Magneto-electric ceramic composite materials
Devices made of Magneto electric (ME) materials are one of the highest priority research topic to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferro toroidicity. Based on the type of ordering and coupling, there is a wide variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials.
The ceramic material BaTiO3 will be having the dielectric properties which are very useful in a variety of applications. It is a well known dielectric, piezoelectric, ferroelectric material. Ferrites like, CoFe2O4, NiFe2O4, ZnFe2O4, and MgFe2O4 are very useful magnetic materials having variety of applications. They are used in transformer cores, they have low coercivity, high permeability and ferrite cores used for signals have a range of applications from 1 kHz to 300 MHz. Composites of ceramic-ferrites synthesized to enhance the ferroelectric and magnetic properties in a single material. The characterizations (XRD, P-E, M-H, UV-Vis, SEM, EDX, Magnetocapacitance) of the prepared sample gives the nature of the behavior of sample prepared.
Materials interest:
Ceramics, ferrites, ferroelectric materials, Multiferroic materials
- (1-x) BaTiO3 + x CoFe2O4
- (1-x) BaTiO3 + x NiFe2O4
- (1-x) BaTiO3 + x ZnFe2O4
- (1-x) BaTiO3 + x MgFe2O4