis. This speed and a period of rota
tion together cause the satellite to remain in a fixed position in the sky. Find the height of these satel
lites' orbit above the earth. 

Solution Checkpoints 
ID ENT I FY AND S ET U P  You can find the height by setting the period equal to 24 hours. The solu
tion can be found by solving Newton's second law or by using the equation in the book. 

E X E C U T E  The period is given by 
21Tr3/ 2 

T = -----== 

vgR2' 
The terms in this equation can be rearranged to solve for r. The height above earth is r minus the 

radius of earth. The satellite must be placed 36,000 km above the surface of the earth to remain in geo
synchronous orbit. 

E VA L UAT E  Such heights require additional power for radio signals to reach the satellites and for the 
signal to be redirected back to earth. 

4: Escape from the sun 
What is the escape velocity of a particle on the surface of the sun? 

Solution Checkpoints 
I D ENT I FY AN D S ET U P  The escape velocity can be found from energy conservation or the equation 
given in the text. Parameters for the sun can be found in the chapter or appendix. 

E X E C U T E  The escape velocity is given by 

V = l�M 
After substituting, we find the escape velocity to be 6.48 X 105 m/s. 

E VA LU AT E  Is the resulting velocity greater or less than the escape velocity of a particle on the surface 
of the earth? Why? 



Periodic Motion 

Summary 
We will examine periodic motion, or oscillation, in this chapter. Many 
systems exhibit periodic motion, such as a swinging pendulum, a ball 
on a spring, or the membrane of a drum. We will describe the motion 
of oscillating bodies, characterized by amplitude, period, frequency, 
and angular frequency. We' ll use force equations and energy concepts 
to analyze their motions. We will look at several models of periodic 
motion that can be used to represent the motion of many oscillators . 
Periodic motion plays a vital role in many areas of physics, and this 
chapter will lay the foundation for further studies. 

Objectives 
After studying this chapter, you will understand 

• Periodic motion and the terminology used to describe oscillations. 
• How to identify and analyze simple harmonic motion. 
• Energy and motion as a function of time for a particle in simple 

harmonic motion. 
• The simple pendulum, the physical pendulum, damped and forced 

oscillations, and resonance. 

1 87 
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Concepts and Equations 

Term 
Periodic Motion 

Simple Harmonic Motion 

Simple Pendulum 

Physical Pendulum 

Damped Oscillations 

Description 
Periodic motion is motion that repeats in a definite cycle. Periodic motion 

occurs when an object is displaced from its equilibrium position and a restor

ing force exists that tends to return the object to equilibrium. The amplitude is 

the maximum magnitude of displacement from equilibrium. A cycle is one 

complete round-trip. The period is the time taken to complete one cycle. Fre

quency (f) is the number of cycles per unit time. Angular frequency (w) is 
27T times the frequency. Period, frequency, and angular frequency are related: 

1 f = T' 
27T 

W = 27Tf=-. T 
Simple harmonic motion (SHM) is periodic motion in which the restoring 

force is directly proportional to the object's displacement. Often, SHM occurs 

when the displacement is small. The equation of motion is 

x = A cos ( wt + cp). 
A system attached to a spring with spring constant k and having mass m will 

oscillate at a frequency of 

and a period of 

w � 
w = 27Tf- = -27T m 

The total mechanical energy remains constant in SHM and can be expressed 

in terms of its amplitude: 

E = 1mv2 + 1kx2 = 1kA2. 

For angular simple harmonic motion, the frequency is related to the moment 

of inertia and the torsion constant by 

A simple pendulum is a model of a point mass suspended by a massless string 

in a gravitational field. For small displacements, a pendulum of length L has 

frequency 

A physical pendulum is any body suspended from an axis of rotation. The 

angular frequency for small-amplitude oscillations is given by 

w = )m:d
. 

A simple harmonic oscillator impelled by a force that is proportional to 

velocity exhibits damped oscillations. The angular frequency becomes 

�b2 
Wi = -- - -. m 4m2 
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Systems are called critically damped, overdamped, and underdamped accord

ing to how they return to equilibrium. 

Periodic motion in a system with a sinusoidally varying driving force is 

called forced oscillation or driven oscillation. Resonance occurs when the 

driving angular frequency is near the natural-oscillation angular frequency, 

increasing the amplitude of the motion. The amplitude is given by 

1: Glider in simple harmonic motion 
A glider attached to a spring and set on a horizontal air track is allowed to oscillate with a 5.0 cm 
amplitude. How far does the glider travel in one period? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  We answer the question by considering how the glider moves 
during one period. The period is the time an object takes to move from any position through one com
plete periodic cycle and return to the starting position. Imagine that the glider starts from an equilib
rium position, moves to the right, and momentarily stops at a displacement equal to the amplitude. It 
has traveled a distance of one amplitude, or 5 .0 cm. The glider then returns to its equilibrium position, 
traveling a second distance equal to the amplitude, or a total of 10.0 cm. The glider continues moving 
to the left until it reaches its maximum displacement on the left side, thus traveling a third distance 
equal to the amplitude ( 1 5 .0 cm total). The glider then moves to the right and returns to the starting 
position, traveling a fourth distance equal to the amplitude (20.0 cm total) . 

In one period, the glider travels a distance equal to four amplitudes, or 20.0 cm. 

EVA L U AT E  You must distinguish between amplitude and total distance traveled. Comprehending this 
difference helps build an understanding of simple harmonic motion. 

2: Gravity on the moon 
You are asked to estimate the moon's gravitational acceleration by watching a video of the early lunar 
explorations. How could you estimate the acceleration due to gravity on the moon? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  We've seen that, for small oscillations, the period of a simple 
pendulum is related to the gravitational constant and the length of the pendulum. If you can find an 
object that can be approximated by a simple pendulum, then you can determine the gravitational accel
eration from the object's motion. One approach would be to look for a dangling object during a moon
walk. You can estimate the length of the pendulum by comparing it with the size of the astronaut on the 
walk and measure the time with a stopwatch or by counting video frames. 

EVA L U AT E  The moon's gravitational acceleration was estimated by physics students around the 
world watching the early moonwalks. The technique can also be used to estimate the sizes of objects in 
videos by taking the known gravitational acceleration value and combining it with the period to find 
the length of the pendulum. 
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Problems 
1: Mass on a spring 
A spring stretches 4.7 em from its equilibrium position when a 1 .2 kg mass is hung from it . If the mass 
is now stretched 6 .5 cm from the equilibrium position and released, find (a) the period of the motion, 
(b) the maximum velocity of the mass, and (c) the maximum acceleration of the mass. 

Solution 
ID E NTI  FY Since the net force acting on the block is proportional to the displacement of the block, the 
motion is simple harmonic motion. The target variables are the period, maximum velocity, and maxi
mum acceleration. 

S ET U P  We' ll use the equations of simple harmonic motion to find the solutions to the problem. We 
first find the spring constant, using the preliminary information. 

E X E C U T E  We find the spring constant from Hooke's law. When the mass is initially attached to the 
spring, it hangs in equilibrium, so the spring force is equal to the product of the mass and the accelera
tion due to gravity: 

The spring constant is 
Fs = kx = mg. 

k 
= 
mg 

= 
( 1 .2 kg ) ( 9.8 m/s2 ) = 250 N/m. x 0.047 m 

With the spring constant, we can directly find the period: 

The maximum velocity is 

T = 21T /mk = 21T 
( 1 .2 kg ) \j k 

( 250 N/m) 
= 0.44 s .  

vm� = jfA = 
( 250 N/m) 
( ) 

( 0.065 m ) = 0.94 m/s. 1 .2 kg 
The maximum (positive) acceleration occurs when the mass is at its most negative position, so 

k 
amax = --x = m 

( 250N/m) 
_ 2 (2 

) 
( -0.065 m ) - 1 3 .5 m/s . 1 .  kg 

The mass oscillates with a period of 0.44 s and has a maximum velocity of 0.94 mls and a maximum 
acceleration of 1 3 .5 m/s2, upward. 

EVA LUAT E  Simple harmonic motion is the most complicated motion we have studied to date. How
ever, our previous experiences led to straightforward relationships from which we can easily extract 
useful information. 

We could also have found the motion as a function of time, taken derivatives to find the velocity and 
acceleration as a function of time, and then determined the maxima-the amplitudes of the velocity 
and acceleration functions. 
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2: Object in SHM 
A 200.0 g mass vibrates in SHM with a total energy of 25.0 J and a frequency of 5 .0 Hz. Find the time 
it takes to move from 25.0 cm below to 25 .0 cm above the equilibrium position. 

Solution 
I D E  N T I  FY We will use the simple harmonic motion relations to find the solution. The target variable 
is the time needed to move the specified distance. 

S ET U P  We' ll use the equation of simple harmonic motion to find the solutions to the problem. We 
will find the times the mass is -0.25 cm and +25 .0 cm from the equilibrium position. We will need to 
find the spring constant and amplitude from the information given. 

E X E C U T E  The spring constant can be found from the frequency equation: 

Solving for k gives 

f= _
1 /k. 21T \j m 

k = m ( 21Tf) 2 = ( 0.200 kg ) ( 21T ( 5 .0 Hz )) 2 = 1 97 .4 N/m. 
The total energy is given by 

E = �mv2 + �k.x2. 
The amplitude is the maximum displacement. At the maximum displacement, the velocity is zero. 
Solving for the amplitude results in 

A = V2ifk = V2(24.7 J )  / ( 197 N/m) = 0.500 m. 
The position as a function of time is given by 

x = A sin wt = A sin 21Tft. 
We need to solve for the time when x = -0.25 m and x = 0.25 m. Solving gives 

_ 1 . -,(x) -.: 1 . _, ( -0.25 m ) _ t-0.25 m - -sm - - ( ) 
sm 

0 - -0.0 167 s, 21Tf A 21T 5 .0 Hz 0.5 m 

_ 1 . _, ( x ) _ 1 . _, (0.25 m ) _ t+025m- -Sm - -
( )

sm - 0.01 67 s .  . 21Tf A 21T 5 .0 Hz 0.50 m 
The time the mass takes to move from 25 .0 cm below to 25 .0 cm above the equilibrium position is 
0.0333 s. 

EVA L UAT E  We see that the time the mass takes to move from half the amplitude below to half the 
amplitude above the equilibrium position is about 15% of the period. Does this make sense? Yes, it 
makes sense, since the velocity near the equilibrium point is maximal. 
Practice Problem: How long would it take the mass to move from the equilibrium point to the maxi
mum amplitude? Answer: 0.05 s, or one-fourth the period. 
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CAUTION Use radians! When you work with trigonometric functions, the arguments are in radi
ans . You must either set your calculator to radian mode or convert degrees to radians after taking the 
inverse of the trigonometric function. 

3: Period of a simple pendulum 
A simple pendulum reaches a maximum angle of 7 .2° after swinging through the bottom of its path 
with a maximum speed of 0.35 m1s. What is the period of the pendulum's oscillation? 

Solution 
I D E  N T I FY The period of a simple pendulum depends on its length and the gravitational constant. We 
can find the target variable-the length-from the velocity and maximum angle. 

S E T U P  The maximum angle, arc length, and length are related to each other. The amplitude and the 
maximum speed will be used to find the length of the pendulum, and the period will be derived from 
the length. 

E X E C U T E  The amplitude of a simple pendulum is the maximum arc length, which is related to the 
maximum angle by the length: 

The maximum velocity is 

Umax = 27TfA = 27TfLf)max· 
For a simple pendulum, the frequency is found from the length: 

f = _
1 (g. 27T \j L 

Combining these equations, we obtain the length: 

vm� � 27T (
2
� ,ft)LOm� � 

ygLOm,,, 

u�ax ( 0.35 m/s)2 
L = 

-2- = ( / 2)( )2 = 0.79 m. 
gf)max 9.8 m s 0. 1 26 

Note that we replaced the maximum angle of 7 .2° with the equivalent 0. 1 26 radian. The period is then 

T = 2""'�g = 2"... 
(0.79 m ) 

" " ( / 2

) = 1 . 8 s .  
9 .8 m s 

The pendulum has a length of 79 em and a period of 1 .8 s .  

EVA LU AT E  The period of a simple pendulum depends only on the length of the pendulum and the 
gravitational constant. The maximum angle and velocity provided enough information to solve the 
problem. 

4: Period of a physical pendulum 
A thin, uniform rod is pivoted at a point one-quarter of its length from one end and is then pivoted at a 
point at its end. Find the ratio of the two periods. 
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Solution 
ID E NT I F Y  The period of a physical pendulum depends on its moment of inertia, its mass, the distance 
to its center of mass, and the gravitational constant. The target variable is the ratio of the periods for the 
two pivot points. 

S ET U P  We will calculate the moment of inertia for each of the two pivot points and then combine the 
two moments to form the ratio. 

E X E C U T E  The moment of inertia of a rod about its end point is 

_ 

1 2 lend - 3ML . 
When the rod is pivoted at a point one-quarter along its length, the moment of inertia is found by the 
parallel-axis theorem: 

_ 2 _ 

1 2 (L)2 _ 7 2 11/4 - lend + mx - 3ML + M 4 - 48ML . 
The period of a physical pendulum is given by 

The ratio of the two periods is then 

21T f!f1/4 
mgd1/4 Hifend 21T mgdend 

T = 2,,) I . mgd 

11/4 dend 
lenddl/4 

7 2L -ML-48 2 1 2L -ML-3 4 
(7)(3)(4) 
( 2 )( 48) = 0.94. 

The ratio of the period when the rod is pivoted at a point one-quarter of its length from one end to the 
period when the rod is pivoted at a point at its end is 0.94. 

EVA L U AT E  We see that the period does not change substantially when the pivot point moves between 
the two positions. 

5: Oscil lating blocks 
Two blocks shown in Figure 13.1 oscillate on a frictionless surface with a frequency of 0.30 Hz. The 
top block has a mass of 2.0 kg and the bottom block has a mass of 4.5 kg. If the amplitude is increased 
to 25 cm, the top block begins to slide. What is the coefficient of static friction? 

k��@��=yM 77 

Figure 13.1 Problem S. 

Solution 
ID ENT I FY When the top block just begins to slide, the force applied must be equal to the maximum 
static frictional force. The maximum applied force occurs at the maximum displacement (equal to the 
amplitude) . We will determine the force at the turning point and use that to solve for the coefficient of 
friction, the target variable. 
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S ET U P  We'll need the spring constant, which we extract from the initial frequency. The motion is 
simple harmonic motion, as the only horizontal force acting on the blocks is the spring force, a restor
ing force that is directly proportional to the displacement. 

E X E C U T E  The frequency in simple harmonic motion depends on the spring constant according to the 
formula 

1 1k f =  27T\j� ' 

where we include the combined mass of the oscillating blocks. Solving for k gives 
k = (27Tf)2(m + M) = (27T( 0.30 HZ))2((2.0 kg ) + (4.5 kg ) )  = 23 . 1  N/m. 

Recall that the maximum static frictional force is fs = fLsn. For the top block, the normal force is mg. 
The maximum force applied by the spring is kA. Equating these forces gives 

fs = fLsn = fLsmg = kA. 

Rearranging terms to find the coefficient of static friction yields 

kA ( 23 . 1 N/m ) (0.25 m ) 
fLs = mg = ( 2.0 kg ) (9.8 m/s2) = 0.29. 

The coefficient of static friction between the blocks is 0.29. 

EVA LU AT E  This problem brings together topics from several areas we have studied throughout the 
text, including the normal force, frictional forces, the spring force, and simple harmonic motion. Com
bining our knowledge helps us understand complex phenomena. 

6: Damped oscil lation 
A body with mass 0.30 kg hangs by a spring with force constant 50.0 N/m. By what factor is the fre
quency of oscillation reduced if the oscillation is damped and reaches lie of its original amplitude in 
100 oscillations? 

Solution 
ID E N T I F Y  The amplitude in damped SHM diminishes by a factor of e -hI/2m as a function of time. 
We' ll set this quantity to lie to solve. The target variable is the fractional frequency shift, which is the 
change in frequency divided by the undamped frequency. 

S ET U P  We will write the fractional frequency shift in terms of the damped and undamped frequen
cies . We will need to expand the frequency equation to simplify the shift and substitute the exponential 
decay information to solve. 

E X E C U T E  The undamped frequency is given by 

w = -Hn 



The damped frequency is given by 

Combining these two equations to find the fractional frequency shift produces 

� _ (k 
L1w W

i 
- W V -;;; - 4,;i V-;;; 

w w � 
= ),-;=--,-[ 1 - (:-----:------:-=) 

4
:' ] - L 
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For small damping, the second term in the square root is small, so we can simplify by using the approx
imation 

This gives 

L1w = 1 _ !(m)£ _ 1 = !(m)£. 
w 2 k 4m2 2 k 4m2 

We need to eliminate the damping term. We use the exponential decay information. The amplitude in 
damped oscillations changes as 

A (t) = Aoe - (b/2m)t. 

We know that after 1 00 oscillations the amplitude drops to lie. This gives 

e - (b/2m)t 
= e - I. 

Taking the logarithm of each side yields an expression for b/2m : 

- ( bj2m)[ 100T] = - 1  

We now solve for the shift: 

� _ _ 

1_ ! _
_ 

1 
_ _ 

1 (k 2m 1 00 T 100 21T V -;;;. 

11: � M:)4:' � M:)L�o L�)' 
� 

�L�o 2�)
' 

� 127 X 1 0- 6 

The frequency shift is 1 .27 X 1 0-6. 

EVA LU AT E  We see that the frequency shift for this problem is very small. 
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Try It Yourself! 
1: SHM practice 
A body of mass 0.5 kg is attached to a spring with spring constant 100.0 N/m and is allowed to oscillate 
on a horizontal frictionless surface. It is given an initial velocity, at x = 0, of 5 .0 mls. Find (a) the total 
energy of the body, (b) the amplitude of oscillation, (c) the velocity when the displacement is half of 
the amplitude, (d) the displacement when the velocity is half of its initial value, (e) the displacement 
when the kinetic and potential energies are equal, and (f) the frequency and period of the motion. 

Solution Checkpoints 
ID ENT I FY AND S ET U P  The body is in simple harmonic motion. Use the energy equations for SHM 
to solve for the many target variables. Remember that energy is conserved in SHM. 

E X E C U T E  Energy conservation is used to solve (a) through (e) by substituting the appropriate knowns 
to find the unknowns. Energy conservation for the system states that 

E = 4mv2 + 4kx2 = 4kA2. 

This equation can be used to find (a) the total energy of the body (6.25 J), (b) the amplitude of oscilla
tion (0.35 m), (c) the velocity when the displacement is half of the amplitude (± 4.34 m/ s, ) (d) the 
displacement when the velocity is half of its initial value (± 0.3 1 m ) ,  and (e) the displacement when 
the kinetic and potential energies are equal (0.25 m). 

The period and frequency are found from the relationships 

1 T=-
I 

The period is 0.44 s and the frequency is 2.25 Hz. 

E VA L UAT E  This problem illustrates how to apply simple harmonic energy relations to find displace
ments, velocities, and the amplitude, period, and frequency of the motion. 
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2: SHM practice 
A body in SHM with angular frequency 0.5 s is initially 10.0 cm from its equilibrium position and is 
moving back toward equilibrium with a velocity of 5 .0 cm/s, as shown in Figure 1 3 .2. How long does 
it take for the body to return to its equilibrium position? 

(a) 

(b) 

Solution Checkpoints 

Equilibrium 

v(O) = -5 em/s 

I 

1< >1 x(O) = 10 em 

Figure 13.2 Try It Yourself 2. 

ID ENT I FY AND S ET U P  The body is in simple harmonic motion. Find the motion equation in terms 
of amplitude, angular frequency, and phase angle. Then solve for the time needed to move back to 
equilibrium, the target variable. 

E X E C U T E  The general forms of the position and velocity equations are 
x = Acos(wt + (0), 
v = -wAsin(wt + (0) ,  

To find the two constants, we use the initial conditions. At time zero, the position and velocity are 
given. This yields 

A = 14. 1 cm, 
80 = 0.79 rad. 

The position is solved for time when x = 0, giving a time of 1 .56 s. 

EVA L U AT E  This problem shows how to use initial conditions to solve for the equations of motion. 

CAUTION Watch f and w! Be careful to distinguish the frequency f from the angular frequency 
w = 2'TT'j The last two problems involved both quantities. 
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3: Simple pendulum 
A clock pendulum with mass 5 .0 kg is set to swing with a 2 .0 s period. How long should the pendulum 
be made if you approximate it as a simple pendulum? 

Solution Checkpoints 
I D ENT I FY AN D S ET U P  The period of a simple pendulum is given in terms of the length of the pen
dulum and the gravitational constant. 

E X E C U T E  The period of a simple pendulum is given by 

T = 21Tfi 
Rearranging terms and solving yields a length of 0.99 m. 

EVA L UAT E  Mass does not affect the results for a simple pendulum. 

4: Physical pendulum 
A body of mass 2 .0 kg is suspended at a point 3 .0 cm from its center of mass and observed to oscillate 
with a 2.0 s period. Find its moment of inertia. 

Solution Checkpoints 
I D ENT I FY AND S ET U P  Is this a physical pendulum? 

E X E C U T E  The period of a physical pendulum is given by 

T = 21T� I . 
mgd 

Rearranging terms and solving yields a moment of inertia of 5 .96 X 10-2 kg m2. 

EVA LU AT E  This problem shows another method of determining the moment of inertia: Set the body 
in oscillation and measure the period. 



Fluid Mechanics 

Summary 
We interact with fluids on a continual basis, from walking through air 
to swimming in the ocean. This chapter examines fluids, or substances 
that can flow, including liquids and gases. We will begin with fluid 
statics and use Newton's laws to describe the behavior of fluids at rest. 
Density, pressure, buoyancy, and surface tension, concepts needed for 
our investigation, will be defined. We will also delve into fluid dynam
ics and see how to analyze fluids in motion. Conservation of energy 
and Newton's laws will guide us in this examination. Although fluid 
dynamics can be quite complex, several examples will give us insight 
into the subject. 

Objectives 
After studying this chapter, you will understand 

• The definition of a material 's density. 
• The definition of pressure in a fluid and its measurement. 
• How to analyze fluids in equilibrium and find the pressure at vary-

ing depths. 
• Buoyancy and how to calculate the buoyancy acting on a body. 
• How to compare and contrast laminar and turbulent fluid flow. 
• How to apply Bernoulli 's equation to fluid dynamics problems. 

199 
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Concepts and Equations 

Term 
Density 

Pressure 

Pressure in a Fluid 

Buoyant Force 

Fluid Flow 

Bernoulli's Equation 

conceptual Questions 
1: Ice in a glass 

Description 
Density is the mass per unit volume of a material. For a homogeneous mate-
rial with mass m and volume V, the density is 

m 
p = -. 

V 

The SI unit of density is the kilogram per cubic meter ( 1  kg/m3 ) .  The cgs 
unit is used to express density in grams per cubic centimeter 
( 1  gm/cm3 = 1000 kg/m3 ) .  

The pressure P in a fluid is the normal force per unit area: 

dFl-
P = dA ' 

The SI unit of pressure is the pascal (Pa); 1 Pa = 1 N/mz. Also common are 
the bar ( 1 05 Pa) and millibar ( 102 bar ) . 

The pressure difference between two points in a fluid with uniform density p 
is proportional to the difference in elevations between the two points: 

P2 - PI = -pg (Yz - YI ) ' 
Pascal's law states that the pressure applied to a fluid is transmitted through 
the fluid and depends only on depth. 

Archimedes' principle states that when an object is immersed in a fluid, the 
fluid exerts an upward buoyant force on the object equal in magnitude to the 
weight of the fluid displaced by the object. 

An ideal fluid is incompressible and has no viscosity. Conservation of mass 
requires that the amount of fluid flowing through a cross section of a tube per 
unit time be the same for all cross sections:  

� V  
-;;: = Alu l  = AOU2' 

t 
-

Bernoulli's equation relates the pressure p, flow speed u, and elevation Y of 
an ideal fluid at any two points: 

1 2 _  1 2 _  P I  + pgYI + 2Pu I -

pz + pgY2 + 2PU2 -
constant. 

Two glasses are filled with water to the same level. In one glass, ice cubes float on the top. If the two 
glasses are made of the same material and have the same shape, how do their total weights compare? 

Solution 
I D ENTI F Y, S ET U P, AN D E X E C U T E  The glasses must have the same weight, since they are made 
of the same material and have the same shape. We solve the problem by comparing the mass of the 
water alone to the mass of the water-plus-ice mix. 

Archimedes' principle states that an object will displace its own weight in a fluid. The volume of 
water displaced by the ice has the same weight as the ice; therefore, the water in one glass weighs the 
same as the water plus ice in the second glass. 
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E VA L U AT E  The volume of the glass with the ice is greater than the volume of the glass without ice, 
but weight depends on both density and volume. As with any new physical principle, we need to 
develop our skills carefully and not jump to conclusions. 

2: Energy in a hydraulic lift 
A hydraulic lift is used to lift a car. The piston supporting the car has a cross-sectional area 100 times 
larger than the cross-sectional area of the piston driving the lift. The drive piston will therefore require a 
force 100 times smaller than the weight of the car to lift the car. Does this mean that energy conservation 
is violated? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  Pascal's law states that the pressure is the same at both pis
tons. The drive piston requires a small force to create the pressure that will lift the car. A large dis
placement in the drive piston creates a small displacement in the lift piston, due to the differences in 
areas. The amount of work done in moving the drive piston a long distance is equal to the work done 
by the lift piston moving a small distance (ignoring friction). The amounts of work are equivalent; 
energy conservation is not violated. 

EVA L UAT E  If you have ever operated a hydraulic jack to lift your car or a house, you should recall 
that you had to pump the jack several times to move a small distance. The work produced by your 
small force applied over a long distance was equivalent to the work done in lifting the object. 

3: Race car spoilers 
Why do race cars have spoilers, or wings, on their bodies? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  Spoilers are essentially inverted airplane wings. We've seen 
that airplane wings produce lift by reducing the pressure above the plane's wing. The inverted wing 
produces a downward force to help hold the race car on the pavement and maintain contact between 
the wheels and the road. The spoiler also helps stabilize the car as it moves around the track. 

EVA L U AT E  Spoiler design for race cars is critical : There is a careful balance between enough down
ward force to keep the car on the track and too much force that causes lost fuel economy and premature 
tire wear. Some race cars have downward forces of up to three times the force of gravity (i.e., they 
could operate on an upside-down track and not fall off). Many cars have spoilers; most serve only an 
aesthetic purpose and have no effect on the car's performance. 

Problems 
1 :  How much seawater in a tank 
Seawater is stored under pressure in a tank of horizontal cross-sectional area 4 .5 m2. The pressure above 
the seawater in the tank is 7 .2 X 105 Pa, and the pressure at the bottom of the tank is 1 .2 X 106 Pa. What 
is the mass of the seawater in the tank? 

Solution 
ID E NTI  FY We will use the relations among pressure, density, and height to solve the problem. The 
target variable is the mass of the seawater. 
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S ET U P  The tank is sketched in Figure 14. 1 .  We can find the mass by first finding the volume of the 
seawater and then multiplying by the density. To find the volume, we multiply the height by the cross
sectional area of the tank. To find the height, we use the variation in the pressures due to the height of 
seawater. We assume that the seawater is incompressible. 

h 

Figure 14.1 Problem 1 sketch. 

E X E C U T E  We start by finding the height of the seawater in the container. The difference in pressure is 
related to the height by 

P2 - PI = pg (Y2 - YI ) , 

where we set PI as the pressure at the bottom of the tank and P2 as the pressure at the top of the tank. 
Solving for the height, we get 

P - Po ( 1 .2 X 106 Pa) - ( 7.2 X l Os Pa) 
h = Y2 - YI = pg = ( 1 .03 X 103 kg/m3 ) ( 9 .8 m/s2 ) = 47 .6 m, 

where we used the density of seawater given in Table 14. 1 in the text ( 1 .03 X 103 kg/m3 ) .  We now 
find the volume of seawater in the tank. The volume is the height times the cross-sectional area: 

V = hA = ( 47.6 m) (  4.5 m2 ) = 214 m3. 
The mass is the volume times the density we found from the table: 

m = pV = ( 1 .03 X 103 kg/m3 ) (214 m3 ) = 221 ,000 kg. 
The tank holds 221 ,000 kg of seawater. 

EVA L UAT E  This problem shows how to determine height from change in pressure. Altimeters find 
changes in altitude by monitoring the change in pressure of air. 

2: Water pressure in a town 
Water pressure in a town is maintained by a water tower 35.0 m high, open to the atmosphere at the top. 
(a) What is the gauge pressure at ground level? (b) A 1 .75-cm-diameter garden hose at the bottom of 
the tower is open and spilling water. How much force is needed at the end of the hose to seal the end? 

Solution 
ID ENT I FY We will use the relations among pressure, density, and height to solve the problem. The 
target variables are the gauge pressure at the ground and the force needed to seal the hose. 

S ET U P  The gauge pressure is found by multiplying the height by the density by g, the acceleration 
due to gravity. The force is found by finding the pressure differential at the hose and multiplying by the 
area of the opening. We assume that the water is incompressible. 
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E X E C U T E  We start by finding the pressure at the surface. The gauge pressure is given by 

Pg = P - Pa = pg (Y2 - Yl ) 
= ( 103 kg/m3 )( 9 .8  m/s2 ) ( 35 .0 m )  
= 3 .43 X 105 Pa 
= 3 .40 atm. 

The pressure difference between the inside and the outside of the hose is the gauge pressure, equivalent 
to the force per unit area needed to seal the hose. The force needed is then 

F = (p - Pa )A = ( 3 .43 X 105 Pa ) (1T ( 0.0175/2 m ) 2 ) = 83 N. 
The gauge pressure at the ground level is 3 .40 atm, and the force required to seal the hose is 83 N. 

E VA L UAT E  This problem illustrates how force, pressure, and height are related in a fluid. 

3: Velocity of water exiting a fire hose 
Water enters a round fire hose of diameter 3 .5 cm and exits from a round, 0.60-cm-diameter nozzle. If 
the water enters the hose at 2.0 mis, what is the velocity of the exiting water? What is the maximum 
horizontal range of the water leaving the hose? 

Solution 
ID E NTI F Y  The continuity equation relates the velocities and cross-sectional areas of incompressible 
fluids in a tube. The target variables are the velocity of the water at the outlet of the nozzle and the 
maximum range of the water. 

S ET U P  We use the continuity equation to find the velocity of the water exiting the nozzle. To find the 
range, we employ projectile motion. We treat the water as incompressible. 

E X E C U T E  The amount of fluid flowing through a tube per unit time is constant. The flow through the 
hose is equal to the flow through the nozzle: 

The area of the hose or nozzle is 1T times the square of half the diameter. Solving for the velocity of the 
nozzle gives 

_ AhoseVhose _ 1T (Dhose/2 ) 2vhose _ ( 3 .5 cm) 2 ( 2.0m/s ) 
_ / v nozzle - - ( / ) 2 - ( ) 2 - 68 m s, 

A nozzle 1T Dnozzle 2 0.6 cm 
where the factors 1T and 2 cancel. The water molecules leaving the hose have a velocity of 68 mls and 
undergo acceleration due to gravity. We use the kinematic relations for two-dimensional motion to find 
the range. Recall that the horizontal range of a projectile in terms of the launch angle (Jo and the initial 
velocity Vo is 

V6 sin2(Jo R = ---=---� 

g 
The maximum range occurs when the launch angle is 45° .  Substituting our values, we obtain 

v6sin2 (45° ) ( 68 m/s ) 2 ( 1 )  R = = ( 
/ 

2 ) = 470 m. 
g 9 .8 m s 

The maximum horizontal range of the water leaving the nozzle at 68 mls is 470 m. 
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EVA L U AT E  This problem illustrates why nozzles are placed at the ends of hoses. The reduced diame
ter of the nozzle increases the exit velocity and thereby increases the range of the water. Next time you 
wash your car, compare the velocity and range of the water leaving the hose with and without the noz
zle attached. 

4: Ice cube in glycerine 
What fraction of an ice cube is submerged when floating in glycerine? 

Solution 
ID ENT I FY We will use Newton's law and the definition of buoyancy to solve the problem. The target 
variable is the fraction of the ice cube submerged. 

S ET U P  The buoyant force acts upward and gravity acts downward. The ice cube is in equilibrium, so 
the forces sum to zero. 

E X E C U T E  The weight of the ice cube is 

The buoyant force is equal to the amount of glycerine displaced by the ice cube, which is equal to the 
weight of the ice cube. Combining terms yields 

FE = PggVg = PwgVw-
The fraction of the ice cube that is submerged is the volume of glycerine displaced divided by the vol
ume of the ice cube. Rearranging terms in the previous equation yields the fraction 

Vg Pw (0.92 g/cm2 ) 
Vw 

= Pg = 1 .26 g/cm2 = 0.73 .  

Thus, 7 3% of the ice cube i s  submerged when floating in glycerine. Note that the densities of ice and 
glycerine were taken from Table 14 . 1 in the text. 

EVA LU AT E  We see how we can determine the fraction of ice located below the surface when the ice is 
placed in a liquid. You can use the same procedure to find out how much of an iceberg is below the sur
face in the ocean. 

Practice Problem: Draw the free-body diagram of the problem. 

5: Examining the buoyant force 
A 4.5-cm-radius sphere of wood is held in fresh water below the surface by a spring. If the spring's 
force constant is 55 N/m, by how much is the spring stretched from its equilibrium position? Take the 
density of wood to be 700 kg/m3 . 

Solution 
ID ENT I FY We will use Newton's law and the definition of buoyancy to solve for the stretch of the 
spring, the target variable. The wood is in equilibrium. 

SET U P  The free-body diagram of the block of wood is shown in Figure 14.2. The buoyant force is 
directed upward, and both gravity and tension due to the spring are directed downward. The block of 
wood is in equilibrium, so the forces sum to zero. The size and density of the wood determine its vol-
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ume and mass, needed for the buoyant force and gravity. Hooke's law will be used to determine the 
amount of stretch. 

y 

1-
I 
I 

- - - - � x  

IS w 

Figure 1 4.2 Problem 5 sketch and free-body diagram. 

E X E C U T E  We sum the three forces acting on the block of wood. The forces act only in the vertical 
direction and add to zero: 

2:, Fy = F8 - mg - Fs = O. 
The buoyant force is equal to the amount of water displaced by the wooden sphere. The volume of a 
sphere is 4/31Tr2. Combining terms yields 

F8 = Pwater Vsphereg = Pwater( �1Tr�Phere )g. 

The spring force is equal to the spring constant times its displacement, kx. The mass of the sphere is its 
volume times its density. Inserting these expressions into the equilibrium equation gives 

2:,Fy = F8 - mg - Fs = P water ( �1Tr�Phere)g - PWOOd ( �1Tr�Phere)g - kx = O. 

Rearranging terms, we solve for x: 

x =  
Pwater(�1Tr�Phere)g - PWOOd(�1Tr�Phere)g (Pwater - PWOOd ) (�1Tr�Phere)g 

k k 

( ( 1 X 103 kg/m3 ) - ( 700 kg/m3 ) )(�1T(0.045 m ) 3 )(9.8 m/s2 ) 
x = 

( / )  
= 0.020 m. 

55 N m 
The spring is stretched 0.020 m, or 2.0 cm, from its equilibrium position. 

E VA L UAT E  This problem illustrates how to incorporate the buoyant force with previously encoun
tered forces to solve equilibrium problems. We've used the same procedure as in the past: starting with 
a free-body diagram and setting the net force equal to zero. Working with fluids requires conversions 
among volume, mass, and density. 

6: Water from a tank 
A l O.O-m-high cylindrical tank of cross-sectional area 0.75 m2 is filled with water. (a) Find the velocity of 
discharge as a function of the height of water remaining in the tank when a hole of area 0.40 m2 is opened 
at the bottom of the tank. (b) Find the initial discharge velocity. (c) Find the initial volume rate of discharge. 
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Solution 
ID ENT I F Y Bernoulli's equation and the continuity equation will be used to relate the pressure differ
ence, height, and velocity of the flowing water. The target variables are the discharge velocity and vol
ume rate of discharge. 

S ET U P  Bernoulli 's equation will be used to relate the velocities at the top and bottom of the tank to 
the change in height of the water. The continuity equation also relates the two velocities. Combining 
both equations will yield the velocity at the bottom of the tank, from which we can determine the solu
tions to parts (b) and (c). 

E X E C U T E  Bernoulli's equation applied to the top and bottom of the cylinder gives 
1 

2 _ 

1 
2 Ptop + pgYtop + 2PUtop - Pbottom + pgYbottom + 2PUbottom. 

Both sides are open to atmospheric pressure, so the pressures are the same. We derive an expression for 
the velocities: 

Uaottom - u;op = 2g (Ytop - Ybottom ) = 2gh. 
The continuity equation yields another relation between the two velocities: 

or 

Abottom utop = --Ubottom· Atop 
Placing the right-hand side of the latter equation into the previous equation and solving for the velocity 
at the bottom gives 

or 

2 (Abottom )2 U U = 2gh, bottom - -A-- bottom top 

Vbonom � V28h( 1 - (A:.::m n - Jr.  

The discharge velocity as a function of the height of the water remaining in the tank is 

Ubottom = 1 .20vgh. 
The initial discharge velocity is when the tank begins to drain (h = 1 0.0 m) and is equal to 1 1 .8 rn/s. 
The discharge rate when the tank begins to drain is 

volume discharge rate = AbottomUbottom = 4.73 m3! s. 

EVA LU AT E  We must carefully check the units in this problem. Do they cancel correctly ? 

7: Lift on a car on a highway 
As a car travels down the highway, the speed of the air flowing over the top of the car is higher than the 
speed of the air flowing under the car, thus creating lift. Estimate the lift on a car as it travels at 1 00 kph. 
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Take the density of air to be 1 .20 kg/m3, the car's area to be 6 m2, and the height of the car to be 1 .0 m. 
Assume that air travels under the car at 100 kph and over the top of the car at 140 kph. 

Solution 
ID ENT I FY Bernoulli's equation gives the pressure difference between the top and bottom of the car. 
We will use that equation to find the target variable, the lift on the car. 

SET UP We find the lift force acting on the car from the definition of pressure as force per unit surface 
area. 

E X E C U T E  The car is moving through a fluid (air), so Bernoulli 's equation can be applied. We' ll com
pare the pressures below and above the car to find the pressure difference. Bernoulli's equation is 

1 2 _ 

1 2 Pabove + pgYabove + "2PVabove - Pbelow + pgYbelow + "2PVbelow. 

The pressure difference is then 

where we have set the origin below the car (Ybelow = 0) .  The pressure difference is 

/:1p = p (gYabove + � ( V;bove - VGelow ) ) 
= ( 1 .20 kg/m3 )((9.8 m/s2 )( 1 .0 m )  + �((38 .9 m/s ) 2 - (27.7 m/s ) 2 ) ) 
= 459 Pa, 

where we replaced 100 kpm with 27.7 m1s and 140 kph with 38 .9 m1s. We find the force by multiplying 
the pressure by the area of the car: 

F = PA = (459 Pa )(6.0 m2 ) = 2750 N. 

The lift on the car is 2750 N. 

E VA LUAT E  We see that the lift is significant in this case-roughly equivalent to a weight of 280 kg. It 
is not enough to lift the car off the highway, since most cars weigh over 1000 kg. We assumed that the 
flow of air around the car was smooth and that air is incompressible. Neither are valid assumptions and 
should be modified in a careful examination. Our results show the maximum lift of the car. 

8:  Pressure in a water system 
Water is discharged from a closed system, reaching a maximum height of 1 0.0 m. What is the gauge 
pressure of the water system at the hose nozzle? 

Solution 
I D ENT I FY Bernoulli's equation gives the pressure difference between the tank and the top of water in 
flight. The target variable is the gauge pressure in the tank. 
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S ET U P  Kinematics is used to find the initial velocity of the water, taking into account the maximum 
height. Bernoulli's equation is then used to find the pressure in the tank. 

E X E C U T E  From kinematics, for the water to reach a height h, it must have an initial velocity of 

u�oz = 2gh. 
Bernoulli's equation is applied to two points, one inside the tank and one at the nozzle, both at the same 
height, to find the pressure: 

1 2 _ 1 2 Pin + pgy + "2PUin - Pnoz + pgy + "2punoz' 

The outside pressure is atmospheric pressure, so the difference between the two pressures is the gauge 
pressure, our target variable. The velocity inside the tank is zero, giving 

Pgauge = Pin - Pa = �pu�oz' 
Combining the results produces 

1 Pgauge = "2p ( 2gh ) = ( 103 kg/m3 )(9.8 m/s2 )( 1 O.O m )  = 9.8 X 104 Pa. 

The tank is at a gauge pressure of 9 .8  X 104 Pa. 

EVA LU AT E  We've combined kinematics and fluid dynamics in this problem. We' ll continue building 
our physics models and call upon older material to help us as we move forward. 

Try It Yourself! 
1 :  Leak in a submarine 
A submarine descends 35.0 m into the ocean and springs a leak. The hole out of which water is leaking 
has a diameter of 2.5 cm. What force must be used to plug the hole? 

Solution Checkpoints 
ID ENT I FY AND S ET U P  We will use the relations among pressure, density, and depth to solve the 
problem. The target variable is the force needed to seal the hole. We must find the pressure at depth 
first. The density of seawater is 1 .03 X 103 kg/m3 . 

E X E C U T E  The pressure difference between the water and the submarine (assuming that the latter is at 
a pressure of 1 atmosphere inside) is given by 

P - Pa = pg (Y2 - Yl ) '  
This equation yields a pressure difference of 3 .50 atm. The force needed to plug the hole is 

F = (p - Pa )A. 
The force required to seal the hole is 1 73 N. 

EVA LU AT E  Do you think it is possible for someone to push with a force of 1 73 N and seal the hole? 
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2: Floating dumpling 
A dumpling floats two-thirds submerged in water. What is its density? 

Solution Checkpoints 
ID ENT I FY AND S ET U P  The dumpling is in equilibrium. What forces are acting on it? How do you 
quantify the buoyant force? 

E X E C U T E  The fraction of the dumpling that is submerged is given by 

VD Pw 
Vw PD 

This equation can be rearranged to solve for the density of the dumpling. Doing so yields a density of 
0.66 g/cm2. 

EVA LU AT E  This problem illustrates how we can find the density of an object by examining how it 
floats. 

3: Weighing a sphere under water 
A sphere of volume 10 cm3 displaces a spring scale and is found to weigh 50.0 g when submerged in 
water. What are the sphere's mass and density? 

Solution Checkpoints 
ID ENT I FY AND S ET U P  The sphere is in equilibrium. What three forces are acting on it? 

E X E C U T E  The net force acting on the sphere is 

LFy = Fs + FB - mg = O. 
The weight and buoyant force are written in terms of density, volume, and g, the acceleration due to 
gravity. These quantities can be rearranged to yield 

Fs 
P = - + Pw· Vg 

From this equation, the density of the sphere is 6.0 g/cm3 and the mass of the sphere is 60.0 g. 

EVA LU AT E  How did you decide the direction that the spring force acted in? 

4: Water from a tank 
Water inside an enclosed tank is subjected to a pressure of two atmospheres at the top of the tank. What 
is the velocity of discharge from a small hole 3 .0 m below the surface of the water? 

Solution Checkpoints 
ID ENT I FY AND S ET U P  Use Bernoulli's equation and the continuity equation to solve this problem. 
The target variable is the discharge velocity. The small hole indicates that the ratio of the hole to the 
surface area is small. 
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E X E C U T E  Bernoulli 's equation applied to the top of the water and hole gives 
1 2 _ 

1 2 Ptop + pgYtop + "2PVtop - PhoJe + pgYhoJe + "2PVhOJe. 

What is the pressure outside and at the top? Can you assume that the velocity at the top surface is 
small? The continuity equation indicates that 

Solving for the velocity at the hole gives 

or a velocity of 1 6  mls. 

2 _ 

2
( ) VhoJe - - Pa + pgh , p 

EVA LU AT E  How can you check these results? 

5: Water from a rocket 
A toy rocket of diameter 2.0 in consists of water under the pressure of compressed air pumped into the 
nose chamber. When the gauge air pressure is 60 Ib/in2, the water is ejected through a hole of diameter 
0.2 in. Find the propelling force, or thrust, of the rocket. 

Solution Checkpoints 
ID ENT I FY AND S ET U P  Use Bernoulli 's equation and the continuity equation to solve this problem. 
The target variable is the thrust. 

E X E C U T E  Bernoulli's equation applied to points inside and outside of the rocket, at the same height, 
gIves 

What is the pressure Pa outside the rocket? What is the velocity of water inside the rocket? The thrust is 
given by 

dmout dVout 
F = vout-- = voutP-- = voutpAoutvout. dt dt 

Solving for the force, we find that it is 3 . 8  lb. 

EVA L UAT E  Did you check units? 



Mechanical Waves 

Summary 
In this chapter, we expand the concept of the periodic motion of an 
object to the periodic motion of many particles connected together as 
a medium. The periodic motion of a medium is a mechanical wave. 
Waves occur in many forms, including ocean waves, sound, light, 
earthquakes, and television transmission. This chapter will form the 
foundation for studying a variety of waves. We' ll begin with the 
description of transverse and longitudinal waves and their amplitudes, 
periods, frequencies, and wavelengths. We'll see how waves move, 
interact, transmit energy, reflect, and combine in a variety of ways and 
how to describe their frequencies. 

Objectives 
After studying this chapter, you will understand 

• How to identify longitudinal and transverse waves and their media . 
• The relations among the period, velocity, frequency, and wave

length of a wave. 
• How a wave function that satisfies the wave equation describes a 

wave. 
• The concepts of superposition, standing waves, nodes, and 

antinodes. 
• The allowed frequencies for standing waves . 
• How waves interact and interfere. 

2 1 1 



2 1 2  CHAPTER 1 5  

Concepts and Equations 

Term 
Mechanical Wave 

Periodic Mechanical Waves 

Wave functions 

Wave Power 

Principle of Superposition 

Standing Waves 

Description 
A mechanical wave is a disturbance from equilibrium that propagates from 
one region of space to another through a medium. In a transverse wave, the 
particles in the medium are displaced perpendicular to the direction of travel. 
In a longitudinal wave, the particles in the medium are displaced parallel to 
the direction of travel. 

In a periodic wave, particles in the medium exhibit periodic motion. The 
speed, wavelength, period, and frequency of a periodic wave are related by 

A v = Aj = -. T 
The speed of a transverse wave in a string under tension is given by 

V = fj, 

where FT is the tension in the rope and /.L is the mass per unit length. 

The wave function y(x,t) describes the displacements of individual particles in 
the medium. For a sinusoidal wave traveling in the +x direction, the equation 

y(x, t) = A cos[ w(; - t) ] 
= A cos (kx - wt) 

describes the wave. The wave functions are solutions of the wave equation 

Waves convey energy from one region to another. The average power of a sinu
soidal wave is proportional to the squares of the wave frequency and amplitude: 

Pay = !v;Fw2A2. 
2 

As a wave spreads out into three dimensions, the intensity drop is inversely 
proportional to the distance from the source: 

The principle of superposition states that when two waves overlap, the net 
displacement at any point at any time is found by taking the sum of the dis
placements of the individual waves: 

y(x, t) = YI (X, t) + Y2 (X, t) . 
A standing wave is that combination of sinusoidal waves which produces a sta
tionary sinusoidal pattern. Nodes are points where the standing wave pattern 
does not change with time. Antinodes are positions halfway between nodes; 
the amplitude is maximum at an antinode. The distance between successive 
nodes or antinodes is one-half of the wavelength. A string of length L held sta
tionary at both ends can have standing waves only with frequencies such that 

V 

J., = n2L 
= nil (n = 1 ,2,3, . . .  ) . 



conceptual Questions 
1 :  Waves in a jump rope 
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The fundamental frequency i s  given by 

The multiples of I, are the harmonics. Each frequency and its associated 
vibration pattern is called a normal mode. 

Your younger sister is playing with a jump rope. She ties one end to a fence post and moves the other 
end up and down, observing waves in the rope. She sees waves moving down the rope and becomes 
confused. She asks you why the rope doesn't  move toward the fence, since that is how the waves 
move. How do you answer her question? 

Solution 
ID ENT I F Y, S ET U P, AND E X E C U T E  Having just learned about mechanical waves, you explain 
that the rope is made up of lots of little pieces (particles) and the pieces at the end she holds move 
up and down as she moves her hand up and down. The pieces of rope next to her end are connected 
to the pieces she is moving and so are pulled up and down at the same time. These pieces, which 
take a little bit longer to move than the ones she holds, are connected to other pieces, which also 
move up and down. Each successive piece takes a bit longer to start moving than the piece before 
it, which is why there is a wave pattern. This wave pattern is what your sister observes moving 
down the rope. All of the individual pieces of rope move only up and down. Since they are con
nected to each other, their moving creates a disturbance in the rope that appears to move down the 
rope. The rope doesn't  move toward the fence because none of the pieces of the rope move toward 
the fence. 

EVA L U AT E  Remember that when you pluck a string, you pull the string to the side, so you give the 
string a velocity to the side of, or perpendicular to, the string. During the pluck, you impart a force per
pendicular to the string, not along the string. 

2: Velocity of a wave 
A taut string is plucked and a wave travels down the string at speed v. How can you double the speed 
of the wave? 

Solution 
I D ENT I FY, S ET U P, AN D E X E C U T E  The speed of a transverse wave on a string is proportional to 
the square root of the tension on the string and inversely proportional to the square root of the mass per 
unit length. To double the speed, you can quadruple the tension in the string or decrease the mass per 
unit length by a factor of 4. 

EVA L U AT E  This problem illustrates the dependence of the speed of a wave in a string on the mass per 
length and the tension in the string. 
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3: Heavy rope 
A heavy rope is suspended vertically and is stretched taut by a l O.O-kg mass attached to the bottom of 
the rope. The top end of the rope is plucked, creating a wave. Does the speed of the wave change as it 
propagates down the rope? If so, how? 

Solution 
ID ENTI FY, S ET U P, AND E X E C U T E  The speed of a transverse wave on a string depends on the 
tension and the mass per unit length in the rope. We can assume that the mass per unit length is con
stant. Because the rope is heavy, the top end must have greater tension than the bottom end, since the 
top end supports both the mass at the end and the rope itself. The tension, therefore, decreases 
toward the bottom of the rope. The decreasing tension will slow the speed of the wave as it travels 
down the rope. 

The wave speed is not constant and slows as it approaches the bottom of the rope. 

EVA L UAT E  We will normally not encounter the varying tension and speed found in this problem. 
We' ll focus on light strings to understand wave propagation better. 

Problems 
1 :  An unusual scale 
Your strange physics professor builds an unusual scale by hanging an object from a 3 .0-m-long wire 
attached to the ceiling. She plucks the string just above the object and finds that the pulse takes 0.50 s 
to propagate up and down the wire. What is the mass of the object? The mass of the wire is 0.50 kg. 

Solution 
ID ENT I F Y AND S ET U P  The speed of a wave in a wire under tension is related to the tension in the 
wire. By finding the speed of the wave in the wire, we' ll determine the mass of the object. 

E X E C U T E  The speed of the wave in the wire is given by 

The tension at the bottom of the wire is equal to the gravitational force on the object, since the object is 
in equilibrium. To calculate the tension, we first need the velocity and the mass per unit length. The 
velocity is found by noting that the wave takes 0.50 s to travel 6.0 m (up and down the wire) : 

The mass per unit length is 

!J.d 6.0 m 
v = - = 

-- = 1 2  m/s. 
!J.t 0.5 s 

m 0.50 kg 
f.L = 

- = = 0. 1 67 kg/m. L 3 .0 m 

Substituting to find the tension, we obtain 

Fr = V2f.L = ( 1 2 m/s ) 2( 0. 167 kg/m) = 24 N. 



The tension force is equal to the weight, so the mass of the object is 

The object's mass is 2.4 kg. 

FT 24 N 
m = g = 9.8  m/s2 = 2.4 kg. 
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EVA LU AT E  This unusual scale illustrates how we can use mechanical waves to measure mass, but it is 
impractical for several reasons. First, the scale requires a high ceiling and a method of accurately 
measuring the speed of waves in the wire. Also, we have omitted the mass of the wire, which is 
roughly 15% higher at the ceiling, in our calculation of the tension. 

2: Write a wave equation 
Write the wave equation for a traveling transverse wave that propagates in the +x direction, has a max
imum disturbance from equilibrium of 1 .0 cm, and has a wavelength of 2.0 m and a period 0.02 s. At 
x = 0.5 m and t = 0, the instantaneous particle velocity is 7r/2 mfs downward. 

Solution 
ID ENT I FY AND S ET U P  We' ll begin with the general form of the wave function and use the given 
conditions to determine the constants. 

E X E C U T E  The general form of a wave equation is 
y ( x, t )  = A sin ( wt - kx + cp ) .  

Here, we used a minus sign in front of the wave number to ensure that the wave propagates toward 
positive x, and we included a phase angle. The frequency is found from the period: 

1 
w = 27r- = 3 14 rad/s. 

T 
The wave number is related to the wavelength: 

27r 
k = - = 3 . 14 /m. 

"-
The amplitude is the maximum displacement from zero, so A = 0.01 m. To find the phase angle, we' ll 
have to use the given velocity at the specified point. The velocity is the first derivative: 

ay 
Vy = - = Awcos ( wt - kx + cp ) .  

at 

At x = 0.5 m and t = 0, the instantaneous particle velocity is 7r /2 mfs downward, or negative. This gives 

vy ( 0.5 m, 0 )  = -7r/2 m/s 
( 0.01 m )( 3 14 rad/s ) cos ( ( 3 14 rad/s ) ( 0 )  - ( 3 . 14 /m) ( 0.5 m )  + cp )  = -7r/2 m/s 

( 7r  ) cos ( -7r/2 + cp )  = -7r/2 
sin ( cp )  = - 1 /2. 

The phase angle must be -30°, or -7r /6. The complete wave function is 

y (x, t )  = ( 0.01 m ) sin ( ( 3 14 rad/s ) t  - ( 3 . 14 /m)x - 7r/6 ) .  

EVA L UAT E  This problem illustrates how to construct a wave function, given the properties of the wave. 
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3: Wave function check 
Does y (x, t) = Ae -Icc sin wt satisfy the wave function equation? 

Solution 
ID ENT I F Y  AND S ET U P  We will take the second derivatives of the function with respect to both 
time and position. We will then substitute the results into the wave equation and see if it is satisfied. 

E X E C U T E  The wave equation is given by 

ax2 v2 at2 

We start by taking the derivative of the given function with respect to position. We have 
ay (x, t )  aAe -Iccsinwt 

( ) -Icc ' ----'-----'---------'- = = A -k  e smwt. 
ax ax 

Next, we take the second derivative with respect to position: 
a2y (x, t )  a 
---'----'----

2
-----'--- = -(A ( -k)e  -Iccsinwt) = Ak2e -Iccsinwt. 

ax ax 

We now switch to the time derivatives. The first derivative with respect to time is 

The second derivative is 

Combining the results gives 

ay (x, t )  aAe -Iccsinwt ----- = A ( w ) e -Icccos wt. 
at at 

A (  -(2 ) e -Iccsinwt = A ( k2 ) e -Iccsinwt, 
1 

-Icc ' Ae -Iccsinwt = -2:Ae smwt. 
v 

The latter formula would satisfy the wave equation were it not for the minus sign. The function does 
not satisfy the wave equation and is not a valid wave function. 

E VA L UAT E  Constructing valid wave functions takes practice and experience. We' ll see that there are 
several common types of equations that describe most waves and satisfy the wave equation. 

4: Combining strings 
Two strings of mass per unit length JL l and JL2 are joined together at their ends. The tension in the two 
strings is the same. If the wavelength in the first string with JLl = 5.0 glm is 3 .0 cm, what is the mass 
per unit length in the second string if the wavelength in that string is 5 .0 cm? Assume that the wave fre
quencies are the same in the two strings. 
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Solution 
I D ENT I FY We' ll use the fact that the tension is the same in both strings to determine the target vari
able, the mass per unit length in the second string. 

S ET U P  The speed of propagation depends on the mass per unit length and the tension. The tension 
and frequency are the same in both strings . We' ll set these equal to each other to solve. 

E X E C U T E  The speed is given by 

v = ;f  
Squaring both sides of this equation and solving for the tension gives 

V2f.L = T. 

Since both tensions are the same, we have 
V2 - v2 1f.L I - 2f.L2· 

The speeds may not be the same, but we know the frequencies and wavelengths in both strings. 
The frequencies are the same in both strings . Rewriting the speed in terms of frequency and wave
length gives 

AU2f.L I = AU2f.L2· 
Solving for the mass per unit length yields 

( 3 .0 cm) 2 ( 5 .0 g/m) 
( 5 .0 cm ) 2 

The second string has a mass per unit length of 1 . 8 g/m. 

1 .8 g/m. 

EVA L U AT E  Do we expect a smaller mass per unit length in the second string? Yes, since the wavelength 
is larger in the second string, the mass per length must be less in order for the tensions to be the same. 

Practice Problem: How do the speeds of the waves compare in the two strings? Answer: The speed of 
the wave in string 2 must be � the speed in string 1 .  

5: Modes in a string 
A uniform string of length 0.50 m is fixed at both ends. Find the wavelength of the fundamental mode of 
vibration. If the wave speed is 300 mis, find the frequency of the fundamental and next possible modes. 

Solution 
I D E  NTI FY We' ll use the properties and definitions of modes for a standing wave on a string to solve 
the problem. 

S ET U P  The fundamental mode has a wavelength twice the length of the string. The frequency of the 
fundamental mode is the velocity divided by the wavelength. Higher frequencies are integer multiples 
of the fundamental frequency. 
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E X E C U T E  The wavelength of the fundamental mode is twice the length of the string. The wavelength 
is 1 .0 m. For a wave speed of 300 mis, the frequency of the fundamental mode is 

V 
II = - = 300 Hz. 2L 

The next possible mode will have half of the fundamental mode's wavelength, or a wavelength of 0.5 m. 
Its frequency will be 

V 12 = 211 = - = 600 Hz. 
A2 

EVA L U AT E  This problem gives us practice understanding the properties of standing waves. 

Try It Yourself! 
1 :  Wave function check 
Does y (x, t) = A (x - V t ) n satisfy the wave function equation? A is a constant and n > 1 .  

Solution Checkpoints 
ID ENT I FY AND S ET U P  Take the second derivatives of the function with respect to both time and 
position. Then substitute the results into the wave equation and see if it is satisfied. 

E X E C U T E  The second derivative with respect to position is 
a2y (x, t )  

----:-- = n ( n - l )A (x - vt ) n- 2. 
ax2 

The second derivative with respect to time is 

a2y (x, t )  
---'--'----'- = n ( n - 1 )Av2 (x  - vt ) n - 2. 

at2 

Combining the results, we see that the function does satisfy the wave equation and is a valid wave 
function. 

EVA L UAT E  What type of wave does the function represent? Is it periodic? 

2: Changing the diameter 
Waves propagate through a rope under tension, provided by a hanging mass of 20.0 kg, with a speed of 
30.0 mls. The rope is replaced by ropes made of the same material but different diameters. For the 
velocity to remain the same, what mass should be hung from the end of the rope if the replacement 
rope has ( a) half the diameter and (b) twice the diameter of the original rope? 

Solution Checkpoints 
ID E NT I F Y AND S ET U P The speed of propagation depends on the tension and the mass per unit length. 

EX E C U T  E How must the mass per unit length and the tension relate if the speed is to remain constant? 
How does the mass change with (a) half the diameter rope and (b) twice the diameter rope? 
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With half the diameter, the volume decreases by a factor of four, so  the mass should be 5 .0 kg. With 
twice the diameter, the volume increases by a factor of four, so the mass should be 80.0 kg. 

E VA L UAT E  How do you confirm these results? 

3: Modes in a free string 
A uniform string of length 0.50 m is fixed at one end and free at the other end. Find the wavelength of 
the fundamental mode of vibration. If the wave speed is 300 m/s, find the frequency of the fundamen
tal and next possible modes. 

Solution Checkpoints 
ID ENT I F Y  Use the properties and definitions of modes for a standing wave on a string to solve the 
problem. 

S ET U P  How do the fundamental mode's frequency and wavelength for a standing wave on a string 
with only one end fixed compare with the fundamental mode's frequency and wavelength for a string 
with both ends fixed? 

E X E C U T E  The wavelength of the fundamental mode is four times the length, or 2.0 m. The frequency 
of the fundamental mode is then 1 50 Hz. 

The next mode has a wavelength of 1 L, or 0.67 m, and a frequency of 450 Hz. 

EVA L UAT E  Sketch the standing waves on the string for the fundamental and next possible modes. 
Does your sketch agree with the results you just calculated? 





Sound and Hearing 

Summary 
In this chapter, we expand the concept of mechanical waves in order 
to understand sound and hearing. We' ll begin with a description of 
longitudinal sound waves and their amplitudes, periods, frequencies, 
and wavelengths. We' ll see how waves propagate through gases, liq
uids, and solids; how to determine the speed and intensity of sound 
waves ; and how sound is produced by musical instruments . We' ll also 
examine how the frequency of sound waves changes relative to the 
motion of the source and listener, summarized in the Doppler effect. 

Objectives 
After studying this chapter, you will understand 

• How sound waves are formed and propagate through media. 
• How to apply the concepts of superposition, standing waves, 

nodes, and antinodes to sound waves 
• How to calculate the intensity of a sound wave. 
• The allowed frequencies for longitudinal standing sound waves. 
• The definition and how to calculate sound beats. 
• How to apply the Doppler effect to moving sources and listeners. 
• How to apply acoustics to a variety of systems. 

221 
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Concepts and Equations 

Term 
Sound Waves 

Intensity 

Standing Sound Waves 

Interference 

Beats 

Description 
Sound consists of longitudinal waves propagating through a medium. The 
pressure amplitude is given by 

Pmax = BkA, 

where B is the bulk modulus of the medium, k is the wave number, and A is the 
displacement amplitude. The speed of the sound wave depends on the medium: 

v = J% ( longitudinal wave in a fluid ) ; 

v = )Y�T ( longitudinal wave in an ideal gas ) ; 

v = J; ( longitudinal wave in a solid rod ) . 

The intensity of a sound wave is the rate at which energy is transported per 
unit area per unit time. The intensity of a sinusoidal wave is given by 

1 2 2 

1 = -VPBw2A2 = Pmax = Pm.x 
. 2 2pv 2\IP:B 

The intensity {3 of a sound wave is a logarithmic measure given by 

1 {3 = ( 10 dB ) log- , 
10 

where 10 is the reference intensity ( 10-12 W/m2) .  The units of {3 are 
decibels (dB). 

Standing sound waves that propagate in a fluid in a pipe can reflect and form 
longitudinal standing waves. The closed end of a pipe is a displacement node 
and a pressure antinode; the open end of a pipe is a displacement antinode 
and a pressure node. For a pipe of length L with an open end, the fundamental 
frequency and harmonics are 

V 

1" = n 
2L 

= nfl ( n = 1 , 2, 3, . . .  ) . 

For a pipe of length L with a closed end, the fundamental frequency and har-
monics are 

V 

1" = n 4L 
= nfl ( n = 1 , 3 , 5, . . .  ) . 

When waves overlap in the same region of space, the waves are said to inter
fere. When the waves combine to form a wave with a larger amplitude, the 
waves interfere constructively, or reinforce one another. When the waves 
differ by a half cycle, their sum results in a wave with a smaller amplitude, 
and the waves interfere destructively, or cancel. 

Beats are heard when two tones of slightly different frequencies are sounded 
together, creating a beat frequency that is the difference of the original two 
frequencies. The beat frequency given by 

fbeat = fa -

fb' 



Doppler Effect 

conceptual Questions 
1 :  Threshold of pain 
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The Doppler effect is the frequency shift that occurs when the listener is in 
motion relative to the source of sound. The listener's frequency A is related to 
the source frequency is by 

U + UL 
A = -+-is, U Us 

where U is the speed of sound and UL and Us are the x components of the 
speed of the listener and source, respectively. 

By what factor must you amplify the intensity of a normal conversation to make it reach the threshold 
of pain? 

Solution 
ID ENT I F Y, S ET U P, AND E X E C U T E  The intensity of a normal conversation is 65 dB, and the inten
sity at the threshold of pain is 1 20 dB, according to Table 16.2 in the text. These two intensities differ 
by 55 dB, or 105 .5 = 3 . 1  X 105 . Therefore, you must amplify the normal conversation by 3 . 1  X 105 to 
reach the threshold of pain. 

EVA L U AT E  A normal conversation is five orders of magnitude less than the pain threshold. Remember 
this fact the next time your physics professor lectures: His lectures are not painful, because his voice 
hasn' t  reached the sound pain threshold ! 

2: Explaining Doppler shift 
Your younger brother asks you to explain why the sound from train whistles changes from a high pitch 
to a low pitch when a train passes. How do you explain the change? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  You first explain that sound comes from vibrations, or chang
ing pressure. A high pitch comes from faster vibrations and a low pitch comes from slower vibrations. 
The train whistle produces a steady number of vibrations .  When the train approaches, the vibrations 
become compressed, effectively increasing the number of vibrations that reach your ear per unit time. 
When the train leaves, the vibrations become expanded, effectively slowing the vibrations . 

EVA L U AT E  This description provides an alternative explanation of the Doppler shift. As the listener 
and source move toward each other, the wave fronts become closer together and the frequency 
mcreases. 

3: An orchestra warming up 
While you wait for an orchestral performance, you hear the musicians tuning their instruments . You 
observe that several musicians play the same note for a few seconds to check the tune. What are they 
doing? 
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Solution 
I D ENTI FY, S ET U P, AN D E X E C U T E  The musicians are trying to play the same frequency when 
they tune their instruments. If one or more instruments vibrate at a slightly different frequency, the dif
ferent frequencies interfere and produce beats. When tuning, the musicians listen for beats and readjust 
their instruments until the beats are removed. 
EVA LUAT E  You can listen for beats when you hear music. Beats may be intentional; for example, 
some pipe organs have a slow beat to create an undulating effect. 

4: Frequencies in a water bottle 
Estimate the two lowest frequencies that you can achieve by blowing across the top of a plastic water 
bottle. 

Solution 
I D ENT I FY, S ET U P, AN D E X E C U T E  We can treat the bottle as a pipe that is open at one end and 
closed at the other. The normal-mode frequencies of a closed-end pipe are given by 

nv 
fn = 

4L ' 
where we want frequencies corresponding to n = 1 and 3 .  The water bottle is approximately 8" ,  or 
20.3 cm, long. Taking the speed of sound to be 344 mis, we find that the two frequencies are 424 Hz 
and 127 1 Hz. 
EVA L U AT E  Note that only the odd n 's are valid for the closed-end pipe. 

You can now build a pipe organ from recycled soda cans and soda bottles . 

Problems 
1 :  Finding a plug in a tube 
In an attempt to find where a plug is in a tube containing air, a plumber blows air across the opening of 
the tube and hears a resonance at a frequency of 80 Hz. If this is the fundamental mode, how far away 
from the end of the pipe is the plug? Take the velocity of sound in air to be 345 mls. 

Solution 
I D ENT I FY We' ll use the relationship between pipe length and normal-mode frequencies to find the 
distance the plug is from the end of the tube-the target variable. 
S ET U P  We will use the normal-mode relationship to find the fundamental frequency of a closed pipe, 
since the plug effectively closes the pipe. 
E X E C U T E  The fundamental frequency of the closed pipe is 

v 
fJ = 4L · 

We know the frequency and speed of sound, so we solve for the length: 
v ( 345 m/s ) 

L = - = 
= 

1 .08 m. 
4fJ 4 ( 80 Hz ) 

The plug is 1 .08 from the end of the pipe. 
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EVA LU AT E This problem illustrates how to count overtones carefully and how to interpret integer results. 

2: Overtones in a pipe 
An open pipe of length 1 .5 m is played on a day when the speed of sound in air is 345 mls. How many 
overtones can be heard by a person with good hearing? 

Solution 
I D ENT I F Y  The number of overtones is the number of frequencies above the fundamental frequency. 
We'll use the relationship between pipe length and normal-mode frequencies to find the number of 
overtones-the target variable. 

S ET U P  A person with good hearing can hear in the range from 20 Hz to 20,000 Hz. We' ll find the 
number of frequencies in that range for the pipe, and then we'll subtract the fundamental frequency to 
solve the problem. 

E X E C U T E  The frequencies of standing waves in an open pipe are 

fn = nfl > 
where n is an integer. The fundamental frequency of the pipe is 

For this pipe, 
v ( 345 m/s ) 

fl = 
2L 

= 
2 ( 1 .5 m )  

= 1 15 Hz. 

The fundamental frequency is above 20 Hz, so it can be heard. The highest frequency that can be heard 
by the human ear is 20,000 Hz. This frequency corresponds to 

n = 
20,000 Hz 

= 
20,000 Hz 

= 173 .9 .  
fl 1 15 Hz 

Since we cannot hear nine-tenths of a frequency, we truncate n to 173 .  Thus, 173 frequencies can be 
heard: the fundamental frequency and 172 overtones. 

EVA L U AT E  This problem illustrates how to count overtones carefully and how to interpret integer 
results. 

3: Making notes 
A 1 -meter-Iong tube open at one end and closed at the other contains water to a depth d. Assuming that 
the sound waves have a displacement node at the water surface and an antinode at the open end, find 
the depth of liquid that makes the tube resonate at middle C (264 Hz) and one octave below middle C 
( 1 32 Hz). Take the speed of sound in air to be 345 mls. 

Solution 
I D ENT I FY We' ll use the relationship between pipe length and normal-mode frequencies to find the 
distance the water is from the top of the tube. We' ll subtract that distance from the length of the pipe to 
find the height of the water-the target variable. 
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S ET U P  We will use the normal-mode relationship to find the fundamental frequency of a closed pipe, 
since there is a displacement node at the water. We will find the lowest mode, that corresponding to 
n = 1 .  

E X E C U T E  The fundamental frequency of a closed pipe is 

where L is the distance from the top of the tube to the top of the water. We solve for L for the two 
frequencies : 

v ( 345 m/s ) 
Lmiddle C = 4fl 

= 4 ( 264 Hz ) 
= 0.327 m; 

v ( 345 m/s ) 
Lbelow C = 4fl 

= 4 ( 1 32 Hz ) 
= 0.653 m. 

The water must be at a height of 1 .0 m - 0.327 m = 0.673 m for middle C and at a height of 1 .0 m -
0.653 m = 0.347 m for one octave below middle C. 

EVA LUAT E  This problem illustrates how to design a pipe organ that is made by filling several pipes of 
the same length with water. The pipe, however, would be a tough organ to tune, because the water will 
evaporate. 

4: Power at a concert 
You are given the task of determining how much power is needed in the sound system at the new sta
dium. There is a single set of speakers on the stage. If the design calls for an intensity of 1 00 dB at the 
farthest seats ( 1 20 m from the speakers), how much power is required? 

Solution 
ID ENT I F Y AND S ET U P  In order to determine the intensity from the power, we assume that the 
sound is distributed over a sphere of radius 120 m. We' ll use the definition of intensity to relate the 
design intensity to the power. 

E X E C U T E  The intensity is given by 

Taking the logarithm of both sides gives 

I {3 = ( 10 dB ) log- . 
10 

1 =  101O(f3/l O dB) . 
The intensity is the power per unit area, where the area in this case is that of a sphere ( 47Tr2 ) .  Com
bining the various equations gives 

P = AI = ( 47Tr2 ) ( /01 O(i3/ 10 dB) ) = ( 47T ( 1 20 m) 2 ) (( 1 0- 1 2 W/m2 ) 1 0(( 1 20 dB)/IO dB) ) = 1 80 kW. 

The required power is 1 80 kW. 
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EVA L U AT E  Our stadium requires a substantial sound system in order for all visitors to hear the con
cert. The amount of power required would harm the hearing of those near the speaker. Stadiums are 
designed with multiple speakers placed around the stadium and closer to the visitors, to reduce the 
maximum volume. 
Practice Problem: What is the intensity of the sound for persons seated 20 m from the speakers? 
Answer: 1 35 dB, above the threshold for permanent hearing damage. 

5: Speed of approaching train 
You are driving along a country road at 20.0 mls. A train approaches on a rail that parallels the road. 
The train whistle blasts at a frequency of 800 Hz, but you hear a 950-Hz whistle. What is the speed of 
the approaching train? 

Solution 
ID ENT I FY Our target variable is the speed of the approaching train. 

S ET U P  The Doppler effect describes the frequency shift for moving sources, so we'll use the 
Doppler formula to determine the speed of the approaching train. Our coordinate system is shown in 
Figure 1 6. 1 ;  positive velocities are taken to be from the listener toward the source. Both the source and 
listener are moving. The listener's velocity is positive and the source's velocity is negative in our coor
dinate system. The speed of sound is taken to be 340 mls. 

® 
Figure 16.1 Problem 5 sketch. 

E X E C U T E  The listener's frequency is related to the source frequency by the Doppler shift, 
U + UL 

A = + is,  U Us 
where U is the speed of sound and uL and Us are the x components of the speed of the listener and 
source, respectively. We can rearrange to solve for us: 

U + UL Us = is - u .  
fL 

In this case, U L is + 20.0 ml s ,  iL is 950 Hz, is is 800 Hz, and U is 340 mls. Substituting yields 

Us = 
U + UL is - U = 

( 340 mIt) + ( 2�.0 m/s ) ( 800 Hz ) - ( 340 m/s ) = -36.8 m/s .  
A 950 Hz 

The train is approaching at 36 .8 mis, or 1 32 kilometers per hour. 

E VA L UAT E  This problem illustrates how to use the Doppler shift to find the speed of an object. We 
expected and found a negative speed, indicating that the source was moving toward the listener. We see 
that proper Doppler-shift solutions require a coordinate system and careful interpretation of the direc
tions of the velocities. 
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Practice Problem: What frequency would you hear if you were moving away from the train at 20.0 mls? 
Answer: 844 Hz. 

Try It Yourself! 
1: Designing an organ pipe 
You are asked to design an organ pipe that will produce a middle C on the "even-tempered scale." Mid
dle C is equivalent to a frequency of 261 .6 Hz. (a) If the tube is open at both ends, how long should it 
be? (b) If the tube is open at one end and closed at the other, how long should it be? Take the speed of 
sound in air to be 345 mls. 

Solution Checkpoints 
ID ENT I F Y  AND S ET U P  Use the normal-mode frequency relationships for open and closed tubes to 
find the lengths. 

E X E C U T E  The fundamental frequency of an open pipe is 
v 

The fundamental frequency of a closed pipe is 

The two lengths are 0.659 m and 0.330 m. 

fl = 2L ' 

EVA LU AT E  Which pipe is more desirable for a compact pipe organ? 

2: Designing a organ pipe, part 2 
Find the allowed normal-mode frequencies of the two organ pipes in the previous problem. Take the 
speed of sound in air to be 345 mls. 

Solution Checkpoints 
ID ENT I FY AND S ET U P  Use the normal-mode frequency relationships for open and closed tubes to 
find the frequencies. 

E X E C U T E  The normal-mode frequencies of an open pipe are 
nv 

fn = 
2L ' 

Substituting n = 1 , 2, 3  . . .  , we find that fl = 261 .6 Hz, f2 = 523 .2 Hz, f3 = 784.8 Hz, . . .  
The fundamental frequency of a closed pipe is 

The normal-mode frequencies are integer multiples of the fundamental frequency; that is, fn = nfl ' So, 
substituting n = 1 , 3 , 5  . . .  we find that fl = 261 .6 Hz, f2 = 784.8 Hz, f3 = 1 308 Hz, . . .  

EVA LU AT E  Which pipe is more desirable for the number of frequencies it can produce? 



SOU N D  AND H EARING 229 

3: Doppler-shift practice 
Consider a source that produces a sound with a frequency of 500 Hz. If the speed of sound in air is 
345 mis, and the source and listener both move along the line joining them at speeds of 25 mis, what 
frequencies can be heard by the listener for all possible directions of velocities? 

Solution Checkpoints 
ID ENT I FY AND S ET U P  Use the Doppler-shift equation to find the possible frequencies while vary
ing the direction, or sign, of the velocities. 

E X E C U T E  The listener's frequency is related to the source frequency by the Doppler shift, 
U + UL 

A = + is, U Us 
where U is the speed of sound and uL and Us are the speeds of the listener and source, respectively. 
When the two velocities are in the same direction, either positive or negative, there is no Doppler shift 
and the listener hears a sound with a frequency of 500 Hz. 

If the source and listener are moving away from each other, (say, UL is negative and Us is positive,) 
then the frequency is reduced to 432 Hz. If the source and listener are moving toward each other (say, 
UL is positive and Us is negative), then the frequency is increased to 579 Hz. 

EVA LU AT E  This problem illustrates the amount of Doppler shift for four possible combinations of 
velocity between two objects. 





Temperature and Heat 

Summary 
In this chapter, we will begin a four-chapter investigation of thermo
dynamics. We lay the groundwork for the upcoming chapters with an 
initial definition of temperature, and then we see how materials 
change size with temperature. Heat will be introduced as a method of 
energy transfer due to temperature differences, and the rate of heat 
transfer will be calculated. We will also learn about the amount of heat 
required to change the phase of matter and about the three types of 
heat transfer: conduction, convection, and radiation. 

Objectives 
After studying this chapter, you will understand 

• The definition of temperature and thermal equilibrium. 
• The three temperature scales and how to measure temperature . 
• How thermal expansion describes the change in length and volume 

of materials due to temperature changes. 
• About heat, phase changes, and calorimetry and how to apply these 

concepts to problems. 
• How heat is transferred by conduction, convection, and radiation. 

231  
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Concepts and Equations 

Term 
Thermal Equilibrium 

Temperature Scales 

Thermal Expansion and Thermal 

Stress 

Heat 

Phase Change 

Calorimetry 

Heat Transfer 

Description 
Two objects in thermal equilibrium have the same temperature. 

The Celsius temperature scale defines O°C as the freezing point of water and 
100°C as the boiling point of water. The Fahrenheit temperature scale defines 
32°F as the freezing point of water and 2 1 2°F as the boiling point of water. 
The Kelvin scale defines absolute zero as 0 K and uses the Celsius unit as its 
standard unit. Note that 0 K is -273 . 1 SoC. 

Materials change size, or thermally expand, due to changes in temperature. 
An object of length Lo at temperature To will have length L at temperature 
T = To + �T, or 

L 
= 

Lo + �L = Lo ( 1  + a�T) , 
where a is the coefficient of linear expansion with units K- 1 •  An object of vol
ume Vo at temperature To will have volume V at temperature T = To + �T, or 

V 
= 

Vo + � V  = vo ( 1  + (3�T) , 
where {3 is the coefficient of volume expansion with units K- 1 •  When a mate
rial is heated or cooled while being held such that it cannot contract or 
expand, it is under tensile stress given by 

F 

- = - Ya�T. A 

Heat is energy transferred from one object to another due to changes in tem
perature. The quantity of heat Q needed to raise the temperature of a mass m 
of material by an amount �T is 

Q = mc�T, 
where c is the specific heat capacity of the material. The SI unit of heat 
capacity is the joule per kilogram per kelvin (J/(kg K)). 

A phase transition is the change from one phase of matter to another. Phases 
include solid, liquid, and gas. The heat of fusion, Lf, is the heat per unit mass 
required to change a solid material to liquid. The heat of vaporization, Lv, is 
the heat per unit mass required to change a liquid material to gas. The heat of 
sublimation, Ls, is the heat per unit mass required to change a solid material 
to gas. 

Calorimetry is the measurement of heat in a system. For an isolated system, 
the algebraic sum of the quantities of heat must add to zero: 

:L Q = O. 

Heat may be transferred through conduction, convection, and radiation. Con
duction is the transfer of energy within a material without bulk motion of the 
material. Convection is the transfer of energy due to the motion of mass from 
one region to another. Radiation is the transfer of energy through electromag
netic waves. The heat current H for an area A and length L through which the 
heat flows is given by 

dQ TH - Tc 
H = - = kA 

dt L '  
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where TH and Tc are, respectively, the temperatures of the hot and cold sides 
of the material and k is the thermal conductivity. The heat current H due to 
radiation is 

H = AeaT4, 

where A is the surface area, e is the emissivity of the surface (a pure number 
between 0 and 1) , T is the absolute temperature, and a is the Stefan-Boltzmann 
constant ( 5 .6705 X 10-8 Wjm2jK4 ) .  

1 :  Do holes expand or  contract? 
Your younger brother knows that solids expand as they heat up. He thinks that the metal surrounding 
the hole in a cookie sheet will expand into the hole as the cookie sheet heats up. Is he right or wrong? 

Solution 
ID ENT I F Y, S ET U P, AND E X E C U T E  Figure 1 7 . 1 shows a sketch of a cookie sheet with a hole in it. 
After considering the problem, you realize that the hole will enlarge as the cookie sheet heats up, since 
all dimensions of an object enlarge with temperature. The challenge is how to best explain this phe
nomenon to him. 

o 
Figure 1 7.1 Question 1 sketch. 

If you give the problem a bit more thought, you come up with a convincing argument. If the cookie 
sheet had no hole, the whole sheet would increase with temperature. If you punch out a hole in the 
same cookie sheet and consider the piece of metal that was removed, this piece expands as its tempera
ture rises. Therefore, the hole in the cookie sheet must also expand, just as it did when the cookie sheet 
was holeless. 

EVA LU AT E Thermal expansion must be considered carefully. Here, we see that a confusing point can 
be clarified by imagining what happens to the piece that was once the hole. 

CAUTION Holes expand when heated! Keep the results of this problem 10 mind when you 
encounter similar problems. Holes don't  shrink when heated. 

2: Cooler after a shower 
When you step out of the shower, you often feel cold. After drying off, you feel warmer, even though 
the room's temperature is the same as when you stepped out of the shower. Why? 
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Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  When you step out of the shower, water on your body evapo
rates. Evaporation requires heat energy (the heat of vaporization), much of which energy comes from 
heat leaving your body. You feel cold because your body is transferring its heat to evaporate the water. 
When you are dry, there is little heat lost due to evaporation. 

EVA L UAT E  Evaporation also explains why one feels cooler in a dry climate than in a humid climate: 
Your sweat evaporates more rapidly in a dry climate, taking away more heat, than in a humid climate. 

3: Cold water versus cold air 
Would you prefer to spend 1 0  minutes in a 400P (4°C) room or in a 400P pool? Why? 

Solution 
ID ENT I FY, S ET U P, AND E X E C U T E  Both the room and the pool are at the same temperature, 
but the 400P room would be much more comfortable. The reason is that the specific heat of air is 
much less than the specific heat of water (i .e. , air will carry away less heat from your body than the 
water would in any time interval) . Since the air carries away less heat, you are more comfortable in 
the room. 

EVA L UAT E  Specific heat is the amount of heat needed to change the temperature of a material per unit 
mass and per unit temperature. Larger specific heats mean that more heat is carried away from an 
object. 

Problems 
1: Volume of a copper cup 
A copper cup is filled to the brim with ethanol at O°C. When the cup and ethanol are heated to 
35°C, 4.7 cm3 of ethanol spills from the cup. What is the initial volume of the cup? 

Solution 
ID ENT I FY We will use temperature expansion to find the change in volume of the cup and the 
ethanol. Their difference will lead to the initial volume of the cup-the target variable. 

S ET U P  Both the cup and the ethanol expand as the temperature rises ; the difference in their expan
sion is equal to the volume of the spilled ethanol. We' ll apply the volume expansion equation to both 
the cup and the ethanol, setting their difference equal to the volume of the spill. The coefficient of vol
ume expansion is 5 . 1  X lO-s/K for copper and 75 X lO-s/K for ethanol . 

E X E C U T E  Por any material, the change in volume due to temperature is 
� V = f3Vo�T. 

We are given the volume of the spill, which is the change in volume of the ethanol minus the change in 
volume of the cup: 
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The initial volumes of the cup and the ethanol are the same. We' ll call their common volume Vo. The 
temperature of both materials is 35°C. Replacing the changes in volumes yields 

Vspill = f3 ethanol Vall T - f3 copper VoLl T. 
Solving for Va, we obtain 

V. _ 

Vspill 
0 -

(f3  ethanol - f3 copper ) Ll T 
The original volume of the cup is 1 90 cm3 . 

( 4.7 cm3 ) 

EVA LUAT E  This is a straightforward application of volume thermal expansion. We did need to note 
carefully that both the copper and the ethanol expanded, so the spillage was the difference in the 
changes in volumes. We could almost ignore the change in volume of the copper, since the coefficient 
of thermal expansion is much smaller for copper than for ethanol . 

Practice Problem: What is the final volume of the cup? Answer: 1 90.3 cm3 . 

2: Stress in a wire 
An aluminum wire is stretched across a large steel frame. Initially, the wire is at 20°C and is 
unstressed. The system (wire plus frame) is cooled by 50°C. If the area of contact for the wire is 
9.0 X 1 0-6 m2, what force is exerted on the wire? 

Solution 
ID ENT I F Y  The differences in the expansion of the wire and frame will lead to tensile stress acting on 
the wire. The target variable is the force on the wire. 

S ET U P  We will first use temperature expansion to find the change in lengths of the wire and frame. 
We will then find the tensile stress on the wire. The coefficient of linear expansion is 2.4 X 1 0-5/K for 
aluminum and 1 .2 X 1 O-5/K for steel. Young's modulus for the aluminum is 0.7 X 1 01 1  N/m2. 

E X E C U T E  The percent change in length for a material due to temperature is 
LlL = aLoLlT. 

When the aluminum is cooled by 50°C, the change in its length is 

( LlL) = aalLlT = ( 2.4 X 1 0-5 ) ( 50 )  = 1 .2 X 1 0-3. 
Lo al 

For the steel, the change in length is 

( LlL) = astLlT = ( 1 .2 X 1 0-5 ) ( 50 )  = 0.60 X 1 0-3. 
La st 

Both of these changes are decreases, since the temperature has decreased. We see the aluminum 
changes more than the steel. Because the steel decreases less, stress is induced in the aluminum. The 
stress is given by 

F _ . ( LlL) - Yal . 
A 

. .  Lo 
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The stress is proportional to the net change in length of the wire. The frame shrinks, so the net change 
in length is the difference in the changes of the wire and the frame. The force is then 

F = AYaI (��) = ( 9.0 X 1 O-6 m2 ) ( 0.7 X 101 I N/m2 ) ( 1 .2 X 10-3 - 0.60 X 10-3 ) = 380 N. 

The stress on the wire is 380 N. 

EVA L U AT E  This is an application of linear thermal expansion. To find the stress, we did need to note 
carefully the difference in how the two materials contracted. We could also have used the relation in 
the book that directly provides the stress as a function of temperature. 

3: Ice to steam 
A copper calorimeter of mass 2.0 kg initially contains 1 .5 kg of ice at - 10°C. How much heat energy 
must be added to convert all of the ice to water and then half of the water into steam? 

Solution 
ID ENT I FY We will use heat capacity and heat of fusion to determine how the ice melts and turns to 
steam. The target variable is the amount of heat needed to convert the ice to water and the water to 
steam. 

5 ET U P  We will solve the problem in several steps. We' ll first find the heat required to raise the tem
perature of the ice to O°C, then find the heat required to melt the ice, then find the heat required to 
warm the water to 1 00°C, and finally find the heat required to vaporize half of the water. We know that 
the final temperature of the remaining water must be 100°C, since the water remains in equilibrium 
throughout the process. We must also add the heat required to heat the copper pot to 1 00°e. 

E X E C U T E  The heat required to heat the ice to O°C is 

QI = miceciceD.T = ( 1 .5 kg ) ( 2100 J/kg/K) ( 1O.0°C ) = 3 1 ,500 J. 
We used the specific heat of ice (2010  J/kg/K) to find QI .  The heat required to melt the ice is the heat of 
fusion for ice: 

Q2 = miceLf = ( 1 .5 kg ) ( 3 .34 X 105 J/kg ) = 501 ,000 J. 
The melted ice must warm to the final temperature ( lOO.O°C): 

Q3 = miceCwaterD. T = mice ( 4190 J /kg/K) ( 100.0°C ) = 628,500 J. 
Here, we used the heat capacity of water (41 90 J/kg/K). Half of the mass turns to steam. Using the heat 
of vaporization ( 2.256 X 1 06 J /kg ) ,  we find that the heat required is 

Q4 = �miceLf = � ( 1 .5 kg ) ( 2.256 X 106 J/kg ) = 1 ,692,000 J. 
The copper pot also increases in temperature, from - 10°C to 100°e. The heat required to bring about 
this increase is 

Qcopper = mcopperccopperD.T = ( 2.0 kg ) ( 390 J/kg/K ) ( 1 l0.0°C ) = 85,800 J. 
The total heat is the sum of the five quantities of heat: 

Qt = QI + Q2 + Q3 + Q4 + Qcopper = 2.94 X 106 J. 
So 2.94 X 106 J are needed to heat the pot and ice from - 10°C to 1 00°C and then to vaporize half of 
the water that is produced. 
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EVA L UAT E  We see how we must solve calorimetry problems in multiple steps. We need to include the 
latent heat when materials change phase and the heat capacity when materials heat up. 

CAUT I O N  Temperature i s  not heat! Temperature characterizes the state of an object. Heat i s  the 
flow of energy. The two terms may be synonymous in everyday language, but they are not synonymous 
in physics. 

4: Cooling hot tea 
You wish to chill your freshly brewed tea with the minimum amount of ice that will avoid watering it 
down too much. What is the minimum amount of ice you should add to 2.0 kg of freshly brewed tea at 
95°C to cool it to 5 .0°C? The ice is initially at a temperature of -5 .0°C. 

Solution 
ID ENT I F Y We' ll set the heat lost from the tea equal to the heat gained by the ice. The target variable 
is the amount of ice needed to cool the tea. 

S ET U P  The amount of heat lost by the tea is given by the specific heat capacity equation, since the tea 
doesn't go through a phase change. The ice melts, so, in calculating the heat gain of the ice, we need to 
include the latent heat of fusion, plus the changes due to the ice warming to O°C, and the changes due 
to the melted ice warming to 5 .0°C. 

E X E C U T E  The heat transfer from the hot tea as it cools to 5 .0°C is negative: 

Qtea = mteaCwateA�ea = ( 2.0 kg ) (  4 190 J/kg/K) ( 5 .0°C - 95°C ) = -754,000 J. 
Here, we used the heat capacity of water (4 190 J/kg/K) for the tea. The ice must warm to O°C, then 
melt, and then heat to 5 .0°C. We find the heat required for each segment of the ice warming. For the ice 
to heat to O°C, we use the specific heat of ice (20 10  J/kg/K) : 

Qice = miceciceD.T;ce = mice ( 20 10  J/kg/K) [O.O°C - ( -5.0°C ) ]  = mice ( Io,ooo J/kg ) .  
The heat needed to melt the ice is the heat of fusion for ice: 

Qmelt = miceLf = mice ( 3 .34 X 1 05 J /kg ) . 
The melted ice must warm to the final temperature (5 .0°C): 

Qmelted ice = miceCwaterD.Tmelted ice = mice ( 4 190 J/kg/K ) ( 5 .0°C - O.O°C ) = mice ( 2 1 ,000 J/kg ) .  
The sum of these four quantities must be zero: 

Qtea + Qice + Qmelt + Qmelted ice = -754,000 J + mice ( 10,000 J /kg ) 
+ mice ( 334,000 J/kg ) + mice ( 2 1 ,000 J/kg ) = O. 

Therefore, 
754,000 J 

mice = ( 1 0,000 Jjkg ) + ( 334,000 J/kg ) + ( 2 1 ,000 J/kg ) 
= 2. 1 kg. 

It takes a minimum of 2. 1 kg of ice to cool the tea down. 

EVA L UAT E  Despite your best effort, the tea will be watery. Putting the ice in a bag will prevent the 
melted ice water from mixing with the tea. More importantly, we see how we must proceed stepwise 
through calorimetry problems. 



238 CHAPTER 1 7  

5: Heat flow through three bars 
A composite rod is made up of three equal lengths and cross sections of aluminum, brass, and copper. 
The free aluminum end is maintained at 1 00°C, and the free end of the copper rod is maintained at O°C. 
If the surface of the rod is insulated to prevent radial heat flow, find the temperature at each junction. 

Solution 
I D E  NT I FY We will use the heat current through the rods to find the temperatures at the rod junctions
the target variables. 

S ET U P  A sketch of the rod is shown in Figure 1 7 .2. The heat current is the same through each seg
ment of the rod, so we'll write the heat equations for each segment and set them equal to each other to 
solve the problem. 

, � 
� A  B C D �  
� A I  Br Cu � r/ 0° 

, , � 
Figure 1 7.2 Problem 5 sketch. 

E X E C U T E  The heat current through any rod is 

We can write the heat current per unit area times the length through the individual rods as 
HABL / A = kA1 ( TH - Te) = (205 W m · K ) ( 1 00°C - TB) ,  

HBeL / A = kBr ( TH - Te) = ( 1 09 W m ·  K)( TB - Td , 

HeDL / A = kco ( TH - Te) = ( 385 W m ·  K)( Te - O°C ) . 

These expressions must all be equal, since they each reference the same heat current, area, and length 
of the rod segment. Setting the last two equations equal to each other results in 

or 
( 109 W/m ·  K ) TB - ( 1 09 W/m ·  K ) Te = ( 385 W/m ·  K ) Tc, 

385 + 1 09 
TB = Te = 4.53Tc· 

1 09 
Setting the first and last equations equal to each other gives 

( 205 W/m ·  K ) ( 1 00°C ) - ( 205 W/m ·  K ) TB = ( 385 W/m ·  K ) Te· 



Replacing Ts yields 

Then 

205 ( 1 00°C ) - 205 (4.S3Td = 385 Tc, 
Tc = l S .6°C. 

Ts = 70.7°C. 
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The aluminum-brass junction is at 70.7°C and the brass/copper junction is at l S .6°C. 
EVA L UAT E  Although one might expect the three equal segments to have equal temperature differ
ences, we see that the varying thermal conductivities of the segments caused a nonuniform temperature 
distribution. The segment with the highest thermal conductivity (copper) had the smallest temperature 
difference between its ends, and the segment with the lowest thermal conductivity (brass) had the 
greatest temperature difference between its ends. 

6: Time required to melt a block of ice 
A long steel rod that is insulated to prevent heat loss along its sides is in perfect thermal contact with a 
large container of boiling water at one end and a 3 .0-kg block of ice at the other. The steel rod is 1 .2 m 
long with cross-sectional area 3 .50 cm2. How long does it take for the block of ice to melt? The ice 
block is initially at O°C. 

Solution 
I D E N T I  F Y  We' ll combine our knowledge of heat conduction with our knowledge of heat of fusion to 
solve this problem. The target variable is the time required for the ice to melt. 
S ET U P  A sketch of the problem is shown in Figure 17 .3 .  We begin by determining the heat required 
to melt the ice. We then find the rate of heat flow into the ice. With that information, we can find the 
time it takes for the ice to melt. 

� � 
� v 
� Steel  v 
� � � 1 0 2 m  � � v 

Figure 17.3 Problem 6 sketch. 

E X E C U T E  The heat required to melt the ice is the heat of fusion for ice: 

Qmelt = miceLf = ( 3 .0 kg ) ( 3 .34 X 105 J/kg ) = 1 .0 X 1 06 J .  
The rate of heat flow is given by 

H = LlQ = kA TH - Tc 
Llt L

' 

where k is the thermal conductivity, A and L are, respectively, the area and length of the bar, and TH and 
Tc are, respectively, the temperatures of the hot and cold sides of the bar. We find that 

H = �� = kA TH � Tc 
= ( 50.2 W/ ( m · K) ) ( 6 .S X 1 0-4 m2 ) 

( 1 000��2 �iOOC ) = 2.7 W, 
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where we used 50.2 WlrnlK as the thermal conductivity of steel . The time required to melt the ice is 

Q ( 106 J )  
!:J.t = � = = 370 000 s . H ( 2.7 W)  

, 

The time required to melt the ice is 370,000 s, or 103 hours. 

EVA L U AT E  We see that the thin steel bar is a relatively poor conductor of heat. Replacing the steel 
with a copper bar would increase the rate by almost a factor of 8, due to the differences in thermal con
ductivity. Increasing the rod's diameter and shortening the rod would also increase the rate of melting. 

Try It Yourself! 
1 :  Niagara Falls 
Water flowing at a speed of 5 .0-rnls-falls over a 50-m-high waterfall into a still pool below. Calculate 
the approximate rise in water temperature due to the conversion of mechanical energy into thermal 
energy 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Use energy conservation, equating the loss in mechanical energy to heat. 

E X E C U T E  The water has kinetic energy and gravitational energy that together convert to heat. Equat
ing the two forms of energy 

4mv2 + mgh = mc!:J.T. 

The rise in temperature is 0. 1 2°e. 

EVA LU AT E  Did you need to know the mass of the water? 

2: Melting ice, again 
A copper calorimeter of mass 2.0 kg initially contains 1 .5 kg of ice at - 100e. (a) What will the final 
temperature be if the heat added is 5 X 105 J? (b) What will the final temperature be if the heat added 
is 106 J? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Use heat capacity and heat of fusion to determine how the temperature of 
the ice increases with the heat provided. Follow a series of steps and determine whether the heat at 
each step exceeds the heat provided. 

E X E C U T E  (a) Examining Problem 4, we see that 5 X 105 J would be exhausted during the melting 
phase of the problem. The final temperature is O°e. 

(b) With 1 06 J of heat, all of the ice melts but the temperature doesn't reach 100°C. The temperature 
can be found by adding up the heat required in each step: 

!:J. Q = micecice ( 1 0°C ) + mcopperccopper!:J. T + miceCwater ( !:J. T - 10°C ) + miceLf. 

The final temperature is 64.8°e. 

EVA LU AT E  Why is - 10°C required in the term expressing the heat capacity of water? 



Summary 

Thermal Properties 
of Matter 

In this chapter, we extend our investigation into thermodynamics, 
viewing systems from both the macroscopic and microscopic perspec
tives and building links between the two perspectives . We will learn 
about equations of state for materials and examine the ideal-gas equa
tion as one such equation. This investigation will allow us to build a 
model for the kinetic energy of individual molecules and predict the 
behavior of gases. We will define thermodynamic systems and exam
ine the energy of those systems. This analysis will lead to the first law 
of thermodynamics and thermodynamic processes. Four common 
thermodynamics processes will be highlighted, and their implications 
for ideal gases examined. 

Objectives 
After studying this chapter, you will understand 

• How to define the mole and Avogadro's number. 
• How to define equations of state and how to apply the ideal-gas 

equation. 
• How to determine the kinetic energy of gases and how to apply that 

energy to individual particles. 
• The origins of molar heat capacities for materials and gases. 
• How to apply the first law of thermodynamics . 
• The four common thermodynamic processes and how to apply 

them to find the changes in heat, work, and internal energy of ther
modynamic systems. 

241  



242 CHAPTER 1 8  

Concepts and Equations 

Term 
Mole 

Equation of State 

Ideal-Gas Equation 

Kinetic Theory of Gases 

Molar Heat Capacity 

Molecular Speeds 

Phases of Matter 

Description 
One mole (mol) is the amount of substance that contains the same number of 
elementary units as there are atoms in 0.0 1 2  kg of carbon 12. The number of 
molecules in a mole is Avogadro's number, NA = 6.022 X 1 023 molecules per 
mole. The molar mass is the mass of 1 mole of a substance. 

An equation of state expresses the relation among pressure, temperature, and 
volume of a certain amount of a substance in equilibrium. The pressure p, 

volume V, and absolute temperature T are the state variables. 

The ideal-gas equation is the equation of state for an ideal gas that approxi
mates the behavior of a real gas at a low pressure and a high temperature. The 
pressure p, temperature T, volume V, and number of moles, n, of the gas are 
related by 

pV = nRT, 

where R is the ideal-gas constant. In SI units, when pressure is given in Pa 
and volume is given in m3, R = 8.3 1 45 J! ( mol · K ) .  

The total translational kinetic energy Ktr of all the molecules in an ideal gas is 
proportional to the temperature T and quantity of gas, n, in moles. Expressed 
as an equation, the total translational kinetic energy is 

Ktr = �nRT. 
For a single molecule, the average translational kinetic energy is 

Kav = �kT, 

where k = R! NA = 1 .3 8 1  X 1 0-23 J! ( molecule · K )  is the Boltzmann con
stant. The mean free path of molecules in an ideal gas is given by 

V 

The amount of heat Q needed for a temperature change � T is 
Q = nC�T, 

where n is the number of moles of the substance and C is the molar heat capac
ity. The molar heat capacity at constant volume is given in certain cases by 

3 Cv = -R 
2 

5 Cv = -R 
2 

Cv = 3R 

( monatomic gas ) ,  

( diatomic gas ) , 

( monatomic solid) . 

The speeds of molecules in an ideal gas are given by the Maxwell-Boltzmann 
distribution: 

j( v )  = 47T (�)3/2
v2e -IIlV2/2

kT. 

27TkT 

The quantity j( v ) dv describes the fraction of molecules with speeds 
between v and v + dv . 

Ordinary matter exists in solid, liquid, and gas phases. A phase diagram 
shows the conditions under which two phases can coexist in phase equilib
rium. All three phases can coexist at the triple point. 



conceptual Questions 
1 :  Don't hold your breath 

TH ERMAL P ROPERTI ES OF MATTER 243 

Explain why scuba divers are taught not to hold their breath as they ascend to the surface from depths 
under the water. 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  We know from fluid statics that pressure increases with depth 
in water. The ideal-gas equation states that pressure and volume are inversely proportional for a given 
temperature and quantity of gas. Ascending to the surface reduces the ambient pressure, causing an 
increase in volume. (We assume that the temperature is constant in the water) . By holding her breath, a 
scuba diver traps a quantity of air inside her lungs. As the pressure decreases upon her ascent, her lungs 
expand, possibly damaging some lung tissue. If the diver exhales during the ascent, the pressure cannot 
build to dangerous levels. 

EVA LUAT E  This problem combines our knowledge of fluid statics and our knowledge of ideal gases 
and helps illustrate the relation between pressure and volume. High-altitude weather balloons also 
expand as they rise, so they are partially filled at the ground to prevent the balloons from bursting as 
they ascend. 

2: Atmosphere on the earth and moon 
Why does the earth, but not the moon, have an atmosphere? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  The escape velocity ofmolecules on the earth is about l l kmls, 
much higher than the average rms speed of molecules in the atmosphere. Without sufficient speed, the 
molecules remain near earth, thus creating an atmosphere. 

The gravitational potential on the moon's surface is about 20 times weaker than that on the earth's 
surface, so the escape speed is about 20 times less, or 2400 m/s. This lesser escape speed greatly 
enhances the probability that molecules of whatever atmosphere the moon might have had have all 
escaped into space. 

EVA L U AT E  The problem illustrates how molecular motion can help explain common physics 
phenomena. 

Problems 
1 :  Changing volume in a diving bell 
A diving bell (a circular cylinder 3 .0 m high, open at the bottom) is lowered into a lake. By how much 
does the water rise as the bell is lowered 75 m? The surface temperature of the lake is 25°C and the 
temperature at the 75 m depth is l 5°C. 

Solution 
I D E  N T  I FY We assume that the gas is ideal, so we use the ideal-gas equation to relate the surface val
ues of pressure, temperature, and volume to the values at depth. The target value is the height of the 
water in the diving bell at depth. 
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S E T  U P  Figure 1 8 . 1  shows a diagram of the situation. We' ll use fluid statics to relate the pressure at 
the surface to the pressure at depth. These two relations will be combined to find the final height of 
water in the bell. 

3 m  
--

D =  72m 
7 5 m  

1 : 
Figure 18.1 Problem 1 sketch. 

E X E C U T E  The same amount of gas is trapped inside the bell both at the surface and at depth; therefore, 

PsVs PDVD 
-- = -- = constant, 

Ts TD 
where the subscript S indicates the value at the surface and subscript D indicates the value at depth. 
Substituting the known values gives 

( 1 .0 1  X 1 05 Pa) (A) ( 3 .0 m )  
( 298 K)  

PDAl 
( 288 K) , 

where we replaced the volume of the cylinder with its area times its height. There two unknowns in this 
equation: 

( 1 .0 1  X 105 Pa) ( 3 .0 m )  5 PDl = ( 288 K )  
( 298 K)  

= 2.93 X 10  Pa  m. 

We can find the pressure at depth from fluid statics, using 

Substituting the known values yields 
PD = Ps + pg (D + I ) .  

PD = ( 1 .01 X 1 05 Pa ) + ( 1  X 103 kg/m3 ) ( 9.8 m/s2 ) ( 72 m + I ) ,  
PD = ( 8 .07 X 1 05 Pa ) + ( 7 .06 X 105 Pa/m) l. 

This equation also has two unknowns. Combining the two equations to eliminate PD results in 
( 2.93 X 105 Pa m )  

PD = 
l 

= ( 8 .07 X 105 Pa) + ( 7 .06 X 105 Pa/m) l. 

Rearranging terms gives 

( 7 .06/m2 ) l2 + ( 8 .07/m) l  - 2.93 = O. 
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This is a quadratic equation with solutions I = 0.290, - 1 .43 m. The negative root is nonphysical, so 
the correct I is 0.29 m. The water rises 3 .0 m - 0.29 m, or 2.7 m, as the bell descends. 

EVA LU AT E  This problem illustrates how the increased pressure at depth reduces the volume of gas in 
the diving bell. If you consider the reverse process, you can see how the volume would increase as the 
bell rises to the surface, as we discussed in Conceptual Question 1 .  You can also try both situations by 
using a bucket of water. Submerge an inverted glass in a bucket of water, and see how the water level 
in the glass rises as the glass is lowered. Then use a hose to add air to the bottom of an inverted glass at 
the bottom of the bucket. As you raise the glass, you should see air leaving it. 

2: Spacing between hydrogen molecules 
Find the average spacing between H2 molecules, assuming that the molecules are at the vertices of a 
fictitious cubic structure, in (a) gaseous H2 at STP, (b) liquid H2 at 20 K, where the density is 
41 ,060 mol/m3, and (c) solid H2 at 4.2 K, where the molar volume is 22.91  X 10-6 m3/mol. 

Solution 
I D E N T I FY We will use the definitions of density, Avogadro's number, and molar mass to find the 
average spacmg. 

S ET U P  We' ll assign a spacing of a to the distance between H2 molecules, giving a volume of a3 per 
molecule. One mole of gas occupies 22.4 L at STP, and 1 L is 0.001  m3 . 

E X E C U T E  (a) For the gaseous H2, we multiply the volume of one molecule by NA to get the volume 
at STP: 

Solving for a gives 

a =  3 
22.4 X 1 0-3 m3/mol 

NA 
3 22.4 X 10-3 m3/mol _ -9 ------2'-3 - - 3 .34 X 10  m. 

6.203 X 10 
(b) We are given that each cubic meter contains 41 ,060 moles of liquid H2. In equation form, this is 

1 m3 = 41 ,060 NAa3• 

Solving for a results in 

a = 
1 m3 3 ___ _ 

41 ,060 NA 

1 m3 3 
_________ = 3 .44 X 10- 10 m. 
(4 1 ,060 ) ( 6.203 X 1023 ) 

(c) We are given the molar volume: 

NAa3 = 22.9 1 X 10-6 m3/mol. 
Solving for a produces 

3 22.9 1 X 10-6 m3/mol 3 22.9 1 X 1O-6 m3/mol _ - 10 ------?-:73-- - 3.37 X 10  m. a =  6.203 X 10-

The average spacing is 3 .34 X 10-9 m for the gaseous H2, 3 .44 X 10- 10 m for the liquid H2, and 
3 .37 X 10- 1 0  m for the solid H2.  
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EVA L U AT E  We see that the average spacing for the liquid and solid H2 is similar and about 1 0  times 
closer than the spacing for the gaseous H2 . 

3: Spacing in a vacuum 
A common type of laboratory vacuum pump produces an ultimate pressure of 10  microns. How many 
molecules (in moles) of gas are present in a volume of 0. 15  m3 reduced to that pressure at 300 K? 

Solution 
I D E N T I FY We will use the ideal-gas law to solve for the number of molecules in the volume-the 
target variable. 

S ET U P  To use the ideal-gas law, we need to know the pressure in standard units. One micron is a 
measure of pressure in terms of the height of mercury. One atmosphere is 760 mm of mercury; one 
micron is one-thousandth of a millimeter of mercury. 

E X E C U T E  First convert the pressure to atmospheres, using the information provided: 

10  microns = ( 10 X 10-6 ) 
( 1 atm ) = 1 .32 X 10-5 atm. 0.760 m 

The ideal-gas law is 
pV = nRT. 

Solving for n and using the molar gas constant yields 

pV ( 1 .32 X 10- 5  atm ) ( 1 .5 X 102 m3 ) 
5 n = - = = 8.04 X 10  - mol. 

RT ( 0.08206 L ·  atm/mol · K )  ( 300 K)  

There i s  8 .04 X 10-5 of a mole of molecules in the container after evacuating. 

EVA L U AT E  This may seem like a small number, but there are almost 5 X 1019 molecules remaining in 
the volume. One of the toughest challenges in physics research is creating ultrahigh vacuums to study 
the behavior of small numbers of particles. Physicists don't want collisions with remaining air mole
cules to interfere with the molecules whose behavior they are studying. 

Did we assume that the gas was an ideal gas? Yes, we took the gas to be an ideal gas. This assump
tion is valid because the gas is at low pressure. 

4: Mixing gases 
A I -liter flask at 293 K contains a mixture of 3 g of N2 and 3 g of H2 gas. Assuming that the gases 
behave as ideal gases, (a) calculate the partial pressure exerted by both gases and (b) calculate the rms 
speeds of the two gases. 

Solution 
I D E N T I  FY We will use the ideal-gas law and kinetic theory to solve the problem. The target variables 
are the partial pressures and rms speeds of the two gases. 

S ET U P  Partial pressure is the pressure exerted by each gas separately. We' ll use the ideal-gas law to 
find the partial pressure of each gas. The rms speed may be calculated by an expression found in the text. 
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E X E C U T E  (a) The volume and temperature are given, so we need to convert the amount of each gas to 
moles. We have 

3 g 3 
nN = = - mol 2 28 g/mol 28 ' 

3 g  3 
nH = = - mol 

2 2 g/mol 2 . 

The ideal-gas law is 
pV = nRT. 

Solving for p for each gas yields 

nRT 
PN2 = Y- = 

(1s mol ) ( 8 . 3 14 l/mol · K ) ( 293 K)  
_ 5 _ 

1 0 - 3 m3 - 2.61 X 1 0  Pa - 2.6 atm, 

nRT n mol ) ( 8 . 3 14  l/mol ' K )  ( 293 K )  
PH2 = -

V 
= --'--=----=-----'------:.....,-----:--:........:....--� = 3 .65 X 1 06 Pa = 36 atm. 1 0 - 3 m3 

(b) The rms speed is found from 

Solving for our gases gives 

VN, = l: = 

vH, = l: = 

3 ( 8 .3 14 limo] ' K )  ( 293 K )  
/ -----'-----'-------'- = 5 1 1  m s, 

( 28 X 1 0- 3 kg/mol ) 

3 ( 8 . 3 14  l/mol · K )  ( 293 K )  
/ ----'------'------c:---':---'-----'--- = 1 9 1 0  m s . 

(2 X 10 - 3 kg/mol ) 

EVA L UAT E  We see that both the pressure and the rms speed are higher for the H2 gas, consistent with 
its smaller mass . 

5: Escape velocities of the sun and earth 
Calculate the escape velocities at the surface of the sun and the earth, and determine whether any mol
ecules have rms thermal speeds comparable with these escape velocities at 300 K. 

Solution 
I D E  N T I FY We will use energy conservation to determine the escape velocities and kinetic theory to 
find the rms speeds. The target variables are the escape velocities at the surface of the sun and earth and 
the rms speeds for gases at 300 K. The mass and radius values are found in Appendix F of the text. 

S ET U P  For a molecule to escape from the sun or the earth, all of the molecule's gravitational poten
tial energy must convert to kinetic energy. We use that relation to solve for the minimum escape veloc
ity. The rms speed is given by an expression found in the text. 

E X E C U T E  The escape velocity is found from energy conservation: 
GMm 

1 2 
-- = 'imv . 

R 



248 CHAPTER 1 8  

Solving for the velocity gives 

v = �2�M
. 

Solving for the escape velocities of the sun and the earth yields 

_ �2GMsun _ vsun - R -sun 

The rms speed is found from 

2 ( 6.67 X 1O- I I N · m2/kg2 ) ( 6.0 X 1024 kg ) 
_ 4 ---'-----------'---=-:-6.:........:....-----"--'---- - 1 . 1 2 X 10 m/ s .  

6 .38 X 10  m 

The hydrogen atom has the highest rms speed of any gaseous atom, so we calculate the speed for 
hydrogen. For a hydrogen atom at 300 K, 

V

H 

= �3
M
RT 

= 

3 ( 8 .3 14 J/mol · K ) ( 300 K )  
= 2700 m/s. 

( 1  X 10- 3 kg/mol ) 
The rms speed is 2700 mis, less than the escape velocity of the sun or the earth. 

EVA LU AT E  We see that it is unlikely for any gas to have sufficient rms speed to escape the sun or the 
earth. The sun's average surface temperature is roughly 6000 K, corresponding to 12,000 mis, a speed 
still too low for escape. Why does the moon not have an atmosphere? 

Practice Problem: Find the escape velocity of a particle on the moon. Answer: 2370 mis, enough for 
most gases to escape. 

Try It Yourself! 
1 :  Helium gas 
Helium gas is admitted to a volume of 200 cm3 at a temperature of 77 K until the pressure is equal to 
1 atm. (a) If the temperature of the container is raised to 20°C, what will the pressure inside the con
tainer be? (b) If the system has a relief valve that will not permit the pressure to exceed 1 atm, what 
fraction of gas remains at 20°C? 

Solution Checkpoints 
I D E N T I  FY A N D  S ET U P  Use the ideal-gas law to solve the problem. Is that law a valid approximation? 

E X E C U T E  (a) For the closed system, of the number of moles, pressure, temperature, and volume, 
which changes as the temperature rises? Only pressure and temperature change, so their ratio remains 
constant: 

The final pressure is 3 . 8  atm. 
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(b) For the valved system, what remains constant? Both the moles and temperature change, yielding 
n 1RTI = n2RT2' 

26.3% of the gas remains. 

EVA L U AT E  How could the system be changed so that both the pressure and the number of moles 
remain constant? 

2: Nitrogen gas 
(a) Calculate the volume occupied by I mole of nitrogen gas at the critical temperature ( 162.2 K) and 
critical pressure ( 33.9 X 105 N I m2 ) .  Express your answer as a ratio of the volume to the known criti
cal volume ( 90. 1 X 10-6 m3 ) .  (b) Calculate the pressure at the critical volume and temperature. 

Solution Checkpoints 
I D E N TI FY A N D  S ET U P  Treat the nitrogen as an ideal gas and use the ideal-gas law to solve the 
problem. 

E X E C U T E  (a) The ideal-gas law can be used to find the volume: 
nRT V = - . p 

The volume is 3 .44 V c .  

(b) The critical pressure is 3 .44pc -

EVA L U AT E  What do the critical pressure, temperature, and volume refer to? Do you think the results 
are valid? 

3: RMS speed values 
In a gas at 300 K that is a mixture of the diatomic molecules H2 (2 g/mol) and D2 (4 g/mol), find the 
rms speeds of the molecules 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Kinetic theory gives the rms speed of molecules. 

E X E C U T E  The rms speed is found from 

v = )3
�

T . 

The rms speed is 1930 mJs for hydrogen and 1 370 mls for deuterium (D2) ' 
EVA L U AT E  Could you devise a method for separating these two molecules by using the differences in 
their rms speeds? Explain. 





Summary 

The First Law of 
Thermodynamics 

In this chapter, we investigate and quantify thermodynamic processes
processes that exchange heat and do work. We will examine thermody
namic systems and energy in these systems. Our examination will lead 
us to the first law of thermodynamics and thermodynamic processes. 
Four common thermodynamics processes will be highlighted, and the 
implications of those processes for ideal gases will be examined. 

Objectives 
After studying this chapter, you will understand 

• How to define thermodynamic processes. 
• How heat is transfened and work is done in a thermodynamic 

process. 
• The definition of, and how to apply, the first law of thermodynamics. 
• How a path between initial and final states affects a thermo

dynamic process . 
• The four common thermodynamic processes (adiabatic, isochoric, 

isobaric, and isothermal). 
• How to apply the common thermodynamic processes to find the 

changes in heat, work, and internal energy of thermodynamic 
systems. 

• How ideal gases are described in the common thermodynamic 
processes. 
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Concepts and Equations 

Term 
Heat and Work in 

Thermodynamic Processes 

First Law of Thermodynamics 

Thermodynamic Processes 

Properties of an Ideal Gas 

Description 
A thermodynamic system may exchange energy with its surroundings by heat 

transfer or by mechanical work. The work done by the system is given by 

W =  f2
PdV 

V, 

= P ( V2 - VI ) ( constant pressure only ) . 

In any thermodynamic process, the heat added to the system and the work 

done by the system depend on the steps the system takes· from its initial to its 

final states, as well as on the initial and final states themselves. 

The first law of thermodynamics states that when heat Q is added to a system 

while work W is performed by the system, the internal energy U changes by 

D. U  = Q - w. 

For infinitesimal changes, 

dU = dQ - dW. 

The internal energy of any thermodynamic system depends only on its state. 

The change in internal energy in any process depends only on the initial and 

final states. 

Common thermodynamic processes include the adiabatic process, in which 

no heat flows into or out of the system ( Q = 0 ) ;  the isochoric process, in 

which the volume remains constant ( W  = 0 ) ;  the isobaric process, in which 

the pressure remains constant [W = P ( V2 - VI ) J ; and the isothermal 

process, in which the temperature remains constant. 

The internal energy of an ideal gas depends only on its temperature, not its 

pressure or volume. The molar heat capacity at constant volume ( Cv) and the 

molar heat capacity at constant pressure ( Cp)  for an ideal gas are related by 

Cp = Cv + R. 

For an adiabatic process in an ideal gas, both TVy- 1 and p V'Y are constant, 

where 'Y = cpj Cv. The work done by an ideal gas during an adiabatic expan

sion is given by 

W = nCv( TI - T2 )  
Cv 

= R (PI VI - P2V2) 

1 

= --1 
(PI VI - P2V2 ) · 

'Y -



conceptual Questions 
1 :  pV diagrams 
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One mole of helium gas is placed in a sealed container and undergoes an isochoric process that results 
in a doubling of the helium's pressure. Next, the gas undergoes an adiabatic process until the volume of 
the container is tripled. It then undergoes an isobaric expansion which results in a volume that is four 
times its original volume. Finally, the helium undergoes an isothermal compression that leaves the con
tainer with the same volume that it had after the first process. Sketch a p V diagram for this combined 
process. 

Solution 
S ET U P  A N D  S O LV E  Figure 19 . 1 shows the resulting pV diagram. The diagram starts at point a with 
initial pressure Po and volume Vo. Then comes the isochoric process, at constant volume, represented 
by a vertical line to point b, where the pressure has doubled. Next is the adiabatic process, in which no 
heat is exchanged. This process follows the path to point c, where the volume has tripled. Next is the 
isobaric process, carried out at constant pressure and represented by a horizontal line to point d, where 
the volume has increased by Vo from point c. Finally, in the isothermic process, the segment follows 
the path to point e, where the pressure has increased to 2po. 

P 

b e 

Po ~ a 

Figure 19.1 Question 1 .  

R E F L E CT This problem helps clarify the differences in the four common thermodynamic processes . 
pV diagrams are a valuable aid in solving problems involving these processes. The diagrams will help 
lead us through a particular problem, as well as provide a check on our results. 

2: Internal energy in a thermodynamic process 
A container of argon gas undergoes a multistep process. First, it undergoes an isobaric expansion that 
triples its volume. Next, it goes through an isochoric process that results in a doubling of the argon's 
pressure. Then it cools adiabatically by 50 K. After that, it undergoes a second isochoric process that 
doubles its volume. Finally, it undergoes isobaric compression that leaves it at its initial temperature. 
Find the total change in internal energy. 

Solution 
S ET U P  A N D  S O LV E  The change in the internal energy of an ideal gas depends only upon tempera
ture. Argon is an ideal gas . Since the final temperature is the same as the initial temperature, the total 
change in internal energy is zero. 

R E F L E CT This complicated scenario shows that we need to focus on the important parts of the 
process to interpret the results properly. Although it is trivial to find the change in internal energy, it 
would be cumbersome to find the heat added to the system. 
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Problems 
1 :  Adiabatic compression of helium 
Helium gas is expanded adiabatically from a 12-liter volume at STP to a 33-liter volume. Find the final 
temperature and pressure of the gas and the work done on the gas . 

Solution 
I D E N T I FY Since the helium is expanded adiabatically, both pV'Y and TV'Y- I are constant during the 
process. The target variables are the final temperature and pressure of the gas and the work done on 
the gas . 

S ET U P  For helium, 'Y = l . 67 (from Table 19 . 1 in the text) . Standard temperature and pressure (STP) 
refers to a temperature of 273 K and a pressure of 1 atmosphere. 

E X E C U T E  To find the final pressure, we use the relation 
p V'Y = constant = PI vi = P2 vI, 

where the subscripts 1 and 2 indicate "before" and "after," respectively. Rearranging terms to find the 
final pressure, we obtain 

Pl vi ( l .0 1  X 105 Pa ) ( 1 2 e )  1 .67 _ 

4 P2 = 
vI 

= 
( 33 e )  1 .67 - l . 86 X 10  Pa. 

To find the final temperature, we use the relation 

TVy-1 = constant = T[ Vy- I = T2 Vr ' . 
Rearranging terms in the preceding equation gives a final temperature of 

TI Vy- ' ( 273 K) ( 12 e ) O.67 
T2 = 

vI 
I - ( 33 e ) O.67 = 139  K. 

The work done by an ideal gas in an adiabatic process is 
W = ncA T, - T2 ) '  

For helium, Cv is 1 2.47, from Table 1 9. 1 .  The number of moles is 
12 L 

n = 
22.4 L 

= 0.536 mol. 

The work done by the gas is 

W = ncA T, - T2 ) = ( 0.536 mol ) ( 1 2.47 J!mol ' K )  ( 273 K - 1 39 K) = 895 J. 
The work done on the gas is the opposite, or -895 1. The final pressure is l . 86 X 104 Pa and the final 
temperature is 1 39 K. 

EVA L UAT E  We see that both the temperature and the pressure decreased in this adiabatic expansion. 
That makes sense, since no heat was transferred into or out of the system, so having a larger volume 
required a lower pressure and temperature. 

Would you find the same final temperature if you used the ideal-gas equation? If you check, you'll 
find that you indeed do find the same final temperature. 
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2: Isochoric and isobaric process with helium 
Two moles of helium gas are taken from point a to point c in the diagram shown in Figure 19.2 . Find 
the change in internal energy along path abc. 

p(atm) 

3 

-::::0t--:':-IS--::':22=-- V(l) 

Figure 19.2 Problem 2. 

Solution 

IDE N T I F  Y The target variable is the change in internal energy. 

SET UP We break the process up into two segments, one from a to b and one from b to c. The first 
segment is an isochoric process (carried out at constant volume) and the second is an isobaric process 
(carried out at constant pressure) . We'll use the relations for those segments to determine the work, 
heat, and temperature changes. We' ll combine the work and heat changes to find the change in internal 
energy. 

EXECUTE We find the change in internal energy along ab by first finding the change in temperature 
along ab: 

The heat transferred during ab is then 

Qab = nCV�Tab = ( 2 mol ) ( 1 2. 47 J/mol/K ) ( 1 82 K )  = 4500 J, 

where we used the molar heat capacity at constant volume for helium (Cv = 12. 47 J/mol/K, from 
Table 19 . 1 ) .  The work done during segment ab is zero, since that segment is isochoric. The change in 
internal energy for segment ab is then 

�Uab = Qab - Wab = 4500 J - 0 = 4500 J. 

For segment bc, we follow the same procedure. The change in temperature along bc is 
Pb( Vc - Vb) ( 3 .03 X l O S Pa ) ( 2.2 X 1 O-2 m3 - 1 .5 X 1 O-2 m3 ) 

�Tbc = = = 127 K. 
nR ( 2  mol ) ( 8 .3 1 J/mol/K ) 

The heat transferred during bc is 
Qbc = nCp�Tbc = ( 2  mol ) ( 20.78 J/mol/K)  ( 1 27 K )  = 5300 J, 

where we used the molar heat capacity at constant pressure for helium (Cp = 20.78 J/mol/K, from 
Table 19 . 1 ) .  The work done during segment bc is 

�JC = Pb� Vbc = ( 3 .03 X l O s Pa ) ( ( 2.2 X 10-3 m3 ) - ( 1.5 X 10 -3 m3 ) )  = 2100 J. 
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The change in internal energy during segment be is 
11 Ube = Qbe - Wbe = 5300 J - 2100 J = 3200 J. 

The total change in internal energy is 

I1U = I1Uab + I1Ube = 4500 J + 3200 J = 7700 J. 

The total change in internal energy in the system is 7700 J. 

EVA LUAT E We see that by breaking up a process into segments, determining the type of process that 
takes place during each segment, and knowing which variables change and which remain constant dur
ing each segment, one can easily find the change in internal energy. 

How should the change in internal energy along path ade compare with the change along path abc? 
They should be the same for helium, an ideal gas. 

Practice Problem: Find the change in internal energy along segments ad and dc, and compare their 
sums with the change in internal energy along path abc. Answer: I1Uad = 1 1 00 J, I1Ude = 6600 J, 
11 Uade = 7700 J. 

3: Monatomic gas process 
One mole of an ideal monatomic gas starts at point A in Figure 1 9.3  (T = 273 K, p = 1 atm) and 
undergoes an adiabatic expansion to point B, where the volume of the gas has doubled. These two 
processes are followed by an isothermal compression to the original volume at point C and an isobaric 
increase to the original point A. Find (a) the temperature at point B, (b) the pressure at point C, and 
(c) the total work done for the entire cycle. Take y to be 5/3 . 

P 

A PA -------

Pc -------

Figure 19.3 Problem 3. 

Solution 

IDENTIFY The target variables are the temperature at point B, the pressure at point C, and the total 
work done during the process . 

5 ET UP We' ll break the process up into the three segments shown in the figure. We' ll use the relations 
for those segments to determine the temperature, pressure, and work. 
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EXE CUT E (a) For the adiabatic process, we use the relation 
-v- I -v- I -v- I TV' = constant = TI VI = T2 V2 . 

Rearranging terms to find the temperature at point B gives 

TIVy- 1 ( 273 K) ( V) 067 
T2 = vi I -

( 2V) 067 172 K. 

(b) The temperature at point C is the same as at point B, since the second step is isothermal . Also, the 
volume is the same at point C as it was at point A.  We use the standard ideal-gas law: 

Solving for P3 gives 

PI VI P3 V3 
TI T3 

T3 ( 172 K) 
P3 = PI 

TI 
= ( 1 atm) ( 273 K) = 0.630 atm. 

(c) The total work done by the gas during the entire cycle is the sum of the separate amounts of work 
done during each cycle. The path AB is adiabatic, so no heat is exchanged and the work is 

WAB = - CV( T2 - TI) = - G( 8.3 1 4J!mol·K))( 172 K - 273 K) = 12601. 

For segment BC, the temperature is constant. The work is given by the integral 

IV2 W = pdV 
VI 

� (' 
R: dV � RT ln vI:: 

= RT ln ( V3!V2 )  = ( 8.3 1 4J!mol·K)( 172 K)ln( V!2V) 
= -99 1  1. 

No work is done during segment CA, since the system changes isobarically. The total work done is the 
sum, 268 J. 

EVALUATE We solved this problem by breaking the process into segments and working through each 
segment to find the final state variables. Can you use the area inside the cycle to find the amount of 
work? The area is greater than zero, indicating positive work. 

4: Expansion process for argon 
One mole of argon is initially at 25°C and occupies a volume of 35 liters. The argon is first expanded at 
constant pressure until the volume is doubled and then expanded adiabatically until the temperature 
returns to 25°C. Find the total change in internal energy, the total work done by the argon, and the final 
volume and pressure of the argon. 
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Solution 

I D E  NTI F Y  Sketch the process and then use the definitions to solve. The target variables are the total 
change in internal energy, the total work done, and the final volume and pressure. 

S ET UP Figure 19.4 shows the p V  diagram for the process. We'll break the process up into two seg
ments, one from a to b and one from b to c. The first segment is an isobaric process (carried out under 
constant pressure) and the second is adiabatic (no heat exchanged) . We'll use the relations for those 
segments to determine the work, heat, and temperature changes. We' ll combine these results to find the 
quantities of interest. 

p(atm) 

"� c 
-.,,0+------- Vel) 

Figure 19.4 Problem 4 sketch. 

EXE CUTE The total change in internal energy is zero, since the internal energy of an ideal gas 
depends only on temperature and the final temperature is equal to the initial temperature. 
Next, we find the temperature at point b. Segment ab is at constant pressure, so 

Va Vb 
Ta Tb 

The temperature at b is 
( 70 e) 
( 35 e) ( 273 + 25 ) K  = 596 K. 

The heat supplied during ab is 
Q ab = nCpl1Tab = ( 1  mol ) ( 20.78 J/mol/K ) ( 596 K - 298 K) = 6190 J, 

where we used the molar heat capacity at constant pressure for argon ( Cp = 20.78 J/mol/K, from 
Table 19 . 1 ) .  The heat transferred in bc is zero, since segment bc is adiabatic . The total heat supplied in 
the complete process is 6 190 J. Because the total internal energy change is zero, the heat supplied must 
be equal to the work done by the argon. The work done by the argon is 6 190 J. 

Next, we find the final volume and pressure. To find the final volume in the adiabatic process (bc), 
we use the relation 

Y-l y-l y-l TV = constant = T,bV b = T V c c , 

where y = 1 .67 for argon. Rearranging terms to find the final volume gives 

y�Tb V;�l 0 67 ( 596 K ) ( 70 f)o.67 
V c = 

Tc 
= 

( 298 K )  
= 1 97 1. 
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We can use the equation of state for an ideal gas to find the final pressure: 

P = 
nRTc = 

(1 mol ) ( 8.3 1 J /mol/K ) ( 298 K ) = 1 .26 X 104 Pa. c Vc (197 X 10-3 m3 ) 

The final pressure is 1 2,600 Pa and the final volume is 197 liters. 

EVALUATE We again see that we need to break the process up into segments and work through each 
segment to find the final state variables . We also see that the pV graph is useful in solving problems 
involving thermodynamic processes . 

Try It Yourself! 
1 :  Ideal-gas process 
Consider n moles of an ideal gas that undergo the constant-volume and constant-pressure processes 
along the paths shown in Figure 19.5 from the initial state a to b, then from b to c, then from c to d, and 
then back from a to d. For each of these processes, calculate (a) the work done by the system and 
(b) the heat taken in by the system. 

Solution Checkpoints 

p 

pa 

pb 

_,aT-__________ � d 

bl 
I 
I 
I 
I 
I 

IC 
I 
I 
I 
I 
I 

Figure 19.5 Try It Yourself I. 

I D ENTIFY AND SET UP We break the process up into segments and use the relations for isochoric 
and isobaric processes. 

EXE CUTE (a) No work is done by the gas during the isochoric processes. For the isobaric processes, 
the work done by the gas is the pressure times the change in volume: 

Wb-+c = Pb( Vc - Va), 
Wd-+a = Pa( Va - Vc)· 

The work done from b to c is a positive quantity, and the work done from d to a is negative, resulting in 
negative total work. Work is done on the gas. 
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(b) The heat taken in by the ideal gas will be the number of moles, times the change in temperature, 
times the heat capacity at constant volume or constant pressure. This relationship gives 

Qa-+b = nCV( Tb - Ta) , 

Qb-+c = nCp( Tc - Tb) , 

Qc-+eI = nCv( Tel - TJ, 

QeI-+a = nCp( Ta - Tel) ·  

EVALUATE How does the heat taken in by the gas compare with the work done by the gas? 

2: Ideal-gas process, version 2 

A total of n moles of an ideal monatomic gas is taken from point 1 on the T[ isotherm to point 3 on the 
T2 isotherm along the path 1 � 2 � 3 as shown in Figure 19.6. (a) Calculate the change in internal 
energy of the gas and the heat that must be added to it in this process. (b) Suppose the path 1 � 4 � 3 
is followed instead. Calculate the heat added along this path. 

p 

Pa 

Pb 4 I I I I I I I 
VI Vz V3 V 

Figure 19.6 Try It Yourself 2. 

Solution Checkpoints 

I D ENTI F Y  AN D S ET UP We break the process up into segments and use the relations for isothermic 
and isobaric processes. 

EXE CUTE (a) In going from 1 to 3, the change in internal energy depends on the temperature differ
ences and not the path taken. This gives 

t::.U = nCAT3 - TI) . 

The heat taken in from 1 to 3 is 

t::.Q = nCp( T2 - T[)  + nRTln(�:) . 

(b) The change in internal energy is the same as in (a) . The heat is 

t::.Q = nCV( T2 - TI) + P3 ( V3 - VI) . 

EVALUATE How does the heat exchanged on the two paths differ. Why? 



Summary 

The Second Law of 
Thermodynamics 

In this chapter, we will complete our investigation of thermodynam
ics, examining thermodynamic processes and the second law of ther
modynamics. Heat engines and refrigerators transform heat into work 
or energy in cyclic processes. Thermal efficiency and performance 
coefficients for engines and refrigerators will be defined. The second 
law of thermodynamics limits the efficiency of engines and has pro
found implications in many physical processes. The second law can 
be quantified in terms of entropy, a measure of disorder. We will 
examine several common cyclic processes to aid our understanding of 
thermodynamics .  

Objectives 
After studying this chapter, you will understand 

• How to define and identify reversible processes. 
• How to analyze heat engines and refrigeration cycles. 
• How to apply the second law of thermodynamics. 
• How to calculate entropy for a variety of systems. 
• How to apply thermodynamic principles to a variety of engine and 

refrigeration cycles. 
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262 CHAPTER 20 

Concepts and Equations 

Term Description 
Directions of Thermodynamic Processes Heat flows spontaneously from hotter objects to cooler objects in thermo

dynamic processes. A reversible or equilibrium process is a process that can 
be reversed by infinitesimal changes in the conditions of the process and in 
which the system is always in, or very close to, thermal equilibrium. All other 
thermodynamic processes are irreversible. 

Heat Engine A heat engine takes heat QH from a source, converts part of the heat to work 
W, and discards the remaining heat I Qc l at a lower temperature. The heat 
engine's thermal efficiency e is 

Otto Cycle 

Refrigerator 

The Second Law of Thermodynamics 

Carnot Cycle 

Entropy 

A gasoline engine operating in the Otto cycle has a theoretical maximum 
thermal efficiency given by 

e = 1 
ry-I' 

where r is the compression ratio. 

A refrigerator takes heat Qc from a cold source, performs work W, and 
discards the heat I QH I to a warmer source. The performance coefficient K is 

The second law of thermodynamics states that it is impossible for any cyclic 

system to convert heat completely into work. It also states that no cyclic 
process can transfer heat from a cold place to a hot place without any input of 
work. 

The Carnot cycle operates between two heat reservoirs and represents the 

most efficient heat engine. The Carnot cycle combines the reversible adia
batic and isothermal expansion and contraction between two heat reservoirs 
at temperatures TH and Tc, respectively. The efficiency of the Carnot cycle is 

eCarnot = 1 

Entropy is a quantitative measure of the disorder of a system. The entropy 
change in a reversible thermodynamic system is 

/:1S = J
2dQ. 
I T 

The second law of thermodynamics can be stated as "The entropy of an iso

lated system may increase, but not decrease. The total entropy of a system 
interacting with its surroundings may never decrease." 



conceptual Questions 
1: Cleaning your room 
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Your parents are always nagging you about cleaning your room. After learning about the second law of 
thermodynamics, you explain to your parents that it is impossible to clean your room, since cleaning 
would reduce the entropy inside your room and violate the second law of thermodynamics. Your 
mother recalls her college phys ics course and convinces you that you can clean your room without vio
lating the second law. How does she convince you? 

Solution 

IDENTIFY, SET UP, AND EXECUTE Your mother agrees with you that the entropy of a closed sys
tem can never decrease. But she notes that when you clean your room, the system consists of you plus 
your belongings. You can decrease the entropy of your belongings in your room by increasing the 
entropy of your body, as long as the total entropy increases. You can certainly clean your room ! 

EVALUATE This problem shows how the entropy of isolated components in a system may decrease as 
long as the system's total entropy increases. It also shows that you shouldn't  argue with your mother, 
although you may want to try the argument on your father, who doesn't  remember his physics course. 

2: Leaving a refrigerator door open to cool a room 
When the air-conditioning system at your house fails, your younger brother suggests leaving the refrig
erator door open to cool the house. Is this method effective? 

Solution 

IDENTIFY, S ET UP, AND EXECUTE A refrigerator cools its contents by taking heat away from the 
contents, performing work, and expelling heat to a warmer region. The heat expelled is always greater 
than the heat removed from the contents. The refrigerator must add net heat to its surroundings. Open
ing the refrigerator will result in a warmer room, so it is not an effective method of cooling the room. 

EVALUATE Can opening the refrigerator warm the house on a cold day? Yes, since it must expel heat 
to operate. It wouldn't be a very efficient heat source, but it would provide some heat to the room. 

3: Water as a fuel 
Some people have suggested using water as a clean fuel. The idea is to break apart water molecules 
into hydrogen and oxygen. Then, when the hydrogen (combined with water) is burned, it produces 
energy without pollution. How does the second law of thermodynamics relate to this idea? 

Solution 

IDENTIFY, S ET UP, AND EXECUTE Because the breaking apart of the water and the burning of 
hydrogen constitutes a reversible cycle, the net entropy must increase. The process may actually create 
more pollution, since it takes more energy to dissociate the water than is recovered by burning the 
hydrogen. For example, if gasoline is used to generate the hydrogen, it would take more gasoline to 
generate an equivalent amount of hydrogen-based power than if the gasoline were used to operate the 
vehicle directly. 
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EVALUATE There is the possibility that pollution would be reduced. If the hydrogen-generating plants 
installed high-quality pollution filters, than there could be less pollution generated overall by the plant 
compared with the pollution generated by many cars. However, a hydrogen-burning car will always 
require more total energy to operate. Hydrogen should probably be considered an alternative energy 
storage method. 

Problems 
1 :  Work in a heat engine 
A heat engine carries 0.2 mol of argon through the cyclic process shown in Figure 20. 1 .  Process ab is 
isochoric, process be is adiabatic, and process ea is isobaric at a pressure of 2.0 atm. Find the net work 
done by the gas in the complete cycle. The temperatures at the of endpoints of the process are 
Ta = 290 K, Tb = 650 K, and Tc = 440K. 

p 

-;:;o+------- v 
Figure 20.1 Problem I. 

Solution 

IDE NT I FY Use the principles of heat engines to find the work done. 

SET UP We'll break the cycle up into processes and find the work done during each process. We'll 
need to find the pressure and volume at the three points before finding the work. Argon is an ideal gas, 
so we'll use the ideal-gas relations. 

EXECUTE Starting at point a, we find the volume Va from the ideal-gas equation : 

V - nRTa _ (0.2 mol ) (8.3 1 1/mol/K) (290 K )  _ X -3 3 a -
Pa -

(2.02 X 105 Pa ) 
- 2.39 1 0  m .  

At point b, the volume is the same as at point a. We find the pressure at b: 

Pb = nRTb = (0.2 mol ) (8.3 1 1/mol/K) (650 K) = 4.52 X 1 05 Pa. Vb (2.39 X 10-3 m3 ) 

We find the volume Vc at e: 

nRTc V = -c Pc 
(0.2 mol ) (8.3 1 l/mol/K )  (440 K) ------------------ = 3 .62 X 1 0-3 m3. 

(2.02 X 105 Pa) 



TH E S ECO N D  LAW OF TH ERMODY NAM ICS 265 

With these values, we find the work done during each process. There is no work done during the 
process ab, since it is an isochoric process. Process be is adiabatic and there is no heat exchanged. The 
work is opposite the change in internal energy, or 

Wbc = -/).Ubc = -nCv( Tc - Tb) = - (0.2 mol ) ( 12 .47 J/mol/K ) (440 K - 650 K ) = 524 J, 

where we used the molar heat capacity at constant volume for argon (Cv = 12 .47 J/mol/K, from 
Table 1 9. 1 ) . Process ea is isobaric and the work is 

Note that the work done by the gas is negative, since it is compressed in ea. The work done during the 
complete cycle is the sum of the separate amounts of work done during each of the three processes : 

W = Wab + Wbc + Wca = 0 + 524 J - 248 J = 276 J. 

The gas does 276 J of work in one cycle. 

EVALUATE Since the area inside the pV cycle diagram is equal to the work, our positive result is in 
agreement with the area shown in the diagram. Much of this problem is based on what we learned in 
Chapter 19 .  We are now combining the processes of Chapter 19 into a complete cycle. 

2: Efficiency of a heat engine 
Find the thermal efficiency of an engine that operates in accordance with the cycle shown in Fig
ure 20.2, in which 2 moles of helium stored at 2.0 atm in a 10-liter vessel starts at point a, undergoes an 
isochoric process to quadruple its pressure at point b, triples in volume in an isobaric expansion to 
point e, reduces its pressure to one-fourth its pressure at point e through an isochoric process at point d, 
and goes through an isobaric compression reducing its volume by one-third to return to point a. 

p 

D' a d 
--::o+--------v 
Figure 20.2 Problem 2. 

Solution 

I DENTI FY The target variable is the thermal efficiency of the engine. 

SET UP We need to know the work and heat of the cycle to find the efficiency of the engine. We 
break the cycle up into processes and use our knowledge of isochoric (constant -volume) and isobaric 
(constant-pressure) processes . We are given the changes in pressure and volume, so we can proceed 
immediately to calculating the work done during each of the four processes. Helium is an ideal gas, so 
we can use the ideal-gas relations . 
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EXECUTE We start by determining the pressure and volume at the points b, c, and d. The pressure at 
points b and c is 8 atm (4Pa) and the pressure at d is 2 atm (p{). The volume at b is 10  liters (Va) and the 
volume at c and d is 30 liters (3 Va). Next, we find the work for each process. No work is done during 
processes ab and cd, since they are isochoric. Process bc is isobaric and the work done is 

Wbc = PbilVbc = (8.08 X 105 Pa ) ((30 X 1 O-3 m3 ) - (10 X 1 O-3 m3 ) )  = 16,200 J. 

Process da is also isobaric and the work done is 

Wda = Pdil Vda = (2.02 X 105 Pa ) (( 10 X 10-3 m3 ) - (30 X 10-3 m3 ) )  = -4040 J. 

The total work is the sum of the separate amounts of work done during each of the four processes: 

W = Wab + Wbe + Wed + Wda = 0 + 1 6,200 J + 0 - 4040 J = 12 ,100 J . 

We need to find the heat flowing into the engine. Heat flows into the engine during processes ab and 
bc. To find the heat flow into the engine, we need to know the temperature at points a, b, and c. The 
ideal-gas equation gives 

PaVa T= a nR 
(2.02 X 105 Pa) ( 10  X 10-3 m3 ) 
- - (-2-m-ol-) -( 8-.3-1-J /"-- m-ol--:- /K-)-- = 1 22 K, 

The heat flow in process ab (carried out at constant volume) is 

Qab = nCvilTab = (2 mol ) ( 12 .47 J/mol/K) (  486 K - 122 K )  = 9080 J, 

where we used the molar heat capacity at constant volume for helium (Cv = 12.47 J/mol/K, from 
Table 19 . 1 ) .  The heat flow in process be (carried out at constant pressure) is 

Qbc = nCpilTbe = (2 mol ) (20.78 J/mol/K ) ( 1460 K - 486 K) = 40,500 J, 

where we used the molar heat capacity at constant pressure for helium (Cp = 20.78 J/mol/K, from 
Table 19 . 1 ) .  The total heat flowing into the engine in one cycle is therefore 

QH = Qab + Qbc = 40,500 J + 9080 J = 49,600 J. 

The efficiency of the engine is 

W 12 , 100 J 
e = QH 

= 
49,600 J 

= 24.4%. 

EVALUATE We see that the engine is 24.4% efficient. Note that, to find the efficiency, we started by 
determining the state variables for the points on the P V diagram. Then we found the work and heat flow 
in the cycle and combined these two pieces of information to solve the problem. 
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3: Efficiency of a diesel engine 
Find the thermal efficiency of the diesel cycle shown in Figure 20.3 for an engine having a compres
sion ratio R = 1 8 ,  an expansion ratio E = 6 = RV/Vc, and Cp/Cv = 1 .4. 

p 

-+----�V�--�V�c------�R�V�------- V 
Figure 20.3 Problem 3. 

Solution 

IDE NTI FY The target variable is the thermal e fficiency of the engine. The efficiency involves the heat 
into and out of the system. 

SET UP We start by finding the heat into and out of the system. Along the adiabatic lines, no heat is 
transferred. We will be able to find the heat in terms of the changes in temperature and then solve for 
the temperatures . We will substitute the compression and expansion factors where appropriate. 
EXECUTE The efficiency is given by 

e = 1 + Qc. 
QH 

The heat entering the cycle between points b and c is given by 

Qbc = nCp(Tc - Tb)· 
The heat leaving the cycle between points d and a is given by 

Qda = nCv(Ta - Td)· 
No heat is exchanged between any other pairs of points, as they lie upon adiabatic lines. The e fficiency 
is then 

e =  
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where we replaced the ratio of the specific heats with ". To find the efficiency, we need to find the tem
peratures .  We seek relations between the temperatures that should cancel out. Points b and c are at the 
same pressure, so we have 

v Vc 
Tb Tc 

The ratio of the volumes can be substituted for the volumes: 

To relate these temperatures to the temperature at a, we use the adiabatic relation 

T, V'Y- 1 = T V'Y-1 = T (RV) 'Y-1 b a a a . 

So we have 

_ y-1R 
Tc - TaR 

E· 

We find the temperature at point d by using the other adiabatic line: 

'Y-1 _ 'Y-1 _ ( ) 'Y-1 TcV c - TdV d - Td RV . 
Solving for Td yields 

We now replace the temperatures with their expressions in terms of Ta to find the efficiency: 

Ta - Td e = 1 + --"----� 
,,( Tc - Tb) 

( 1 - (R/E) Y) 
= 1 + ----'-----------:-----'------'-----'------';-

,,(R'Y/E - R'Y-1) 

( 1  - ( 1 8/6 ) 1.4 ) = 1 + 1 . 4( 1 8 1.4/6 _ 1 80 .4 ) 
= 0.59. 

The efficiency is 59%. 

EVALUATE We see that the diesel engine is 59% efficient. Diesel engines are generally more efficient 
than gasoline engines. 

4: Entropy change in melting ice 
A heat reservoir at 50°C is used to melt 25 kg of ice at O°e. What is the entropy change in the melted 
ice? What is the entropy change in the reservoir? What is the total entropy change in the system? 

Solution 

IDE NTI FY The target variables are the entropy changes for the ice, reservoir, and total system. 

SET UP Entropy change in a reversible process is equal to the heat transferred divided by the temper
ature of the material. We can find the heat required to melt the ice, which must be equal to the heat pro
vided by the reservoir. 
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EXECUTE The heat required to melt the ice is given by the heat of fusion relation and is 

Q = mLf = ( 25 kg ) ( 335  X 1 03 J/kg ) = 8 .375 X 1 06 J, 

where we used the latent heat of fusion for ice ( 33 5  X 1 03 J Ikg ) . The change in entropy for the water is 

Q 8.375 X 1 06 J 
LlSice = T = 

273 K 
= 30,700 J IK. 

The change in entropy for the reservoir is equal to the heat leaving the reservoir divided by the temper
ature of the reservoir. The reservoir loses as much heat as the ice gains. The entropy change is 

-Q -8.375 X 1 06 J 
LlSreservoir = T = 

323 K 
= -25,900 J/K. 

The total change in entropy is the sum of the entropies for the ice and reservoir: 

LlStotal = LlSice + LlSreservoir = 30,700 J/K - 25,900 J/K = 4800 J/K. 

The entropy of the ice increases by 30,700 J/K, the entropy of the reservoir decreases by 25,900 J/K, 
and the total entropy of the system increases by 4800 J/K. 

EVALUATE The entropy of the reservoir decreased, but this does not violate the second law, since the 
system is the combination of the ice, the water, and the reservoir. The total change in entropy is posi
tive, as expected. 

5: Entropy change in isothermal expansion 
Find the change in entropy for an ideal gas that undergoes an isothermal expansion from an initial vol
ume to a final volume that is twice the initial volume. 

Solution 

IDENTIFY The target variable is the entropy change for the gas. 

5 ET UP Entropy change is related to the work and the temperature of the material. For an ideal gas, 
the internal energy doesn't change. We'll use the standard definitions to find the entropy change in the 
process . 

EXECUTE Writing the change in entropy in terms of work and temperature gives 

TdS = dQ = 0 + dW, 

since the change in internal energy is zero. The work done by an ideal gas undergoing an isothermal 
process is given by 

nRT 
dW = pdV = -dV. 

V 

Combining the two equations yields an expression for the change in entropy: 

dS = 
nR 

dV. 
V 
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We integrate to find the change : 

I v? R 12

V 

S = 

-�dV = nR In V = nR In 2. V

I 
V V 

The change in entropy is R In 2 for each mole of gas. 

EVALUATE The entropy of the gas increased, as expected. 

Try It Yourself! 
1 :  Efficiency of a heat engine 
Following the cycle shown in Figure 20. 4, find the efficiency of a heat engine us mg an ideal 
monatomic gas as its working substance. Take y = 1 . 4 and r = Vb/Va = 2.5 . 

P 

Pa _________ a 

Pb ---------

--t-------'-----------'--v Va Vb 
Figure 20.4 Try It Yourself 1. 

Solution Checkpoints 

IDENTIFY AND SET UP Break the process up into segments and the heat exchanged during each 
segment. 

EXECUTE No heat is exchanged in segment abo (Why?) Along segment be, heat is removed from the 
system and is equivalent to 

Q = nRTc In ( Va/Vb) . 
Along segment ea, heat is put into the system and is equivalent to 

Q = nCv( Ta - TJ. 
The temperatures are written in terms of Tc to find the efficiency, which is 

( ( y - 1 )  In r ) 
e = 1 - ....:....:...-'----:---'-------'-

ry -I - 1 

EVALUATE What effect does increasing r have on the efficiency? 
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2: Entropy in mixed water 
Equal volumes of water at 80De and 20De are mixed together. Find the increase in entropy for a total 
volume of 1 .0 m 3. 

Solution Checkpoints 

IDENTIFY AND SET UP The final temperature of the mixture should be halfway between the initial 
temperatures of the two volumes of water if the heat capacities are constant and independent of tem
perature. No process is noted, so we can choose any reversible process . Assume that the process keeps 
the volume constant. 

EXECUTE The change in entropy for the system is 

f1S = f 2 dQ 
= CVIT2dT = Cv (

T2 ) , 
J T TI T T J  

where the temperatures are i n  kelvins. The entropy of the hot water decreases, while the entropy of the 
cold water increases. The total change in entropy is 3 .62 X 104 J/K. 

EVALUATE How did you determine Cv? 





Electric Charge and Electric 
Field 

Summary 
In this chapter, we begin our investigation into electricity and magnet
ism with a study of interactions between static electric charges . We 
will see that the electric interaction is governed by electric charges 
and that the electric charge is based on the structure of atoms and mat
ter. Materials will be classified as conductors or insulators , depending 
on how charge moves within them. The force between two charges 
will be defined, and we will learn how to find the force on a charge 
due to many charges. We will also find an alternative description of 
the electric interaction through the definition of the electric field. We 
will learn to calculate electric fields for a variety of collections of 
charge and how to represent electric fields graphically. 

Objectives 
After studying this chapter, you will understand 

• The electric interaction, electric charge, insulators, and conductors . 
• How to apply Coulomb's law to systems of two or more charges . 
• How to find the resultant electric force by summing several electric 

forces. 
• The electric field representation of the electric interaction. 
• How to calculate electric fields for various distributions of charges. 
• The movement of charges through electric fields. 

273 



274 CHAPTER 21 

Concepts and Equations 

Term 
Electric Charge 

Conductor 

Insulator 

Coulomb's Law 

Electric Field 

Electric Field Lines 

Description 
Electric charge is a fundamental property of particles that is responsible for 
electrical interactions. Particles may be positively charged, negatively 
charged, or neutral. Like charges repel and unlike charges attract. Electric 
charge is conserved: It may be transferred between objects, but cannot be 
created or destroyed. The SI unit of electric charge is the coulomb (C). The 
fundamental unit of electric charge is the magnitude of the charge of one 
electron or one proton, denoted e: 

e = 1.60217653 X 10-19 C. 

The proton has charge +e, the electron charge -e. 

Conductors are materials that allow electric charges to move freely within 
them. 

Insulators are materials that do not allow electric charges to move as freely as 
they do within conductors. 

Coulomb's law describes the electric force between two electric charges. For 

point charges ql and q2 separated by a distance r, the magnitude of the force 
that each charge exerts on the other is 

where the constantk = 8.98755 1789 X 109N' m2jC2 and EO = 8.854 X 
10- 1 2 C2jN ' m2 is the permittivity of free space. The force on each charge 
acts along the line joining the two charges and is repulsive if the two charges 
have the same sign and attractive if the two charges have opposite signs. 

An electric field, denoted E, is a vector quantity that transmits the electric 
force to a particle. A charge or collection of charges creates an electric field at 
a point P. A test charge qo placed at point P will be acted upon by a force 

F = qoE. 

The magnitude of the electric field a distance r from a point charge q is 

--> 1 q � 
E = ---r. 

47TEo r2 

The direction of the electric field is along the line between the charge and P, 
pointing away from positive charges and toward negative charges. The elec
tric field for a collection of charges is the vector sum of the electric fields for 
the individual charges: 

Electric field lines are a graphical representation of electric fields .  The direc

tion of the electric field at any point in space is tangent to the field line, and 
the magnitude of the electric field is proportional to the density or number of 
lines per unit area perpendicular to their direction. Electric field lines point 
away from positive charges and toward negative charges. 
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conceptual Questions 

1 :  Charges on pith balls 
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An electric dipole is a pair of equal and opposite charges of magnitude q sep
arated by a distance d. The electric dipole moment q has magnitude qd and 
points from negative to positive charge. In an electric field, the electric dipole 
is acted upon by a torque 

or 

T = pE sin 4J, 

--> --> --> 
T = P X E, 

where 4J is the angle between the electric dipole and the electric field. The 
potential energy for an electric dipole in an electric field is given by 

--> -, U = -p. E 

Three conducting pith balls are suspended from thin threads. Charged rods are then brought near or in 
contact with the pith balls . When you bring two pith balls A and B near a third pith ball C, you find that 
A and B repel each other whereas A and C attract each other. What can you conclude about the charges 
on the three pith balls? 

Solution 

IDENTIFY, SET UP, AND EXECUTE The charge on pith balls A and B must be of the same sign, 
since the two objects repel each other. By contrast, because pith ball C is attracted to pith ball A, either 
A and C are oppositely charged or C is neutral. We cannot be sure that pith ball C picked up a charge 
when the rods were brought near to it. For example, if pith ball C was neutral and the rods were 
brought nearby but did not touch, pith ball C would not acquire a charge. A neutral object will be 
inductively charged when brought near a charged object, causing like charges to be displaced away 
from the charge and unlike charges to be displaced toward the charge, resulting in an overall attraction. 
Oppositely charged objects will also attract. We cannot determine whether pith ball C is neutral or 
oppositely charged from the information provided. Nor can we determine the sign of the charge on pith 
balls A and B; we can be sure only that the charges on A and B are of the same sign. More experiments 
would have to be done to draw any additional conclusions. 

EVALUATE We see how we must carefully interpret the data presented in problems involving charge. 
We must keep in mind that charge may or may not be transferred when the charged rods are brought 
near or in contact with the pith balls .  An attraction between two objects does not indicate that the 
objects are oppositely charged, only that at least one object is charged. Solely with repulsion can we 
conclude that the c harges on both objects are of the same sign, although we cannot determine whether 
that sign is positive or negative. 
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2: Where is the net force zero? 
Charged balls A and B have charges - Q and +4Q, respectively, and are fixed at a separation distance 
of R, as shown in Figure 2 1 . 1 .  Is it possible to place another charged ball (C) with charge Qo on the 
dashed line such that ball C will be in electrostatic equilibrium? If so, indicate where to place the ball 
C. If not, explain why not. 

Solution 

-Q +4Q 

--�-----------�--
�I<---R------';>I)I 

Figure 2 1 . 1 Question 2. 

IDENTIFY, SET UP, AND EXECUTE The net force on ball C is the sum of the forces due to the 
charges on balls A and B. For equilibrium, the net force on C must be zero. The forces due on C to A 
and B will have to be in opposite directions for the net force to be zero. Let's examine the net force on 
C in each of the three regions (between the balls, to the right of ball B, and to the left of ball A) to find 
whether an equilibrium position exists in any region. For simplicity, we' ll take the charge on ball C to 
be positive. We' ll check our results to find the impact of having a negatively charged ball C. 

If we place ball C between balls A and B, C will be attracted to A and repelled from B, resulting in 
both forces acting in the same direction, a situation that could not result in equilibrium. The same holds 
for a negatively charged ball C, but with the net force directed to the right. We conclude that there is no 
position between the balls that would result in equilibrium. 

If we place ball C to the right of ball B, C will be attracted to ball A and repelled from B, resulting in 
forces acting in opposite directions, a situation that could lead to equilibrium. However, B has more 
charge than A, so C would have to be placed closer to A than to B in order for the magnitudes of the 
forces to be equal (since Coulomb's law states that the force decreases with the square of the separa
tion) . For all points to the right of B, the force between Band C is larger than the force between A and 
C. The same holds for a negatively charged C. We conclude that there is no position to the right of B 
that would result in equilibrium. 

If we place ball C to the left of ball A, C will be attracted to A and repelled from ball B, resulting in 
forces acting in opposite directions, a situation that could lead to equilibrium. In the region to the left 
of ball A, we could place C closer to A than to B, giving balanced forces. If we place C a distance R to 
the left of A, then the magnitude of the force between A and C will be 

IFACI = -4
1 Q

R�
o
. 1TEO 

The magnitude of the force between Band C will be 

I I - _1_ ( 4Q ) Qo _ _ 1_ QQo FBc - -41TEO ( 2R ) 2 41TEO R2 . 

The magnitudes of these forces are the same, and their directions are opposite each other, resulting in 
no net force. Therefore, this is the equilibrium position. It will also be an equilibrium position if charge 
Qo is negat ive. 

EVALUATE This question combined concepts of vector addition with the radial dependence of 
Coulomb's law. Often, a quick guess will place the third charged ball between the other two balls with
out considering the direction of the net force on the third ball. As you can see, carefully considering the 
possibilities leads to the correct answer. 

' 
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3: Direction of electric field for a col lection of charges 
Two thin, straight glass rods of equal length L are placed perpendicular to each other with their ends 
almost touching, as shown in Figure 2 1 .2 . A charge +Q  is distributed uniformly along the top rod, and 
a charge of -Q is distributed uniformly along the left rod. What is the direction of the electric field at a 
point P located a distance L/2 from each rod? 

Figure 2 1 .2 Question 3. 

Solution 

IDENTIFY, S ET UP, AND EXECUTE The electric field is a vector, so we' ll find the electric field for 
each rod separately and sum the two electric fields. The electric field points away from positive charges 
and toward negative charges . The electric field for the top, positively charged rod points vertically 
downward at P. This is because P is located halfway along the rod and the symmetric arrangement of 
the charges gives an electric field that is perpendicular to the rod. The electric field for the left, nega
tively charged rod points horizontally to the left at point P for the same reason. The magnitude of the 
electric field for each rod is the same, since P is located the same distance from each rod and the mag
nitude of the charge on each rod is the same. To find the resulting direction, we sketch the two compo
nents and their sum in Figure 2 1 .3 .  

iL 

Figure 2 1 .3 Question 3 sketch. 

We see that the resulting electric field points downward and to the left in the figure, 45° below the neg
ative x-axis. 

EVALUATE This problem illustrates where the electric field for a symmetric collection of charges 
points and how to combine ele ctric fields. You should always consider what you expect for a resulting 
electric field before calculating the field. Later, you can check your results. 

4: Symmetric Charges 
Identical positive charges Q are placed in the four corners of a square of side L. A fifth positive charge 
q is placed at the center of the square. What is the force on the fifth charge? 
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Solution 

IDE N T I F Y, SET UP, AND EX E CUT E Each of the four charges on the comer exert a force on the cen
ter charge. All four charges are equidistant from the charge at the center, so all exert forces of equal 
magnitude on the center charge. Charges in opposite comers exert forces in opposite directions , thus 
canceling the forces . The net force on the charge at the center is zero. 

EVALUATE Symmetry is an important attribute to consider in electric force and field problems. We' ll 
use symmetry throughout to simplify problem solving. 

Problems 
1 :  Electric force with three charges 
Three charges are arranged as shown in Figure 21 .4: charge A (+4.0 J,LC) is located on the y-axis at 
y = 25 cm, charge B (-6.0 J,LC) is located on the y-axis at y = -25 cm, and charge C (+5.0 J,LC) is 
located on the x-axis at x = 15 cm. Find the resulting force acting on charge C. 

Solution 

y 

A +4.0 JLC 

25 em 

15em C 
of-----------x +5.0 JLC 

25 em 

B -6.0 JLC 

Figure 21 .4 Problem 1. 

I DENTI FY We will compute the force on charge C due to the other two charges and then find the vec
tor sum of the two forces . The target variable is the force acting on charge C. 

SET UP A free-body diagram showing the forces due to the two charges acting on charge C is given in 
Figure 2 1 .5a. The force due to charge A is repulsive and the force due to charge B is attractive. 
Coulomb's law gives the magnitudes of the forces . Because the forces are vectors, we will add compo
nents to find the resultant. We have added an x-y coordinate system to the free-body diagram and 
resol ved the forces into their x and y components. Figure 21 .5b shows the resulting x and y components 
of the force and the resultant force vector. 
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F y 

(b) 
Figure 2 1.5 Problem 1 free-body diagram. 

EXECUTE We start by finding the distance between the charges so that we can the find the magnitudes 
of the two electric forces. The distance between charge C and charge A is the same as that between 
charge C and charge B and is 

rAC = rBC = Y ( 0.25 m ) 2 + ( 0. 1 5  m ) 2 = 0.29 1 m. 

The magnitude of the force between charges C and A is given by Coulomb's law: 

_ _ l_ IQAQcl _ ( 9 .  2/ 2 ) 1 ( 4.0 X 1O-6C ) ( 5 .0 X 1O-6 c ) 1  
FAC - 2 - 8.99 X 10 N m C ( ) 2 = 2. 12  N. 

47TEO r AC 0.29 1 m 

The magnitude of the force between charges C and B is 

_ _ 1_ IqBQcl _ ( 9 .  2/ 2 ) 1 ( -6.0 X 10- 6 C ) ( 5 .0 X 10-6 C )  1 _ FBC - 2 - 8.99 X 1 0  N m C ( ) 2 - 3 . 1 8  N. 
47TEO r Bc 0.29 1 m 

To add the two vectors, we need the angles between the x-axis and the lines between charges A and C 
and charges B and C. Examining the triangles formed by the x-axis, the y-axis, and the lines between 
the charges, we see that the triangles are similar, since they have sides of the same length. We find the 
angle between the x-axis and the lines between the charges by taking the inverse tangent of the ratio of 
the two sides of the triangles: 

0.25 m () = tan-l 
= 59.0°. 

0. 1 5  m 

We now add the x and y components of the two forces. The x components sum to 

Fx = FAC cos 59.0° - FBC cos 59.0° = ( 2. 1 2  N ) cos 59.0° - ( 3 . 1 8  N ) cos 59.0° = 0.545 N. 

The y components sum to 

F;, = -FAC sin 59.0° - FBC sin 59.0° = - ( 2. 12 N ) sin 59.0° - ( 3 . 1 8  N ) sin 59.0° = -4.54 N. 

The magnitude of the net force is found by summing the squares of the components and taking the 
square root of the result: 

F = YF; + F; = Y ( 0.545 N ) 2 + ( -4.54 N ) 2 = 4.57 N. 

The net force points downward and to the right. The angle between the positive x -axis and the net force is 

F;, ( -4.54 N )  ¢ = tan- l - = tan- 1 = - 83 .2°. 
Fx ( 0 .545 N )  
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The resulting force acting on charge C has magnitude 4.57 N and points 83 .2° below the positive x
axis, as shown in Figure 2 1 .5b. 
EVALUATE This problem shows how we can calculate the net force on one charge due to several 
charges . Once we identified and quantified the Coulomb forces, we followed the standard procedure 
for summing vectors, a skill we learned in the first half of the course. If the process is a bit unfamiliar 
to you, you should review and practice your vector-adding skills, since we'll be utilizing vectors 
throughout our exploration of electricity and magnetism. 
Practice Problem: The problem could have been made simpler with symmetric charges. What charge 
should be substituted for charge B to make the problem symmetric? Answer: +4.0 /LC, the same as 
charge A, giving a force with components only along the x-axis. 

2: Charge on suspended pith balls 
Two pith balls, shown in Figure 2 1 .6, are charged, and each has a mass of 1 2.0 g. Each pith ball is sus
pended by an insulating thin thread of length L = 20.0 cm. The balls are in equilibrium at () = 24.0° . 
If charge A is twice charge B, find the magnitude of charge A. 

Figure 21.6 Problem 2. 

Solution 

I DENTI FY We' ll apply Newton's first law to solve the problem. Coulomb's law will lead to the 
charge on A, the target variable. 

SET UP Since the two pith balls are in equilibrium, the net force acting on either ball must be zero. A 
free-body diagram of charge A (including an x-y coordinate system) is shown in Figure 2 1 .7 .  Three 
forces act on charge A: the Coulomb force, the tension due to the string, and gravity. We' ll ignore the 
mass of the string, since the string is thin and has mass much less than that of the pith ball. 

t--..... -- x 

mg 

Figure 21.7 Problem 2 free-body diagram. 
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EVA LUATE We begin by quantifying the forces and then applying Newton's first law in two dimen
sions. Coulomb's law gives the magnitude of the electric force between the two charges: 

FE = _1_ IqA
2
qB I . 417'Eo r AB 

Since charge A is twice charge B, we can replace qB with 4qA - The distance rAB between the charges IS 
found to be 

rAB = 2L sin 24° 

by examining Figure 2 1 .6 . Substituting into the electric force equation then yields 

1 q;" 
417'Eo 8L 2 sin2 24° ' 

The absolute-value sign is removed, since qA is squared. We now apply Newton's first law to the 
charges in equilibrium. In the x direction, the forces in the horizontal component are tension and the 
electric force. These must sum to zero: 

LFx = 0 = FE - T sin 24°. 
Solving for tension, we obtain 

In the y direction, the forces in the vertical component are tension and gravity. These also must sum to zero: 

LFy = 0 = T cos 24° - mg. 
Substituting for the tension yields 

Rearranging terms then gives 

Solving for qA '  we get 

qA = 2L sin 24° 
2mg tan 24° 

k 

= 2 ( 0.20 m ) sin 24° 
2 (0.0 12  kg ) ( 9.8 m/s2 ) tan 24° _ -7 

( 9 2/ 2 ) 
- 5.55 X 10 C. 

8.99 X 10 N ·  m C 

The charge on A is 0 .555 j-Lc. 

EVALUATE This second problem should also be a reminder of problems encountered in the first half 
of the course. The only new component is the electrostatic force; all other steps are similar to those 
we've used before. 

Although we can find the magnitudes of the charges, we cannot find their signs. We only know that 
both charges must have the same sign, since they repel . 
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3: Finding charges, given an  electric field 
Two charges placed on the y-axis create a resultant electric field of 145,000 N/C pointing along the x
axis at a point P on the x-axis, as shown in Figure 2 1 .8 .  Both charges are placed 50.0 cm from the origin 
and the electric field is measured at x = 40.0 cm. Find the magnitudes and signs of the two charges. 

Solution 

y 

q 

50 cm 

o 40 cm 

50 cm 

q 

p 

Figure 2 1 .8 Problem 3. 

x 

IDE N T I FY The target variables are the signs and magnitudes of the two charges creating the electric 
field. 

SET UP The electric field due to each charge is shown in Figure 2 1 .9. The triangles formed by the ori
gin, the charge, and point P are similar for each charge. Therefore, both charges are equidistant from 
point P, and the angle between the x-axis and the line connecting point P and each charge is the same. 
Since the resulting electric field is along the x-axis, the vertical components of the electric field due to 
each charge must be equal and the charges must be of the same magnitude. Since the field points away 
from the charges along the x-axis , both charges must be positive. 

With this information, we can proceed to find the magnitude of the charge. We'll call the charge q 
and find the electric field at P. Knowing the magnitude of the field will allow us to solve for the magni
tude of the charge. 

Figure 21 .9 Problem 3 sketch of the electric fields. 

EXECUTE The magnitude of the electric field due to a point charge is given by 

E = _1_ M = kM 
47TEO r2 r2 . 
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The magnitude of the electric field at P due to the upper charge is then 

E = kM = k 
q 

upper r2 (x2 + y2 ) , 

where we removed the absolute-value designation from q (q is positively charged) and replaced the 
squared distance to the charge by the sum of the squared components along the x- and y-axis. The x 
component of the electric field due to the upper charge is 

q x qx 
Eupper, x  = Eupper cos f) = k 2 2 V 

= k ( 2 2 ) 3/2 ' X + Y x2 + / x + y 

where we substituted for the cosine. The x component of the electric field due to the lower charge is 
identical, since the lower charge has the same magnitude, is located the same distance away, and is 
positioned symmetrically to the upper charge. The total x component of the electric field due to both 
charges is twice the electric field due to the upper charge: 

qx 
Etotal, x = 2Eupper, x = 2k (x2 + y2 ) 3/2 . 

Solving for the charge yields 

(x2 + / ) 3/2 
q = E total, x 2kx 

Each charge is + 5 .29 fLC. 

EVALUATE This problem shows how to find the magnitudes of charges given the locations of the 
charges and the net electric field they produce. Most of the effort expended in solving the problem was 
determining that both charges have the same sign and magnitude. Once that was established, complet
ing the problem was easy. 

4: Electric field on the x-axis 
Two charges, Q and 2Q, are placed on the y-axis as shown in Figure 2 1 . 1 0 . Each charge is located a 
distance a above or below the x-axis. Find the magnitude of the electric field everywhere on the x-axis. 

y 

Q , 

a 

a 

-2Q 

Figure 2 1 . 1 0  Problem 4.  



284 CHAPTER 2 1  

Solution 

IDE NT I FY The target variable is the electric field on the x-axis .  

5 ET U P  The electric fields due to each charge are shown in Figure 2 l . 1 l .  The triangles formed by the 
origin, the charge, and the point on the x-axis are similar for each charge. Therefore, both charges are 
equidistant from the point on the axis, and the angle between the axis and the line to the charges is the 
same. The magnitude of the field due to each charge at the point on the axis is different, so the field due 
to each charge is different. We' ll add the two fields to find the solution. 

y 

Q , 

a 

-+----------------���----------- x x 
a 

-2Q E 

Figure 2 1 .1 1 Problem 4 sketch of the electric fields. 

EXEC UTE The magnitude of the electric field due to a point charge is given by 

E = _l_ ll 
47TEO r2 . 

The magnitude of the electric field due to the upper charge is then 

1 Q 
Eupper = -4 - 2 7TEO r 

The magnitude of the electric field due to the lower charge is 

1 2Q 1 2Q 
Elower = 47TEO ? = 47TEO (x2 + a2 )  . 

We must add these electric fields as vectors, so we need their components. To find the components, we 
need the sine and cosine of the angles, given respectively by 
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The x component of the electric field due to the charges is 

Ex = Eupper cos (j - Elower cos (j 
I Q x I 

- --
41TEO X2 + a2 YX2 + a2 

I QX 
- --

41TEO (X2 + a2 P/2 . 

2Q x 

Note how the x components are in opposite directions. Similarly, the y component of the electric field 
due to the charges is 

Ey = -Eupper sin (j - Elower sin (j 
1 Q a I 2Q a 

- -- - --
41TEO x2 + a2 Yx2 + a2 41TEO x2 + a2 Yx2 + a2 

1 3Qa 
41TEO (x2 + a2 ) 3/2 · 

To find the magnitude, we sum the squares of the components and take the square root, yielding 

E = YE2 + E2 x y 

EVALUATE This problem shows how to find the magnitude of the electric field, given the locations 
and magnitudes of the charges that produce the field. Most of our effort was spent combining vectors; 
the electric field calculation was straightforward. 

5: Motion of a charge in a uniform electric field 
An electron with velocity 2 .00 X 1 07 mls is projected into a uniform electric field between parallel 
plates as shown in Figure 2 1 . 1 2 . The electric field points vertically upward and is zero outside the 
plates. If the electron enters the field near the top plate as shown and emerges from the other side after 
missing the bottom plate, find the maximum electric field between the plates. 

r� 
2.0 cm 

1 
I<f�<---- 3.0 cm----�)I 

Figure 2 1 . 1 2  Problem 5.  
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Solution 

I D ENTI FY We will combine our knowledge of electric forces and fields, Newton's laws, and constant
acceleration kinematics to solve this problem. The target variable is the maximum electric field. 

SET UP The free-body diagram of the charge in the electric field is shown in Figure 2 1 . 1 3 .  Only one 
force acts on the electron. (We'll ignore gravity, since the electron's mass is minuscule.) The force is 
due to the electric field, which is constant; therefore, the electric force and acceleration are constant in 
the region between the plates. Since the acceleration is constant, we can apply the kinematics relations 
of Chapter 3 to the problem. The force acts in the vertical direction, and there is no acceleration in the 
horizontal direction. 

The maximum electric field corresponds to the electron just missing the edge of the bottom plate as 
it emerges. A larger electric field would result in a larger force and acceleration, causing the electron to 
strike the bottom plate. 

Figure 2 1 . 1 3  Problem 5 free-body diagram. 

EXECUTE The time required for the electron to pass between the plates is found by examining the 
horizontal motion. Since there is no acceleration in the x direction, the time required is equal to the hor
izontal distance the electron travels divided by its initial horizontal velocity: 

I1t = 
I1d = ( 0.030 m)  = 1 .50 X 10-9 s. 
vo, x  ( 2.00 X 107 m/s ) 

We need to find the acceleration in the vertical direction that corresponds to the electron's moving from 
the top plate to the bottom plate in the time it takes to pass between the plates. The initial vertical 
velocity is zero, so 

_ 1 2 _ 1 2 Y - Yo + Voj + 'iayt - 'iayt , 
where we have taken the origin to be the left edge of the top plate (Yo = 0 )  and we take positive y 
downward. The vertical acceleration is then 

_ 2y _ 2 ( 0.020 m) _ 1 6 / 2 ay - 2"" - ( 50 0-9 ) 2 
- 1 .78 X 10  m s . 

t 1 .  X l  s 

The net force is the electron's mass times its acceleration and is also the electric field times the elec
tron's charge. The magnitude of the electric field is then 

FE rna rna ( 9. 1 1  X 10-31 kg ) ( 1 .78 X 101 6 m/s2 ) E = - = - = - = = 1 01 X 105 N/C. 
q q l e i ( 1 .60 X 10- 19 C )  

. 

The maximum electric field between the plates is 10 1 ,000 N/C. 

EVALUATE This problem resembles the problems involving motion under constant acceleration that 
we initially encountered in Chapter 3 ,  but with the acceleration now resulting from the electric force. 
As we've seen, many problems are similar to problems we've completed earlier, but modified here to 
include the electric force. You may want to review the earlier material before continuing with problems 
in the current chapter. 
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6: Electric field of a charge distribution 
Find the electric field along the axis at a distance a from the end of a straight insulating rod of length L. 
Charge + Q  is evenly distributed along the rod's length. 

Solution 

IDENTIFY Charge is distributed throughout the rod, so the rod must be split into infinitesimal seg
ments and the resulting equations must be integrated to find the field. The target variable is the electric 
field on the axis .  

5 ET U P  Figure 2 1 . 14  shows a sketch of the situation, including the electric field dE for a small seg
ment of charge dq. We will find the charge in the segment and integrate from x = a to x = a + L to 
solve. The electric field points away from the rod and along the x-axis. 

E 
-'? d E  

y 

dq 
- - - - - - - - - - - 1L--_-'-iL-i ____ ------'t--- x i'<--- a * 

Figure 2 1 .1 4  Problem 6 sketch. 

EXECUTE The magnitude of the electric field due to a point charge is given by 

E = _I_ ill 
41TEO r2 . 

The magnitude of the electric field due to the segment of charge dq on the x-axis is then 

dE = _
1
_

dq
. 41TEO x2 

The charge in segment dq is the total charge of the rod, divided by the length, multiplied by the length 
of the segment. This is equivalent to the linear charge density (charge per unit length) times the length 
of dq. The segment has length dx, so 

Replacing dq yields 

Q 
dq = -dx. L 

dE = �L
dx

. 41TEO x2 
We integrate this electric field expression between the two endpoints of the rod to find the magnitude 
of the electric field: 

E - JdE - Ja + L  Q _dx _ Q 
_
- l l

a+L _ Q (! _ _ 1_) 

- - a 41TEOL x2 - 41TEOL X l a - 41TEoL a a + L . 

The electric field is directed away from the end of the rod (toward negative x in the sketch in Figure 21 . 14). 
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EVA LUAT E This problem illustrates how to find the electric field by integrating contributions to the 
field. You must carefully draw a sketch and set up the variables when you encounter this type of problem. 

Why was the rod made of insulating material in this problem? Because charges don't move on an insu
lator, thus allowing the charge to be distributed uniformly along the length of the rod. Charge would 
redistribute itself in a conducting rod. 

Try It Yourself! 

1 :  Moving electrons 
Two small, neutral spheres are separated by 20.0 cm. Electrons are removed from one sphere and 
placed on the second sphere. After the electrons are transferred, the force is found to be 2.0 X 1 0-5 N. 
How many electrons were transferred? 

Solution Checkpoints 

IDENTI F Y  AND SET UP : Use Coulomb's law to find the magnitude of the charge on the spheres. 
Both spheres have equal charges. (Why?) 

EXECUTE The magnitude of the force is 

F = _l _ qq 
47TEO r2 ' 

This gives a charge of 9.43 X 1 0-9 C, or 5 .9 X 10 10, electrons. 

EVALUATE Many electrons are required to create a relatively small force between two spheres. How 
many electrons must be transferred to create a force of 1 N? 

2: Electric field due to two charges 
Two charges, each of magnitude 0. 1 0  nC, are placed on the y-axis as shown in Figure 2 1 . 1 5 . Find the 
electric field on the x-axis at x = + 1 0.0 cm. 

y 
Q 

3.0 cm 

x 
p 

3.0 cm 

-2Q 

Figure 2 1 . 1 5  Try It Yourself 2. 
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Solution Checkpoints 

IDENTI F Y  AND SET UP : Use Coulomb's law to find the electric field due to each charge, and then 
sum the fields. Start with a free-body diagram. Can you use symmetry to simplify the solution? 

EXECUTE The magnitude of the electric field due to a point charge is given by 

E = _l_ ll 
47TEO r2 . 

The net electric field is along the x-axis at x = + 1 0.0 cm. (Why?) The cosine of the angle is given by 

x 
cos 8 = " / . 

V x2 + a2 
The x component of the electric field due to the charges is 

Ex = Eupper cos 8 + Elower cos 8 
1 2Qx 

47TEO (x2 + a2 )  3/2 

Evaluating the result gives E = 1 .58  X 102 NjC. In which direction does the electric field point? 

EVALUATE This problem is similar to Problem 4, although you can apply symmetry here. 

3: Electric field due to a charge distribution 
Find the electric field along the axis of, and a distance z away from, a circular insulating disk of radius 
a having a total charge Q distributed uniformly across its surface. 

Solution Checkpoints 

IDENTI FY AND SET UP : Charge is distributed throughout the disk, so it must be split into infinites
imal segments and the resulting equations integrated to find the field. Sketch the situation and decide 
how to integrate. 

The disk can be split into thin concentric rings of width dr and length 27Tr. The charge on the ring is 

Q dq = --2 27Trdr. 7Ta 

EXECUTE The magnitude of the electric field due to the ring of charge dq on the axis is 

1 Q 27Trdr 
dE = -- -- cos 8. 

47TEO 7Ta2 r2 + Z2 
Find the cosine of the angle and write it in terms of the given variables. Integrating then gives fa 1 Q z27Trdr zQ ( 1 1 ) 

E = 
0 47TEO 7Ta2 ( r2 + Z2 ) 3/2 

= 
27TEOA2 Z - Vz2 + a2 

. 

The electric field is directed away from the disk. 

EVALUATE This problem illustrates how to find the electric field due to a continuous charge distribution. 
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Problem Summary 
Chapter 2 1  adds the electric interaction to our physics knowledge base-a new force to our inventory 
of concepts. Electricity builds on our foundation developed in the previous chapters, allowing us to 
integrate this new force into our well-developed problem-solving techniques, which remain consistent: 

• Identifying the general procedure to find the solution. 
• Sketching the situation when no figure is provided. 
• Identifying the forces and torques acting on the bodies. 
• Identifying the forms of energy included in the problem . 
• Drawing free-body diagrams of the bodies. 
• Applying appropriate coordinate systems to the diagrams. 
• Applying the equations of motion to find relations among the forces, masses, and accelerations. 
• Applying conservation of energy or conservation of momentum as appropriate. 
• Solving the equations through algebra and substitutions. 
• Reflecting on the results and checking for inconsistencies. 

You should take advantage of your success in the first half of the course as you ponder the new forces 
we will examine in the second half. 



Gauss 's Law 

Summary 
In this chapter, we investigate Gauss's law, an elegant tool that helps 
us calculate electric fields for symmetric systems while affording an 
insight into those very electric fields. We begin by examining electric 
flux, or the "flow" of electric field lines through a surface. We' ll see 
how Gauss's law relates the electric flux through a surface to the 
charge enclosed within that surface. We will then apply Gauss's law to 
symmetric systems to find the electric field inside and around those 
systems. We' ll also look at the implications of Gauss 's law and learn 
how charges distribute themselves on conductors. We' ll find that the 
electric field inside any conductor is zero. 

Objectives 
After studying this chapter, you will understand 

• How to calculate the electric flux passing through a surface. 
• The definition and conceptual application of Gauss's law. 
• How to apply Gauss's law to spherically and cylindrically symmet

ric charge distributions. 
• How charges are arranged on conductors. 
• Why the electric field inside a conductor is zero for static charges. 

291 
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concepts and Equations 

Term 
Electric Flux 

Gauss's Law 

Charges on Conductors 

Description 
Electric flux is a measure of the "flow" of electric field through a surface. 
Flux is found by i ntegrating the electric field over the surface: 

¢E = f E ·  dA = fEldA = f E cos 4>dA. 
The electric flux is proportional to the number of electric field lines crossing 
the surface. 

Gauss's law states that the total electric flux through any closed volume is 
proportional to the total charge Qencl enclosed inside the volume: 

Gauss's law can be used to calculate the electric field for symmetric charge 
distributions. 

For a static collection of charges on a conductor, the electric field inside a 
conductor is zero and all of the charges distribute themselves on the conduc
tor's surface(s). 
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conceptual Questions 
1 :  Electric flux through a cyl inder 
A positive charge is placed just above a cylinder as shown in Figure 22. 1 .  What is the sign of the elec
tric flux through the top of the cylinder, the sides of the cylinder, and the bottom of the cylinder due to 
the charge? What is the total electric flux through the cylinder due to the charge? 

Figure 22.1 Question I .  

Solution 

IDENTIFY, SET UP, AND EXECUTE Electric flux is proportional to the number of electric field 
lines passing through a surface. If we consider how the electric field lines cross the surfaces of the 
cylinder, we can find the electric flux through the surfaces . 

Examining the top surface, we see that electric field lines point into the surface, resulting in a nega
tive electric flux. Looking at the bottom surface, we see that electric field lines point out of the surface, 
resulting in a positive electric flux. The sides of the cylinder are a bit more complicated, but if you 
examine them carefully, you ' ll see that the electric field lines point out of the cylinder's sides. The 
electric flux through the side of the cylinder is positive. 

The net electric flux through the whole cylinder is zero. You can see this by examining how all the 
field lines that enter the cylinder exit the cylinder, resulting in zero net flux. This finding agrees with 
Gauss's law: Since there is no charge enclosed inside the cylinder, the net electric flux is zero. 

EVA LUAT E This problem shows how we can interpret electric flux as the number of electric field lines 
passing through a surface. Such an interpretation can be useful in calculating the electric flux and 
reflecting on your results. 
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2: Electric flux through several surfaces 
Three small spheres, depicted in Figure 22.2, carry charges ql = 5 .0 f.,LC, q2 = -3 .0 f.,LC, and 
q3 = 2.0 f.,LC, respectively. Find the net electric flux through the three surfaces SI ' S2' and S3' shown in 
the figure. 

Solution 
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Figure 22.2 Question 2. 
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IDENTIFY AND SET U P :  Gauss's law gives the net flux through a surface as the charge enclosed by 
the surface divided by EO. Our task is to identify the net charge enclosed by each surface and divide that 
number by EO. 

EXECUTE Surface SI encloses charges ql and q2, so the electric flux is 

ffiE = 
QencJ 

= 
ql + q2 

= 
( 5 .0 f.,LC ) + ( -3 .0 f.,LC) 2.0 f.,LC 

5 I '¥ -'------'-----'-----'-------=------'--- = = 2.26 X 10  N C. 
E O  EO E O  E O  

Surface S2 encloses charges q2 and q3, so the electric flux is 

<PE = 
QencJ 

= 
q2 + q3 

= 
( -3 .0 f.,LC ) + ( 2.0 f.,LC) 

EO EO EO 

Surface S3 encloses all three charges, so the electric flux is 

<PE = 
QencJ 

= 
ql + q2 + q3 

= 
( 5 .0 f.,LC )  + ( -3 .0 f.,LC) + ( 2.0 f.,LC )  

EO EO EO 
o.O f.,LC ----'--- = o. 

EO 

EVALUATE We see that Gauss's law provides a straightforward method of evaluating the flux through 
a surface: Simple addition and division produces the results. We see also that the flux can be positive, 
negative, or zero. 
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3: Electric field where electric flux is zero 
Is the electric field zero along a surface where the electric flux is zero? 

Solution 

IDENTI F Y, SET UP, AND EXECUTE The total electric flux is zero whenever the net charge inside a 
surface is zero. The electric field may or may not be zero if the total electric flux is zero. Consider the 
surface S3 from the last question; the net flux was zero, but the field would not be zero along the sur
face. Near charge Q3, the electric field would be pointing outward, and near charge Q2, the electric field 
would be pointing inward. 

EVALUATE Another interpretation of the electric flux is that it is equal to the number of electric field 
lines out of a surface minus the number of electric field lines into the surface. If the number of electric 
field lines into the surface is equal to the number of electric field lines out of the surface, then the elec
tric flux is zero. 

Problems 
1 :  Electric field for a spherical shell 
A conducting spherical shell with inner radius a and outer radius b contains a charge +2Q. Find the 
electric field in all regions of space. 

Solution 

IDENTI F Y  The system is spherically symmetric, so we will apply Gauss's law to a spherical surface. 
The target variable is the electric field in all space. 

SET UP Figure 22.3 shows a cutaway sketch of the spherical shell. The charge is located on the outer 
surface of the sphere, since it is a conductor. To find the electric field in any region, we place a spheri
cal Gaussian surface in that region. Inside radius b, there is no field, since the charge is on the surface 
at that radius. We only need to calculate the electric field outside the radius b. Outside the shell, the 
electric field points radially outward and is constant at a given radius. 

Figure 22.3 Problem I sketch. 

EXECUTE We start by imagining a spherical Gaussian surface at a radius r outside of the shell, as 
shown in the figure. We evaluate Gauss's law at that surface. Gauss's law states that 

1 E . dA = 
Qencl

. r EO 
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The charge enclosed is the charge on the shell, +2Q. We evaluate the surface integral by examining the 
electric field outside the shell . The electric field is directed radially outward, as is the surface area ele
ment dA, so their dot product is just the product of their magnitudes: 

fit . dA = fEdA. 
The electric field is constant along the Gaussian surface, so we may move it outside of the integral: 

fit . dA = fEdA = EfdA. 
The integral of dA is just the area of the spherical surface, 477T2: 

fIt ' dA = f EdA = EfdA = E41Tr2. 
Summing up these results, we have 

f� � +2Q 
E · dA  = E41Tr2 = -- . 

EO 

Solving for the electric field yields 

The electric field is directed radially outward. 

EVALUATE We see how, outside the conducting shell, the electric field is the same as that of a +2Q 
point charge located at the center of the shell. 

2: Electric field for a cylindrical insulator 
A long, nonconducting cylinder with radius R contains a uniform volume charge density p. Find the 
electric field inside and outside of the cylinder. 

Solution 

IDENTIFY The system is cylindrically symmetric, so we will apply Gauss's law to a cylindrical sur
face. The target variable is the electric field. 

SET UP Figure 22.4 shows a sketch of the cylinder with two cylindrically symmetric Gaussian sur
faces, one inside the cylinder and one outside. The charge is distributed throughout the cylinder, so we 
will sum the charge inside the surface to find the field. Inside the cylinder, the Gaussian surface con
tains only a fraction of the charge. Outside the cylinder, the Gaussian surface contains the total charge. 

I 
I 

/ 
/ 

I 

- --------=-- ...... / , 
, /  "-

\ - �--
\ r 

' 

_ - - - - - - -

\ �------L '-
/ - -...... /- -

' - - - - ------

Figure 22.4 Problem 2 sketch. 
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EXECUTE We start by imagining a cylindrical Gaussian surface of length L at a radius r inside the 
cylinder, as shown in the figure. We evaluate Gauss's law at that surface. Gauss's law states that 

1 E . dA = Qencl
. r EO 

The charge enclosed is the charge within the cylinder and is equal to the volume charge density times 
the volume of the cylinder enclosed by the surface, or 

Qencl = pVencl = P'lTT2L. 
We evaluate the surface integral by first examining the electric field inside the cylinder. The electric 
field points outward, perpendicular to the axis of the cylinder. The surface integral can be broken into 
three pieces: the curved sidewall and the two flat ends. Mathematically, 

f E . dA = f E . dA + f E '  dA + f E . dA . 
curved side left end right end 

At the two flat ends, the electric field is perpendicular to the area vector, so the dot product is zero. On 
the curved side, the electric field is directed outward and is parallel to the area vector. This gives 

1 ---> ---> r E ' dA = f EdA + 0 + O. 
curved side 

The electric field is constant along the curved side and so may be taken outside of the integral. The inte
gral becomes the integral of the area of the curved side, 27T'rL. Combining gives the net electric flux: 

1 ---> ---> r E . dA = E27T'rL. 

Summing up our results, we have 

Solving for the electric field inside the cylinder yields 

pr 
E = -. 2Eo 

The electric field is directed outward. 
We follow the same procedure to find the field outside of the cylinder. The field points in the same 

direction, so the flux integral is the same as that inside the cylinder. The charge enclosed is now the full 
charge inside the cylinder, p27T'R2L. So we have 

f ---> ---> p7T'R2L 
E · dA = E27T'rL = , EO 

which, after we solve for the electric field, becomes 

pR2 
E = -

2rEo 
The electric field is directed outward. 

EVALUATE Inside the cylinder, the electric field increases with the radius .  Outside the cylinder, the 
electric field decreases inversely with the radius. 
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3: Electric field for a spherical insulating shell 
A hollow insulating spherical shell with inner radius a and outer radius b contains a charge +Q uni
formly distributed throughout its volume. Find the electric field in all regions of space. 

Solution 

IDENTI F Y  The system is spherically symmetric, so we will apply Gauss's law to a spherical surface. 
The target variable is the electric field. 

SET UP Figure 22.5 shows a cutaway sketch of the spherical shell. The charge is distributed uni
formly throughout the shell, since the shell is an insulator. To find the electric field in any region, we 
place a spherical Gaussian surface in that region. Inside radius a, there is no field, because no charge is 
located inside the hollow shell. We only need to calculate the electric field inside and outside of the 
shell. The electric field points radially outward and is constant at a given radius. 

, / 

Figure 22.5 Problem 3 sketch. 

EXECUTE We start by imagining a spherical Gaussian surface at a radius r for a < r < b, as shown in 
the figure. We evaluate Gauss's law at that surface. Gauss's law states that 

f E . dA = QencJ . EO 
The charge enclosed is the charge within the Gaussian surface and is equal to the volume charge den
sity times the volume of the cylinder enclosed by the surface. The volume charge density is the total 
charge divided by the volume of the shell. The volume of the shell is the volume at radius b minus the 
volume at radius a. The charge density is then 

Q p = 
4 b3 4 3 ' 3'7T - 3'7Ta 

The volume enclosed by the Gaussian surface is the volume enclosed by the surface minus the volume 
at the radius a. The charge enclosed is given by 

_ _ 
( 

Q ) (4 3 4 3 ) _ 
(

r3 - a3
) 

QencJ -
p
VencJ - 4 b3 4 3 3'7Tr - 3'7Ta - Q b3 3 . 3'7T  - 3'7Ta - a 

We evaluate the surface integral by examining the electric field outside the shell. The electric field is 
directed radially outward, as is the surface area element dA, so their dot product is just the product of 
their magnitudes: fE ' dA = fEdA. 
The electric field is constant along the Gaussian surface and so may be moved outside of the integral : 

f E ' dA = fEdA = EfdA. 



The integral of dA is just the surface area of the spherical surface, 41Tr2: 

f E ·  dA = fEdA = Ef dA = E41Tr2. 

Summing up these results, we have 

f Q ( 
3 3 ) --> --> r - a 

E . dA = E41Tr2 = - . EO b3 - a3 

Solving for electric field inside the shell yields 

E = 
Q ( r3 - a3 ) 

41TEor2 b3 - a3 . 

The electric field is directed radially outward. 
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We follow the same procedure to find the field outside of the shell . The field points in the same 
direction, so the flux integral is the same as that inside the shell. The charge enclosed is now the full 
charge Q inside the cylinder. So we have 

f -->  --> ? 

Q 
E . dA = E41Tr = -EO ' 

which, after we solve for the electric field outside of the shell, becomes 

The electric field is directed outward. 

1 Q E = ---
41TEO r2 · 

EVALUATE By this point, you should see a common theme developing: Problems involving Gauss's 
law are solved by finding the flux through the surface and the charge enclosed inside the surface. The 
flux integral reduces to one of three choices, given the symmetry we have encountered. The challenge 
is often in determining the charge enclosed. Frequently, we can find the enclosed charge by taking 
ratios of volumes. 

4: Electric field for a combination of thin sheets 
Three very large nonconducting thin sheets respectively carry uniform charge densities O" j ,  0"2, and 
0"3 on their surfaces, as shown in Figure 22.6. If 0" \  = +4.00 j.LC/m2, 0"2 = -6.00 j.LC/m2, and 
0"3 = +7 .00 j.LC/m2, find the electric field at points A, B, and C. You may assume that the sheets are 
infinitely thin. 

A B C 
• • •  

Figure 22.6 Problem 4. 
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Solution 

IDENTIFY The electric field for each sheet is constant. We will sum the electric fields due to each 
sheet to find the electric field, the target variable. 

SET UP The electric field for an infinite sheet is given by 

if 
E = - . 2Eo 

We will calculate the magnitude and direction of the field due to each sheet at each point and then sum 
the results to find the total field at each point. We will use Figure 22.7 to guide us through the summation. 

A B c 

Figure 22.7 Problem 4 sketch. 

EX E CUT E At point A, the electric field due to the sheets carrying if I and if 3 point to the left, while the 
sheet carrying if 2 points to the right. The field at point A is given by 

EA = -E1 + E2 - E3 

ia-l l ia-21 l if3 1 = - -- + -- - --2Eo 2Eo 2Eo 
1 4 .00 p,cjm2 1 1-6.00 p,C/m2 1 
-'----�--'------'- + ------

- 17 .00 p,C/m2 
-----'-----'--- = -960,000 N/C. 2Eo 

The negative value indicates that the field points to the left. 
At point B, the electric field due to the sheets carrying if2 and if3 point to the left, while the sheet 

carrying if I points to the right. The field at point B is given by 

1 -6.00 p,C/m21 
2Eo 

-9.00 p,C/m2 
--"---'--- = -508,000 N/C. 

2Eo 
The negative value indicates that the field points to the left. 
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At point C, the electric field due to the sheets carrying UI and U3 point to the right, while the sheet 
carrying U2 points to the left. The field at point C is given by 

EA = E I - E2 + E3 
l U l l  1 u2 1 I U3 1  = -- - -- + --2Eo 2Eo 2Eo 

5 .00 /-LC/m2 ---- = 282,000 N/C. 2Eo 
The positive value indicates that the field points to the right. 

EVALUATE We see that we can easily add electric fields based on several geometries. 

Try It Yourself! 
1 :  Conducting cyl indrical shel ls 
Two long conducting cylindrical shells of radii a and b are placed such that one is inside the other and 
they share a common axis .  The inner shell carries a charge per unit length A and the outer shell carries 
a charge per unit length of -2A. Find the electric field in all regions of space. 

Solution Checkpoints 

IDENTIFY AND SET UP The system is cylindrically symmetric, so apply Gauss's law to cylindrical 
surfaces. Sketch the cylinders and place Gaussian surfaces at the appropriate radii. 

EXECUTE There is no field inside radius a.  (Why?) Between a and b, Gauss's law yields 

f.... .... 
AL 

E ·  dA = E27TrL = - . EO 
So the field between the cylindrical shells is 

A E = --27TEor 
and points radially outward from the axis of the cylinder. 

Outside radius b, the Gaussian surface encloses both cylindrical shells, so Gauss's law gives 

f (A - 2A )L 
E '  i4. = E27TrL = ----EO 

The field between the cylinders is then 

A 
E = --27TEor ' 

with the field pointing inwards toward the cylinder's axis . 
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EVALUATE Why do the magnitudes of the field in both regions seem to agree? The total charge 
enclosed for the region outside the shells is negative; how does that enter into the solution? 

2: Nonconducting cylindrical shells 
A long nonconducting cylindrical tube of inner radius a and outer radius b contains a uniform volume 
charge density p throughout its volume. Find the electric field in all regions of space. 

Solution Checkpoints 

IDENTIFY AND SET UP The system is cylindrically symmetric, so apply Gauss's law to cylindrical 
surfaces. Sketch the cylinders and place Gaussian surfaces at the appropriate radii. Inside the cylinder, 
the Gaussian surface will enclose only a portion of the total charge. 

EXECUTE There is no field inside radius a. (Why?) Between a and b, Gauss's law yields 

1 E . iA = E2'TTrL = Qencl . r EO 
The charge enclosed is the volume charge density times the volume of the cylinder enclosed by the 
surface: 

Qencl = p ( 'TTr2L - 'TTa2L ) .  
So the field between the cylindrical shells is 

p ( r2 - a2 ) E = ---------'-
2Eor 

and points radially outward from the axis of the cylinder. 

Outside radius b, the Gaussian surface encloses the entire tube, so Gauss's law gives 

f-> -> 

p ( 'TTb2L - 'TTa2L ) E · dA = E2'TTrL = . EO 
The field between the cylinders is then 

with the field pointing inwards toward the cylinder's axis. 

EVALUATE Sketch the graph of the electric field as a function of the radius of the cylinder. Does the 
expression for the electric field inside the tube agree with the expression for the electric field outside 
the tube at radius b? 



Electric Potential 

Summary 
In this chapter, we will examine the energy associated with electric 
interactions. We will begin by defining the electric potential energy 
and incorporate that concept into our general energy problem-solving 
methods. Electric potential energy will then be recast in terms of elec
tric potential, which is often a more useful quantity. We will learn to 
find the electric potential from our knowledge about collections of 
charges, as well as from our knowledge of the electric field. We will 
also see how to find the electric field from the electric potential. 

Objectives 
After studying this chapter, you will understand 

• The definition of electric potential energy and electric potential. 
• How to find the electric potential energy and electric potential for a 

system of charges. 
• How to find the electric potential for distributions of charge. 
• How equipotential surfaces are used to visualize the electric poten

tial. 
• The connection between electric fields and electric potentials and 

how to calculate one from knowledge of the other. 

303 
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Concepts and Equations 

Term 
Electric Potential Energy 

Electric Potential 

Equipotential Surface 

Electric Field from Electric Potential 

Description 
The electric potential energy U is a scalar quantity equivalent to the work 
done by the electric force on a charge when it is moved: 

The electric potential energy for a point charge qo in the electric field of a sta
tionary point charge q, with a distance r separating the charges, is 

1 qoq 
U = -- . 

47TEo r 

The unit of electric potential energy is the joule. 

The electric potential, or potential, V is a scalar quantity that is equal to the 
potential energy per unit charge: 

U V = - . 
qo 

The potential for a point charge q at any point is 

1 q 
V = --- .  

47TEO r 

The potential due to a collection of charges is the sum of the potentials due to 
each charge: 

V =  _1_ 2: �. 
47TEO i ri 

For a continuous distribution of charge, the potential is found by integrating 

V = 4:EO f 
d
; . 

The potential difference between two points a and b is given by the line inte
gral over those points: 

Va - Vb = r E '  dl = r E COS cpdl 
a a 

The SI unit of potential is the volt (V) equal to 1 joule per coulomb. 

An equipotential surface is the graphical representation of potential given by 
a surface on which every point has the same potential. Electric field lines are 

perpendicular to equipotential surfaces. The surface of a conductor is an 
equipotential surface when charges are stationary and all points within the 
surface have the same potential. 

The electric field can be found from the electric potential if the potential 
function is known in a region. The components of the electric field are given 
by the partial derivatives 

where 

av E = - -x ax 
av E = - -

Y ay 
a v  E = - -z az ' 

� ( a v� av� a v  A) E = - - I  + -} + -k . 
ax ay az 
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conceptual Questions 
1 :  Electric potential of a collection of charges 
The electric potential at the center of a square is -8.0 V when one -2Q charge is placed in a comer of 
the square. What is the electric potential at the center of the square when a - Q charge is placed in each 
of the remaining three comers of the square? 

Solution 

IDENTIFY, SET UP, AND EXECUTE The electric potential for a collection of charges is the scalar 
sum of the potentials for each individual charge. The electric potential for a charge depends on the dis
tance from the charge. In this case, all four charges are the same distance from the center of the square, 
so we do not need to adjust the potentials for distance. 

Since the -2Q charge creates a potential of -8.0 V at the center of the square, we conclude that a 
single -Q charge would create a potential of -4.0 V at the center of the square. When the three new 
- Q  charges are added, each adds -4.0 V to the potential, for a total of - 12.0 V. The total potential 
due to all four charges is therefore -20.0 V. 

EVALUATE This problem illustrates how we add electric potentials. Unlike, the electric field, electric 
potential is a scalar quantity and does not depend on direction. 

2: Electric potential and electric potential energy 
Two charges are separately brought near a charge +Q. The first charge, +q, is brought to a distance r 

from +Q. Later, the second charge, +3q, is brought to the same distance r from +Q. (a) Compare the 
electric potentials due to the charge +Q  when the two charges are brought to a distance r from +Q. 
(b) Compare the electric potential energies when the two charges are brought to a distance r from + Q. 

Solution 

I DENTI FY, SET UP, AN D EXECUTE (a) The electric potential due to charge + Q  depends only on 
that charge and the distance from it. The potential is thus the same for both charges when they are 
placed a distance r from the charge +Q. 

(b) The electric potential energy for a pair of charges depends on the distance between the charges 
and the magnitudes of the two charges. The electric potential energy between the charges + Q and +q 
is greater than the electric potential energy between the charges + Q  and +q. 

EVALUATE Electric potential and electric potential energy are different quantities. They are similar to 
the electric field and electric force in that the members of each pair of quantities are related to each 
other, but the two pairs have different physical meanings and interpretations. 

3: Zero electric field and zero electric potential 
Is it possible to place four charges of the same magnitude in the comers of a square such that the elec
tric field and the electric potential are zero at the center of the square? 
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Solution 

IDENTIFY, SET UP, AND EXECUTE Both the electric field and electric potential depend on dis
tance. The center of the square is equidistant from the four corners, so the distance dependence can be 
satisfied. The net electric potential is the sum of the potentials due to the four charges. To cancel, two 
would need to be positive and two would need to be negative. The result would not depend on the loca
tions of the charges, because potential is a scalar quantity. However, the electric field is a vector quan
tity, so the locations of the charges would matter. To get a zero electric field at the center, charges of 
like signs would be placed in opposite corners. 

Both electric potential and the electric field will be zero at the center of the square if two negative 
and two positive charges, all of equal magnitude, are placed in opposite corners of the square. 

EVALUATE Does a zero electric potential always imply a zero electric field or vice versa? We see 
from this problem that we could have a zero electric potential and a nonzero electric field by placing 
opposite charges in adjacent corners of the square. And halfway between two equal and opposite 
charges the electric field is zero, but the electric potential is not. 

A common mistake occurs when students assume that the electric field (electric potential) is zero 
because the electric potential (electric field) is zero. 

Problems 
1 :  Closest approach of two protons 
Two protons are accelerated toward one another with initial speeds of 1 200 km/s relative to the earth. 
The protons are initially very far apart. What is their distance of closest approach? 

Solution 

IDE N T I FY Energy is conserved, so we will use it to find the distance of closest approach-the target 
variable. 

SET UP The only force between the protons is the electric force, which is a conservative force. The 
two forms of energy are kinetic energy and elastic potential energy. Initially, the protons have only 
kinetic energy. (They are far apart, so their initial electric potential energy can be ignored. )  As they get 
closer together, the electric force is repulsive, so the protons slow until they momentarily stop and then 
return to their original directions. When they are at their closest approach, their kinetic energy is zero 
and there is only electric potential energy. We' ll equate their initial energy to their final energy to solve 
the problem. 

EXECUTE Energy conservation relates the initial to the final energy: 
Ki + Ui = Kf +  Ufo 

Initially, the two protons have only kinetic energy. At the final position, the protons have only electric 
potential energy. Thus, 

K, . + K2 · = Uf , I  , l  , 

where we have included the kinetic energy of each proton explicitly. Substituting for the energies, we 
have 
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Solving for the closest approach, rclose ' yields 

( 8 .99 X 1 09 N ·  m2/C2 ) _ 
-7 

( 1 6 0-27 ) - 3 .09 X 1 0  m . . 7 X 1 kg 

The closest approach of the two protons is 309 nm. 

EVALUAT E  This problem adds a new type of energy to our energy conservation repertoire. As with 
many energy conservation problems, the key point was to determine the initial and final positions. We 
could have tried solving the problem by using forces; however, it would have been quite challenging, 
since the force (and acceleration) increases as the protons move closer together. 

2: Proton or electron? 
A proton or an electron is placed between two equal and oppositely charged parallel plates and is 
released near plate A. The particle accelerates toward plate B. If the particle attains a speed of 
1 . 87 X 1 06 mls just before striking the other plate, which plate is positively charged? The potential 
difference between the two plates is 1 0.0 V. 

Solution 

I D E  N T I FY To find the sign of the charge on the plates, we need to know whether the unknown particle 
is a proton or an electron. We will use energy conservation to determine which particle is accelerated. 

S ET UP Protons and electrons have equal and opposite charges and different masses. To find the 
mass, we'll use energy conservation. Initially, the particle has only electric potential energy at plate A. 
This energy transforms to kinetic energy as the particle accelerates to plate B. Once we identify the 
particle between the plates, we can ascertain the sign of the charge on the plates. 

EXE CUT E Energy conservation relates the initial to the final energy : 

KI + UI = K2 + U2· 

Initially, the particle has only electric potential energy. At plate B, it has only kinetic energy. Thus, 

UI = K2· 
Substituting for the energies, we have 

Solving for the mass yields 

_ 2qV _ 2eV _ 2 ( 1 .6 X 1 0- 19 c ) ( 1 0.0 V)  _ -3 1  m - -7 - -2 - ( 6 1 ) 2 - 9. 1 1  X 1 0  kg. v- v 1 . 87 X 10 m s 

The mass is that of an electron. The electron is negatively charged, so it accelerates toward positive 
charge. Plate B is positively charged and plate A is negatively charged. 

EVALUATE Can we also learn how the electric potential energy and electric potential change as the 
electron moves between the plates? The answer is yes. The electron moves toward lower electric 
potential energy. Due to the negative charge of the electrons, lower electric potential energy corre
sponds to higher electric potential . Thus, the electron moves toward higher electric potential. 
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3: Charges in a square? 
Three charges of + 5 .00 fLC are placed in three corners of a square with sides of length 1 .60 m. A 
fourth charge of + 3 .00 fLC is placed in the center of the square and is released. What is the velocity of 
the fourth charge as it passes the corner. The fourth charge has a mass of 0.0050 kg. 

Solution 

IDENTI F Y  Energy conservation will be used to calculate the velocity of the charge as it passes the 
corner-the target variable. 

SET UP The fourth charge initially has electric potential energy at the center that converts to kinetic 
plus electric potential energy at the corner. We must find the electric potential energy of the system 
when the fourth charge is at the center and at the corner. With four charges, the expression for the elec
tric potential energy includes six pairs of charges . We simplify our calculation by finding the electric 
potential at the center and at the fourth corner due to the three corner charges, finding the change in 
potential, and then calculating the change in potential energy for the fourth charge. 

EXECUTE The electric potential at the center of the square due to the three charges is the sum of the 
potentials due to each charge. Each charge is the same in magnitude and is equidistant from the center. 
The potential is then 

1 qi ( 1 q ) ( 1 5 .0 fLC ) 

Vcenter = -- 2: - = 3 -- - = 3 -- v2 = 1 19,000 V. 41TEO i ri 41TEO r 41TEO -l'- ( 1 .6 m ) 
The electric potential at the fourth corner of the square due to the three charges is again the sum of the 
potentials due to each charge. Each charge is the same magnitude, but the charges all vary in distance 
from the corner. The potential is then 

V = 
_1_ 2: qi = 2 (_I_ L) 

+ 
(_1_ �) 

comer 41TEO i ri 41TEO rside 41TEO rdiag 
( 1 5 .0 fLC ) ( 1 5 .0 fLC ) 

= 2 -- + -- = 76,000 V. 41TEO ( 1 .6 m ) 41TEO V2 ( 1 .6 m ) 
The change in potential undergone by the fourth charge is the difference of the two potentials we have 
just found. The change in potential energy of the fourth charge is this change in potential times that 
charge. 

Energy conservation for the fourth charge relates the initial to the final energy: 

KI + VI = K2 + V2· 
Initially, the fourth charge has only electric potential energy. At the corner, it has electric potential 
energy plus kinetic energy. Thus, 

Substituting for the energies, we have 

Solving for the velocity yields 

v = )2Q!V 
= 

2 (  3 .0 fLC ) ( 1 19,000 V - 76,000 V )  _ 
I 

( 0.005 kg ) - 7.2 m s. 

The fourth charge has a velocity of 7.2 mls when it passes the empty corner. 
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EVALUATE How does the force vary as the fourth charge moves to the comer? The force decreases, so 
we could not have used the constant-acceleration kinematics relations we developed in Chapter 3 .  This 
problem illustrates how electric potential simplifies problems by removing the challenges of varying 
forces and thereby simplifying the calculation of potential energy for a system of charges. 

4: Potential of two charges 
Two + Q charges are placed on the y-axis a distance a above and below the x-axis, as shown in 
Figure 23 . 1 .  Find the electric potential on the x-axis at a distance x from the origin. 

y 

+ Q 

a 

-r------------�._------- x 
a 

+Q 

Figure 23.1 Problem 4.  

Solution 

IDENTIFY AND SET UP Electric potential is a scalar, so the net electric potential is the sum of the 
potentials due to the two charges. We need to find the distance to the two charges in terms of a and x. 

EXECUTE The charges are equidistant from the point on the axis. The distance to each charge is then 

r = Yx2 + a2 . 
The net electric potential is the sum of the potentials due to each charge: 

_ _  1 ( Q 
+ 

Q 
) - 47TEO Yx2 + a2 Yx2 + a2 

= 4:EjYX2
Q
+ a2

)

· 

EVALUATE Finding the electric potential can be relatively simple, as in this problem. One use of the 
potential is in calculating the electric field, as we will see in Problem 5 .  

5: Electric field due to two charges 
Two + Q charges are placed on the y-axis a distance a above and below the x-axis, as shown in 
Figure 23 . 1 .  Find the electric field on the x-axis at a distance x from the origin. 
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Solution 

IDE N T I FY We can calculate the electric field in two ways: We can find the electric field due to each 
charge and add their vectors, or we can use the partial derivative of the electric potential to find the 
electric field. We will use the second method in this problem, since we found the electric potential in 
the previous problem. 

SET UP The electric field is the negative partial derivative of the electric potential. From the expres
sion for the electric potential in Problem 4, we see that the potential varies only as a function of x, so 
the electric field has only an x component. 

EXECUTE The x component of the electric field is the negative partial derivative of the electric poten
tial with respect to x: 

a v  E = - -x ax 

= -:X (4:EJVX2
Q
+ a2 ) ) 

2Q a 
( 

1 
) = - 41TEo ax Vx2 + a2 

2Q 
( 

( - � ) 2x 
) = - 41TEO (x2 + a2 ) 3/2 

1 2Qx 
41TEO (x2 + a2 ) 3/2 ' 

EVALUATE This result agrees with Chapter 2 1 , Do It Yourself Problem 2, illustrating how finding the 
electric field from an electric potential can be simpler than finding the electric field directly from a 
vector sum. 

Try It Yourself! 
1 :  Potential of two charges 
Two 1 .0 X 1O-9C charges are placed on the y-axis a distance a above and below the x-axis, as shown 
in Figure 23 .2. An electron located at the origin is given a slight push. Find the velocity of the electron 
when it is at y = a/2. 

y 

a = 3.0 em 

a = 3.0 em 

Figure 23.2 Try It Yourself 1 .  
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Solution Checkpoints 

IDENTIFY AND SET UP Use energy conservation to solve. What forms of energy are present? 

EXECUTE The net electric potential is the sum of the potentials due to each charge: 

V = 4�EO (a � y + a � y ) 
= 4:EJa2 �

a 
l ) . 

The change in energy is related to the change in potential. The kinetic energy of the electron increases 
as the electron moves along the axis .  At any point, the kinetic energy is given by 

I 2 2 
( 

Qa )  2 
( 

Q) 
11K = 'i mv = 

47TEO a2 _ y2 - 47TEo a · 

The final velocity is 1 .45 X 107 m/s .  

EVALUATE How could you use forces to solve this problem? 

2 :  Conducting sphere 
A solid conducting sphere of radius a is concentric with a hollow spherical shell of inner radius b and 
outer radius c. The potential difference between the spheres is Yah. Find the electric field between the 
spheres and find the charge on the inner sphere. 

Solution Checkpoints 

IDENTIFY AND SET UP Apply Gauss's law between the conductors. Sketch the spheres. Q is not 
given, but can be found from the potential difference. 

EXE CUTE Assuming a charge Q on the inner conductor, we find that the field is given by 

E =  Q 
47TEor2 · 

The potential difference between the spheres is given by 

Vah = fE . dr 
a 

-
4;EJ� - i) · 

This equation can be rearranged to find the charge and the electric field: 

Q = 47TEO Vah 

(� - i) 

E =  Vah 

(± - {;)r2
· 
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EVALUATE We see that if the charge isn't explicitly given, we can assign it a value and later evaluate 
the charge in terms of the known values. 

3: The hydrogen atom 
(a) Estimate the energy necessary to separate the electron from the proton in a hydrogen atom. Assume 
that the two particles are bound by the coulomb force and are an average of 10-8 m apart. (b) Through 
what voltage must an electron be accelerated to gain this energy? 

Solution Checkpoints 

IDENTIFY AND SET UP Can energy conservation be used to solve the problem? 

EXECUTE (a) The energy necessary to separate the electron from the proton is equal to the electric 
potential energy of the pair: 

e
2 

U = -- = 2.3 X 10- 1 8  J. 
41TEor 

(b) The potential energy is equal to the electron's charge times the change in potential: 

U 
Ll V = - = 14.4 V. 

e 

EVALUATE This result is actually quite close to the energy needed to remove an electron from a 
hydrogen atom. We' ll learn about nuclear forces later in the text. 



Summary 

Capacitance and 
Dielectrics 

In this chapter, we will examine capacitance and the capacitor, a 
device for storing energy and charge. We will begin to analyze circuits 
and consider the energy and flow of charge in a circuit. We will find 
that the familiar term voltage is equivalent to electric potential. We 
will learn how to combine capacitors in a circuit and find the charge 
on a capacitor. We will also see how capacitors store energy and how to 
quantify that energy. Finally, we will examine dielectrics-materials 
that change the capacitance of capacitors. 

Objectives 
After studying this chapter, you will understand 

• Capacitors and capacitance and how to define them. 
• How to recognize, differentiate, and find the equivalent capaci

tance of capacitors connected in series and in parallel. 
• How to find the energy stored in a capacitor and in the electric field 

of a capacitor. 
• Dielectrics and their effect on capacitors. 

3 1 3  



3 1 4  CHAPTER 24 

Concepts and Equations 

Term 
Capacitors 

Combinations of Capacitors 

Electric Field Energy 

Dielectric 

Description 
A capacitor is any two conductors separated by vacuum or a material. When 
charge is added to the conductors of a capacitor, a potential exists between 
the conductors. The capacitance C is the ratio of the charge to the potential 
difference: 

C =  
Q

. 
V 

The SI unit of capacitance is the farad; I F = I e/v. A parallel-plate capaci

tor consists of two parallel plates of area A separated by a distance d. The 

capacitance of a parallel-plate capacitor is 

When capacitors are combined in series, the equivalent capacitance is given by 

1 1 1 1 - = - + - + - + . . . 
Ceq C, C2 C3 ' 

and all capacitors have the same magnitude of charge on their plates. When 
capacitors are combined in parallel, the equivalent capacitance is given by 

Ceq = C, + C2 + C3 + . . .  , 
and all capacitors have the same potential difference across their plates. 

The electric field energy U is the energy required to charge a capacitor C to a 
potential difference V with charge Q: 

U = �QV = Q2 
= � CV2. 

2C 

This energy is stored in the electric field, with an energy density of 

u = � EoE2. 

The nonconducting material placed between the plates of a capacitor is a 
dielectric. For a constant charge, dielectrics decrease the electric field and 

potential between the plates of a capacitor, thus increasing the capacitance by 
the dielectric constant K of the material. A parallel-plate capacitor filled with 
a dielectric has capacitance 

Gauss's law in a dielectric becomes 

where Qenc' free is the total free charge enclosed by the Gaussian surface. The 
maximum electric field strength a material can withstand without ionizing 
(i.e. ,  without the dielectric breaking down) is the dielectric strength of the 
material. 
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conceptual Questions 
1 :  Changes in a disconnected capacitor 
A parallel-plate capacitor is charged to a potential difference of 1 00 V and is disconnected from the 
power source. The plates are then pushed closer together by means of insulated rods. How do the 
charge, potential difference, and capacitance change when the plates are pushed closer together? 

Solution 

I DENTI FY, SET UP, AN D EXECUTE When the capacitor is disconnected from the power source and 
the plates are pushed closer together with the insulated rods, no charge can leave the plates and the 
charge remains constant. As the plates come closer together, the capacitance will increase, since the 
capacitance is inversely proportional to the separation of the plates. Because the capacitance increases, 
the potential difference must decrease in order for the charge to remain constant. Summarizing, we say 
that the charge remains constant, the potential difference decreases, and the capacitance increases. 

EVA LUATE Capacitance, charge, and potential difference are related in a simple manner; understanding 
how these quantities vary under different circumstances develops a better understanding of capacitors. 

Practice Problem: How would the charge on the plates, the potential difference, and the capacitance 
change if the capacitor remained connected to the power source as the plates were pushed together? 
Answer: The capacitance would still increase, the potential difference would remain constant, and the 
charge on the plates would increase. 

2 :  Combinations of capacitors 
How would you combine the two arrangements of capacitors shown in Figure 24. 1 to find the equiva
lent capacitance between a and b? 

Figure 24.1 Question 2 .  

Solution 

IDENTI FY, SET UP, AND EXECUTE Capacitors C, and C2 are positioned parallel to each other. 
However, closer inspection reveals that there is only one path leading between a and b through the two 
capacitors . Capacitors C, and C2 are connected in series between a and b. Their equivalent capacitance 
would be found by adding reciprocals .  

Capacitors C3 and C4 are positioned somewhat diagonally from each other. This time, closer inspec
tion reveals that there are two paths between a and b, one leading through capacitor C3 and the other 
through capacitor C4. Capacitors C3 and C4 are connected in parallel between a and b. Their equivalent 
capacitance would be found by adding their capacitances. 
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EVA LUATE Recognizing and differentiating series and parallel connections in circuits is an important 
aspect of this and the next chapter. Be aware that series and parallel connections refer to the electrical 
connections and not any geometric arrangment. Once you determine how components are connected, 
finding the equivalent capacitance is straightforward. You should practice combining capacitors until 
you' ve developed a good eye for recognizing the nature of the connections. 

Problems 
1 :  Changing parallel-plate capacitor 
A parallel-plate capacitor has a charge of 1 .0 nC when the plates are separated by 1 .0 cm and it is con
nected to a 1 2.0-V battery. (a) If the plates are pulled to a 2.0-cm separation while keeping the battery 
connected, what is the new charge on the plates? (b) If the plates are disconnected from the battery and 
then pulled to a 2.0-cm separation, what is the new potential between the plates? 

Solution 

I D  E NTI FY We' ll use the definition of capacitance and the capacitance of a parallel-plate capacitor to 
solve the problem. 

SET UP We must recognize what remains constant and what changes in the two parts of the problem. 
The potential remains constant in part (a) and the charge remains constant in part (b) . The capacitance 
changes in both cases, so the charge changes in part (a) and the potential changes in part (b) .  

EX E CUT E The capacitance drops by a factor of two in both parts of the problem, since capacitance for 
a parallel-plate capacitor is inversely proportional to the distance between the plates: 

EoA 
C = - . 

d 
The charge, potential, and capacitance are related by 

q = CV. 
(a) The charge must decrease by a factor of two in part (a), since the potential remains constant and the 
capacitance drops by a factor of two. The final charge is 0.5 ne. 

(b) The potential must increase by a factor of two in part (b) ,  since the charge remains constant and 
the capacitance drops by a factor of two. The final potential is 24.0 V. 
EVA LUATE This problem illustrates how we will approach many problems involving capacitors. The 
key is to recognize what parameters change and what parameters remain constant through the course of 
the problem. When capacitors are disconnected from a battery, their charge remains constant since the 
charge has no path for leaving the capacitor. When capacitors are connected to batteries, the charge 
may flow onto or off of the plates of the capacitor as the plates are manipulated. 

2 :  Charge on a capacitor 
The circuit of Figure 24.2 is attached to a 1 2-V battery across terminal abo Find the charge on the 
21 -p,F capacitor. 
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Figure 24.2 Problem 2. 

Solution 

IDENTIFY To find the charge on the capacitor, we need to know the potential difference across the 
capacitor. We will combine the capacitors to find the potential on the capacitor. 

SET UP In this problem, we know only the voltage across the terminal, so we will need to combine 
the capacitors initially in order to find the charges and potentials in the system. Then we will separate 
the system into its components to isolate the 2 1 -,uF capacitor. 

EXE CUTE We start by finding the equivalent capacitance of the system. To do that, we use our series 
and parallel rules to find two capacitors that we can combine. Examining the figure, we see that the 
2 1 -,uF and 1 6-,uF capacitors are in series. Combining those two, we find that 

1 1 1 

C21 + 16 2 1 ,uF 
+ 

1 6  ,uF ' C2 1+ 16 = 9.08 ,uF, 

where the subscript refers to the combined capacitors . Combining the 4 1 -,uF capacitor in parallel with 
the 2 1 -,uF and 1 6-,uF capacitors gives 

C2 1+ 16+41 = 9.08 ,uF + 41  ,uF = 50. 1 ,uF. 

The 33-,uF capacitor is in series with the rest of the capacitors, so the total equivalent capacitance 
becomes 

1 1 1 

C2 l  + 16+4 1 +33 33 ,uF + 50. 1 ,uF ' C21 + 16+41 +33 = 1 9.9 ,uF. 

With the total equivalent capacitance found, we turn to calculating the charges and potentials in the cir
cuit. The total charge on the capacitor combination is 

Qtotal = CV = ( 19.9 ,uF) (  12 V )  = 239 ,uC. 

Since the 33-,uF capacitor is in series with the 50. 1 -,uF combination, the total charge on both capacitors 
is 239 ,uC. The potential difference across the 50. 1 -,uF combination is 

Qtotal 
V21 + 16+41 = 

C 21 + 16+41 

239 ,uC 
= = 4.77 V. 

50. 1 ,uF 

Since these capacitors are in parallel, the potential difference across the 2 1 -,uF and 1 6-,uF combination 
is 4.77 V. We now find the charge on the 2 1 -,uF and 16-,uF combination: 

Q21 + 16 = C21 + 16V21 + 16 = ( 9.08 ,uF) (4.77 V )  = 43 .3 ,uC. 

The charge on the 2 1 -,uF and 16-,uF combination is 43 .3 ,uC. Since the capacitors are in series, both 
have the same charge. The charge on the 2 1 -,uF capacitor is 43.3 ,uC. 
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EVALUATE This problem has shown us how to find the equivalent capacitance of a circuit and then 
determine the charges and voltages on various capacitors. In combining the capacitors, we saw that the 
concepts of series and parallel connections are not geometric concepts, but electrical concepts. In this 
circuit, the 2 1 -,uF and 1 6-,uF capacitors are oriented perpendicular to each other, but are in series elec
trically. The 41 -,uF capacitor is diagonal to the 2 1 -,uF and 16-,uF capacitors, but is electrically parallel 
to them. Learning to identify series and parallel circuits will greatly benefit your problem-solving skills 
in this and the next chapter. 

3: Connecting capacitors 
A 30.0-,uF capacitor is charged to a potential of 500 V, is disconnected from the source, and is con
nected to an uncharged 1 O.0-,uF capacitor. Find the final charge on each capacitor. 

Solution 

IDENTIFY We will use the properties of capacitors and potentials to solve the problem. The target 
variables are the charges on the two capacitors after they are connected. 

SET UP The 30.0-,uF capacitor is initially charged to 500 V, so we find the initial charge on it. This 
charge remains on the capacitor after it is disconnected, as it has no path for leaving the plates. When 
the capacitors are connected, the charge is shared between the two capacitors. The amount of charge on 
the two capacitors after reconnection is found by realizing that the potential differences across each 
capacitor must be equal. 

EXECUTE We start by finding the initial charge on the 30.00-,uF capacitor. The charge is 

Q30 = C30V = ( 30.00 ,uF) ( 500 V) = 1 5,000 ,uC, 

where the subscript refers to the capacitor. After connection, the charge is shared between the two 
capacitors; that is, 

Q30 = Q30 + Q;o, 
where the primes indicate the values after connection. When the capacitors are connected, the potential 
is the same across each one, or 

V30 = VIO, 
Q30 Q ;o 
C30 CIO 

We can substitute and solve for the charge on the 30.0-,uF capacitor: 

Q30 Q30 - Q30 
C30 CIO 

Q30 = 
Q30 (_1

_ + _1
_
) - 1  

CIO C30 CIO 
( 1 5 ,000 ,uC ) ( 1 + 1 )- 1 

10.0 ,uF ( 30.0 ,uF) 10.0 ,uF 

The charge on the other capacitor is then 

Q;o = Q30 - Q30 = 15 ,000 ,uC - 1 1 ,250 ,uC = 3750 ,uC. 

1 1 ,250 ,uC. 

The charge on the 30.00-,uF capacitor is 1 1 .3 mC, and the charge on the 10.00-,uF capacitor is 3 .8  mC. 
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EVALUATE This problem illustrates how charge moves on capacitors after the capacitors are con
nected. One method to better understand the movement of charges on capacitors is to draw diagrams 
showing the distribution of charges before and after connection. You may also want to use arrows to 
indicate how charges move between capacitors . Try several drawings to illustrate the movement of 
charges in this problem. 

Practice Problem: Find the potential difference across the capacitors after they are connected. 
Answer: 375 V. 

4: Charge on rearranged capacitors 
A 3 .00-JLF capacitor and a 7 .00-JLF capacitor are connected in parallel, and the combination is con
nected to a battery that provides a potential difference. After the capacitors are charged, they are dis
connected from the battery and each other and then are reconnected to each other with their terminals 
reversed. If the final potential difference across the 3 .00-JLF capacitor is 1 75 V, find the voltage of the 
battery. 

Solution 

IDE NTI F Y  We will use the properties of capacitors and potentials to solve the problem. The target 
variable is the voltage of the battery. 

SET UP The capacitors are initially charged to the same voltage, with the 7.00-JLF capacitor acquir
ing more charge than the 3 .00-JLF capacitor. When they are disconnected, the charge remains on the 
capacitors. When the capacitors are reconnected with their terminals reversed, the positive charge on 
the 7.00-JLF capacitor combines with the negative charge on the 3 .00-JLF capacitor, neutralizing part 
of the total charge, with the remaining positive charge split between the two capacitors. The same 
occurs on the other terminals, resulting in an equal amount of negative charge split between the two 
capacitors . The amount of charge on the two capacitors after reconnection is found by realizing that 
the potential differences across each capacitor must be equal. We are told that the potential across the 
3.00-JLF capacitor is l 75 V, so the potential across the 7.00-JLF capacitor is also l 75 V. 

Knowing the final voltages across the capacitors allows us to find the final charges on the capaci
tors. We can then find the initial charge on the capacitors and the voltage of the battery. 

EXECUTE We start by finding the charge on the two capacitors after they have been reconnected. The 
charges are 

Q3 = C3V' = ( 3 .00 JLF ) ( l 75 V)  = 525 JLC, 

Q� = C7V' = ( 7.00 JLF ) ( l 75 V )  = 1 225 JLC, 

where the subscripts refer to the capacitors and the primes indicate the values after reconnection. The 
total charge on the capacitors after reconnection is the sum of the charges on the capacitors : 

Q;otal = Q3 + Q� = ( 525 JLC ) + ( 1 225 JLC ) = l 750 JLC. 

The initial charges on the capacitors (while connected to the battery) are found in the same manner 
and are 

Q3 = C3V, 
Q7 = C7V, 
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where V is the battery's voltage. When the capacitors are reconnected, the positive charge on the 
7.00-,uF capacitor combines with the negative charge on the 3 .00-,uF capacitor, giving a total charge of 

Qtotal = Q7 - Q3 = C7 V - C3 V = ( C7 - C3 )  V. 
This total charge is the same as the total charge after the reconnection. We solve for the battery's 
voltage: 

Qtotal Q;otal V = ---'-'-""'--
C7 - C3 C7 - C3 

The battery's voltage is 438 V. 

( 1 750 ,uC ) 
= 438 V. 

( 7 .00 ,uF) - ( 3 .00 ,uF) 

EVALUATE This problem illustrates how charge remains on capacitors after they are disconnected 
from a battery and how charge rearranges itself after capacitors are reconnected. The relation among 
charge, voltage, and capacitance is straightforward; however, mastery of capacitance problems comes 
only after considering a variety of problems in which either the charge or the voltage remains constant 
while other parameters change. The next problem illustrates what happens when the voltage is kept 
constant. 

5: Charge on a dielectric 
A capacitor is made of two square sheets of aluminum foil with sides of length 50.0 cm placed 2.00 mm 
apart in air. The capacitor is connected to a power supply that keeps a constant potential difference of 
24.0 V across the plates. A piece of neoprene is placed between the pieces of foil, completely filling the 
space. How much charge flows onto or off of the plates when the neoprene is added? What is the 
change in energy stored in the capacitor when the neoprene is added? 

Solution 

IDE NTI FY The target variable is the amount of charge moving on or off of the capacitor plates and the 
change in energy stored. 

5 ET UP To find the charge flow, we calculate the initial and final charges on the capacitor. We'll need 
to calculate the capacitance of the foil, using the parallel-plate capacitor formula, and we have to look 
up the dielectric strength of the neoprene. Once we have the charges, we will calculate the initial and 
final energy stored on the capacitor. We' ll take the dielectric constant of air to be equal to vacuum to 
simplify the analysis. 

EXECUTE The capacitance of a parallel-plate capacitor is A 
C = EO d ' 

where A is the area of the plates and d is the separation distance. For the capacitor with air between the 
plates, the capacitance is 

Cair = EO 
Ad = ( 8.85 X 1 0- 1 2  F/m) 

( 0.500 m ) ( 0.500 m )  
= 1 106 nF 

( 0.00200 m)  
. . 
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When the neoprene is added, the capacitance increases by the dielectric constant. The dielectric con
stant for neoprene is 6.70, from Table 1 8 . l .  The capacitance is 

Cneoprene = KCair = ( 6.70 ) ( l . 106 nF ) = 7.4 12 nF. 

The charge on the capacitor with and without the neoprene is, respectively, 

Qair = CairV = ( l . 106 nF ) ( 24 V)  = 26.5 nC, 

Qneoprene = Cneoprene V = ( 7.412 nF ) ( 24 V )  = 1 77 .9 nCo 

The amount of charge flowing onto the plates when the neoprene is added is 

LlQ = Qneoprene - Qair = 177.9 nC - 26.5 nC = 1 5 1 .4 nC 

The energy stored in a capacitor is given by 

E = �CV2. 
The energy stored in the capacitor with and without the neoprene is, respectively, 

Eair = �CairV2 = � ( l . 106 nF ) ( 24 V) 2  = 3 1 8  nJ, 

Eneoprene = � Cneoprene V2 = � (7.412 nF ) ( 24 V) 2  = 2 1 35 nl 

When the neoprene is added, the energy increases by an amount 

LlE = Eneoprene - Eair = 2135 nJ - 3 1 8  nJ = 1 8 1 7  nJ. 

When the neoprene is inserted, 1 5 1  nC of charge flows onto the plates, increasing the energy stored in 
the capacitor by 1 820 nJ. 

EVALUATE This problem shows us how to find the capacitance and energy of a parallel-plate capaci
tor with and without a dielectric. We see that, since the potential remains constant, the charge on the 
capacitor must rearrange itself to compensate for the change in capacitance when the neoprene is 
added. 

Practice Problem: Would the neoprene have to be pushed between the plates, or would it be drawn 
into the plates? Answer: Since the energy increases when the neoprene is added, the neoprene would 
have to be pushed between the plates. 

6: Adding a dielectric 
A parallel-plate capacitor of area A and plate separation L is filled with a removable dielectric slab of 
dielectric constant K? The capacitor is given a charge Q with the slab removed, and the capacitor is 
disconnected from the battery. Then the slab is inserted. Find the change in potential difference when 
the slab is inserted. 

Solution 

IDE NT I FY The target variable is the change in potential difference when the slab is added. 

SET UP We will calculate the initial and final voltage on the capacitor. When the dielectric is added, 
the charge remains constant. 
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EXECUTE The initial potential difference is given by 

v = Q = QL 
C EoA · 

When the dielectric is added, the potential decreases, since the capacitance increases. We then have 

V' = g = QL 
C' KEOA · 

We need to find the difference of these two potentials. The difference is 

� V = V' - V = QL _ QL = QL (l. - 1 ) . KEOA EoA EoA K 
The potential difference is negative, indicating that the potential decreases when the dielectric is 
added. 

EVALUATE Does the dielectric have to be pushed into place, or is it pulled into place? The energy 
after adding the dielectric is less ; therefore, the dielectric is pulled into place by the field. 

Try It Yourself! 
1 :  Charge on a capacitor 
Find the charges on, and the potential drops across, each capacitor in the circuit of Figure 24.3 . The 
potential across the terminal ab is 1000.0 V. 

C1 = 1 .0 /LF 

a , C, = 12� 1
-

----It----
C

4-=--ij.
O 

/LF • b 

C3 = 3.0 /LF 

Figure 24.3 Try It Yourself I .  

Solution Checkpoints 

IDENTI F Y  AND SET UP To find the charge on the capacitors, we need to know the potential differ
ence across the capacitors. We will initially combine the capacitors to find the charges and potentials in 
the system. 

EXECUTE Capacitors Cl and C3 are combined first, and then capacitors C2 and C4 are added to the 
combination: 

1 1 1 1 
C 2.0 IIF + 1 .0 IIF + 3 .0 IIF 

+ 
4.0 IIF ' Ctotal = 1 .0 f.1,F. 

total r- r- r- r-

The charge on the equivalent capacitor is 

Qtotal = CV = 1000 f.1,c. 
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Capacitors C2 and C4 have this same charge, since they are in series. The potential differences are 

Q2 
V2 = - = 500 V 

C2 
' 

Q4 
V4 = - = 250 V 

C4 
' 

V I = V3 = 1 000 V - V2 - V4 = 250 V. 

The charges on capacitors CI and C3 are 

QI = CI VI = 250 /-LC, 

Q3 = C3 V3 = 750 /-LC. 

EVALUATE How would you check these results? 

2 :  Changing capacitors 
Imagine that capacitors CI and C3 are removed from the circuit of Figure 24.3  and are reconnected to 
each other with terminals of opposite signs together. Find the new charge on, and potential across, each 
capacitor. 

Solution Checkpoints 

IDENTIFY AND SET UP How does the initial charge on the capacitors distribute after they recon
nect? How do the potentials across the capacitors compare after the reconnection? 

EXECUTE The total charge on the two capacitors is 

Q '  = QI - Q3 = Q;  + Q� = 500 /LC. 

The potentials across the capacitors are the same, giving 

V ;  = V3, 

Solving these two equations gives 

Q ;  = 1 25 /-Lc, 

Q3 = 375 /-Lc. 

EVALUATE How would you check these results? Did the overall energy increase or decrease? 

3: Adding a dielectric 
A parallel-plate capacitor of area A and plate separation L is filled with a removable dielectric slab of 
dielectric constant K? The capacitor is connected to a battery with the slab removed, and then the slab 
is inserted while the capacitor remains connected to the battery. Find the change in charge on the 
capacitor when the slab is inserted. 
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Solution Checkpoints 

IDENTIFY AND SET UP How does the initial charge on the capacitors distribute after the dielectric 
is inserted? How do the potentials across the capacitor compare after the slab is inserted? 

EXEC UTE The initial charge is given by 

EoA Q = VC = V-. L 
When the dielectric is added, the potential remains constant. The new charge is 

KEoA 
Q' = VC' = V-- . 

L 
We need to find the difference of the two charges. The difference is 

KEoA EoA EoA �Q = Q ' - Q = V- - V- = V- ( K  - 1 ) . L L L 

EVAL UATE Does the charge on the capacitor increase or decrease when the dielectric is inserted? 



Summary 

Current, Resistance, and 
Electromotive Force 

In this chapter, we will study the movement of charge through electric 
circuits. We begin by defining current (the flow of charge through a 
conductor) , resistance (a quantity related to how easily charge flows 
through a conductor), and voltage (electric potential difference, which 
causes charge to move). We' ll then analyze electric circuits and see 
how energy and power are provided to and dissipated by the devices 
in a circuit. By the end of the chapter, we will have built a foundation 
from which we can begin understanding circuits in electronic devices 
that we use every day. 

Objectives 
After studying this chapter, you will understand 

• The flow of current and charges through an electric circuit. 
• The definition of resistivity and conductivity. 
• The resistance of a circuit and the implications of Ohm's law. 
• How an electromotive force (emf) causes charges to flow in a 

circuit. 
• How to determine energy and power for a circuit. 

325 
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Concepts and Equations 

Term 
Current 

Resistivity 

Resistance 

Electric Circuits 

Power in an Electric Circuit 

Description 
Current is the movement of electrical charge from one region to another. A net 
charge dQ flowing through a cross-sectional area A in time dt is a current 

dQ 
1 = - = n [q [ vdA, 

dt 

where n is the concentration of charge carriers, q is the charge per charge carrier, 
and Vd is the magnitude of the charge carrier's drift velocity. The SI unit of cur
rent is the ampere (A): 1 A = 1 cis .  Current is conventionally described in 
terms of the flow of positive charge. The current density is the current per unit 

cross-sectional area, given by 

--> --> J = nqvd. 

The resistivity p of a material is the ratio of the magnitude of the electric field to 
the magnitude of the current density: 

E 
p = - . J 

Resistivity usually increases with temperature in accordance with the relationship 

p ( T) = Po[ l  + a ( T  - To ) ], 

where a is the temperature coefficient of resistivity. 

The resistance R of a conductor is the ratio of the potential difference across the 
conductor to the current through the conductor: 

V R = - . 
I 

The SI unit of resistance is the ohm (n) : 1 n = 1 V I A. Many materials obey 
Ohm's law, which asserts that the potential difference across a conductor is pro
portional to the current through the conductor, where the proportionality con
stant is the conductor's resistance. The resistance of a cylindrical conductor of 
resistivity p, length L, and cross-sectional area A is 

L R = p-. 
A 

A complete electric circuit is a conducting loop that provides a continuous 
current-carrying path. An electromotive force (emf, £) establishes a potential dif
ference in the circuit that causes the charges in the circuit to move. 

The power P of an electric circuit is the rate of energy transferred into or out of 
the circuit and is equivalent to 

P = VI. 

Resistors always remove energy from a circuit, converting the electrical energy 
to thermal energy at a rate equal to 



conceptual Questions 
1 :  Comparing l ight bulbs 
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Consider two light bulbs, one rated at 50 W and the other rated at 75 W, both designed to operate at 
120 V. (a) Which bulb has the higher resistance? (b) Which bulb carries the greater current? 

Solution 

IDENTIFY, SET UP, EXECUTE Both bulbs operate at the same voltage, so we' ll examine the power 
equations that include voltage as a variable. (a) Power is inversely proportional to resistance at a fixed 
voltage ( p  = V2/ R ) ,  so the 50-W bulb has a higher resistance. 

(b) Power is proportional to current at a fixed voltage ( p  = IV) , so the 75-W bulb operates at a higher 
current. 

The 75-W bulb has less resistance than the 50-W bulb, allowing more current to pass through the 
bulb and thus generating more power. 

EVALUATE In comparing the relations among power, current, resistance, and voltage in electrical 
devices, it is important to select the proper relation to understand the problem. Using P = I2R for this 
problem would lead to a confusing analysis, since both current and resistance vary between the two 
bulbs. 

2 :  Taking appliances to Europe 
What would happen to an electric appliance made for use in North America if it were used in Europe? 
What would happen to an electric appliance made for use in Europe if it were used in North America? 
The electrical system in North America operates at 120 V, and that in Europe operates at 220 V. 

Solution 

IDENTIFY, SET UP, EXECUTE The electric appliance has a fixed resistance regardless of its operat
ing voltage. Taking the appliance made for use in North America to Europe would result in higher 
power consumption when the appliance was in use. Power is proportional to voltage squared 
(p  = V2/ R ) ,  so the power used would almost quadruple and most likely damage the appliance. When 
the European appliance is used in North America, the power used would decrease by almost a factor of 
four. The appliance would probably not function correctly, but damage should not occur as a result. 

EVALUATE Inexpensive adapter plugs are often found in airport gift shops and are bought by interna
tional travelers. Many North American travelers accidentally damage their hair dryers when they use 
these adapters in Europe, as the adapters don't convert voltage. More expensive adapters that convert 
voltage are available and can be used to prevent such damage. Many small appliances (such as cell
phone chargers, laptop power supplies, etc .) are made to work at multiple operating voltages. 

Problems 
1 :  Heating a wire 
A copper wire has a resistance of 10-2 D, at 20°e. What is its resistance at 100°C? 
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Solution 

I D ENTI FY We will use the temperature dependence of resistivity to find the resistance at 1 00°C, the 
target variable. 

SET UP We will use the given resistance and temperature as the reference resistance and temperature 
in the resistivity equation. The thermal coefficient of expansion for copper is small, and we will ignore 
effects due to thermal changes in the size of the wire. 

EXECUTE The resistivity varies with temperature according to 

p ( T) = Po[ 1  + a ( T - To ) ] . 

We find the temperature dependence of resistance by mUltiplying both sides by LIA, giving 

p ( T)L  
-- = R ( T) = Ro[ l  + a ( T - To ) ]. 

A 

The temperature coefficient of resistivity a is 0.00393/oC, according to Table 25 .2 in the text. The 
resistance at 1 00°C is then 

EVALUATE We see that the resistance increased by 3 1  % when the copper wire was heated by 80°C. 
We could use copper wire to make a thermometer if we have an accurate ohmmeter. 

2 :  How much charge? 
The current in a wire varies with time according to 

1 = loe - (tfT), 
where T = 1 .0 X 1 0-6 s and 10 = 2 .0 A. Find the total charge that passes through the wire (a) between 
t = 0 and t = T and (b) between t = 0 and t » T. 

Solution 

IDE NTI FY AN D SET UP Current is the rate of change of charge with respect to time, so we will inte
grate the current to find the charge passing through the wire in each of the two time intervals .  The 
charge is the target variable. 

EXECUTE The current is the derivative of the charge, or 

dQ 
1 = - .  

dt 
The charge is the integral of the current and is given by 

Q = f Idt = floe - (tIT)dt. 

The total charge passing through the wire in time t is 

Q = f loe - (t'IT)dt '  = lo ( -T )e  - (t'IT) I �  = 10T ( 1 - e -(tIT) ) . 
o 
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(a) For the first time interval, t = 7 and 

Q = 107 ( 1 - e - (T/T) ) = 107 ( 1 - e - 1 )  = ( 2 .0 A ) ( 1 .0 X 1O- 6 s ) ( 1  - e - 1 )  = 1 .26 X 1O- 6 C. 

(b) For the second time interval, we take t to be very large (essentially infinite), so the exponential term 
is zero, giving 

Q = 107 ( 1 - e - (OO/T) ) = 107 ( 1 )  = ( 2.0 A ) ( 1 .0 X 1O- 6 s )  = 2.0 X 1O- 6 C. 

EVALUATE This problem illustrates the nature of exponential functions as it explores the definition of 
current and charge. The current decreases exponentially and becomes zero after a long time. After one 
time interval equal to 7 (called the time constant), 63% of the total charge has passed through the wire. 

3: Current and potential in a circuit 
(a) Find the current in the circuit shown in Figure 25 . 1 .  (b) Find the potential differences Vab, Vbc' Vcd' 
Vde , and Vea- What is the sum of these potential differences? 

2 il  
c d 

1 8 V  
FIGURE 25.1 Problem 3.  

Solution 

IDENTI F Y  We will use energy conservation to find the current in the circuit. Once we have the cur
rent in the circuit, we will be able to find the various potential differences. 

SET UP There are two types of components in the circuit: resistors and ernfs. Energy conservation 
tells us that the energy produced in the circuit is equal to the energy dissipated in the circuit. Electric 
potential is the energy per unit charge, so we will equate the potential provided to the circuit by the 
emfs with the potential drops in the resistors. We will assume that the current travels counterclockwise 
in the circuit. 

EXECUTE (a) The potential provided by the two emfs is the sum of the potentials across the batteries . 
In this circuit, the 1 8-V emf is oriented in the direction of the current and the 3-V emf is oriented oppo
site to the direction of the current. The net potential provided is then 

L£ = 1 8  V - 3 V = 1 5  V. 

The potential drops across the three resistors are equal to the current multiplied by the resistance. The 
total decrease in potential is 

L Vresistors = 1 ( 8 n + 3 n + 9 n)  = 1 ( 20 n) . 

Equating the increases to the decreases gives 

1 5  V = 1( 20 n) ,  1 = 0.75 A. 
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(b) The potential differences are defined by 

Vab = Va - Vb· 
We use the same procedure as in part (a) to find the potential differences, keeping the preceding defini
tion in mind. We have 

Vab = /( 8 D )  = 6 V, 
Vbc = /( 3 D)  = 2.25 V, 
Vcd = - 18 V, 
Vde = / (9  D)  = 6.75 V, 
Vea = 3 V. 

Note that for all of the resistors, the potential decreases as the current passes through the resistor, giv
ing us positive values in our definition. Also, for the emfs, the potential at the first point is less than that 
at the second point for the 1 8-V emf and greater at the first point than that at the second point for the 3-
V emf. The total of the potential differences in the circuit is zero. 

EVALUATE The techniques we used to solve this problem will be developed further in the next chap
ter. We will combine charge conservation with energy conservation and apply both to solve a multitude 
of electric circuit problems. 

4: Investigating a l ight bulb 
(a) What is the resistance of a 60-W light bulb designed for use on a 120-V outlet? (b) What power 
would the light bulb draw if connected to a 240-V outlet? 

Solution 

IDENTIFY AND SET UP We will use the relations among power, voltage, and resistance to solve the 
problem. 

EXECUTE (a) The resistance is found by dividing the square of the voltage by the power. We have 

V2 
p = 

R ' 
V2 ( 1 20 V ) 2 

R = - = = 240 D. p ( 60 W)  

(b) The resistance remains constant when connected to the higher voltage. The power i s  then 

V2 ( 240 V ) 2 

P = 
Ii = ( 240 D)  

= 240 W. 

EVALUATE This problem confirms what we found in Question 2: The 60-W light bulb made for 
120-V electric service would be destroyed if it were connected to 240-V electric service. 

Try It Yourself! 

1 :  A resistive thermometer 
A tungsten wire is used as a thermometer in a physics research lab. At room temperature ( 20oe ) ,  the 
resistance of the wire is found to be 2.0 X 10-2 D. When the tungsten wire is in equilibrium with the 
device, the resistance is found to be 3 . 8  X 1 0-3 D. What is the temperature of the device? 
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Solution Checkpoints 

IDENTI FY AND S ET UP Use the temperature dependence of resistivity to find the temperature of 
the device. Ignore effects due to thermal changes in the size of the wire. 

EXECUTE The temperature dependence of resistance is given by 

R ( T) = Ro[ l  + a ( T  - To ) ] . 

The temperature coefficient of resistivity is 0.004S/oC for tungsten, according to Table 2S .2 in the text. 
This gives a final temperature of - 1 60°C. 

EVALUAT E Are you convinced that resistance can be used to measure temperature? 

2 :  Internal resistance 
A battery has an open-circuit potential difference of 3 .0 V and a short-circuit current of 10.0 A. (a) Find 
its internal resistance. (b) If the battery is connected to an external resistor and then provides 1 .0 A of 
current, what is value of the external resistance? 

Solution Checkpoints 

I DENTI FY AN D S ET UP The internal resistance of a battery is modeled by a resistor placed in series 
with an emf. Use the relations among current, resistance, and voltage to find the target variables. 

EXECUTE (a) When the circuit is shorted, its only resistance is due to the internal resistor. The resist
ance IS 

£ 
r = - = 0.3 D. I 

(b) Adding the external resistor adds a second resistor to the circuit. The new resistor's resistance is 

£ - Ir R = = 2.7 D. I 

EVALUATE How much of the power provided by the emf is used by the internal resistor in part (b)? 

3: Power in a circuit 
A 12-V battery with an internal resistance of 0.3 D is connected to an 1 1 .7 -D resistor. (a) What power 
is dissipated by the resistor? (b) If the battery is charged by connecting it to a 24-V source, how much 
power does the source provide? 

Solution Checkpoints 

IDENTI F Y  AND S ET UP Use the relations among power, current, resistance, and voltage to find the 
target variables. 

EXECUTE (a) Model the circuit with one emf and two resistances. When the circuit is connected to 
the 1 1 .7 -D resistor, the current in the circuit is 1 .0 A. The power dissipated by the resistor is 1 1 .7 W. 

(b) Model this circuit with two emfs and one internal resistor. The internal resistor must have a 12-V 
potential difference across it (why?), so the current in the circuit is 40.0 A. The power source provides 

P = IV = 960 W. 

EVALUATE Can the battery be charged to 12 V with a 12-V power supply? 





Direct-Current Circuits 

Summary 
In this chapter, we will further our investigation of the movement of 
charge through electric circuits. We' ll build on our circuit analysis 
foundation to analyze electric circuits constructed out of combina
tions of resistors, batteries, and capacitors. Conservation of charge 
and conservation of energy will form the basis of a powerful tech
nique used to analyze a wide variety of circuits. Kirchhoff's rules will 
allow us to investigate time-varying circuits near the end of the chap
ter, by which time we will have built a foundation that can be applied 
to investigate many circuits, including those in electronic devices that 
we use every day. 

Objectives 
After studying this chapter, you will understand 

• How to recognize series and parallel combinations of resistors and 
how to determine their equivalent resistance . 

• How to apply Kirchhoff's rules to a variety of circuits in order to 
learn about the flow of current in circuits. 

• How to apply Kirchhoff's rules to resistor-capacitor circuits in 
order to bring out the dependence on time of charge, current, and 
voltage in these circuits. 

• Several examples of electric circuits in use in everyday life. 

111 
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Concepts and Equations 

Term 
Resistors in Series and Parallel 

Kirchhoff's Rules 

Resistance-Capacitance Circuits 

Conceptual Questions 

1 :  Where to start? 

Description 
The equivalent resistance of a combination of resistors connected in series is 
the sum of the resistances: 

Reg = RJ + R2 + R3 + . .  '. 
The equivalent resistance of a combination of resistors connected in parallel 
is given by 

1 1 1 1 
- = - + - + - +  . . .. Reg RJ R2 R3 

A series circuit has only one path for the current to flow through, and the 
same current passes through all elements in the circuit. A parallel circuit has 
several paths through which the current can flow, and the potential difference 
across each element is the same. 

Circuits can be systematically analyzed with the use of Kirchhoff's rules. 
Kirchhoff's junction rule states that the algebraic sum of the currents moving 
into any junction is zero: 

2: 1 = O. 
at junction 

Kirchhoff's loop rule states that the algebraic sum of the potential differences 
around any loop of a circuit is zero: 

2: V = O. 
around loop 

A junction in a circuit is a point at which three or more conductors meet. A 

loop in a circuit is any closed conducting path. 

The charge on a capacitor and the current passing through a resistor for a 

series resistor-capacitor circuit being charged by a battery are given as func

tions of time by 

- Q ( 1 - - tiRe) q - finaJ e , 

where QfinaJ is the final charge ( eE) on the capacitor and 10 is the initial cur
rent ( t:  I R )  in the circuit. The charge on a capacitor and the current through a 
circuit for a capacitor discharged through a resistor are given as functions of 
time by 

where Qo and 10 are, respectively, the initial charge and the current on the 
capacitor. The time required for a significant change in the amount of charge 
is given by the time constant T = RC. 

Your task is to find the equivalent resistance for the three circuits shown in Figure 26. 1 .  Identify which 
resistors you 'd  combine first and the type of combination in which they are configured. 
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Solution 

I DENTI FY, SET UP, AN D EXECUTE For problems of this type, we' ll need to find two resistors that 
are connected either in parallel or in series. These two resistors will be our starting point for calculating 
the equivalent resistance. 

R) 

R2 . 
R2 � :> � R3 

: R4 

. . I ·vv 
(c) 

(b) 
Figure 26.1 Question , .  

In Figure 26. 1 a, we see that most of the resistors are not i n  series or parallel with adjoining resistors. 
However, in the upper half of the circuit, resistors R3 and R4 are connected in series with each other. 
Recall that a series connection implies that the same current must pass through both resistors. There is 
no junction between resistors R3 and R4 so the same current passes through both. We should start, then, 
by combining resistors R3 and R4 in series . 

Figure 26. 1 b is a bit more complicated. All of the resistors are positioned in a straight line on the 
page, suggesting that they are all in series. However, the connections around the middle two resistors 
are not in a straight electrical line. The current leaving R, can go into either R2 or R3. The current pass
ing through both R2 and R3 combines and passes through R4. Therefore, R2 and R3 are connected in par
allel. We should start by combining resistors R2 and R3 in parallel. 

Figure 26. 1 c is also complicated. A quick scan shows that there are no resistors in series. Resistors 
R" R2, and R3 are each connected to junctions with more than one component, indicating that these 
resistors are not connected in parallel. However, looking at the bottom half of the figure, we see that 
the current leaving R2 splits, goes through R4 and Rs, and then rejoins before entering R3· R4 and Rs are 
connected in parallel. Accordingly, we should start by combining resistors R4 and Rs in parallel. 

EVA LUATE Identifying the starting point for calculating the equivalent resistance is often the most 
difficult part of a problem. Many circuits include a variety of combinations. Developing an eye for rec
ognizing series and parallel circuits helps simplify what might appear to be a complicated circuit. One 
way to identify the starting point is to imagine cutting out two resistors. If you can cut them out with
out disrupting the rest of the circuit, these resistors probably represent a good starting point. 

2 :  Checking equations 
Examine each of the following equations derived from the circuit shown in Figure 26.2, and determine 
whether they are valid or erroneous :  

(a) -12 - 13 + I ,  = 0 
(b) -I\ ( 14 D)  - IJ32 D)  + 1 2 V + 24 V = 0 
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Solution 

(c) 28 V + 12 ( 32 0) = 13 ( 23 0)  
(d) -11 ( 14 0)  - 13 ( 23 0)  + 1 6 V - 12 ( 32 0)  + 24 V = 0 

14 .!l 23 .!l 

+ 

I I 1 2 v  

L------:-I+ I f-I ----'--�+ 1 1-----' 
24 V 1 6 V  

Figure 26.2 Question 2. 

I DENTI FY, SET UP, AN D EXECUTE The equations are derived from Kirchhoff's rules, so we will 
use the junction and loop rules to guide our analysis. 

The first equation appears to come from the junction rule. If we were to apply the junction rule to 
the bottom junction and assign positive values to currents entering that junction, we would get equa
tion (a) . We conclude that equation (a) is valid. 

The remaining equations appear to come from the loop rule applied to different loops. We' ll use the 
values of the resistors to determine the loop and confirm that the equation is consistent with traversing 
the loop. Equation (b) involves the 1 4-0 and 32-0 resistors, so we'll examine the left loop of the cir
cuit. The first term is negative; thus, the 14-0 resistor was traversed in the direction of the current. 
Continuing around the loop clockwise, we confirm that the next term is correct. Passing over the 
1 2-V emf should give a negative sign, but the equation has a positive sign. This is incorrect and should 
be fixed. The last term corresponds to the 24-V emf and has the correct sign. We conclude that equation 
(b) is incorrect. 

Equation (c) involves the 32-0 and 23-0 resistors, so we' ll examine the right loop of the circuit. 
The first term is positive; hence, an emf was traversed from the negative to the positive terminal. The 
value 28 V does not correspond to any emf, but it does correspond to the sum of the 12-V and 1 6-V emfs 
in the right loop. Continuing around the loop counterclockwise, we confirm that the next term is correct 
as we traverse the 32-0 resistor against the current. Next, we travel across the 23-0 resistor, which 
should give a negative value. However, the 23-0 resistor's term has been moved to the other side of 
the equation, which is correct. We conclude that equation (c) is valid. 

Equation (d) involves all three resistors. There is no single loop that includes all three currents, so 
we should be suspicious. The equation could correspond to several equations combined, so we need to 
continue checking. The first two terms are negative, corresponding to traversing the 14-0 and 23-0 
resistors from left to right. Continuing clockwise around the outer loop, we travel across the 1 6-V emf, 
consistent with the next term in the equation. A term corresponding to the potential difference across 
the 32-0 resistor is next and appears out of place. Then comes a term that corresponds to the 24-V emf, 
also consistent with a clockwise trip around the outer loop. Except for the fourth term, the equation is 
valid. We conclude that equation (d) is incorrect, since it has the extra term for the potential difference 
across the 32-0 resistor. 

We have found that equations (a) and (c) are correct and (b) and (d) are incorrect. 

EVALUATE Generating equations from Kirchhoff's rules is straightforward, but may involve many 
terms with various signs . Double-checking your equations before solving for the unknowns can save 
aggravation and wasted effort. 
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CAUTI O N  Each Branch has a Different Current! In this problem we see that the current i n  each 
branch was labeled separately, indicating that the currents in the branches may be different. A common 
error is to label all branches of a circuit with the same current, resulting in an inconsistent solution. 

3: Blown fuses 
In an introductory physics laboratory, students often blow fuses when using ammeters, but rarely blow 
fuses when using voltmeters. Why? (In each case, the fuse is placed in series with the measuring device.) 

Solution 

IDENTI F Y, SET UP, AND EXECUTE To solve this problem, we need to consider the design and 
operation of the two measuring devices. An ammeter measures current in a circuit and is placed in 
series with the branch being measured. To minimize the effect on the circuit, ammeters have very little 
resistance. A voltmeter measures the potential difference between two points in a circuit and is placed 
in parallel with the components being measured. To minimize the effect on the circuit, voltmeters have 
very high resistance. 

If an ammeter is placed in series in a circuit, it should perform as expected. If an ammeter is placed 
in parallel in a circuit, then a large current may flow through the meter, since it has little resistance. 
Depending' on where the ammeter is placed in parallel, the current passing through the meter could 
exceed the design limit and blow the fuse. For example, if a student tries to measure the total current 
provided to a circuit by placing the ammeter leads across the emf supply, then the maximum current 
available from the supply will pass through the ammeter. 

If a voltmeter is placed in series in a circuit, its high resistance would prevent excessive current. The 
reading of the voltmeter would not be accurate, but no damage to the voltmeter would occur. 

EVALUATE Understanding how electrical measuring devices operate will improve your use of those 
devices, as well as help you interpret the differences between series and parallel combinations. 

4: Short- and long-term behavior in an RC circuit 
An initially uncharged capacitor (with capacitance C) and a resistor (with resistance R) are connected 
in series with an emf (with voltage V) .  Just after the connection is made, what are the potentials across 
the resistor and capacitor, the charge on the capacitor, and the current in the circuit? A very long time 
after the connection is made, what are the potentials across the resistor and capacitor, the charge on the 
capacitor, and the current in the circuit? 

Solution 

IDENTI F Y, SET UP, AND EXECUTE This problem asks us to consider how charge, current, and 
potential difference vary in an RC circuit. We' ll work through each part, using the techniques we've 
learned in the chapter. 

Just after the connection is made, there is essentially no charge on the capacitor. Therefore, the 
potential difference across the capacitor is zero. (Recall that V = QI C.) If the potential across the 
capacitor is zero, then the potential across the resistor must be equal to the voltage V across the emf. 
The current through the resistor is then I = viR, the maximum current supplied to the circuit. 

A long time after the connection is made, the capacitor is fully charged. Therefore, the current in the 
circuit is zero, because no charges are moving. The potential difference across the resistor must also be 
zero, since there is no current. The potential difference across the capacitor is equal to the voltage Vof 
the emf, since the voltage across the resistor is zero. 
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EVALUATE We see that the circuit behaves as if  there is only a resistor just after the connection i s  
made and as  if  there is only a capacitor after a long time. Keeping this long-term and short-term behav
ior in mind will help you interpret RC circuits. 

Problems 
1 :  Combining resistances 
Find the equivalent resistance between points a and b in the circuit shown in Figure 26.3 .  

Solution 

Rs = 33 11 
Figure 26.3 Problem 1 .  

IDENTIFY The network is a combination of series and parallel resistors, so we will identify and 
replace combinations that are purely in series or purely in parallel. The target variable is the equivalent 
resistance. 

SET UP We redraw the circuit as shown in Figure 26.4a, without the resistance values shown for con
venience. Examining the circuit, we find that resistors R2 and R3 are in series, since there is only one 
path for the current to flow through them. We replace these resistors with their equivalent resistance 
R23, shown in Figure 26.4b. R4 is combined in parallel with R23, since the current could flow through R4 
or R23 (Figure 26.4c) .  Next, we add Rs in series with R234 (Figure 26.4d). Finally, we add R] in parallel 
with R234S to find the equivalent resistance of the circuit (Figure 26.4). 

Rs 
(a) 

Figure 26.4 Problem I .  

R3 � R l 

(d) 

(b) 

(e) 

Rs 
(c) 
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EXECUTE We have determined how to combine the resistors. We now find the numeric values of the 
resistances . We have 

R23 = R2 + R3 = 2 1 D + 14 D = 35 D. 
Next, we combine resistors R23 and R4 in parallel : 

1 1 1 1 1 - = - + - = -- + -- , R234 = 14.9 D. 
R234 R23 R4 35 D 26 D 

Combining resistors R234 and R5 in series yields 

R2345 = R234 + R5 = 14.9 D + 33 D = 47.9 D. 
Finally, combining resistors R2345 and Rj in parallel gives 

1 1 1 1 1 
-- = -- + - = + -- , R12345 = 26.0 D. 
R12345 R2345 R] 47.9 D 57 D 

The equivalent resistance of the circuit is 26.0 D. 

EVALUATE The key to finding the equivalent resistance is identifying where to begin. Once we found 
which two resistors to combine first, the remainder of the problem followed directly. You can see two 
patterns that developed in this problem. First, after we combined the first pair of resistors, each addi
tional combination included the resistor combination from the previous step. Second, the types of com
binations alternated between series and parallel. These two patterns show up in many resistor 
combination problems, so keep an eye out for them. 

Developing an eye for identifying series and parallel connections results from examining and solv
ing circuit problems. The procedure is much like the one we developed in the previous chapter for 
combining capacitors with resistors and for current replacing capacitors and charge. 

Watch Your Inverse Sums! The most common mistake found in adding resistors in par
allel is not inverting the inverse sum of the resistances, much like the common mistake that is made 
when capacitors are combined in parallel. Carefully watching your units also helps identify mistakes. 

2 :  Practicing Kirchhoff's rules 
Find the values of [1 > [2' and I in the circuit shown in Figure 26.5 . 

Solution 

1 .2 A i 23 n 

Figure 26.5 Problem 2. 

+--
3.0 A 

+ 

IDENTIFY We will apply Kirchhoff's rules to the circuit to solve for the target varialbles . 

SET UP We' ll take current I to be directed upwards, as shown in the diagram. We will need three 
equations for the three unknowns. 
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EXECUTE We find the current I from the junction rule. Examining the lower junction and taking cur
rents entering the junctions as positive, we have 

3 .0 A - 1 - 1 .2 A = 0, 
1 = 1 . 8  A. 

To find t\ , we use the loop rule and apply it to the left loop. Starting at the top left corner and traveling 
around the loop clockwise, we obtain 

-£1 + J( 1 7  0 )  - ( 1 .2 A ) ( 23 0 )  = 0. 

Substituting the value for the current and solving gives 

£1 = ( 1 . 8  A ) ( 17 0 )  - ( 1 .2 A) ( 23 0 ) = 3 .0 V. 

To find £2> we use the loop rule and apply it to the outer loop. Starting at the top left corner and travel
ing around the loop clockwise yields 

£2 - ( 1 .2 A ) ( 23 0 )  = 0, 
£2 = ( 1 .2 A ) ( 23 0 )  = 27 .6 V. 

We have found that £1 = 3 .0 V, £2 = 27.6 V, and 1 = 1 .8 A. 

EVALUATE This problem has shown us how to apply Kirchhoff's rules to a circuit. In the next prob
lem, we' ll apply Kirchhoff's rules to a similar circuit. The procedure for solving that circuit will be 
similar, but the algebra is a bit more complicated. 

3: Two-loop circuit 
Find the currents II ' 12, and 13 in the circuit shown in Figure 26.6. 

4 nJ/'l 

2 
li t + 0 6!l iI3 3 !l 

+ + 
6 V  20 V  

Figure 26.6 Problem 3. 

Solution 

I DENTI FY This is a two-loop circuit, and we will need to apply both of Kirchhoff's rules. 

SET UP With the three emf's in the three branches of the circuit, we will need to apply Kirchhoff's 
rules to find the currents . We will need to apply the junction rule once and the loop rule twice to find 
three equations that will lead to the solution. The three currents and their directions are indicated in the 
figure. We' ll use the two loops shown as well. 

EXECUTE We will find three equations and then manipulate them to find the three currents . One equa
tion comes from the junction rule. Examining the top junction, where the three currents meet, we see 
that current 13 enters the junction and currents II and 12 exit the junction. Taking currents entering the 
junction as positive and currents leaving the junction as negative, we have 

-II - 12 + 13 = 0. 
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Two more equations come from applying the loop rule to the two loops. Starting in the upper left cor
ner of loop l ,  we proceed clockwise and find that 

12  V - 12 ( 3  D )  - 6 V + IJ 4 D )  = O. 

Note that the 12-V emf produces an increase in potential, since we traveled from the negative to the 
positive terminal, the 3-D resistor gives a decrease in potential, since we traveled with the current 
across the resistor, the 6-V emf generates a decrease in potential, since we traveled from the positive to 
the negative terminal, and the 4-D resistor produces an increase in potential, since we traveled against 
the current across the resistor. We' ll also start in the upper left corner of loop 2 and proceed clockwise 
to find that 

13 ( 6  D )  + 20 V + 12 ( 3  D )  - 12  V = O. 

Here, the 6-D resistor gives an increase in potential, since we traveled against the current across the 
resistor; the 20-V emf results in an increase in potential, since we traveled from the negative to the pos
itive terminal ; the 4-D resistor produces an increase in potential, since we traveled against the current 
across the resistor; and the 1 2-V emf gives a decrease in potential, since we traveled from the positive 
to the negative terminal. 

At this point, we can proceed to solve for the currents in several ways. Let's use the junction rule 
equation to substitute I, + 12 for 13 in the equation for loop 2: 

( I, + 12 ) ( 6 D) + 20 V + 12 ( 3  D) - 12 V = o. 
Simplifying, we obtain 

I, ( 6 D )  + 12 ( 9  D)  + 8 V = o. 
We rewrite this equation to find 12 in terms of I, : 

-1, ( 6 D )  - 8 V 
12 = 

( 9  D)  

Using this expression for 12 in the equation for loop 1 gives 

12  V - ( 
-I, ( � � �;- 8 V

) ( 3  fl) - 6 V + I, ( 4 fl) � o. 

Solving, we get 

26 V 
---

1 8  D 
- 1 .44 A. 

We now replace I, in the previous expressions to solve for the other currents . We find 12 from 

-II ( 6 D )  - 8 V - ( - 1 .44 A ) ( 6 D )  - 8 V 
12 = 

( 9  D )  
= 

( 9  D)  
= +0.07 1 1  A. 

Current 13 is the sum I, + 12: 

13 = I, + 12 = - 1 .44 A + 0.07 1 1  A = - 1 .37 A. 

We found current I, to be - 1 .44 A, 12 to be 0.07 1 1  A, and 13 to be - 1 .37 A; the negative signs indicate 
that the currents are opposite the directions indicated. 

EVALUAT E We check our results by replacing the currents with their values in each of the three equa
tions . If the three equations are satisfied (i.e., if they each sum to zero), then we conclude that our numeric 
results match the equations. We should also double-check the three equations to prevent any sign errors. 
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Kirchhoff's rules offer multiple paths, all of which lead to the correct result. Here, you could have 
started at any point in the loop circuit, proceeded either clockwise or counterclockwise, and found 
equivalent equations. You could also have written an equation for the outer loop to replace one of the 
other loop equations. You can proceed to apply the algebra in a variety of ways, solving for currents in 
different orders . Experience will show that all methods result in the same answers when applied con
sistently and correctly. 

Watch Signs in Loop Problems Careful interpretation of signs in multiloop problems is 
critical to obtaining an accurate result. Common mistakes occur in forming the equations, as well as in 
interpreting negative current solutions. Label your currents carefully, check and recheck your equa
tions before solving for unknowns, and interpret negative currents as moving opposite to the initial 
direction. 

4: Investigating an RC circuit 
A 5 .00-p,F capacitor that is initially uncharged is connected in series with a 4.75-Mf! resistor and a 
350-V emf supply. How long after the circuit is completed does the capacitor reach 90% of its maxi
mum charge? What is the potential difference across the resistor at that time? How much power is the 
emf providing at that time? 

Solution 

IDENTI F Y  We will use the equations developed for charging RC circuits to solve the problem. 

SET UP The charge on a capacitor and the current in the circuit are not constant in an RC circuit; 
equation 2 1 . 1 2 in the text gives the time dependence of the charge. We' ll use this equation and the rela
tion among charge, current, voltage, and power to solve the problem. 

EXECUTE The charge on a capacitor in series with a resistor and an emf is given by 

q = Q/ 1 - e - tIRC) .  
In this problem, we want to find the time when the charge q is 90% of Qp We are given the values of 
resistance and capacitance, so we substitute to find the time: 

q = ( 90% ) Qj =  0.90Qj =  Q/ 1 - e - tIRC) .  
Canceling Qj and rearranging terms gives 

0. 10 = e - tIRc. 
To find the time, we take the natural logarithm of both sides: 

t 
In ( 0. 1 0 ) = In ( e -tIRC) = -RC' 
t = -RC ln ( O. lO )  = - (4.75 Mf! ) ( 5 .00 p,F) ( -2.30 ) = 54.6 s .  

The potential difference across the resistor is the product of the current and the resistance. The current 
as a function of time is 

i = 
dq = Ioe - rIRC dt ' 

where 10 is the maximum current (E/ R ) .  The potential difference across the resistor is 

V = iR = ( Ioe - tIRC)R = (�e - tIRC)R = Ee - tIRC = ( 350 V) e - (S4.6 s)/(4.7s Mfl)(S OO /LF) = 35 . 1 V. 
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The power provided by the emf is product of the current and the voltage: 

£2 ( 350 V)2 
P = iV = (l e -tIRC)£ = l £e -tIRC = -e -tIRC = e -(54.6 s)/(4.75 M'o')(5.00/LF) = 2.59 mW o 0 R ( 4.75 MD) . 

The capacitor reaches 90% of its maximum charge 54.6 s after the circuit is connected; the resistor has a 
35. 1 -V potential difference across it at that time; and the emf provides 2.59 m W of power at that time. 

EVALUATE We see that it takes almost I minute for the capacitor to reach 90% of its maximum 
charge. That it takes that long is due to the resistor and capacitor and does not depend on the value of 
the emf. We also see that, at this time, only 10% of the resistor's initial potential difference remains and 
the emf is supplying little power to the circuit. 

Try It Yourself! 

1 :  Equivalent resistance 
Find the equivalent resistance of the resistor network shown in Figure 26.7 .  

In 2,0, 
4,0, 
.A. 
12,0, 

.A��A. 
6,0, 

.A. 

Figure 26.7 Try It Yourself Problem 1. 

Solution Checkpoints 

In 

IDE NT I FY A ND SET UP Identify series and parallel groups of resistors, and then replace each group 
with an equivalent resistance. Continue until all groups are combined. Draw new sketches as each 
group is replaced. 

EXECUTE The two top resistors are combined in series. The bottom left two resistors (the 3-D and 
6-D resistors) are combined in parallel. This leaves a network of five resistors, shown in Figure 26.8. 

3,0, 
'vvv 

4,0, 

1�'p",-
2,0, In 

vv v 

Figure 26.8 Try It Yourself Problem I .  
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At this point, it should be clear that the top three resistors are connected in parallel and the bottom two 
are connected in series. When these two groups are combined, the two equivalent resistors ( 1 .5 n on 
top and 3 n on the bottom) are combined in parallel, giving a total combined equivalent resistance of 
1 it 

EVALUATE Can you find another order in which to combine the resistors? Do you find the same result? 

2: Two-loop circuit 
Find the currents 1]1 12, and 13 in the circuit shown in Figure 26.9. 

Solution Checkpoints 

2fl 

4 V 

12 V 6fl 

6fl 

6V 

Figure 26.9 Try It Yourself Problem 2. 

IDE NTI FY A ND SET UP Apply both of Kirchhoff's rules to the circuit to find three equations that 
will lead to the three unknown currents. Use the directions of the currents given in the figure. 

EXECUTE Taking currents entering the left junction as positive and currents leaving the left junction 
as negative gives 

II - 12 + 13 = O. 
Three equations can be found from the loop rule. Starting at the upper left corner of the top loop and 

proceeding clockwise gives 

Repeating for the lower loop, starting at the left junction and proceeding clockwise yields 

- 12 ( 2  n )  - 6 V - 13 ( 6 n )  + 4 V = O. 
Finally, for the outer loop, starting at the top left corner and proceeding clockwise gives 

- 12 V + II ( 6  n )  - 13 ( 6  n )  + 4 V = O. 
Two of the three equations can be combined with the junction rule equation to solve for the three cur
rents. Solving, we get 

1 3  
II = -A 15 ' 

2 
12 = - A 5 ' 

7 
1 = - -A. 3 15 

The negative value for 13 indicates that 13 is opposite to the direction shown in the figure. 

EVALUATE Check your results by replacing the currents with their values in each of the three equations. 
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3: An RC circuit 
Two capacitors and a resistor are connected to a battery by a switch, as shown in Figure 26. 10. (a) Find 
the final charge on each capacitor after the switch has been closed for a long time. (b) Find the time it 
takes for the charges and potential differences on the capacitors to reach half their final values. 

Figure 26.1 0 Try It Yourself Problem 3. 

Solution Checkpoints 
IDE NTI FY A ND SET UP After a long time, both capacitors are fully charged and there is no current 
in the circuit. The capacitors can then be combined and replaced with their equivalent capacitance. Use 
the relation for a charging RC circuit. 

EXECUTE (a) The equivalent capacitance of the two capacitors is 2/3 p,F. After a long time, the volt
age across the capacitors is 6 V, so there is 4 p,C of charge on each capacitor. The potentials across the 
two capacitors are 4 V and 2 V. 

(b) Both the charge and the voltage reach half their final value at the same time, since the charge and 
voltage are proportional to each other. Both capacitors charge at the same rate, so we can find the time 
required to reach half the charge on one capacitor, which will be the same as the time required to reach 
half the charge on the other capacitor. This time can be found from 

Taking the natural logarithm of both sides gives 
t = RC In 2. 

The time constant is 12  p,s, so t = 8 .32 X 10-6 s. 

1 
2 

EVALUATE What is the initial charge on the capacitors? What is the initial current in the circuit? 





Summary 

Magnetic Field and 
Magnetic Forces 

We will investigate magnetism and magnetic forces in this chapter. 
The magnetic interaction can be either attractive or repulsive, much 
like the electric interaction. But, as we shall see, the magnetic force is 
more complicated than the electric force, as it depends on two vectors : 
the magnetic field and the velocity of a charge moving through the 
field. We' ll use magnetic field lines to get a visual representation of 
the magnetic field. We will investigate the motion of charged particles 
in magnetic fields and apply our knowledge to several common appli
cations. We' ll also investigate the net force, torque, and energy associ
ated with a current-carrying loop. By the end of the chapter, we' ll 
have a good understanding of magnetic fields and the magnetic force. 
In the next chapter, we' ll learn how magnetic fields are generated. 

Objectives 
After studying this chapter, you will understand 

• How to calculate the magnetic force between permanent magnets. 
• How to calculate the direction and magnitude of the magnetic force 

for moving charges and currents. 
• How magnetic field lines are used to represent the magnetic field. 
• How to analyze the motion of charged particles in a magnetic field. 
• How to apply magnetism to the several practical applications, 

including the velocity selector and mass spectrometer. 
• How to calculate the force and torque on a current-carrying loop. 

347 
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Concepts and Equations 

Term 
Magnetic Forces 

Magnetic Fields 

Motion of Charged Particles in 

Magnetic Fields 

Magnetic Force on a Current

Carrying Conductor 

Force and Torque on a Current Loop 

Description 
Bar magnets have north (N) and south (S) poles. Opposite poles attract and 
like poles repel. Both moving charges and currents are acted upon by a force in 
the presence of a magnetic field. The direction of the magnetic force is perpen
dicular to both the magnetic field and the direction of the moving charge and is 
given by the right-hand rule. The magnitude of the magnetic force is given by 

� 

� 

� F = qu X B, 

where q is the charge, u is the velocity, and B is the magnetic field. The SI 
unit of magnetic field is the tesla (T): 1 T = 1 N I (A . m). Also commonly 
used to measure the magnetic field is the gauss (G), where 1 G = 10-4 T. 

Magnetic field lines are used to represent the magnetic field graphically. The 
direction of the magnetic field is tangent to the magnetic field line, and the 
magnitude is proportional to the density of magnetic field lines. Magnetic 
flux is defined analogously to the electric flux as 

I� � 

<I>s = B· dA 

and has units of webers ( 1  Wb = 1 T m2). The net magnetic flux through 
any closed surface is zero: 

f� � 

B·dA = O. 
Gauss's law for magnetism indicates that magnetic field lines always close in 
on themselves. 

The magnetic force acts in a direction perpendicular to the velocity and there
fore influences only the direction, and not the magnitude, of the particle's 
velocity. In a uniform magnetic field, a particle with initial velocity perpendi
cular to the field will move in a circle of radius R given by 

mv R = -. 
IqlB 

The magnetic force on a current-carrying conductor is due to the magnetic 
force on the individual charges moving within the conductor. The force is 
given by 

For a small segment of wire, the contribution to the force is 

dF = Idl X 13. 
In a uniform magnetic field, the total magnetic force acting on a current-carry
ing loop is zero. The magnetic force creates a torque on the loop of magnitude 

T = IABsin4;, 

where I is the current in the loop, A is the cross-sectional area of the loop, and 4; 
is the angle between the normal to the loop and the direction of the magnetic 
field. The torque tends to rotate the loop toward decreasing 4;. The torque on the 
loop can be expressed in terms of the magnetic moment of the loop, given by 

� � 

J.L = IA. 



conceptual Questions 

1 :  Signs of charges 
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The torque on the current loop is 
--> --> 

--> 

T = J.L X B. 
The potential energy of the current loop is 

--> --> U=-W B. 

Four particles enter a region of uniform magnetic field. Their trajectories are shown in Figure 27. 1 .  
What are the signs of the charge of all four particles? 

Figure 27.1 . Question I .  

Solution 
IDENTI FY, SET UP, A ND EXECUTE The magnetic force acts perpendicular to a particle's velocity 
and to the direction of the magnetic field. By examining the figure, we can determine the direction in 
which the force acts and then find the sign of the particle's charge. The right-hand rule relates the force 
to the direction of the magnetic field and the particle's velocity. With a magnetic force directed into the 
page, a positive particle will deflect to the left. 

Particle A deflects to the right as it passes through the magnetic field, so we conclude that it is nega
tively charged. Particle B also deflects to the right, so it also must be negatively charged. Note that it 
may appear that particle B deflects opposite to particle A, but it is also traveling in the opposite direc
tion. Particle C deflects to the left, so it is positively charged. Particle D travels along a straight line and 
so must be neutrally charged. 

EVALUATE This problem gives us practice applying the right-hand rule to find the magnetic force act
ing on a moving charge. We will be applying the right-hand rule to a variety of problems in the next 
two chapters. 

The technique set forth here is used by elementary-particle physicists to determine the signs of par
ticles they discover at accelerator facilities. 

Pradice the Right-Hand Rule We will use the right-hand rule in a variety of applica
tions in the next two chapters . You must practice to become proficient at its use, so you should check 
and confirm every problem that involves the right-hand rule in this guide. 

2: The odd magnetic force 
We've seen that a charged particle moving through a magnetic field is acted upon by a force. In addi
tion, we've seen that a net force causes acceleration. But we also learned that a charged particle 
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moving through a uniform magnetic field moves with constant speed. How can this charged particle 
accelerate without changing speed? 

Solution 
IDENTI FY, SET UP, A ND EXECUTE Acceleration and velocity are vectors and thus have both mag
nitude and direction. Here, the force-and therefore the acceleration-is perpendicular to the direction 
of motion. Since the acceleration is perpendicular to the motion, the magnitude of the velocity (i.e., the 
speed) does not change. Instead, the acceleration causes the direction of the particle's velocity to change. 

We can also consider the work done on the charged particle as it moves through the field. Since the 
force acts perpendicular to the displacement, no work is done and the speed remains constant. 

EVA LUATE Where have we seen motion similar to this before? When we learned about circular 
motion, we saw that a centripetal force could change the direction of motion of an object while keeping 
the object's speed constant. 

3: Protons with differing velocities in a magnetic field 
Two protons with different velocities enter a region having a uniform magnetic field that is perpendicu
lar to their velocities. The region is large enough that the protons can execute complete circular trajec
tories . How do the radii of their circular paths compare? Which particle takes longer to complete one 
revolution? 

Solution 
I DE NTI FY, SET UP, A N  D EXECUTE A charged particle moving in a magnetic field follows a trajec
tory with radius 

mv 
r = --. IqlB 

The two protons have the same charge and mass and are in the same magnetic field. They do have dif
ferent velocities, however, and the proton with the higher speed will move in a circular path with a 
greater radius. 

The time to complete one revolution (T) can be found from the velocity (v ) and the circumference 
( 27Tr) : 

27Tr V = -
T ' 

27Tr 
T= -. v 

Substituting for the radius, we find that 

27Tr 27T mv 27Tm 
T= -= --= --v v IqlB IqIB' 

This expression shows us that the time required to complete one revolution (the period) is independent 
of the velocity. Both protons complete one revolution in the same amount of time. 

EVALUATE This result is the basis for one type of particle accelerator: the cyclotron. Cyclotrons use 
varying electric fields to accelerate particles inside a uniform magnetic field. Inside the cyclotron, parti
cles with different velocities move in unison, allowing for all particles to be accelerated at the same time. 



Problems 
1 :  Flux through a wedge 
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Calculate the flux through the surfaces ABeD and AEFD shown in Figure 27.2 for a constant and uni
form magnetic field B = 0.8 T directed along the positive y-axis. 

z 

r-------+A,---------y 

_8 

-

x 

Figure 27.2 Problem 1. 

Solution 
IDENTI FY The target variable is the magnetic flux through the two surfaces. The flux is related to the 
magnetic field lines passing through the area. 

SET UP The flux is the integral of the scalar product of the magnetic field and the area vector. The 
magnetic field is constant and uniform, so it is taken out of the integral. The area vector has magnitude 
equal to the area and is directed along the outward normal to the surface. 

EXECUTE For surface ABeD, the area vector has magnitude 17 .5 m2 and is rotated slightly from the 
magnetic field. The angle between the magnetic field and the area vector is 90° - e and is found by 
examining the sides of the wedge: 

tan ( 90° - e )  3 
4 ' 

The flux through ABeD is then 

cp = f"BodA = BAcos ( 90° - e )  = ( 0.8 T) ( 1 7.5 m2 ) ( 0.80) = 1 1 .2 Wb. 

For surface AEFD, the area vector has magnitude 14.0 m2 and is directed opposite and parallel to the 
magnetic field. The flux through AEFD is then 

cp = f"BodA = BAcos ( 1 800 ) = ( 0.8 T) ( 14.0 m2 ) ( - 1 )  = - 11.2 Wb. 

EVALUATE We see that the fluxes through the two surfaces are equal and opposite. If we examine the 
other three surfaces, we see that the area vector is perpendicular to the magnetic field, giving no flux 
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for any of the three surfaces. When we sum up the net flux through all surfaces, we must get zero, and 
we do. 

As with electric flux, we can associate the magnetic flux with the number of field lines exiting a sur
face minus the number of field lines entering the surface. In this problem, any field line entering the 
surface on side AEFD exits on side ABeD, indicating that the fluxes through the two surface are equal 
and opposite. 

2: Mass spectrometer 
Protons enter a mass spectrometer that consists of a velocity selector followed by a region with a 1 .40-T 
uniform magnetic field, as shown in Figure 27.3 .  The velocity selector consists of two plates separated 
by 1 .5 mm, with a potential difference of 1 25 V between the plates and a uniform magnetic field 
directed through the plates and perpendicular to the path of the protons. The protons strike the detector 
after traveling a distance of 22.0 mm following their exit from the velocity selector. Find the magnetic 
field inside the velocity selector. 

Solution 

x XB=l.4TX 

x -

x {,20mm 

Figure 21.3 Problem 2. 

x 

x 
- + 
- + 
- -Ii-
- + 
- + 
- + 
- + + � 

� 
1.5 mm 

1< >1 
L\V = 125T 

I DE NTI FY We will find the magnetic field inside the velocity selector by finding the electric field and 
the velocity of the protons. 

SET UP To find the electric field, we use the potential difference and the separation between the 
plates in the velocity selector. We find the velocity of the protons from their path in the uniform mag
netic field. 

EXECUTE The velocity of the protons is determined from their path in the uniform magnetic field. 
The protons strike 22.0 mm from where they exit the velocity selector. The radius of their trajectory is 
half of this value. Ions in a magnetic field follow a circular path of radius 

mv R = -. 
IqlB 
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We can rearrange this equation to solve for the protons' velocity. The protons each have a charge of +e 
and a mass of 1 .67 X 10-2 7 kg. Their velocity is 

IqlRB +e (DI2 )B v= -- = 
m m 

( 1 .60 X 10-19 C ) ( 0.022 m)  12 (  1 .40 T )  
( 1 .67 X 10-2 7 kg ) 

The electric field between the plates of the velocity selector is 
� V ( 1 25 V) _ 4 Evs = -= ( ) - 8.33 X 1 0  Vim. d 0.0015  m 

1 .475 X 106 m/s. 

For the protons not to deflect as they pass through the velocity selector, the net force due to the mag
netic and electric fields must be zero (i .e. , the forces must be equal and opposite). Therefore, 

The magnetic field in the velocity selector must then be 
( 8 .33 X 1 04 V 1m ) _ 

-2 ( 6 I ) 
- 5 .65 X 1 0  T. 

1 .475 X 10  m s 

The magnetic field inside the velocity selector is 0.0565 T. 

EVA LUATE Mass spectrometers are scientific instruments that are based on fundamental principles of 
electricity and magnetism. Problems involving mass spectrometers allow us to review these principles. 

P R A CTICE P R OB LEM What potential is needed to accelerate the protons to the velocity given in the 
problem? Answer: 1 1 ,300 V. 

3: Torque on a wire 
A long wire is bent to form a rectangular section and is placed in a region with a uniform magnetic 
field, as shown in Figure 27.4. The magnetic field is directed downward and has a magnitude of 2.5 T. 
The wire carries a 25-A current. Find the net torque on the wire about the z-axis . 

..i"------ x 

z 

Figure 27.4 Problem 3. 

Solution 
IDE N T IF Y We will find the torque by finding the magnetic force on each segment of wire and then 
finding the torque due to each segment. The torques will sum to the net torque. 

SET UP There are five segments of wire: two lying along the z-axis, two vertical segments, and the 
1 .0-m-Iong horizontal segment that crosses the y-axis. The two segments lying along the z-axis have a 
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net force acting on them, but no torque, since the moment arm about them is zero. The two vertical 
segments have no force acting on them, because the segments are parallel to the magnetic field. The 
remaining segment is the horizontal segment at the center. There is a net force, as well as a torque, act
ing on this segment. Figure 27 .5 provides a view from the z-axis. We see that the force is directed to the 
right, due to the right-hand rule . The torque is along the negative z-axis and will tend to rotate the seg
ment clockwise . 

y 

TJ • � 

25 cm B 

l -+---- x 
Figure 27.5 Problem 3. 

EXECUTE We find the magnitude of the torque on the horizontal segment by first finding the magni
tude of the force on that segment. The magnetic force on a segment of current-carrying wire is 

F = IlBsine/>.  

In this case , the current is perpendicular to the magnetic field, so e/> = 90° and sine/> = 1 .  The distance 
between the z-axis and the force is 0.25 m, and the force is perpendicular to the moment arm, so the 
torque is 

'T = rF = rIlB = ( 0.25 m ) ( 25 A) ( 1 .0 m ) ( 2.5 T ) = 1 5 .6 N· m. 

The net torque on the wire is 1 5 .6 N m, directed along the negative z-axis. 

EVALUATE This problem illustrates how to find the torque on a current-carrying wire . We had to use 
first principles to find the torque on each segment. Problems involving the torque on a current-carrying 
loop can be solved with the use of the formula included in the "Concepts and Equations" section in this 
chapter. 

4: A hanging loop 
A long wire carries a current I and produces a magnetic moment jL, as in Figure 27.6. The coil is piv
oted in a frictionless manner about the z-axis. The loop has mass m, and its center of gravity is located 
a distance L from the z-axis. A constant magnetic field B is directed along the negative x-axis. If e is 
37°, what value of B is needed for equilibrium? Would this value of B give equilibrium for any e? 
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y 
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Figure 27.6 Problem 4. 

Solution 
IDE NTI FY For the loop to be in equilibrium, the net torque must be zero. We'll use the equilibrium 
condition to find the magnetic field, the target variable . 

5 ET UP Gravity and the magnetic force create torques on the loop. We will set these torques equal to 
each other to find the magnetic field. 

EXECUTE The magnetic field makes an angle e with the magnetic moment of the loop. The torque 
due to the magnetic field is then 

TS = BMsine. 

This torque tends to rotate the loop counterclockwise .  
The torque due to gravity is given by 

Tg = mgL sine. 

The torque due to gravity tends to rotate the loop clockwise . The net torque is zero, given by 

L T = 0 = BM sine - mgL sine. 

Solving for B, we see that the loop will remain in equilibrium if 

mgL B = -. M 
Note that the angle cancels and the result does not depend on the angle e. The loop would remain in 
equilibrium at any angle . 

EVALUATE This problem is similar to earlier torque equilibrium problems, but with the addition of 
the magnetic force . 
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Try It Yourself! 
1 :  Force on a charged particle 
A particle with charge e, mass 2.0 X 10-27 kg, and velocity given by v = ( 2.0 X 105 m/s ) X 
( I  + 2J + 2k ) enters a region with a constant uniform magnetic field Ii = ( 2.5 T )  J. (a) Calculate the 
force on this particle due to the magnetic field. (b) Describe the path of the particle. 

Solution Checkpoints 
IDE N T I F  Y A ND 5 E T UP Use the definition of the vector product to find the force. 

EXECUTE (a) After applying the vector product, we obtain the force from 

F = e ( 2.0 X 105 m/s ) ( 2.5 T )  (k - 21 ) .  

The magnitude of the force is found by summing the squares of the components of the force and taking 
the square root. The force has magnitude of 1 .79 X 10- 13 N. 

(b) There is no force component along the y direction, so the y component of the particle's motion is 
constant. In the xz plane, the orbit is circular. Combining the two motions, we can describe the path of 
the particle as a helix. 

EVALUATE What is the radius of the helix? 

2: Investigating a current loop 
For the square loop shown in Figure 27.7, (a) calculate the magnetic flux through the loop and (b) cal
culate the torque about an axis parallel to the x-axis and through the center of the coil. 

c 

n 

r-------�------------y 

rotation 

x 

Figure 27.7 Try It Yourself Problem 2. 
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Solution Checkpoints 
IDE NTI FY A ND SET UP Use the definitions of flux and torque to solve. 

EXECUTE (a) The normal is rotated by 30°, so the flux is 
<PB = BL2 cos30°. 

(b) The loop creates a magnetic moment. The magnitude of the torque is then 
7 = lAB sinO = IL2B sin30°. 

EVALUATE Do you get the same value for the torque if you calculate the torques about the axis for the 
segments ab and cd? 

3: Magnetic force on power lines 
Let's investigate the magnetic force on power transmission lines due to the earth's magnetic field. Sup
pose the magnetic field due to the earth is represented by 

B = B ( cos700 ( -l ) + sin700 ( -k)), 
where B = 2.5 X 10-5 T. A straight wire 1 .0 m long carrying 500 A of current runs parallel to the 
ground in the.xy plane. (See Figure 27.8 . )  (a) Find the force on the wire when the current is in the -x 
direction. (b) Find the force on the wire when the current is in the +y direction. 

---

-
-

-

_7 North 

�--��-----------------y 

x 

Figure 27.8 Try It Yourself Problem 3. 

Solution Checkpoints 
IDE NTI FY A ND SET UP Use the definition of magnetic force to solve. 

EXECUTE (a) When the current in the -x direction, 

£ = L(-1) . 

Taking the vector product gives a force of magnitude 1 . 1 8  X 10-2 N in the -y direction. 
(b) When the current is in the + y direction, the force becomes 

F = ILB ( -sin700i + cos70° k). 
This equation gives a force that makes an angle of 20° with the -x-axis in the xz plane and that has a 
magnitude of 2.5 X 10-2 N. 

EVALUATE If this represents the force on a small section of power transmission line, how much force 
acts on a I -Ian segment of line? Do the power lines oscillate, since the transmission lines carry alter
nating current? 





Sources of Magnetic Fields 

Summary 
We will investigate the sources of magnetic fields in this chapter. We 
will see how moving charges and currents generate magnetic fields 
and will use the law of Biot and Savart to find the magnetic field for a 
variety of current distributions. We will then look at the force between 
conductors by examining the magnetic force on one current due to the 
field generated by a second current. We will learn about Ampere's law 
and understand how it can be applied to symmetric current distribu
tions to find the magnetic field. Finally, we will reexamine permanent 
magnets to learn how magnetic fields are generated by those devices. 

Objectives 
After studying this chapter, you will understand 

• How magnetic fields are generated by moving charges and currents. 
• How to apply the law of Biot and Savart to a variety of current 

distributions. 
• How to calculate the force between two current-carrying conductors. 
• How to apply Ampere's law to symmetric current distributions . 
• How the magnetic field surrounding permanent magnets originates. 

359 
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concepts and Equations 

Term 
Magnetic Field of a Current
Carrying Conductor 

Magnetic Field of a Long, 

Straight Conductor 

Magnetic Force between Current

Carrying Conductors 

Magnetic Field of a Current Loop 

Ampere's Law 

Solenoids 

Description 
The law of Biot and Savart gives the magnetic field contribution due to an 

element of current-carrying conductor: 
--+ � 

--+ fLo !dl X r 
dB = - ----::--417 r2 

Here, fLo is the permeability of vacuum and has a value of 

fLo = 417 X 10-7 T . m/ A. 

The total field is found by integrating over the length of the conductor. 

The strength of the magnetic field generated by a long, straight current
carrying conductor is given by 

B = fLaI 217r' 
where r is the distance from the center axis of the conductor. 

Two current carrying conductors can exert magnetic forces on each other. For 
two long, straight parallel wires, the force per unit length is 

F fLoIl' 
I 217r 

The two wires attract each other if their currents are in the same direction and 
repel each other if their currents are in opposite directions. 

The magnetic field at the center of a coil of N loops of wire with radius R is 
given by 

fLoN! 
B= --2R 

Ampere's law states that the line integral of the magnetic field around any 
closed path is proportional to the current though the area enclosed by the 
path; algebraically, 

Ampere's law can be used to find the magnetic field for symmetric current 
distributions. 

The magnetic field inside a solenoid (a collection of many closely spaced 
windings) is 

B = fLon!, 
where n is the number of turns per unit length. The field outside the solenoid 
is approximately zero. 



conceptual Questions 
1 :  Magnetic field due to two currents 
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Two insulated wires perpendicular to each other in the same plane carry equal currents as shown in 
Figure 28. 1 .  Is there a region where the magnetic field is zero? If so, where is this region? If not, 
explain why the field is never zero. 

I 

Figure 28.1 Question 1. 

Solution 
I DE NTI FY, SET UP, A N  D EXECUTE A current in a long, straight wire creates a field everywhere 
around the current. To find a region with zero magnetic field requires that the fields due to each wire be 
equal and opposite, canceling the magnetic field. In the plane of the page, the magnetic field due to the 
currents points either out of or into the page. The field due to the horizontal current points into the page 
above the wire and out of the page below the wire. The field due to the vertical current points into the 
page to the right of the wire and out of the page to the left of the wire. 

In the upper left and lower right quadrants, the fields due to the two currents are in opposite direc
tions. (The fields from both currents in the lower left and upper right quadrants are in the same direc
tion.) It is possible for the fields to cancel in the upper left and lower right quadrants. 

For the fields to cancel, the magnitudes must be equal. The magnetic field due to a long, straight 
current depends inversely on the distance from the current. Therefore, the magnetic field will cancel 
where the distance to both currents is the same. A diagonal line from lower right to upper left will be 
equidistant from both currents. The magnetic field along this diagonal line is zero. 

EVALUATE This problem shows that magnetic fields are vector quantities and can be added to yield a 
resulting magnetic field. It also shows that the field due to a long, straight wire varies inversely with 
distance. 

2: Using Ampere's law 
Can you use Ampere's law to find the magnetic field at the center of a ring of radius R and carrying cur
rent I? 

Solution 
IDENTI FY, SET UP, A ND EXECUTE Ampere's law is useful when you can evaluate the line integral 
of the magnetic field around a loop. It can be also be useful when the magnetic field is zero and when 
the magnetic field is perpendicular to the integration path. The field around a circular loop of current 
varies as a function of position and distance from the loop. There is no path along which Ampere's law 
can be applied to determine the magnetic field at the center of the ring. 
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EVALUATE Ampere's law is useful only in certain symmetric situations in which the integral can be 
evaluated at constant magnetic field. It can be applied to any problem, but the results may not be useful
and the integral may prove to be exceedingly challenging to evaluate. 

Problems 

1 :  Hanging parallel wires 
Two long, straight wires are suspended from light threads so that the wires are parallel and in equilib
rium, as shown in Figure 28.2. The threads make an angle of 25° with each other. The wires carry equal 
currents and are separated by 1 5  cm. If the mass per unit length of the wires is 0.75 kg/m, find the cur
rents in the wires. In what directions do the currents flow? 

Figure 28.2 Problem 1. 

Solution 
IDE NTI FY The wires are in equilibrium, so we will use Newton's first law to find the currents in them. 

SET UP For the wires to be separated, there must be a repulsive magnetic force. Therefore, the cur
rents must be in opposite directions. To find the currents in the wires, we' ll use a free-body diagram of 
the right-hand wire in Figure 28.3 .  This wire is in equilibrium, so the net force acting on the wire must 
be zero. Three forces act on the wire: tension, gravity, and a magnetic force. We'll follow the familiar 
procedure of setting the x and y force components to zero to solve the problem. An xy-coordinate sys
tem has been included in the free-body diagram, and the tension force has been broken down into 
components. 

y Tx I 

-1---�--x 

mg 

Figure 28.3 Problem 1. 
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EXECUTE Two components of force act along each axis. In the vertical direction, the forces include 
the vertical component of tension and the force of gravity, acting in opposite directions: 

LFy = T cos 12.5° - mg = O. 
We write the tension as mg T = ----"--

cos 12.5° 
In the horizontal direction, the forces include the horizontal component of tension and the magnetic 
force, acting in opposite directions: 

LFx = FE - T sin 12.5° = O. 
Replacing the tension gives 

FE = mg tan 12.5°. 
The magnetic force per unit length between two parallel conductors is 

FB /-Loll' 
l 21Tr 

In this case, the currents are the same: I = I'. Recall that we are given the mass per unit length, so 
dividing both sides of the force equation by length will allow us to solve the problem: 

Solving for the current gives 

1= 
C¥ ) 21Trg tan 1 2.5° 

/-La 

FB /-Lo/2 (m) 
-= --= - g tan 12.5°. 
l 21Tr l 

( 0.75 kg/m)21T ( 0. 1 5  m)  ( 9.8 m/s2 ) tan 12.5° 
( 41T X 1 0- 7  T· m/A) 

The two parallel wires each carry 1 l00-A currents, flowing in opposite directions. 

1 100 A. 

EVALUATE This problem is reminiscent of earlier equilibrium problems, but with the addition of the 
magnetic force. By this stage of the course, you should be quite familiar with forces and should even 
look forward to problems that include them. 

2: Magnetic field due to two loops 
A piece of wire is formed into two loops as shown in Figure 28.4. The wire carries a 25 A current. Find 
the magnetic field at the center of the loops. 

Figure 28.4 Problem 2. 
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Solution 
I DENTI FY The net magnetic field is the sum of the field due to the two individual loops and the field 
due to the straight segments . 
5 ET UP Examining the straight segments, we see that there are equal currents to the right and to the 
left, resulting in a zero net magnetic field at the center of the loops. This leaves the inner and outer 
loops. Each loop contributes to the field at the center, but the contributions of the two loops are in 
opposite directions, since the current travels in opposite directions through the loops. 
EXECUTE The magnitude of the magnetic field at the center of a loop is given by 

fLo! B = - . 
2r 

The field due to the outer loop is directed into the page at the center and has magnitude 
fLo! Bo uter = -2 . rb 

The field due to the inner loop is directed out of the page at the center and has magnitude 
fLo! Binner = -. 2ra 

Let's assign positive fields as pointing out of the page. The total magnetic field at the center is then 
Btotal = Bi nner - Bo uter 

fLo! fLo! 
2ra 2rb 

= fLO! (! _ !) 
2 ra rb 

= 
( 471" X 10  -7 T . m/ A ) (  25 A )  ( 1 _ 1 ) 2 ( O. I O m)  ( 0.25 m) 

= 9.43 X 10- 5 T. 
The magnetic field at the center of the loops is 0.943 G, directed out of the page. 
EVALUATE This problem illustrates how we can find the magnetic field at a point by adding the mag
netic field contributions due to many segments of current. Here, we see that the contributions due to the 
straight segments are cancelled at the center. Remember that magnetic field contributions are vectors, 
and you've added vectors many times throughout this course. 

3: Magnetic field from the Biot and Savart law 
A piece of wire is formed into the shape shown in Figure 28.5. The wire consists of two long, straight 
sections and a three-eighths semicircle. The radius of the semicircle is 1 5 .0 cm, and the wire carries a 
75-A current. Find the magnetic field at the center P of the semicircle. 

p 
Figure 28.5 Problem 3. 
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Solution 
IDENTIFY The net magnetic field is the sum of the fields due to the three segments . We will use the 
law of Biot and Savart to find the field for each segment and add to find the net field. 

SET UP We first consider the vector product for each of the segments. For the straight segments, the 
-> 

vector product is zero, since d I is parallel to r. For the semicircular segment, the vector product has 
-> 

magnitude dl, since d I is perpendicular to r. All points along the semicircle are equidistant from the 
center, so the integral will be straightforward to evaluate. 

EXECUTE The magnitude of the magnetic field at the center of the semicircle is found from the law of 
Biot and Savart, given by 

-> A 

dB = _/-L_a _Id_l----::
X_r 

41T r2 

As we have determined, the magnitude of the vector product is dl and the radius is constant. We find 
the magnitude of the field by integrating. We have 

-> 

f 
-> 

f /-La Idl X r /-La I f B =  dB = - = -- dl 41T r2 41T R2 ' 

where the constant terms were removed, leaving the integral of dl. This integral gives the length of the 
semicircular portion of the wire. We can integrate rd8 around the arc, or we can use our knowledge of 
a circle's circumference. The arc is three-eighths of a full circle, so it has a length three-eighths of the 
circumference of a circle with radius R. The magnetic field strength is then 

B = 
/-La I fdl = 

/-La I ('i21T R) = 
3/-La I. 

41T R2 41T R2 8 1 6R 

Substituting the given values results in 

-> 

3/-La I 3 ( 41T X 10-7 Tom!A) (75 A)  -4 B = - = 

( )  
= 1 . 1 8  X 1 0  T = 1 . 1 8  G. 

16R 16  0. 1 5  m 

The direction of the magnetic field is found from the right-hand rule. The magnetic field is directed 
outward at point P. 

EVALUATE This problem illustrates that evaluating an equation generated by the law of Biot and 
Savart can be relatively easy. By splitting the problem up into multiple segments and carefully evaluat
ing the current in each segment, we found the solution. 

4: Evaluating a l ine integral around a wire 

Use the results for the magnetic field of a long, straight wire to evaluate the integral f Bod l around the 

closed contour abcda that lies in a plane perpendicular to the wire shown in Figure 28.6 on the next page. 
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t 
I 

b 

Figure 28.6 Problem 4. 
Solution 
IDE NT I FY We will break the integral up into four segments, evaluate the integral for each segment, 
and sum the results. 

SET UP The magnetic field lines for a long, straight wire form concentric rings around the wire; the 
magnetic field is directed tangent to the field lines. We use the right-hand rule and find that the mag
netic field is directed counterclockwise when viewed from above, or from b to e along segment be. The 
magnitude of the field depends on the distance from the wire and is constant at a given radius. We will 
keep this in mind as we evaluate each segment. 

EXECUTE The magnitude of the magnetic field a distance r from the wire is 

f.Lo! B=-. 
21Tr 

..... 
Along the segment ab, the magnetic field is perpendicular to d 1 , so the scalar product is zero and doesn't 

..... 
contribute to the integral. Along segment be, the magnetic field is parallel to d 1 at every point, so 

..... ..... B·dl = Bdl. 
Evaluating the integral for segment be, we obtain 

J B· d! = J f.LoI dl = f.Lo! Jdl = f.Lo! ril = f.Lo! 8. 
be 21Tr 21Tr2 21Tr2 21T 

Here, the line integral is evaluated and found to be the arc length of segment be . 
..... 

Along segment cd, the magnetic field is perpendicular to d 1 , so the scalar product is zero and doesn't  
..... 

contribute to the integral. Along segment da, the magnetic field is anti parallel to d 1 at every point, so 
..... ..... B·d l = -Bdl. 

Evaluating the integral for segment da, we find that 

J B'd! = -Jf.LO! dl = - f.Lo! J dl = - f.Lo! rJl = _f.Lo!8. 
da 21Tr 21Trl 21Tr[ 21T 
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As with segment be, the line integral is evaluated and found to be the arc length of segment da. We 
combine the results to find the integral around the complete path. This leads to 

f -> 

-> f -> -> f -> -> f -> -> f -> 

-> 

/-La! /-La! B· d I = B· d I + B· d I + B· d I + B· d I = 0 + - 8 + 0 - - 8 = O. 
ab be cd da 2'7T 2'7T 

The integral around the complete path is zero, consistent with Ampere's law. 

EVALUATE Why is the result consistent with Ampere's law? Ampere's law states that the integral 
along a closed path is equal to the net current enclosed by the path. In this case, the path encloses no 
current; hence, the integral must be zero. 

This problem also gives us practice evaluating the line integral of the magnetic field. We'll capital
ize on this practice in the next problem as we apply Ampere's law. 

5: Magnetic field for a distributed current 
A long, straight conductor of radius R carries a current! uniformly distributed over its cross section. 
Find the magnetic field both inside and outside the conductor. 

Solution 
IDE NTI FY We will apply Ampere's law both inside and outside the conductor to solve for the mag
netic field in both regions-the target variables. 

SET UP To find the magnetic field inside the conductor, we place an Amperian loop inside the con
ductor. This loop will enclose only a portion of the total current, and we will determine that portion. 
We will follow the same procedure to find the field outside the conductor, but in this case all of the cur
rent will be enclosed. A sketch of the conductor with Amperian loops is shown in Figure 28.7. 

1 
1 R 
1 

- ---1--- -

1 (-r---
' +-- r 

1 
--- t- --

1 
1 
1 
1 

Figure 28.7 Problem 5. 

, " ) 
'" 

EXE CUTE We place a circular Amperian loop inside the conductor to find the field in this region. The 
magnetic field is tangent to the cylinder, so the integrand is 

-> -> B ·d l = Bdl. 
The magnetic field is constant at the radius r and so can be taken out of the integral. The integral is then 

fn. dl = fBdl = Bfdl = B2'7Tr . 
To evaluate Ampere's law, we need to find the current enclosed by the loop. The current is evenly dis
tributed, so the current enclosed is the total current, multiplied by the ratio of the enclosed area to the 
total cross-sectional area. Algebraically, 
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Ampere's law states that 

Evaluating Ampere's law leads to 

Solving for the magnetic field inside the conductor gives 

Molr B = --

27TR2• 
The result is the same outside of the conductor, except that the total current is enclosed. Ampere's 
law gives 

which leads to 
B27Tr = Mol, 

Mol B = -. 
27Tr 

In both regions, the magnetic field is tangent to the radius. 

EVALUATE We see that outside the conductor the field is the same as that for a long, straight wire car
rying a current I, a situation reminiscent of how the electric field outside of a spherical charge distribu
tion reduces to the field of a point charge. Inside the conductor, the field increases linearly from zero at 
the center to a maximum at the outer radius of the conductor. 

Try It Yourself! 
1 :  Force on a loop 
Find the force on each of the segments of the rectangular loop shown in Figure 28.8. The long, straight 
wire on the left carries a current II and the loop carries a current 12. 

d c 

'---------x 

Figure 28.8 Try It Yourself Problem 1. 
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IDE NTI FY A ND SET UP Use the magnetic force due to a current and the magnetic field for a long, 
straight wire to find the force on each segment of the loop. Two segments are at constant distance from 
the left wire, and two segments vary in distance from the left wire. 

EXE CUTE The force varies along segment ab, so integration is required to find the net force. The con
tribution to the force anywhere along the segment is 

Integrating from ra to rb gives 

I/. I I dF = .c:Q....!..2dr. 27Tr 

_ f.Lo1JI2 ( rb ) Fab -
In . 27T ra 

The force is directed upwards, along the page. 
The force is constant along segment be, so we can write down the force on the segment as 

f.LoI/2L 
Fb = '------'-----=---=-e 27Trb 

The force is directed away from the left wire. 
The force varies along segment ed, as it did for segment abo The integration is the same, except that 

the limits of integration are reversed, resulting in an equal, but opposite, force. 

Fed = -Fab = 

This force is directed downwards, along the page. 

_ f.Lo1/2ln ( rb ) . 27T ra 

The force is also constant along segment da, so we can write down the force on that segment as 

The force is directed towards the left wire. 

f.Lo1JI2L 
Fd = .:........:.......:......::.-a 27Tra 

The two vertical forces cancel, leaving only the two horizontal forces. The net force is the sum of 
the two horizontal forces, directed towards the left wire and with a magnitude 

F = f.L01JI2L (l _ l) net 27T rb ra · 

EVALUATE How can you check these results? 

2: Magnetic field due to concentric cylinders 
Two equal and opposite currents I are carried in two long concentric thin cylinders of radii R, and R2, 
as shown in Figure 28.9 on the next page. Find the magnetic field in all regions of space. 
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Solution Checkpoints 

I 

I 

! 
Figure 28.9 Try It 
Yourself Problem 2. 

IDE NTI FY A ND SET UP Apply Ampere's law to the three regions in the figure: inside the cylinders, 
between the cylinders, and outside the cylinders. 

EXE CUTE Inside the cylinders, no current passes through the Amperian loop, so the magnetic field is 
zero. Between the cylinders, the Amperian loop will enclose the current in the inner cylinder, resulting in 

which leads to 
B27rr = /-tol, 

/-tol B = -. 27rr 
Outside the cylinders, the net current enclosed by the Amperian loop is zero (I - I = 0 ) ,  so the mag
netic field is zero. 

EVALUATE What is the direction of the magnetic field between the conductors? Does this problem 
help illustrate why many audio and video cables are made of concentric conductors? 



Electromagnetic Induction 

Summary 
In this chapter, we will study the electromotive force (emf) and the 
current induced by magnetic interactions. We will learn to use Fara
day's and Lenz's laws to analyze the behavior of time-dependent 
magnetic fields and magnetic fluxes. This investigation will shed light 
on a variety of electrical applications, including generators, motors, 
transformers, speakers, and microphones. The chapter will link mag
netic and electric phenomena through changing magnetic fields that 
generate electric fields, thereby laying the foundation for the study of 
alternating-current circuits, covered in Chapter 3 1 ,  and for the discov
ery that light is an electromagnetic wave (Chapter 32). 

Objectives 
After studying this chapter, you will understand 

• The concept of magnetic flux. 
• The nature of the source of induced emfs and currents. 
• How to use Faraday's and Lenz's laws to quantify induced emfs 

and currents. 
• How to solve a variety of electromagnetic induction problems. 

171 
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Concepts and Equations 

Term 
Faraday's Law 

Lenz's Law 

Motional Electromotive Force 

Induced Electric Fields 

Displacement Current 

Maxwell's Equations 

conceptual Questions 

Description 
A changing magnetic flux through a closed loop induces an emf in the loop. 
Faraday's law states that the magnitude of the induced emf in a closed loop 
equals the negative of the rate of change with respect to time of the magnetic 
flux through the loop: 

d¢B 
[ = --

dt 

Lenz's law states that an induced current or emf always acts to oppose the 
change that caused it. Lenz's law is used to find the direction of the induced 
effect in induction problems. 

The charges in a conductor moving in a magnetic field will be acted upon by 
a force and will induce a current in the conductor. A conductor of length L 
moving with speed v perpendicular to a magnetic field with magnitude B will 
induce an emf 

[ = vBL. 
When an emf is induced by a changing magnetic flux, there is an induced 
electric field of nonelectrostatic origin given by 

f--> --> d¢B E · d l  = -
dt . 

This field is not conservative and does not have an associated potential. 

A time-varying electric field generates a displacement current given by 

. d¢E 
ID = [-- . 

dt 

This displacement current generates magnetic fields in the same way that a 
conduction current generates fields. The displacement current is added to the 
conduction current in Ampere's law. 

The relation between electric and magnetic fields and their sources are sum
marized in Maxwell's equations: 

1 :  Induced current in a moving current loop 
Figure 29. 1 shows a current loop next to a long, straight wire carrying a current l. Find the direction of 
the induced current in the loop when the loop moves towards the long wire, when the loop moves away 
from the long wire, when the loop is stationary, and when the loop moves upwards along the wire. 



ELECTROMAG N ETIC I N DU CTION 373 

Figure 29.1 Question I .  

Solution 
I DE NTI FY, SET UP, A N  D EXE CUTE We'll use Lenz's law to find the direction of the induced current. 
The right-hand rule tells us that the magnetic field due to the long wire is directed into the current loop. 

When the loop moves towards the long wire, the magnetic flux increases, since the magnetic field 
increases near the wire. The induced current will oppose the change and create an induced field directed 
out of the page. The induced current must be counterclockwise as the loop moves towards the long wire. 

When the loop moves away from the long wire, the magnetic flux decreases, since the magnetic field 
decreases away from the wire. The induced current will oppose the change and create an induced field 
directed into the page. The induced current must be clockwise as the loop moves away from the long wire. 

When the loop is stationary, the magnetic flux remains constant. No current is induced in this case. 
When the loop moves upwards along the long wire, the magnetic flux remains constant, since the 

loop remains a constant distance from the long wire. No current is induced in the loop in this case either. 

EVALUATE Lenz's law can be applied to a variety of situations, resulting in a variety of solutions. 
Each situation may be subtly different, and you must apply the law carefully each time. Guessing can 
also lead to a solution, but only in about one-third of the cases will you be correct. 

You may be confused about the last case, in which the loop moved along the long wire. You can 
imagine that as the loop moves, magnetic field lines exit and enter the loop. But since the number of 
field lines leaving the loop is equal to the number of lines entering the loop, the total magnetic flux 
remains constant. 

2: Induced current in a stationary current loop 
Figure 29.2 shows a stationary current loop next to a long, straight wire carrying a current I. Find the 
direction of the induced current in the loop when the current in the long wire is increasing with time. 

Figure 29.2 Question 2. 
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Solution 
IDENTI FY, SET UP, A ND EXECUTE We'll use Lenz's law to find the direction of the induced cur
rent. The right-hand rule tells us that the magnetic field due to the long wire is directed into the cur
rent loop. 

When the current increases in the long wire, the magnetic field inside the loop increases, increasing 
the magnetic flux as well. There will be an induced current in the loop that opposes the change in flux. 
The induced current will create an induced field directed out of the loop. The induced current must be 
counterclockwise as the current increases in the long wire. 

EVALUATE This problem presents another application of Lenz's law: that of a stationary loop and a 
changing magnetic field. We can also consider what will happen if the current in the long wire changes 
as the loop is moving. 

3: Induced electric field in a capacitor 
A capacitor's plates are connected through a loop of wire. A uniform magnetic field is directed outward 
through the loop, as shown in Figure 29.3 .  If the magnetic field decreases with time, in which direction 
will the electric field between the plates of the capacitor point? 

• • • • • 

ii 
• • • • • c ='= 
• • • • • 

• • • • • 

Figure 29.3 Question 3 .  

Solution 
IDENTI FY, SET UP, A ND EXECUTE The magnetic flux through the loop will decrease with time, so 
the loop will induce a magnetic field in the same direction as the existing field, or out of the page. The 
induced current in the loop will flow counterclockwise to create the induced field directed out of the 
page. Since the current is counterclockwise, positive charges leave the top plate of the capacitor and 
move to the bottom plate, leaving excess negative charges on the top plate and excess positive charges 
on the bottom plate. These charges will create an electric field that points from the capacitor's bottom 
plate to its top plate. 

EVALUATE This problem combines our newly acquired knowledge of electromagnetic induction with 
our older knowledge of capacitors. We used our knowl�dge of both subjects to solve the problem. 

Problems 

1 :  Horizontal rod-and-rail system 
A conducting rod moves without friction to the left on a horizontal rail system, as shown in Fig
ure 29.4. The rail system is placed inside a uniform 1 .2-T magnetic field directed out of the plane of the 
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system. The rod has a resistance of 1 . 85 n, and the rest of the rail system has negligible resistance. If 
the ammeter reads a constant 12 A, find the velocity of the conducting rod. In which direction is the 
current flowing? 

T 
• • • • 

v jj 50 cm • • • 

1 • • • • 

Figure 29.4 Problem I .  

Solution 
IDENTI FY A ND SET UP As the bar moves to the left, an induced emf and current are generated in 
the rod-and-rail system due to the changing magnetic flux. The induced emf can be found from the 
motional emf formula, and the direction of the induced current can be found from Lenz's law. 

EXECUTE The emf induced in the system is 
[, = vBL. 

We are given the amount of induced current in the system. We relate that to the induced emf through 
the formula 

[, = IR = vBL. 
The only resistance in the circuit is the resistance of the bar. Rearranging terms to solve for the for 
velocity, we have 

IR - -V - - -
BL 

The rod moves to the left at 37.0 mfs. 

( 12 A ) ( 1 .85 n)  _ I ( ) ( 
) - 37.0 m s .  1 .2 T 0.50 m 

The magnetic flux is increasing, so the induced current will oppose the increase. The induced cur
rent will induce a magnetic field directed into the page, so the induced current must be clockwise. 

EVALUATE What causes the rod to move to the left? There must be a force directed to the left, in addi
tion to the magnetic force on the rod. This other force must be equal in magnitude to the magnetic 
force, since the rod moves with constant velocity. (The current remains constant.) 

2: Vertical rail system 
A conducting bar is connected between two vertical conducting rails in tum connected at the bottom 
through a resistor, as shown in Figure 29.5 on the next page. A horizontal, uniform magnetic field 
exists perpendicular to the plane of the rail system and is directed into the rail system. The conducting 
bar is allowed to fall, and it reaches its terminal velocity after several seconds. What is the terminal 
velocity of the bar? In which direction does the current flow through the rail? The bar has a mass of 
0.75 kg, and you may ignore friction between the bar and the rail system. 
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Solution 

f.E-- 62 em---?j 

x X 

X X 
Ii = O.86 T 

X X 

X X 

R = 1.4 D. 
Figure 29.5 Problem 2. 

IDE NTI FY We will use the fact that the bar is in equilibrium when it is at terminal velocity, and we 
will use our knowledge of motional emf to find the terminal velocity, the target variable. 

5 ET UP Recall that when an object reaches its terminal velocity, the net force acting on it is zero. 
Gravity and the magnetic force act on the rod, as shown in Figure 29.6. These two forces must be equal 
and opposite. The magnetic force is between the induced current in the rod and the uniform magnetic 
field. We will need to find the induced current to solve the problem. 

As the bar falls, an induced emf and current are generated in the rod-and-rail system due to the 
changing magnetic flux. The induced emf can be found from the motional emf formula. The magnetic 
flux decreases as the rod falls, so the induced current tends to sustain the flux. The induced current will 
travel clockwise around the circuit in accordance with Lenz's law. 

mg 

Figure 29.6 Problem 2. 

EXECUTE The net force on the rod must be zero at terminal velocity. Newton's first law gives 

2: Fy = 0 = FB - mg. 

The magnetic force is 

FB = IlBsinc/>, 
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where the current is the induced current and the angle between the current and the magnetic field is 
90°. The induced emf will lead to the induced current. The induced emf is related to the velocity of the 
falling rod by the formula 

The induced current is 

E = vBI. 

E vEl 
1 - - - -- -

R R · 

Combining these results gives 

vEl 
FE = IlB = -lB = mg. R 

Solving for the velocity yields 

mgR ( 0.75 kg ) ( 9.8 m/s2 ) ( 1 .4 f! ) _ / v = 12B2 = ( 0.62 m ) 2 ( 0.86 T ) 2 - 36.2 m s. 

The terminal velocity of the bar is 36.2 mis, and the induced current in the bar flows from left to right. 

EVALUATE This problem combines terminal velocity, net force, magnetic force, and electromagnetic 
induction. It may appear intimidating, but each step has been seen in previous problems. 

3: Emf induced by a time-varying current 
A power line carrying a current that varies with time according to the formula I( t) = loCOS ( 27T'jt) is 
located near a rectangular coil, as shown in Figure 29.7. If 10 = 250 A and! = 60 Hz, find the emf 
induced in the coil. 

T 
!O em 

L---.....Jl 
l(t) 
Figure 29.7 Problem 3.  

Solution 
IDENTIFY We will apply Faraday's law to find the induced emf. We will have to integrate the flux in 
the coil, since the magnetic field varies across the coil. 
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5 ET UP To find the magnetic flux, we break the area of the coil into thin, vertical strips and integrate 
across the coil, as illustrated in Figure 29.8 .  The magnetic field due to the power line is constant in the 
thin strips. Once we have determined the magnetic flux, we take the derivative to find the induced emf. 

X� r-dx 

T J O cm = I 

L....I....L..-.1 
5 cm-;.J I J O cm� 

1(t) 
Figure 29.8 Problem 3. 

EXECUTE The flux through the shaded strip in Figure 29.8 is given by 

. I( t) d<l> = Eldx = J.Lo ldx. 21TX 

Note that the area vector and the magnetic field are parallel, so the cosine term is unity. We find the 
total flux <l> for the coil by integrating across the coil: 

<l> = I d<l> 
= f2(J.LOI( t) ldx) 

XI 
21TX 

J.LoI( t) I X2 = In-
21T Xl 

J.LoI( t ) 1 ( 10 cm) = In --'-:----,-'-21T ( 5  cm) 
J.LoI( t ) 1 

= In 2. 
21T 

Faraday' s law is used to determine the induced emf. Integrating, we have 

E = d<l> 
dt 

= �(J.LOI( t) l
ln 2) dt 21T (J.LOI ) d = - ln 2  -(I( t) ) 21T dt (J.LOI ) = 

21T 
In 2 ( 21Tf)Iosin ( 21Tft) 

= (J.Lolflo In 2) sin ( 21Tft) . 



E LECTROMAG N ETIC I N D UCTION 379 

Substituting the given values results in 

£ = ( 1 .3 1 X 10-3 V ) sin ( ( 377 Hz ) t ) . 

EVALUATE Do you think that this problem illustrates a good way to "borrow" power from a power 
line? We see that the coil picks up on a very small emf. You could replace the coil with a coil having 
many loops, but you would need about 1 05 loops to get to 120 V. Adding loops would add to the resist
ance, making this approach unfeasible-not to mention that you would have to place the coil near a 
power line, which is not a wise idea ! 

4: A dropping coil 
A rectangular coil is dropped from an initial height h into a region of constant magnetic field, as 
shown in Figure 29.9. The coil has a length of 12.0 cm, a width of 6.0 cm, a mass per unit length of 
0.010  kg/m, and a resistance of 0. 1 n. The magnetic field is 0.5 T. What should the initial height be in 
order for the coil to enter the magnetic field at constant velocity? 

f.<-- l �  

TD! Initial position 

h 

1 X X X X X X X X X X X X v 
Figure 29.9 Problem 4. 

Solution 
IDE NTI FY For the coil to pass into the field at constant velocity, the net force must be zero. We will 
use this fact, along with our knowledge of motional emf and gravity, to find the initial height. 

5 ET UP As the loop falls into the magnetic field, the flux through the coil changes, because the area of 
the coil inside the field changes. We will use the change in flux to find the induced emf and the current 
in the coil. There will be a magnetic force acting upon the induced current due to the magnetic field. 
The only other force acting on the coil is gravity. We will need to find the mass of the coil to find the 
gravitational force. 

After we set the forces equal to each other, we will solve for the velocity required for equilibrium. 
Once we have the velocity, we will use energy conservation to solve for the initial height. 

EXECUTE When a length y of the coil is inside the magnetic field, the flux through the coil is given by 

<l> = Bly. 
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The time rate of change of the length y is the velocity of the coil, dy/dt. The induced emf is then 

d<J> dy £ = - = BI- = Blv . dt dt 
This emf in turn induces a current of magnitude 

£ Blv / - - - -- -
R R '  

The force on this current due to the magnetic field is 
(Bl) 2V Fs = IlB = R 

For the velocity to remain constant, there must be no net force acting on the coil: The weight must be 
equal to the magnetic force. To find the weight, we first find the mass. The mass is the total length of 
the coil, multiplied by the linear density: 

m = ( 21 + 2w) ( 0.0IO kg/m) 
= ( 2 ( 0. 1 2  m) + 2 ( 0.06 m) ) (0.010 kg/m) 
= 3 .6 X 10-3 kg. 

Setting the weight equal to the magnetic force yields 
(Bi ) 2v 

mg = 
R 

As the coil falls, gravitational potential energy is converted into kinetic energy. Energy conservation gives 
mgh = !mv2, 

Combining these results yields 

Finally solving for h produces 
R2m2g 

h = --=--2 (BZ ) 4  

v = V2ih, 

mg = 

( 0. 10 D ) 2 ( 3 .6 X 1 0-3 kg ) 2 ( 9.8  m/s2 ) 
2 ( ( 0.5 T ) ( 0. 1 2  m) )4 

= 4.9 cm. 

EVALUATE This problem combines techniques, forces, energy conservation, circuits, magnetic force, 
magnetic fields, and induced emf, thus serving as a review of much of your physics course up to now. 

What happens to the coil after the top edge enters the magnetic field? The flux no longer changes, so 
there is no induced current or magnetic force. The coil will accelerate at g after fully entering the mag
netic field. 

Try It Yourself! 

1 :  Rod on rail 
A conducting rod of length 0.25 m, shown in Figure 29. 10, moves to the right with a velocity of 
3.0 mls in a constant magnetic field of magnitude 0.8 T. What external force must be applied to the rod 
for it to maintain constant velocity? Assume that the circuit has a total resistance of 0.2 D. 
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r-
-

: 1  x x x x x 

x x x x x 

v I 
x x x 

x x x 

x 

x 

x X J  
x x 

r---
1< x )1 

Figure 29. 1 0  Try It Yourself Problem 1 .  

Solution Checkpoints 
IDE NTI FY A ND SET UP What must the net force be on the rod for it to maintain constant velocity? 
What forces act on the rod? What is the induced emf in the rod? 

EX E CUT E The moving rod induces an emf of magnitude Blv . The induced current in the loop is 

BZv 
f = -. 

R 

This current is acted upon by a magnetic force. The force that must be applied to the rod to keep it at 
constant velocity must equal this magnetic force, which is given by 

B2Z2V Fa = IlB = � . 

The magnitude of this force is 0.6 N. The force must be applied to the right. 

EVA LUATE Why must the force be applied to the right? 

2: Induced emf due to a solenoid 
A square coil with sides of length 0.25 m is placed around a solenoid of diameter 0. 10  m and length 
0.2 m wrapped with 1000 turns of wire. The coil has its normal parallel to the axis of the solenoid. The 
current through the solenoid when it energizes is given by 

where fo is 100.0 A and 'T is 5 .0 s .  Calculate the induced emf in the square coil. 

Solution Checkpoints 
IDE N T I FY A ND SET UP Find the flux through the square coil and the change in flux per unit time to 
determine the emf. Does a magnetic field exist in the entire space within the square coil? 

EXECUTE There is a magnetic field only inside the solenoid, so the flux is given by 

<t> = 1Td;olenoid B = 1Td;olenoid J.Lonf( t ) . 
4 4 
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The induced emf is the derivative of the flux: 
£ = diP dt 

= 
� (7Td;olenoid nI( t ) ) dt 4 J.Lo 

= 7Td;olenoid n�(I( t ) )  4 J.Lo dt _ 7Td;olenoid (10 - t/r) - 4 J.Lon --;e . 

The peak value of the emf is 9.87 X 10-4 v. 

EVALUATE Why was the area of the solenoid used to find the magnetic flux? Is the magnetic field out
side a solenoid approximately zero? 



Inductance 

Summary 
In this chapter, we will investigate the manifestations of induced emf 
and induced current in electric circuits. We will learn about the induc
tor, an electronic component that stores energy, much as a capacitor 
stores energy. The magnetic energy stored in an inductor leads to the 
study of magnetic energy density-the energy stored in a magnetic 
field. We will then look at circuits made out of combinations of induc
tors, resistors, and capacitors . We lay the foundation for the study of 
alternating-current circuits, covered in the next chapter. 

Objectives 
After studying this chapter, you will understand 

• The definition of mutual inductance, self-inductance, and inductors. 
• How to find the energy stored in an inductor and in the magnetic 

field . 
• How to analyze time-dependent RL, LC, and LRC circuits. 

383 
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Concepts and Equations 

Term 
Mutual Inductance 

Self-Inductance 

Magnetic Field Energy 

RL Circuits 

LC Circuits 

LRC Series Circuits 

Description 
A changing magnetic flux in one circuit linked to a second circuit can induce 
an emf in the second circuit and vice versa. The induced emfs in each circuit 
are related by 

di2 £) = -M
dt ' 

where M is a constant called the mutual inductance. The SI unit of inductance 
is the henry (H): I H = I Wb/A. 

A changing current in any circuit causes a self-induced emf in the same cir
cuit, given by 

di 
£ =  -L

dt ' 

where L is the self-inductance or, simply, the inductance. The inductance of a 
coil with N turns and average flux <I> through each turn caused by current i is 

N<I>8 L = -
i 

An inductor is a circuit device usually consisting of a coil of wire and having 
substantial inductance. 

The magnetic field energy U in an inductor with inductance L carrying a cur
rent I is 

U = �LI2 .  

This energy is stored in the electric field with an energy density of 

B2 
u = --. 2JLo 

The current through a charging circuit containing an inductor, a resistor, and 
an emf source connected in series increases and decreases exponentially. The 
time constant for this circuit is T = L/ R, the time required for the current to 
approach the fraction I /e of its final value. 

A circuit containing a capacitor and an inductor undergoes electrical oscilla
tions with angular frequency 

w = Hc · 

This is the circuit analog to mechanical harmonic motion. 

A circuit containing capacitance, inductance, and resistance undergoes 
damped oscillations for small resistances. The frequency of the damped oscil
lations is given by 

� I R2 
w' =  - - -

LC 4L2 • 

Critical damping occurs when 
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conceptual Questions 
1 :  Short- and long-term behavior of an RL circuit 
An inductor (with inductance L) and a resistor (with resistance R) are connected in series with an emf 
source (with voltage V). Just after the connection is made, what is the potential across the resistor and 
inductor, and what is the current in the circuit? A very long time after the connection is made, what is 
the potential across the resistor and inductor, and what is the current in the circuit? 

Solution 
IDENTI FY, SET UP, A ND EXECUTE This problem asks us to consider how current and potential 
difference vary in an RL circuit. We' ll work through each part, using the techniques we've learned in 
this chapter. 

Just after the connection is made, there is essentially no current in the circuit. Therefore, the potential 
difference across the resistor is zero ( V  = IR ) . But then the potential across the inductor must be 
equal to the voltage across the emf ( V) .  The rate of change of the current in the circuit is therefore 
maximal. 

A long time after the connection is made, the current has reached its maximum and is no longer 
changing. The potential difference across the inductor must then be zero, since the current is constant. 
The potential difference across the resistor is therefore equal to the voltage of the emf ( V) , because the 
voltage across the inductor is zero. 

EVALUATE We see that the circuit behaves as if there is only an inductor just after the connection is 
made and as if there is only a resistor after a long time. This analysis is similar to the analysis we car
ried out in Question 4 of Chapter 1 9, which you may want to review at this point. Keeping long-term! 
short-term behavior in mind will help your interpretation of RL circuits, just as it did with RC circuits. 

Problems 

1: Mutual inductance of two coils 
Consider a short coil ( length L l ) of radius R 1 having Nl turns inside a second long ( length L2 » L 1 ) 
solenoid of radius R2 having N2 turns. Calculate the mutual inductance of the pair (a) if the axes of the 
two coils are parallel and (b) if the axes of the two coils are perpendicular. 

Solution 
IDENTI FY Our target variable is the mutual inductance for the two orientations. 

SET UP We will find the mutual inductance by finding the flux through the short coil due to the long 
solenoid. We will assign a current to the solenoid that will cancel when we calculate the mutual 
inductance. 

EXECUTE (a) When the two coils have parallel axes, we start by finding the field due to the solenoid. 
Given the current I, the solenoid creates a magnetic field of magnitude 

N2 B2 = /J-o-I. L2 
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The flux through one turn of the inner coil is the area of the inner coil times the field, since the field and 
the area vector are parallel: 

The inner coil has N, turns, so the total flux is 

_ 
N2 ( 2 ) N,<P, - N,fJvo-1 1TR, . 
L2 

The total flux is the mutual inductance times the current. The mutual inductance is therefore given by 
_ N,<P , _ N,N2 ( 2 ) M2, - -- - fJvo-- 1TR, . 

I L2 
(b) When the axes of the two coils are perpendicular, the area vector and the magnetic field are perpen
dicular, giving zero mutual inductance. 

EVALUATE The mutual inductance of the coils is always proportional to the product of their number 
of turns. The mutual inductance also depends only on the geometry of the coils and not on the current. 

2: Potential and energy in a toroidal solenoid 
At a certain time, an inductor has a 500.0-A current passing through it that is decreasing at a rate of 
320 A/s. The inductor is in the shape of a toroidal solenoid with a cross-sectional area of 1 .44 cm2 and 
a mean radius of 8 .00 cm. The inductor has 300 turns. Find the potential drop across the inductor and 
the energy stored in the inductor at the given time. 

Solution 
IDENTIFY A ND SET UP The potential across an inductor is the inductance times the rate of change 
of the current. We will need to find the inductance of the toroid. The energy stored in the inductor 
involves the inductance and the current. 

EXECUTE The inductance of a toroidal solenoid is discussed in Example 30.3 in the textbook and is 
found to be 

where A is the cross-sectional area, N is the number of turns, and r is the mean radius of the solenoid. 
The potential drop across the inductor is 

£ = L 
di

. 
dt 

Combining the results to find the potential drop gives 
di fJvoN2A di ( 41T X 1O-7 T · m!A) ( 300 )2 ( 1 .44 X 1 O-4 m2 )

( ! )  £ = L- = -
= 320 A s = 0.01 04 V. 

dt 21Tr dt 21T ( 0.0800 m)  

The energy stored in  the inductor is 

_
, 2 _ 

1 fJvoN2A 2 _ 
1 ( 41T X 1O-7 T · m!A) ( 300 ) 2 ( 1 .44 X 1O-4 m2 ) 

( ) 2 _ U - "iLl - "2  21Tr I - "2  21T ( 0.0800 m)  500 A - 4.05 J. 
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The potential drop across the inductor is 10.4 mV and the energy stored in the inductor is 4.05 J. 

EVALUATE This problem introduces us to analyzing inductors in RL and LC circuits. 

3: Exploring an RL Circuit 
In the circuit shown in Figure 30. 1 ,  switch Sl is closed until a constant current is established. Switch S2 
is then closed and switch S 1 is opened. How long after the switches are closed do the current and 
energy stored in the inductor reach half their initial values? 

Solution 

2S0 V 
+ 1  

30.0 !l 500 mH 

Figure 30.1 Problem 3 .  

IDENTIFY We will use energy and exponential decay relations to solve the problem. 

SET UP After the switches are thrown, the current in the circuit will decrease. We will need to find the 
initial steady-state current and then use the exponential decay of the RL circuit to find the time at which 
the current is half its initial value. We use the same procedure to find the time at which the energy 
drops to half its initial value. 

EXECUTE The current in a decaying RL circuit is 
i = foe -(RIL)!. 

The initial current can be found from 
E fo = -. R 

In this case, we seek the time at which the current becomes half the initial current, or 

i = �fo = foe -(RIL)t, 
so that 

1 = e -(R!L)t 2 . 

To solve for the time, we take the natural logarithm of both sides of the last equation: 

Solving for the time gives 

R 
ln� = In ( e -(R!L)t) = - - to 

L 

1 L ( 0.500 H ) 
t = -lnl: 

R = - ( -0.693 1 )  ( 30.0 D )  
= 0.0 1 1 6  s .  
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The current reaches half its initial value 1 1 .6 ms after the switches are thrown. 
The energy stored in the inductor is 

u = �LI2. 

For the energy to decrease by one-half, the current must decrease by -vI!, since the energy depends on 
the square of the current. Following the same procedure we just applied, we find the time correspon
ding to this current: 

-v1 10 = loe -(R/L)t, 

� ilL ( 0.500 H)  
t = -In V 2- = - ( -0.3466 ) ( D ) = 0.00578 s .  

R 30.0 

The energy stored in the inductor reaches half its initial value 5 .78 ms after the switches are thrown. 

EVALUATE We see that the energy stored in the inductor drops twice as fast as the current decreases. 
If you are familiar with the properties of logarithms, you could have skipped the algebra in the second 
half of the solution and simply divided the value of the current by 2. 

4: Self-inductance of concentric cylinders 
Calculate the self-inductance per unit length of a pair of concentric thin cylinders of radii RI and Rb 
where R2 > R I . Figure 30.2 illustrates the cylinders. 

R2 

Figure 30.2 Problem 4. 

Solution 
I DE NTI FY The target variable is the self-inductance per unit length of the system. 

SET UP We can find the self-inductance either by finding the flux through the space between the 
cylinders and using the definition of inductance or by finding the energy stored in the volume between 
the cylinders and using the energy relation for inductors . We will follow the second option. We will use 
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the magnetic field to find the energy density. Since the energy density varies with the radius of the 
cylinder (as does the field), we will have to integrate the energy density through the region in between 
the cylinders. A slice through the cylinders shown in Figure 30.3 illustrates our integration procedure. 

,. r y 

�l 
t«-----R2-------7I>1 
Figure 30.3 Problem 4. 

EXECUTE We find the magnetic field between the cylinders by a quick application of Ampere's law or 
by reviewing Chapter 28, Try It Yourself Problem 2. The field between the cylinders is 

/Lal B = -
27Tr 

The energy per unit volume stored in the magnetic field is given by 
I U u = --B2 = - . 
2/La V 

Since the magnetic field is not constant between the cylinders, we must integrate between them. The 
energy stored in the magnetic field in the vertical slice dU, shown in Figure 30.3, is 

dU = _1-B2dV. 2/La 

The volume of the slice is the circumference ( 27Tr) , times the thickness (dr) , times the height (y) of 
the cylinder. Combining these results gives 

dU = - _a (27TrYdr) ---1 (/L 1 )2 /Lal2y dr 
2/La 27Tr 47T r 

Integrating from the inner to the outer radius yields 

U = 
fR2/Lal2y dr = 

/Lal2YfR2dr = 
/Lal2y In

(R2 ) .  

R 47T r 47T R r 47T R ] I I 

This expression must be equivalent to 

U = 1LI2 2 ' 
so we find the self-inductance by comparing terms: 

L = /LaYln (R2 ) . 
27T R] 
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EVALUATE You can check this result by using the first method mentioned in "Set Up": Find the 
flux through the space between the cylinders, and use the definition of inductance to find the self
inductance. This procedure, however, has similar difficulty and results in a similar integration. Both 
procedures lead to the same result for the self-inductance. 

Try It Yourself! 
1 :  Mutual inductance between a wire and a loop 
Calculate the mutual inductance between a long, straight wire and a rectangular coil, as shown in 
Figure 30.4. 

Wire 
f-E-O.1 m-7>j 

T 
O.2 m 

�l 
Ldr 

Figure 30.4 Try It Yourself Problem 1 .  

Solution Checkpoints 
IDE NTI FY A ND SET UP Find the mutual inductance by finding the flux through the coil due to the 
long wire. You will need to use integration. Why? 

EXECUTE What is the magnetic field due to the long wire? The flux through a thin vertical strip is 

Integrating across the coil gives 

d<P2 = JLol] Ldr. 
217r 

ffi _ JLol,L ( r2 ) '*'2 --- In - . 
217 rl 

From the flux, the mutual inductance is found to be 2.77 X 10-8 H. 

EVALUATE What is the mutual inductance when the loop is turned such that the normal to its area is 
directed radially outward? 

2: Equivalent inductances 
Calculate the equivalent inductance required to replace two inductors L] and L2 when they are (a) con
nected in series and (b) connected in parallel. 

Solution Checkpoints 
IDE NTI FY A ND SET UP Equivalent inductance is like equivalent resistance and equivalent capaci
tance. Combine the inductors and find the proportionality between the potential across the combination 
to the change in current through the combination. 
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EXE CUTE (a) In series, the potentials across the two inductors add to the total potential across the 
combination. The current through both is the same. The potential is 

di di di V = -L [
dt - L2 dt = - (L  [ + L2 ) dt ' 

The equivalent inductance is L[  + L2. 
(b) In parallel, the potentials across the two inductors are the same and the currents through each 

vary. The potential in terms of L [  is 

and similarly for L2• The total current is split between the two inductors, so we write 
di [ d( i - i [ ) V = -L[- = -L2 . 
dt dt 

Collecting the terms involving i [ and i on either side, rearranging terms, and applying some algebra 
yields 

The factor in front of the rightmost term is the equivalent inductance. Rearranging terms gives 
1 1 1 - = - + -. 

LEg L [  L2 
EVALUATE Are you surprised that inductors combine in series and in parallel in the same way that 
resistors combine in series and in parallel? Does this knowledge shed more light on the behavior of 
inductors? 





Al terna ting Current 

Summary 
In this chapter, we will learn how resistors, capacitors, and inductors 
behave in circuits with sinusoidally varying voltages and currents. To 
work with alternating-current circuits, we will expand our analysis 
toolbox with phasors and reactance. We will examine circuits contain
ing resistors, capacitors, and inductors and see how impedance brings 
together the resistance, capacitance, and inductance of those circuits. 
We'll examine the special case of resonance, in which the maximum 
current occurs at a particular frequency. 

Objectives 
After studying this chapter, you will understand 

• How to analyze circuits with time-varying currents and ernfs. 
• How to use phasor diagrams to analyze ac circuits . 
• How to apply capacitive and inductive reactances to circuit analysis. 
• How to analyze LRC circuits and find their impedance. 
• Resonance and the conditions for resonance in a circuit. 
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Concepts and Equations 

Term 
Alternating Current and Phasors 

Voltage, Current, and Phase Angle 

Resistance and Reactance 

Series LRC Circuit 

Power in ac Circuits 

Resonance 

Transformers 

Description 
A source of alternating current produces an emf that varies sinusoidally with 
time. Sinusoidal currents and voltages can be represented with phasors
vectors whose length represents a given quantity's amplitude and that rotate 
counterclockwise about the origin with constant angular velocity w. The pha
sor's projection on the horizontal axis at any instant represents the instanta
neous value of the quantity. Two useful quantities in ac circuits are the 
root-mean-square values of the voltage and current: 

V 
Vrrns = yI2' 

The voltage and current amplitudes in an ac circuit vary with time. In a cir
cuit with current given by i = Icoswt, the voltage is u = Vcos ( wt + ¢ ) ,  
where ¢ is the phase angle of the voltage relative to the current. The phase 
angle varies with the circuit element 

For a resistor R, the voltage and current are in phase, ¢ = 0°, and the voltage 
across the resistor is given by VR = IR. For an inductor L, the voltage leads 
the current, ¢ = 90°, and the voltage across the inductor is given by 
VL = IXv where XL = wL is the inductive reactance of the inductor. For a 
capacitor C, the voltage lags the current, w = -90°, and the voltage across 
the capacitor is given by Vc = IXc, where XL = I jwC is the capacitive reac
tance of the capacitor. 

In a series LRC circuit, the voltage and current amplitudes are related by 
V = IZ, where 

Z = YR2 + (XL - XC ) 2  = YR2 + [wL - ( l jwC) J 2  

is the impedance of the circuit. The phase angle of the voltage relative to the 
current is given by 

wL - I jwC 
¢ = arctan 

R 

The average power in an ac circuit is 

p = � VIcos¢ = Vrrnirmscos¢, 

where ¢ is the phase angle of the voltage relative to the current. Power is dis
sipated only through resistors. The quantify cos¢ is called the power factor. 

Resonance occurs when the current in a series LRC circuit reaches a maxi
mum and the impedance reaches a minimum at an angular frequency 

1 
wo = W' 

called the resonance frequency. The current and voltage are in phase at reso
nance, and the impedance is equal to the resistance. 

Transformers are used to change the voltage and current in an alternating-cur
rent circuit. The ratio of the primary to the secondary voltage for an ideal 
transformer with no energy loss is 
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where N2 and NI are the number of primary and secondary windings. The 
amplitudes of the primary and secondary currents and voltages are related by 

VIII = Vi2' 

1 :  Changing the power factor 
A series LRC circuit has an impedance of 50 n and a power factor of 0.700 at 60 Hz, and the source 
voltage leads the current. Should an inductor or a capacitor be added in series to the circuit to decrease 
the power factor to 0.400? 

Solution 
I DE NTI FY, SET UP, A N  D EXECUTE The impedance diagram for this problem is shown in Fig
ure 3 1 . 1 .  Since the voltage leads the current, the impedance must be located counterclockwise of the 
resistance. The vertical projection of the impedance is the difference between the inductive and capac
itive reactances. For the power factor to decrease, the cosine of the phase angle must decrease, rotating 
the impedance counterclockwise. To rotate the impedance counterclockwise, the difference between 
the inductive and capacitive reactances increases. To increase the difference by adding an element, you 
must add inductance. We conclude that we must add an inductor in series to the circuit in order for the 
power factor to decrease. 

R 

Figure 3 1 . 1  Question I .  

EVALUATE The key to solving this problem was the use of the impedance diagram. Once we created 
the diagram, we proceeded directly to the solution. 

2: What's in the circuit? 
You are given a box with electrical components connected in series inside. You cannot see inside the 
box, but are allowed to connect an ac emf source to the box. You observe that the voltage and current 
are in phase. You also determine that the resistance inside the box is 50 n. What can you conclude 
about the contents of the box? 

Solution 
IDE NTI FY, SET UP, A ND EXECUTE When the voltage and current are in phase, the phase angle is 
zero and the impedance equals the resistance. The box could contain a single resistor. However, it 
could also contain a capacitor and an inductor in addition to the resistor. For there to be a capacitor and 
an inductor inside the box, their reactances must be equal and the circuit must be in resonance. 
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EVALUATE With ac circuits, our analysis of circuits becomes more challenging than with dc circuits: 
We must now include capacitive reactance and inductive reactance in the analysis. 

3: Potentials in an LRC circuit 
A series LRC circuit is analyzed and is found to have potential differences of 1 2  V across the capacitor, 
2 1  V across the resistor, and 17  V across the inductor at a certain instant in time. Is the circuit operating 
above, below, or at its resonant angular frequency? 

Solution 
IDE NT I F Y, SET UP, A ND EX E CUT E The analysis indicates that the inductive reactance is greater 
than the capacitive reactance, since the potential difference is proportional to the reactance. When the 
inductive reactance is greater than the capacitive reactance, the frequency is above the resonant fre
quency. The circuit is operating above the resonant angular frequency. 
EVALUATE This problem elucidates the relationships among potential differences across circuit ele
ments, reactances, and resonance. 

Problems 

1 :  Adding an inductor to an LRC circuit 
An LRC series circuit has an impedance of 45 n and a power factor of 0.600 at 60 Hz, and the voltage 
lags the current. What value of inductor should be added in series to the circuit so that the power factor 
will be raised to unity? 

Solution 
IDENTI FY The target variable is the inductance to be added to the circuit. 
SET UP For a power factor of unity, the phase angle must be 0°. Since the voltage lags the current, the 
capacitive reactance must be larger than the inductive reactance, so we will need to add inductance for a 
phase angle of 0°. To guide us, Figure 3 1 .2 shows the impedance diagram for the situation. We see that 
adding an inductor with the vertical projection of the impedance (XL - Xc) will cancel the reactance. 

Figure 3 1 .2 Problem 1 .  



EXECUTE The original impedance and phase angle are given by 
XL - Xc tan¢ = . R 
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We first eliminate R from the equations by squaring the impedance and phase angle and substituting: 

Z2 = R2 + (XL _ XC) 2, R2 = (XL - XC) 2 
- tan2¢ , 

Z2 = 
(XL - XC) 2 + (X _ X ) 2 = (X - X ) 2 (_1_ + 1 ) tan2¢ L c L c tan2¢ , 

Z2 = (XL - XC) 2CSC2¢, 
(XL - Xc) = Zsin¢. 

The impedance we need to add is simply XL - Xc, so we solve for that difference. If cos¢ = 0.600, 
then sin¢ = 0.800, and 

The inductance must be 
X = XL - Xc = Zsin¢ = ( 45 0 )  ( 0. 800 ) = 36.0 O. 

X 36.0 0 
L = - = 

( I ) 
= 0.0955 H.  w 27T 60 rad s 

We will need to add an inductor with 95.5 mH of inductance to the circuit. 

EVALUATE Our first ac circuit problem has explored impedance, the power factor, and reactance. 
Using the impedance diagram guided us to the answer, as sketches and figures have guided us in most 
problems.  

2: Adding a capacitor to an LRC circuit 
A series LRC circuit uses 350 W of power from a 120-V (rms), 60-Hz ac power source. The power fac
tor is 0.400 and the voltage leads the current. What size of capacitor should be placed in series with the 
circuit to raise the power factor to unity? 

Solution 
IDE NT I FY The target variable is the capacitance to be added to the circuit. 

5 ET UP For a power factor of unity, the phase angle must be 0°. Since the voltage leads the current, 
the inductive reactance must be larger than the capacitive reactance, so we will need to add capacitance 
for a phase angle of 0°. To guide us, Figure 3 1 .3 on the next page shows the impedance diagram for the 
situation. We see that adding a capacitor with reactance equal to the vertical projection of the imped
ance (XL - Xc) will cancel the reactance. 
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Figure 3 1 .3 Problem 2. 

EXECUTE The power can be written 
P = 4IV COS¢. 

Substituting for current gives 
1 V2 

P = - - cos¢. 
2 Z 

Examining the phasor diagram, we see that 
X sin¢ = Z ' 

where X is the capacitive reactance we need to add to the circuit. Substituting yields 

Solving for X gives 

1 V2 I V2sin¢cos¢ p = - cos¢ = - --'----------'-
2 X/sin¢ 2 X 

V2sin¢cos¢ 
X - -- -

(V2 X 120 V ) 2 (0.917 ) (0.400 ) _ 

n 
2 ( 350 W)  - 15 . 1 . 

2P 

We were given the rms voltage, so we multiplied V by V2 to find the maximum voltage. The capaci
tance is then 

1 1 C = - = = 176 11F 
wX 27T ( 60 rad/s ) ( 15 . 1 n )  

You will need to add a capacitor with 1 76  f..LF of capacitance to the circuit. 

EVALUATE This ac circuit problem explored power and reactance and utilized an impedance diagram 
as a guide. 
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3: Finding the resonance frequency 
An LRC circuit is made by placing a parallel-plate capacitor with plates of area 22.6 m2, separated by 
2.0 mm and completely filled with Mylar®, in series with a 27-0, resistor and a toroidal solenoid 
inductor with 1 000 turns of wire, a cross-sectional area of 2.75 cm2, and a mean radius of 5.4 cm. The 
components are connected to an emf source operating with a 50-V amplitude at 1 20 Hz. What is the 
resonance angular frequency of this circuit? 

Solution 
IDE NTI FY The target variable is the resonance frequency of the circuit. 

5 ET UP The resonance angular frequency is 
1 

Wo = VLC ·  
We will need to find the inductance and capacitance of the components to determine the frequency. 

EXECUTE Recall that a parallel-plate capacitor with a dielectric has capacitance 
KEOA 

c = --d . 

In this case, the dielectric strength of Mylar® is 3 . 1  (from Table 1 8. 1 ) .  The capacitance is 

KEOA ( 3 . 1 ) ( 8 .85 X 10- 12 F/m) ( 22.6 m2 ) 
C = -d- = ( 0.0002 m)  = 3 . 1 0  IlF 

The inductance of a toroidal solenoid is given in Example 2 1 . 8  in the textbook: 

For the inductor in this problem, 

I/. N2A 
L = .:....r-....:..O 

__ 

21Tr 

Jl-oN2A ( 41T X 10-7 T ·  m/A ) ( 1000 ) 2 ( 2.75 X 1 0-4 m2 ) 
L = = = 1 .02 mH. 21Tr 21T (0.054 m)  

We can now calculate the resonance angular frequency: 
1 1 

Wo = � ;-;-::, = = 17 ,800 rad/s. 
V LC V ( 1 .02 mH ) ( 3 . 1 0  Jl-F) 

The resonance angular frequency of the circuit is 17,800 rad/s, or 2.83 kHz. 

EVALUATE This problem recalled our previous work with capacitors and inductors and combined it 
with our knowledge of resonance. We see that the resonance angular frequency does not depend on the 
resistance or the ac source; rather, it depends only on the inductance and the capacitance. 

4: Transformer example 
A transformer connected to a 1 10-V line delivers 10  V to the secondary circuit. If the power drawn 
from the primary circuit is 220 W, what is the equivalent resistance of the secondary circuit? 
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Solution 
I DENTI FY We will use the relations among current, voltage, and number of turns to solve the prob
lem. The target variable is the equivalent resistance of the secondary circuit. 

SET UP We start by finding the current in the secondary circuit. We will then find the equivalent 
resistance. 

EXECUTE Assuming that there are no power losses in the transformer, we know that the power in the 
primary and secondary are the same: 

VIII = V2I2 · 
The current in the secondary is found by substitution, yielding 

V/I ( 220 W ) 
12 = 

V2 
= 

( 10 V )  = 22 A. 

With the current and voltage known, we find the resistance: 

V2 ( lO V) 
R = I; = ( 22 A ) = 0.46 D. 

EVALUATE What is the ratio of the primary resistance to the secondary resistance? It is the square of 
the ratio of the number of turns in the primary circuit to the number of turns in the secondary circuit. 

P RA CTICE P R O BLEM What is the ratio of the number of turns in the two circuits? Answer: 1 1 .  

Try It Yourself! 
1 :  An LR circuit 
A resistor and an inductor are connected in series to a 60-Hz voltage source that produces a maximum 
voltage of 1 55 .6 V. If the resistor has a resistance of 200 D and the inductor has an inductance of 0.3 H, 
find (a) the impedance of the circuit, (b) the maximum current, and (c) the phase angle between the 
current and voltage. 

Solution Checkpoints 
I DE NTI FY A N D  SET UP Use the definitions to find the target variables. A phasor diagram will guide 
you to the solution. 

EXECUTE (a) The impedance is given by 

Z = VR2 + XL2 = 230 D. 
Note that the angular frequency is 377 rad/s. 
(b) The maximum current is 0.676 A. 
(c) The phase angle is found by examining the phasor diagram, yielding 
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The source voltage leads the current by 29.6°. 

EVA LUATE Can you find the time average provided by the source? Would you find the power used by 
the resistor and inductor and add those values? 

2: An LRC circuit 
A series LRC circuit is made from a 100-D resistor, an l l -mH inductor, and a 0 .21 -p,F capacitor. The 
elements are connected to an alternating-voltage source with a maximum voltage of 50 V operating at 
a frequency of 5000 Hz. Find the maximum current and the phase difference between the current and 
voltage. 

Solution Checkpoints 
I DE NTI FY A N  0 SET UP Use the definitions to find the target variables. A phasor diagram will guide 
you to the solution. 

EXECUTE The angular frequency is 3 . 1 4  X 104 rad/s. The reactances are found to be 
XL = 346 D, 
Xc = 152 D. 

The impedance is then 

The maximum current is 
V 

I = - = 0.229 A. Z 
The phase angle is found to be 

Since the inductive reactance is greater than the capacitive reactance, the voltage leads the current by 
62.7°. 

EVA LUATE Would the voltage lag or lead the current if the inductive reactance were less than the 
capacitive reactance? 





Electromagnetic Waves 

Summary 
In this chapter, we' ll study electromagnetic waves. Light, televisions, 
radios, cellular phones, microwave ovens, and radioactive nuclei have 
their origins in electromagnetic waves; their study is fundamental to 
our understanding of such waves. Maxwell's equations predict the 
existence of electromagnetic waves and describe them as time
varying electric and magnetic fields propagating through space. Elec
tromagnetic waves carry energy and momentum, and we' ll learn to 
describe the flow of waves, energy, and momentum through space. 

Objectives 
After studying this chapter, you will understand 

• The nature of electromagnetic waves as predicted by Maxwell's 
equations. 

• The propagation of electromagnetic waves through space and matter. 
• How to describe the propagation of sinusoidal waves through space. 
• How electromagnetic waves transmit energy and momentum through 

space. 
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Concepts and Equations 

Term 
Maxwell's Equations and 

Electromagnetic Waves 

Sinusoidal Electromagnetic Waves 

Electromagnetic Waves in Matter 

Energy and Momentum 

in Electromagnetic Waves 

Description 
Maxwell's equations predict the existence of electromagnetic waves
electromagnetic disturbances composed of time-varying electric and mag
netic fields that propagate at the speed of light, c, in vacuum. The speed of 
light is given by the expression 

1 
c = = 3 .00 X 1 08 m/s. 

\! Eo/-Lo 

The direction of propagation is the direction of E X B. Electromagnetic 
waves are transverse: Their electric and magnetic fields are perpendicular to 
the direction of propagation and to each other. The electromagnetic spectrum 
is the full range of electromagnetic waves, covering frequencies from at least 1 to 1 024 Hz. 

A sinusoidal plane electromagnetic wave traveling in vacuum in the +x 
direction is described by the equations 

E(x, t) = JEmaxcos (kx - wt) , 

B(x, t) = kBmaxcos (kx - wt) , 

When an electromagnetic wave travels through a dielectric, the wave speed v 
is less than the speed of light, c, in vacuum. The speed of light in a dielectric 
is given by 

1 c 
c = -- = ---

v£;. vKK:n' 
The Poynting vector S gives the energy flow rate of an electromagnetic wave 
in a vacuum: 

--> 1 --> --> S = -E X B. 
/-Lo 

The magnitude of  the time-averaged value of  the Poynting vector is  the inten
sity 1 of the wave: 

_ _ EmaxBmax _ Ema} _ .!.J¥aa 2 _ .!. 2 1 - Say - 2 - 2 -

2 E max - 2 Eac E max '  
/-La /-Lac /-La 

Electromagnetic waves carry momentum and exert radiation pressure Prad 
when striking a surface. For a surface perpendicular to the wave that is totally 
absorbing, 

1 Prad = � .  
For a surface perpendicular to the wave that i s  a perfect reflector, 

21 Prad = --;; 
The flow rate of electromagnetic radiation is given by 

1 dp S EB 
A dt c /-LoC 



conceptual Questions 
1 :  Solar sail 
Is it possible to build a space vehicle that "sails" on the light from the sun? 

Solution 

E LECTROMAG N ETIC WAVES 405 

IDE NTI F Y, SET UP, A ND EXECUTE Electromagnetic waves exert a radiation pressure on a surface. 
Light is an electromagnetic wave, so the light from the sun can be used to exert pressure on a surface. 
A space vehicle can be designed to operate off of a solar sail. 

EVA LUATE Solar sails have been designed for space vehicles, but are often supplemented by other 
forms of energy (such as gravitational energy). Among the drawbacks of solar sails are their inability to 
guide a vehicle toward the sun and their inability to provide large amounts of force. They are, however, 
. . mexpensIve. 

2: Designing a solar sail 
Given that you are now convinced that you can create a space vehicle that sails on the sun's light, from 
what type of material should the sail be manufactured, reflective or absorbing? Or does it matter? 

Solution 
I DE NTI F Y, SET UP, A N  D EXECUTE The radiation pressure of a perfectly reflecting surface perpen
dicular to the incident wave is twice that of a completely absorbing surface. To maximize the radiation 
pressure, which maximizes the force on the sail, a perfect reflector should be chosen as the material for 
the sail. 

EVA LUATE Even with twice the radiation pressure, the solar sail does not provide much power. 

3: Reflection versus absorption 
Why does a perfect reflector exert twice the radiation pressure on a surface compared with a total 
absorber? 

Solution 
IDE NTI F Y, SET UP, A ND EXECUTE Light reflecting from a perfect reflector will leave the surface 
with its initial momentum, thus changing its momentum by twice its initial momentum. Light being 
totally absorbed by a surface will have no momentum after absorption, thus changing its momentum 
by its initial momentum. The change in the light's momentum is momentum imparted onto the surface. 
Since light from the perfect reflector changes its momentum by twice that of light absorbed by the sur
face, light exerts a greater radiation pressure on the perfect reflector. 

EVA LUATE Recall that a ball bouncing off of a surface imparts more momentum to the surface than a 
piece of clay that is thrown at the surface and sticks. Since light has a similar property, can light, which 
we know is an electromagnetic wave, exhibit particle properties, as the ball or piece of clay does? 
We'll see that it does in Chapter 38 .  
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Problems 
1 :  Radiating waves 
A source of electromagnetic waves with 107 W of power radiates uniformly in all directions. Calculate 
the amplitude of the electric field vector for waves at a distance of (a) 1 00.0 m from the source and 
(b) 1 .0 km from the source. 

Solution 
IDE NTI FY We solve for the quantities in the problem by using the definition of intensity in terms of 
field magnitudes. 

5 ET UP The waves radiate uniformly in all directions, so we start by finding the intensity at a spheri
cal surface located an arbitrary distance r from the source. From the intensity, we solve for the ampli
tude of the electric field vector. 

EXECUTE Light radiates outward into a spherical surface. The area of that surface is 
A = 47Tr2. 

The intensity at a distance r is given by 
p P 

/ - - - --- A - 47Tr2 · 
Intensity is related to the amplitude of the electric field vector by 

1 
/ = -EocE2 

Solving for the amplitude gives 
2 . 

E = ) 27T;'SoC . 

Substituting, we find the amplitude of the electric field at 100.0 m: 

27T ( 100.0 m) 2 ( 8 .85 X 1O- 12 C2/N o m2 ) ( 3 .00 X 1 08 m/s ) = 245 Vim. 
Similarly, at 1 .0 km, the amplitude of the electric field is 24.5 V 1m. 

EVALUATE We see that the amplitude of the electric field is proportional to the inverse of the distance. 
Thus, the amplitude of the electric field drops by a factor of 10  when the distance to the source 
increases by a factor of 1 0. 

2: From Neptune to Pluto 
What are the minimum and maximum times required for light to travel from Neptune to Pluto? 
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Solution 
IDENTIFY We will find the time taken for light to travel between the two planets by using the speed 
of light and the distance between the planets. 

SET UP The maximum time required for light to travel between the two planets occurs when they are 
on opposite sides of the sun, completely opposite each other in their orbits . The distance between them 
in this case is the sum of their orbital radii. The minimum time required for light to travel between the 
two planets occurs when both planets are aligned on the same side of the sun. The distance between 
them in this case is the difference of their orbital radii. 

Appendix F, on the inside of the book's cover, lists the orbital radius of Neptune as 4.50 X 10 12 m 
and that of Pluto as 5.9 1 X 10 12 m. Space approximates a vacuum, so we use the speed of light in a 
vacuum in this problem. 

EXECUTE The minimum distance between the two planets is the difference of their orbital radii. Light 
traveling between them in this configuration will take a time given by the distance the light travels 
divided by the speed of light, or 

distance 
tm inim um = 

-

-c--

Tpl uto - TNept une 
c 

( 5 .9 1 X 10 12 m)  - (4.50 X 10 12 m) 
( 8 / )  = 4700 s = 1 .3 h. 
3 .00 X 10 m s 

The maximum distance between the two planets is the sum of their orbital radii .  Light traveling 
between them in this configuration will take a time given by the distance the light travels divided by 
the speed of light, or 

distance 
tmaxim um = 

-

-c--

Tpl uto + TNept une 
C 

( 5 . 9 1  X lO 12 m )  + ( 4.50 X 101 2 m )  
( 8 / )  = 34,700 s = 9.6 h. 
3 .00 X 10 m s 

EVALUATE We can get an idea of the vastness of our solar system by realizing how much time it takes 
for light to travel across it. This problem shows that it takes almost 10  hours for light to travel between 
the outermost two bodies of the solar system. 

3: Energy from the sun 
The intensity of radiation from the sun is 1 .4 kW/m2• (a) Find the maximum values of the electric and 
magnetic fields. If a beam of sunlight falls on a perfectly reflecting surface of area 1 m2 for 1 minute, 
find (b) the energy reflected from the mirror, (c) the momentum delivered to the mirror during that 
time, and (d) the force acting on the mirror. 
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Solution 
I DE NTI FY A N  D SET UP We solve for the quantities in the problem by using the definition of inten
sity in terms of field magnitudes and in terms of radiation pressure. 
EXECUTE The intensity of an electromagnetic wave given in terms of the maximum electric field is 

_ 1 2 I - 2EocEmax . 

Rearranging terms to find the maximum electric field yields 
f[£I 2 (  1400 W/m2 ) 

E - - - = 1030 Vim. max -
Eoc 

-
( 8 .85 X 1 0 - 12 c2/ (N ' m2 ) ) ( 3 .00 X 1 08 m/s ) 

The maximum magnetic field is then 

Emax 
Bmax = -C 

( 1 030 Vim ) _ -6 
( 8 I )  - 3 .4 X 1 0  T. 

3 .00 X 10 m s 
The intensity is the energy per area per unit time, so we find the energy by multiplying the intensity by 
area and time: 

!J. U  = IA!J. t  = ( 1400 W/m2 ) (  1 m2 ) (  60 s ) = 84,000 1. 

The average momentum transferred per unit time per unit area is given by 
1 !J.p I 

A !J.t c 

Our surface is reflecting, so the momentum imparted is twice this value. The momentum imparted is 
then 

_ IA!J. t  _ ( 1400 W/m2 ) (  1 m2 ) (  60 s ) _ -4 . I !J.p - 2 - 2 
( 8 I )  - 5 .60 X 1 0  kg m s. 

c 3 .00 X 1 0  m s 
The impulse of the force is the change in momentum, so the force is the change in momentum divided 
by the time: 

_ !J.p _ ( 5 .60 X 1 0-4 kg · m/s ) _ -6 
F - A -

( )  
- 9.33 X 1 0  N. 

I..J. t 60 s 

EVALUATE This problem illustrates how electromagnetic waves transmit energy, momentum, and 
force through their electric and magnetic waves. You can feel the transmission of electromagnetic 
wave energy when you open an oven door or sit outside in the sun. 

4: Force on the earth 
Find the average force exerted by the sun's light on the earth. Take the average intensity of radiation 
from the sun to be 1 .4 kW/m2. 

Solution 
IDE NTI FY We will use the relations among intensity, power, radiation pressure, and force to solve the 
problem. 
SET UP We model the earth as a circular, flat surface with a radius equal to that of the earth 
( 6.38 X 1 06 m ) . We will find the force by combining the radiation pressure and the area of the circle. 
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We will find the radiation pressure from the intensity of the sun's light that is incident upon the earth. 
We will take the earth as a total absorber. 

EXECUTE The radiation pressure for a totally absorbing surface oriented perpendicular to the incident 
wave is given by 

I Prad = c ·  

The radiation pressure for the light from the sun is therefore 
_ I _ ( 1 .4 X 103 W 1m2 ) _ -6 Prad - - - ( 8 I ) - 4.7 X 10  Pa. c 3 .00 X 10  m s 

The average force is equal to the radiation pressure times the area of the circle: 
F = PradA 

_ 2 - P rad 'TT'r earth 
= ( 4.7 X 1 0-6 Pa ) 7T ( 6.38 X 106 m ) 2 = 6.01 X 108 N. 

The sun's light exerts an average force on the earth of 6.01 X 1 08 N. 

EVALUATE With such a large force, why doesn't  the earth move away from the sun? The earth has a 
very large mass, so the acceleration due to this force on the earth alone is tiny. 

P RACTICE P R O B LE M  What is the acceleration of the earth resulting from the average force on the 
earth due to the sun's light, assuming that no other forces are present. The earth's mass is 5 .97 X 
1024 kg. Answer: 1 .0 1  X 10- 16 m/s2• 

Try It Yourself! 

1 :  Light traveling from the sun to the earth 
How much time does it take for light to travel from the sun to the earth? 

Solution Checkpoints 
IDENTI FY A ND SET UP Light travels at a constant rate. Use the average distance between the sun 
and the earth. 

EXECUTE The time taken for light to travel between the sun and the earth is 
distance 

t = ---c 

c 
( 1 .50 X lO l l  m ) 
( 8 I ) 

= 500 s = 8.3 m. 
3 .00 X 10 m s 

EVA LUATE We see that the earth is relatively close to the sun, considering that it take less than 
10  minutes for light to travel from the sun to the earth. Compare that travel time with the 10  hours that 
is needed for light to travel from Pluto to Neptune in Problem 2. 
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2: Electric field due to a source 
At a distance of 1 5 .0 krn from a source that radiates electromagnetic waves uniformly in all directions, 
the electric field amplitude is found to be 125 VIm. Find (a) the time-averaged value of the Poynting 
vector and (b) the time-averaged power radiated by the source. 

Solution Checkpoints 
IDE NTI FY A ND SET UP Use the relations among intensity, power, and electric field amplitude to 
solve the problem. 

EXECUTE (a) The average Poynting vector S is the intensity of an electromagnetic wave. Given in 
terms of the maximum electric field, 

Rearranging terms and solving leads to a value of 20.7 W/m2. 
(b) The intensity is the power per unit area, so find the power radiated by multiplying the intensity 

by the area of a sphere with radius 1 5 .0 krn: 

P = fA = ( 20.7 W/m2 )7T (  15 .0 krn)2 = 5.86 X 1010 W. 

EVALUATE If you measured the electric field amplitude for an electromagnetic wave at several loca
tions, could you determine the location of the radiation source and its power? 



Summary 

The Nature and 
Propagation of Light 

Light is an electromagnetic wave, and we will study the properties of 
light in this chapter. Light allows us to see, and is used to provide 
insight, into physical processes at the atomic scale. We will focus on 
visible light to understand how light is reflected from and propagates 
through materials .  That study will lay the foundation for our examina
tion of optics in the next chapter. 

Objectives 
After studying this chapter, you will understand 

• How light rays are used to represent the propagation of light 
through space. 

• How to apply the law of reflection. 
• How to apply the law of refraction. 
• The meaning and application of total internal reflection. 
• Polarization and how to apply it to a variety of problems. 

4 1 1 
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concepts and Equations 

Term 
Light 

Reflection and Refraction 

Total Internal Reflection 

Polarization 

Description 
Light is an electromagnetic wave that also shows particle properties as it is 
emitted or absorbed. A wave front is a surface of constant phase. Wave fronts 

move at the wave's propagation speed. A ray represents light as a line along 

the direction of propagation, which is perpendicular to the wave front. 

When light is transmitted from one material to another, its frequency remains 
constant, but its wavelength changes. The index of refraction, n, of a material 

is the ratio of the speed of light in vacuum, c, to the speed v in the material: 

n = c/v . The variation of the index of refraction with wavelength is called 

dispersion. 

At a smooth interface between two optical materials, the incident, reflected, 

and refracted rays are related. The law of reflection states that the angles of 

incidence and reflection are the same: 

The law of reflection also relates the angle of incidence to the angle of refrac

tion as 

where n is the index of refraction of the material. Angles of incidence, reflec

tion, and refraction are always measured with respect to the normal to the 

interface. 

Total internal reflection occurs when light travels within a material with a 

greater index of refraction, nO' towards an interface with a smaller index of 

refraction, nb, and the angle of incidence exceeds a critical angle given by 

Light rays with angles greater than Berit are totally reflected; no light is 

refracted. 

Polarized electromagnetic waves fluctuate along a single axis, with the direc

tion of polarization given by the direction the electric field. Polarization fil

ters allow the passage of radiation that is linearly polarized along the 

polarization axis and block radiation that is polarized perpendicular to the 

axis. Malus's law relates the incident intensity Imax to the transmitted intensity I through a polarizer with its axis oriented at an angle 1> to the incident 

wave's polarization axis: 

Brewster's law states that, for unpolarized light that strikes an interface 

between two materials, the reflected light is completely polarized perpendicu

lar to the plane of incidence at an angle of 

where na is the index of refraction of the incident material and nb is the index 

of refraction of the reflected surface. 



conceptual Questions 
1 :  Fishing with a Spear 
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You are standing on the side of a river and spot a delicious fish below the surface of the water. To spear 
the fish, should you aim above, below, or directly at its image? 

Solution 
IDE NTI FY, SET UP, A ND EXECUTE The light rays emanating from the fish in the water are 
refracted as they exit the water and enter the air. Since the index of refraction of water is greater than 
that of air, the image of the fish appears above the actual fish. (See Figure 33. 1 .) You will therefore 
want to aim below the image of the fish to spear it. 

Figure 33.1 Question 1. 

: .... .... .... Image of fish 
I � 
I �:-
I • 

I) 0 

I ". 

". 

EVALUATE Refraction plays an important role in the formation of images, as we will see in the next 
chapter. Lenses make use of refraction to magnify images of faraway objects. 

Practice Problem Where should you aim a laser beam to stun the fish? Answer: Aim the laser beam 
directly at the image of the fish. The light from the laser beam will refract in the same way as the light 
coming from the fish. 

2: Light through crossed l inear polarizers 
Two linearly polarizing filters are arranged with their axes perpendicular to each other so that no light 
passes through the filters. Can a third linearly polarizing filter be placed somewhere so that light passes 
through the system? 
Solution 
IDENTI FY, SET UP, A ND EXECUTE Placing the third linearly polarizing filter outside of the origi
nal two will not allow light to pass through. However, placing it between the original two and orienting 
its axis at an angle that does not coincide with either of the two filters' axes will allow light to pass 
through. With this configuration, the axes of any two successive filters will not be perpendicular, and 
light will pass through according to Malus's law. 
EVALUATE Crossed linear polarizers prevent the transmission of light only when they are placed next 
to each other. If any elements are placed between the polarizers, transmission may occur. 
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3:  Polarized glasses on the beach 
If you sit on a beach wearing polarized sunglasses, glare from the sunlight reflected off the ocean is 
reduced. If you lay down with your head sideways and view the ocean, the glare from the sunlight 
reflecting off the ocean is reduced only slightly. Why? 
Solution 
IDE NTI FY, SET UP, A ND EXECUTE Sunlight that reflects off the ocean is partially polarized, 
mostly in the horizontal direction. Polarized sunglasses reduce glare by orienting the polarization axis 
vertically, thus reducing the horizontally polarized light (and therefore the glare) . When you are sitting, 
your sunglasses are oriented correctly and the glare is reduced. When you lie down, the axis of the 
glasses tilts 90° and the polarization axis is no longer perpendicular to the horizontal direction, so the 
sunglasses don't  reduce the glare significantly. 
EVALUATE The next time you're wearing polarized sunglasses, tilt your head to see how the glare 
increases. This exercise illustrates how reflection polarizes light. 

Problems 

1 :  Light reflecting off of plane mirrors 
A light ray is incident on two plane mirrors intersecting at an angle (), as shown in Figure 33.2 .  Find the 
angle a in terms of the angle (). 

Figure 33.2 Problem 1 .  

Solution 
ID E NTI FY We will use the law of reflection and geometry to solve this problem 

SET UP We begin by sketching the figure and adding angles (Figure 33.3) .  At the first reflection, the 
angle of incidence and angle of reflection for the top mirror is () a. At the second reflection, the angle of 
incidence and angle of reflection for the bottom mirror is ()b. We determine a by using the law of reflec
tion and triangle identities. 

8 
Figure 33.3 Problem I Sketch. 
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EXECUTE Examining the figure, we see that the triangle fonned by the three light rays gives a rela
tionship among angles ()a' ()b' and a. At the reflections, the angle between the incident and reflected 
rays must be twice the incident angle. Summing the angles in the triangle gives 1 80°: 

2()a + 2()b + a = 1 80°, 
2 ( () a + () b ) + a = 1 80°. 

The triangle to the left of the first triangle (formed by the surfaces of the two mirrors and the ray 
reflected between them) gives a relationship among angles ()m ()b' and (). The sum of the complements 
of the two incident angles and () is 1 80°: 

Combining these results yields 

() + ( 90° - () a ) + ( 90° - () b ) = 1 80°, 
() = ()a + ()b· 

2 ( () )  + a = 1 80°, 
a = 1 80° - 2(). 

EVALUATE This problem shows how we must use geometry to solve reflection problems. What hap
pens when () = 90°? In this case, a becomes 0° and the two rays are parallel to each other. 

2: Light through a slab of glass 
Light enters a thin sheet of glass, refracts, and exits the glass, as shown in Figure 33 .4. The angle of 
incidence is 60°, the thickness of the glass is 1 .2 cm, and the ray is displaced a distance d = 0.80 cm. 
Find the index of refraction of the glass. 

60° no = I 

Air 

r 
nb 

Air 

60° 

Figure 33.4 Problem 2. 

Solution 
IDE NTI FY We will use the law of refraction and geometry to solve this problem. 

SET UP We are given the angle of incidence and know the index of refraction of air. We need the 
refraction angle to find the index of refraction of the glass .  We find the refraction angle by geometry, 
using the thickness of the glass and the displacement of the ray. Once we have the refraction angle, we 
use Snell 's law to find the index of refraction of the glass. 
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EXECUTE We find the angle of refraction by examining the figure. The tangent of the refraction angle 
is the displacement of the ray divided by the thickness of the glass: 

d 
tan Og = - , 

t 

Snell 's law is then used to find the index of refraction. For the air-glass interface, we have 
nasin Oa = ngsin Og. 

The index of refraction of air is unity, and the incident angle is 60°. Rearranging terms to find the index 
of refraction of the glass gives 

nasin 0 a ( 1 ) (  sin 60° ) 
n = . = . = 1 .56. g sm Og sm 33.7° 

EVALUATE As a check, we note that the index of refraction is greater than unity as we expected, since 
the refracted ray was bent towards the normal. The index of refraction for many varieties of glass is 
around 1 .5 , so we conclude that our result is reasonable. 

3: Light through a prism 
A horizontal ray of light is incident on a glass prism as shown in Figure 33 .5 .  The base of the prism is 
horizontal. The prism (n = 1 .35 ) is surrounded by oil (n = 1 .48 ) .  Determine the angle 0 that the 
exiting light makes with the normal to the right face of the prism. 

Figure :H.S Problem 3.  

Solution 
IDE NTI FY We will use the law of refraction and geometry to solve this problem. 

SET UP We begin by sketching the figure and adding useful angles. Figure 33.6 shows a close-up of 
the prism. Since both the incoming light ray and the base of the prism are horizontal, the angle between 
the incoming ray and the side of the prism must be 60.0°. The incident angle Oa must be 30.0°. The first 
refracted angle is labeled Ob' the second incident angle is labeled angle Oe> and the second refracted 
angle is labeled O. We determine 0 by using the law of refraction and triangle identities . 



T H E  NAT U R E  A N D  P ROPAGATION OF LIGHT 4 1 7  

Figure 33.6 Problem 3 .  

EXECUTE We apply law of refraction to both interfaces. At the first interface, the ray originates in the 
oil and refracts into the glass, so 

nailsin (}a = nglasssin (}b' 
We find the (}b' the first angle in the glass: 

(}b = sin- l ( nail Sin (}a) = sin- l ( ( 1 .48 )
sin 30.00 ) = 33 .24° . 

nglass ( 1 . 35 ) 

To find the angle () C ' we examine the triangle made by the top of the prism and the light ray passing 
through the prism. The bottom two angles are the complements of (}b and (}c. The two complement 
angles and the top angle must add to 1 80°, so 

( 90.0° - (}b ) + ( 60.0° ) + ( 90.0° - (}J = 1 80.0°, 
(}c = 60.0° - (}b = 60.0° - ( 33 .24° ) = 26.76°. 

With (}c known, we can solve for the angle () with the formula 

nglasssin () c = nail sin () .  
Solving for () yields (nglaSS ) I ( ( 1 .35 ) ) () = sin- l  --sin (}c = sin- sin 26.76° = 24.2° . nail ( 1 .48 ) 
The angle of exit is 24.2° . 

EVA LUATE This solution shows how to combine the law of refraction with geometry to solve a refrac
tion problem. As you can see, you must analyze the problem carefully to find the correct incident and 
refracted angles . Applying the law of refraction is straightforward. 

4: Light source in water 
A point light source 2.0 m below the surface of a water pool produces a circular pattern of light when 
viewed from above. Calculate the radius of the circle. Take the index of refraction of water to be 1 .33. 

Solution 
IDENTI FY We will solve this problem by using our knowledge of refraction and geometry. 
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SET UP We begin by sketching the situation as viewed from the side, as shown in Figure 33.7. Light 
rays from the point source approach the water-air interface and are deflected away from the normal as 
they pass through the interface. Beyond the critical angle, no light is refracted and all of the light is 
reflected internally. The edge of the circle corresponds to the critical angle. We will find the critical 
angle and then find the radius which corresponds to that angle. 

Figure :n.7 Problem 4 sketch. 

EXECUTE The critical angle for the water-air interface is given by 

. 
(j 

nwater SIn crit = --, nair 

The tangent of this critical angle is the radius of the circle divided by the depth of the light source, or 

R = dtan (jerit = ( 2.0m ) tan 48.6° = 2.27 m. 

EVALUATE How does a light source located above the air-water interface appear to someone under 
the water? The light source will appear above the actual location of the light source, but there will be 
no cutoff angle, as there is no critical angle when the light source is viewed from below. 

5: Combining several linear polarizers 
A number of linear polarizing filters are stacked with the polarizing axis of each successive filter 
rotated 20° from the previous filter. If unpolarized light of intensity 5 .00 W 1m2 is incident upon the 
first polarizer and the emerging light has an intensity of 1 .52 W 1m2, how many filters are in the stack? 

Solution 
IDE NTI FY We will solve this problem by using our knowledge of polarization and Malus's law. 

SET UP We will use the fact that the first linear polarizer will reduce the unpolarized light intensity by 
a factor of two and the subsequent filters will reduce the intensity by a factor of cos2e, due to the law of 
Malus. We will find the intensity emerging from the stack of filters as more filters are added. This exer
cise will lead to a general expression for the intensity coming from a stack of n filters. 

EXECUTE The first linear polarizer will reduce the intensity by a factor of two. The intensity after the 
first polarizer is thus 
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The next polarizer will reduce the intensity to 
12 = I1coS2 20° = ( 2.50 W/m2 ) cos2 20° = 2.21 W/m2. 

This is larger than the final emerging light intensity, so we add another polarizer and find the intensity: 
13 = I2cos2 20° = ( 2 .21  W/m2 ) cos2 20° = 1 .95 W/m2. 

Again, the intensity is too large, so we add another polarizer: 
14 = I3cos2 20° = ( 1 .95 W/m2 ) cos2 20° = 1 .72 W/m2. 

We are slowly approaching the correct number of polarizers. Let's add one more to find the intensity 
after five polarizers : 

Is = I4cos2 20° = ( 1 .72 W/m2 ) cos2 20° = 1 .52 W/m2. 
We have reached the desired emerging intensity and conclude that there are five polarizers in the stack. 
EVALUATE This problem shows how we can systematically add polarizers and find the intensity after 
each one is added. Those more familiar with mathematics may see a pattern arising. The intensity after 
n polarizers is 

In = 1Io ( cos2 20° ) 11 - 1 .  

The initial and final intensities could be substituted into this expression, and n could be found by taking 
logarithms of both sides. 

Try It Yourself! 
1 :  Coin in a pond 
A coin rests on the bottom of a shallow pond of depth 1 .0 m. Find the apparent depth of the coin when 
it is viewed directly from above. Take the index of refraction of water to be 1 .33 .  

Solution Checkpoints 
IDENTI FY A ND SET UP Snell 's law and geometry are needed to solve this problem. A sketch of the 
problem is shown in Figure 33 .8 .  

Q 

Figure :n.B Try It Yourself I .  
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The coin appears at a depth D above its actual location. Light leaves the water at a position located a 
distance x from a point directly above the coin. 
EXECUTE The angles of incidence and refraction for a light ray leaving the coin are related by 

The sines are given by 

Substituting gives 
nwaterX x 

Vx2 + d2 Vx2 + D2 · 
Squaring both sides and letting x go to zero (for viewing from above) produces 

d D = - = 0.75 m .  
nair 

EVALUATE Does the apparent depth increase or decrease as you view the coin from locations at inci
dent angles greater than 0°? 

2: Light through a prism 
Light enters a glass prism, is refracted, and exits the prism, as shown in Figure 33.9. Find the exiting 
angle of the light. Take the index of refraction of the prism to be 1 .50 and the initial incident angle to 
be 30.0° . The prism has equilateral sides. 

Figure 33.9 Try It Yourself 2. 

Solution Checkpoints 
IDE NTI FY A ND SET UP Snell 's law and geometry are needed to solve this problem. What is the 
angle between sides of the prism? 



EXECUTE The first angle of refraction is 
sin 8 l  = n sin 82, 

Examining the triangles, we see that 
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82 + 83 + ( 1 80° - 60° ) = 1 80°, 
83 = 60° - 82, 
83 = 40.53°. 

The second refraction gives the exiting angle: 
sin 84 = n sin 83 , 84 = 77. 1 °  

EVALUATE Careful analysis of angles and the use of Snell's law led to the solution. 

3: Light through polarizing filters 
Two ideal linear polarizing filters are arranged such that no light passes through them. A third linear 
polarizer is placed between the two polarizing filters . What is the total transmitted light intensity as a 
function of the orientation of the new polarizer? Take the intensity of light onto the first filter to be 10 
and the angle between the first filter and the newly added filter to be 8. 

Solution Checkpoints 
IDENTIFY A ND SET UP Use Malus's law to solve the problem. 

EXECUTE The intensity after the first filter will be 

After the second filter, the intensity drops to 

12 = ( cos2 8 ) /, = (� COS2 8 )10 .  

After the third filter, the intensity drops to 
13 = cos2 ( 90 - 8 )  12 

= (� COS2 8 sin2 8 )10 

= (� COS2 8 cos2 ( 90 - 8 )  )10 

= (� sin2 28 )10. 

EVALUATE When is the transmission maximum? 





Summary 

Geometric Optics and 
Optical Instruments 

In this chapter, we' ll use the concepts of reflection and refraction to 
understand the formation of images in mirrors and lenses. An image is 
formed by the collection of light rays that converge towards, or appear 
to diverge from, a point. We'll determine, both graphically and 
through calculations, the locations of images created by lenses and 
mirrors. We' ll also define virtual and real images, as well as focal 
points, and we' ll learn to quantify the size of an image relative to its 
object. We' ll then go on to explore familiar optical instruments, 
including cameras, magnifiers, the human eye, microscopes, and tele
scopes. We' ll apply our knowledge of geometric optics to discover 
how images are formed in these instruments. Optical systems may 
include one, several, or many lenses and mirrors. We'll focus on sys
tems with one or two components to illustrate their function. 

Objectives 
After studying this chapter, you will understand 

• How light rays form real and virtual images. 
• The magnification of images formed by mirrors and lenses. 
• Focal points for mirrors and lenses. 
• How to find, both by calculation and graphically, the location and 

size of an image formed by a spherical mirror. 
• How to find, both by calculation and graphically, the location and 

size of an image formed by a thin lens. 
• How to find the locations and sizes of images formed by combina

tions of multiple lenses. 
• Image formation in cameras, magnifiers, the human eye, micro

scopes, and telescopes. 
• Magnification for various optical instruments. 
• The fundamental design features of microscopes and telescopes. 

423 
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concepts and Equations 

Term 
Image Formation 

Reflection at a Spherical Surface 

Graphical Method for Image 

Formation in Mirrors 

Refraction at a Spherical Surface 

Thin Lenses 

Description 
Light rays diverging from an object point that reflect or refract from a surface 
may form an image if the outgoing rays appear to have diverged from an 

image point. The image formed is a virtual image if the rays don't converge 

at a point in space and is a real image if the rays converge at a point in space. 

The lateral magnification m is the ratio of the image height y ' to the object 

height y: 
y ' 

m = -. y 
For positive m, the object is erect, and for negative m, the image is inverted. 

Images are formed in spherical mirrors through the law of reflection. Parallel 

rays will reflect and converge at a focal point of a concave mirror and will 

appear to diverge at the focal point of a convex mirror. The focal lengthJ of a 

spherical mirror is the distance from the vertex to the focal point and is equal 

to half the radius of curvature (j = Rj2 ) .  The object distance s, image dis

tance s ', and focal length J are related by 

1 1 1  - + - = - .  s s ' J 

Four principal rays can be drawn to find the size and location of the image 

formed by a mirror: 1 .  A ray reflected parallel to the optic axis passes through the focal point of a 

concave mirror or appears to originate at the virtual focal point of a convex 

mirror. 2. A ray passing through (or towards) the focal point is reflected parallel to 

the optic axis. 3. A ray passing along the radius through or away from the center of curvature 

intersects the surface normally and is reflected back along its original path. 4. A ray going to the vertex of the mirror is reflected, forming equal angles 

with the optic axis. 

The location of the image is the point where the rays intersect or appear to 

originate. 

Images are formed in spherical lenses through the law of refraction. A thin 

lens has two spherical surfaces close enough together that the distance 

between the surfaces can be ignored. A thin lens has two focal points located 

equidistant from the lens on either side. The thin-lens equation describes the 

behavior of the lens: 

Here, n is the index of refraction of the lens material, and R I and R2 are the 

radii of curvature of the first and second surfaces, respectively. The image 

magnification for a thin lens is given by 

s' 
nl = s 



Graphical Method for Image 

Formation in Thin Lenses 

The Camera 

The Eye 

Magnifiers 

Microscopes and Telescopes 

G EO M ETRIC O PTICS A N D  OPTICAL I N STRU M ENTS 425 

Three principal rays can be drawn to find the size and location of the image 

formed by a thin lens: 1 .  A ray refracted parallel to the optic axis passes through the second focal 

point of a converging lens or appears to originate from the second focal point 

of a diverging lens. 

2.  A ray passing through the center of the lens does not deviate appreciably 

from its path. 3. A ray passing through (or towards) the first focal point is refracted and 

emerges parallel to the optic axis. 

The location of the image is the point where the rays intersect or appear to 

originate. 

A camera forms a real, inverted, often reduced image of an object on a light

sensitive surface. The intensity of the light striking the surface is controlled 

by the shutter speed and aperture. The intensity is inversely proportional to 

the square of the f-number of the lens: 

Focal length f 
f - number = -------'='--

Aperture Diameter D 
A real image is formed on the retina of the eye due to refraction through the 

eye. In nearsighted (myopic) vision, the image is formed in front of the 

retina. In farsighted (hyperopic) vision, the image is formed behind the retina. 

The power of corrective lenses is given in diopters-the reciprocal of the 

focal length, in meters. 

A simple magnifier creates a virtual image whose angular size is larger than 

the object itself. The angular magnification is the ratio of the angular size of 

the image to that of the object: 

e '  M = -e ' 

For the average viewer with a 25-cm near point, the angular magnification 

becomes 

25 cm M = -- . 
f 

In a compound microscope, the first lens (the objective lens) forms an image 

that becomes the object of the second lens (the eyepiece). The eyepiece forms 

a virtual image, often at infinity, of the first image. The overall magnification 

is the product of the magnifications of the two lenses; that is, 

where s ' ,  is the image distance of the objective. 

A telescope operates similarly, but on objects that are far away. Since the 

object is far away, the image is formed at the focal plane of the objective lens, 

and the focal point of the eyepiece is set to coincide with the objective's focal 

point. The angular magnification of a telescope is 

M =  
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conceptual Questions 
1 :  Image in a plane mirror 
You view the image of an object in the plane mirror shown in Figure 34. 1 .  Can you see an image? If so, 
at what position is the image formed? If not, why not? 

Solution 

Observation 
point 

<Ie A 

D B • 

• • 
Object E 

Figure 34.1 Question 1. 

B 
• 

I D ENTI FY, SET UP, A N  D EXECUTE Images in plane mirrors are formed equidistant from the mir
ror; the image and object distances are the same in magnitude. The image of the object is located 
behind the mirror, at point E. Note that the mirror doesn't need to extend to the region where the object 
and image are located; the collection of light rays emanating from the object that reflects from the mir
ror into your eyes forms the image at E. 

EVALUATE We see that images can be formed by a mirror that only partially covers a region. The 
same holds true for lenses :  Partial lenses will also form images, but with reduced intensity compared 
with that of a full lens. 

2: What does a fish see? 
A fish looks at a spectator from the inside of an aquarium. The spectator is 1 .0 m from the side of the 
aquarium. How far from the side of the aquarium does the spectator appear to the fish, at 1 .0 m, or 
closer or farther than 1 .0 m? 

Solution 
IDENTI FY, SET UP, A ND EXECUTE Since the spectator is in (air nair < nwater ) , the light rays corn
ing from the person will refract towards the normal as they pass into the aquarium. The person will 
appear farther from the fish than the 1 .0-m distance. We can confirm this fact with the sketch shown 
in Figure 34.2. We see that the rays emanating from the person are bent towards the normal as they 
enter the aquarium. Tracing those rays backwards yields an image farther from the side of the aquarium. 
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P' 

�-*--------':::::::!Ii1'W o • 
• .. 

Figure 34.2 Question 2. 

EVALUATE This situation is opposite to the one illustrated in Figure 34.3 in the textbook: When the 
person looks into a medium with a higher index of refraction, the image is formed closer to the inter
face than the object is located. 

3: Finding the focal points 
An object is placed in front of a thin lens. Two light rays from the object pass through the lens and 
refract as shown in Figure 34.3, crossing at point A to the right of the lens. Find the two focal points, 
located on either side of the lens. 

Object 

Figure 34.3 Question 3. 

Solution 
I DE NTI FY, SET UP, A N  D EXECUTE The image formed by the lens must be at point A, where the 
two rays cross. We find the focal points by constructing two principal rays. Recall that a principal ray 
passing parallel to the optic axis will refract through the second focal point. We construct this ray by 
taking a ray parallel to the axis and refracting it such that it passes through point A, where the second 
focal point is when it crosses the optic axis. Recall also that a ray passing through the first focal point 
will refract parallel to the optic axis. We construct this ray by tracing a ray parallel to the axis back
wards from point A to the lens. The ray must originate at the object, where the first focal point is when 
it crosses the optic axis. These rays are illustrated in Figure 34.4. 

Figure 34.4 Question 3 sketch. 
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EVALUATE We see that both focal points are equidistant from the lens and on opposite sides, consis
tent with our expectation. You might expect that the focal points are where the two original light rays 
crossed the optic axis. However, as we've seen, we must use our principal rays to locate the focal 
points. We can draw many light rays that cross the optic axis at various points along the axis, but only 
two pass through the focal points. 

4: Diving masks 
When snorkeling or scuba diving, you wear a diving mask that leaves a region of air between the mask 
and your eyes. If you take the mask off, you cannot see underwater objects clearly. Why? 
Solution 
IDENTI FY, SET UP, A ND EXECUTE The indexes of refraction for the components of the eye are 
close to the index of refraction for water. Therefore, much of the refraction of light entering the eye 
occurs at the cornea. When your eye is in air, the shape of the cornea allows images to be formed in 
your eye. When your eye is submerged in water, much less focusing occurs at the cornea, and you can
not focus on underwater objects. 
EVALUATE The eyes of fish must have a larger curvature in order to image underwater objects . Fish 
cannot use the difference in the air-eye indexes of refraction to image objects . 

5: Finding a strange lens 
You find a lens and discover that it is thicker at the center than at the edges. You also find that the thick
ness at the edges changes :  The lens is thicker at the top and bottom than at the sides. What kind of 
vision defect is this lens designed to correct? 
Solution 
IDENTI FY, SET UP, A ND EXECUTE Since the lens is thicker at the center than at the edges, it is a 
converging lens with a positive focal length. Converging lenses are used to correct for farsightedness, 
or hyperopia. The changing thickness around the edge indicates that the lens has different refractive 
powers along different axes. Therefore, this lens must also correct for astigmatism, or differences in the 
focus along perpendicular planes due to a nonspherical cornea. The lens corrects for both farsighted
ness and astigmatism. 

EVALUATE Cylindrical lenses correct for both distance and astigmatism. 

Problems 
1 :  Image in a convex mirror 
A convex mirror has a radius of curvature of absolute value 25 cm. Determine graphically the image 
position of a real object placed 45 cm from the vertex of the mirror. Confirm the graphical analysis by 
computing the image distance and magnification. 

Solution 
IDE NTI FY The problem requires us to find the solution both graphically and by calculations. This 
will go a long way toward making sure that our result is correct. 
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SET UP A N  D EXECUTE The graphical construction is shown in Figure 34.5. The mirror is convex, 
so its radius of curvature and focal point are located behind it and to the right. Four light rays are 
drawn. The first ray passes parallel to the optic axis and is reflected so as to appear to originate from the 
focal point of the mirror. The second ray is directed at the focal point and reflects from the mirror's sur
face and parallel to the optic axis. The third ray is directed at the center of curvature and reflects back 
along its original path. The fourth ray is directed towards the vertex and reflects at the vertex such that 
the incoming and outgoing rays form equal angles with the optic axis. 

p 
- - - -....... c 

Figure 34.5 Problem I sketch. 

We find the location of the image by tracing the four reflected rays backwards and noting where they 
meet. As we see, the four rays intersect behind the mirror, forming a virtual image just to the left of the 
focal point. The image is upright and smaller than the original. 

We check the graphical analysis by computing the image distance and magnification. The image 
distance is given by 

1 1 1  - + - = - . s s ' f 
The focal length of a convex mirror is half the radius of curvature of the mirror. The radius of curvature 
is negative for a convex mirror, so the focal length of this mirror is f = - 12.5 cm. We find the image 
distance by rearranging terms and substituting: 

1 1 1 1 1 
s ' = -9.78 cm. - - -

s ' f s ( - 12.5 cm ) ( 45 cm ) ' 

The magnification is then 
s ' -9.78 cm +0.22. m = - - = -s 45 cm 

The image is located 9.78 cm behind the mirror, which is a little to the left of the focal point. The 
image is virtual, is erect (the magnification is positive), and is 22% of the original size. This agrees 
with our graphical analysis. 
EVALUATE We have seen throughout this course that sketches aid in our analysis. Solving image for
mation problems by both graphical methods and calculations helps ensure accurate results. When the 
two analyses don' t  agree, we must check our methods and correct any mistakes. 

2: A thin-lens problem 
You are given a converging lens with f = + 15 .0 cm and are asked to position it so that it forms a vir
tual, erect image of an object that is three times taller than the original object. Where do you place the 
lens? Confirm your calculations by sketching a principal-ray diagram. 
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Solution 
IDENTI FY A ND SET UP We can solve the problem either by graphical methods or by computing 
values. Since we are unsure of the location of the object, we begin by computing values. The magnifi
cation and thin-lens equations will be used to solve the problem. A graphical check will confirm our 
solution. 
EXECUTE The magnification equation will give us a relation between the locations of the object and 
image. For a thin lens, 

s ' m = s 
The image is to be erect ( m  > 0 ) and three times higher ( I m I = 3 )  than the object. Accordingly, we 
have 

s ' = -ms = -3s. 
The thin-lens equation relates the object distance, image distance, and focal length: 

1 1 1  - + - = - .  s s '  1 
We substitute for the image distance: 

1 1 1  - + -- = -.  s -3s 1 

Multiplying all terms by - 3s1 gives 

The image distance is therefore 

-3/ + 1 = -2/ = -3s, 
2 2 

s = 3/ = 3 ( + 15.0 cm ) = + lO.O cm. 

s' = - 3s = -3 ( 1O.O cm ) = -30.0 cm. 
The principal-ray diagram is sketched in Figure 34.6 . The lens is converging, and the object is located 
to the left of the lens, between the first focal point and the lens. The first ray from the object passes par
allel to the optic axis and refracts through the second focal point of the lens. The second ray passes 
through the center of the lens undeviated. The third ray appears to originate from the first focal point 
and is refracted, emerging parallel to the optic axis. These three rays do not intersect in real space, so 
we trace them back to where they appear to intersect. We see that they appear to intersect to the left of 
the first focal point, thus creating a virtual image. The image is erect and larger than the object. We 
conclude that our graphical analysis leads to results that are consistent with our earlier analysis. 

""7.,,.- - - - - - - - - -/rr-------. ...:- .... 
• ..... .... - 3 / :  .... .... .... - .... .... 1 
i 
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Figure 34.6 Problem 2 sketch. 
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We need to place the lens 1 0.0 cm from the object in order to create an erect, virtual image at an image 
distance of -30.0 cm. 
EVALUATE We could also have begun by sketching various scenarios to identify the solution. It may 
have taken several attempts, but we would have found the solution. Being able to start with either a 
principal-ray diagram or the thin-lens equation is a valuable technique. 

3: Focal length of a spherical mirror 
A real image is formed when an object is placed 10.0 cm from a concave spherical mirror. When the 
object is moved 2.0 cm farther from the mirror, the image moves 1 6.0 cm closer to the mirror. Find the 
focal length of the mirror. 
Solution 
IDENTIFY We will apply the mirror equation to each situation to solve for the focal length of the mir
ror, the target variable. 
SET UP We first sketch the two situations shown in Figure 34.7. On top, we see the original situation; 
on the bottom, we see the situation after the object is moved 2.0 cm farther from the mirror. We' ll pro
ceed to calculate the solution from the mirror equation for the two situations. 

1 0  e m  \ \ 
• 

f 

I 

12  e m  

Figure 34.7 Problem 3 sketch. 

EXECUTE The mirror equation relates the object distance, image distance, and focal length for spher
ical mirrors : 

1 1 1  - + - = - . s s ' f 
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When the object is located at 1 0.0 cm, we have 
1 1 1 

---- + - = - . ( 10.0 cm) s '  f 
There are two unknowns in this equation. We' ll find a second relationship that describes the situation 
after the object has been moved and then combine the two equations to solve for the focal length. 
When the object is moved to 1 2.0 cm, we have 

1 1 1 ---- + = -
( 12.0 cm) s ' - 1 6.0 cm f · 

The right-hand sides of the last two equations are equal, so we set them equal to each other: 

Simplifying yields 

1 1 1 1 
-:------:- + - =  + -----
( 1 0.0 cm) s '  ( 12.0 cm) s '  - 1 6.0 cm 

1 1 1 
---- + - =  . ( 60.0 cm) s '  s '  - 16.0 cm 

We multiply all terms by ( 60.0 cm) s '  ( s '  - 1 6.0 cm) ,  which gives 
s '  ( s '  - 1 6.0 cm) + ( 60.0 cm) ( s '  - 16.0 cm) = ( 60.0 cm)s ' ,  

or 
S '2 - ( 16.0 cm) s '  - ( 960.0 cm) = o. 

We can use the quadratic formula or factor the preceding equation to solve for the image distance. 
Choosing factoring, we see that the equation becomes 

( s '  - 40.0 cm) ( s '  + 24.0 cm) = 0, s '  = +40.0 cm or -24.0 cm. 
The image is real, so it must be located at +40.0 cm. We can now substitute to find the focal length: 

1 1 1 
( ) + ( ) = - , f = +8.0 cm. 1 0.0 cm 40.0 cm f 

The spherical mirror has a focal length of +8.0 cm. 
EVALUATE This problem illustrates how we can apply the mirror equation to several related situa
tions to find our solution. The mirror equation is straightforward, but in this case our solution required 
solving a quadratic formula. 
Practice Problem: Check the results with a principal-ray diagram. 

4: Combination of lenses 
Most optical instruments contain multiple lenses. The image formed by the first lens becomes the 
object in the second lens and so on. To illustrate how these systems work, examine the following com
bination of lenses: 

A 2.0-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length of 
+20.0 cm. A second converging lens with a focal length of + 1 5 .0 cm is placed 85.0 cm to the right of 
the first lens along the same optic axis. Find the location and height of the final image formed by the 
combination of lenses. 



G EOM ETRIC OPTICS A N D  OPTICAL I N ST R U M ENTS 433 

Solution 
IDENTIFY A ND SET UP We' ll first find the location of the image created by the first lens and then 
use that as our object in the second lens. The sketch shown in Figure 34.8 will aid our analysis. The top 
principal-ray diagram shows that the image from the first lens will be between the two lenses. We'll 
need to find the new object distance ( S2) ,  referenced by its relation to the second lens. We expect the 
final image to be real and erect. Each lens will magnify the image, and the total magnification will be 
the product of the two individual magnifications. 

Le hS  1 

�1(-------------- 85 cm --------------�)1 

A s ;  I+-- s 1 ------7 f l 1 
f1 f2 f ( 

L 2 
V 

S1 S2 V 
Le hS 1 L e  hS 2 

Figure 34.8 Problem 4 sketch. 

EXECUTE The location of the first image is found with the thin-lens equation: 
I I I - + - = - .  S S f f 

For the first lens, we use the subscript 1 to identify the quantities. The image distance is 
1 1 1 1 

( +20.0 cm ) 
1 

s ;  = +60.0 cm. 
( +30.0 cm ) , 

The first image becomes the object in the second lens. Since the second lens is 85 .0 cm to the right of 
the first lens, the image of the first lens is formed 25.0 cm to the left of the second lens, or 
S2 = +25 .0 cm. The second image distance is 

1 1 1 1 

( + 1 5 .0 cm ) 
1 

( +25.0 cm ) ' 

The final image is formed 37.5 cm to the right of the second lens. 

S2 = +37.5 cm. 



434 CHAPTER 34 

The size of the image is found by combining the magnifications. The magnification for the first lens is 
s ;  60.0 cm 

ml = -- = 
-

= -2.0. 
Sl 30.0 cm 

The magnification for the second lens is 
S2 

m2 = -- = 
S2 

37.5 cm --- = - l .5 .  25.0 cm 
The total magnification is the product of the two magnifications: 

mtotal = mlm2 = ( -2.0 ) ( - l .5 )  = +3 .0. 
The image is erect and three times larger than the object. The image is 6.0 cm tall. 

EVALUATE Designing optical instruments involves analyzing combinations of multiple lenses. This 
problem shows how to combine two lenses. In this case, the first image was formed between the two 
lenses. In some cases, the first image can be formed to the right of the second lens, creating a virtual 
object for the second lens. However, even in these more complicated lens systems, our analysis tools 
will lead to the correct solution. 

Practice Problem: Confirm the location of the final image by drawing a principal-ray diagram for the 
second lens. 

5 :  Travel of a camera lens 
A camera must be able to image objects from as close as 25 cm away to objects infinitely far away. If a 
camera has a lens with a focal length of 50 mm, find the travel, or distance the lens must move, in order 
to create images of objects at any distance. 

Solution 
IDENTIFY A ND SET UP We will use the thin-lens equation to find the image distances for the two 
different extreme object distances. By comparing the two, we' ll find the travel of the lens. 

EXECUTE The thin-lens equation relates the object distance, image distance, and focal length: 
1 I 1 
- + - = - .  

S S f f 
For the close object distance, the image distance is 

1 1 1 - - -
S f  f S 

1 I 
( 5 .0 cm) ( 25 cm) , S f = 6.25 cm. 

For the infinitely distant object, the image is formed at the focal point, so the image distance is 5 .0 cm. 
The difference in the two distances is the travel: 

Lls = S�lose - Sfar = 6.25 cm - 5.0 cm = l .25 cm. 
The lens must be able to travel 1 .25 cm, or 1 2.5 mm, to accommodate all object distances. 

EVALUATE This problem illustrates why camera lenses must be adjusted to form clear images. 

Practice Problem: Would a lens with a longer focal length require more or less travel? Answer: A 
longer focal length lens would require a longer travel to accommodate all object distances. 
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6: Designing corrective lenses 
Determine the power of the corrective lenses required for (a) a myopic eye with far point at 40.0 cm 
and (b) a hyperopic eye with near point at 40.0 cm. 

Solution 
I DENTI FY We will find the corrective lenses that create images at the near or far points of the eyes 
with the given properties. 

SET UP For a myopic eye, the lens must form a virtual image at the far point of the eye for objects 
that are far away. Thus, in this case, when the object distance is infinite, the image distance must be 
-40.0 cm. 

For a hyperopic eye, the lens must form a virtual image at the near point of the eye for objects that 
are close. Thus, in this case, when the object distance is 25 .0 cm, the image distance must be 
-40.0 cm. 

We' ll use the thin-lens equation to determine the focal lengths for each case. The corrective power 
is the inverse of the focal length, in meters. 

EXECUTE The thin-lens equation relates the object distance, image distance, and focal length: 
1 1 1  
- + - = - . s s ' f 

For the myopic eye, the object distance is infinite and the image distance is -40.0 cm: 
1 1 1 1 1 

- = - + - = - + = -2.5 diopters. f s s ' 
CIJ ( -0.400 m ) 

The myopic eye needs a diverging lens of -2.5 diopters. 

For the hyperopic eye, when the object distance is 25 .0 cm, the image distance is -40.0 cm: 
1 1 1 1 1 

- = - + - = + = + 1 .5 diopters. 
f S s ' ( 0.25 m ) ( -0.400 m ) 

The hyperopic eye needs a converging lens of + 1 .5 diopters . 
EVALUATE This problem contrasts the two types of distance vision defects. For each, we use the 
appropriate corrective lens to create an image at the farthest or closest point the defective eye can 
Image. 

7 :  Designing a microscope 
You are to design a microscope that consists of a IO.O-mm objective lens and a tube that will hold the 
lenses 1 5 .0 cm apart. If the microscope is designed to view an object that is placed 3 .0 mm beyond the 
objective lens's focal point and create its final image at infinity, what is the focal length of the eye
piece? What is the magnification of the microscope? 

Solution 
I DE NTI FY We'll use the design parameters of the microscope to solve the problem. 
SET UP For the final image to be at infinity, the first image must coincide with the focal point of the 
objective. We' ll find the location of the first image to determine the focal length of the eyepiece. We 
can then find the overall magnification by using the microscope formula. 
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EXECUTE The location of the image created by the objective lens is found from the thin-lens equa
tion. The object distance is the focal length plus 3 .0 mm, or 1 3 .0 mm. The image distance is then 

1 1 1 1 1 
- - -

s ; 11 s [ 10.0 mm ( 1 3.0 mm) , s ; = 43.3 mm. 

The distance between the lenses is 1 5 .0 cm, so the image is formed 
S2 = 1 5 .0 cm - 4.33 cm = 1 0.7 cm 

from the eyepiece. The eyepiece must have a focal length of 10.7 cm. The magnification of the micro
scope IS 

( 25 cm ) s ;  ( 25 cm) (4.3 cm) 
M = 

Id2 
= 

( 1 .00 cm) ( 10.7 cm) 
= 10.0 X .  

The eyepiece must have a focal length of 10.7 cm, and the overall magnification is a factor of 10. 

EVALUATE This problem illustrates the design of a microscope. The objective creates an image inside 
the microscope tube, and the eyepiece in turn magnifies the objective's image. The eyepiece is posi
tioned so that its image is located at infinity. That is, the focal point of the eyepiece is positioned near 
the objective's image location. 

8: Exploring a telescope 
An astronomical telescope is made of two lenses separated by 2.00 m. The focal length of the eyepiece 
is 1 2.0 cm. What is the angular magnification of the telescope? The moon subtends an angle of approx
imately 1 /20 at the earth. What is the diameter of the moon's image produced by the objective lens of 
the telescope? 

Solution 
1 0  ENTI FY We will use the design features of a telescope to solve the problem. 

SET UP Astronomical telescopes are designed to view distant objects . The image from the objective 
lens is formed at the objective's focal point. The eyepiece then magnifies that image, creating a final 
image at infinity. This is accomplished by setting the eyepiece's focal point at the focal point of the 
objective. The distance between the two lenses must be the sum of the focal lengths. We find the focal 
length of the objective by subtracting the focal length of the eyepiece from the overall length of the tel
escope. With the focal length of the objective known, we can then find the magnification and diameter 
of the moon's image. 
EXECUTE The focal length of the objective is 

11 = 200 cm - 12 = 200 cm - 12 cm = 1 88 cm. 
The angular magnification is then 

11 ( 1 88 cm) 
M = - - = - = - 15 .7X .  

12 ( 1 2 cm) 
The diameter of the moon's image is the magnification times the original diameter: 

, 

I y ' l = My = � y. s 
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The image is formed at the focal point, so the image distance is the focal length of the objective. The 
angle the moon subtends without the telescope is the tangent of the moon's diameter divided by its dis
tance, which, for small angles, reduces to 

Substituting gives 

I y ' l = Ss
' y = Of = (r ) ( I�O ) ( 1 88 cm) 

The diameter of the moon's  image is 1 .64 cm. 

1 .64 cm. 

EVALUATE In this problem, we see how a telescope is designed and forms images. A telescope is sim
ilar to a microscope, but with the objective's image being formed at the objective's focal point. 

Try It Yourself! 

1 :  A concave mirror 
A concave spherical refracting surface forms an image of an object placed 1 .6 m from the surface in 
air. The index of refraction of the material is 1 .50 and the surface has a radius with an absolute value of 
0.80 m. Find the location of the image and its magnification. 
Solution Checkpoints 
IDE NTI FY A ND SET UP Use the relations for refraction at a spherical surface to solve the problem. 
Carefully assign and evaluate the signs of variables. Use a principal-ray diagram to check your results. 
EXECUTE The general formula for finding the location of the image is 

na nb nb - na - + - = . s s ' R 
In this case, the object distance is 1 .6 m and the object is in air, so na = 1 .0, and the radius of curvature 
is negative. (Why?) Substituting gives s ' = 1 .2 m. 

The magnification is given by 

Substituting gives a magnification of +0.5 . 
EVALUATE Is your ray diagram consistent with your numeric result? You should check both position 
and magnification with the diagram. 

2: Two thin lenses 
Two thin lenses with focal lengths f, = +3 .0 cm and f2 = -5 .0 cm are placed in contact with each 
other. An object situated 4.0 cm from the lens combination, closer to the lens with the +3 .0 = cm focal 
length. Find the location of the final image. 

Solution Checkpoints 
IDENTIFY A ND SET UP Use the thin-lens relations to solve the problem. Carefully assign and eval
uate the signs of variables. Use a principal-ray diagram to check your results. 
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EXECUTE The thin lens formula to find the location of the first image is 
1 1 1 

- + - = Sl  s ;  fl '  
Substituting the given values, we find that the image due to the first lens is located at 1 2.0 cm. This 
image becomes the object for the second lens. The object distance is - 12.0 cm, since it is located on 
the real side of the lens. Use this result in the thin-lens formula for the second lens: 

1 1 1 
- + - = -
S2 s� f2 

. 

Substituting the given values results in a final image location of - 8 .57 cm. This is a virtual image 
located on the side of the first lens. 

EVALUATE Does your ray diagram agree with your result? You should have used two principal-ray 
diagrams to check. 

3: Designing a microscope 
A microscope has an objective lens with focal length fa = 1 .6 cm and an eyepiece lens with focal 
length Ie = 2.5 cm. What is the magnification of the microscope if an object is placed 0. 10  cm from 
the focal point of the objective lens? 

Solution Checkpoints 
IDE NTI FY A ND SET UP Use the magnification equation for a microscope to solve the problem. 

EXECUTE The magnification for a microscope is given by 
( 25 cm) s ;  

M =  . 
fd2 

From the thin-lens equation, the image distance s ;  is found to be 27.2 cm. This yields a magnification 
of 170. 

EVALUATE Did you remember to include both the objective focal length and the 0. 1 cm in calculating 
the object distance? 
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Interference 

In this chapter, w e  explore the wave nature of light. Earlier w e  learned 
that light is an electromagnetic wave, but we have not yet encountered 
situations that demonstrate the wave nature of light. In this chapter, 
we will see how light can interfere, one property that confirms the 
wave nature of light. The study of phenomena associated with the 
wave nature of light is called physical optics. 

Objectives 
After studying this chapter, you will understand 

• How waves combine or interfere in space. 

• The definition of coherent light sources, interference, and phase. 

• How constructive and destructive interference leads to interference 
patterns. 

• How to analyze two-source interference and thin-film interference. 

• The intensity of light at various points in an interference pattern. 

• How to use interference to measure tiny distances. 

439 
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Concepts and Equations 

Term 

Interference 

1\vo-Source Interference 

Intensity in Interference Patterns 

Thin-Film Interference 

conceptual Questions 
1: Two-source interference 

Description 

Light emanating from two coherent sources and overlapping in a region 

forms an interference pattern. Constructive interference occurs when two 

waves arrive at a point in phase. Destructive interference occurs when two 

waves arrive at a point exactly half a cycle out of phase. 

For two light sources in phase, constructive interference occurs at points 

where the path-length difference is zero or an integral number of wave
lengths; destructive interference occurs when the path-length difference is a 

half-integral number of wavelengths. For two light sources located a distance 

d apart, the condition for constructive interference is 

dsin e = rnA, rn = 0, ± 1, ± 2, . . .  , 
and the condition for destructive interference is 

dsin e = (rn + 1)A, rn = 0, ± 1 ,  ± 2, . . . . 

When two sinusoidal waves with equal amplitude E and phase difference <p 

are superimposed, the resultant amplitude and intensity are given by 

Ep = 2E l cos �I, 
1= Iocos2 P... 

2
· 

When light is reflected from both sides of a thin film of thickness t, interfer

ence occurs. Constructive interference occurs when 

2t = rnA, rn = 0, 1 , 2, . . .  , 
in cases where both waves or neither wave is phase shifted by a half-cycle 

and where A is the wavelength in the thin film. If a half-cycle phase shift 

occurs at only one surface, the given equation is the condition for destructive 

interference. A half-cycle phase shift occurs during reflection whenever the 

index of refraction of the reflecting material is greater than that of the 

medium the wave is traveling through. 

Coherent light passes through two thin slits and produces an interference pattern. If one slit is covered 
with a glass plate that introduces a half-cycle phase shift between the two emerging waves, how is the 
interference pattern altered? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  At the center of the interference pattern, both waves travel the 
same distance, but are out of phase, creating a dark spot due to destructive interference. At locations 
where there was constructive interference, there is now destructive interference due to the addition of 
the glass plate. At locations where there was destructive interference, constructive interference occurs 
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due to the glass plate. We conclude that the pattern of alternating bright and dark locations reverses 
after the glass plate is added. 

EVA L U AT E  The addition of the glass plate does not change the path differences that create the inter
ference pattern, but rather only exchanges the pattern of bright and dark locations. 

2: Newton's rings 
When a planoconvex lens is placed on top of a plane glass surface, circular interference fringes known 
as Newton's rings appear. Why is the center of this pattern black? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  Figure 35.1 shows an enlarged view of the situation. The inter
ference pattern is created by light that reflects off of the bottom surface of the lens interfering with light 
that passes through the lens and reflects off of the plane glass surface. Light that reflects off of the bot
tom lens surface does not undergo a phase shift, since the index of refraction of the air is less than that 
of glass. Light reflecting off of the plane glass surface does undergo a half-cycle phase shift, since the 
index of refraction of the glass is greater than that of air. The relative phase of the two interfering light 
waves is different by one half cycle. At the center of the lens, there is essentially no path difference, so 
the two waves interfere destructively, creating a dark spot. 

Figure 35.1 Question 2. 

EVA L UAT E  The analysis of phase differences is the first step in the investigation of thin-film interfer
ence. We could continue our investigation of this problem and identify regions of bright and dark 
fringes by determining the conditions for constructive and destructive interference. 

3 :  Interference pattern on a slide 
A thin film of oil is sprayed on a vertically oriented, smooth, flat glass slide. After the spraying, some 
of the oil moves to the bottom of the slide, leaving a wedge-shaped coating of oil on the slide (Fig
ure 35.2). Sketch the interference pattern that occurs when the slide is viewed from the oil side with 
monochromatic light. The index of refraction of the oil is 1.3 and of the glass is 1 .4. 
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Glass slide 

Oil 

Figure 35.2 Question 3. 

Solution 
I D E N T I F Y, S ET U P, A N D E X E C U T E  A thin-film interference pattern will occur because the light 
that reflects off of the oil surface interferes with the light that reflects off of the glass surface. The pat
tern will consist of bright and dark regions corresponding to constructive and destructive interference, 
respectively. 

The wedge-shaped oil coating will exhibit alternating bright and dark horizontal bands.  The bands 
are horizontal because, by assumption, the thickness of the oil is uniform across the slide. 

We also learn that the top band across the slide is a bright band. This is because both the light 
reflected off of the oil surface and the light reflected off of the glass slide have a half-cycle phase shift 
due to their reflecting off materials with higher indexes of refraction. There is no net phase difference 
between the two reflected waves and there is no path difference at the top of the slide. The two waves 
interfere constructively at the top, creating a bright fringe. The pattern is shown in Figure 35.3. 

Figure 35.3 Question 3. 

EVA L U AT E  This problem contrasts with the previous one, in which there was a dark fringe at the cen
ter. Analyzing the reflected light waves for phase changes is crucial in thin-film problems. 
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Problems 
1: Separation of interference lines 
Monochromatic light of wavelength 550 nm is incident upon two slits separated by 0. 1 5  mm. The 
resulting interference pattern is observed on a screen 2.0 m away. What is the linear separation between 
the third bright line and the fifth dark line on the screen? 

Solution 
I D E  N T I F  Y We will use the two-slit interference relations to find the distance between the two lines on 
the screen. 

S ET U P  The linear separation on the screen is found by first finding the angular separation. We' ll use 
the constructive and destructive two-source interference equations to find the angular locations of the 
two lines and then apply trigonometry to find their positions on the screen. Bright lines correspond to 
constructive interference, dark lines to destructive interference. The difference between the two posi
tions is the linear separation. 

E X E C U T E  The condition for constructive interference is 

dsin e = mA, m = 0, ± 1 ,  ±2, . . . .  

We take the third bright line to be the third bright line past the central maximum. The third bright line 
will be at an angle given by 

3A 3 (550 X 1 0-9 m) 
sin e = e = - = = 0.0 1 1 0  rad 

d ( 1 .5 X 10-4 m) 
, 

where we replaced sine with e in radians for small e. The third bright line will be located at a distance 
from the central maximum given by 

Y3 = Rtan e = Re = (2.0 m) (O.O lIO rad) = 2.2 cm, 

where R is the distance to the screen and we again used the small-angle approximation. 
The condition for destructive interference is 

dsin e = (m + �)A, m = 0, ± 1, ±2, . . . .  

The fifth dark line corresponds to m = 4, which will be at an angle given by 

(4 + �)A 4.5 (550 X 10-9 m) 
sin e = e = = = 0.0 1 65 rad 

d ( 1 .5 X 1 0-4 m) 
, 

where we again replaced sine with e in radians for small e. The fifth dark line will be located at a dis
tance from the central maximum given by 

Ys = Rtan e = Re = (2.0 m) (0.01 65 rad) = 3 .3 cm. 

The difference in position on the screen between the third bright and fifth dark lines is the difference 

�Y = Ys - Y3 = (3.3 cm) - ( 2.2 cm) = 1 . 1  cm. 

The two lines are separated by 1 . 1  cm. 
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EVA LU AT E  This problem illustrates how to interpret and solve two-source interference problems. We 
see that we must carefully interpret the statement of the problem and carefully count the interference 
lines to find the solution. 

2: Thin-film interference pattern 
The flat surface of a glass block with a refractive index of 1 .53 is coated with a thin, transparent film of 
refractive index 1 .63 and thickness 630.0 nm. Assuming that the visible spectrum extends from 400.0 
to 700.0 nm, what visible wavelength(s) of light will appear intensified in the reflected beam? 

Solution 
I D E  N T I  FY Light will reflect off the top of the film and from the film-glass interface, creating a thin
film interference pattern. The target variables are the visible wavelengths that are seen from above. 

S ET U P  The wavelengths that will be intensified will be those undergoing constructive interference. 
We will solve the problem by varying n and identifying wavelengths in the visible range that interfere 
constructively in the layer of film. 

E X E C U T E  To determine the proper thin-film interference equation to use, we first check the indexes of 
refraction of the reflecting materials. At the air-film interface, there is a half-cycle phase change 
because the film has a higher index of refraction than that of air. At the film-glass interface, there is no 
phase change, because the glass has a lower index of refraction than that of the film. Therefore, there is 
a net phase change of one half cycle, and the proper constructive interference equation is 

2t = (m + 4)A. 

Recall that the wavelength in the equation is the light's wavelength in the medium. The wavelength of 
light in air is the wavelength of light in the medium times the index of refraction of the medium: 

2tn 
Ao = An = . 

(m + 4) 
We now vary m and find all wavelengths in the visible part of the spectrum: 

2tn 2(630.0 nm) ( 1 .63)  
Ao = An = (4) = 

(4) 
= 4108 nm 

2tn 2(630.0 nm) ( 1 .63) 
Ao = An = = = 1369 nm 

( 1  + 4) (�) 
2tn 2 (  630.0 nm) ( 1 .63) 

Ao = An = = = 822 nm 
( 2  + 4) (�) 

2tn 2 (  630.0 nm) ( 1 .63) 
Ao = An = = = 587 nm 

(3 + 4) (�) 
2tn 2 (  630.0 nm) ( 1 .63) 

Ao = An = = = 456 nm 
(4 + 4) (¥) 

2tn 2 (  630.0 nm) ( 1 .63)  
Ao = An = = = 373 nm 

(5 + 4) (il) 

(m = 0), 

(m = 1 ), 

(m = 2), 

(m = 3), 

(m = 4), 

(m = 5 ). 
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We see that only for m = 3 and m = 4 do we get wavelengths in the visible spectrum. We conclude 
that light of wavelengths 5 87 nm and 456 nm is intensified in the reflected beam. 

EVA L U AT E  When working with thin-film interference, we must determine the type of interference 
(constructive or destructive), as well as the phase changes at the reflecting interfaces. Once these are 
established, we proceed directly to the solution. 

Practice Problem: What wavelengths would appear intensified if a film with an index of refraction of 
1 .44 is substituted in this problem? Answer: 605 nm, 454 nm. 

3: Nonglare coating 
A thin layer of water (n = 1 .33) on top of a layer of glass (n = 1 .5 )  produces a nonglare optical coat
ing viewed normally by light of 600 nm wavelength. What is the minimum thickness of the water 
layer? 

Solution 
I D E  N T I F  Y We will use the condition for thin-film interference to solve this problem. Light reflecting 
off of the top of the water will interfere with light that refracts through the water and reflects off of the 
water-glass interface. 

S ET U P  To form a nonglare coating, the light must interfere destructively upon reflection from the 
surface. Light that reflects from the top of the water layer will have a half-cycle phase shift, since the 
index of refraction of water is greater than that of air. Light that refracts through the water and reflects 
off of the top of the glass also has a half-cycle phase shift, because the index of refraction of glass is 
greater than that of water. The combination of the two kinds of light results in no relative phase change 
between the interfering waves. 

E X E C U T E  The condition for destructive interference is then 

2t = (m + tn . . 
Recall that the wavelength in the equation is the wavelength of light in the medium. The wavelength of 
the light in air is the wavelength of the light in the medium times the index of refraction of the medium. 
Thus, 

Ao(m + t) 
t =  . 

2n 

The minimum thickness of water corresponds to the condition where m = 0, giving 

Aod) (600 nm) 
t = -- = = 1 13 nm. 

2n 4( 1 .33) 

A water layer 1 13 nm thick will lead to destructive interference for 600-nm light. 

EVA LUAT E  To make a reflective coating, you could double the thickness of the water layer. 
Of course, using water as a nonreflective coating isn't the best solution, because water evaporates, so 
the nonreflective properties would last only a limited time. 
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Try It Yourself! 
1: Interference fringes 
Calculate the separation between interference fringes obtained in Young's experiment when 550-nm 
light is shined upon two slits separated by 0.22 mm and viewed on a screen that is 3.0 m away from 
the slits. 

Solution Checkpoints 
I D E N T I  F Y  A N D S ET U P  Sketch the problem. What is the condition for constructive interference? 

E X E C U T E  The condition for constructive interference is given by 

dsin () = rnA, for rn = 0, 1 ,2, . . . .  

The distance to the screen is large, so 

sin ()-tan () = 2:'.-, 
R 

where Y is the distance from the axis to the constructive fringe and R is the distance between the slits 
and the screen. Bright fringes appear for values of Yn equal to 

AR 
Yn = nr;. 

Evaluating the expression gives a distance of 7.5 mm between fringes .  

EVA L U AT E  What is the distance between dark fringes? 

2: Soap film 
A soap film with index of refraction equal to 1 .35 is  viewed normally. Calculate the minimum thick
ness of the film that will give constructive interference for yellow light of wavelength 575 nm. 

Solution Checkpoints 
I D E N T I FY A N D S ET U P  Sketch the problem. What two rays interfere? Is a half-cycle phase shift 
introduced for one or both reflected light rays? 

EX E C U T  E Light reflected from the top surface of the soap film has a half-cycle phase shift introduced. 
Constructive interference occurs when 

2nt = (m + �),\ 
The minimum thickness corresponds to rn = O. The minimum thickness for constructive interference 
is 1 07 nm. 

EVA L U AT E  Why was the factor n introduced in the path difference? 



Diffraction 

Summary 
In this chapter, we continue our exploration of the wave nature of light. 
Here, we' ll examine how light bends when it passes an edge or corner. 
This bending, or diffraction, results from the wave nature of light. We 
will investigate phenomena such as single-slit diffraction, diffraction 
gratings, X-ray diffraction, resolving power, and holography. 

Objectives 
After studying this chapter, you will understand 

• How a coherent light source shining on an edge creates a diffrac
tion pattern. 

• The diffraction pattern formed by light passing through a narrow 
slit. 

• How to calculate intensity as a function of angle in single-slit 
diffraction. 

• The diffraction pattern created by a diffraction grating . 

• How to probe atomic arrangements of crystals through X-ray 
diffraction . 

• How to apply Rayleigh's criterion to find the limit of resolution of 
optical systems. 

447 
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Concepts and Equations 

Term 

Diffraction 

Single-Slit Diffraction 

Diffraction Grating 

X-ray Diffraction 

Circular Apertures and 

Resolving Power 

conceptual Questions 
1: Light as a particle 

Description 

Diffraction occurs when light passes through an aperture or around an edge. 
Fraunhofer diffraction occurs when the source and observer are far from the 
obstructing surface and the outgoing rays can be considered to be parallel. 
Fresnel diffraction occurs when the observer or source is close to the 
obstructing surface. 

For a single narrow slit of width a illuminated with monochromatic light, 
destructive interference occurs at angles satisfying the relationship 

mA 
sine =-, 

a 
m = ± 1, ± 2, ± 3, . . .. 

The intensity of the diffraction patter is given by 

_ { sin [ 7Ta(sin e)/A]}2 1-10 . . 
7Ta(sm e)/A 

A diffraction grating consists of many thin parallel slits spaced a distance d 
apart. Maximum intensity occurs when 

dsin e = mA, m = 0, ± 1, ± 2, .... 

The pattern is similar to that seen with two-source interference, but with the 
maxima very sharp and narrow. 

A crystal serves as a three-dimensional diffraction grating for X-rays with 
wavelengths of the same order of magnitude as the spacing of the atoms in 
the crystal. For a set of crystal planes spaced a distance d apart, maximum 
intensity occurs when 

2dsin e = mA, m = 0, 1,2, .... 

This condition is referred to as the Bragg condition. 

A circular aperture of diameter D creates a diffraction pattern consisting of a 
central bright spot, called the Airy disk, surrounded by a series of concentric 
dark and bright rings. The limit of resolution is defined by the angular size of 
the first dark ring, given by 

1.22A 
sin e) = -----v- . 

Rayleigh's criterion states that two point objects are just barely resolved 
when their angular separation is at the limit of resolution. 

If light were composed of tiny particles, like grains of sand, would a diffraction pattern be formed 
when the light went through a thin slit? 

Solution 
I D E N T I FY, S ET U P, AN D E X E C U T E  A diffraction pattern is created by waves interfering at the dif
fractive edge or aperture. Imagine many adjacent waves at the thin slit interfering with each other. 
These adjacent waves will produce a diffraction pattern. 
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Particles neither interfere nor create diffraction patterns. If light were made of tiny particles, then light 
would not exhibit wave behavior and create diffraction patterns. Since light does make diffraction pat
terns, it must have a wave nature. 

EVA LU AT E  This problem helps illustrate the difference between wave and particle phenomena. 
Waves and particles have distinct behaviors; by finding evidence of these behaviors, we identify 
objects as waves or particles. 

In Chapter 38, we shall see that light can also exhibit particle behavior. Wave-particle duality is a 
fundamental component of modern physics. 

2: Can sound interfere and diffract? 
Can sound waves exhibit interference and diffraction? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  Sound waves interfere, although it can be difficult to observe 
their interference. You may have noticed that the sound level at a concert changes as you move around 
in front of the speakers . The changing level is due to interference. 

Sound waves can certainly diffract when they go around a corner. You experience sound-wave dif
fraction whenever you listen to a conversation occurring around a corner or hear music from down the 
hall. If sound waves didn't diffract, then you would be able to hear only conversations that occur 
within view of your location. 

EVA L U AT E  Wave phenomena, including interference and diffraction, occur with all forms of waves, 
not just light waves. Familiarity with the various forms of wave interaction helps us build an under
standing of electromagnetic wave interactions. 

Problems 
1: Wavelength of l ight 
Monochromatic light from a laser is incident on a slit 0.550 mm wide. On a screen 1 .50 m away from 
the slit, the distance between the first minima on either side of the central maximum is 2.35 mm. Deter
mine the wavelength of light emitted by the laser. 

Solution 
I D E N T I  F Y  We will use our knowledge of single-slit diffraction to solve this problem. 

S ET U P  Diffractive patterns are symmetric, so the distance from the central maximum to either of the 
first minima is half the distance between the first minima on either side of the maximum. The distance 
to the screen is much larger than the separation of the minima, so the angle is very small and we 
replace sin () with y/2R. 

E X E C U T E  The condition for dark fringes is 

rnA 
sin () = -. 

a 
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Substituting for the sine gives 

y mA 
2R a '  

where y is the distance between the two minima on either side of the central maximum and R is the dis
tance to the screen. Note that we have divided the distance to the screen by 1 12, as that is the distance 
between the central maximum and the first minimum. The first minimum corresponds to m = 1 .  Rear
ranging terms and solving for the wavelength gives 

A = 
� 

= 
( 0 .55 0 mm) ( 2.35 mm) 

= 43 1 nm. 
m2R 2( 1 ) ( 1 .5 0  m) 

The laser emits 43 1 -nm light. 

EVA L UAT E  This problem illustrates how we can use macroscopic objects to measure very small 
wavelength of light. Both interference and diffraction are used to measure small quantities throughout 
the field of physics. 

2: Intensity from a single slit 
For the single-slit diffraction pattern, find the ratio of the intensity at the first maximum to that at the 
center. 

Solution 
I D E N T I  F Y  We will use the diffraction intensity equation to solve the problem. 

S ET U P  The position of the first maximum is not easy to determine in diffraction, because the inten
sity function is not linear. The location is not where the sine function in the numerator is zero, since 
there is a second sine function in the denominator. To solve the problem, we will use an approximate 
value of the maximum to estimate the ratio of the intensities. 

E X E C U T E  The intensity due to a single slit is given by 

{ sin [1Ta(sin 8)/ A J }2 
1 = 10 1Ta(sin 8)/ It 

We set the argument of the numerator to 31T12 to find the first maximum; that is, we set 

The resulting intensity is then 

1Ta(sin 8) 31T 
It 2 

{ sin [31T12J }2 { 4 } 
1 = 10 = 10 -2 

= 0 . 045/0 . 31T12 91T 

We see that the first maximum has only about 4.5% of the intensity of the central maximum. 

EVA LU AT E  Careful analysis shows that the true intensity at the first maximum is 4.72% of the inten
sity of the central maximum. We see that our approximation was reasonable in this problem. We also 
see how rapidly the maximum intensity decreases as one moves away from the central maximum. 
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3: The diffraction grating 
Light of 665 nm produces a third-order bright fringe band at an angle of 75 . 0° after passing through a 
diffraction grating. Find the locations of the first-, second-, and fourth-order bright bands. 

Solution 
I D E N T I FY We will use the diffraction grating equation to solve the problem. 

S ET U P  To find the locations of the bright bands, we must first find the slit separation of the grating. 
We will use the information provided for the third-order bright band to find the slit separation. We then 
proceed to find the angular positions of the bands. 

E X E C U T E  The condition for bright bands for a diffraction grating is 

dsin 8 = rnA, rn = 0, ± 1 , ± 2, . . . .  

Knowing the angle allows us to find the slit separation: 

rnA (3 ) (665 nm) 
d = -- = = 2065 nm. 

sin 8 sin 75.0° 

The slits are separated by 2065 nm, or equivalently, there are 4842 lines per millimeter. We can now 
find the angles for the other orders . The first-order bright band is located at 

8 = sin- I 
rnA 

= sin- I 
( 1 )665 nm 

= 1 8 . 80 .  
d 2065 nm 

The second-order bright band is located at 

8 = sin - I  
rnA 

= sin -I ( 2)665 nm = 4 0 . 00 . 
d 2065 nm 

The fourth-order bright band is located where 

rnA (4)665 nm 
sin 8 = - = = 1 . 29 .  

d 2065 nm 

There is no angle whose sine is 1 . 29, so the fourth-order bright band is not visible. The first- and second
order bright bands are located at 1 8 .8° and 4 0 . 0° , respectively. 

EVA L U AT E  Diffraction gratings allow us to determine the wavelength of light accurately. One can 
start with a known wavelength to calibrate the grating and then use the grating to find the wavelength 
of an unknown light. 

4: Bragg scattering 
An X-ray photon with a wavelength of 0 . 1 24 nm is incident on a single crystal of sodium chloride 
(NaCI). If constructive interference is observed at 1 2.7°, what is the minimum lattice spacing of the 
crystal? 

Solution 
I D E  N T I  FY We will use the Bragg condition to find the lattice spacing of the crystal. 
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S ET U P  The minimum lattice spacing correlates to the first-order constructive interference condition. 
This means that we will need to use m = 1 in the Bragg relation. 

E X E C U T E  The Bragg condition for constructive interference is given by 

2dsin (J = mI... 

Rearranging terms to solve for d gives 

mA 
d= --

2sin (J. 

Substituting m = 1 and solving yields 

d = 
� 

= 
( 1 ) (0. 124 nm) 

= 0.282 nm. 
2sin (J 2sin 12.7° 

The minimum lattice spacing for the NaCI crystal is 0.282 nm. 

EVA L UAT E  This problem illustrates how we can use X-ray diffraction to measure the structure of 
crystals. Because the lattice spacing is much smaller than the wavelength of visible light, X-rays must 
be used to probe the atomic spacing. 

5: Designing a telescope 
Pluto's moon Charon was discovered in 1978. What minimum-diameter reflecting telescope was 
needed to discover Charon? Take the distance to Charon to be 5 .9 X 10 12 m and the diameter of 
Charon to be 1 .2 X 106 m. 

Solution 
I D E N T I FY We will use Rayleigh's criterion to find the resolving power of a telescope. 

S ET U P  To discover Charon, one must be able to resolve it in the telescope. We will use Rayleigh's 
criterion to find the minimum diameter of the telescope, and we will use the average wavelength of 
light from the sun (A = 550 nm) in our calculations. 

E X E C U T E  Rayleigh's criterion gives the limit of resolution for an optical instrument: 

The angular size of Charon is 

A 
(Jres = 1 .22 

D 
. 

s 1 .2 X 106 m 
(J = 

- = = 2.03 X 10-7 rad r 5 .9 X 10 12  m ' 

where we used the diameter and the distance to the planet. The minimum diameter of the telescope 
lens is 

A 550 X 10-9 m 
D = 1 .22- = 1 .22 7 = 3.30 m. 

(J 2.03 X 10- rad 

The minimum diameter of the telescope lens needed to resolve Charon is 3 .30 m. 
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EVA L U AT E  We see that Charon's small angular size requires a large-diameter telescope to observe it. 
Also, the amount of light reflecting off the satellite is very small. Both of these challenges led to the 
discovery of Charon only rather recently. 

Try It Yourself! 
1: A diffraction grating 
Light of wavelength 550 nm strikes a diffraction grating. The first maximum away from the central 
bright spot occurs at 1 5 .96°. (a) Find the value of the spacing in the grating. (b) At what angle should 
one look to find the second maximum for light of wavelength 500 nm? 

Solution Checkpoints 
I D E N T I FY A N D  SET U P  Which equation should be used? What value of m should the first and sec
ond maxima correspond to? 

E X E C U T E  (a) The spacing in the grating is found from 

mA 
d = - . 

sin e 
Using m = 1 ,  you should find that the spacing in the grating is 2.00 X 10-6 m. 

(b) The angle for the second maximum for SOO-nm light is 

e � sin -] (2:) 
The angle is 30.0°. 

EVA L U AT E  Can you find the angle for the third maximum with light of wavelength 400 nm? 

2: Viewing a binary star system 
Blue light (486 nm) from a binary star system located 100 light-years from earth is observed through a 
telescope. What must the minimum diameter of the primary lens be in order to determine that there are 
two stars in the binary system if the two stars are located 5.0 X 10- 5  light-year apart? 

Solution Checkpoints 
I D E N T I FY A N D  S E T  U P  Use Rayleigh's criterion to solve the equation for the minimum diameter. 

E X E C U T E  The angular size of separation of the two stars is 

s S.O X 10-5 LY 
e = - = = S X 10-7 rad. r 100 LY 

The minimum diameter of the telescope lens is 

A 486 X 10-9 m 
D = 1 .22- = 1 .22 

7 
= 1 . 19 m. 

e s.o X 10- rad 

EVA L UAT E  We see that we are able to resolve very distant binary star systems if we have a telescope 
lens of sufficiently large diameter. 





Relativity 

Summary 
In this chapter, we study the special theory of relativity introduced by 
Einstein in 1905 . The theory is based on two postulates : The laws of 
physics are the same in every inertial reference frame, and the speed 
of light in vacuum is the same in all reference frames. These simple 
postulates have far-reaching implications. We will explore how two 
observers moving relative to each other might not measure the same 
time or length, how two events might not be simultaneous in all refer
ence frames, and how we must modify the principles of momentum 
and energy to suit special relativity. You will find that your intuition is 
often unreliable in these types of situations. We will learn to develop 
new tools to analyze relativity problems .  

Objectives 
After studying this chapter, you will understand 

• The two postulates of Einstein's special theory of relativity. 
• How to identify inertial frames of reference. 
• When to apply the special theory of relativity. 
• The definition of proper time and proper length. 
• How to apply time dilation and length contraction to vanous 

problems. 
• How to use Lorentz transformations to find quantities in various 

reference frames. 
• The concepts of, and how to apply, relativistic momentum and rel

ativistic energy. 
• The concept of rest energy. 
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concepts and Equations 

Term 

Relativity and Simultaneity 

Time Dilation 

Length Contraction 

Lorentz Transformations 

Doppler Effect for 

Electromagnetic Waves 

Description 

All fundamental laws of physics have the same form in inertial reference 

frames. The speed of light in vacuum is the same in all inertial frames of ref
erence and is independent of the motion of the source. Simultaneity is not 

absolute: Two events occurring simultaneously in one frame might not appear 

simultaneous in a second frame. 

The proper time ata is the time interval between two events that occur at the 
same spatial point in a frame of reference. If this frame moves with a constant 

velocity U relative to a second frame, the time interval at between events 

observed in the second frame is longer: 

ata at = = yato VI - u2/c2 ' 
1 y = 

----;::
=

=.
= 

VI - u2/c2' 
This effect is known as time dilation. 

The proper length 10 is the distance between two points at rest in a frame of 

reference. If this frame moves with a constant velocity u relative to a second 

frame, the distance I measured parallel to the frame's velocity in the second 

frame is shorter: 

This effect is known as length contraction. 

Lorentz transformations relate the coordinates and time of an event in an 

inertial coordinate system S to the coordinates and time of a second inertial 

frame S' moving with constant velocity u relative to the first frame. The 

Lorentz transformations are 

z' = z, 

For one-dimensional motion, the velocities in the two systems are related by 

, _  Vx - U V x- 12' 1 - UVx c V� + u Vx = 1 + UV�/C2' 
The Doppler effect is a shift in the frequency of light from a source 

that is moving relative to an observer. For a source moving towards an 

observer at speed Lt, the frequency shift is given by 

/ch f= \j�fo. 
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conceptual Questions 
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The relativistic momentum and energy are respectively given by 

-+ 
-+ mu -+ P - - 'Vmu - V 2/ 2 - I , 1 - u c 

The total energy of a particle is the sum of its kinetic energy and its rest mass 

energy Eresl = mc
2

, given by 

The total energy can also be expressed as a function of momentum and rest 

mass: 

1: When does relativity become important? 
A train is speeding past a platform. At what speed must the train be traveling for the proper time mea
sured on the train to differ from the time measured on the platform by 0 . 1  %? 

Solution 
I D E N T I FY, S ET U P, A N D E X E C U T E  The time dilation relation will solve this problem. The proper 
time ( �to ) on the train will transform to the time measured on the platform ( �t )  by 

�to 
� t = ----;:.=====::::;:==::: VI - v2/e2 

We want to find the velocity corresponding to a 0. 1 % difference in time, so we set �t to 1 .001�to: 

�to 
�t = 1 .001 �to = v' 

Solving gives 

1 - v2/e2 

v = �1 - (_1 )2e = 0.045e. 
1 .001 

A 0. 1 % time difference will occur when the train is moving at 0.045e, or 1 .3 X 107 m/s. 

EVA L U AT E  For a very small relativistic change, the train must be moving at over 13 million meters 
per second, or 48 million kph. It is highly unlikely that we will see such effects on any train we will 
ever travel on. 

2: Proper time and length 
You are traveling on a spacecraft moving at O. le past a space station. If you are holding your physics 
textbook and flashing LED, who measures the proper length of the book and the proper time interval 
for the flashing LED, you or an observer on the space station? 

Solution 
I D E N T I FY, S E T  U P, A N D  E X E C U T E  The proper length is measured in a frame in which the book is 
at rest. Therefore, you measure the proper length of your physics textbook. The proper time is also 
measured with respect to a frame at rest. Again, you measure the proper time for the flashing LED. 
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EVALUAT E  Identifying the correct frame is often the most challenging step in a relativity problem. 
Here, the observer on the station would measure a length-contracted physics textbook and a time
dilated flashing LED. 

3: Increasing energy 
An electron is traveling at a speed of 0.95e. Can its energy be increased by more than 5%? by more 
than 25%? by more than 500%? 

Solution 
I D E N T I FY, S ET U P, AN D E X E C U T E  Relativistic energy for the electron is given by 

me2 E = ----;::c=== VI - v2/e2
' 

As v gets closer and closer to e, the denominator gets closer to zero and the energy increases to infinity. 
For this reason, there is no limit on the maximum energy of the electron .  

EVALUAT E  For the electron to achieve an increase in energy of 500%, i t  will need to travel at 0 .998e. 

Problems 
1: Marley and Cassie 
Marley, a twin, takes a round-trip journey to a distant star 12 light years from earth at a speed of 0.93e. 
Cassie, the second twin, remains on earth. What is the age difference between Marley and Cassie when 
Marley returns? 

Solution 
I D E N T I FY We need to determine the proper time and use time dilation to solve the problem. 

S ET U P  We need to find the time taken for the journey, as observed by both twins. The elapsed time 
for Cassie, the twin on earth, will be the distance of the journey divided by the speed. The elapsed time 
for Marley, the traveling twin, will be the elapsed time on earth transformed to the proper time of the 
traveler. 

E X E C U T E  The elapsed time for the twin on earth (Cassie) is the distance traveled divided by the speed: 

e (  24 years ) �t = = 25 .8 years. 
0.93e 

Note that the round-trip journey takes 25 .8 years . The time in the traveling twin's (Marley's) reference 
frame is the proper time, since she is the observer at rest. We find this time interval from the time dila
tion equation: 

�t = 
�to 

VI - u2/e2 ' 

�to = �tVI - u2/e2 = ( 25 .8 years )Vl - ( 0.93e ) 2/e2 = 9.48 years 

Marley ages 9.48 years, while Cassie ages 25 .8 years . The difference between Marley's and Cassie's 
ages will be 1 6.3 years after Marley returns. 
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EVAL UAT E This is the classic twin paradox. We see that Marley, the traveling twin, ages much more 
slowly than Cassie, the stationary twin. Critical to this problem was identifying which frame was asso
ciated with the proper time. 

[�AU.T.lPN Find the Proper Time Carefully: Determining the proper time is critical in time dilation 
problems. The proper time is the time measured in a frame that is moving with the clock. 

2: Moving spacecraft 
A spacecraft moves past the earth at a speed of 0.850c. A student on earth measures the length of the 
moving spacecraft to be 97.0 m. How long does the spacecraft appear to the crew on the ship? 

Solution 
I D E N T I FY We' ll use the length contraction equation to solve the problem. 

S ET U P  The proper length is the length measured in a frame in which the spacecraft is at rest. The 
crew will measure the spacecraft when it is at rest, which is the proper length. The student measures 
the relativistically contracted length. 

E X E C U T E  The length contraction equation is 

1 = 10V 1 - U2/C2. 

The student measures the contracted length and we need to find the proper length. Solving for 10 yields 

1 ( 97.0 m )  
10 = = = 1 84 m. 

VI - u2/C2 VI - (0.85c )2/C2 

The spacecraft's crew would measure the ship to be 1 84 m long. 

EVA L U AT E  This is a classic length contraction problem. The length we found was longer than the 
measured length because the measured length was the contracted length. You must carefully determine 
which length is the proper length. 

[CAUTION] Find the Proper Length Carefully: Determining the proper length is critical in length 
contraction problems. The proper length is the length measured in a frame in which the body is at rest. 

3 :  Spaceship relativity 
A spaceship moving away from the earth at a speed of 0.60c fires a 5 .0-m-Iong missile in its direction 
of motion with a speed of 0.20c relative to the spaceship. A crew member on the ship observes that the 
firing takes 10.0 s .  (a) What is the missile's speed relative to earth? (b) What is the length of the mis
sile prior to firing, as observed on earth? (c) What is the time interval of the firing event, as measured 
on earth? 

Solution 
I D E N T I  F Y  A N  D S E T  U P  We' ll use a Lorentz transformation, time dilation, and length contraction to 
determine the values in the earth's frame. 

E X E C U T E  From the Lorentz transformation, the speed of the missile relative to earth is found to be 

v' + u ( 0.20c) + (0.60c) 
v = = = 0 7 l c  

1 + uv'/c2 1 + (0.60c)(0.20c)/c2 
. , 
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where we have set the moving frame (S') to be the frame of the spaceship moving at speed u = 0.60 e 
and the speed of the missile to be v I = 0.20 e. 

The length of the missile as measured on the earth is found from the length contraction relation. The 
known length was measured on the spaceship and is therefore the proper length. The length on earth is 

l = loVI - u2/e2 = (5.0 m)Vl - (0.60e )2/e2 = 4.0 m. 

The time elapsed for the firing of the missile, as measured on the earth, is found from the time dilation 
relation. The known firing time was measured on the spaceship and is therefore the proper time. The 
firing time on earth is 

(10.0 s ) 
V = 12.5 s. 

1 - (0.60e )2/e2 

As measured on earth, the speed of the missile is 0.71 e, the length of the missile is 4.0 m, and the time 
taken to fire the missile is 12.5 s .  

EVA LUAT E  This problem combined several aspects of relativity. In contrast to the previous problems, 
the given time and length were in the proper frame. 

4: Accelerating an electron 
An electron is accelerated from rest to a velocity of 0.ge by a potential difference. Calculate the poten
tial difference. The rest energy of the electron is 0.511 MeV. 

Solution 
I D E N T I F Y  We will use the relativistic energy to find the solution. 

S E T  U P  The change in kinetic energy is the change in the electric potential energy. We' ll find the 
potential needed to create the corresponding change in kinetic energy. Recall that 1 Me V is 1 million 
electron volts, a unit of energy. 

E X E C U T E  The initial energy of the electron at rest is 0.511 MeV. The energy of the electron at 0.ge is 

E = = = 1.172 MeV. ( meleClrone2 ) ( 0.511 MeV ) 
VI - v2/e2 VI - (0.9)2 

The change in energy is due to the change in electric potential energy. Algebraically, this is 

e�V = �E 
= E - me2 

= 1.172 MeV - 0.511 MeV = 0.661 MeV. 

A potential difference of 661,000 V is needed to accelerate the electron to 0.ge. 

EVA L UAT E  We see how we must combine our knowledge of energy in general with our knowledge of 
relativistic energy in this problem. 

5: Creating a particle 
Two protons moving towards each other with equal speeds collide and produce an 7}o particle. (a) If the 
two protons and the 7}o are at rest after the collision, find the initial speed of the protons. (b) What is the 
kinetic energy of each proton? (c) What is the rest energy of the 7}o particle? The rest mass of each pro
ton is 1.67 X 10-27 kg, and the rest mass of the 7}o is 9.75 X 10-28 kg. 
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Solution 
I D E N T I FY A N D S E T  U P  We will use the relativistic energy relations to find the solution to the prob
lem. We must include the rest energy of the particles. 

E X E C U T E  Conservation of mass and energy requires that the energy before the interaction be the 
same as the energy after the interaction. After the interaction, there is only rest energy; before, there is 
only the total energy of the two protons. Energy-mass conservation gives 

We need to solve this equation for the velocity of the protons. Rearranging terms yields 

,,/ _ 2/ 2 _ 
2lnproton 2 ( 1.67 X 10-27 kg ) 

_ v 1 v C -
( 27 ) ( 28 ) 

- 0.774, 2lnproton + ln7)o 2 1.67 X 10- kg + 9.75 X 10- kg 
1 - V2/C2 = (0.774)2 = 0.5991, 

v = V (1 - 0.5991)c = 0.633c. 

The kinetic energy of each proton is 

_ 
lnprotonC2 

2 _ 
(1.67 X 10-27 kg ) c2 

27 ) 2 K (1.67 X 10- kg c - VI - V2/C2 - lnprotonC VI - (0.633c )2/C2 

= 4.38 X 10-11 J = 274 MeV. 

The rest mass of the 770 particle is 

E = ln7)oc2 = (9.75 X 10-28 kg)c2 = 8.78 X 10-11 J = 548 MeV. 

The initial speed of the protons is 0.663c. The initial kinetic energy of each proton is 274 Me V, and the 
rest energy of the 770 particle is 548 Me V. 

EVA L U AT E  In this problem, we see how the kinetic energy of the two protons converts to the mass of 
the 770 particle. Each proton loses 274 Me V, for a total of 548 Me V. This energy is converted into the 
rest energy of the 770 particle. 

Try It Yourself! 
1: Traveling twin 
One of a pair of twins makes a round-trip journey to a distant star, traveling at 0.95c. If this twin ages 
6.57 years during the journey, how much does his twin who remains on earth age during the trip? How 
far from earth did the twin travel? 

Solution Checkpoints 
I D E N T IFY A N D  S E T  U P  Use time dilation to solve the problem. Which twin measures proper time? 

E X E C U T E  The time in the traveling twin's reference frame is the proper time, since he is the observer 
at rest. The twin on earth ages 
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The distance traveled is the velocity times the elapsed time, given by 

( 0.95c ) ( 2 1 .05 years ) �x = = 20.0 light years . c 

The total distance traveled is twice the maximum distance from earth. The traveling twin traveled 
10 light years away from earth and back. 

EVA L UAT E  How can you check these results? 

2: Traveling electrons 
Two electrons traveling in the same direction have respective energies of 1 .0 MeV and 2.0 MeV in ref
erence frame S. Find the velocity of each electron in S. Find the velocity of the 2.0-MeV electron rela
tive to the 1 .0-MeV electron. Use 0.5 1 1  MeV for the rest energy of the electron. 

Solution Checkpoints 
I D E N T I FY A N D S ET U P  Use relativistic energy and velocity to solve the problem. 

E X E C U T E  The velocity of each electron is found from 

E = ( melectronC2 )
. VI - U2/C2 

The 1 .0-MeV electron has velocity UI = 0.8602c, and the 2.0 Me-V electron has velocity U2 = 
0.9669c. The relative velocities are found from 

v ' = x 
Vx - U / 2 · 1 - uVx c 

This equation is applied to a frame S' in which the 1 .0-MeV electron is at rest. With this reference 
frame, Vx is the velocity of the 2.0-MeV electron in S (0.9669c), U is the velocity of S' with respect to S 
(0.8602c), and vx ' is the velocity of the 2.0-MeV electron in S' (the target variable). Substituting and 
solving leads to vx

' = 0.636c. 

EVA L U AT E  The challenge in this problem was to interpret the relative velocity variables carefully. 
With relativity, relative velocities are no longer simply vector sums of velocities. 

3: Neutron decay 
When a neutron spontaneously decays into a proton, an electron, and a neutrino, the decay products are 
found to have a total kinetic energy of 7 .8 1 Me V. The proton has a mass of 1 .673 X 10-27 kg, the elec
tron has a mass of 9. 1 10 X 10-3 1 kg, and the neutrino has no mass. What is the mass of the neutron? 

Solution Checkpoints 
I D E N T I  FY A N D  S ET U P  Equate the energy of the reaction products to the rest energy of the neutron 
to solve the problem. 

E X E C U T E  Energy conservation leads to 
2 _ 2 + 2 + E  mnc - mpc mec k· 

Converting the kinetic energy to joules gives a kinetic energy of 1 .25 X 10- 13 J. Substituting values 
into the energy relation gives a neutron mass of 1 .675 X 10-27 kg. 

EVA L U ATE Can a proton spontaneously decay into a neutron? 



Summary 

Photons, Electrons, 
and Atoms 

We will explore the quantum mechanics of photons, electrons, and 
atoms in this chapter. We will see that light can behave as a stream of 
individual particles, or photons, that have energy and momentum. 
These photons will lead us to the discovery that atoms are quantized, 
or have distinct, discrete energy levels . This finding in turn will lead 
us to the discovery that electrons can behave as waves. In essence, we 
will be learning about the very unusual and nonintuitive atomic world. 
We will examine the discoveries that led to this new interpretation, 
including the photoelectric effect, atomic spectra, the Bohr model of 
the atom, Compton scattering, and blackbody radiation. The basic 
quantum mechanics learned in this chapter will be applied in the 
remaining chapters of the text. 

Objectives 
After studying this chapter, you will understand 

• How the photoelectric effect confirmed the photon nature of light. 
• How atomic line spectra reveal the energy levels of atoms. 
• The Bohr model of the hydrogen atom and how energy levels are 

quantized. 
• How the laser operates . 
• How to use the photon nature of light to interpret the Compton 

scattering of X-rays .  
• How blackbody radiation shows that electromagnetic radiation is 

quantized. 
• Wave-particle duality. 

463 
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Concepts and Equations 

Term 

Photons 

Photoelectric Effect 

Description 

Electromagnetic radiation exhibits both wave and particle behavior. Photons 

carry units of electromagnetic radiation. The energy of a photon is given by 

he 
E = hf =  A' 

where h = 6.626 X 1 0-34 Js  i s  Planck's constant,fis the frequency of the 

photon, and A is the wavelength of the photon. The momentum of a photon is 

given by 

E hf h p = - = - = -
e e A ·  

The photoelectric effect describes how a photon striking a surface can eject 

an electron from that surface. The photon must have sufficient energy (greater 

than the work function <p of the material of the surface) for the electron to 

escape. Mathematically, 

eVo = hf - <p. 

Energy Levels and Atomic Line Spectra An atom making a transition from a higher energy E; to a lower energy Ef 
will emit the energy difference through a photon of energy: 

he 
hf = A = E; - Ef· 

Energy differences can be detected through an atom's spectral lines. For 

hydrogen, the energy levels are given by 

heR 13.6 eV E = -- = ----II n2 n2 
n = 1, 2, 3,  ... , 

where R = l .097 X 107 1m is the Rydberg constant. 

The Nuclear Atom and the Bohr Model Rutherford discovered that an atom has a very small positively charged 

nucleus at its center. Bohr successfully modeled the hydrogen atom as having 

a lone proton as its nucleus, surrounded by an electron that revolved in cer

tain allowed (quantized) orbits. The electron's allowed angular momenta are 

given by 

The Laser 

h 
L = mVllfll = n-, 

27T 
n = 1, 2, 3,  . . . , 

where n is the principal quantum number. The electron's radius and orbital 

speed are also quantized: 

n2h2 
fll = EO--

2 
= n2ao = n2(5 .29 X 10- 1 1  m ) , 

7Tme 

e2 2 l .9 X 106 mls v = -- = 
II 

E02nh n 

The laser operates on the principle of stimulated emission, in which many 

photons with identical wavelengths and phases are emitted. For the laser to 

operate, a nonequilibrium population inversion must exist in which more 

atoms are in a higher energy state than a lower energy state. The stimulated 

emission occurs as the higher energy state decays to the lower energy state, 

triggered by photons passing through the material. 



X-Rays and Compton Scattering 

Blackbody Radiation 

conceptual Questions 
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X-rays are high-energy, small-wavelength photons that can be produced when 
electrons strike a target. X-rays may scatter from electrons bound to a nucleus 
in a process called Compton scattering. After scattering, the X-rays have less 
energy and a longer wavelength. The change in an X-ray's wavelength is 
given by 

h � A = A' - A = - ( 1  - cos � ) ,  
me 

where m is the electron 's mass and � is the scattering angle. This discovery 
helped prove that light, X-rays, and all electromagnetic radiation are made of 
discrete energy packets called photons. 

The total radiated intensity from a blackbody surface is described by the 
Stefan-Boltzmann law 

J = a-y4, 

where (J = 5.67 X 1 0-8 W 1m2 is the Stefan-Boltzmann constant. 

1: Finding the stopping potential 
Figure 38.1 shows a graph of the stopping potential as a function of the frequency of incident light illu
minating a metal surface. Find the photoelectric work function for this surface. 

Vo (V) 

2 1----+--·-- . 

o f---....J?----- f( 10 15 Hz) 1 10 

t-
- 1 .J 

-2 

Figure 38.1 Question 1 .  

Solution 
I D E N T I FY, S ET U P, A N D E X E C U T E  The graph of the stopping potential as a function of the fre
quency of light is a straight line given by 

h cjJ Vo = -;1 - e ·  

The vertical intercept of this graph i s  the negative of the work function, divided by e. Here, the vertical 
intercept is - 2. 0  V, so the work function is 2. 0 eV 

EVA L U AT E  We' ll often graph the stopping potential as a function of the frequency of light in order to 
find the work function. We see how extracting the work function is simple. 
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2: Interpreting an energy-level diagram 
The energy-level diagram of the hypothetical one-electron element nerdium is shown in Figure 38. 2. 
The potential energy is taken to be zero for an electron an infinite distance from the atom. If a 1O.5-e V 
photon interacts with the nerdium atom in its ground state, what will happen? If a 6.5-eV photon inter
acts with the nerdium atom in its ground state, what will happen? 

Solution 

n = 4 ------ -2.3 eV 
n = 3  -4.S eV 

n = 2 ------ -7.5 eV 

n = 1 ------ - IS.D eV 
Figure 38.2 Question 2. 

I D E N TI F Y, S ET U P, A N D  E X E C U T E  The 1O.5-eV photon has energy equal to the energy difference 
between the n = 1 and the n = 3 levels of nerdium. This photon will be absorbed, leaving the nerdium 
in the n = 3 excited state. 

The 6.5-eV photon has energy less than the energy difference between the n = 1 and the n = 2 lev
els of nerdium. This photon will not be absorbed by the nerdium atom. 

EVA L U AT E  We see that atoms do not behave classically. In a classical system, both photons would be 
absorbed. In the quantized system, only photons with the proper energy difference are absorbed. 

3: Compton effect 
Why is there no wavelength shift for forward scattering ( (J  = 0° ) in the Compton effect? 

Solution 
I D E N T I F Y, S ET U P  AN D E X E C U T E  When (J = 0° is substituted into the Compton scattering equa
tion, the wavelength shift is found to be zero. A photon scattered at 0° does not interact with an elec
tron; its momentum and energy remain unchanged. Since the photon does not interact, it continues 
undeftected with the same wavelength. 

EVA L U AT E  The photon's energy and momentum must remain constant due to conservation of energy 
and momentum. 

Problems 
1: Photoelectric effect for tungsten 
The photoelectric work function for sodium is 2.7 eY. If light of frequency 9.0 X 10 14 Hz falls on 
sodium, find (a) the stopping potential, (b) the kinetic energy of the most energetic electrons ejected, 
and (c) the speed of those electrons. 

Solution 
I D E N T I FY A N D  S ET U P  We will use energy conservation to find the stopping potential. The most 
energetic electrons will have energy equal to the stopping potential energy. 
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E X E C U T E  The stopping potential energy is equal to the photon's energy minus the work function: 

eVo = hf - cpo 

The stopping potential is then 

hf - cp ( 9 .0 X 1 014 Hz ) (  6.626 X 10-34 J .  s )  - ( 2.7 eV ) (  1 .6 X 10- 19 J/eV ) 
V. = = = 1 .03 V. o e l .6 X lO- 19 C  

The maximum kinetic energy of an electron is then 

K = eVo = e (  1 .03 V )  = 1 .03 eV. 

and the speed of that electron is 

2 (  1 .03 eV ) ( 1 .6 X 10- 19 J/eV) _ 5 / 
( 3 1 ) 

- 6.01 X 10  m s . 
9. 1 1  X 10- kg 

The stopping potential is 1 .03 V, the maximum kinetic energy of the electrons that are ejected is 1 .03 e V, 
and the speed of the electrons ejected with maximum kinetic energy is 6 .01 X 105 m/s. 

EVA L UATE We rely on basic energy conservation laws to solve problems involving the photoelectric 
effect. Note how we've used energy relations which imply that light is a particle. 

2: Stopping potential 
The stopping potential for photoelectrons ejected from a surface by 375-nm photons is 1 .870 V. Calcu
late the stopping potential for 600-nm photons. 

Solution 
I D E N TI F Y  A N D SET U P  We will use energy conservation to find the work function and then use that 
to find the stopping potential for the 600-nm photons, the target variable. 

E X E C U T E  The stopping potential energy is equal to the photon's energy minus the work function: 

eVo = hf - cpo 

The work function is found from the 375-nm photon response. Substituting and solving gives 

he 
cp = - - eVo 

A 

_ ( 6.626 X lO-34 J ' s ) ( 3 .00 X 108 m/s ) _ ( - 1 9 ) ( ) -
( 9 ) 

l .6 X 1 0  C l .870 V 
375 X 10- m 

= 2.3 1 X 10- 19 J = 1 .44 eV. 

For the 600-nm photons, we find the stopping potential from 

he eVb = 'A7 - c/> 
_ ( 6.626 X 1 0-34 J .  s ) ( 3 .00 X 108 m/s ) 

_ ( - 1 9 ) -
( 9 ) 

2 .3 1 X 10  J 
600 X 10- m 

= 1 .00 X 10- 19 J. 
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The stopping potential for the 600-nm photons is then 

1 .00 X 10- 19 J 
Vb = 19 

= 0.627 V. 
1 .6 X 10- C 

EVA L UATE The stopping potential depends on the wavelength of light used, but the work function is 
constant for a material . 

3 :  Transitions in the hydrogen atom 
A hydrogen atom initially in the ground state absorbs a photon, exciting it to the n = 5 state. Later, the 
atom makes a transition to the n = 2 state. Find the wavelength of the photon that is absorbed when the 
atom goes from the ground state to the n = 5 state. Then find the wavelength of the photon that is emit
ted when the atom goes from the n = 5 state to the n = 2 state. 

Solution 
I D E N T I FY We' ll use the energy difference to find the wavelength of the photon. 

S ET U P  The photon that is absorbed must have energy equal to the energy difference between the 
ground state (n = 1 )  and the n = 5 state. The transition back to the n = 2 state will decrease the 
energy, so a photon is emitted. This photon's energy will be equal to the energy difference between 
the n = 5 and n = 2 states .  We' ll use that energy to find the wavelength of the emitted photon. 

EX E C U T  E The energy difference between the ground state ( n = 1 )  and the n = 5 state is 

1 3 .6 eV _ ( 1 3 .6 ev ) _ _ 13 .6  eV 13 .6 eV _ _ _ _ - 1 8 Ei - Ef = 2 2 - 2 + 2 - 1 3 . 1  eV - 2.09 X 10  J. 
n n 1 5 

The negative sign indicates that energy is absorbed. The photon's wavelength is 

he ( 6 .626 X 10-34 J . s ) ( 3 .00 X 108 m/s ) 
A = = = 95 nm. 

Ei - Ef 2.09 X 10- 1 8 J 

The energy difference in the transition from the n = 5 state to the n = 2 state is 

1 3 .6 eV _ (_ 13 .6 ev ) 
= 

n2 n2 
1 3 .6 eV 13 .6 eV _ _ - 19  

52 + 
22 - 2.86 eV - 4.57 X 10  J. 

The positive sign indicates that energy is emitted. This photon's wavelength is 

he ( 6.626 X 10-34 J . s )  ( 3 .00 X 108 m/s ) 
A = = = 435 nm. 

Ei - Ef 4.57 X 10- 1 9 J 

A 95-nm-wavelength photon is absorbed to excite the ground-state hydrogen atom to the n = 5 state. A 
435-nm-wavelength photon is emitted to "de-excite" the excited-state hydrogen atom to the n = 2 
state. 

EVA L U AT E  Imagine that instead of predicting the wavelengths of the photons, you were given the 
wavelengths and had to deduce the energies . This is what physicists did in the early 1900s to unravel 
the structure of the atom. 
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4: X-ray scattering 
X-rays of frequency 9.0 X 10 1 8  Hz Compton-scatter off electrons. What are the wavelength and 
energy of X-rays scattered to an angle of 135°? 

Solution 
I D E N T I FY A N D  S ET U P  The Compton-scattering formula gives the change in wavelength for the 
X-rays under consideration. We' ll convert the X-ray frequency to a wavelength before finding the 
change in wavelength. 

E X E C U T E  The X-rays have wavelength 

e 3 .00 X 108 m/s 
A = - = = 3.33 X 10- 1 1  m. 

f 9.0 X 101 8 Hz 

The change in wavelength due to Compton scattering is 

LlA = A I - A = 
�( 1  - cos ¢ ) 
me 

( 6.626 X 10-34 J . s )  
----'---------'------:--( 1 - cos 1 35° ) 
( 9 . 1 1  X 10-3 1 kg ) ( 3 .00 X 108 m/s ) 

= 4. 1 5  X 10- 12 m. 

The scattered X-ray's wavelength is 

A '  = A + LlA = ( 3 .33 X 10- 1 1 m) + ( 4. 1 5  X 10- 12 m) = 3 .75 X 10- 1 1  m. 

The energy of the scattered X-ray is 

_ he _ ( 6.626 X 10-34 J .  s ) ( 3 .00 X 1 08 m/s ) _ - I S  _ 
E - - -

( 1 1  ) 
- 5 .3 1  X 10  J - 33.2 ke V. 

A 3 .75 X 10- m 

The scattered X-ray has a wavelength of 37.5 pm and an energy of 33 .2 keY. 

EVA L U AT E  Compton scattering changes the wavelength and energy by a relatively small amount. 
Here, the energy decreased by about 1 1  %. For longer wavelength photons, the effect is much smaller. 

5: Compton scattering 
Compare the maximum relative frequency change for 550-nm photons to 0.025-nm X-rays. For which 
type of photon will Compton scattering be more easily observed? 

Solution 
I D E N TI F Y  A N D S ET U P  We will calculate the maximum frequency shift due to Compton scattering 
for the two photons .  The maximum frequency shift corresponds to a scattering angle of 1 80°. 

E X E C U T E  Jhe change in wavelength due to Compton scattering is 
� h 

LlA = A '  - A = -( 1 - cos ¢ ) .  
me 

Converting the formula to frequencies gives 

1 1 h 
- - - = -( 1 - cos ¢ ) .  
l' f me2 
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Rearranging terms to find the relative frequency change, we obtain 

l' - J = IlJ 
= 

hJ 
( 1  - cos </> ) . 

J' J' me2 

The maximum frequency shift occurs when the photon is backscattered, or </> = 1 80°. We find the rel
ative frequency change for the two photons. For the 550-nm photons, 

IlJ hJ 2h 2 (  6.626 X 10-34 J . s )  

f = 
me2 ( 1 - cos </» = 

meA 
= 

( 9 . 11 X 1O-3 1 kg ) ( 3 .00 X 108 m/s ) ( 550 nm)  
= 8 .8 X 10-6. 

For the 0.025-nm X-rays, 

IlJ 2h 

l' meA 

2 (  6 .626 X 10-34 J . s )  

( 9 . 1 1  X 10-3 1 kg ) ( 3 .00 X 108 m/s ) ( 0.025 nm) 
= 0. 1 8 . 

X-ray Compton scattering is much easier to observe than Compton scattering with visible photons. 

EVA L U ATE We noted in the previous problem that the Compton effect produces small changes in 
the scattered photon's energies. We see that effect clearly in the results of this problem, noting that 
the X-rays have small, but measurable frequency (and energy) changes while the visible-light pho
tons have even smaller, not readily measurable changes in their frequency (and energy). 

Try It Yourself! 
1: Threshold wavelength 
Find the threshold wavelength of light that would produce photoelectrons for a silver surface. The 
work function for silver is 4.8 eY. 

Solution Checkpoints 
I D E N T I F Y  A N D S ET U P  Use energy conservation to solve the problem. 

E X E C U T E  Energy conservation for the photoelectric effect gives 

eVo = hJ - </>. 
At threshold, the photoelectrons have zero kinetic energy. Solving for the wavelength yields 

he 
A = ¢ = 259 nm. 

EVA L UAT E  What is the threshold wavelength for a cesium surface, for which the work function is 
1 .8 eV? 

2: Atomic spectra 
An atom has, in addition to the ground-state energy Eo at zero energy, energy levels at E] = 
10.20 eV, E2 = 1 2.09 eV, and E3 = 1 2.75 eV. If the atom is excited from the ground state to the state 
with an energy of 12.75 eV, find all possible wavelengths in the atom's spectrum. 
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Solution Checkpoints 
I D E  N TI  F Y A N D  SET U P  Find all possible transitions between the various levels, and calculate the 
corresponding wavelengths .  

EXECUTE For any level, the energy is given by 

D..E = he 

A 

The excited atom in the E3 level decays to the E2, E" and Eo levels, by emitting photons with wave
lengths of 1 880 nm, 487 nm, and 97 .3 nm, respectively. The E2 level decays to the E, and Eo levels, 
emitting photons with wavelengths of 657 nm and 102 nm, respectively. Finally, the E, level decays to 
the Eo level, emitting a photon with wavelength of 122 nm. 

EVA L U ATE To calculate the complete spectrum, you must consider all possible decays and their cor
responding wavelengths. You may also consider the opposite situation, in which you are given the 
spectrum and need to calculate the possible levels, much as the physicists who first disentangled 
atomic spectra had to do. 

3: Compton scattering 
A 50-keV X-ray strikes an electron at rest and scatters . lf the X-ray is scattered at an angle of 90°, find 
(a) the change in wavelength of the X-ray, (b) the energy of the X-ray after scattering, and (c) the 
velocity of the electron after scattering. 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Use the Compton-scattering equation and energy conservation to solve the 
problem. 

E X E C U T E  (a) Compton scattering gives the change in wavelength for the X-ray: 

D..A = A '  - A = 
�( l  - cos ¢ ) .  me 

For this problem, the scattering angle is 90°, the wavelength shift is 2.42 X 10- 12 m, and the scattered 
X-ray has a wavelength of 2.73 X 1 0- ' 1  m. 

(b) The new frequency is found from 

f' = CiA ' . 

The new energy is 45 .6 keY. 
(c) The energy lost by the X-ray becomes kinetic energy of the electron. The kinetic energy is much 

smaller than the electron rest energy, so we can use classical energy expressions : 

1 -mv2 = D..E = 4.44 keY. 
2 

The electron acquires a velocity of 3 .96 X 107 m/s. 

EVALUATE Is the electron's velocity small enough to justify using classical energy expressions? 





Summary 

The Wave Nature of 
Particles 

We will explore the wave nature of particles in this chapter. 
Wave-particle duality has shown us that light behaves both like a 
wave and like a particle. We will investigate how subatomic particles 
behave like waves in this chapter, opening our exploration of quantum 
mechanics. Our analysis of particles will transform to an analysis of 
wave functions-an analysis that will be used to predict the probabil
ity of a particle being in a specific location at a specific time. We will 
see how Schrodinger's equation is used to solve for wave functions 
and becomes the equivalent of Newton's law for quantum mechanics. 

Objectives 
After studying this chapter, you will understand 

• How electrons and other subatomic particles behave like waves. 
• How to use the Heisenberg uncertainty principle to interpret 

atomic phenomena. 
• How particles are described in terms of wave functions. 
• The use of the Schrodinger equation to determine the behavior of 

particles. 
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Concepts and Equations 

Term Description 

De Broglie Waves Electrons and other particles have wave properties. Particles are described as 
waves having a de Broglie wavelength 

Electron Diffraction 

Heisenberg Uncertainty Principle 

Wave Functions 

The SchrOdinger Equation 

conceptual Questions 

h h A = - = - . 
p mv 

As waves, particles are inherently spread-out entities described by their wave 
functions. 

The diffraction of an electron beam from the surface of a metallic crystal con
firms the wave nature of particles. The wavelength of a nonrelativistic elec

tron accelerated by a potential difference V is given by 

h h A - - - -== -
p 

-
V2meV ·  

Images from electron microscopes have much higher resolution than images 

from visible light, due to the small wavelength of the electrons. 

Heisenberg's uncertainty principle states that one cannot determine both the 

precise position and the precise momentum (or the precise energy and the 

precise time) of a particle. The uncertainties in each of the two quantities are 

related as 

I1El1t 2: n, h 
Ii = - . 

21T 

Similar expressions hold for the y and z components. 

The wave function 'IJr (x, y, z, t) for a particle contains all of the information 

about the particle. The quantity 1 'IJr  (x, y, z, t) 1 2 is the probability distribution 

function that determines the relative probability of finding a particle near a 

given position at a given time. For a particle in a definite energy state, called 

a stationary state, the wave function can be separated into a spatial compo

nent and a temporal component: 

'I' (x, y, z, t )  = l/J (x, y, z ) e - iEt!h. 

The Schrodinger equation can be used to determine the wave function for a 

particle moving in one dimension in the presence of a potential-energy func

tion U(x). The SchrOdinger equation is 

li2 d2l/J(x) 
-2m dx2 + U(x) l/J(x) = el/J(x) . 

1: Tennis-ball  wave function 
Tennis balls are made of electrons and other subatomic particles, so a tennis ball can be described in 
terms of a combination of wave functions. If tennis balls are wave functions, couldn't they exhibit 
destructive interference and disappear before reaching your racket? 
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Solution 
I D E N T I  FY, S ET U P, A N  D E X E C U T E  It is true that the particles which make up the tennis ball are 
described by wave functions. The wave functions describe the particles as spread out in a region of 
space, and the waves can interfere destructively. However, the wavelength of the tennis ball is so small 
that any interference effects that might arise are below the threshold of visibility. 

EVA LUATE As we look at the strange subatomic world, we need to make sure that our interpretations 
and predictions relating to the macroscopic world remain valid. Quantum mechanics, as we see in this 
problem, apply to the macroscopic world, but the effects are so small that they do not change our exist
ing interpretation. 

2: Particles from nowhere 
Does the Heisenberg uncertainty principle imply that particles could be created for very short amounts 
of time? How long could an electron-positron pair exist without violating the uncertainty principle? 

Solution 
I D E N T I FY, S ET U P, A N D  E X E C U T E  The uncertainty principle for energy and time states that the 
product of the uncertainty in energy and the uncertainty in time is greater than h!27r. The uncertainty in 
energy can be very large, as long as the uncertainty in time is very small. The energy needed to create 
an electron-positron pair is roughly 1 MeV, so the uncertainty in time would be 

Ii ( 6.626 X 10-34 J . s )  22 D.t :> - = = 6 6 X 10- s 
- D.E 27r ( 1 06 eV ) ( 1 .6 X 10- 1 9  J!eV ) ' 

. 

If the electron and positron are created and annihilated within 6.6 X 1 0-22 s, then the uncertainty prin
ciple is not violated. 

EVALUAT E  Creating particles from vacuum is not just a theoretical exercise. In what is called the 
quantum vacuum, particles are created and annihilated on a continual basis. Using particle accelera
tors, physicists have proven the existence of these particles by scattering other particles off of them 
during their short lifetimes. These so-called "sea" particles (since they are created in the vacuum "sea") 
are responsible for important phenomena at the subatomic scale. 

Problems 
1: Wavelength of a golf ball 
An uncharged golf ball of mass 0. 1 kg is put into orbit at the earth's surface. Find the de Broglie wave
length of the golf ball. 

Solution 
I D E N T I F Y  A N D S E T  U P  The de Broglie wavelength is related to the momentum. We will find the 
momentum and then the wavelength. 
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E X E C U T E  The force acting on the golf ball in orbit is the gravitational force between the ball and the 
earth. The ball undergoes centripetal acceleration, so 

GMm mv2 
-- = mg = - . 

r2 r 

We use this expression to find the velocity of the golf ball. Rearranging terms to solve for the velocity 
gIves 

v = v'"iRe, 
where RE is the radius of the earth. The momentum is the mass of the golf ball times the velocity. The 
wavelength is then 

h h h 
A - - - - - ----== -

p 
- mv -

mV"ii4: 
6.626 X 10-34 Js 

-:------:-----,:.==::::;==::====:==== = 8.37 X 10-37 m. ( 0 . 1  kg ) V( 9.8 m!s2 ) ( 6.4 X 106 m)  
EVA L U AT E  We see that the wavelength i s  much smaller than the size of an atomic nucleus (around 
10- 1 5  m), so you don't  have to worry about the wave nature of a golf ball the next time you play a 
round of miniature golf! 

2: Quantum number of a golf ball 
Suppose the uncharged golf ball (of mass 0. 1 kg) of Problem 1 is viewed as a quantum object in orbit 
around a nucleus .  If its angular momentum is quantized as in the Bohr atom, what is the associated 
quantum number? 

Solution 
I D E N T I FY A N D  S ET U P  We will apply the Bohr model to the golf ball orbiting the earth to solve the 
problem. 

E X E C U T E  Quantizing the angular momentum gives 

mvr = nh. 
In the previous problem, we found that 

v = ViJ4:. 
Combining these results, we find the following expression for the quantized radius: 

n2h2 
rn = 2 2 . m REg 
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EVA L UATE With this large value of n, we see how the allowed energy levels and values of r are essen
tially continuous .  It should be clear at this point why the quantum nature of the universe was not dis
covered in the macroscopic world. 

3: A thermal neutron 
A thermal neutron is a neutron with mean kinetic energy of 3/2kBT, where kB is Boltzmann's constant 
and T is room temperature (300 K). What is the wavelength of a thermal neutron? 

Solution 
I D E N TI FY A N D  S ET U P  We will find the thermal neutron's momentum and then determine the 
de Broglie wavelength of the neutron. 

E X E C U T E  The kinetic energy of the neutron is given by 

p2 3 
K = - = -kBT. 2m 2 

Substituting for the momentum, we have 

_1 ( h )2 = 'ik T. 
2m A 2 B 

Solving for A gives 

( 6.626 X 10-34 Js ) 
v' = 0. 145 nm. 

3 (  1 .67 X 10-27 kg ) (  1 .38 X 1 0-23 J/K) ( 300 K) 
EVA L U AT E  Thermal neutrons have very small wavelengths. Consequently, they are used in research 
laboratories to explore the atomic structure of materials through diffraction. 

4: Lifetime of a molecule 
The full-width, half-maximum intensity for a spectral line characteristic of a pH2 molecule in an 
excited rotational energy level is 6 X 109 Hz. Estimate the lifetime of the molecule in this state. 

Solution 
I D E N T I FY A N D S ET U P  We will use the Heisenberg uncertainty principle to solve the problem. 

E X E C U T E  The uncertainty relationship is given by 

( �E) ( �t)  > n. 

With this expression, we can estimate the lifetime of the state if we know the energy associated with 
the state. The energy is found from the formula 

�E = h�f 
Rearranging terms and solving for the lifetime gives 

n i l �t > - = -- = = 2.65 X 10- 1 1  s. 
- h�f 27T�f 27T (6 X 109 Is ) 
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EVA LU AT E  This problem illustrates how we can use the uncertainty principle to estimate the lifetimes 
of atomic states. 

Try It Yourself! 
1 :  Electron diffraction 
An electron is accelerated through a potential difference of 1000 V and passes through a thin slit before 
striking a photographic film 0.5 m away. What should the size of the slit be in order for the first mini
mum in the electron diffraction pattern to be 0. 1 mm from the center of the pattern? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Use diffraction to solve the problem. How do you calculate the wavelength 
of the electron? 

E X E C U T E  The wavelength of the electron is 

h 
A = = 3 .88 X 10- 1 1  m. 

The first minimum is found when 

V2meV 

A 
sin e = d . 

Using the small-angle approximation, we find that the width is 1 94 nm. 

EVA L UATE How could a slit of width 1 94 nm be created? 

2: Electron orbiting the nucleus 
Calculate (a) the speed of an electron whose wavelength is 21Tro (the circumference of its orbit, where 
ro = 0.053 nm ) and (b) the speed of an electron in the first Bohr orbit of a hydrogen atom. 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Use the de Broglie wavelength to find the speed for part (a) . Use the veloc
ity from the Bohr model to solve part (b). 

E X E C U T E  (a) The de Broglie wavelength leads to 

h h 
u = - = 

mA m21Tro 

Substituting values, we find that the velocity is 2 . 1 9  X 106 m/ s. 
(b) According to the Bohr model, the velocity is 

e2 
un = -- . 2Eohn 

Substituting values for n = 1 ,  we again find that the velocity is 2 . 1 9  X 106 m/s. 
EVA L U AT E  Why are the two values the same? 



Quantum Mechanics 

Summary 
In this chapter, we will explore the quantum mechanics of particles 
trapped in bound states, such as electrons orbiting atoms. We will 
apply the Schrodinger equation to find wave function solutions of it in 
a variety of cases, including a particle confined to a box, a particle in a 
square well, and a particle in a harmonic oscillator potential. We will 
also investigate phenomena forbidden by Newtonian mechanics, such 
as quantum mechanical tunneling. 

Objectives 
After studying this chapter, you will understand 

• How to calculate the wave functions for a particle in a box. 
• How to determine the wave function for a particle in a potential 

well. 
• The definition of tunneling and barrier penetration. 
• How to solve the problem of a particle in a harmonic oscillator 

potential. 
• How to solve quantum mechanics problems in three dimensions. 
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Concepts and Equations 

Term 

Particle in a Box 

Wave Functions and Normalization 

Finite Potential Well 

Potential Barriers and Thnneling 

Quantum Harmonic Oscillator 

conceptual Questions 
1: Probability in a box 

Description 

The energy levels for a particle of mass m in an infinitely deep square well 

potential of width L are given by 

E = P? 
= 

n2h2 
n 2m 8mL2 ' 

n = 1 , 2, 3, . . . .  

The corresponding normalized particle wave functions are given by 

(2 mrx 
!{I,Jx) = 'V Z sin L' n = 1 , 2, 3, . . . .  

To be a solution of the SchrOdinger equation, the wave function and its deriv

ative must be continuous everywhere. Wave functions are usually normalized 

such that the probability of finding the particle somewhere is unity: 

r 1 !{I (x)  1 2dx = l .  
-0:> 

The energy levels in a potential well of finite depth are lower than those in an 

infinite well. The levels are obtained by matching wave functions at the well 

walls and satisfying continuity of the wave function and its derivative. 

Because of a process called tunneling, there is a finite, nonzero probability 

that a particle will penetrate a potential-energy barrier even if its initial 

kinetic energy is less than the height of the barrier. 

The energy levels for a harmonic oscillator for which U(x) = 1 /2 k'x2 are 

n = 1 , 2, 3, . . . .  

Consider the allowed energy states of a particle in a box. How does the probability of finding the parti
cle in the left half of the box compare with the probability of finding the particle in the right half of the 
box, for any energy state? 

Solution 
I D E N T I F Y, S ET U P, A N D  E X E C U T E  The box is symmetric; therefore, the probability of finding a 
particle in the left half of the box is equal to the probability of finding the particle in the right half of the 
box, regardless of the energy state. 

EVA L U AT E  Building intuition about quantum mechanics and particle probabilities will help you pre
pare for the later chapters of the text. 
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2: Interpreting wave functions 
Consider the wave function for a particle in a box, shown in Figure 40. 1 .  Where are the locations at 
which the particle is most likely to be found? Where are the locations at which the particle is least 
likely to be found? 

Solution 

I/J (x) 

o L L L 2L 5L L 
6 3 2 3 6 

Figure 40.1 Question 2. 

I D E N T I FY, S ET U P, A N D E X E C U T E  The figure shows the wave function for the n = 3 state. The 
wave function has three nodes and crosses zero twice in the box. The probability function is the square 
of the wave function. When the wave function is squared, there will be three maxima, located at Ll6, 
Ll2, and 5L16. The particle is most likely to be found at these three locations. 

There are two minima in the probability function, located at Ll3 and 2L13, corresponding to loca
tions where the particle is least likely to be found. In addition, the particle will not likely be found at 
the edges of the box: 0 and L. 

EVA L U AT E  It is important to remember that the probability function is the square of the wave func
tion. Negative values of a wave function do not correspond to locations where the particle is least 
likely to be found. Here, the minimum of the wave function is one of the most likely places for the par
ticle to be found. 

Problems 
1: Electron in a well 
Suppose an electron is confined to an infinitely deep, one-dimensional potential well of length L. Cal
culate the value of L required for the frequency of a photon emitted in a transition from the n = 2 state 
to the n = 1 state to be equal to the frequency of a photon emitted in a transition from the n = 2 state 
to the n = 1 state in the Bohr hydrogen model. 
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Solution 
I D E N T I F Y  A N D S ET U P  We will use energy levels for a particle in a box and the Bohr model to 
solve the problem. 

E X E C U T E  The energy levels for a particle in an infinitely deep well of length L are given by 

n2h2 
En = --2 ·  8mL 

The energy needed for the transition between the n = 2 and n = 1 states is then 

_ h2 ( 2 2 )  6.Ebox - --2 2 - 1 . 
8mL 

Solving for L, we have 

f3h2 L = \j8mM. 
We need the energy difference, which we find from the Bohr model. The energy for the n level in the 
Bohr model is given by 

heR 1 3 .60 eV 
E = -- = n n2 n2 

Solving for the energy difference gives 

- 13.60 eV 
6.EH atom = E2 - E1 = --2-2--

- 13 .60 eV 
12 = 10.2  eV. 

Substituting this result into the earlier result allows us to solve for L: 

L =  
3 ( 6 .626 X 10-34 Is ) 2 ---------------------,-- = 3.3 X 1 0- 10 m. 

8 ( 9. 1  X 10-3 1  kg ) ( 10.2 eV ) ( 1 .6 X 1 O- 19 1/eV) 

EVA L U AT E  How does this result compare with the circumference of the first Bohr orbit? It approxi
mately matches it, indicating that a square well potential serves as a reasonable model of the hydrogen 
atom. 

2: Finding the wave function 
Find the wave function of a particle in a box centered at x = 0 with walls at x = ±L/2. 

Solution 
I D E N T I F Y  A N D  S ET U P  We will solve the Schrodinger equation to solve the problem. We will need 
to check the boundary conditions to ensure that our solution is correct. 

E X E C U T E  The Schrodinger equation for a potential U = 0 is given by 
11,2 d21/J 

-- -- = EI/J. 2m dx2 



The solutions are given by 

1/1 1 = sin kx, 
1/12 = cos kx. 

We substitute these solutions into the Schrodinger equation and find that 

h2k2 
E = - . 

2m 
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We now check the boundary conditions (i.e . ,  the wave functions go to zero at the walls). For the first 
wave function, we have 

From this, we see that argument of the sin function must be integer multiples of 7T, or 

kL 
- =  m7T 
2 ' m = 1 , 2, . . .  

2m7T n7T 
k - - - -- -

L L 
for even n. 

Applying the boundary condition to the second wave function gives 

1/12 ( -L/2 ) = I/12 (L/2 ) = o. 

This limits the values of k to 

kL n7T 
2 2 

n7T 
k = 

L 
for odd n. 

We use these results to find the energy levels. With the given k's,  the energy levels are 

The corresponding wave functions are 

h2k2 h2n2 
En = 

2m 
= 

8mL2 · 

for even n, 

for odd n. 

EVA LUAT E  We see that the result is similar to the box wave functions between 0 and L, but with the 
wave functions displaced by Ll2. 

3: Tunneling of a car 
A car of mass 3000 kg rolls without friction on a level track and approaches a hill of height 1 .0 m and 
width 1 .0 m. It has enough kinetic energy so that it will rise to a height of 0.5 m and then return to the 
track. What is the probability that the car will tunnel through the hill? 
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Solution 
I D E N T I  FY A N  D S ET U P  We'll use the probability-of-tunneling function, equation 40.21 ,  in the text, 
to solve the problem. 

E X E C U T E  Given kinetic energy E, the probability of tunneling through a barrier of height Uo and 
width L is given by the transmission coefficient, approximated by 

T = Ge -2KL , 
where 

G = 16� ( 1 - �) , 

Uo Uo 

V2m ( Uo - E) 
K =  

For this problem, 

Substituting, we find that 

and 

The exponential factor becomes 

Uo = mgY, Uo 
E = -

2 

G � 16H 1 - �) � 4 

K = 

2mViYL 2 ( 3000 kg ) V ( 9.8  m/s2 ) ( LOrn)  ( 1 .0 m ) 
2KL = = = 1 .8 X 1038. 

Ii, 1 .05 X 10-34 J s 

The transmission factor is therefore 

1 
T = 4 

e I .8 X 1038 « 1 .  

EVA L U AT E  Clearly, this probability is extremely small. It is so small that you would never expect to 
see the car tunneling through the hill, much as common sense tells us . 

Try It Yourself! 
1: Particle in a well 
A particle of mass m is confined by a potential well of depth Vo and width d. For a given value of d, 
what is the minimum value of Vo necessary to confine the particle? 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  Use the uncertainty principle to solve the problem. Draw a sketch of the 
potential-energy function. 
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E X E C U T E  For the particle to be confined to the well, we must set the uncertainty in position to the 
width. The uncertainty in momentum is then 

This gives a corresponding uncertainty in kinetic energy: 

How much energy must the particle have to be confined? The total energy must be less than zero, or 

E = I1Ek - Vo < o. 

Substituting into this expression gives the values of Vo necessary for confinement: 

h2 
VO > --2 · 2md 

The minimum value of Vo occurs when it is equal to the expression. 

EVA L U AT E  What is the minimum depth required to produce a bound state for a proton in a nucleus 
( d  = 3 .0 X 1O- I S m ) ? 2.3 MeV 

2 :  Electron in a box 
An electron trapped in a box has a ground-state energy of 10 eV How big is the box? 

Solution Checkpoints 
I D E N T I F Y  A N D  S ET U P  Use energy levels for a particle in a box. 

E X E C U T E  The energy levels for a particle in an infinitely deep well of length L are given by 

n2h2 En = --2 · 
8mL 

The ground state corresponds to n = 1 .  Substituting into the equation gives L = 1 .94 X 10- 10 m. 

EVA LUAT E  Does this result seem reasonable? Is it comparable to the size of the hydrogen atom? 





Atomic Structure 

Summary 
In this chapter, we will apply our knowledge of quantum mechanics 
and the Schrodinger equation to atoms in order to understand their 
structure. We will learn how the quantization of angular momentum is 
a natural result of our investigation. In addition, we will see how 
atoms are described in terms of their quantum numbers, and we will 
learn that electrons have an intrinsic spin quantum number. We' ll also 
learn how the Pauli exclusionary principle prevents two particles from 
occupying the same quantum mechanical state. 

Objectives 
After studying this chapter, you will understand 

• How to describe the states of the hydrogen atom in terms of quan
tum numbers. 

• How the Zeeman effect describes the orbital motion of atomic 
electrons in a magnetic field. 

• That electrons have intrinsic spin angular momentum. 

• How to analyze the structure of many-electron atoms. 

• How X-rays emitted by atoms unveil the inner structure of atoms. 
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concepts and Equations 

Term 

The Hydrogen Atom 

The Zeeman Effect 

Electron Spin 

Electrons in Atoms 

X-ray Spectra 

conceptual Questions 

Description 

The SchrOdinger equation predicts the same energy levels as the Bohr model: 

1 mre4 1 3.60 eV 
E = - -- = ----/I (41TEo ) 2 2n2h2 n2 

It also gives the possible magnitudes of orbital angular momentum as 

L = V l ( l  + 1 )  h, l = 0, 1 , 2, . . .  , n - 1 ,  

and the z component of the orbital angular momentum as 

Lz = mlh, ml = 0, ± l , ±2, . . .  , ± l. 

The interaction energy of an electron with magnetic quantum number ml in a 

magnetic field along the +z axis is given by 

eh V = -fLzB = ml
2m B = mlfLBB, ml = 0, ± I, ± 2, . . .  , ± t, 

where VB is the Bohr magneton. 

Electrons have intrinsic spin angular momentum of magnitude S, given by 

S = � � (� + 1 ) h = � h. 

The z component of the spin angular momentum has values 

- + 1  ms - - 2 · 

In a hydrogen atom, the quantum numbers ( n, t, ml' ms ) specify the quan

tum-mechanical state of the atom and have allowed values given by 

n 2: 1 , O ::5 t ::5 n - l , 

I m/ l  ::5 l, ms = ± � .  
Moseley's law states that the frequency of the Ka X-ray from a target with 

atomic number Z is given by 

f =  ( 2.48 X 1015 Hz ) (Z - I V  

1: Atoms without the Pauli exclusion principle 
What would the electron configuration of the ground state of calcium be if the Pauli exclusion principle 
did not hold? 

Solution 
I D E N TI FY, S ET U P, A N D  E X E C U T E  Without the exclusion principle, all electrons could occupy the 
same lowest energy state. The ground state of calcium would be 1s20. 
EVA L U ATE Without the Pauli exclusion principle, all ground-state atoms would have all their elec
trons in the Is state. The world, and the universe, would be a rather boring place, since all atoms would 
have similar chemical properties. 
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2 :  Identify the atom 
Determine the element corresponding to the following ground-state electron configurations: 

(a) I s22s22p63s23p3 

(b) I s22s22p63s23p64s 

(c) Is22s22p63s23p63d34s2 

Solution 
I D E N T I F Y, S ET U P, A N D E X E C U T E  We could determine the elements in all of the preceding cases 
by comparing the configurations against Table 41 .3 in the textbook. A simpler solution is found by 
counting the electrons in each configuration and finding the element with the correct Z. 

Element (a) has 1 5  electrons and is phosphorus. Element (b) has 19 electrons and is potassium. 
Element (c) has 23 electrons and is vanadium. 

EVA LUAT E  As we become familiar with electron configurations, the problems become easier. Our 
next step would be to examine excited states of elements. How could we identify the element in those 
situations? We would follow the same procedure: Count the electrons and correlate with the Z. The 
excited states contain the same number of electrons, with some of the electrons occupying higher sub
states . 

Problems 
1: Possible states of hydrogen 
An electron is in the hydrogen atom with n = 6. Find the possible values of L and Lz for this electron. 

Solution 
I D E N T I F Y  A N D  S ET U P  For n = 6, the largest possible value of Z is 5 and the largest positive value 
of mz is 5 .  The possible values of L and Lz are found from the angular momentum relations. 

E X E C U T E  The values of L and Lz are given by 

L = V Z ( Z  + 1 )  h, 

In this problem, Z ranges from ° to 5 and ml ranges from ° to ±5 .  The values are then 

L = VZ( Z  + 1 )  h = 0, Lz = mlh = ° 
L = VZ ( Z  + 1 )  h = VI ( 1  + 1 )  h = Vi h, Lz = 0, ±h  

L = VZ( Z  + 1 )  h = V2 ( 2  + 1 )  h = V6h, Lz = 0, ±h, ±2h 

L = VZ ( Z  + 1 )  h = V3 ( 3  + 1 )  h = V12 h, Lz = 0, ±h, ± 2h, ± 3h 

L = VZ ( Z  + 1 )  h = V4(4  + 1 )  h = VW h, Lz = 0, ±h, ±2h, ± 3h, ±4h, 

L = VZ ( Z  + 1 )  h = V5 ( 5  + 1 )  h = V30 h, Lz = O,±h, ±2h, ± 3h, ±4h, ±5h 

(n = 0 ) ,  
( n = 1 ) , 

(n  = 2 ) ,  

(n  = 3 ) ,  

(n  = 4 ) ,  

(n = 5 ) .  

EVA LU AT E As the principal quantum number increases, the number of possible states increases 
rapidly. 
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2: Electron configuration of gallium 
Write the ground-state electron configuration for gallium. What next-smaller and next-larger Z's have 
chemical properties similar to those of gallium? 

Solution 
I D E N T I FY A N D  S ET U P  Gallium has an atomic number of 3 1 ,  so we must fill the lowest 3 1  electron 
states. Each s subshell can accommodate 2 electrons, each p substate can accommodate 6 electrons, 
and the d subshells can accommodate 10 electrons. 

E X E C U T E  Gallium's Is, 2s, and 2p subshells hold 2 + 2 + 6 = 10 electrons. The n = 3 subshells-
3s, 3p, and 3d-hold 2 + 6 + 10 = 1 8  electrons, for a total of 28 electrons in the first 6 subshells. 
This leaves three electrons. These electrons go into the 4s and 4p subshells: two in the 4s subshell and 
one in the 4p subshell. 

The next-lower Z with chemical properties similar to those of gallium is aluminum since its outer 
shells are filled with two electrons in the 3s subshell and one in the 3p subshell. The next-larger Z with 
chemical properties similar to those of gallium is indium, since its outer shells are filled with two elec
trons in the 5s subshell and one in the 5p subs hell. 

EVA L U AT E  We can see that gallium, aluminum, and indium are chemically similar, since they occupy 
different rows of the same column in the periodic table. 

3: Zeeman effect 
The difference in energies of a hypothetical atom between its 2p and 3s levels is 1 .2 e V. How large a 
magnetic field would be required to raise the energy of the highest possible state of the 2p level to that 
of the lowest possible 3s state due to the electron spin energies? 

Solution 
I D E N T I FY A N D S ET U P  The change in energy for a level due to electron spin energies is given by 
the Zeeman effect. The highest-energy 2p state is the energy of the 2p state plus the energy difference 
due to the spin energy. The lowest-energy 3s state is the energy of the 3s state minus the energy differ
ence due to the spin energy. We will set these equal to each other to solve the problem. 

E X E C U T E  The energy difference due to a magnetic moment in a magnetic field is given by 

---+ ---+ 
U = -/-t · B. 

The highest-possible-energy 2p state in a magnetic field is 

E2p = E2p (0) + /-tBB, 

where E2p (0) is the energy of the 2p state without the electron spin interaction. The lowest-possible
energy 3s state in a magnetic field is 

E3s = E3s ( 0) - /-t BB. 

We set these energies equal to each other, giving 

E2p = E3s' 

E2p ( 0) + /-t BB = E3s ( 0) - /-t BB. 

The energy difference between the 2p and 3s states is 1 .2 e V, so we solve for that energy difference: 

E3s(0) - E2P(0) = 2/-tBB = 1 .2 eV. 
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Solving for the magnetic field, we have 

1 .2 eV ( 1 .2 eV ) ( 1 .6 X 1O- 19 1!eV) 
4 B = = = 1 .04 X 10 T. 

2/-LB 2 ( 9.27 X 1O-24 1!T) 

EVA L U AT E  The magnetic field required is enormous, larger than the largest steady-state field pro
duced by a superconducting magnet. This problem illustrates how electron spin energy is relatively 
small, although it can be measured (albeit indirectly) . 

4: Calculating energy differences from X-ray transitions 
The X-ray transitions Ka and La are shown in Figure 4 1 . 1 .  The energies of the X-ray photons emitted in 
those transitions are shown for five elements in Table 4 1 . 1 .  Calculate the energy differences between 
the n = 2 and n = 3 levels and the n = 3 and n = 2 levels, using the data provided. 

n = 3 ------�---�------

n = 2 ------+----��---

n = 1 

Figure 41 . 1  Problem 4. 

Element Z Ka (keV) La (keV) 

Mn 25 6.5 1 0.72 1 
Zn 30 9.57 1 . 1 1  
Bf 35 13 .3  1 .60 
Zr 40 1 7.7 2.06 
Rh 45 22.8 2.89 

Table 41 . 1  Problem 4. 

Solution 
I D E N TI F Y  A N D  S ET U P  To solve the problem, we will use the definition of X-ray transitions. The 
Ka line arises from the energy difference between the n = 3 and n = 1 states,  so it is equal to E3 - E1 • 
The La line arises from the energy difference between the n = 3 and n = 2 states, so it is equal to 
E3 - E2 · We will combine these results to find the Solution. 

E X E C U T E  The energy difference between the n = 2 and n = 1 states is found by combining informa
tion from both lines. Specifically, 

E2 - El = (E3 - E1 ) - (E3 - E2 ) = EK - EL • 
a a 
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The energy difference between the n = 3 and n = 2 states i s  found directly from the La line. The 
results for the energy differences are therefore as follows: 

Element E3 - E2 (keV) E3 - E2 (keV) 

Mn 5.79 0.721 

Zn 8.46 1 . 1 1  

Bf 1 1 .7 1 .60 

Zf 15 .6 2.06 
Rh 19.9 2.89 

Table 41 . 1  Problem 4.1  

EVA LUATE Examining the trends in these elements, we see that the energy differences increase with 
increasing atomic number. What does that tell us about atomic structure? 

Try It Yourself! 
1: Filling shells 
Write down the expected electron configuration for hydrogen atom states (a) for an atom with 18 elec
trons and (b) for an atom with 22 electrons. (c) If an atom has 22 electrons, how many additional elec
trons would be required to complete a closed shell? 

Solution Checkpoints 
I D E N T I  F Y  A N  D S ET U P  Fill the electron shells from lowest to highest. How many electrons fit in 
each shell? 

E X E C U T E  (a) Two electrons will fill the Is shell, and then two electrons will fill the 2s shell. Continue 
filling until you have 

for the 1 8-electron atom. 

(b) Starting with the 1 8  electrons of part (a), add 4 more electrons to the next shell. This will give 

Is22s22p63s23p63d4 

for the 22-electron atom. 

(c) The 3d shell holds 10 electrons and the 22-electron atom has 4 atoms in the 3d shell, so 6 additional 
electrons are required to fill the 3d shell completely. 

EVA LUATE Remember that each shell hold 2 ( 2l + 1 )  electrons. 

2 :  Classical versus quantum physics 
(a) Calculate the classical angular precession frequency of an electron in a constant magnetic field. (b) If 
the electron's angular momentum is quantized, find the allowed values of the possible orbits. (c) For an 
electron spin in a constant magnetic field, find the difference in energy of its two states and the corre
sponding angular frequency. 
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Solution Checkpoints 
I D E N TI F Y  A N D S ET U P  The classical precession frequency is found by looking at the forces acting 
on the electron. Quantized angular momentum requires that the angular momentum have only discrete 
values. 

E X E C U T E  (a) Classically, an electron is acted upon by a magnetic force in a constant magnetic field 
and follows a circular path. This gives 

The angular frequency is then 

mv2 
evB = --. 

R 

eB 
We = -. 

m 

(b) For the angular momentum to be quantized, we must have 

mvR = nn. 

Using the results from part (a), we find that the allowed values of the radius are 

for integer values of n.  

Rn = mh, \j -;B  

(c) The energy difference between the two states is twice the value of the Zeeman effect: 

!J.E = 2J.LBB. 

This corresponds to a frequency difference of 

!J.E 2J.LBB 
j - - - 

- h - h . 
EVA L U AT E  How do the two frequencies compare? Check that they are the same by converting the 
classical angular frequency to ordinary frequency and replacing the Bohr magneton with its definition. 





Summary 

Molecules and 
Condensed Matter 

In this chapter, we will extend our application of quantum mechanics 
from atoms to molecules and larger structures of atoms. We will 
investigate chemical behavior, molecular bonds, and the large-scale 
assembly of atoms into crystalline solids. Our quantum-mechanical 
foundation will allow us to examine semiconductors and supercon
ductors, two types of materials having profound effects on science and 
society today. 

Objectives 
After studying this chapter, you will understand 

• Forms of bonds that hold atoms together. 

• The rotational and vibrational dynamics of molecules. 

• How atoms form crystalline structures. 

• How to use the energy-band structure to explain electrical proper
ties of solids. 

• The basis of semiconducting materials and how semiconductor 
devices operate. 

• The basis of superconducting materials 

495 
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Concepts and Equations 

Term 

Molecular Bonds and 

Molecular Spectra 

Free-electron Model of Metals 

Semiconductors 

Semiconducting Devices 

conceptual Questions 
1: Types of bonds 

Description 

Molecules bind through ionic, covalent, van der Waals, and hydrogen bonds. 

For a diatomic molecule, the rotational energy levels are given by 

h2 
E/ = l ( t  + 1 )-21 

1 =  0, 1 , 2, . . .  

1 = mrr6, 

where 1 is the moment of inertia of the molecule, mr is the reduced mass of 

the molecules, and ro is the distance between the atoms. The vibrational lev

els are given by 

n = 0, 1 , 2, . . . .  

In the free-electron model of metals, electrons are treated as free particles in a 

conductor. The density of states is given by 

( ) 
_ ( 2m) 3/2V 1/2 g E - 2 3 E 2'TT h 

The probability that an energy state E is occupied is given by the Fermi-Dirac 

distribution, 

where EF is the Fermi energy. 

A semiconductor is a material with electrical resistivity intermediate between 

that of a good conductor and a good insulator. In n-type semiconductors, the 

conductivity is due to the motion of electrons. In p-type semiconductors, the 

conductivity is due to the motion of holes, or vacancies of electrons. Semicon

ductors have energy gaps of about 1 e V between their valence and conduction 

bands. 

A diode is made of two semiconductors, one p-type and one n-type, that can 

behave much like a switch, conducting above a threshold voltage and insulat

ing below. A transistor is made of two p-n junctions. The current-voltage 

relationship for an ideal p-n junction is given by 

1 = Is( eeV/kT - 1 ) . 

What kind of chemical bonds hold the following objects together: (a) NaCI molecules,  (b) N2 mole
cules, and (c) copper atoms in a wire. 

Solution 
I D E N T I F Y, S ET U P, AN D E X E C U T E  (a) NaCI molecules are made of oppositely charged atoms, so 
ionic bonding holds the molecules together. The sodium atom gives its one 3s electron to the chlorine 
atom, filling a vacancy in the chlorine's 3p shell. 
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(b) Since two nitrogen atoms form a nitrogen molecule, the molecule is made of two similarly charged 
atoms and cannot be bound by an ionic bond. The nitrogen molecule is bound by a covalent bond. 
(c) The copper atoms in a wire are bound by metallic bonds, since the copper is arranged in a crys
talline structure in the wire. 

EVA L U ATE This small sample of problems involving bonds illustrates the variations on chemical 
bonding in molecules and solids. 

2 :  Covalent bonds without electron spin 
How many electrons would participate in a covalent bond if electrons had no spin? 

Solution 
I D E N TI  F Y, S ET U P, A N  D E X E C U TE If electrons had no spin, only one electron could occupy a par
ticular space, due to the exclusion principle. The usual covalent bond has two electrons sharing the 
same spatial state, but not the same spin state, in order to satisfy the exclusion principle. Without spin, 
only one electron could participate in a covalent bond. 

EVA L U ATE Spin plays an important role in atomic and molecular physics, as we see here in its role in 
covalent bonds. This exercise should elucidate the role spin plays in molecular binding. True spinless 
particles exist, but they do not obey the exclusion principle. 

Problems 
1: Predicting states 
Light of wavelength 5 .0 /Lm strikes and is absorbed by a molecule. Is this process most likely to alter 
the rotational, vibrational, or atomic energy levels of the molecule? If the light had a wavelength of 
3 .7 mm, which energy levels would most likely be affected? 

Solution 
I D E  NT I FY A N D  S ET U P  The energy difference for atomic energy levels is generally several e V s, for 
vibrational levels is generally several 0. 1 eVs, and for rotational levels is generally several 0.001  eVs. 
We will calculate the energy of the light to determine which type of transition it may affect. 

E X E C U T E  The energy of a photon is 

he 
E = - . 

A 

Since we are calculating electron-volts, it is convenient to use h = 4. 1 36 X 10- 15 eVs. The energy of 
the 5 .0-,um light is then 

he ( 4. 136 X 1O- 1 5 J · s ) ( 3 .00 X 108 m/s ) 
E = - = = 0.25 e V. 

A 5 .0 X 1 0-6 m 

0.25 e V corresponds to the energy difference of a vibrational transition. For the 3.7-mm light, the 
energy IS 

he (4 . 136 X 10- 1 5  J .  s ) ( 3 .00 X 108 m/s ) 
E = - = = O.0003 eV. 

A 3.7 X 1 0-3 m 

0.0003 e V corresponds to the energy difference of a rotational transition. 
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The 5 .0 /Lm light should affect the vibrational level, and the 3 .7-mm light should affect the rotational 
level. 

EVALUATE These different ranges of transition energies indicate the likelihood of causing a molecule 
to rotate, vibrate, or change its atomic state. The situation corresponds to a similar one in the classical 
world, where it is easy to rotate an object, harder to induce a vibration, and much harder to have it 
change state. 

Practice Problem: If the light had a wavelength of 140 nm, which energy levels would most likely 
be affected? Answer: Light of this wavelength has an energy of 8.9 eV, corresponding to an atomic 
transition. 

2 :  A diatomic molecule 
The Dz molecule is made up of two deuterons (a proton plus a neutron) and two electrons. The spacing 
between the nuclei in the molecule is approximately 7.5 X 10- 1 1  m. Calculate the moment of inertia of 
the Dz molecule about its center of mass and the rotational energy of its ground state and first two 
excited states. 

Solution 
I D E  NT I FY A N D  S ET U P  We will use the formulae for the moment of inertia and rotational energy to 
solve the problem. We will ignore the masses of the electrons, as they are negligible compared with the 
mass of the nuclei. We also will take the mass of the neutron to be that of the proton, as they have sim
ilar masses. 

E X E C U T E  The moment of inertia is 

There are four masses, each located at a point half the interatomic distance from the center of mass. 
This gives 

1 = 2mH (�r + 2mH (�r = mHdz 

= ( 1 .67 X 1O-
z7 kg ) ( 7.5 X 10- 1 1  m ) Z = 9.39 X 10-48 kg mZ. 

The energy levels for rotational states are given by 

E = 1 ( Z  + 1 )  
( h  ) Z 

21 

= 1 ( Z  + 1 ) ( 3 .70 X 10-3 eV ) . 

The ground-state energy has I = 0, so Eo = 0; the first excited-state energy has I = 1 ,  so 
EI = 7.40 X 10-3 eV; and the second excited-state energy has I = 2, so Ez = 2.22 X 10-3 eV. 

EVA L U AT E  What frequency of light will be emitted when the first excited state decays to the ground 
state? 
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3 :  Fermi energy of a particle in a box 
Suppose the energy values for a particle in a box are given by 

where Eo is a constant and n is the quantum number of the state. (a) If there are 50 electrons in such 
states, find the Fermi energy at a temperature of 0 K. (b) What is the ratio of the average energy of the 
electrons to the Fermi energy? 

Solution 
I D E  NT I F Y  A N D  5 ET U P  The Fermi energy is the energy of the last filled state, so we will find the 
energy of the highest filled state to solve part (a). To solve part (b) ,  we' ll add up the energies of all the 
states and take the ratio. 

E X E C U T E  (a) The 50 electrons will occupy 25 states, since 2 electrons fill each state. The energy of 
the 25th state is 

EFO = Eo ( 25 ) 2 = 625Eo. 

(b) The total energy is found by summing the contributions from each state, given by 

25 
Er = 2Eo[1  + 4 + 9 + . . . J = 2Eo� n2. 

n = i  

We can solve this equation by summing up the 25 terms, or we can use a summation rule. The sum 
over N squares is given by 

:i:n2 = N(N + 1 ) ( 2N + 1 )
. 

n = ]  6 

Evaluating this sum for N = 25, we have 

25 
2 

25 ( 25 + 1 ) (  2 ( 25 ) + 1 )  
Er = 2Eo �n = 2Eo = 1 1 ,050Eo· 

n = ] 6 

The average energy is the total energy divided by 50: 

Er 1 1 ,050 (221 ) 
Eavg = 

50 
= 

50 
Eo = 22 1Eo = 

625 
EFO' 

The ratio of the average energy per electron to the Fermi energy is 0.354. 

EVA LUATE What does the ratio of the average energy per electron to the Fermi energy tell us about 
the system? Since the ratio is about 1/3 ,  it indicates that many of the electrons are in energy states hav
ing less than half the Fermi energy. 

4: Fermi-Dirac statistics 
Given the Fermi-Dirac probability distribution and the fact that sodium has a Fermi energy of 3 . 15 eV, 
find the ratio of the width 6.E to EF at 273 K, where 6.E = E( 0.2 ) - E( 0 .8 ) .  The quantity E(0.2) is 
the energy for which the occupation probability is 0.2. 
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Solution 
I D E N T I FY A N D  S ET U P  Use the Fermi-Dirac probability function to solve the problem. 

E X E C U T E  The Fermi-Dirac probability functionf(E) is given by 

1 
f(E) = e (E- EF)jkT + 1 

. 

Rearranging terms to solve for E gives 

( l - f(E) ) 
E = EF + kTln 

f(E) 
. 

Solving for E(0.2) and E(0.8) yields 

( 1 - 0 2 ) 
E(0.2) = EF + kTln 

. 
= EF + kTln 4 

0.2 ( 1 - 0 8 ) 
E( 0.8 ) = EF + kTln 

. 
= EF - kTln 4. 

0.8 

Forming the ratio requested in the problem gives 

I1E 2kTIn 4 2 ( 8 .617 X 10-5 eV/K) ( 273 K ) ln 4 
- = = = 0.02. 
EF EF ( 3 . 15 eV )  

EVA L U AT E  What does this ratio tell us about the system? Near room temperature, changing the 
energy by 2% of the Fermi energy changes the occupation probability for sodium from 80% to 20%.  
This i s  a very dramatic change over a small distance (i.e. the Fermi distribution function is very sharp). 

Try It Yourself! 
1: Rotational transitions 
(a) If a molecule with moment of inertia 1 is induced to make a pure rotational transition from a state L 
to a state L + 1 ,  what frequency of radiation is needed? (b) If the same molecule makes a transition 
from the state L to the state L - 1 ,  what frequency of radiation is emitted? 

Solution Checkpoints 
I D E N T I F Y  A N D S ET U P  Use rotational energy levels to solve the problem. 

E X E C U T E  (a) The rotational energy levels are given by 

h2 
E{ = I ( 1  + 1 )  -. 

21 

To go from state L to state L + 1 ,  the energy hf supplied must be equal to 

hf = EL+ I  - EL 
h2 

= 2(L + 1 )
2/

' 
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(b) To go from state L to state L - 1 ,  the energy hf released is equal to 

hI' = EL - EL- 1 
h2 

= 2L- . 
21 

EVA L U AT E  How do the spacing between different possible values off and I' compare? 

2 :  Promoting to the conduction band 
Electromagnetic radiation can promote an electron from the top of a nearly complete valence band to 
the bottom of an unfilled conduction band. The lowest frequency for which this is possible is 

fm = 2.75 X 10 14 Hz for silicon and fm = 1 .79 X 10 14 Hz for germanium, both at room temperature. 
Calculate the energy gap between the valence and conduction bands for the two materials. 

Solution Checkpoints 
I D E N T I FY A N D  S ET U P  What equation relates energy and frequency for electromagnetic radiation? 

E X E C U T E  The energy gap is found from the frequency by the relationship 

D.E = hf,n = Egap · 
Evaluating this equation gives an energy gap of 1 . 1 3 e V for silicon and an energy gap of 0.736 e V for 
germamum. 

EVA L U AT E  What practical purpose can this material carry out? Could it be used to detect light? How? 





Nuclear Physics 

Summary 
In this chapter, we look deep inside the atom into the nucleus and the 
particles that make up the nucleus .  We will investigate how protons 
and neutrons combine to influence the size, mass, and stability of a 
nucleus .  We will then turn to radioactive decay and nuclear reactions 
to examine the processes that shape our understanding of nuclei. Ben
eficial uses of radioactivity, fission, and fusion will also be examined. 

Objectives 
After studying this chapter, you will understand 

• How protons and neutrons form nuclei. 

• Some fundamental properties of nuclei, including radii, densities, 
spins, and magnetic moments. 

• How binding energies depend on the number of protons and neu
trons in the nucleus .  

• How nuclei undergo radioactive decay and how they decay at dif
ferent rates. 

• The basics of nuclear reactions and how to predict reaction 
energIes. 

.. 
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Concepts and Equations 

Term 

Properties of the Nucleus 

Nuclear Binding and Structure 

Radioactivity and Radiation 

Description 

A nucleus is composed of A nucleons (Z protons and N neutrons), is roughly 

spherical in shape, and has a radius that depends on A according to the formula 

R = RoAI/3, 
where Ro = 1 .2 fm. 

The mass of the nucleus is less than the total mass of the protons and neu

trons that constitute the nucleus. The mass difference multiplied by c2 is the 

binding energy EB, given by 

EB = (ZMH + Nmll - 1M)c2, 
where z is the number of protons in the nucleus, MH is atomic mass of neutral 

hydrogen, N is the number of neutrons in the nucleus, mil is the mass of a 

neutron, 1M is the mass of the neutral atom containing the nucleus, and c is 

the speed of light in vacuum. Nuclei are held together by the attractive 

nuclear force overcoming the repulsive electrical force. The nuclear force 

favors paired nucleons with opposite spin and pairs of pairs. Most stable 

nuclei have more neutrons than protons. Both the shell model and the liquid 

drop model are used to describe the properties of the nucleus. 

Unstable nuclei undergo radioactive decay, most commonly through alpha 

( ex ) and beta (f3 ) particle emission and sometimes through gamma-ray emis

sion. Alpha particles are two protons and two neutrons bound together. The 

most common beta particles (beta-minus particles) are electrons. Radioactive 

material decays exponentially. The number N of nuclei remaining in a sample 

of No nuclei after time t is 

N = Noe -At, 

where A is the decay constant for the particular nuclear species in question. 

The rate of decay is described by the decay constant A, the half-life TI/2, or 

the lifetime Tmean, related by 

1 TI/2 TI/2 
T = - = - = --mean A In2 0.693 . 

Radioactivity can be used beneficially to date artifacts or to diagnose and 

treat medical conditions. Radioactivity also can be harmful to human tissue, 

as it can ionize cellular material, but radiation hazards can be reduced 

through proper precautions. 

Nuclear Reactions, Fission, and Fusion Nuclear reactions result from the bombardment of a nucleus by a particle. 

conceptual Questions 
1: Size of nuclei 

Energy is exchanged in nuclear reactions. A reaction resulting in an excess of 

kinetic energy is called an exoergic reaction, and a reaction resulting in a 

deficiency of kinetic energy is called an endoergic reaction. 

Fission is the radioactive decay of an unstable nucleus into two or more 

nuclei. Fission is used to power nuclear reactors. Fusion is a nuclear reaction 

in which two or more light nuclei combine to form a larger nucleus plus 

excess energy. 

How much must the mass number of a nucleus increase to double the volume of the nucleus? To dou
ble its radius? 
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Solution 
I D E N T I F Y, S ET U P, A N D E X E C U T E  The radius of a nucleus is proportional to the cube root of the 
mass number. Volume is proportional to the cube of the radius. To double the volume of a nucleus, the 
mass number must double. 

To double the radius, the mass number must increase by a factor of 23 = 8 .  

EVA LUAT E  Changes in radius and volume give indications of the structure of nuclei. The relation of 
the radius to the volume indicates that the nuclear density is roughly constant for all nuclei. 

2 :  Causing nuclear fusion 
Deuterium nuclei can fuse, liberating energy. Why doesn't  a container of deuterium gas begin fusion 
after being shaken? 

Solution 
I D E N T I F Y, S ET U P, A N D E X E C U T E  The deuterium nuclei can fuse, but only when the nuclei con
tact each other. Deuterium nuclei in deuterium gas are surrounded by electron clouds, and Coulomb 
repulsion prevents the nuclei from coming into contact with each other. For the fusion reaction to take 
place, the deuterium nuclei must be given enough energy to overcome the Coulomb repulsion. 

EVAL UAT E  The biggest barrier to fusion reactions being used as a source of energy is the electric 
repulsion between charged nuclei. Even bare nuclei without electron clouds must have enough kinetic 
energy to overcome that repulsion in order for fusion to occur. 

Problems 
1 :  Binding energy of silver and gold 
(a) Calculate the total binding energy of 1 07 Ag (atomic mass 106.905097 u) and 197 Au (atomic mass 
196.966569 u) . (b) Calculate the binding energy per nucleon for each atom. (c) Which of these nuclei 
is more tightly bound? 

Solution 
I D E  N T I FY We find the binding energy by converting the mass defect into energy. 

S ET U P  The nucleon number is the number of nucleons, so we will divide the binding energy by 107 
and 197 to find the respective binding energies per nucleon. 

EX E C U T  E The mass defect is calculated by subtracting the atomic mass from the combined mass of 
the protons and neutrons in the nucleus: 

11M = Zmp + Nmn - M = Z( 1 .007825 u) + N( 1 .008665 u) - M. 
107 Ag has 47 protons and 60 neutrons, for a total of 107 nucleons. Its mass defect is 

11M = ( 47 ) ( 1 .007825 u )  + ( 60 ) ( 1 .008665 u )  - ( 106.905097 u )  = 0.9826 u. 

Its binding energy is 

EB = ( 0.9826 u ) ( 93 1 .5 MeV/u ) = 9 15 .3 MeV. 
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Its binding energy per nucleon is 

EB/A = 9 1 5.3 MeV/ 107 = 8.55 MeV/nucleon. 
1 97 Au has 79 protons and 1 1 8  neutrons, for a total of 197 nucleons. Its mass defect is 

11M = ( 79 ( 1 .007825 u )  + ( 1 1 8 ) ( 1 .008665 u )  - ( 196.966569 u )  = 1 .6741 u. 

Its binding energy is 

EB = ( 1 .6741 u ) ( 93 1 .5 MeV/u ) = 1 559.4 MeV 

Its binding energy per nucleon is 

EB/A = 1 559.4 MeV/ I 97 = 7.92 MeV/nucleon. 

The silver atom's nucleons are more tightly bound, since they require more energy per nucleon to 
become free. 

EVA LU AT E  The total binding energy is larger for gold than for silver, but the binding energy per 
nucleon is less for gold. This state of affairs agrees with our model of the nucleus: Atoms with larger 
numbers of nucleons have greater radii, causing their nucleons to be less strongly bound than atoms 
with smaller numbers of nucleons. 

2 :  Examining a nuclear reaction 
Calculate the energy released or absorbed by the reaction �He + TH � iHe + :H. 

Solution 
I D E N T I FY A N D S ET U P  We find the reaction energy by subtracting the rest masses of the products 
from the rest masses of the initial particles. Table 43 .2 in the text provides the needed rest masses. 

E X E C U T E  The reaction energy is 

Q = MA + MB - Me - MD, 
where MA and MB are the rest masses of �He and TH, respectively, and Me and MD are the rest masses of 
iHe and IH, respectively. Table 30.2 in the text gives the rest masses: 

�He: 3 .016029 u, 
2H· , . 2.0 14101  u, 
iHe: 4.002603 u, 
'H-, . 1 .007825 u. 

The change in mass is 

Q = ( 3 .0 16029 u) + ( 2.014101 u) - (4.002603 u) - ( 1 .007825 u) = 0.0 197 u. 

The mass has decreased, indicating that energy is released. The reaction energy is 

Q = ( 0.0197 u ) ( 93 1 .5 MeV/u ) = 1 8 .35 MeV. 

A total of 1 8 .35 MeV is released in the reaction. 

EVA L U AT E  Since the total mass decreases, the kinetic energy of the products is more than the initial 
energy of the interacting nuclei. This fusion reaction is one candidate being considered for the produc
tion of fusion energy. 
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We also should check that charge is conserved in the reaction. The charge of the incoming nuclei is 
+ 3e, and the charge of the product nuclei is + 3e, confirming that charge is conserved in the reaction. 

3: Radioactivity 
At a certain time, a sample of radioactive material is measured and is found to decay at a rate of 32 counts 
per second. Two hours later, the sample is measured to decay at a rate of 1 3  counts per second. What is 
the half-life of the sample? 

Solution 
I D E N T I FY A N D S ET U P  Radioactivity is an exponential decay process. The two decay rates have 
the same decay constant. We will divide the initial rate by the later rate and substitute the resulting ratio 
into the radioactive decay formula to find the decay constant. The half-life is then found from the decay 
constant. 

E X E C U T E  The initial decay rate can be written 

I:1N 
I:1t 

= 32 counts/s = - ANo· 

The later decay rate can be written 

I:1N 
I:1t 13 counts/s = -AN2 . 

We divide the second decay rate by the first decay rate to find the ratio N2/No: 

N2 1 3  counts/s 
- = = 0.4063 . 
No 32 counts/s 

The number of counts at 2 hours must be the initial number of counts times e -eAt: 

N2 = Noe -At = NOe -A(2 hours). 

We substitute and rearrange terms to solve for A: 

The half-life is then 

N2 = 0.4063 = e -A(7200 s), No 
In 0.4063 = In ( e -A(7200 s) = - A ( 7200 s ) ,  

A = ln0.4063 = 1 .25 X 1 O-4/s. 
7200 s 

In2 ln2 
TI/2 = - = 

4/ 
= 5540 s = 1 .54 hr. A 1 .25 X 10- s 

The half-life of the sample is 1 .54 hours . 

EVA LUAT E  We check our result by noting that the decay rate dropped by more than a factor of 2 in 
1 hour, indicating that the half-life was less than 2 hours, in agreement with our result. 
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4: Carbon dating 
The half-life of Cl4 is 5568 years. If Cl4 dating was done on a piece of 2000-year-old wood, how would 
the abundance of Cl4 in the wood compare with that of Cl4 in freshly cut wood from a similar tree? 

Solution 
I D E N T I F Y  A N D  S ET U P  Cl4 is a radioactive nucleus, so its mass decreases exponentially with time. 
We' ll use the half-life formula to solve the problem. 

E X E C U T E  The number of nuclei decay according to 

N = Noe -At. 
The decay constant for Cl4 is 

0.693 
A = -- = 1 .24 X 1 O-4/yr. 

T1/2 

We'll take No as the number of Cl4 nuclei in the new wood. N is the number of Cl4 nuclei in the old 
wood. Their ratio is 

N 
= e -At = e -( 1 .24 X IO-4/yr)(2000 yr) = 0.78. 

No 
The old wood has 78% of the abundance of Cl4 in the new wood. 

EVA L U AT E  If, instead, we were interested in the abundance of Cl4 in the old wood, we could have 
found the age of that wood. 

Try It Yourself! 
1: N14 mass and energy 
Find the mass defect, the total binding energy, and the binding energy per nucleon for N14. 

Solution Checkpoints 
I D E N T I F Y  A N D S ET U P  Use tables in the text and mass relations to solve. 

E X E C U T E  The mass of the Nl4 nucleus is 

m ( NI4 ) = 14.00307 u - 7 (0.000549 u ) = 1 3 .99923 u. 

The combined mass of seven protons and seven neutrons is 14. 1 1 1 59 u, so the mass defect is 0. 1 24 u .  

The mass defect is the binding energy divided by c2, so the binding energy is 

EB = (0. 1 24 u ) (93 1 .5 MeV/u )  = 104.7 MeV. 

Dividing the binding energy by the 14 nucleons gives a binding energy per nucleon of 7 .5 MeV. 

EVA LUAT E  If seven protons and seven neutrons were brought together to form an Nl4 nucleus, would 
energy be released or used up in the process? 

2: A = 3 nuclear decay 
(a) Find the mass of the tritium nucleus lH3. (b) Find the mass of the helium nucleus 2He3 plus an elec
tron at rest. (c) If a tritium nucleus decays into a helium nucleus, plus an electron, plus a neutrino, how 
much energy is released as kinetic energy? 



Solution Checkpoints 
I D E N T I F Y  A N D  S ET U P  Use Table 42.3 in the text and mass relations to solve. 

E X E C U T E  (a) The mass of the tritium nucleus is 

mCH3 )  = 3 .016049 u - 1 ( 0.000549 u ) = 3 .015500 u. 

(b) The mass of the helium nucleus plus an electron at rest is 
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m (2He3 ) + me = 3 .016029 u - 2 (0.000549 u ) + 0.000549 u = 3.01 5480 u. 

(c) In the decay, the kinetic energy is shared between the electron and the neutrino. The mass defect is 
0.00002 u, or 1 8 .6 ke V. 

EVA L U AT E  Tritium is a radioactive hydrogen isotope that emits beta rays. What is the maximum 
energy of the beta rays emitted? 





Summary 

Particle Physics 
and Cosmology 

In this chapter, we look at the formation of the universe through an 
investigation of particle physics. We will examine the four fundamen
tal forces through which particles interact. We investigate the rules 
that govern these interactions and their influence on the universe as 
we know it. We will go on to consider the similarities among these 
forces and how they can be joined, or unified, into fewer forces . We' ll 
then look back and see how the universe has evolved since the Big 
Bang-the massive explosion that generated the universe. 

Objectives 
After studying this chapter, you will understand 

• Key fundamental subatomic particles and how they were discovered. 

• The four fundamental interactions between particles. 

• The rules that govern the four interactions and how to apply them. 

• How protons, neutrons, and other particles are built from quarks 
and gluons. 

• How all the particles and interactions fit into the standard model. 

• Evidence of the Big B ang and the history of the universe since the 
Big Bang. 

5 1 1 
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Concepts and Equations 

Term 

Fundamental Particles 

Particle Accelerators and Detectors 

Fundamental Interactions 

Expanding Universe 

Cosmology 

conceptual Questions 
1 :  Fundamental forces 

Description 

Protons, neutrons, and other hadrons are made of quarks with fractional 

charge. Some hadrons, such as protons and neutrons, are made of three 

quarks. Other hadrons, such as mesons, are made of two quarks. All massive 

particles (protons, neutrons, electrons, etc.) have antiparticles-particles with 

the same characteristics, but opposite charge. 

Particles serve as mediators of the fundamental interactions. The photon is 

the mediator for the electromagnetic force, the pion for the nuclear force. 

Cyclotrons, synchrotrons, and linear accelerators are used to accelerate parti

cles to high energies so that physicists can study their fundamental interac

tions. Higher energy accelerators allow scientists to probe deeper into the 

nucleus. Particle detectors are used to identify reaction products and measure 

their energies and momenta. 

Four distinct types of interactions or forces are known to exist in the universe: 

the gravitational interaction, the electromagnetic interaction, the strong inter

action, and the weak interaction. Particles are described in terms of their inter

actions. Conservation laws apply to the certain interactions, but not others. 

Physicists are trying to unify all four forces in a single interaction theory. 

They have successfully combined the last three interactions into one theory 

and are testing their predictions. They are currently working on adding gravi

tation to the other interactions to form a "theory of everything." 

Hubble's law shows that galaxies are receding from each other and the uni

verse is expanding. Observations show that the rate of expansion is increas

ing, due to the presence of dark energy, which makes up 74% of the energy in 

the universe. A total of 4% of the universe is made of ordinary matter that we 

have studied in this course. The remaining 22% of the universe is dark matter. 

Both dark matter and dark energy are poorly understood and are the subject 

of intense study by physicists. 

Particle physics leads to an understanding of the development of the universe, 

or the study of cosmology. The universe began with the Big Bang, in which 

all the matter and energy of the universe was compressed into a single point. 

Since the Big Bang, the universe has been cooling and expanding for 14 bil

lion years. 

Which of the four fundamental forces influence electrons, neutrinos, and protons? 

Solution 
I D E  N T I F Y, S ET U P, A N D  E X  E C U T  E Electrons are affected by the electromagnetic force, since they 
have electric charge; the weak force, since they have weak charge; and the gravitational force, since 
they have mass (i.e. "gravitiational charge"). 

Neutrinos have no mass or electric charge and so are affected only by the weak force. 
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Protons are affected b y  all four forces, since they have mass, electric charge, and are made of quarks 
and, thus,  experience the strong and weak force. 

EVA LUAT E  Understanding how particles interact helps us understand the forces between them. 

2 :  Charge of quarks 
Imagine that you are unaware of the charge of the up and down quarks, but you do know that two up 
quarks and one down quark make up the proton and one up quark and two down quarks make up the 
neutron. What are the charges of the up and down quarks? 

Solution 
I D E N T I FY A N D S E T  U P  Protons have charge + e  and neutrons are neutral. We will combine the 
quarks' charges, set them equal to the charges of the proton and neutron, and then solve for the quarks' 
charges .  

E X E C U T E  The charges of the quarks in the proton add to + Ie,  giving 

2qu + lqd = + I e. 

The charges of the quarks in the neutron add to 0, giving 

lqu + 2% = o. 

We use the neutron result to substitute into the proton result to solve for the charge on the up quarks, 
yielding 

2qu - �qu = + l e , 

�qu = + l e , 
_ 2 qu - +"3e. 

We then find that the charge on the down quarks is -e/3 . So both up and down quarks have fractional 
charges of e !  

EVA L UAT E  A process similar to the one we used in this problem led to the discovery that quarks have 
fractional charge. 

Problems 
1: Rho meson decay 
A neutral rho meson ( pO, mass 770 MeV/c2 ) decays at rest into a pair of charged pions ( 7T + , 7T - , 
masses 140 MeV / c2 ) . Find the energies and momenta of the pions. 

Solution 
I D E N T I FY A N D  S E T  U P  The rest mass of the rho meson will be converted to the rest mass and 
kinetic energy of the pions. Momentum must be conserved, so each pion carries away equal momen
tum and energy. 
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E X E C U T E  A particle's relativistic energy is 

E = V m2c4 + p2C2. 

The rest mass of the rho meson is shared between the two pions. Each pion will have half the total 
energy of the rho meson: 

Epion = 4MrhoC2 = 4 ( 770 MeV/c2 ) c2 = 385 MeV. 

The momentum is found from the relativistic energy: 

Epion = V mpion
2c4 + Ppion

2c2 . 

Solving for the momentum yields 

Ppion = � VEpion
2 - mpion

2c4 = ! V ( 385 MeV ) 2 
- ( 140 MeV/c2 ) 2c4 = 359 MeV/c. 

c c 

Each pion has an energy of 385 MeV and a momentum of 359 MeV/c. 

EVA L U AT E  This problem illustrates how physicists analyze elementary particle decays and how they 
must include relativistic kinematics in their work. They also check charge conservation, which holds in 
this case because the neutral rho meson decays into a positive and negative pair of pions. 

2: Zo production 
A 20 particle, one of the mediators of the weak interaction, has a mass of 91 GeV/c2. It  can be pro
duced at rest in a high energy electron-positron collider in which electrons and positrons in counter
rotating beams are allowed to collide. Estimate the product of the magnetic field and beam radius rB 
necessary to create 20 particles. 

Solution 
I D E N T I FY A N D  S ET U P  We will calculate the energy needed by the electrons and positrons to cre
ate the 20 particles. Then we will find the design parameter rB. 

E X E C U T E  To create 20 particles, electrons and positrons are annihilated in a head-on collision. Each 
particle must carry half the rest energy of the 20 particle, so each must have 45.5 GeV of energy. The 
rest energy of the electron and positron is very small compared with 45 .5 GeV, so the momentum is 
simply 

E 
P = - = 45.5 GeV/c. 

c 

The magnetic field necessary to keep a particle in a magnetic field at a fixed radius (recall Chapter 27) is 

P r = - .  
qB 
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This expression holds for these relativistic particles. Solving for rB gives 

rB = E 
q 

45.5 GeV/c 
e 

( 45 .5 GeV ) ( 1 .6 X 10- 19  J/eV ) 
--:-------'-:-:-------,,--:.----:--'- = 1 52 m ' T. 
( 1 .6 X 1 O- 19 C ) ( 3 X 1 08 m/s ) 

EVALUAT E  With O. I -T magnets, how large a ring is necessary? The ring's radius would need to be 
1 .5 km. 

3: Possible decays 
Consider the following decays of the positively charged pion: 

( 1 ) 7T+ -+ p., +vp.. 
( 2 ) 7T+ -+ e +ve 
( 3 ) 7T+ -+ p., +vp..'Y 
(4 ) 7T+ -+ e +ve'Y 
( 5 ) 7T+ -+ e +v 7TO e 
( 6 )  7T+ -+ e +v e +e -e 
( 7 ) 7T + -+ e + v VV e 
( 8 )  7T +  -+ p., +ve 
( 9 )  7T+ -+ p., +ve 
( 1 0 ) 7T+ -+ p.,-e +e -v 
Which decays are allowed by conservation of lepton number? 

Solution 
I D E N T I F Y  A N D S ET U P  We will use Table 44.2 in the text to determine the lepton numbers of the 
particles. We will then check whether the lepton numbers are conserved. 

E X E C U T E  For all decays,  the positive pion has no lepton number, so we will check whether there is a 
net lepton number in the decay products . In decay ( 1 ), the muon numbers are - 1 and 1 ,  adding to zero. 
In decay (2), the electron numbers add to zero. In decays (3)-(5),  the third particle has no lepton num
ber, so the overall lepton numbers add to zero. In decays (6) and (7), there are four electron numbers, 
but they add to zero. So the first seven decays conserve lepton number and are allowed. 

Decay (8) doesn't conserve lepton number, as the right side has - 1 for the positive muon and - 1 
for the antineutrino. Decays (9) and ( 1 0) conserve overall lepton number, but don't conserve electron 
or muon numbers. 

EVA L U AT E  Decays ( 1 )  through (6) have been observed in particle accelerators . Decays (7) through 
( 1 0) have not been observed. 
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4: Size of the universe 
According to Hubble's  law, matter at a distance r travels away from us at a speed 

v = Hor, 
where Ho = 2.3 X 10- 18 Is is Hubble's constant. What is the age of the universe according to Hubble's 
law? 

Solution 
I D E N T I  FY A N  D S ET U P  If we assume that Hubble's  constant has remained constant throughout the 
lifetime of the universe, then the age of the universe is the size of the universe divided by its velocity of 
expansion. We' ll use this method to find the age of the universe. 

E X E C U T E  The age of the universe is 

r 
T = - . 

v 

Substituting the velocity from Hubble's law, we find that 

T = �r = _
1 

= 
1 

1 8 
= 4.35 X 1017 s = 13 . 8  billion years . Ho Ho 2.3 X 10- Is 

Hubble's law predicts that the age of the universe is roughly 14 billion years old. 

EVA L U AT E  This is the currently accepted value for the age of the universe. There is evidence, how
ever, that the universe is expanding at an accelerating rate, meaning that Hubble's constant is not con
stant. We are finding that the universe is even more interesting than we once thought. 

Try It Yourself! 
1 :  Protons in a cyclotron 
Protons in a cyclotron spiral out to a radius of 15 cm. The magnetic field has a magnitude of 1 .25 T in 
the cyclotron. (a) Find the frequency of the alternating voltage used to accelerate the protons in the 
gap. (b) Find the energy of the protons. 

Solution Checkpoints 
I D E N T I FY A N D S E T  U P  Use the cyclotron frequency and energy conservation to solve. 

E X E C U T E  (a) The cyclotron frequency, or angular frequency of rotation, is given by 

Be 
W = - . 

m 

This corresponds to a voltage frequency of l .9 1  X 107 Hz. 
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(b) The kinetic energy of the protons is 

1 "2m( wr) 2  = 1 .6 MeV. 

EVA L U AT E  The properties of the magnetic force in a uniform magnetic field, which we studied in 
Chapter 27 of the text, is key to building particle accelerators. Introductory physics is used by particle 
physicists every day. 

2 :  Quark flavors 
Find the charge and strangeness of all mesons that can be constructed from quark-antiquark pairs with 
flavors U, d, and s. 

Solution Checkpoints 
I D E N T I F Y  A N D  S ET U P  Find all possible combinations of the three quarks and three antiquarks. 

E X E C U T E  There are nine independent combinations of these quarks, given in the following table (the 
charge and strangeness are found by adding the charge and strangeness of the quarks that make up the 
meson) : 

Combination Charge Strangeness 
- - -

uu, dd, ss 0 0 

ud + 1  0 
du - 1  0 -
us + 1  + 1  

su - 1  - 1  

sd 0 - 1  

ds 0 + 1  

Table 44.1 Try It Yourself 2 .  

EVA L U AT E  The second and third particles are the positive and negative pions. The last four particles 
are called kaons and are four varieties of strange mesons. 




