
Fourier Analysis
Fourier series allow you to expand a function on a finite interval as an infinite series of trigono-
metric functions. What if the interval is infinite? That’s the subject of this chapter. Instead of
a sum over frequencies, you will have an integral.

15.1 Fourier Transform
For the finite interval you have to specify the boundary conditions in order to determine the
particular basis that you’re going to use. On the infinite interval you don’t have this large set of
choices. After all, if the boundary is infinitely far away, how can it affect what you’re doing over
a finite distance? But see section 15.6.

In section 5.3 you have several boundary condition listed that you can use on the differential
equation u′′ = λu and that will lead to orthogonal functions on your interval. For the purposes
here the easiest approach is to assume periodic boundary conditions on the finite interval and
then to take the limit as the length of the interval approaches infinity. On −L < x < +L, the
conditions on the solutions of u′′ = λu are then u(−L) = u(+L) and u′(−L) = u′(+L). The
solution to this is most conveniently expressed as a complex exponential, Eq. (5.19)

u(x) = eikx, where u(−L) = e−ikL = u(L) = eikL

This implies e2ikL = 1, or 2kL = 2nπ, for integer n = 0, ±1, ±2, . . .. With these solutions, the
other condition, u′(−L) = u′(+L) is already satisfied. The basis functions are then

un(x) = eiknx = enπix/L, for n = 0, ±1, ±2, etc. (1)

On this interval you have the Fourier series expansion

f(x) =
∞∑
−∞

an un(x), and
〈
um, f

〉
=

〈
um,

∞∑
−∞

an un

〉
= am

〈
um, um

〉
(2)

In the basis of Eq. (1) this normalization is
〈
um, um

〉
= 2L.

Insert this into the series for f .

f(x) =
∞∑

n=−∞

〈
un, f

〉〈
un, un

〉un(x) =
1

2L

∞∑
n=−∞

〈
un, f

〉
un(x)

Now I have to express this in terms of the explicit basis functions in order to manipulate it.
When you use the explicit form you have to be careful not to use the same symbol (x) for two
different things in the same expression. Inside the

〈
un, f

〉
there is no “x” left over — it’s the

dummy variable of integration and it is not the same x that is in the un(x) at the end. Denote
kn = πn/L.

f(x) =
1

2L

∞∑
n=−∞

∫ L

−L
dx′un(x′)*f(x′)un(x) =

1

2L

∞∑
n=−∞

∫ L

−L
dx′e−iknx′f(x′) eiknx
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2 15—Fourier Analysis

Now for some manipulation: As n changes by 1, kn changes by ∆kn = π/L.

f(x) =
1

2π

∞∑
n=−∞

π

L

∫ L

−L
dx′ e−iknx′f(x′) eiknx

=
1

2π

∞∑
n=−∞

eiknx ∆kn

∫ L

−L
dx′ e−iknx′f(x′) (3)

For a given value of k, define the integral

gL(k) =

∫ L

−L
dx′e−ikx′f(x′)

If the function f vanishes sufficiently fast as x′ →∞, this integral will have a limit as L→∞.
Call that limit g(k). Look back at Eq. (3) and you see that for large L the last factor will be
approximately g(kn), where the approximation becomes exact as L→∞. Rewrite that expression
as

f(x) ≈ 1

2π

∞∑
n=−∞

eiknx ∆kn g(kn) (4)

As L→∞, you have ∆kn → 0, and that turns Eq. (4) into an integral.

f(x) =

∫ ∞

−∞

dk

2π
eikxg(k), where g(k) =

∫ ∞

−∞
dx e−ikxf(x) (5)

The function g is called* the Fourier transform of f , and f is the inverse Fourier transform of g.

Examples
For an example, take the function

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

then

g(k) =

∫ a

−a
dx e−ikx 1 =

1

−ik

[
e−ika − e+ika

]
=

2 sin ka

k

(6)

The first observation is of course that the dimensions check: If dx is a length then so is
1/k. After that, there is only one parameter that you can vary, and that’s a. As a increases,
obviously the width of the function f increases, but now look at g. The first place where g(k) = 0
is at ka = π. This value, π/a decreases as a increases. As f gets broader, g gets narrower (and
taller). This is a general property of these Fourier transform pairs.

* Another common notation is to define g with an integral dx/
√

2π. That will require a
corresponding dk/

√
2π in the inverse relation. It’s more symmetric that way, but I prefer not to

do it.
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Can you invert this Fourier transform, evaluating the integral of g to get back to f? Yes,
using the method of contour integration this is very easy. Without contour integration it would
be extremely difficult. That is typically the case with these transforms; complex variable methods
are essential to get anywhere with them. The same statement holds with many other transforms
(Laplace, Radon, Mellin, Hilbert, etc. )
www.math.niu.edu/˜rusin/known-math/index/44-XX.html

The inverse transform is

∫ ∞

−∞

dk

2π
eikx2 sin ka

k
=

∫
C1

dk

2π
eikx e

ika − e−ika

ik

= −i
∫

C2

dk

2π

1

k

[
eik(x+a) − eik(x−a)

]
C1

C2

1. If x > +a then both x + a and x − a are positive, which implies that both exponentials
vanish rapidly as k → +i∞. Push the contour C2 in this direction and the integrand vanishes
exponentially, making the integral zero.
2. If −a < x < +a, then only x + a is positive. The integral of the first term is then zero by
exactly the preceding reasoning, but the other term has an exponential that vanishes as k → −i∞
instead, implying that I have to push the contour down toward −i∞.

= i

∫
C3

dk

2π

1

k
eik(x−a) =

∫
C4

= +i
1

2π
(−1)2πiRes

k=0

eik(x−a)

k
= −i 1

2π
. 2πi = 1

C3

C4

The extra (−1) factor comes because the contour is clockwise.
3. In the third domain, x < −a, both exponentials have the form e−ik, requiring you to push
the contour toward −i∞. The integrand now has both exponentials, so it is analytic at zero and
there is zero residue. The integral vanishes and the whole analysis takes you back to the original
function, Eq. (6).

Another example of a Fourier transform, one that shows up often in quantum mechanics

f(x) = e−x2/σ2

, so g(k) =

∫ ∞

−∞
dx e−ikxe−x2/σ2

=

∫ ∞

−∞
dx e−ikx−x2/σ2

The trick to doing this integral is to complete the square inside the exponent.

−ikx− x2/σ2 =
−1

σ2

[
x2 + σ2ikx− σ4k2/4 + σ4k2/4

]
=
−1

σ2

[
(x+ ikσ2/2)2 + σ4k2/4

]
The integral of f is now

g(k) = e−σ2k2/4

∫ ∞

−∞
dx′e−x′2/σ2

where x′ = x+ ikσ/2

http://www.math.niu.edu/~rusin/known-math/index/44-XX.html
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The change of variables makes this a standard integral, Eq. (1.10), and the other factor, with
the exponential of k2, comes outside the integral. The result is

g(k) = σ
√
π e−σ2k2/4 (7)

This has the curious result that the Fourier transform of a Gaussian is* a Gaussian.

15.2 Convolution Theorem
What is the Fourier transform of the product of two functions? It is a convolution of the individual
transforms. What that means will come out of the computation. Take two functions f1 and f2

with Fourier transforms g1 and g2.∫ ∞

−∞
dx f1(x)f2(x)e

−ikx =

∫
dx

∫
dk′

2π
g1(k

′ )eik
′xf2(x)e

−ikx

=

∫
dk′

2π
g1(k

′ )

∫
dx eik

′xf2(x)e
−ikx

=

∫
dk′

2π
g1(k

′ )

∫
dx f2(x)e

−i(k−k′)x

=

∫ ∞

−∞

dk′

2π
g1(k

′ )g2(k − k′) (8)

The last expression (except for the 2π) is called the convolution of g1 and g2.∫ ∞

−∞
dx f1(x)f2(x)e

−ikx =
1

2π
(g1 ∗ g2)(k) (9)

The last line shows a common notation for the convolution of g1 and g2.

What is the integral of |f |2 over the whole line?∫ ∞

−∞
dx f*(x)f(x) =

∫
dx f*(x)

∫
dk

2π
g(k)eikx

=

∫
dk

2π
g(k)

∫
dx f*(x)eikx

=

∫
dk

2π
g(k)

[∫
dx f(x)e−ikx

]
*

=

∫ ∞

−∞

dk

2π
g(k)g*(k) (10)

This is Parseval’s identity for Fourier transforms. There is an extension to it in problem 10.

* Another function has this property: the hyperbolic secant. Look up the quantum mechanical
harmonic oscillator solution for an infinite number of others.
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15.3 Time-Series Analysis
Fourier analysis isn’t restricted to functions of x, sort of implying position. They’re probably
more often used in analyzing functions of time. If you’re presented with a complicated function
of time, how do you analyze it? What information is present in it? If that function of time is a
sound wave you may choose to analyze it with your ears, and if it’s music the frequency content
is just what you will be listening for. That’s Fourier analysis. The Fourier transform of the signal
tells you its frequency content, and sometimes subtle periodicities will show up in the transformed
function even though they aren’t apparent in the original signal. (Fourier analyzing the stock
market hasn’t helped though.)

A function of time is f(t) and its Fourier transform is

g(ω) =

∫ ∞

−∞
dt f(t) eiωt with f(t) =

∫ ∞

−∞

dω

2π
g(ω) e−iωt

The sign convention in these equations appear backwards from the one in Eq. (5), and it is.
One convention is as good as the other, but in the physics literature you’ll find this pairing the
more common because of the importance of waves. A function ei(kx−ωt) represents a wave with
(phase) velocity ω/k, and so moving to the right. You form a general wave by taking linear
combinations of these waves, usually an integral.

Example
When you hear a musical note you will perceive it as having a particular frequency. It doesn’t,
and if the note has a very short duration it becomes hard to tell its* pitch. Only if its duration is
long enough do you have a real chance to discern what note you’re hearing. This is a reflection
of the facts of Fourier transforms.

If you hear what you think of as a single note, it will not last forever. It starts and it ends.
Say it lasts from t = −T to t = +T , and in that interval it maintains the frequency ω0.

f(t) = Ae−iω0t (−T < t < T ) (11)

The frequency analysis comes from the Fourier transform.

g(ω) =

∫ ∞

−∞
dt f(t)eiωt =

∫ T

−T
dtAei(ω−ω0)t = A

ei(ω−ω0)T − e−i(ω−ω0)T

i(ω − ω0)
= 2A

sin(ω − ω0)T

(ω − ω0)

This is like the function of Eq. (6) except that its center is shifted. It has a peak at ω = ω0

instead of at the origin as in that case. The width of the function g is determined by the time
interval T . As T is large, g is narrow and high, with a sharp localization near ω0. In the reverse
case of a short pulse, the range of frequencies that constitute the note is spread over a wide
range of frequencies, and you will find it difficult to tell by listening to it just what the main
pitch is supposed to be. This figure shows the frequency spectrum for two notes having the same
nominal pitch, but one of them lasts three times as long as the other before being cut off. It

* Think of a hemisemidemiquaver played at tempo prestissimo.
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therefore has a narrower spread of frequencies.

Example
Though you can do these integrals numerically, and when you’re dealing with real data you will
have to, it’s nice to have some analytic examples to play with. I’ve already shown, Eq. (7), how
the Fourier transform of a Gaussian is simple, so start from there.

If g(ω) = e−(ω−ω0)
2/σ2

then f(t) =
σ

2
√
π
e−iω0te−σ2t2/4

If there are several frequencies, the result is a sum.

g(ω) =
∑
n

An e
−(ω−ωn)2/σ2

n ⇐⇒ f(t) =
∑
n

An
σn

2
√
π
e−iωnte−σ2

nt2/4

In a more common circumstance you will have the time series, f(t), and will want to obtain
the frequency decomposition, g(ω), though for this example I worked backwards. The function
of time is real, but the transformed function g is complex. Because f is real, it follows that g
satisfies g(−ω) = g*(ω). See problem 13.

f

Real
Imag

g

This example has four main peaks in the frequency spectrum. The real part of g is an even
function and the imaginary part is odd.

f

Real

Imagg

This is another example with four main peaks.
In either case, if you simply look at the function of time on the left it isn’t obvious what sort

of frequencies are present. That’s why there are standard, well-developed computer programs to
do the Fourier analysis.
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15.4 Derivatives
There are a few simple, but important relations involving differentiation. What is the Fourier
transform of the derivative of a function? Do some partial integration.

F(ḟ) =

∫
dt eiωt df

dt
= eiωtf(t)

∣∣∣∞
−∞

− iω

∫
dt eiωtf(t) = −iωF(f) (12)

Here I’ve introduced the occasionally useful notation that F(f) is the Fourier transform of f .
The boundary terms in the partial integration will go to zero if you assume that the function f
approaches zero at infinity.

The nth time derivative simply give you more factors: (−iω)n on the transformed function.

15.5 Green’s Functions
This technique showed up in the chapter on ordinary differential equations, section 4.6, as a
method to solve the forced harmonic oscillator. In that instance I said that you can look at a
force as a succession of impulses, as if you’re looking at the atomic level and visualizing a force
as many tiny collisions by atoms. Here I’ll get to the same sort of result as an application of
transform methods. The basic technique is to Fourier transform everything in sight.

The damped, forced harmonic oscillator differential equation is

m
d2x

dt2
+ b

dx

dt
+ kx = F0(t) (13)

Multiply by eiωt and integrate over all time. You do the transforms of the derivatives by partial
integration as in Eq. (12).∫ ∞

−∞
dt eiωt [Eq. (13)] = −mω2x̃− ibωx̃+ kx̃ = F̃0, where x̃(ω) =

∫ ∞

−∞
dt eiωtx(t)

This is an algebraic equation that I can solve for the function x̃(ω).

x̃(ω) =
F̃0(ω)

−mω2 − ibω + k

Now use the inverse transform to recover the function x(t).

x(t) =

∫ ∞

−∞

dω

2π
e−iωtx̃(ω) =

∫
dω

2π
e−iωt F̃0(ω)

−mω2 − ibω + k

=

∫
dω

2π

e−iωt

−mω2 − ibω + k

∫
dt′ F0(t

′ )eiωt′

=

∫
dt′ F0(t

′ )

∫
dω

2π

e−iωt

−mω2 − ibω + k
eiωt′ (14)

In the last line I interchanged the order of integration, and in the preceding line I had to use
another symbol t′ in the second integral, not t. Now do the ω integral.∫ ∞

−∞

dω

2π

e−iωt

−mω2 − ibω + k
eiωt′ =

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−mω2 − ibω + k
(15)
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To do this, use contour integration. The singularities of the integrand are at the roots of the
denominator, −mω2 − ibω + k = 0. They are

ω =
−ib±

√
−b2 + 4km

2m
= ω±

C1

C2

Both of these poles are in the lower half complex plane. The contour integral C1 is along the real
axis, and now I have to decide where to push the contour in order to use the residue theorem.

This will be governed by the exponential, e−iω(t−t′).

First take the case t < t′, then e−iω(t−t′) is of the form e+iω, so in the complex ω-plane
its behavior in the ±i directions is as a decaying exponential toward +i (∝ e−|ω|). It is a rising
exponential toward −i (∝ e+|ω|). This means that if I push the contour C1 up toward C2 and
beyond, then this integral will go to zero. I’ve crossed no singularities, so that means that Eq. (15)
is zero for t < t′.

Next, the case that t > t′. Now e−iω(t−t′) is of the form e−iω, so its behavior is reversed
from that of the preceding paragraph. It dies off rapidly toward −i∞ and rises in the opposite
direction. That means that I can push the contour in the opposite direction, down to C3 and
to C4. Because of the decaying exponential, the large arc of the contour that I pushed down to
−i∞ gives zero for its integral; the two lines that parallel the i-axis cancel each other; only the
two residues remain.

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−mω2 − ibω + k
= −2πi

∑
ω±

Res

C3

C4

(16)

The denominator in Eq. (15) is −m(ω − ω+)(ω − ω−). Use this form to compute the residues.
Leave the 1/2π aside for the moment and you have

e−iω(t−t′)

−mω2 − ibω + k
=

e−iω(t−t′)

−m(ω − ω+)(ω − ω−)

The residues of this at ω± are the coefficients of these first order poles.

at ω+:
e−iω+(t−t′)

−m(ω+ − ω−)
and at ω−:

e−iω−(t−t′)

−m(ω− − ω+)
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equa The explicit values of ω± are

ω+ =
−ib+

√
−b2 + 4km

2m
and ω− =

−ib−
√
−b2 + 4km

2m

Let ω′ =

√
−b2 + 4km

2m
and γ =

b

2m

The difference that appears in the preceding equation is then

ω+ − ω− = (ω′ − iγ)− (−ω′ − iγ) = 2ω′

Eq. (16) is then∫ ∞

−∞

dω

2π
. e−iω(t−t′)

−mω2 − ibω + k
= −i

[
e−i(ω′−iγ)(t−t′)

−2mω′
+
e−i(−ω′−iγ)(t−t′)

+2mω′

]
=

−i
2mω′

e−γ(t−t′)[− e−iω′(t−t′) + e+iω′(t−t′)]
=

1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
Put this back into Eq. (14) and you have

x(t) =

∫ t

−∞
dt′ F0(t

′)G(t− t′), where G(t− t′) =
1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
(17)

If you eliminate the damping term, setting b = 0, this is exactly the same as Eq. (4.34). The
integral stops at t′ = t because the Green’s function vanishes beyond there. The motion at time
t is determined by the force that was applied in the past, not the future.

15.6 Sine and Cosine Transforms
Return to the first section of this chapter and look again at the derivation of the Fourier transform.
It started with the Fourier series on the interval −L < x < L and used periodic boundary
conditions to define which series to use. Then the limit as L→∞ led to the transform.

What if you know the function only for positive values of its argument? If I want to write
f(x) as a series when I know it only for 0 < x < L it doesn’t make much sense to start the way
I did in section 15.1. Instead I have to pick the boundary condition at x = 0 carefully because
this time the boundary won’t go away in the limit that L → ∞. The two common choices to
define the basis are

u(0) = 0 = u(L), and u′(0) = 0 = u′(L) (18)

Start with the first, then un(x) = sin(nπx/L) for positive n. The equation (2) is unchanged,
save for the limits.

f(x) =
∞∑
1

an un(x), and
〈
um, f

〉
=

〈
um,

∞∑
n=1

an un

〉
= am

〈
um, um

〉
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In this basis,
〈
um, um

〉
= L/2, so

f(x) =
∞∑

n=1

〈
un, f

〉〈
un, un

〉un(x) =
2

L

∞∑
n=1

〈
un, f

〉
un(x)

Now explicitly use the sine functions to finish the manipulation, and as in the work leading up to
Eq. (3), denote kn = πn/L, and the difference ∆kn = π/L.

f(x) =
2

L

∞∑
1

∫ L

0
dx′f(x′) sin

nπx′

L
sin

nπx

L

=
2

π

∞∑
1

sin
nπx

L
∆kn

∫ L

0
dx′f(x′) sinnπx′/L (19)

For a given value of k, define the integral

gL(k) =

∫ L

0
dx′ sin(kx′)f(x′)

If the function f vanishes sufficiently fast as x′ →∞, this integral will have a limit as L→∞.
Call that limit g(k). Look back at Eq. (19) and you see that for large L the last factor will
be approximately g(kn), where the approximation becomes exact as L → ∞. Rewrite that
expression as

f(x) ≈ 2

π

∞∑
1

sin(knx)∆kn g(kn) (20)

As L→∞, you have ∆kn → 0, and that turns Eq. (20) into an integral.

f(x) =
2

π

∫ ∞

0
dk sin kx g(k), where g(k) =

∫ ∞

0
dx sin kx f(x) (21)

This is the Fourier Sine transform. For a parallel calculation leading to the Cosine transform,
see problem 22, where you will find that the equations are the same except for changing sine to
cosine.

f(x) =
2

π

∫ ∞

0
dk cos kx g(k), where g(k) =

∫ ∞

0
dx cos kx f(x) (22)

What is the sine transform of a derivative? Integrate by parts, remembering that f has to
approach zero at infinity for any of this to make sense.∫ ∞

0
dx sin kx f ′(x) = sin kxf(x)

∣∣∣∣∞
0

− k

∫ ∞

0
dx cos kx f(x) = −k

∫ ∞

0
dx cos kx f(x)

For the second derivative, repeat the process.∫ ∞

0
dx sin kx f ′′(x) = kf(0)− k2

∫ ∞

0
dx sin kx f(x) (23)
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15.7 Wiener-Khinchine Theorem
If a function of time represents the pressure amplitude of a sound wave or the electric field of an
electromagnetic wave the power received is proportional to the amplitude squared. By Parseval’s
identity, the absolute square of the Fourier transform has an integral proportional to the integral
of this power. This leads to the interpretation of the transform squared as some sort of power
density in frequency. |g(ω)|2dω is then a power received in this frequency interval. When this
energy interpretation isn’t appropriate, |g(ω)|2 is called the “spectral density.” A useful result
appears by looking at the Fourier transform of this function.∫

dω

2π
|g(ω)|2e−iωt =

∫
dω

2π
g*(ω)e−iωt

∫
dt′ f(t′)eiωt′

=

∫
dt′ f(t′)

∫
dω

2π
g*(ω)eiωt′e−iωt

=

∫
dt′ f(t′)

[∫
dω

2π
g(ω)e−iω(t′−t)

]
*

=

∫
dt′ f(t′)f(t′ − t)* (24)

When you’re dealing with a real f , this last integral is called the autocorrelation function. It tells
you in some average way how closely related a signal is to the same signal at some other time. If
the signal that you are examining is just noise then what happens now will be unrelated to what
happened a few milliseconds ago and this autocorrelation function will be close to zero. If there
is structure in the signal then this function gives a lot of information about it.



12 15—Fourier Analysis

Problems

15.1 Invert the Fourier transform, g, in Eq. (7).

15.2 What is the Fourier transform of eik0x−x2/σ2
? Ans: A translation of the k0 = 0 case

15.3 What is the Fourier transform of xe−x2/σ2
?

15.4 What is the square of the Fourier transform operator? That is, what is the Fourier transform
of the Fourier transform?

15.5 A function is defined to be

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

What is the convolution of f with itself? (f ∗ f)(x) And graph it of course.
Ans: (2a− |x|) for (−a < x < +a), and zero elsewhere.

15.6 Two functions are

f1(x) =

{
1 (a < x < b)
0 (elsewhere)

and f2(x) =

{
1 (A < x < B)
0 (elsewhere)

What is the convolution of f1 with f2? And graph it.

15.7 Derive these properties of the convolution:
(a) f ∗ g = g ∗ f (b) f ∗ (g ∗ h) = (f ∗ g) ∗ h (c) δ(f ∗ g) = f ∗ δg + g ∗ δf where
δf(t) = tf(t), δg(t) = tg(t), etc. (d) What are δ2(f ∗ g) and δ3(f ∗ g)?

15.8 Show that you can rewrite Eq. (9) as

F(f ∗ g) = F(f) .F(g)

where I am using the shorthand notation of F(f) for the Fourier transform of f .

15.9 Derive Eq. (10) from Eq. (9).

15.10 What is the analog of Eq. (10) for two different functions? That is, relate the scalar
product of two functions, 〈

f1, f2

〉
=

∫ ∞

−∞
f*
1 (x)f2(x)

to their Fourier transforms.

15.11 In the derivation of the harmonic oscillator Green’s function starting with Eq. (15), I
assumed that the oscillator is underdamped: that b2 < 4km. Now assume the reverse, the
overdamped case, and repeat the calculation.
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15.12 Repeat the preceding problem, but now do the critically damped case, for which b2 = 4km.
Compare your result to the result that you get by taking the limit of critical damping in the
preceding problem and in Eq. (17).

15.13 Show that if f(t) is real then the Fourier transform satisfies g(−ω) = g*(ω).
What are the properties of g if f is respectively even or odd?

15.14 Evaluate the Fourier transform of

f(x) =

{
A

(
a− |x|

)
(−a < x < a)

0 (otherwise)

How do the properties of the transform very as the parameter a varies? Ans: 2A(1− cos ka)
/
k2

15.15 Evaluate the Fourier transform of Ae−α|x|. Invert the transform to verify that it takes
you back to the original function. Ans: 2α/(α2 + k2)

15.16 Given that the Fourier transform of f(x) is g(k), what is the Fourier transform of the the
function translated a distance a to the right, f1(x) = f(x− a)?

15.17 Schroedinger’s equation is

−ih̄∂ψ
∂t

= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ

Fourier transform the whole equation with respect to x, and find the equation for Φ(k, t), the
Fourier transform of ψ(x, t). The result will not be a differential equation.
Ans: −ih̄∂Φ(k, t)/∂t = (h̄2k2/2m)Φ + (v ∗ Φ)/2π

15.18 Take the Green’s function solution to Eq. (13) as found in Eq. (17) and take the limit
as both k and b go to zero. Verify that the resulting single integral satisfies the original second
order differential equation.

15.19 In problem 18 you have the result that a double integral (undoing two derivatives) can be
written as a single integral. Now solve the equation

d3x

dt3
= F (t)

C

directly, using the same method as for Eq. (13). You will get a pole at the origin and how do you
handle this, where the contour of integration goes straight through the origin? Answer: Push
the contour up as in the figure. Why? This is what’s called the “retarded solution” for which
the value of x(t) depends on only those values of F (t′) in the past. If you try any other contour
to define the integral you will not get this property. (And sometimes there’s a reason to make
another choice.)

Pick a fairly simple F and verify that this gives the right answer. Ans: 1
2

∫ t
−∞ dt′ F (t′)(t− t′)2
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15.20 Repeat the preceding problem for the fourth derivative. Would you care to conjecture
what 31/2 integrals might be? Then perhaps an arbitrary non-integer order?

Ans: 1
6

∫ t
−∞ dt′ F (t′)(t− t′)3

15.21 What is the Fourier transform of xf(x)? Ans: ig′(k)

15.22 Repeat the calculations leading to Eq. (21), but for the boundary conditions u′(0) = 0 =
u′(L), leading to the Fourier cosine transform.

15.23 For both the sine and cosine transforms, the original function f(x) was defined for positive
x only. Each of these transforms define an extension of f to negative x. This happens because
you compute g(k) and from it get an inverse transform. Nothing stops you from putting a
negative value of x into the answer. What are the results?

15.24 What are the sine and cosine transforms of e−αx. In each case evaluate the inverse
transform.

15.25 What is the sine transform of f(x) = 1 for 0 < x < L and f(x) = 0 otherwise. Evaluate
the inverse transform.

15.26 Repeat the preceding calculation for the cosine transform. Graph the two transforms and
compare them, including their dependence on L.

15.27 Choose any different way around the pole in problem 19, and compute the difference
between the result with your new contour and the result with the old one. Note: Plan ahead
before you start computing.
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