
Fourier Series
Fourier series started life as a method to solve problems about the flow of heat through ordinary
materials. It has grown so far that if you search our library’s data base for the keyword “Fourier”
you will find 446 entries as of this date. It is a tool in abstract analysis and electromagnetism
and statistics and radio communication and . . . . People have even tried to use it to analyze the
stock market. (It didn’t help.) The representation of musical sounds as sums of waves of various
frequencies is an audible example. It provides an indispensible tool in solving partial differential
equations, and a later chapter will show some of these tools at work.

5.1 Examples
The power series or Taylor series is based on the idea that you can write a general function as
an infinite series of powers. The idea of Fourier series is that you can write a function as an
infinite series of sines and cosines. You can also use functions other than trigonometric ones, but
I’ll leave that generalization aside for now. Legendre polynomials are an important example of
functions used for such more general expansions.

An example: On the interval 0 < x < L the function x2 varies from 0 to L2. It can be
written as the series of cosines
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To see if this is even plausible, examine successive partial sums of the series, taking one term,
then two terms, etc. Sketch the graphs of these partial sums to see if they start to look like the
function they are supposed to represent (left graph). The graphs of the series, using terms up to
n = 5 do pretty well at representing the parabola.
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The same function can be written in terms of sines with another series:
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2 5—Fourier Series

and again you can see how the series behaves by taking one to several terms of the series. (right
graph) The graphs show the parabola y = x2 and partial sums of the two series with terms up
to n = 1, 3, 5.

The second form doesn’t work as well as did the first example, and there’s a reason for
that. The sine functions all go to zero at x = L and x2 doesn’t, making it hard for the sum of
sines to approximate the desired function. They can do it, but it takes a lot more terms in the
series to get a satisfactory result. The series Eq. (1) has terms that go to zero as 1/n2, while
the terms in the series Eq. (2) go to zero only as 1/n.

5.2 Computing Fourier Series
How do you determine the details of these series starting from the original function? For the
Taylor series, the trick was to assume a series to be an infinitely long polynomial and then to
evaluate it (and its successive derivatives) at a point. You require that all of these values match
those of the desired function at that one point. That method won’t work in this case. (Actually
I’ve read that it can work here too, but only after a ridiculous amount of labor.)

The idea of the Fourier’s procedure is like one that you can use to determine the components
of a vector in three dimensions. You write such a vector as

~A = Axx̂ + Ayŷ + Az ẑ

And then use the orthonormality of the basis vectors, x̂ . ŷ = 0 etc. Take the scalar product of
the preceding equation with x̂.

x̂ . ~A = x̂ .
(
Axx̂ + Ayŷ + Az ẑ

)
= Ax and ŷ . ~A = Ay and ẑ . ~A = Az (3)

This lets you get all the components of ~A. For example,

x̂

ŷ
ẑ

α

β

γ
~A

x̂ . ~A = Ax = A cos α

ŷ . ~A = Ay = A cos β

ẑ . ~A = Az = A cos γ

(4)

This shows the three direction cosines for the vector ~A. You will occasionally see these numbers
used to describe vectors in three dimensions, and it’s easy to see that cos2 α+cos2 β+cos2 γ = 1.

I want to introduce another notation for the scalar product. You don’t typically see it in
introductory courses for the simple reason that it isn’t needed there. Here however it will turn out
to be very useful, and in the next chapter you will nothing but this notation. Instead of x̂ . ~A or
~A . ~B you use

〈
x̂, ~A

〉
or

〈
~A, ~B

〉
. The angle bracket notation will make it very easy to generalize

the idea of a dot product to cover other things. In this notation the above equations will appear
as 〈

x̂, ~A
〉

= A cos α,
〈
ŷ, ~A

〉
= A cos β,

〈
ẑ, ~A

〉
= A cos γ

and they mean exactly the same thing as Eq. (4).
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There are orthogonality relations similar to the ones for x̂, ŷ, and ẑ, but for sines and
cosines. Let n and m represent integers, then∫ L

0
dx sin

(nπx

L

)
sin

(mπx

L

)
=

{
0 n 6= m
L/2 n = m

(5)

This is sort of like x̂ . ẑ = 0 and ŷ . ŷ = 1, where the analog of x̂ is sin πx/L and the analog
of ŷ is sin 2πx/L. The biggest difference is that it doesn’t stop with three vectors in the basis;
it keeps on with an infinite number of different sines. There are after all an infinite number of
very different possible functions, so you need an infinite number of basis functions in order to
express a general function as a sum. The integral Eq. (5) is a continuous analog of the coordinate
representation of the common dot product. The sum over three terms AxBx + AyBy + AzBz

becomes a sum (integral) over a continuous index, the integration variable. Using this integral
as a generalization of the ordinary scalar product, sin(πx/L) and sin(2πx/L) are said to be
orthogonal.

How do you derive an identity such as Eq. (5)? The first method is just straight integration,
using the right trigonometric identities. The easier (and more general) method can wait for a
few pages.

cos(x+y) = cos x cos y−sin x sin y, subtracting, cos(x−y)−cos(x+y) = 2 sin x sin y

Use this in the integral.

2
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Now do the integral, assuming n 6= m and that n and m are positive integers.
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Why do I assume that the integers are positive? Aren’t the negative integers allowed too? Yes,
but they aren’t needed. Put n = −1 into sin(nπx/L) and you get the same function as for
n = +1, only turned upside down. It isn’t an independent function, just −1 times what you
already have. Using it would be sort of like using for your basis not only x̂, ŷ, and ẑ but −x̂, −ŷ,
and −ẑ too. Do the n = m case of the integral yourself.

Computing an Example
For a simple example, take the function f(x) = 1, the constant on the interval 0 < x < L, and
assume that there is a series representation for f on this interval.

1 =
∞∑
1

an sin
(nπx

L

)
(0 < x < L) (7)

Multiply both sides by the sine of mπx/L and integrate from 0 to L.∫ L
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Interchange the order of the sum and the integral, and the integral that shows up is the orthog-
onality integral derived just above. When you use the orthogonality of the sines, only one term
in the infinite series survives.∫ L

0
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L

)
1 =

∞∑
n=1

an

∫ L
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L
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L

)
=
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an .
{

0 (n 6= m)
L/2 (n = m)

(9)

= am L/2.

Now all you have to do is to evaluate the integral on the left.∫ L

0
dx sin

(mπx

L

)
1 =

L

mπ

[
− cos

mπx

L

]L

0
=

L

mπ

[
1− (−1)m

]
This is zero for even m, and when you equate it to (9) you get

am =
4

mπ
for m odd

You can relabel the indices so that the sum shows only odd integers m = 2k + 1 and the Fourier
series is

4

π

∑
m odd >0

1

m
sin

mπx

L
=

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= 1, (0 < x < L) (10)

highest harmonic:   5 highest harmonic:  19 highest harmonic:  99

The graphs show the sum of the series up to 2k + 1 = 5, 19, 99 respectively. It is not a
very rapidly converging series, but it’s a start. You can see from the graphs that near the end of
the interval, where the function is discontinuous, the series has a hard time handling the jump.
The resulting overshoot is called the Gibbs phenomenon, and it’s analyzed in section 5.7.*

Notation
The point of introducing that other notation for the scalar product comes right here. The same
notation is used for these integrals. In this context define

〈
f, g

〉
=

∫ L

0
dx f(x)*g(x) (11)

* For animated sequences showing the convergence of some of these series, see
www.physics.miami.edu/nearing/mathmethods/animations.html

http://www.physics.miami.edu/nearing/mathmethods/animations.html
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and it will behave just the same way that ~A . ~B does. Eq. (5) then becomes

〈
un, um

〉
=

{
0 n 6= m
L/2 n = m

where un(x) = sin
(nπx

L

)
(12)

precisely analogous to
〈
x̂, x̂

〉
= 1 and

〈
ŷ, ẑ

〉
= 0

These un aren’t normalized to one the way that x̂ and ŷ are, but that turns out not to matter.〈
un, un

〉
= L/2 instead of = 1, so you simply keep track of it.

The Fourier series manipulations, Eqs. (7), (8), (9), become

1 =
∞∑
1

anun then
〈
um, 1

〉
=

〈
um,

∞∑
1

anun

〉
=

∞∑
n=1

an

〈
um, un

〉
= am

〈
um, um

〉
(13)

This is far more compact than you see in the steps between Eq. (7) and Eq. (10). You still
have to evaluate the integrals

〈
um, 1

〉
and

〈
um, um

〉
, but when you master this notation you’ll

likely make fewer mistakes in figuring out what integral you have to do. Again, you can think of
Eq. (11) as a continuous analog of the discrete sum

〈
~A, ~B

〉
= AxBx + AyBy + AzBz.

The analogy between the vectors such as x̂ and functions such as sine is really far deeper,
and it is central to the subject of the next chapter. In order not to to get confused by the
notation, you have to distinguish between a whole function f , and the value of that function at
a point, f(x). The former is the whole graph of the function, and the latter is one point of the
graph.

The scalar product notation defined in Eq. (11) is not necessarily restricted to the interval
0 < x < L. Depending on context it can be over any interval that you happen to be considering
at the time. In Eq. (11) there is a complex conjugation symbol. The functions here have been
real, so this made no difference, but you will often deal with complex functions and then the fact
that the notation

〈
f, g

〉
includes a conjugation is important. This notation is a special case of the

general development that will come in section 6.6. The basis vectors such as x̂ are conventionally
normalized to one, x̂ . x̂ = 1, but you don’t have to require that even there, and in the context
of Fourier series it would clutter up the notation to require

〈
un, un

〉
= 1, so I don’t bother.

Some Examples
To get used to this notation, try showing that these pairs of functions are orthogonal on the
interval 0 < x < L. Sketch graphs of both functions in every case.〈

x, L− 3
2x

〉
= 0

〈
sin πx/L, cos πx/L

〉
= 0

〈
sin 3πx/L, L− 2x

〉
= 0

The notation has a complex conjugation built into it, but these examples are all real. What if
they aren’t? Show that these are orthogonal too. How do you graph these? Not easily.*〈

e2iπx/L, e−2iπx/L
〉

= 0
〈
L− 1

4(7 + i)x, L + 3
2ix

〉
= 0

* but see if you can find a copy of the book by Jahnke and Emde, published long before
computers. They show examples. Also check out
www.geom.uiuc.edu/˜banchoff/script/CFGInd.html or
www.math.ksu.edu/˜bennett/jomacg/

http://www.geom.uiuc.edu/~banchoff/script/CFGInd.html
http://www.math.ksu.edu/~bennett/jomacg/
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Extending the function
In Equations (1) and (2) the original function was specified on the interval 0 < x < L. The
two Fourier series that represent it can be evaluated for any x. Do they equal x2 everywhere?
No. The first series involves only cosines, so it is an even function of x, but it’s periodic:
f(x + 2L) = f(x). The second series involves only sines, so it’s odd, and it too is periodic with
period 2L.

−L L

Here the discontinuity in the sine series is more obvious, a fact related to its slower convergence.

5.3 Choice of Basis
When you work with components of vectors in two or three dimensions, you will choose the
basis that is most convenient for the problem you’re working with. If you do a simple mechanics
problem with a mass moving on an incline, you can choose a basis x̂ and ŷ that are arranged
horizontally and vertically. OR, you can place them at an angle so that they point down the
incline and perpendicular to it. The latter is often a simpler choice in that type of problem.

The same applies to Fourier series. The interval on which you’re working is not necessarily
from zero to L, and even on the interval 0 < x < L you can choose many sets of function for a
basis:

sin nπx/L (n = 1, 2, . . .) as above, or you can choose a basis

cos nπx/L (n = 0, 1, 2, . . .), or you can choose a basis

sin(n + 1/2)πx/L (n = 0, 1, 2, . . .), or you can choose a basis

e2πinx/L (n = 0,±1,±2, . . .), or an infinite number of other possibilities.

In order to use any of these you need a relation such as Eq. (5) for each separate case.
That’s a lot of integration. You need to do it for any interval that you may need and that’s even
more integration. Fortunately there’s a way out:

Fundamental Theorem
If you want to show that each of these respective choices provides an orthogonal set of functions
you can integrate every special case, or you can do all the cases at once by deriving an important
theorem. This theorem starts from the fact that all of these sines and cosines and complex
exponentials satisfy the same differential equation, u′′ = λu, where λ is some constant, different
in each case. If you studied section 4.5, you saw how to derive properties of trigonometric
functions simply by examining the differential equation that they satisfy. If you didn’t, now might
be a good time to look at it, because this is more of the same. (I’ll wait.)

You have two functions u1 and u2 that satisfy

u′′1 = λ1u1 and u′′2 = λ2u2

Make no assumption about whether the λ’s are positive or negative or even real. The u’s can
also be complex. Multiply the first equation by u*

2 and the second by u*
1, then take the complex
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conjugate of the second product.

u*
2u
′′
1 = λ1u

*
2u1 and u1u

*
2
′′ = λ*

2u1u
*
2

Subtract the equations.
u*

2u
′′
1 − u1u*

2
′′ = (λ1 − λ*

2)u
*
2u1

Integrate from a to b ∫ b

a
dx

(
u*

2u
′′
1 − u1u

*
2
′′) = (λ1 − λ*

2)

∫ b

a
dxu*

2u1 (14)

Now do two partial integrations. Work on the second term on the left:∫ b

a
dxu1u

*
2
′′ = u1u

*
2
′
∣∣∣b
a
−

∫ b

a
dxu′1u

*
2
′ = u1u

*
2
′
∣∣∣b
a
− u′1u

*
2

∣∣∣b
a

+

∫ b

a
dxu′′1u

*
2

Put this back into the Eq. (14) and the integral terms on the left cancel, leaving

u′1u
*
2 − u1u

*
2
′
∣∣∣b
a

= (λ1 − λ*
2)

∫ b

a
dxu*

2u1 (15)

This is the central identity from which all the orthogonality relations in Fourier series derive.
It’s even more important than that because it tells you what types of boundary conditions you
can use in order to get the desired orthogonality relations. (It tells you even more than that, as it
tells you how to compute the adjoint of the second derivative operator. But not now; save that
for later.) The expression on the left side of the equation has a name: “bilinear concomitant.”

You can see how this is related to the work with the functions sin(nπx/L). They satisfy
the differential equation u′′ = λu with λ = −n2π2/L2. The interval in that case was 0 < x < L
for a < x < b.

There are generalizations of this theorem that you will see in places such as problems 6.16
and 6.17 and 10.21. In those extensions these same ideas will allow you to handle Legendre
polynomials and Bessel functions and Ultraspherical polynomials and many other functions in
just the same way that you handle sines and cosines. This development comes under the general
name Sturm-Liouville theory.

The key to using this identity will be to figure out what sort of boundary conditions will
cause the left-hand side to be zero. For example if u(a) = 0 and u(b) = 0 then the left side
vanishes. These are not the only possible boundary conditions that make this work; there are
several other common cases soon to appear.

The first consequence of Eq. (15) comes by taking a special case, the one in which the two
functions u1 and u2 are in fact the same function. If the boundary conditions make the left side
zero then

0 = (λ1 − λ*
1)

∫ b

a
dxu*

1(x)u1(x)

The λ’s are necessarily the same because the u’s are. The only way the product of two numbers
can be zero is if one of them is zero. The integrand, u*

1(x)u1(x) is always non-negative and is
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continuous, so the integral can’t be zero unless the function u1 is identically zero. As that would
be a trivial case, I assume it’s not so. This then implies that the other factor, (λ1− λ*

1) must be
zero, and this says that the constant λ1 is real. Yes, −n2π2/L2 is real.

[To use another language that will become more familiar later, λ is an eigenvalue and
d2/dx2 with these boundary conditions is an operator. This calculation guarantees that the
eigenvalue is real.]

Now go back the the more general case of two different functions, and I can drop the
complex conjugation on the λ’s.

0 = (λ1 − λ2)

∫ b

a
dxu*

2(x)u1(x)

This says that if the boundary conditions on u make the left side zero, then for two solutions
with different eigenvalues (λ’s) the orthogonality integral is zero. Eq. (5) is a special case of the
following equation.

If λ1 6= λ2, then
〈
u2, u1

〉
=

∫ b

a
dxu*

2(x)u1(x) = 0 (16)

Apply the Theorem
As an example, carry out a full analysis of the case for which a = 0 and b = L, and for the
boundary conditions u(0) = 0 and u(L) = 0. The parameter λ is positive, zero, or negative. If
λ > 0, then set λ = k2 and

u(x) = A sinh kx + B cosh kx, then u(0) = B = 0

and so u(L) = A sinh kL = 0 ⇒ A = 0

No solutions there, so try λ = 0

u(x) = A + Bx, then u(0) = A = 0 and so u(L) = BL = 0 ⇒ B = 0

No solutions here either. Try λ < 0, setting λ = −k2.

u(x) = A sin kx + B cos kx, then u(0) = 0 = B and so u(L) = A sin kL = 0

Now there are many solutions because sin nπ = 0 allows k = nπ/L with n any integer. But,
sin(−x) = − sin(x) so negative integers just reproduce the same functions as do the positive
integers; they are redundant and you can eliminate them. The complete set of solutions to the
equation u′′ = λu with these boundary conditions has λn = −n2π2/L2 and reproduces the result
of the explicit integration as in Eq. (6).

un(x) = sin
(nπx

L

)
n = 1, 2, 3, . . . and〈

un, um

〉
=

∫ L

0
dx sin

(nπx

L

)
sin

(mπx

L

)
= 0 if n 6= m (17)
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There are other choices of boundary condition that will make the bilinear concomitant
vanish. (Verify these!) For example

u(0) = 0, u′(L) = 0 gives un(x) = sin
(
n + 1/2

)
πx/L n = 0, 1, 2, 3, . . .

and without further integration you have the orthogonality integral for non-negative integers n
and m〈

un, um

〉
=

∫ L

0
dx sin

(
(n + 1/2)πx

L

)
sin

(
(m + 1/2)πx

L

)
= 0 if n 6= m (18)

A very common choice of boundary conditions is

u(a) = u(b), u′(a) = u′(b) (periodic boundary conditions) (19)

It’s often more convenient to use complex exponentials in this case (though of course not neces-
sary). On 0 < x < L

u(x) = eikx, where k2 = −λ and u(0) = 1 = u(L) = eikL

The periodic behavior of the exponential implies that kL = 2nπ. The condition that the deriva-
tives match at the boundaries makes no further constraint, so the basis functions are

un(x) = e2πinx/L, (n = 0, ±1,±2, . . .) (20)

Notice that in this case the index n runs over all positive and negative numbers and zero, not
just the positive integers. The functions e2πinx/L and e−2πinx/L are independent, unlike the case
of the sines discussed above. Without including both of them you don’t have a basis and can’t
do Fourier series. If the interval is symmetric about the origin as it often is, −L < x < +L, the
conditions are

u(−L) = e−ikL = u(+L) = e+ikL, or e2ikL = 1 (21)

This says that 2kL = 2nπ, so

un(x) = enπix/L, (n = 0, ±1,±2, . . .)

In this case, sometimes the real form of this basis is more convenient and you can use the
combination of the two sets un and vn, where

un(x) = cos(nπx/L), (n = 0, 1, 2, . . .) and vn(x) = sin(nπx/L), (n = 1, 2, . . .)
(22)

There are an infinite number of other choices, a few of which are even useful, e.g.

u′(a) = 0 = u′(b) (23)

Take the same function as in Eq. (7) and try a different basis. Choose the basis for which
the boundary conditions are u(0) = 0 and u′(L) = 0. This gives the orthogonality conditions of
Eq. (18). The general structure is always the same.

f(x) =
∑

an un(x), and use
〈
um, un

〉
= 0 (n 6= m)



10 5—Fourier Series

Take the scalar product of this equation with um to get〈
um, f

〉
=

〈
um,

∑
an un

〉
= am

〈
um, um

〉
(24)

This is exactly as before in Eq. (13), only with a different basis. To evaluate it you still have to
do the integrals.

〈
um, f

〉
=

∫ L

0
dx sin

(
(m + 1/2)πx

L

)
1 = am

∫ L

0
dx sin2

(
(m + 1/2)πx

L

)
= am

〈
um, um

〉
L

(m + 1/2)π

[
1− cos

(
(m + 1/2)π

)]
=

L

2
am

am =
4

(2m + 1)π

Then the series is
4

π

[
sin

πx

2L
+

1

3
sin

3πx

2L
+

1

5
sin

5πx

2L
+ · · ·

]
(25)

5.4 Musical Notes
Different musical instruments sound different even when playing the same note. You won’t
confuse the sound of a piano with the sound of a guitar, and the reason is tied to Fourier series.
The note middle C has a frequency that is 261.6 Hz on the standard equal tempered scale. The
angular frequency is then 2π times this, or 1643.8 radians/sec. Call it ω0 = 1644. When you play
this note on any musical instrument, the result is always a combination of many frequencies, this
one and many multiples of it. A pure frequency has only ω0, but a real musical sound has many
harmonics: ω0, 2ω0, 3ω0, etc.

Instead of eiω0t an instrument produces
?∑

n=1

an eniω0t (26)

A pure frequency is the sort of sound that you hear from an electronic audio oscillator, and it’s
not very interesting. Any real musical instrument will have at least a few and usually many
frequencies combined to make what you hear.

Why write this as a complex exponential? A sound wave is a real function of position
and time, the pressure wave, but it’s easier to manipulate complex exponentials than sines and
cosines, so when I write this, I really mean to take the real part for the physical variable, the
pressure variation. The imaginary part is carried along to be discarded later. Once you’re used to
this convention you don’t bother writing the “real part understood” anywhere — it’s understood.

p(t) = <
?∑

n=1

an eniω0t =
?∑

n=1

|an| cos
(
nω0t + φn

)
where an = |an|eiφn (27)

I wrote this using the periodic boundary conditions of Eq. (19). The period is the period of the
lowest frequency, T = 2π/ω0.
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A flute produces a combination of frequencies that is mostly concentrated in a small number
of harmonics, while a violin or reed instrument produces a far more complex combination of
frequencies. The size of the coefficients an in Eq. (26) determines the quality of the note that
you hear, though oddly enough its phase, φn, doesn’t have an effect on your perception of the
sound.

These represent a couple of cycles of the sound of a clarinet. The left graph is about what
the wave output of the instrument looks like, and the right graph is what the graph would look
like if I add a random phase, φn, to each of the Fourier components of the sound as in Eq. (27).
They may look very different, but to the human ear they sound alike.

You can hear examples of the sound of Fourier series online via the web site:

users.pandora.be/educypedia/education/physicsjavasound.htm

In particular, explore the link labeled “Listen to Fourier Series.” Under that heading you can hear
the (lack of) effect of phase on sound. You can also synthesize your own series and hear what
they sound like under such links as “Fourier synthese” and “Harmonics applet” found on this
page. You can back up from this link to larger topics by using the links shown in the left column
of the web page.

Real musical sound is of course more than just these Fourier series. At the least, the Fourier
coefficients, an, are themselves functions of time. The time scale on which they vary is however
much longer than the basic period of oscillation of the wave. That means that it makes sense to
treat them as (almost) constant when you are trying to describe the harmonic structure of the
sound. Even the lowest pitch notes you can hear are at least 20Hz, and few home sound systems
can produce frequencies nearly that low. Musical notes change on time scales much greater than
1/20 or 1/100 of a second, and this allows you to treat the notes by Fourier series even though
the Fourier coefficients are themselves time-dependent. The attack and the decay of the note
greatly affects our perception of it, and that is described by the time-varying nature of these
coefficients.*

Parseval’s Identity
Let un be the set of orthogonal functions that follow from your choice of boundary conditions.

f(x) =
∑
n

anun(x)

* For an enlightening web page, including a complete text on mathematics and music, see
www.maths.abdn.ac.uk/˜bensondj/html/ and
www.maths.abdn.ac.uk/˜bensondj/html/maths-music.html

http://users.pandora.be/educypedia/education/physicsjavasound.htm
http://www.maths.abdn.ac.uk/~bensondj/html/
http://www.maths.abdn.ac.uk/~bensondj/html/maths-music.html
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Evaluate the integral of the absolute square of f over the domain.

∫ b

a
dx |f(x)|2 =

∫ b

a
dx

[∑
m

amum(x)

]
*
[∑

n

anun(x)

]

=
∑
m

a*
m

∑
n

an

∫ b

a
dxum(x)*un(x) =

∑
n

|an|2
∫ b

a
dx |un(x)|2

In the more compact notation this is〈
f, f

〉
=

〈 ∑
m

amum,
∑
n

anun

〉
=

∑
m,n

a*
man

〈
um, un

〉
=

∑
n

|an|2
〈
un, un

〉
(28)

The first equation is nothing more than substituting the series for f . The second moved the
integral under the summation. The third equation uses the fact that all these integrals are zero
except for the ones with m = n. That reduces the double sum to a single sum. If you have
chosen to normalize all of the functions un so that the integrals of |un(x)|2 are one, then this
relation takes on a simpler appearance. This is sometimes convenient.

What does this say if you apply it to a series I’ve just computed? Take Eq. (10) and see
what it implies.

〈
f, f

〉
=

∫ L

0
dx 1 = L =

∞∑
k=0

|ak|2
〈
un, un

〉
=

∞∑
k=0

(
4

π(2k + 1)

)2 ∫ L

0
dx sin2

(
(2k + 1)πx

L

)
=

∞∑
k=0

(
4

π(2k + 1)

)2
L

2

Rearrange this to get
∞∑

k=0

1

(2k + 1)2
=

π2

8
(29)

A bonus. You have the sum of this infinite series, a result that would be quite perplexing if I
handed it to you without showing where it came from. While you have it in front of you, what
do you get if you simply evaluate the infinite series of Eq. (10) at L/2. The answer is 1, but
what is the other side?

1 =
4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)π(L/2)

L
=

4

π

∞∑
k=0

1

2k + 1
(−1)k

or 1− 1

3
+

1

5
−1

7
+

1

9
− · · · = π

4

But does it Work?
If you are in the properly skeptical frame of mind, you may have noticed a serious omission on my
part. I’ve done all this work showing how to get orthogonal functions and to manipulate them to
derive Fourier series for a general function, but when did I show that this actually works? Never.
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How do I know that a general function, even a well-behaved general function, can be written as
such a series? I’ve proved that the set of functions sin(nπx/L) are orthogonal on 0 < x < L,
but that’s not good enough.

Maybe a clever mathematician will invent a new function that I haven’t thought of and
that will be orthogonal to all of these sines and cosines that I’m trying to use for a basis, just as k̂
is orthogonal to ı̂ and ̂. It won’t happen. There are proper theorems that specify the conditions
under which all of this Fourier manipulation works.

For example if the function is continuous with a continuous derivative on the interval
0 ≤ x ≤ L then the Fourier series will exist, will converge, and will converge to the specified
function (except maybe at the endpoints). If you allow it to have a finite number of finite
discontinuities but with a continuous derivative in between, then the Fourier series will converge
and will (except maybe at the discontinuities) converge to the specified function. There are a
variety of other sufficient conditions that you can use to insure that all of this stuff works, but
I’ll leave that to the advanced calculus books.

5.5 Periodically Forced ODE’s
If you have a harmonic oscillator with an added external force, such as Eq. (4.12), there are
systematic ways to solve it, such as those found in section 4.2. One part of the problem is to find
a solution to the inhomogeneous equation, and if the external force is simple enough you can do
this easily. Suppose though that the external force is complicated but periodic, as for example
when you’re pushing a child on a swing.

m
d2x

dt2
= −kx− b

dx

dt
+ Fext(t)

That the force is periodic means Fext(t) = Fext(t + T ) for all times t. The period is T .

Pure Frequency Forcing
Before attacking the general problem, look at a simple special case. Take the external forcing
function to be F0 cos ωet where this frequency is ωe = 2π/T . This equation is now

m
d2x

dt2
+ kx + b

dx

dt
= F0 cos ωet =

F0

2

[
eiωet + e−iωet

]
(30)

Find a solution corresponding to each term separately and add the results. To get an exponential
out, put an exponential in.

for m
d2x

dt2
+ kx + b

dx

dt
= eiωet assume xinh(t) = Aeiωet

Substitute the assumed form and it will determine A.[
m(−ω2

e ) + b(iωe) + k
]
Aeiωet = eiωet

This tells you the value of A is

A =
1

−mω2
e + b iωe + k

(31)
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The other term in Eq. (30) simply changes the sign in front of i everywhere. The total solution
for Eq. (30) is then

xinh(t) =
F0

2

[
1

−mω2
e + b iωe + k

eiωet +
1

−mω2
e − b iωe + k

e−iωet

]
(32)

This is the sum of a number and its complex conjugate, so it’s real. You can rearrange it so that
it looks a lot simpler, but I don’t need to do that right now. Instead I’ll look at what it implies
for certain values of the parameters.

Suppose that the viscous friction is small (b is small). If the forcing
frequency, ωe is such that −mω2

e + k = 0, or is even close to zero, the
denominators of the two terms become very small. This in turn implies
that the response of x to the oscillating force is huge. Resonance. See
problem 27. In a contrasting case, look at ωe very large. Now the response
of the mass is very small; it barely moves.

General Periodic Force
Now I’ll go back to the more general case of a periodic forcing function, but not one that is
simply a cosine. If a function is periodic I can use Fourier series to represent it on the whole axis.
The basis to use will of course be the one with periodic boundary conditions (what else?). Use
complex exponentials, then

u(t) = eiωt where eiω(t+T ) = eiωt

This is just like Eq. (20) but with t instead of x, so

un(t) = e2πint/T , (n = 0, ±1, . . .) (33)

Let ωe = 2π/T , and this is
un(t) = einωet

The external force can now be represented by the Fourier series

Fext(t) =
∞∑

k=−∞
ak eikωet, where

〈
einωet,

∞∑
k=−∞

ak eikωet
〉

= an T =
〈
einωet, Fext(t)

〉
=

∫ T

0
dt e−inωet Fext(t)

(Don’t forget the implied complex conjugation in the definition of the scalar product,
〈
,
〉
.)

Because the force is periodic I can use any other time interval of duration T , perhaps −T/2 to
+T/2 if that’s more convenient.

How does this solve the differential equation? Plug in.

m
d2x

dt2
+ b

dx

dt
+ kx =

∞∑
n=−∞

an einωet (34)
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All that I have to do now is to solve for an inhomogeneous solution one term at a time and add
the results. Take one term alone on the right:

m
d2x

dt2
+ b

dx

dt
+ kx = einωet

This is what I just finished solving a few lines ago, Eq. (31), only with nωe instead of simply ωe.
The inhomogeneous solution is the sum of the solutions from each term.

xinh(t) =
∞∑

n=−∞
an

1

−m(nωe)2 + binωe + k
eniωet (35)

Suppose for example that the forcing function is a simple square wave.

Fext(t) =

{
F0 (0 < t < T/2)
−F0 (T/2 < t < T )

and Fext(t + T ) = Fext(t) (36)

The Fourier series for this function is one that you can do in problem 12. The result is

Fext(t) = F0
2

πi

∑
n odd

1

n
eniωet (37)

The solution corresponding to Eq. (35) is now

xinh(t) = F0
1

2πi

∑
n odd

1(
−m(nωe)2 + binωe + k

) 1

n
eniωet (38)

A real force ought to give a real result; does this? Yes. For every positive n in the sum,
there is a corresponding negative one and the sum of those two is real. You can see this because
every n that appears is either squared or is multiplied by an “i.” When you add the n = +5 term
to the n = −5 term it’s adding a number to its own complex conjugate, and that’s real.

What peculiar features does this result imply? With the simply cosine force the phenomenon
of resonance occurred, in which the response to a small force at a frequency that matched the
intrinsic frequency

√
k/m produced a disproportionately large response. What other things

happen here?
The natural frequency of the system is (for small damping) still

√
k/m. Look to see where

a denominator in Eq. (38) may become very small. This time it’s when −m(nωe)
2 +k = 0. This

is not only when the external frequency ωe matches the natural frequency; it’s when nωe matches
it. If the natural frequency is

√
k/m = 100 radians/sec you get a big response if the forcing

frequency is 100 radians/sec or 33 radians/sec or 20 radians/sec or 14 radians/sec etc. What does
this mean? The square wave in Eq. (36) contains many frequencies. It contains not only the main
frequency 2π/T , it contains 3 times this and 5 times it and many higher frequencies. When any
one of these harmonics matches the natural frequency you will have the large resonant response.

Not only do you get a large response, look at the way the mass oscillates. If the force has
a square wave frequency 20 radians/sec, the mass responds* with a large sinusoidal oscillation at
a frequency 5 times higher — 100 radians/sec.

* The next time you have access to a piano, gently depress a key without making a sound,
then strike the key one octave lower. Release the lower key and listen to the sound of the upper
note. Then try it with an interval of an octave plus a fifth.
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5.6 Return to Parseval
When you have a periodic wave such as a musical note, you can Fourier analyze it. The boundary
conditions to use are naturally the periodic ones, Eq. (20) or (33), so that

f(t) =
∞∑
−∞

aneinω0t

If this represents the sound of a flute, the amplitudes of the higher frequency components (the
an) drop off rapidly with n. If you are hearing an oboe or a violin the strength of the higher
components is greater.

If this function represents the sound wave as received by your ear, the power that you
receive is proportional to the square of f . If f represent specifically the pressure disturbance in
the air, the intensity (power per area) carried by the wave is f(t)2v/B where v is the speed of
the wave and B is the bulk modulus of the air. The key property of this is that it is proportional
to the square of the wave’s amplitude. That’s the same relation that occurs for light or any other
wave. Up to a known factor then, the power received by the ear is proportional to f(t)2.

This time average of the power is (up to that constant factor that I’m ignoring)

〈
f2

〉
= lim

T→∞

1

2T

∫ +T

−T
dt f(t)2

Now put the Fourier series representation of the sound into the integral to get

lim
T→∞

1

2T

∫ +T

−T
dt

[ ∞∑
−∞

aneinω0t

]2

The sound f(t) is real, so by problem 11, a−n = a*
n. Also, using the result of problem 18 the

time average of eiωt is zero unless ω = 0; then it’s one.

〈
f2

〉
= lim

T→∞

1

2T

∫ +T

−T
dt

[∑
n

aneinω0t

] [∑
m

ameimω0t

]

= lim
T→∞

1

2T

∫ +T

−T
dt

∑
n

∑
m

aneinω0tameimω0t

=
∑
n

∑
m

anam lim
T→∞

1

2T

∫ +T

−T
dt ei(n+m)ω0t

=
∑
n

ana−n

=
∑
n

|an|2 (39)

Put this into words and it says that the time-average power received is the sum of many terms,
each one of which I can interpret as the amount of power coming in at that frequency nω0.
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The Fourier coefficients squared (absolute-squared really) are then proportional to the part of the
power at a particular frequency. The “power spectrum.”

Other Applications
In section 10.2 Fourier series will be used to solve partial differential equations, leading to equa-
tions such as Eq. (10.15).

In quantum mechanics, Fourier series and its generalizations will manifest themselves in
displaying the discrete energy levels of bound atomic and nuclear systems.

Music synthesizers are all about Fourier series.

5.7 Gibbs Phenomenon
There’s a picture of the Gibbs phenomenon with Eq. (10). When a function has a discontinuity,
its Fourier series representation will not handle it in a uniform way, and the series overshoots its
goal at the discontinuity. The detailed calculation of this result is quite pretty, and it’s an excuse
to pull together several of the methods from the chapters on series and on complex algebra.

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= 1, (0 < x < L)

highest harmonic:   5 highest harmonic:  19 highest harmonic:  99

The analysis sounds straight-forward. Find the position of the first maximum. Evaluate
the series there. It really is almost that clear. First however, you have to start with the a finite
sum and find the first maximum of that. Stop the sum at k = N .

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= fN (x) (40)

For a maximum, set the derivative to zero.

f ′N (x) =
4

L

N∑
0

cos
(2k + 1)πx

L

Write this as the real part of a complex exponential and use Eq. (2.3).

N∑
0

ei(2k+1)πx/L =
N∑
0

z2k+1 = z
N∑
0

z2k = z
1− z2N+2

1− z2

Factor these complex exponentials in order to put this into a nicer form.

= eiπx/L e−iπx(N+1)/L − eiπx(N+1)/L

e−iπx/L − eiπx/L

eiπx(N+1)/L

eiπx/L
=

sin(N + 1)πx/L

sin πx/L
eiπx(N+1)/L
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The real part of this changes the last exponential into a cosine. Now you have the product of the
sine and cosine of (N + 1)πx/L, and that lets you use the trigonometric double angle formula.

f ′N (x) =
4

L

sin 2(N + 1)πx/L

2 sin πx/L
(41)

This is zero at the maximum. The first maximum after x = 0 is at 2(N + 1)πx/L = π, or
x = L/2(N + 1).

Now for the value of fN at this point,

fN

(
L/2(N + 1)

)
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πL/2(N + 1)

L
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)π

2(N + 1)

The final step is to take the limit as N → ∞. As k varies over the set 0 to N , the argument
of the sine varies from a little more than zero to a little less than π. As N grows you have the
sum over a lot of terms, each of which is approaching zero. It’s an integral. Let tk = k/N then
∆tk = 1/N . This sum is approximately

4

π

N∑
k=0

1

2Ntk
sin tkπ =

2

π

N∑
0

∆tk
1

tk
sin tkπ −→

2

π

∫ 1

0

dt

t
sin πt

In this limit 2k + 1 and 2k are the same, and N + 1 is the same as N .
Finally, put this into a standard form by changing variables to πt = x.

2

π

∫ π

0
dx

sin x

x
=

2

π
Si(π) = 1.17898

∫ x

0
dt

sin t

t
= Si(x) (42)

The function Si is called the “sine integral.” It’s just another tabulated function, along with erf,
Γ, and others. This equation says that as you take the limit of the series, the first part of the
graph approaches a vertical line starting from the origin, but it overshoots its target by 18%.
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Problems

5.1 Get the results in Eq. (18) by explicitly calculating the integrals.

5.2 The functions with periodic boundary conditions, Eq. (20), are supposed to be orthogonal
on 0 < x < L. That is,

〈
un, um

〉
= 0 for n 6= m. Verify this by explicit integration. What is

the result if n = m or n = −m? The notation is defined in Eq. (11). Same for the real version,〈
un, um

〉
,
〈
vn, vm

〉
, and

〈
un, vm

〉
, Eq. (22)

5.3 Find the Fourier series for the function f(x) = 1 as in Eq. (10), but use as a basis the
set of functions un on 0 < x < L that satisfy the differential equation u′′ = λu with boundary
conditions u′(0) = 0 and u′(L) = 0. (Eq. (23)) Necessarily the first step will be to examine all
the solutions to the differential equation and to find the cases for which the bilinear concomitant
vanishes.
(b) Graph the resulting Fourier series on −2L < x < 2L.
(c) Graph the Fourier series Eq. (10) on −2L < x < 2L.

5.4 Compute the Fourier series for the function x2 on the interval 0 < x < L, using as a basis
the functions with boundary conditions u′(0) = 0 and u′(L) = 0.
Sketch the partial sums of the series for 1, 2, 3 terms. Also sketch this sum outside the original
domain and see what this series produces for an extension of the original function. Ans: Eq. (1)

5.5 Compute the Fourier series for the function x on the interval 0 < x < L, using as a basis
the functions with boundary conditions u(0) = 0 = u(L). How does the coefficient of the nth

term decrease as a function of n? Also sketch this sum within and outside the original domain
to see what this series produces for an extension of the original function.

Ans: 2L
π

∑∞
1

(−1)n+1

n sin(nπx/L)

5.6 In the preceding problem the sine functions that you used don’t match the qualitative behavior
of the function x on this interval because the sine is zero at x = L and x isn’t. The qualitative
behavior is different from the basis you are using for the expansion. You should be able to get
better convergence for the series if you choose functions that more closely match the function
that you’re expanding, so try repeating the calculation using basis functions that satisfy u(0) = 0
and u′(L) = 0. How does the coefficient of the nth term decrease as a function of n? As in the
preceding problem, sketch some partial sums of the series and its extension outside the original
domain. Ans: 8L

π2

∑∞
0

(
(−1)n/(2n + 1)2

)
sin

(
(n + 1/2)πx/L

)
5.7 The function sin2 x is periodic with period π. What is its Fourier series representation using
as a basis functions that have this period? Eqs. (20) or (22).

5.8 In the two problems 5 and 6 you improved the convergence by choosing boundary conditions
that better matched the function that you want. Can you do better? The function x vanishes
at the origin, but its derivative isn’t zero at L, so try boundary conditions u(0) = 0 and u(L) =
Lu′(L). These conditions match those of x so this ought to give even better convergence, but
first you have to verify that these conditions guarantee the orthogonality of the basis functions.
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You have to verify that the left side of Eq. (15) is in fact zero. When you set up the basis, you
will examine functions of the form sin kx, but you will not be able to solve explicitly for the values
of k. Don’t worry about it. When you use Eq. (24) to get the coefficients all that you need to
do is to use the equation that k satisfies to do the integrals. You do not need to have solved it.
If you do all the algebra correctly you will probably have a surprise.

5.9 Use the periodic boundary conditions on −L < x < +L and basis eπinx/L to write x2 as
a Fourier series. Sketch the sums up to a few terms. Evaluate your result at x = L where you
know the answer to be L2 and deduce from this the value of ζ(2).

5.10 On the interval −π < x < π, the function f(x) = cos x. Expand this in a Fourier series
defined by u′′ = λu and u(−π) = 0 = u(π). If you use your result for the series outside of this
interval you define an extension of the original function. Graph this extension and compare it to
what you normally think of as the graph of cos x. As always, go back to the differential equation
to get all the basis functions.
Ans: − 4

π

∑∞
k=0

2k+1
(2k+3)(2k−1) sin

(
(2k + 1)(x + π)/2

)
5.11 Represent a function f on the interval −L < x < L by a Fourier series using periodic
boundary conditions

f(x) =
∞∑
−∞

an enπix/L

(a) If the function f is odd, prove that for all n, a−n = −an

(b) If the function f is even, prove that all a−n = an.
(c) If the function f is real, prove that all a−n = a*

n.
(d) If the function is both real and even, characterize an.
(e) If the function is imaginary and odd, characterize an.

5.12 Derive the series Eq. (37).

5.13 For the function e−αt on 0 < t < T , express it as a Fourier series using periodic boundary
conditions [u(0) = u(T ) and u′(0) = u′(T )]. Examine for plausibility the cases of large and small
α. The basis functions for periodic boundary conditions can be expressed either as cosines and
sines or as complex exponentials. Unless you can analyze the problem ahead of time and determine
that it has some special symmetry that matches that of the trig functions, you’re usually better off
with the exponentials. Ans:

[(
1−e−αT

)/
αT

][
1+2

∑∞
1 [α2 cos nωt+αnω sin nωt]

/
[α2+n2ω2]

]
5.14 On the interval 0 < x < L, write x(L− x) as a Fourier series, using boundary conditions
that the expansion functions vanish at the endpoints. Next, evaluate the series at x = L/2 to
see if it gives an interesting result. Finally, what does Parseval’s identity tell you?

Ans:
∑∞

1
4L2

n3π3

[
1− (−1)n)

]
sin(nπx/L)

5.15 A full-wave rectifier takes as an input a sine wave, sin ωt and creates the output f(t) =
| sin ωt|. The period of the original wave is 2π/ω, so write the Fourier series for the output in
terms of functions periodic with this period. Graph the function f first and use the graph to
anticipate which terms in the Fourier series will be present.
When you’re done, use the result to evaluate the infinite series

∑∞
1 (−1)k+1/(4k2 − 1)

Ans: π/4− 1/2
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5.16 A half-wave rectifier takes as an input a sine wave, sin ωt and creates the output

sin ωt if sin ωt > 0 and 0 if sin ωt ≤ 0

The period of the original wave is 2π/ω, so write the Fourier series for the output in terms of
functions periodic with this period. Graph the function first. Check that the result gives the
correct value at t = 0, manipulating it into a telescoping series. Sketch a few terms of the whole
series to see if it’s heading in the right direction.
Ans: 4/π + 1/2 sin ωt− 8/π

∑
n even >0 cos(nωt)/(n2 − 1)

5.17 For the undamped harmonic oscillator, apply an oscillating force. This is a simpler version
of Eq. (30). Solve this problem and add the general solution to the homogeneous equation. Solve
this subject to the initial conditions that x(0) = 0 and vx(0) = v0.

5.18 The average (arithmetic mean) value of a function is

〈
f
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t) or

〈
f
〉

= lim
T→∞

1

T

∫ T

0
dt f(t)

as appropriate for the problem.

What is
〈
sin ωt

〉
? What is

〈
sin2 ωt

〉
? What is

〈
e−at2

〉
?

What is
〈
sin ω1t sin ω2t

〉
? What is

〈
eiωt

〉
?

5.19 In the calculation leading to Eq. (39) I assumed that f(t) is real and then used the properties
of an that followed from that fact. Instead, make no assumption about the reality of f(t) and
compute 〈

|f(t)|2
〉

=
〈
f(t)*f(t)

〉
Show that it leads to the same result as before,

∑
|an|2.

5.20 The series
∞∑

n=0

an cos nθ (|a| < 1)

represents a function. Sum this series and determine what the function is. While you’re about
it, sum the similar series that has a sine instead of a cosine. Don’t try to do these separately;
combine them and do them as one problem. And check some limiting cases of course. And graph
the functions. Ans: a sin θ/

(
1 + a2 − 2a cos θ

)
5.21 Apply Parseval’s theorem to problem 9 and see what you can deduce.

5.22 If you take all the elements un of a basis and multiply each of them by 2, what happens
to the result for the Fourier series for a given function?

5.23 In the section 5.3 several bases are mentioned. Sketch a few terms of each basis.
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5.24 A function is specified on the interval 0 < t < T to be

f(t) =

{
1 (0 < t < t0)
0 (t0 < t < T )

0 < t0 < T

On this interval, choose boundary conditions such that the left side of the basic identity (15)
is zero. Use the corresponding choice of basis functions to write f as a Fourier series on this
interval.

5.25 Show that the boundary conditions u(0) = 0 and αu(L) + βu′(L) = 0 make the bilinear
concomitant in Eq. (15) vanish. Are there any restrictions on α and β? Do not assume that
these numbers have to be real.

5.26 Derive a Fourier series for the function

f(x) =

{
Ax (0 < x < L/2)
A(L− x) (L/2 < x < L)

Choose the Fourier basis that you prefer. Evaluate the resulting series at x = L/2 to check the
result. Sketch the sum of a couple of terms. Comment on the convergence properties of the
result. Are they what you expect? What does Parseval’s identity say?
Ans: (2AL/π2)

∑
k odd(−1)(k−1)/2 sin(kπx/L)

/
k2

5.27 Rearrange the solution Eq. (32) into a more easily understood form. (a) Write the first
denominator as

−mω2
e + b iωe + k = Reiφ

What are R and φ? The second term does not require you to repeat this calculation, just use
its results, now combine everything and write the answer as an amplitude times a phase-shifted
cosine.
(b) Assume that b is not too big and plot both R and φ versus the forcing frequency ωe. Also,
and perhaps more illuminating, plot 1/R.

5.28 Find the form of Parseval’s identity appropriate for power series. Assume a scalar product〈
f, g

〉
=

∫ 1
−1 dx f(x)*g(x) for the series f(x) =

∑∞
0 anxn, and g(x) =

∑∞
0 bnxn, expressing

the result in terms of matrices. Next, test your result on a simple, low-order polynomial.
Ans: (a∗0 a∗1 . . .)M(b0 b1 . . .)̃ where M00 = 2, M02 = 2/3 M04 = 2/5, . . .

5.29 (a) In the Gibbs phenomenon, after the first maximum there is a first minimum. Where is
it? how big is the function there? What is the limit of this point? That is, repeat the analysis of
section 5.7 for this minimum point.
(b) While you’re about it, what will you get for the limit of the sine integral, Si(∞)? The
last result can also be derived by complex variable techniques of chapter 14, Eq. (14.16).
Ans: (2/π) Si(2π) = 0.9028

5.30 Make a blown-up copy of the graph preceding Eq. (40) and measure the size of the over-
shoot. Compare this experimental value to the theoretical limit. Same for the first minimum.

5.31 Find the power series representation about the origin for the sine integral, Si, that appeared
in Eq. (42). What is its domain of convergence? Ans: 2

π

∑∞
0 (−1)n

(
x2n+1

/
(2n + 1)(2n + 1)!

)



5—Fourier Series 23

b

a

5.32 An input potential in a circuit is given to be a square wave ±V0

at frequency ω. What is the voltage between the points a and b? In
particular, assume that the resistance is small, and show that you can
pick values of the capacitance and the inductance so that the output
potential is almost exactly a sine wave at frequency 3ω. A filter circuit.
Recall section 4.8.

5.33 For the function sin(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a
basis the trigonometric functions with the boundary conditions u′(0) = 0 = u′(2L), the cosines.
Graph the resulting series as extended outside the original domain.

5.34 For the function cos(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a basis
the trigonometric functions with the boundary conditions u(0) = 0 = u(2L), the sines. Graph
the resulting series as extended outside the original domain.

5.35 For the function f(x) = x4, evaluate the Fourier series on the interval −L < x < L using
periodic boundary conditions

(
u(−L) = u(L) and u′(−L) = u′(L)

)
. Evaluate the series at the

point x = L to derive the zeta function value ζ(4) = π4/90. Evaluate it at x = 0 to get a
related series.
Ans: 1

5L4 + L4
∑∞

1 (−1)n
[

8
n2π2 − 48

n4π4

]
cos nπx/L

5.36 Fourier series depends on the fact that the sines and cosines are orthogonal when integrated
over a suitable interval. There are other functions that allow this too, and you’ve seen one such
set. The Legendre polynomials that appeared in section 4.11 in the chapter on differential
equations satisfied the equations (4.61). One of these is∫ 1

−1
dxPn(x)Pm(x) =

2

2n + 1
δnm

This is an orthogonality relation,
〈
Pn, Pm

〉
= 2δnm/(2n + 1), much like that for trigonometric

functions. Write a function f(x) =
∑∞

0 an Pn(x) and deduce an expression for evaluating the
coefficients an. Apply this to the function f(x) = x2.

5.37 For the standard differential equation u′′ = λu, use the boundary conditions u(0) = 0 and
2u(L) = Lu′(L). This is a special case of problem 25, so the bilinear concomitant vanishes. If
you haven’t done that problem, at least do this special case. Find all the solutions that satisfy
these conditions and graph a few of them. You will not be able to find an explicit solution for
the λs, but you can estimate a few of them to sketch graphs. Did you get them all?

5.38 Examine the function on −L < x < L given by

f(x) =

 0 (−L < x < −L/2) and (L/2 < x < L)
1 (0 < x < L/2)
−1 (−L/2 < x < 0)

Draw it first. Now find a Fourier series representation for it. You may choose to do this by doing
lots of integrals, OR you may prefer to start with some previous results in this chapter, change
periods, add or subtract, and do no integrals at all.
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5.39 In Eq. (30) I wrote cos ωet as the sum of two exponentials, eiωet + e−iωet. I could have
written the cosine as eiωet with the understanding that I’ll take the real part of the result when I
get to the end. Show that the result is the same.

5.40 From Eq. (41) write an approximate closed form expression for the partial sum fN (x) for
the region x � L but not necessarily x � NL, though that extra-special case is worth doing
too.


	5.FOURIER SERIES
	1.Examples
	2.Computing Fourier Series
	Computing an Example
	Notation
	Some Examples
	Extending the function

	3.Choice of Basis
	Fundamental Theorem
	Apply the Theorem

	4.Musical Notes
	Parseval's Identity
	But does it Work?

	5.Periodically Forced ODE's
	Pure Frequency Forcing
	General Periodic Force

	6.Return to Parseval
	Other Applications

	7.Gibbs Phenomenon
	Problems


