
Complex Algebra
When the idea of negative numbers was broached a couple of thousand years ago, they were
considered suspect, in some sense not “real.” Later, when Pythagoras or one of his students
discovered that numbers such as

√
2 are irrational and cannot be written as a quotient of integers,

it was so upsetting that the discovery was suppressed. Now these are both taken for granted as
ordinary numbers of no special consequence. Why should

√
−1 be any different? Yet it was not

until the middle 1800’s that complex numbers were accepted as fully legitimate. Even then, it
took the prestige of Gauss to persuade some.

3.1 Complex Numbers
What is a complex number? If the answer involves

√
−1 then an appropriate response might be

“What is that?” Yes, we can manipulate objects such as −1 + 2i and get consistent results
with them. We just have to follow certain rules, such as i2 = −1. But is that an answer to the
question? You can go through the entire subject of complex algebra and even complex calculus
without learning a better answer, but it’s nice to have a more complete answer once, if then only
to relax* and forget it.

An answer to this question is to define complex numbers as pairs of real numbers, (a, b).
These pairs are made subject to rules of addition and multiplication:

(a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) = (ac− bd, ad + bc)

An algebraic system has to have something called zero, so that it plus any number leaves that
number alone. Here that role is taken by (0, 0)

(0, 0) + (a, b) = (a + 0, b + 0) = (a, b) for all values of (a, b)

What is the identity, the number such that it times any number leaves that number alone?

(1, 0)(c, d) = (1 . c− 0 . d, 1 . d + 0 . c) = (c, d)

so (1, 0) has this role. Finally, where does
√
−1 fit in?

(0, 1)(0, 1) = (0 . 0− 1 . 1, 0 . 1 + 1 . 0) = (−1, 0)

and the sum (−1, 0)+(1, 0) = (0, 0) so (0, 1) is the representation of i =
√
−1, that is i2+1 = 0.[

(0, 1)2 + (1, 0) = (0, 0)
]
.

This set of pairs of real numbers satisfies all the desired properties that you want for
complex numbers, so having shown that it is possible to express complex numbers in a precise
way, I’ll feel free to ignore this more cumbersome notation and to use the more conventional
representation with the symbol i:

(a, b) ←→ a + ib

* If you think that this question is an easy one, you can read about some of the difficulties
that the greatest mathematicians in history had with it: “An Imaginary Tale: The Story of

√
−1 ”

by Paul J. Nahin. I recommend it.
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That complex number will in turn usually be represented by a single letter, such as z = x + iy.

z1

z2

z1 + z2
The graphical interpretation of complex numbers is the Carte-

sian geometry of the plane. The x and y in z = x + iy indicate a
point in the plane, and the operations of addition and multiplication
can be interpreted as operations in the plane. Addition of complex
numbers is simple to interpret; it’s nothing more than common
vector addition where you think of the point as being a vector from
the origin. It reproduces the parallelogram law of vector addition.

The magnitude of a complex number is defined in the same way that you define the
magnitude of a vector in the plane. It is the distance to the origin using the Euclidean idea of
distance.

|z| = |x + iy| =
√

x2 + y2 (1)

The multiplication of complex numbers doesn’t have such a familiar interpretation in the
language of vectors. (And why should it?)

3.2 Some Functions
For the algebra of complex numbers I’ll start with some simple looking questions of the sort that
you know how to handle with real numbers. If z is a complex number, what are z2 and

√
z? Use

x and y for real numbers here.

z = x + iy, so z2 = (x + iy)2 = x2 − y2 + 2ixy

That was easy, what about the square root? A little more work:

√
z = w =⇒ z = w2

If z = x + iy and the unknown is w = u + iv (u and v real) then

x + iy = u2 − v2 + 2iuv, so x = u2 − v2 and y = 2uv

These are two equations for the two unknowns u and v, and the problem is now to solve them.

v =
y

2u
, so x = u2 − y2

4u2
, or u4 − xu2 − y2

4
= 0

This is a quadratic equation for u2.

u2 =
x±

√
x2 + y2

2
, then u = ±

√
x±

√
x2 + y2

2
(2)

Use v = y/2u and you have four roots with the four possible combinations of plus and minus
signs. You’re supposed to get only two square roots, so something isn’t right yet; which of these
four have to be thrown out? See problem 2.

What is the reciprocal of a complex number? You can treat it the same way that I handled
the square root: Solve for it.

(x + iy)(u + iv) = 1, so xu− yv = 1, xv + yu = 0
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Solve the two equations for u and v. The result is

1

z
=

x− iy

x2 + y2
(3)

See problem 3. At least it’s obvious that the dimensions are correct even before you verify the
algebra. In both of these cases, the square root and the reciprocal, there is another way to do it,
one that is much simpler. That’s the subject of the next section.

Complex Exponentials
A function that is central to the analysis of differential equations and to untold other mathematical
ideas: the exponential, the familiar ex. What is this function for complex values of the exponent?

ez = ex+iy = exeiy (4)

This means that all I have to do is work out the value for the purely imaginary exponent and the
general case is then just a product. There are several ways to work this out and I’ll pick one,
leaving an easier method for you in problem 8.

Whatever eiy is, it has a real and an imaginary part,

eiy = f(y) + ig(y)

Now in order to figure out what the two function f and g are, I’ll find a differential equation that
they satisfy. Differentiate this equation with respect to y.

d

dy
eiy = ieiy = f ′(y) + ig′(y)

= i
[
f(y) + ig(y)

]
= if(y)− g(y)

Equate the real and imaginary parts.

f ′(y) = −g(y) and g′(y) = f(y) (5)

You can solve simultaneous differential equations several ways, and here the simplest is just
to eliminate one of the unknown functions between them. Differentiate the first equation and
eliminate g.

f ′′ = −g′, then f ′′ = −f

This is the standard harmonic oscillator equation, so the solution is a combination of sines and
cosines.

f(y) = A cos y + B sin y

You find the unknown constants A and B by using initial conditions on f , and those values come
from the value of eiy at zero.

ei0 = 1 = f(0) + ig(0), so f(0) = 1 and g(0) = 0

f(0) = 1 = A, f ′(y) = −A sin y + B cos y, f ′(0) = −g(0) = 0 = B
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This determines that f(y) = cos y and then Eq. (5) determines that g(y) = sin y. Put them
together and you have Euler’s formula

eiy = cos y + i sin y (6)

A few special cases of this are worth noting: eiπ = −1 and e2iπ = 1. In fact, e2nπi = 1 so
the exponential is a periodic function in the imaginary direction.

What is
√

i? Express it in polar form:
(
eiπ/2

)1/2
, or better,

(
ei(2nπ+π/2)

)1/2
. This is

ei(nπ+π/4) = ±eiπ/4 = ±(cos π/4 + i sin π/4) = ±1 + i√
2

i

π/4

π/2

3.3 Applications of Euler’s Formula
The magnitude or absolute value of a complex number z = x + iy is r =

√
x2 + y2. Combine

this with the complex exponential and you have another way to represent complex numbers.

r sin θ

r cos θ

x

r

θ

reiθ

y

z = x + iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ (7)

This is the polar form of a complex number and x + iy is the rectangular form of the same
number. The magnitude is |z| = r =

√
x2 + y2.

When you’re adding or subtracting complex numbers, the rectangular form is more conve-
nient, but when you’re multiplying or taking powers the polar form has advantages.

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2) (8)

Putting it into words, you multiply the magnitudes and add the angles in polar form.
From this you can immediately deduce some of the common trigonometric identities. Use

Euler’s formula in the preceding equation and write out the two sides.

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

The factors r1 and r2 cancel. Now multiply the two binomials on the left and match the real and
the imaginary parts to the corresponding terms on the right. The result is the pair of equations

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2

(9)
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and you have a much simpler than usual derivation of these common identities. You can do similar
manipulations for other trigonometric identities, and in some cases you will encounter relations
for which there’s really no other way to get the result. That is why you will find that in physics
applications where you might use sines or cosines (oscillations, waves) no one uses anything but
complex exponentials. Get used to it.

The trigonometric functions of complex argument follow naturally from these.

eiθ = cos θ + i sin θ, so, for negative angle e−iθ = cos θ − i sin θ

Add these and subtract these to get

cos θ =
1

2

(
eiθ + e−iθ

)
and sin θ =

1

2i

(
eiθ − e−iθ

)
(10)

What is this if θ = iy?

cos iy =
1

2

(
e−y + e+y

)
= cosh y and sin iy =

1

2i

(
e−y − e+y

)
= i sinh y (11)

Apply Eq. (9) for the addition of angles to the case that θ = x + iy.

cos(x + iy) = cos x cos iy − sin x sin iy = cos x cosh y − i sin x sinh y and

sin(x + iy) = sin x cosh y + i cos x sinh y (12)

You can see from this that the sine and cosine of complex angles can be real and larger than one.
The hyperbolic functions and the circular trigonometric functions are now the same functions.
You’re just looking in two different directions in the complex plane. It’s as if you’re changing from
the equation of a circle, x2 + y2 = R2, to that of a hyperbola, x2 − y2 = R2.

Equation (10) doesn’t require that θ itself be real; call it z. Then what is sin2 z + cos2 z?

cos z =
1

2

(
eiz + e−iz

)
and sin z =

1

2i

(
eiz − e−iz

)
cos2 z + sin2 z =

1

4

[
e2iz + e−2iz + 2− e2iz − e−2iz + 2

]
= 1

This polar form shows a geometric interpretation for the periodicity of the exponential.
ei(θ+2π) = eiθ = ei(θ+2kπ). In the picture, you’re going around a circle and coming back to the
same point. If the angle θ is negative you’re just going around in the opposite direction. An
angle of −π takes you to the same point as an angle of +π.

Complex Conjugate
The complex conjugate of a number z = x + iy is the number z* = x − iy. Another common
notation is z̄. The product z*z is (x− iy)(x + iy) = x2 + y2 and that is |z|2, the square of the
magnitude of z. You can use this to rearrange complex fractions, combining the various terms
with i in them and putting them in one place. This is best shown by some examples.

3 + 5i

2 + 3i
=

(3 + 5i)(2− 3i)

(2 + 3i)(2− 3i)
=

21 + i

13
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What happens when you add the complex conjugate of a number to the number, z + z*?
What happens when you subtract the complex conjugate of a number from the number?
If one number is the complex conjugate of another, how do their squares compare?
What about their cubes?
What about z + z2 and z∗ + z∗2?
What about comparing ez = ex+iy and ez*?
What is the product of a number and its complex conjugate written in polar form?
Compare cos z and cos z*.
What is the quotient of a number and its complex conjugate?
What about the magnitude of the preceding quotient?

Examples
Simplify these expressions, making sure that you can do all of these manipulations yourself.

3− 4i

2− i
=

(3− 4i)(2 + i)

(2− i)(2 + i)
=

10− 5i

5
= 2− i.

(3i + 1)2
[

1

2− i
+

3i

2 + i

]
= (−8 + 6i)

[
(2 + i) + 3i(2− i)

(2− i)(2 + i)

]
= (−8 + 6i)

5 + 7i

5
=

2− 26i

5
.

i3 + i10 + i

i2 + i137 + 1
=

(−i) + (−1) + i

(−1) + (i) + (1)
=
−1

i
= i.

Manipulate these using the polar form of the numbers, though in some cases you can do it either
way.

√
i =

(
eiπ/2

)1/2
= eiπ/4 =

1 + i√
2

.(
1− i

1 + i

)3

=

(√
2e−iπ/4

√
2eiπ/4

)3

=
(
e−iπ/2

)3
= e−3iπ/2 = i.

(
2i

1 + i
√

3

)25

=

(
2eiπ/2

2
(

1
2 + i1

2

√
3
))25

=

(
2eiπ/2

2eiπ/3

)25

=
(
eiπ/6

)25
= eiπ(4+1/2) = i

Roots of Unity
What is the cube root of one? One of course, but not so fast; there are three cube roots, and
you can easily find all of them using complex exponentials.

1 = e2kπi, so 11/3 =
(
e2kπi

)1/3
= e2kπi/3 (13)

and k is any integer. k = 0, 1, 2 give

11/3 = 1, e2πi/3 = cos(2π/3) + i sin(2π/3),

= −1

2
+ i

√
3

2

e4πi/3 = cos(4π/3) + i sin(4π/3)

= −1

2
− i

√
3

2

and other integers k just keep repeating these three values.
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e6πi/5

e4πi/5

e8πi/5

e2πi/5

1

5th roots of 1

The roots are equally spaced around the unit circle. If you want the nth root, you do the
same sort of calculation: the 1/n power and the integers k = 0, 1, 2, . . . , (n − 1). These are n
points equally spaced around the circle.

3.4 Series of cosines
There are standard identities for the cosine and sine of the sum of angles and less familiar ones
for the sum of two cosines or sines. You can derive that latter sort of equations using Euler’s
formula and a little manipulation. The sum of two cosines is the real part of eix + eiy, and you
can use simple identities to manipulate these into a useful form.

x = 1
2(x + y) + 1

2(x− y) and y = 1
2(x + y)− 1

2(x− y)

See problems 34 and 35 to complete these.
What if you have a sum of many cosines or sines? Use the same basic ideas of the preceding

manipulations, and combine them with some of the techniques for manipulating series.

1 + cos θ + cos 2θ + · · ·+ cos Nθ = 1 + eiθ + e2iθ + · · · eNiθ (Real part)

The last series is geometric, so it is nothing more than Eq. (2.3).

=
1− ei(N+1)θ

1− eiθ
=

ei(N+1)θ/2
(
e−i(N+1)θ/2 − ei(N+1)θ/2

)
eiθ/2

(
e−iθ/2 − eiθ/2

) = eiNθ/2 sin
[
(N + 1)θ/2

]
sin θ/2

(14)

From this you now extract the real part and the imaginary part, thereby obtaining the series you
want (plus another one). These series appear when you analyze the behavior of a diffraction
grating. Naturally you have to check the plausibility of these results; do the answers work for
small θ?

3.5 Logarithms
The logarithm is the inverse function for the exponential. If ew = z then w = ln z. To determine
what this is, let

w = u + iv and z = reiθ, then eu+iv = eueiv = reiθ
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This implies that eu = r and so u = ln r, but it doesn’t imply v = θ. Remember the periodic
nature of the exponential function? eiθ = ei(θ+2nπ), so you can conclude instead that v = θ+2nπ.

ln z = ln
(
reiθ

)
= ln r + i(θ + 2nπ) (15)

has an infinite number of possible values. Is this bad? You’re already familiar with the square
root function, and that has two possible values, ±. This just carries the idea farther. For example
ln(−1) = iπ or 3iπ or −7iπ etc. As with the square root, the specific problem that you’re dealing
with will tell you which choice to make.

A sample graph of the logarithm in the
complex plane is ln(1 + iy) as y varies from
−∞ to +∞.

3.6 Mapping
When you apply a complex function to a region in the plane, it takes that region into another
region. When you look at this as a geometric problem you start to get some very pretty and
occasionally useful results. Start with a simple example,

w = f(z) = ez = ex+iy = exeiy (16)

If y = 0 and x goes from −∞ to +∞, this function goes from 0 to ∞.
If y is π/4 and x goes over this same range of values, f goes from 0 to infinity along the ray at
angle π/4 above the axis.
At any fixed y, the horizontal line parallel to the x-axis is mapped to the ray that starts at the
origin and goes out to infinity.
The strip from −∞ < x < +∞ and 0 < y < π is mapped into the upper half plane.

A A

B

C
D

E

F

GB
C
D
E
F
G

0

iπ

The line B from −∞+ iπ/6 to +∞+ iπ/6 is mapped onto the ray B from the origin along
the angle π/6.

For comparison, what is the image of the same strip under a different function? Try

w = f(z) = z2 = x2 − y2 + 2ixy
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The image of the line of fixed y is a parabola. The real part of w has an x2 in it while the
imaginary part is linear in x. That is the representation of a parabola. The image of the strip is
the region among the lines below.

Pretty yes, but useful? In certain problems in electrostatics and in fluid flow, it is possible
to use complex algebra to map one region into another, with the accompanying electric fields
and potentials or respectively fluid flows mapped from a complicated problem into a simple one.
Then you can map the simple solution back to the original problem and you have your desired
solution to the original problem. Easier said than done. It’s the sort of method that you can
learn about when you find that you need it.
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Problems

3.1 Pick a pair of complex numbers and plot them in the plane. Compute their product and
plot that point. Do this for several pairs, trying to get a feel for how complex multiplication
works. When you do this, be sure that you’re not simply repeating yourself. Place the numbers
in qualitatively different places.

3.2 In the calculation of the square root of a complex number,Eq. (2), I found four roots instead
of two. Which ones don’t belong? Do the other two expressions have any meaning?

3.3 Finish the algebra in computing the reciprocal of a complex number, Eq. (3).

3.4 Pick a complex number and plot it in the plane. Compute its reciprocal and plot it. Compute
its square and square root and plot them. Do this for several more (qualitatively different)
examples.

3.5 Plot ect in the plane where c is a complex constant of your choosing and the parameter
t varies over 0 ≤ t < ∞. Pick another couple of values for c to see how the resulting curves
change. Don’t pick values that simply give results that are qualitatively the same; pick values
sufficiently varied so that you can get different behavior. If in doubt about how to plot these
complex numbers as functions of t, pick a few numerical values: e.g. t = 0.01, 0.1, 0.2, 0.3, etc.

3.6 Plot sin ct in the plane where c is a complex constant of your choosing and the parameter t
varies over 0 ≤ t <∞. Pick another couple of qualitatively different values for c to see how the
resulting curves change.

3.7 Solve the equation z2 + iz + 1 = 0

3.8 Derive Euler’s formula a different way: Use the Taylor series expansion for the exponential
to write out the infinite series for eiy. Collect the terms with i and those without it. Recognize
the two collections of terms for what the are.

3.9 From
(
eix
)3

, deduce trigonometric identities for the cosine and sine of triple angles in terms

of single angles. Ans: cos 3x = cos x− 4 sin2 x cos x = 4 cos3 x− 3 cos x

3.10 For arbitrary integer n > 1, compute the sum of all the nth roots of one. (When in doubt,
try a couple of special n first.)

3.11 Either solve for z in the equation ez = 0 or prove that it can’t be done.

3.12 Evaluate z/z* in polar form.

3.13 From the geometric picture of the magnitude of a complex number, the set of points z
defined by |z − z0| = R is a circle. Write it out in rectangular components to see what this is in
conventional Cartesian coordinates.



3—Complex Algebra 11

3.14 An ellipse is the set of points z such that the sum of the distances to two fixed points is a
constant: |z − z1|+ |z − z2| = 2a. Pick the two points to be z1 = −f and z2 = +f on the real
axis. Write z as x + iy and manipulate this equation for the ellipse into a simple standard form.

3.15 Repeat the previous problem, but for the set of points such that the difference of the
distances from two fixed points is a constant.

3.16 There is a vertical line x = −f and a point on the x-axis z0 = +f . Find the set of points
z so that the distance to z0 is the same as the perpendicular distance to the line x = −f .

3.17 Sketch the set of points |z − 1| < 1.

3.18 Simplify the numbers

1 + i

1− i
,

−1 + i
√

3

+1 + i
√

3
,

i5 + i3√
3
√

i− 7 3
√

17− 4i
,

(√
3 + i

1 + i

)2

3.19 Express in polar form

2− 2i,
√

3 + i, −
√

5i, −17− 23i

3.20 Take two complex numbers; express them in polar form, and subtract them.

z1 = r1e
iθ1 , z2 = r2e

iθ2 , and z3 = z2 − z1

Compute z*
3z3, the magnitude squared of z3, and so derive the law of cosines. You did draw a

picture didn’t you?

3.21 What is ii? Ans: If you’d like to check your result, type i ∧ i into Google.

3.22 For what argument does sin θ = 2? cos θ? Ans: 1.5708± i1.3170

3.23 What are the other trigonometric functions, tan(ix), sec(ix), etc. What are tan and sec
for the general argument x + iy. Ans: tan(x + iy) = (tan x + i tanh y)/(1− i tan x tanh y)

3.24 The diffraction pattern from a grating involves the sum of waves from a large number of
parallel slits. For light observed at an angle θ away from directly ahead, this sum is, for N + 1
slits,

d
d
d
d
d

d sin θ

θ

r0

r0 − d sin θ

http://www.google.com
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cos
(
kr0 − ωt

)
+ cos

(
k(r0 − d sin θ)− ωt

)
+ cos

(
k(r0 − 2d sin θ)− ωt

)
+

. . . + cos
(
k(r0 −Nd sin θ)− ωt

)
Express this as the real part of complex exponentials and sum the finite series. Show that the
resulting wave is

sin
(

1
2(N + 1)kd sin θ

)
sin
(

1
2kd sin θ

) cos
(
k(r0 − 1

2Nd sin θ)− ωt
)

Interpret this result as a wave that appears to be coming from some particular point (where?)
and with an intensity pattern that varies strongly with θ.

3.25 If the coefficients in a quadratic equation are real, show that if z is a complex root of the
equation then so is z*. If you do this by reference to the quadratic formula, you’d better find
another way too, because the second part of this problem is
Generalize this to the root of an arbitrary polynomial with real coefficients.

3.26 You can represent the motion of a particle in two dimensions by using a time-dependent
complex number with z = x + iy = reiθ showing its rectangular or polar coordinates. Assume
that r and θ are functions of time and differentiate reiθ to get the velocity. Differentiate it again
to get the acceleration. You can interpret eiθ as the unit vector along the radius and ieiθ as the
unit vector perpendicular to the radius and pointing in the direction of increasing theta. Show
that

d2z

dt2
= eiθ

[
d2r

dt2
− r

(
dθ

dt

)2
]

+ ieiθ

[
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]
(17)

and now translate this into the usual language of components of vectors, getting the radial (r̂)
component of acceleration and the theta (θ̂) component of acceleration.

3.27 Use the results of the preceding problem, and examine the case of a particle moving directly
away from the origin. (a) What is its acceleration? (b) If instead, it is moving at r = constant,
what is its acceleration?

3.28 Was it really legitimate simply to substitute x+iy for θ1+θ2 in Eq. (12) to get cos(x+iy)?
Verify the result by substituting the expressions for cos x and for cosh y as exponentials to see if
you can reconstruct the left-hand side.

3.29 The roots of the quadratic equation z2 + bz + c = 0 are functions of the parameters b
and c. For real b and c and for both cases c > 0 and c < 0 (say ±1 to be specific) plot the
trajectories of the roots in the complex plane as b varies from −∞ to +∞. You should find
various combinations of straight lines and arcs of circles.

3.30 In integral tables you can find the integrals for such functions as∫
dx eax cos bx, or

∫
dx eax sin bx

Show how easy it is to do these by doing both integrals at once. Do the first plus i times the
second and then separate the real and imaginary parts.
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3.31 Find the sum of the series ∞∑
1

in

n

3.32 Evaluate | cos z|2. Evaluate | sin z|2.

3.33 Evaluate
√

1 + i. Evaluate ln(1 + i). Evaluate tan(1 + i).

3.34 Beats occur in sound when two sources emit two frequencies that are almost the same.
The perceived wave is the sum of the two waves, so that at your ear, the wave is a sum of two
cosines of ω1t and of ω2t. Use complex algebra to evaluate this. The sum is the real part of

eiω1t + eiω2t

Notice the two identities

ω1 =
ω1 + ω2

2
+

ω1 − ω2

2

and the difference of these for ω2. Use the complex exponentials to derive the results; don’t just
look up some trig identity. Factor the resulting expression and sketch a graph of the resulting real
part, interpreting the result in terms of beats if the two frequencies are close to each other. In
the process of doing this problem using complex exponentials, what is the trigonometric identity
for the sum of two cosines? While you’re about it, what is the difference of two cosines?
Ans: cos ω1t + cos ω2t = 2 cos 1

2(ω1 + ω2)t cos 1
2(ω1 − ω2)t.

3.35 Derive using complex exponentials

sin x− sin y = 2 sin

(
x− y

2

)
cos

(
x + y

2

)

3.36 The equation (4) assumed that the usual rule for multiplying exponentials still holds when
you are using complex numbers. Does it? You can prove it by looking at the infinite series
representation for the exponential and showing that

eaeb =

[
1 + a +

a2

2!
+

a3

3!
+ · · ·

] [
1 + b +

b2

2!
+

b3

3!
+ · · ·

]
=

[
1 + (a + b) +

(a + b)2

2!
+ · · ·

]
You may find Eq. (2.18) useful.

3.37 Look at the vertical lines in the z-plane as mapped by Eq. (16). I drew the images of
lines y = constant, now you draw the images of the straight line segments x = constant from
0 < y < π. The two sets of lines in the original plane intersect at right angles. What is the angle
of intersection of the corresponding curves in the image?

3.38 Instead of drawing the image of the lines x = constant as in the previous problem, draw
the image of the line y = x tan α, the line that makes an angle α with the horizontal lines. The
image of the horizontal lines were radial lines. At a point where this curve intersects one of the
radial lines, what angle does the curve make with the radial line? Ans: α
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3.39 Write each of these functions of z as two real functions u and v such that f(z) = u(x, y)+
iv(x, y).

z3,
1 + z

1− z
,

1

z2
,

z

z*

3.40 Evaluate zi where z is an arbitrary complex number, z = x + iy = reiθ.

3.41 What is the image of the domain −∞ < x < +∞ and 0 < y < π under the function
w =

√
z? Ans: One boundary is a hyperbola.

3.42 What is the image of the disk |z − a| < b under the function w = cz + d? Allow c and d
to be complex. Take a real.

3.43 What is the image of the disk |z − a| < b under the function w = 1/z? Assume b < a.
Ans: Another disk, centered at a/(a2 − b2).

3.44 (a) Multiply (2 + i)(3 + i) and deduce the identity

tan−1(1/2) + tan−1(1/3) = π/4

(b) Multiply (5 + i)4(−239 + i) and deduce

4 tan−1(1/5)− tan−1(1/239) = π/4

For (b) a sketch will help sort out some signs.
Using the power series representation of the tan−1, Eq. (2.24), how many terms would it take to
compute 100 digits of π as 4 tan−1 1? How many terms would it take using each of these two
representations for π?

3.45 Use Eq. (10) and look back at the development of Eq. (1.4) to find the sin−1 and cos−1

in terms of logarithms.

3.46 Evaluate the integral
∫∞
−∞ dx e−αx2

cos βx. Ans: e−β2/4α
√

π/α

3.47 Does the equation sin z = 0 have any roots other than the real ones? How about the
cosine? The tangent?

3.48 Compute (a) sin−1 i. (b) cos−1 i. (c) tan−1 i. (d) sinh−1 i.

3.49 By writing
1

1 + x2
=

i

2

[
1

x + i
− 1

x− i

]
and integrating, check the equation ∫ 1

0

dx

1 + x2
=

π

4

3.50 Solve the equations (a) cosh u = 0 (b) tanh u = 2 (c) sech u = 2i
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3.51 Solve the equations (a) z − 2z* = 1 (b) z3 − 3z2 + 4z = 2i after verifying that
1 + i is a root. Compare the result of problem 25.

3.52 Confirm the plot of ln(1 + iy) following Eq. (15). Also do the corresponding plots for
ln(10 + iy) and ln(100 + iy). And what do these graphs look like if you take the other branches
of the logarithm, with the i(θ + 2nπ)?

3.53 Check that the results of Eq. (14) for cosines and for sines give the correct results for small
θ? What about θ → 2π?
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